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Abstract: This work is dedicated to the description of a new basic creep model that was developed 

and integrated in a thermo-mechanical model already available in a FEM-based software – FEMIX. 

The basic creep model is based on the Dirichlet series expansion of the Double Power Law (DPL) 

approach, and is capable of predicting the aging creep behaviour of cement based materials (CBM) 

since early ages. Based on experimental results, the model resorts to a non-linear least square data-

fitting operation to various loading ages creep compliance curves, and determines a set of model 

defining coefficients to simulate the aging viscoelastic properties of any CBM. This model was 

integrated with a thermo-mechanical model capable of simulating maturation, shrinkage and cracking 

phenomena of CBM. The good predictive performance of the implemented model is appraised by 

simulating experimental tests at material and structural scale. 
 

 

1 INTRODUCTION 

When in service all cement based materials 

(CBM), like concrete and mortar, experience 

the effect of instantaneous and time-dependent 

deformations, therefore they have a viscoelastic 

nature [1]. When submitted to a constant 

sustained stress, the time-dependent 

deformation of a CBM is composed by a slow 

and continuous increase of deformation with 

time, at a decreasing rate, but without a 

maximum limiting bound. This phenomenon is 

commonly referred as creep. When the applied 

stress level is less than of about 40-50% of the 

material strength limit, the viscoelastic 

behavior of a CBM can be considered linear 

when the principle of superposition and 

proportionality are fulfilled [2]. This means that 

there is a linear relationship between stress and 

strain [3], ( ) ( )0 0( , )t J t t t =  , where 0( , )J t t  is 

the uniaxial creep compliance function that 

characterizes a given CBM. The creep 

compliance is a function that represents the 
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instantaneous plus the creep deformation at 

time t , caused by a unitary stress acting since 

time 0t . 

According to [4] and [5], some of the 

mechanisms that control creep behaviour of 

CBM are: i) sliding of the colloidal sheets in the 

cement gel between the layers of absorbed 

water – viscous flow; ii) Expulsion and 

decomposition of the interlayer water within the 

cement gel – seepage; iii) Elastic deformation 

of the aggregate and the gel crystals as viscous 

flow and seepage occurring within the cement 

gel – delayed elasticity; iv) Local fracture 

within the cement gel involving the breakdown 

(and formation) of physical bonds – micro-

cracking; v) Mechanical deformation theory; 

vi) Plastic flow; vii) Solidification theory; viii) 

Microprestress of creep sites in cement gel 

microstructure; viii) dissolution-precipitation 

process that acts at nanoscale contact regions of 

calcium-silicate-hydrates (C-S-H) particles.  

When submitted to sustained stress for long 

periods of time, concrete creep deformation can 

reach about 50% in the first 2-3 months and 

about 90% in 2-3 years after loading [6]. 

Afterwards, the strain rate is almost negligible 

[6]. 

It is known that creep deformation of CBM 

can be decomposed in two parts: a) basic creep; 

b) drying creep. The basic creep is associated to 

the stress state of the material and can be 

identified in sealed specimens in which all 

moisture interactions with the external 

environment are avoided. Basic creep is 

considered as a material constitutive property 

and independent from the specimen’s size and 

shape [7]. The drying creep is related to the time 

dependent deformation coupled with the drying 

effect of the CBM specimens, and is 

experimentally determined after subtracting 

shrinkage, elastic, thermal and basic creep 

components from the total measured strain [6], 

[7]. 

The creep deformation magnitude and rate 

of change are influenced by different factors 

such as: material composition, and 

environmental and loading conditions [6], [8]. 

In general, the creep deformation of high 

strength concrete is lower than normal strength 

counterparts. Additionally, the higher 

aggregate content and maximum aggregate 

size, and the lower water-cement ratio, also 

reduce the creep deformation of CBM [6]. 

Regarding the element geometry, the creep is 

more significant in thin structural specimens, 

such as slabs, which exhibit higher surface-

area/volume ratios [6], [9]. In addition to 

relative humidity, the environment temperature 

is also an important factor in creep phenomena. 

The rise in temperature increases the 

deformation of the cement paste and accelerates 

drying, and consequently increases the creep. 

The dependence of creep deformations to the 

temperature is more pronounced in high 

temperatures and has low relevance between 

0˚C and 20˚C. At room temperature of 40˚C, the 

creep in concrete has been reported to be 25% 

higher than that at 20˚C [6]. 

The creep deformation of CBM is highly 

influenced by the loading age of the specimens. 

For early ages, the creep strain magnitude is 

higher than for specimens loaded at later ages, 

as long as the specimens are submitted to equal 

stress levels. This behavior is designated by 

aging (or maturing) and the solidification-

microprestress theory is being used for its 

physical explanation [10], [11], [12], [13]. 

Although the main topics in CBM creep 

assessment are related with compressive stress 

states, the consideration of creep effect in 

tension and bending is of great interest, 

especially in the analysis of the cracking risk of 

structures since early ages, due to the effects of 

shrinkage, temperature variations and load 

actions. The main mechanisms that rule the 

behavior of CBM creep in tension are common 

to creep in compression. 

The most used creep models are: (i) the 

Double Power Law (DPL) [14]; (ii) the Model 

Code 2010 model (MC2010) [15]; (iii) the B3 

model [16]; (iv) and its recent updated form, the 

B4 model [17]. The DPL and MC2010 models 

follow the classical approach that treats the 

material parameters involved in creep as 

empirical functions of time and loading age; the 

B3 and B4 models that follows a 

phenomenological approach, where the 

materials parameters are determined based on 

the existing physical, chemical and 
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thermodynamic understanding on concrete 

creep phenomenon and its microstructure. 

According to [18], the B4 model outputs the 

most accurate creep predictions when applied to 

the Northwestern University creep database, 

compared to the B3 model and MC2010, 

amongst other models. 

The numerical simulation of concrete 

structures sensitive to creep requires the 

adoption of adequate constitutive models for 

accurate simulation of the viscoelastic, 

cracking, maturing and thermal behaviour of 

the involving cement based materials. In the 

particular case of concrete structures submitted 

to significant stress states at concrete early age, 

such happens in prefabricated prestressed 

structural elements, the influence of the 

concrete creep effect on the structural response 

can be significant in terms of estimating initial 

and long term damage due to cracking 

occurrence. 

In the present work, a new creep model is 

developed and integrated with an existing 

thermo-mechanical approach already available 

in FEMIX computer program [19] in order to 

couple maturation, shrinkage, creep, 

temperature variation and cracking. This model 

is described and its predictive performance 

appraised. 

2 CONSTITUTIVE MODELS 

2.1 Introduction 

The present section is mainly dedicated to 

the description of a new aging creep 

compliance model, herein designated by the 

acronym ACC. This model is integrated in 

FEMIX computer program with a thermo and 

maturation models described in [19], shrinkage 

models (Eurocode 2 [20] or B3 [21] models) 

detailed in [22], and a 3D multidirectional fixed 

smeared crack model (MFSCM) described in 

[22] for simulating the time dependent 

phenomena in cracked concrete since its early 

age up to its hardened stage. 

 

2.2 ACC model 

According to the superposition principle, the 

total strain ( )t  caused by a given stress history 

( )t  can be obtained by decomposing the 

history in small increments ( )0,id t  applied at 

various time instants 
0,it , adding the 

corresponding strains ( ( ) ( )0, 0,

0

,

t

i iJ t t d t ) and 

the stress independent strains ( )0 t , resulting in 

the following Stieltjes integral [1], [6], [23]: 

( ) ( ) ( )0, 0, 0

0

( ) ,

t

i it J t t d t t  =  +  (1) 

The ( )0,J t t  can be transformed in a sum of 

products of functions of t  and 0t , called 

Dirichlet series (or Prony series) [24], [25]: 

( )
( ) ( )

( )0

0

10 0

1 1
, 1

t t
N

s

J t t e
E t E t



 

−
−

=

 
 = + −
 
 

  (2) 

where ( )0sE t  (influences the instantaneous 

response of the creep function) and ( )0E t  are 

coefficients dependent of the loading age 0t  

(Kelvin chains), both with units of elastic 

moduli;   are constants called retardation 

times;   is the number of series; and N  is the 

total number of series. 

The ACC model is a basic creep model 

based on the Dirichlet series expansion of the 

DPL model [14], capable of predicting the 

aging creep behavior of CBM since early age. 

According to ACC model, the modulus of each 

Kelvin chain, ( )0E t , in Eq. (2) is obtained from 

[27]: 

( ) ( )
( )11,1

0

0 0

1
10

0.002

n

n m

s

b t
E t E t



 








− − 
=   

 

1.0, for 
=  

1.2, for 

N

N









=
 

(3) 

where b , n , 
1,  and m  are the coefficients 

of the model calibrated from the experimental 

creep test data. 

While in the original model [14], the 

defining coefficients are fixed for all Kelvin 

chains, the ACC model uses different values for 

these coefficients in each Kelvin chain. The 

equation to compute the modulus of the isolated 

spring of the Kelvin generalized model ( )0sE t  

is also different than the proposed in the 
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original model. Its value is determined with the 

following equation: 

( ) ( )0 0sE t E t=   (4) 

where ( )0E t  is the Young Modulus of the 

material evaluated at the loading age 0t  and   

is the scaling factor ( )1.0  . The ( )0sE t  

represents the true elastic instantaneous 

response of the material, while the conventional 

elastic modulus ( )0E t  corresponds to a modulus 

obtained from compression tests with loading 

durations of 1 to 5 minutes, that incorporates 

the instantaneous and short-time creep response 

of the material within this time interval [27]. 

To determine the defining coefficients of the 

ACC model
 1, ,  1,...,b n m N      = =  , a 

nonlinear least square method (NLSM) is 

applied to the experimental creep compliance 

curves. This fitting procedure considers the 

following input data: N ,  , ( )0E t , and  .  

The number of Kelvin chains should be 

adequately selected, so that their corresponding 

retardation times cover the entire scale of the 

simulation [23]. According to [23], the 

retardation times should be uniformly spread 

over the logarithmic time scale. 

The objective function of the NLSM takes 

the following form: 

( ) ( )( )
2

, 0, , 0, exp
1 1

, ,
LML

j i i j i inum
i j

J t t J t t
= =

 = −  (5) 

where L  is the total number of experimental 

creep compliance functions to be fitted; LM  is 

the number of discrete points considered for 

fitting each creep function (from experimental 

data); ( ), 0, exp
,j i iJ t t  are the experimental values of 

the creep compliance corresponding to the 

loading age 
0,it  for each time step 

,j it ; 

( ), 0,,j i i num
J t t  are the creep compliance estimated 

values determined according to Eqs. (2) and (3). 

The meaning of variables L  and LM  is 

exemplified in Figure 1 as illustrative case. The 

number of discrete points LM  should be enough 

to accurately capture the trend of each creep 

function. The coefficients of the model can be 

obtained through the minimization of the 

following the equation: 

1,

0

,  1,...,b n m N   



  


=



 = = 

 (6) 

 
Figure 1: Example of three creep functions ( 3L = ) to 

be fitted, where each function is defined by different 

number of points: M1=10; M2=8; M3=7. 

 

The good predictive performance of ACC 

model at material level was appraised regarding 

its application for predicting, since early age, 

the creep behavior of epoxy adhesive [26] and 

concrete samples [28], as well as in sets of 

experimental creep data extracted from the 

Northwestern University data bank [29], [30], 

[31]. Furthermore, a comparison between the 

evolution of basic creep with time duration and 

loading age of the ACC and B4 models is 

performed. The creep compliance curves of the 

B4 model [29] was determined considering the 

following sets of parameters: i) parameters 

prediction based on concrete strength; ii) 

cement type R; iii) ( )28 24.87E t days GPa= =  ; iv)

0.5m =  ; v) 0.1n =  ; vi) 0.6w
c =  ; vii) 7a

c =  ; viii)
28 28cf MPa= . The defining coefficients of the 

ACC model were determined by the NLSM to 

fit the B4 model creep curves, considering the 

following parameters: i) E(t=3days)=27.7GPa; 

ii) E(t=7days)=30.8GPa; 

iii) E(t=28days)=34.0GPa; 

iv) E(t=200days)=36.2GPa; 

v) E(t=2000days)=37.1GPa; vi) 1.75 = ; vii) 

10N = ; viii) 3

1 1 10 −=  ; ix) 1

1 10

  −=   for  =2 

to N. As can be seen in Figure 2 the ACC model 

reveals a good agreement with the B4 model 

particularly for short and medium-term time 

duration. However, for long-term creep 

estimation, the ACC model exhibits a deviation 

tt0,1

L=3

M=10;

t0,2t0,3

1

J(t,    )t0,1

J(t,    )t0,2

J(t,    )t0,3

J(t,  )t0

M=8;
2

M=7
3
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from the B4 creep curves. This shortcoming of 

the model is related with the different 

mathematical formulation of the models. For 

long-term duration the B4 model approaches a 

logarithmic function, while the ACC model, 

that is based on the original DPL model, uses 

power curves for all time durations. 

 
Figure 2: Comparison between ACC and B4 models 

creep curves. 

 2.3 Numerical implementation of ACC for 

structural analysis 

Upon insertion of the Dirichlet series 

expansion (Eq. (2)) and considering that

( )
( )

( )0

0 0 0 0

0

d t
d t dt t dt

dt


 = = , Eq. (1) results in 

[25]: 

( ) ( )

( )

( )

( )

0

0 0

10 00

0

( )

1 1
1

t t
t N

s

t

e t dt
E t E t

t



 







−
−

=

=

  
  + − 
  

  

+

  (7) 

Rearranging Eq. (7), leads to: 

( ) ( )
( )

( )

0 0

10 00

*

0

1

1 1
( )

( )

t N

s

N

t t dt
E t E t

t t

 




 

 

=

=

 
= +  

  

− +





 (8) 

with: 

( )
( )

( )
0

*
0 0

00

1
tt t

t e e t dt
E t

  





 
−

=    (9) 

where ( )* t  may be considered as a hidden 

state variable that represents the past history.  

The time t  can be subdivided into F  discrete 

times 0 1, , ... , Ft t t , with time steps given by 

1n n nt t t − = − . By considering that ( )0t  and 

( )0E t  remain constant within each time step 

nt , Eq. (9) can take the form [25]: 

( )
( )
( )

0

1

*
0*

1

n st

st

tt tn
st

n
st tst

t
t e e dt

E t

  








−

− −

=

=    (10) 

with *

1st st stt t t +  , using a generalized midpoint 

rule. Eq. (10) can be exactly integrated, yielding 

[25]: 

( )

( )

( )*

*

1

1

st stn t t

st

st st

n

t
n

st

t
e e

t E t

t

e     





  




− −−

=

   
  −

  
  

=


 (11) 

Based on Eq. (11), a recurrent formula can 

be defined to express the hidden state variable 

value at time nt , based on its value in the 

preceding time step 1nt − , which avoids the need 

to store the hidden variable value at each time 

step, namely [25]: 

( )

( )

( )
( )

*

*
1*

1

n n

n

t t

n

n

n n

t

t
e t e

t E t

 



 






 


 
− −

−

 
 
 
 

=


− +



 

 

(12) 

Eq. (12) evidences that in order to determine 

the value of the hidden variable of each Kelvin 

chain ( )*

nt  for the time nt , there is only the 

need to know (or store) its value from the 

preceding time step ( )*

1nt − . This procedure is 

very convenient for implementation in FEM 

software for the analysis of creep problems of 

large structures. The initial value of the state 

variable is determined from: 

( )
( )

( )
1*

1

1

t
t

E t








=  (13) 

Based on Eq. (8), it is possible to derive the 

total incremental strain ( )nt  in each time step 

nt  [25]: 

( )
( ) ( )

( )

( ) ( )

* *
1

*

0

1

1 1N

n n

s n n

N

n n

t t
E t E t

t t

 




 

 

=

=

 
  = + 
  

−  + 





 
(14) 

with *

1n n nt t t−   , using a generalized midpoint 

rule. 

The incremental value of the state variable 

( )*

nt  can be expressed by: 

1,..., N =
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( ) ( ) ( )

( )

( )
( )

* * *
1

*
1*

11

n n

n n n

t t

n

n

n n

t t t

t
e t e

t E t

 

  

 




  

 


−

 
− −

−

= −

   
   −

  
  

 =


− +



 (15) 

By introducing Eq. (15) into (Eq. (14) leads 

to: 

( )

( ) ( )
( )

( ) ( )

* *
1

0

1

*
1

1 1
1

1

1

n

n

n

N

n

s n n

N

n

t

n

t

n

t

t
E t E t

t

e
t

t e





 



 















=

=


−


−

−

 =

   
   + −  
   

   

 
 − − + 
 
 

−






 

(16) 

By arranging Eq. (16), a fictitious linear 

elastic stress-strain law can be obtained [25]: 

( )
( )

( )
( ) ( )0

n

n n n

n

t
t t t

E t


  


 = +  +   (17) 

where ( )nE t  represents a pseudo-instantaneous 

elastic modulus, and ( )nt  represents a 

pseudo-inelastic strain increment [25]: 

( ) ( )

( )

*

*
1

1 1

1
1 1

n

n s n

t
N

nn

E t E t

e
tE t

 

 




−

=

= +

  
  − −

   
  



 (18) 

( ) ( )*

1

1

1

ntN

n nt t e 




 


−

−

=

 
  = −
 
 

  (19) 

From Eq. (17), the material stress-strain 

constitutive relation can be derived: 

( ) ( ) ( ) ( ) ( )0n n n n nt E t t t t     =   − −
   (20) 

Considering that ( ) ( ) ( )n n nt E t t = −  , Eq. 

(20) can be rewritten as: 

( ) ( ) ( ) ( ) ( )0n n n n nt E t t t t    =   − +    (21) 

The multiaxial generalization of the problem 

can be obtained by introducing the matrix C  

that relates the stress and strains components of 

the material. Introducing the matrix C  in Eq. 

(17) leads to: 

( )
( )

( )
( ) ( )0

n

n n n

n

C t
t t t

E t


  


 = +  +   (22) 

Assuming that the matrix 
1

D C
−

= , the 

multiaxial generalization of Eq. (21) and Eq. 

(12) take the form: 

( ) ( ) ( ) ( ) ( )0n n n n nt E t D t t t    =  − +    (23) 

( )
( )

( )
( )

* *

1*
1

n nt t

n

n n

n n

C t
t e t e

t E t

  

 



 
 

 
− −

−

  
 = − +
  
 

 (24) 

with ( ) ( ) ( )n n nt E t t = −  . 

For the tridimensional case, the compliance 

matrix C  is given by [32]: 

( )

( )

( )

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 2 1 0 0

0 0 0 0 2 1 0

0 0 0 0 0 2 1

C

 

 

 







− − 
 
− −
 
 − −

=  
+ 

 +
 

+  

 (25) 

where   is the Poisson coefficient. In order to 

perform accurate numerical simulations of 

creep sensitive structures, it is necessary to 

adopt a creep compliance prediction model that 

can simulate the aging effect of CBM. As 

presented in Eq. (18), in every time step nt  it 

is necessary to supply the moduli of each 

Kelvin chain ( )*

nE t  for 1,..., N =  and ( )*

s nE t . 

This can be performed via the creep compliance 

prediction models, as B4 [29], that can return 

( )*,j nJ t t , with
 

*

j nt t . In the absence of analytical 

expressions, the evaluation of the Kelvin chains 

modulus can be performed with a nonnegative 

least-square method [33], [34], where the 

moduli ( )*

nE t  of each chain are determined, 

given that the appropriate retardation times   

are provided. The ACC model was 

implemented into FEMIX, with the code 

designation of NLMM174, where NLMM 

means Non-Linear Material Model. 

 

2.4 Integrating ACC with thermo-

mechanical models 

The creep, shrinkage and thermal models are 

integrated with the 3D multidirectional fixed 

smeared crack model (MFSCD) described 

elsewhere [22] in order to be possible the 

simulation of the most relevant time dependent 

phenomena in cracked concrete structures. 



Tiago S. Valente, A. Ventura-Gouveia, Joaquim A.O. Barros 

7 

According to the MFSCD, at the level of an 

integration point (IP) of a generic solid finite 

element, the increment of total strain in a 

cracked concrete can have the following 

incremental strain components: 

( ) ( ) ( ) ( )

( ) ( )

e cr s

T c

t t t t

t t

   

 

 =  +  + 

+ + 
 (26) 

where 
e

 , 
c

 , 
s

  and 
T

  are the elastic, 

creep, shrinkage and thermal incremental strain 

vectors, and 
cr

  is the crack incremental 

strain vector. A nonlinear transient analysis 

must be performed, since the total strain is time 

dependent, being its components evaluated 

during the time. 

As long as the maximum compressive stress 

is less than 40% of the compressive strength of 

the concrete, the principle of superposition 

effects can be applied, and the mechanical 

incremental strain is the addition of the elastic 

and concrete components: 

( ) ( ) ( )0

m e ct t t   =  +  , (27) 

( ) ( ) ( )

( ) ( )

sm

T cr

t t t

t t

  

 

 =  −

− −
, (28) 

( ) ( ) ( )1

m mm

n nt t t  + = − , (29) 

being ( )1

m

nt +  and ( )m

nt  the mechanical 

strain vector at the time 1nt +  and nt , 

respectively. The shrinkage and thermal strain 

components are designated as stress-

independent strain. 

For coupling the time dependent phenomena 

in consideration with the MFSCM, the 

following equations of this model must be taken 

into account [22]: 

( ) ( )crcr

n nt T t  =   (30) 

( ) ( )
T

cr cr cr

n nt T t   = 
 

 (31) 

( ) ( ) ( )crcr cr

n n nt D t t  =   (32) 

where ( )cr

nt  and ( )cr

nt  are the 

incremental crack strain and crack stress 

vectors in the local coordinate systems of the 

cracks (the number of cracks active in an IP 

depends on the selected crack opening 

criterion), 
crT  is the matrix that transforms the 

stress components from the global coordinate 

system to the local crack coordinate system, and 

( )cr

nD t  is the constitutive matrix of the active 

cracks in the IP, which is also assumed time 

dependent due to the dependence of the fracture 

parameters when early age phenomenon and 

concrete maturation is intended to be simulated. 

Introducing Eq. (23) in Eq. (30), and (28) in 

(23) results in, respectively 

( ) ( ( )(

( ) ( ) ( ))
)

*( )

( )

crcr

n n

s T cr

n n n

n

t T E t D t

t t t

t

 

  



 = 

− − −

+

 (33) 

( ) ( ) ( )

( ) ( )

*( )

( )

s

n n n

T cr

n n n

t E t D t t

t t t

  

  

 =  −


− − +


 (34) 

Introducing Eqs. (31) and (32) in Eq. (33), 

and making some arrangements, yields 

( ) ( )
( ( )

( ) ( ) )

1
*

*

( )

( )

( )

T
cr cr crcr

n

cr

n

s T cr

n n n

t D T E t D T

T E t D t

t t T t





  

−

  = + 
 

 −

 − +


 (35) 

By including Eq. (35) in (31), it is obtained 

( ) (

)
( )(

( ) ( ) )

1
*

*

( )

( )

( )

T
cr cr cr

n

T
cr cr

cr

n

s T cr

n n n

t T D

T E t D T

T E t D t

t t T t





  

−

  = +
  

  
 

 −

 − +
 

 (36) 

and then introducing this last equation in Eq. 

(34) and making some operations, the 

incremental stress vector is determined: 

( ) ((

) )

( ) ( )((
( )) )

*

1
*

*

( )

( )

( )

( )

T
cr cr

n

T
cr cr cr

s

n n

T

n n

t I E t D T D

T E t D T T

E t D t t

t t



 

 

−

  = − +
 

  
 

 − −

 +

 (37) 

The incremental shrinkage strain can be 

obtained by one of the models described in [22], 

and the incremental thermal strain is 



Tiago S. Valente, A. Ventura-Gouveia, Joaquim A.O. Barros 

 8 

determined from the temperature field, e.g., 

using the results of the thermal model described 

in [22]. For the three-dimensional case, these 

vectors are defined by 

( ) 0 0 0
Ts s s s

nt     =      (38) 

( ) 0 0 0
TT T T T

nt     =      (39) 

and are obtained with. 

( ) ( ) ( )1

s s s

n n nt t t  + = −
  
  

( ) ( ) ( )1

T T T

n n nt t t  + = −  
(40) 

To solve Eq. (37) a nonlinear transient 

analysis must be performed, since the strain 

components are time dependent. 

 3 MODEL APPRAISAL 

The predictive performance of the ACC at 

structural level is assessed by conducting a 

numerical simulation of a flexurally reinforced 

concrete (RC) beam submitted to bending up to 

a period of about two years. The total 

deformation obtained in the numerical 

simulations is compared with the experimental 

results of the beam with the reference CB-59 of 

experimental program conducted in [35].  

The geometry, reinforcements, and test setup 

are presented in Figure 3. The beam is 

longitudinally reinforced with two Ø10 steel 

bars as tensile reinforcement (average yield 

stress, fsym of 520 MPa and average elasticity 

modulus, Esm, of 194 GPa) and two Ø6 steel 

bars as compressive reinforcement (fsym=525 

MPa and Esm=183 GPa). Transverse 

reinforcements are also adopted in the form of 

steel stirrups placed in the entire length of the 

beam with a spacing of 75mm (fsym=212 MPa 

and Esm=200 GPa). 

According to [35] the concrete used to cast 

the beam had a cement content of 394kg/m3 

(ordinary Portland cement), a water-cement 

ratio of 0.53 and an aggregate-cement ratio of 

4.56. The concrete cube’s compressive 

strength, Young’s modulus, and flexural tensile 

strength at 28 days of age was, respectively, 

40MPa, 27.2GPa, and 4.67MPa [35]. 

After casting, the beam was stored in the 

laboratory, staying covered with wet burlap 

bags for 7 days. The beam was loaded 28 days 

after has been cast, according to the test setup 

presented in Figure 3. The loads were applied 

using concrete blocks and steel plates at four 

points along the beam span (1800mm). The 

total applied load is equal to 15.8kN ( 3.95F kN=

), which corresponds to a load level equal to 

59% of the computed ultimate flexural capacity 

of the beam [35]. 

The midspan deflection of the beam was 

taken as the average of two dial gauges placed 

in a fixed reference frame, with the readings 

being regularly recorded up to a period of about 

two years [35]. 

To perform the numerical simulations of the 

creep flexural test, a finite element model of the 

concrete beam was formed with 20-node solid 

elements, while the steel reinforcements were 

discretized by 3-node linear elements. For the 

solid elements a 2x2x2 Gauss Legendre 

integration (GLI) scheme was adopted, while 

for the steel linear elements were adopted 2 

integration points with the GLI technique. Due 

to the symmetry of the beam, only half-length 

of the beam is simulated. A total of 1008 solid 

elements and 224 linear elements are used to 

simulate the RC beam. The lateral view of the 

finite element mesh is presented in Figure 4. 

 

 
Figure 3: Beam geometry, reinforcement, support and 

loading configuration (dimensions in mm) [35]. 

 
Figure 4: Finite element mesh: line elements in blue 

line; solid elements in black line; supports in red circles 

(dimensions in mm). 
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For the simulation of the concrete aging 

creep behavior is adopted the NLMM174 

model, described in the previous section. Due 

to the inexistence of creep compliance curves 

for the concrete mixture studied in [35], the B4 

model is employed to predict the creep behavior 

of the concrete, based on its mix proportions. 

The creep compliance curves are then 

considered to determine the ACC model 

coefficients that are used in the NLMM174 

model. In Figure 5 is presented the creep 

compliance curves ( )0,J t t  for four loading ages 

(  0 21,28,56,120t days= ), determined by the B4 

model and by the NLMM174 creep model. The 

estimated NLMM174 creep functions were 

obtained considering 7 Kelvin chains with the 

retardation times 

 0.001;0.01;0.1;1;10;100;1000 days = , the Young’s 

modulus ( )0 0 21 days 26949E t MPa= = , 

( )0 0 28 days 27200E t MPa= = , 

( )0 0 56 days 27682E t MPa= =  and

( )0 0 120 days 28057E t MPa= = , and a factor 1.0 =  

In addition, the creep model is combined 

with the MFSCM [36] to simulate the cracking 

phenomenon. For this purpose, the post-

cracking tensile capacity of the concrete is 

simulated by adopting the trilinear diagram 

presented in Figure 6, where the following 

parameters were taking for its definition: ctf

=2.81MPa; FG =0.142N/mm (mode I fracture 

energy) 1 =0.2; 1 =0.2; 2 =0.4; 2 =0.15. The 

concrete tensile strength ( ctf ) was calculated 

with the equation proposed in MC2010 that 

relates the flexural tensile strength and the 

tensile strength, by considering 100bh mm= , and 

the concrete post-cracking diagram and value of 

FG  were also determined according to the 

recommendations of MC2010 for plain 

concrete [15]. For bridging the concepts of 

crack width and crack strain in the context of 

MFSCM, and therefore ensure results 

independent of the finite element mesh 

refinement, a crack bandwidth equal to the 

cubic root of the integration point’s volume was 

considered. For the shear stress-strain 

relationship was adopted the concept of shear 

retention [22], considering a cubic degradation 

of the fracture mode II modulus with the 

increase of crack normal strain. 

For the compressive behavior of concrete, 

considering the relatively small load level that 

the beam is submitted, is considered in linear-

elastic stage. For the same reason, it was also 

admitted a linear-elastic response to simulate 

the steel reinforcements elements, assuming 
200sE GPa=  and 0.30s = . 

The concrete shrinkage deformation is not 

considered, as this phenomenon is particularly 

relevant for the analysis of early age problems, 

and for the loading age adopted in the creep test 

( 0 28t days= ), it is expected to have a minor 

impact in the obtained results. 

 
Figure 5: Comparison between the creep compliance 

curves obtained by the B4 model and by the NLMM174 

model for the concrete studied in [35]. 

 

Figure 6: Trilinear tensile-softening diagram. 

A transient analysis was performed 

considering that the loads of creep tests are 

applied at the age of 28 days, and the 

deformation of the beam, considering the 

concrete creep and cracking, is obtained for the 

subsequent time steps up to the age of 750 days. 

During the analysis is considered the self-

weight of the beam and the loads applied during 
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the creep test. The latter are simulated as line 

loads applied along the width of the beam’s 

cross section, with a value of 39.5 /F N mm= . 

In Figure 9 the instantaneous deformation of 

the beam ( 0 28t days= ) and at 750t days=  are 

compared. 

The instantaneous midspan deflection 

reported in [35] was about 6.70mm, which was 

about 1.11ins mm =  higher than the maximum 

vertical displacement obtained in the numerical 

simulation ( 5.59mm = ). The discrepancy 

between the experimental and numerical results 

can be justified by the apparatus used to register 

the beam deformation during the experimental 

program, which does not register the 

deformation of the beam’s reaction structure, as 

well as the settlement of the beam’s supports. 

In Figure 10 is plotted the evolution of the 

midspan deflection of the beam with time. In 

addition to the experimental results of [35] and 

the obtained results from the numerical 

simulation, it is also plotted a curve that 

increases the numerically obtained midspan 

deflection by adding the difference between the 

experimental and numerical instantaneous 

midspan deflection ( 1.11ins mm = ). As can be 

seen, by adding ins , which seems adequate due 

to the previous pointed-out reasons, is achieved 

a good agreement between the numerical 

response and the experimental results. 

The maximum stress level at the time 

750t days=  in the longitudinal tensile and 

compressive reinforcement corresponds to 

47.3% and 31.4% of the steel yield strength, 

while the maximum tensile stress in the 

transverse reinforcement corresponds to 7.7% 

of its yield strength. 

In Figure 11 is displayed the crack pattern 

obtained from the numerical model at the 

instant of loading ( 28t days= ) and at 750 .t days=  

It is possible to verify that a significant number 

of concrete elements are cracked at the instant 

of loading. During the transient analysis, until 

750t days= , it is verified the localization of 

crack opening characterized by the progressive 

opening of some of the cracks, while some 

others cracks started to close. The maximum 

computed crack width (evaluated as the product 

of the maximum normal crack strain with the 

crack bandwidth) for a solid element in the 

midspan zone of the finite element mesh is 

about 0.034mm after loading ( 0 28t days= ) and 

increases about 1.85x at 750t days=  (0.063mm) 

due to the consideration of concrete creep 

deformation between cracks.  

Figure 9: Displacement along x3 obtained in the 

transient analysis (displacements in mm, deformed 

meshes with 50x magnification factor). 

 
Figure 10: Evolution of midspan deflection of the 

reinforced concrete beam.   
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Figure 11: Crack pattern obtained in the transient analysis for: a) 28t days= ; b) 750t days=  (only displayed cracks 

with computed crack width higher than 0.005mm). 

CONCLUSIONS 

The present work is mainly dedicated to the 

description of a new Aging Creep Compliance 

model (ACC) and to the assessment of its 

predictive performance when applied at 

material and structural level. The ACC is based 

on the Dirichlet series expansion of the DPL 

model, and is capable of predicting the aging 

creep behaviour of cement based materials 

(CBM) and structures, since early age. The 

ACC model uses different values for these 

coefficients in each Kelvin chain, which are 

obtained by a nonlinear least square method 

applied to the experimental creep compliance 

curves. The ACC model was integrated into the 

FEMIX computer program, with the code 

designation of NLMM174 (Non-Linear 

Material Model 174), and can be coupled to the 

other time depend constitutive models 

governing the behavior CBM since their early 

age up to hardened stage, like maturation, 

shrinkage, thermal variation and cracking. 

The good predictive performance of the ACC at 

material level was demonstrated by simulating 

experimental tests of laboratory scale. For 

demonstrating its suitability when coupled with 

a cracking model, a reinforced concrete beam 

experimentally tested under creep loading 

conditions was simulated. These integrated 

constitutive models for simulating time depend 

phenomena of CBM are now being extended 

for fibre reinforced concrete. 
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