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RESUMO 

O osso é um tecido dinâmico com uma incrível capacidade de auto reparação. No entanto, 

quando o defeito ósseo ultrapassa um tamanho crítico, o osso perde essa capacidade e a intervenção 

médica torna-se necessária. O osso é o segundo tecido mais transplantado do mundo e existe uma 

grande necessidade de enxertos e substitutos ósseos, o que por sua vez levam a uma diminuição da 

disponibilidade de osso nos Bancos de Tecidos. As matrizes tridimensionais porosas são de grande 

importância para a engenharia de tecidos e implantes ortopédicos uma vez que servem de meio biológico 

para que tecido ósseo envolvente cresça para o interior dos poros. Uma matriz deve ser porosa por forma 

a possibilitar a nutrição, proliferação, e migração celular e formação de um novo tecido ósseo 

vascularizado As matrizes tridimensionais devem, ainda, possuir propriedades mecânicas próximas à do 

osso para evitar reabsorção óssea, a qual está associada à falha do implante. 

Neste estudo, foram produzidas matrizes tridimensionais com resistência mecânica máxima 

capazes de serem usadas em aplicações ortopédicas e com o módulo de Elasticidade semelhante ao 

módulo de Elasticidade do osso. As matrizes tridimensionais porosas foram produzidas com três 

materiais diferentes: i) Ti6Al4V; ii) ZrO2 e iii) PEEK. Para a caracterização da microestrutura das matrizes 

tridimensionais com estrutura celular SEM e Micro CT foi realizado. Para a avaliação da fase e 

composição química da superfície as matrizes tridimensionais porosas foram analisados por XRD e XPS. 

Testes mecânicos de compressão foram realizados para avaliar o módulo Elasticidade e a força máxima 

de compressão. A eficácia das matrizes tridimensionais como material para aplicações de engenharia de 

tecidos foi avaliada in vitro, recorrendo a uma linha celular SaOS-2 que foi cultivada na superfície das 

diferentes matrizes porosas. A sua viabilidade, proliferação e diferenciação foi analisada até 14 dias de 

cultura. A viabilidade celular foi estudada recorrendo ao teste de Alamar Blue para o dia 1, dia 3, dia 7 

e dia 14 de cultura celular. A proliferação e diferenciação celular foi avaliada através da quantificação do 

DNA e a atividade da ALP para os mesmos tempos de cultura. As matrizes tridimensionais porosas 

cultivadas com células SaOS-2 foram, ainda, coradas com Fast Violet B para a observação da fosfatase 

alcalina. Os resultados obtidos sugerem o potencial das matrizes tridimensionais para aplicações na 

engenharia de tecido do osso. Estas matrizes apresentam um módulo Elasticidade perto do osso que 

pode minimizar o fenómeno da reabsorção óssea. Os resultados in vitro revelaram a não toxicidade das 

matrizes assim como apresentarem uma superfície favoráveis à adesão e à proliferação das células. 

Palavras-Chave: Ti6Al4V, ZrO2, PEEK, Propriedades mecânicas, Testes in vitro 
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ABSTRACT 

Bone is a dynamic tissue with an amazing capacity of self-repair. However, when the defect 

reaches a critical size bone loses this capacity and medical intervention is needed. Bone is the second 

most transplanted tissue in the world and there is a huge need for bone grafts and substitutes and 

therefore leading to a decrease in bone banks donors. Scaffolds are of great importance for tissue 

engineering and orthopedic implants since they provide biological anchorage for the surrounding bony 

tissue via the ingrowth of tissue into pores. The pores of scaffolds have direct implications on their 

biofunctionality. Thus, a porous structure is critical for cell nutrition, proliferation, cell migration, and 

formation of newly vascularized tissue. Scaffold’s mechanical properties should also match that of bone 

in order to prevent stress shielding which is one of the main causes for implant’s failure. 

In this study, three-dimensional porous scaffolds with maximized mechanical strength capable 

for load-bearing applications and with elastic modulus near of the bone were produced. The porous 

scaffolds were made of: i) Ti6Al4V, ii) ZrO2 and iii) PEEK. Their microstructures were characterized by mean 

of performing SEM and Micro CT analyses. To assess the chemical composition of the scaffolds, XPS 

analysis was performed. The crystallographic phase of ZrO2 was investigated by XRD. Mechanical 

compressive tests were performed in order to evaluate the elastic modulus and compressive stress. Their 

efficacy as scaffold material for bone regeneration applications was evaluated in vitro by seeding SaOS-2 

cells onto the scaffolds. The viability, proliferation and differentiation of SaOS-2 cells was analyzed. The 

cellular viability was assessed by Alamar blue test at day 1, day 3, day 7 and day 14. For the study of 

cell proliferation, DNA quantification was performed for the same time points. To assess the differentiation 

of SaOS-2 cells, alkaline phosphatase was qualitatively and quantitatively evaluated by performing the 

ALP quantification and staining with Fast violet B. 

Mechanical results showed an elastic modulus near of the bone which can minimize the 

phenomenon of stress shielding. The in vitro results revealed cytocompatibility with no cell alterations or 

death of SaOS-2 seeded on scaffolds surfaces. 

The proposed scaffolds showed great potential in vitro to be used in bone tissue engineering 

scaffolding applications.  
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1. INTRODUCTION 

1.1 Motivation 

Bone loss has a tremendous effect on the patient’s life. Additionally, with the increase of the life 

expectancy bone diseases that lead to trauma are more frequent. Different techniques have been used 

over the years for bone healing. These therapies have been using bone graft material removed from a 

different site in the patient (autograft), from another human donor (allograft), or from other living or 

nonliving species (heterografts or xenografts) and are limited by the material availability (Agarwal and 

García 2015). Furthermore, these therapies have complicated multistage surgery with the disadvantage 

of the harvest site and the risk of disease transmission. Adding to all these factors a great need for 

synthetic substitutes especially designed and manufactured to satisfy the requirements of functionality 

and biocompatibility criteria of tissue engineering is desirable (Sepulveda et al. 2002). The concept of 

tissue engineering (TE) embodies the development of a scaffold structure that has the appropriate 

physical, chemical, and mechanical properties aiming to allow cell penetration and tissue formation in 

three dimensions (Karp et al. 2003). As it was defined by Langer and Vacanti (Langer and Vacanti 1993), 

TE is “an interdisciplinary field of research that applies the principles of engineering and life sciences 

towards the development of biological substitutes that restore, maintain, or improve tissue function”. The 

selection of the biomaterial to produce a bone scaffold is an important step during the construction of a 

scaffold (Salgado et al. 2004). These materials should possess excellent biocompatibility, superior 

corrosion resistance in body environment, excellent combination of high strength and low modulus, high 

fatigue and wear resistance, high ductility and be without cytotoxicity (Geetha et al. 2009). Up to now 

materials such as metals, polymers and ceramics, either both natural or synthetic origins have been 

proposed (Salgado et al. 2004). Metallic biomaterials, such as titanium alloys, have been widely used in 

orthopedic implants as they can provide favorable mechanical strength, excellent friction resistance and 

non-toxic properties as well as cytocompatibility. One of the most used titanium alloy is Ti6Al4V, this alloy 

is stabilized by Aluminium (Al) and Vanadium (V) creating a two-phase alloy that displays a high corrosion 

resistance, high biocompatibility and high strength (Ma and Tang 2014; Zhao et al. 2013).  However, 

some disadvantages have hindered their more commonly medical applications. Their high strength and 

the mismatch of elastic modulus between the metal and the bone can cause stress shielding effect which 
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is characterized by the adsorption of adjacent bone tissues and can lead to the implant loosening. Also, 

there are concerns regarding potential metal ion release (Ma and Tang 2014; Zhao et al. 2013). Ceramics 

are commonly defined as “inorganic, non-metallic materials” (Chevalier and Gremillard 2009). The family 

of ceramic materials includes bioinert non-resorbable metal oxides such as alumina (Al2O3) or zirconia 

(ZrO2) (Scarano et al. 2003). Zirconia ceramics have several advantages over other ceramic materials, 

due to the transformation toughening mechanisms operating in their microstructure which gives to 

components made out of them very interesting mechanical properties (Piconi and Maccauro 1999). Yttria-

stabilized zirconia (Y-TZP) was the ceramic gold standard in terms of strength and toughness, but its lack 

of long term stability is a major issue for medical use (Chevalier and Gremillard 2009). One promising 

alternative is polyetheretherketone (PEEK) which is a linear, aromatic, semi-crystalline polymer with good 

chemical resistance, radiolucency, and mechanical properties similar to those of human bones (Edwards 

and Werkmeister 2012; Zhao et al. 2013). Besides, it is best known for its excellent thermal, chemical 

and mechanical resistance. It can be repeatedly sterilized and shaped by machining to fit the shape of 

bones. In spite of these excellent attributes, the chemical and biological inertness of PEEK tends to limit 

bone fixation (Edwards and Werkmeister 2012; Zhao et al. 2013).  

1.2 Objectives 

The main goal of this thesis focused on the characterization, mechanical and biological evaluation of three 

dimensional porous scaffolds made from different materials: Ti6Al4V, ZrO2 and PEEK for bone tissue 

applications. 

The detailed objectives of this thesis are: 

1. Surface and mechanical characterization of Ti6Al4V, ZrO2 and PEEK through the assessment of 

compressive test, contact angle, roughness and surface energy; 

2. Surface and microstructure characterization by Micro CT, SEM, XPS and XRD. To assess the 

architecture of scaffolds Micro CT was performed, it also give us information about porosity and 

pore size. SEM was performed to study surface topography. XPS gives information about 

chemical composition of scaffold’s surfaces, and XRD was used to study phase transformation. 

3. In vitro evaluation of SaOS-2 cells seeded Ti6Al4V, ZrO2 and PEEK scaffolds. Cell viability, 

proliferation and differentiation was studied by performing metabolic quantification, DNA 

quantification and ALP quantification. 
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1.3 Structure of thesis 

This thesis is divided into 5 chapters. Chapter 1 presents the motivation, the objectives and the 

structure of the thesis.  

The chapter 2 describes in detail the most fundamental concepts of bone anatomy and scaffold’s 

production methods. 

The chapter 3 consists in a review article, Bone Regeneration: Non-degradable and degradable 

Biomaterials, prepared during this project to elucidate about the current solutions in clinic, the gaps of 

scaffolds being tested and the requirements for the “gold standard” scaffold for bone tissue engineering. 

The studies developed in this dissertation work resulted in one scientific paper, Physicochemical 

properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering 

applications, which corresponds to the Chapter 4 of the dissertation. 

The last chapter, chapter 5, presents final remarks of this work and suggestions made for future 

work.
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2. STATE OF THE ART 

2.1 Fundamental concepts  

Bone loss has, in general, significant effect on patient’s quality of life. Moreover, as the world population 

continues to grow, the number of elderly population continues to increase which results in an escalation 

of bone degenerative diseases (Bhattacharjee et al. 2017; Roseti et al. 2017). Bone supports movement, 

provides skeleton to body, and provides protections to organs; while also regulating the storage of 

minerals and blood pH. Bone owns a unique hierarchical structure of self-assembled macromolecules 

within a bed of hydroxyapatite (HA) and carbonate. In figure 2-1 is represented the bone anatomy and 

images of the main bone cells. 

Cellular components such as osteoblasts and osteoclasts harbor the intrinsic plasticity of bone 

in response to mechanical loading. Table 2.1 display their function and properties (Hadjidakis and 

Androulakis 2006). Osteoblasts are cuboidal cells that are located along the bone surface comprising 4–

6% of the total bone cells. They are involved in the formation of new bone by expressing osteoclastogenic 

factors, production of bone matrix proteins and bone mineralization (Florencio-Silva et al. 2015; Raggatt 

and Partridge 2010). Osteocytes which comprise 90-95% of the total bone cells possess long cell 

processes. Their function and morphology varies according to cell age. Therefore, a young osteocyte has 

structural characteristics of the osteoblast but presents a decreased cell volume and capacity of protein 

synthesis. On the other hand, an older osteocyte presents with a further decrease in cell volume and an 

accumulation of glycogen in the cytoplasm (Hadjidakis and Androulakis 2006). Osteoclasts are terminally 

differentiated multinucleated cells which originate from mononuclear cells of the hematopoietic stem cell 

lineage, under the influence of several factors. During bone remodeling osteoclasts divide; then, four 

types of osteoclast membrane domains can be observed: the sealing zone and ruffled border that are in 

contact with the bone matrix, as well as the basolateral and functional secretory domains, which are not 

in contact with the bone matrix (Florencio-Silva et al. 2015; Raggatt and Partridge 2010). Bone lining 

cells cover the bone surface where neither bone resorption nor can bone formation occur. These cells 

exhibit a thin and flat nuclear profile. Their secretory activity depends on the bone physiological status 

(Florencio-Silva et al. 2015). Long bone possesses a vascular system that provides nutrients, oxygen, and 

osteoprogenitor cells. After the arteries enter a bone through these blood vessels penetrate through 
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Volkmann’s and Haversian canals and branch throughout the cortical bone. This vascularization plays an 

important part in adult bone repair (Marrella et al. 2017). 

 

 
 
Table 2-1 Bone cells and respective functions and properties (Boskey 2007; Kalfas 2001; Salgado et al. 2004). 

Cell Type Function and Properties 

Osteoblast Round or flat bone-forming cell;  

Synthesis and regulation of bone ECM deposition and 

mineralization;  

Respond to mechanical stimuli. 

Osteocytes Osteoblasts surrounded by mineral;  

Figure 2-1 Bone composition and bone cells. a) Bone is arranged in two architecture forms: trabecular bone and compact bone. These two 
forms differ from each other in porosity and in location. Trabecular bone is more porous and is located in the inner part of bone. b) osteocyte; 
c) osteoclast; d) osteoblast. Adapted from Pearson Education Inc. publishing as Benjamin Cummings. 
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Linked to other similar cells by thin processes; Calcification 

of osteoid matrix; 

Blood-calcium homeostasis;  

Mechanosensor cells of bone. 

Osteoclasts Multinucleated large-bone reabsorbing cell;  

Binds to bone surface and releases acid enzymes that 

respectively remove mineral and matrix in response to 

signals. 

Bone Lining Cells Flat shape osteoblast; 

Secretory activity; 

Participate in osteoclast differentiation; 

Production of osteoprotegerin. 

 

Two processes, remodeling and modeling, support the development and maintenance of the 

skeletal. Bone modeling is responsible for growth and mechanically induced adaption of bone and 

requires that the processes of bone formation and bone removal (resorption), although globally 

coordinated, occur independently at distinct anatomical locations (Raggatt and Partridge 2010). Bone 

remodeling, defined by Frost in 1990, is responsible for removal and repair of damaged bone to maintain 

integrity of the adult skeleton and mineral homeostasis (Raggatt and Partridge 2010; Frost 1990). The 

equilibrium between bone resorption and formation is necessary and depends on the action of several 

local factors like hormones, and biomechanical stimulation. There are a number of bone diseases that 

result from the imbalance between bone resorption and formation (table 2.2). For example, an excessive 

resorption without the corresponding amount of new formed bone can result in an appropriated bone 

loss and thus osteoporosis, whereas the opposite can result in osteopetrosis (Florencio-Silva et al. 

2015). The reduction of bone mass and its deterioration after age 40 is one of the main characteristic of 

osteoporosis which results in an increase in the fragility of bone and its susceptibility to fractures (Rodan 

and Martin 2000). By definition osteomalacia means that osteoblasts have laid down a collagen matrix, 

but there is a defect in its ability to be mineralized (Holick 2014). Osteogenesis imperfecta is a share 

similar skeletal abnormalities causing bone fragility and deformity (Forlino and Marini 2016). 

Osteonecrosis, also known as avascular necrosis, ischemic necrosis and aseptic necrosis, it is a 

condition in which an area of bone becomes necrotic as a result of the loss of its blood supply. The most 
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common cause is trauma, a displaced fracture or dislocation which results in a mechanical injury to the 

local vessels (Steinberg and Steinberg 2014). Paget’s disease is characterized by an increase in 

osteoclast numbers and activity. This leads to the increase bone resorption (Rodan and Martin 2000). 

Another common disease is periodontal disease which results from an accumulation of the bacteria 

that cause dental plaque leading to the destruction of cellular and structural components of the 

periodontium (Rodan and Martin 2000). All these diseases lead to bone fractures and for the most 

fractures bone tissue heals itself. However for fractures above critical size (> 6 mm) bone is not capable 

of healing by itself (Agarwal and García 2015). 

 
Table 2-2 Examples of bone diseases and its consequences (Boskey 2007; Rodan and Martin 2000). 

Type of Disease Description 

Osteoporosis Increased porosity with tendency to fracture 

Osteomalacia Poorly mineralized bone with tendency to 

fracture 

Osteogenesis imperfecta Brittle bone disease due to abnormal collagen 

synthesis 

Osteopetrosis Rock-like bone with increased tendency to 

fracture 

Osteonecrosis Dead bone 

Renal osteodystrophy Kidney malfunction leading to osteoporotic bone 

Paget’s disease Increase in osteoclast numbers and activity 

promoting the increase of bone resorption 

which leads to fracture. 

Bone cancer Increase in osteoclast formation and activity. 

 

There are two main mechanisms of bone healing: i) direct bone growth and indirect bone growth after 

callous formation. Direct bone healing involves the growth of bone from the broken ends at fracture site 

without any intermediate fibrous tissue formation (Agarwal and García 2015). ii) Indirect bone healing 

involves inflammation leading to callous formation via intra-membranous ossification. This is followed by 

endochondral ossification and resorption of the callous (Agarwal and García 2015). 
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Engineered bone scaffolds have been gaining attention as a potential alternative to the conventional 

use of bone grafts, due to their limitless supply and no disease transmission. Bone tissue engineering 

aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, 

and factor therapy (Amini et al. 2012). A scaffold can be used as acellular system or as vehicles for cells, 

growth factors or drugs.  

2.2 Geometry Characteristics  

In the design of tissue engineering scaffolds, design parameters including pore size, pore shape and 

mechanical properties should be optimized to maximize the bone ingrowth (Jones et al. 2009). Surface 

characteristics are crucial for the successful design and medical application of biomaterials as it is the 

earliest contact with the biological environment (Wu et al. 2014; Wennerberg and Albrektsson 2009). 

Surface properties, both chemical and topographical, can modulate and affect cellular adhesion and 

proliferation (Salgado et al. 2004). The morphology of the scaffolds is involved in a series of biological 

events occurring after implantation, which range from protein adhesion to bone remodeling (Albertini et 

al. 2015). For a proper integration with the host tissue a surface with roughness is favorable as it 

enhances attachment, proliferation and differentiation of anchorage dependent bone forming cells 

(Albertini et al. 2015; Karageorgiou and Kaplan 2005; Wennerberg and Albrektsson 2009).  

Pore size, as we can see in figure 2-2, is also a very important parameter because if the pores are 

too small, occlusion by the cells can happen and it is also an important factor for protein adsorption, 

cellular migration and osteoconduction (Salgado et al. 2004; Prananingrum et al. 2016). There is hardly 

consensus regarding the optimal pore size for effective bone ingrowth (Li et al. 2007). The optimal pore 

size for bone ingrowth has been reported to be in range of 150-600 µm to support sufficient 

vascularization and blood vessels invasion (Liu et al. 2013; Li et al. 2007). Pore sizes greater than 300 

µm are recommended for bone ingrowth in comparison with smaller pore size (Bohner et al. 2011; 

Karageorgiou and Kaplan 2005; Murphy et al. 2010; Jones et al. 2004). This subject will be further 

developed in the review “Bone Regeneration: non-degradable and degradable biomaterials” (chapter 3). 
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2.3 Methods for production of scaffolds 

For a successful production of a 3D scaffolds or tissue substitutes for bone regeneration it should be 

considered the complex hierarchy and structural heterogeneity of the host tissue (Bose et al. 2013; Sun 

et al. 2004). Numerous methods have been developed to fabricate 3D porous scaffolds and each method 

results in a scaffold with different features such as internal architecture or pore size (Thavornyutikarn et 

al. 2014). Chemical/gas foaming, solvent casting, and foam-gel are some of those that have been mostly 

used. 

Solvent casting is a method in which a polymer solution is dissolved in a solvent with uniformly 

distributed salt particles of a specific size. The solvent evaporates, leaving the scaffold. This polymer 

matrix is then immersed in water to allow leaching of the salt particles, which results in the formation of 

a highly porous uniform 3D matrix (Bajaj et al. 2014; Thavornyutikarn et al. 2014). Freeze-drying, also 

known as lyophilization, is a process in which a polymer (synthetic or natural) solution is poured into 

molds of specific dimensions and is cooled down below its freezing point, leading to the solidification of 

the solvent molecule (Thavornyutikarn et al. 2014; Bajaj et al. 2014). In figure 2.3 is a comparison of the 

typical pores obtained by Solvent casting and freeze-casting as well as a description of both methods.  

Figure 2-2 Bone ingrowth into porous titanium. Micro CT images of porous titanium implanted 
in rabbit femur (the yellow color represent the new bone) (Chang et al. 2016). 
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Selective Laser Melting (SLM) is an additive manufacturing technique that allows the manufacture of 

3D parts directly from CAD data. This process applies laser energy to powder beds in order to melt metals, 

ceramics or polymers and enables the production of nearly unlimited complex geometries. The selective 

laser melting process consist in first, the CAD model is broken down into layers and transferred to the 

Selective Laser Melting machine. Subsequently, the powder material is deposited as a defined thin layer 

on a substrate. The geometric information of the individual layers is transmitted by laser beam to the 

powder bed wherein the regions to contain solid material are scanned under an inert atmosphere, leaving 

a solid layer of the piece to be produced. After lowering the substrate by one layer thickness, the process 

steps are repeated until the part is finished (Bremen et al. 2012). 

Figure 2-3 Representation of solvent casting and freeze drying pore morphology and their process. a) 
Typical pore morphology obtained with solvent casting technique; b) Typical pore morphology obtained with 
freeze drying; c) Schematic representation of solvent casting process; d) Schematic representation of freeze 
drying process. 

Figure 2-4 Process of selective laser melting (Abe et al. 2001). 
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Electrospinning is a versatile method that involves the use of an electrical charge to create non-woven 

scaffolds from a polymer solution, this process allows the fabrication of various fiber patterns with higher 

porosity (Thavornyutikarn et al. 2014). However, pore size, shape, and its interconnectivity cannot be 

fully controlled in these processes. Moreover scaffolds with tailored porosity for specific defects are 

difficult to manufacture with most of these approaches. Such scaffolds can be designed and fabricated 

using additive manufacturing (AM) approaches. Different manufacturing approaches including solid 

freeform fabrication, rapid prototyping (RP), allows complex shapes for scaffolds fabrication directly from 

computer aided design (CAD) file (Bose et al. 2013). Rapid Prototyping (RP) is a common name for a 

group of techniques such as 3D printing that can generate a physical model directly from computer-aided 

design data. This group of methods have tremendous potential to create 3D objects through repetitive 

deposition and processing material layers using computer-controlled equipment (Lam et al. 2002; Yeong 

et al. 2004). This process is defined as a set of manufacturing processes that are capable of producing 

complex-free form parts directly from computer-aided design (CAD) model of an object (Hutmacher 

2000). The continuous improvement of RP systems accuracy and materials, expand gradually their 

applications to other areas of the industrial sector like rapid manufacturing (RM – the actual 

manufacturing of products in small batches) and rapid tooling (RT – fabrication of manufacturing tools 

and molds) (Giannatsis and Dedoussis 2009). The 3D printing technique, invented in the 

Massachusetts Institute of Technology, is the only solid-phase RP technique that is compatible with 

hydrogels manufacturing. It is simple and versatile. A scheme of the process is represented in figure 2.4. 

The process starts with a binder jetting machine distributing a layer of powder onto a platform. Liquid 

droplets of a bonding agent are deposited onto the powder layer through inkjet print heads, bonding 

particles together. The platform is then lowered and a next layer of powder is laid out on top 

(Thavornyutikarn et al. 2014; Roseti et al. 2017). 
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Although it is not commonly considered one of the many RP technologies, computerized numerically 

controlled (CNC) milling can successfully build some medical models (Winder and Bibb 2005). An 

example of a CNC machine is in figure 2.5. Machine tool automation was first introduced in the form of 

Computer Numerical Control (CNC) in the early 1970’s, in which a dedicated computer replaced most of 

the digital hardware board of the Numerical Controlled (NC) machine. Process control is the automatic 

adjustment of programmed parameters such as speed. (Liang et al. 2002).  

 

 

 

 

 

 

 

 

 

 

Figure 2-5 3D print. Schematic representation of the process and examples of scaffolds. 

Figure 2-6 Example of a CNC milling machine. 



Three dimensional cell-scaffold constructs for application in bone tissue engineering 

 

14 

2.4 Validation of scaffolds 

After being produced, scaffolds must be characterized not only geometrically in terms of pore size, pore 

shape or surface topography but also in respect to the biological response to the environment of a living 

being.  It is crucial to understand the factors and their influence in the biological response of the scaffold. 

The development of a tissue engineering cell-scaffold requires the evaluation of its performance 

on pre-clinical in vitro and in vivo studies and clinical trial before their commercialization (Salgado et al. 

2004; Bohner et al. 2011). National and international agencies are responsible for the authorization of 

every step in this process (Roseti et al. 2017). Figure 2.6 elucidate about the steps towards the validation 

of a new scaffold. 

In vitro assays are important to provide information about material toxicity and immunogenicity, 

to evaluate the interaction between cells and biomaterials and to characterize cell activity while, in vivo 

research establishes a link between in vitro studies and clinical trials (Gomes and Fernandes 2011; Roseti 

et al. 2017). 

Normally, to tests bone scaffolds in vitro cell lines are used, which is a homogenous population 

of cells with the ability to proliferate in culture without limit. Cell lines are obtained from bone tumors or 

from primary bone cells. The advantage of cell lines is their availability in enormous quantity without the 

need of isolation and the homogeneity of cell culture. However they do not express all tissue-specific 

characteristics (Bouët et al. 2014). Cell lines from human osteosarcoma, such as MG-63, SaOS-2 or U- 

2 OS, are extremely useful in studies to understand the interactions with osteoblasts and biomaterials. 

SaOS-2 cells have been characterized as exhibiting osteoblastic properties, including the ability to 

mineralize in vitro (Prideaux et al. 2014). 

Animal models for bone regeneration fall into two categories: 1) ectopic models which are used 

in a first phase to distinguish between the proliferative and inductive capacity of the new biomaterial. 

Normally, for this phase, mice is the chosen animal and 2) orthotopic models are used to test the efficacy 

and safety of the new biomaterial, rabbits are commonly used  for this phase but other animals  such as 

goats, dogs and pigs are also used (Peric et al. 2015). 
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The next section is a literature review of the current state and recent developments of bone 

engineer.

Figure 2-7 Steps towards the validation of a new scaffold. 
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Abstract 

The current “gold standard” treatment for large bone defects is the autograft, mostly due to its osteogenic, 

osteoinduction and osteoconduction properties. These allow new bone formation and vascularization, 

deliver growth factors and provide structural support. However, the use of autografts is painful, has a risk 

of infection and increases the demand for bone donors. The result of an appropriate scaffold for bone 

regeneration is a sum of several factors and the scaffolds that exist nowadays show limitations. One major 

drawback that tissue engineers have to solve is the lack of vascularization into bone scaffolds and several 

approaches are being proposed such as the introduction of pores. Other challenge is to meet a proper 

mechanical strength in a porous structure. In this review we focused on the biomaterials and methods 

used to improve scaffolds for bone regeneration. The clinical need for engineered alternatives, non-

degradable biomaterials, degradable coatings and recent bone tissue engineering strategies are also 

reviewed herein. Despite of the great progress including the development of 3D structures, composites 

and hybrid scaffolds the gold standard scaffold for bone regeneration is not available and there still exists 

voids that need to be filled. It is extremely necessary to establish dosages for growth factors, protocols 



Three dimensional cell-scaffold constructs for application in bone tissue engineering 

 

22 

for the usage of cells and procedures, and to conclude which biomaterials are more suitable for the 

treatment of bone critical defects. 

 

Keywords: Biomaterials; Bone healing; Bone tissue engineering; In vivo studies; Scaffolds. 

3.1 Bone structure  

The regeneration to a functional bone is required due to tumor resection, extremity traumas or 

degenerative diseases and demands not only surgical advancement, but also the development of bone 

implants. In clinical the goal treatment is still autografting however its supply is limited. Thus new solutions 

for bone defects treatments are necessary (Wu et al. 2014; Sagomonyants et al. 2008). This first section 

of the review aims to provide a description of bone anatomy, bone healing and current repair therapies 

for the treatment of bone critical defects. 

Bone is a complex heterogeneous tissue with high hierarchy consisting of a mineral phase, 

hydroxyapatite (Ca10(PO4)6(OH)2) (analogous to geologic hydroxyapatite), an organic phase ( ≈ 90% type I 

collagen, ≈5% non-collagenous proteins, ≈2% lipids by weight) and contains between 10% and 20% of 

water (Boskey 2013). The cellular components of bone consist of osteogenic precursor cells, osteoblasts, 

osteoclast, osteocytes, and hematopoietic elements of bone marrow (Kalfas 2001). Osteoblasts are 

mature, metabolically active and use the correct bone forming cells which control the mineralization of 

the extracellular collagen (Boskey 2007; Kalfas 2001). When osteoblast become engulfed in mineral, 

they become a different type of cell, called osteocytes (Boskey 2007). Osteocytes are mature osteoblasts 

trapped within the bone matrix (Kalfas 2001). From each osteocyte a network of cytoplasmic processes 

extends through cylindrical canaliculi to blood vessels and other osteocytes allow their communication 

(Boskey 2007; Kalfas 2001). They are also involved in adaptive remodeling behavior via cell-to-cell 

interactions in response to local environment (Kalfas 2001). Finally, osteoclast cells are multinucleated 

which remove bone mineral and bone matrix and are controlled by hormonal and cellular mechanisms 

(Boskey 2007; Kalfas 2001). 

The bones of the skeleton provide structural support and permit movement. They also provide 

protection to organs while also regulate mineral homeostasis and blood pH. The four general types of 

bone are: long bones, short bones, flat bones and irregular bones. The long bones are composed of 

diaphysis; metaphysis and epiphyses. The diaphysis is composed mostly by cortical bone, whereas the 

metaphysis and epiphysis are composed of trabecular meshwork bone surround by a thin layer of dense 
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cortical bone (Clarke 2008; Wu et al. 2014). There are three types of bone based on their anatomical 

shape and composition: woven bone, cortical bone and cancellous bone (Kalfas 2001). Woven bone is 

found during embryonic development, during fracture healing (callus formation), and in some pathologic 

states while cortical bone is dense and solid and surrounds the marrow space. Trabecular bone is 

composed of a honeycomb-like network of trabecular plates and rods interspersed in the bone marrow 

compartment (Kalfas 2001; Clarke 2008). At the macrostructure level, bone can be distinguished into: i) 

trabecular (corresponding to around 20% of the total skeleton), which forms a solid osseous shell around 

the bone and consists of dense and parallel, concentric, lamellar units – the osteons; ii) cortical bone 

(corresponding to around 80% of the total skeleton) which is remodeled from woven bone. The trabecular 

bone is supplied by diffusion from the surrounding bone marrow; there are no vessels within trabeculae 

and it is surrounded by cortical bone, but the thickness and strength of the cortical shell depends on 

location (Osterhoff et al. 2016; Kalfas 2001; Rho et al. 1998; Salgado et al. 2004). Although both types 

of bone are easily distinguished by their degree of porosity (trabecular bone is more porous) they have 

other differences such as trabecular bone being more metabolically active (Rho et al. 1998; Kalfas 2001).  

Mechanical properties of bone depend on age, anatomical site and bone quality. The elastic 

modulus is the biomechanical property of bone that draws more interest because of its enormous 

importance for characterizing bone pathologies and guiding bone scaffolds design (Wang et al. 2016; Rho 

et al. 1998). In table 3-1 compressive strength and young modulus, the most important properties for 

the design of scaffolds are presented. 

Table 3-1 Mechanical properties of human bone and bulk materials, values from literature (Yang et al. 2001; Wang et al. 2016; Santos et 
al. 2016; Schwitalla et al. 2015; Najeeb et al. 2016; Osman and Swain 2015). 

Tissue/Biomaterial Compressive strength 

[MPa] 

Young’s modulus  

[GPa] 

Cancellous Bone 4-12 0.02-2 

Cortical Bone 130-180 3-30 

Ti-6Al-4V 1080 113 

ZrO2 5200 200 

PEEK 130 3-4 
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The human skeleton has an exceptional healing capacity and is one of the most remarkable of all repair 

processes as it results not in a scar but in an actual reconstitution of the injured tissue (Fernandez-Yague 

et al. 2015; McKibbin 1978). Following bone trauma or disease the principal factors that influences the 

process of bone healing are: the availability of a blood supply; the mechanical stability; the size of defect; 

the incidence and severity of surrounding tissue injuries (Fernandez-Yague et al. 2015). 

The process of fracture healing is a complex biological process and bone heals by either direct 

or indirect fracture healing. The most common process is indirect fracture healing and occurs in three 

distinct but overlapping stages: the early inflammatory stage; the repair stage; and the late remodeling 

stage (Kalfas 2001). In the inflammatory stage, a hematoma develops within the fracture site during the 

first few hours and days. Inflammatory cells (e.g. macrophages, monocytes, lymphocytes and 

polymorphonuclear cells) and fibroblasts infiltrate the bone under prostaglandin mediation. This results 

in the formation of a granulation tissue, ingrowth of vascular tissue and migration of mesenchymal cells. 

As vascular ingrowth progresses, a collagen matrix is laid down while osteoid is secreted and subsequently 

mineralized, which leads to the formation of a soft callus around the repair site. Eventually, the callus 

ossifies by the deposition of osteoblasts forming a bridge of woven bone between the fracture fragments 

(Kalfas 2001; Nyary and Scammell 2015; McKibbin 1978). Once the fracture has been satisfactorily 

bridged by callus, the newly formed bone is restored to its original shape, structure, and mechanical 

strength. Any excess callus is removed and the woven bone is remodeled into trabecular bone. The 

fracture healing is completed during this stage – remodeling stage. Remodeling of the bone continues 

long after the fracture has clinically healed (up to 7 years) (Kalfas 2001; Nyary and Scammell 2015). 

Direct healing is not a natural process. It requires an anatomical reduction of the fracture ends and a 

stable fixation, when these requirements are achieved the direct bone healing can occur (Marsell and 

Einhorn 2011). Bone healing is a major complex process that requires the recruitment of MSCs and once 

they are recruited, a molecular cascade starts involving collagen-I and collagen-II matrix production and 

the participation of several peptide signaling molecules. Growth factor-beta (TGF-b) superfamily members 

such asTGF-b2, -b3 and GDF-5 are also involved in the healing process. BMP-2, VEGF and the involvement 

of the metalloproteinase actions are key factors for the healing cascade (Marsell and Einhorn 2011). 

There are numerous biochemical and cellular factors related to the bone healing that associate with 

biomechanical and anatomical process completes an appropriate regeneration of bone defects. The 

translation of knowledge of bone healing process into clinics still isn’t a reality as a strategy based of this 

healing steps could involve multiple surgical procedures or multiple injection. 
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3.2 Current repair therapies 

Before addressing the solutions for bone regeneration it is important to define some concepts that are 

closely related. Osteogenesis, osteoinduction, osteoconduction and osteointegration are the four essential 

characteristics for the success of the scaffold. Osteogenesis is the capacity to produce new bone by the 

differentiation of osteoblasts. Osteoinduction has been defined as the process of recruitment, 

proliferation, and differentiation of host mesenchymal stem cells into chondroblasts and osteoblasts. 

Osteoconduction is the ability to provide an environment capable of hosting the indigenous mesenchymal 

stem cells, osteoblasts, and osteoclasts. The final bonding between host bone and the scaffold is called 

osteointegration (Ilan and Ladd 2002; Fillingham and Jacobs 2016). 

Biomaterials  

There are numerous approaches for promoting bone tissue regeneration. In figure 3-1 there are some 

examples of current products used in the treatment of bone defects. These products do not promote bone 

regeneration. They only fill the bone defect. One solution is a surgical procedure with autograft or allograft 

bone (Dimitriou et al. 2011; Murphy et al. 2013). Autograft bone graft consists in taking bone from 

another part of the patient’s own body and is considered the clinical “gold standard”. It is the most 

effective method for bone regeneration as it promotes bone formation over its surface by direct bone 

bonding and induces local stem cells to differentiate into bone cells without any associated immune 

response. It is commonly collected in the form of trabecular bone from the patient’s iliac crest. Although 

it presents relatively good degree of success, the range of cases in which it can be used is restricted, 

mainly due to the limited amount of the autograft that can be obtained and due to donor site morbidity 

(García-Gareta et al. 2015; Salgado et al. 2004). Vascularized free fibular bone graft is a type of 

autogenous bone graft and it was first described in 1975 by Taylor (Taylor et al. 1975). It is used in large 

bone defects, more than 5-6 cm (Houdek et al. 2017). The advantage of these methods is the availability 

of bone stock, a faster union, less resorption of bone and fewer fatigue fractures. This process involves a 

long surgical procedure and can increase the morbidity on the donor site. In addition, there is a demand 

for further information about the factors that lead to failure. (Feuvrier et al. 2016; Houdek et al. 2017). 

Allograft, bone taken from a donor, could be an alternative. However, when compared with 

autograft the rate of graft incorporation is lower. Allograft bone also introduces the possibilities of immune 

rejection and of pathogen transmission from donor to host, and although infrequent, infections could 

occur in the recipient’s body after the transplantation (Salgado et al. 2004). To overcome the limitations 

described above, bone tissue engineering has been introduced (Ehrler and Vaccaro 2000). Presented 
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table 3-2 are the advantages and disadvantages of the most common bone scaffolds.  In 1957 bovine 

bone was first introduced by Maatz and his colleagues (Maatz and Bauermeister 1957). Xenograft bone 

substitutes have their origin from a species other than human, it is similar to autologous bone grafts in 

that both are osteoconductive and relatively inexpensive (Campana et al. 2014).  

Recently, the induced membrane technique (IMT) or Masquelet technique has been used to treat 

large bone defects. It is a two-step procedure: first, radical soft tissue and bone debridement is 

undertaken, then a cement spacer of polymethyl methacrylate (PMMA)  is placed at the site of the bone 

defect and is stabilized with an external fixator (Giannoudis et al. 2011). The cement spacer prevents 

fibrous tissue invasion of the defect and induces the surrounding membrane that will revascularize the 

bone graft (Pelissier et al. 2004). Secondly, 6–8 weeks later the induced membrane is carefully incised. 

The spacer removed and cancellous bone from the iliac crest is implanted and the membrane closed 

with definitive fixation. Although these are interesting methods, there are complications, so studies for a 

better understanding of the procedures and complications are necessary (Morelli et al. 2016). 

 

Table 3-2 Advantages and disadvantages of the most commonly used bone scaffolds. 

Biomaterial Advantages Disadvantages References 

Autologous Osteoinductive  

Nonallogenic 

Osteogenic 

Osteoinductive 

 

Limited supply 

Donor site morbility 

Unpredictable resorption 

Site pain 

Lack of vascularization 

(Oryan et al. 2014; Ehrler 

and Vaccaro 2000) 

Allograft No donor site morbidity 

High availability 

Osteoconductive 

Osteoinductive 

Lack of vascularization 

Lack of osteogenicity 

Delayed incorporation 

Availability of healthy grafts 

Rejection of the graft 

(Oryan et al. 2014; Ehrler 

and Vaccaro 2000) 
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Risk of disease 

transmission 

Re-injury 

Ethical concerns 

Xenograf Cheaper 

No donor site morbidity 

High availability 

Osteoconductive 

Osteoinductive 

Lack of vascularization 

Lack of osteogenicity 

Delayed incorporation 

Availability of healthy grafts 

Rejection of the graft more 

aggressively  

Risk of zoonotic disease 

transmission 

Re-injury 

Ethical concerns 

(Oryan et al. 2014; Zakhary 

and Thakker 2017) 

Metals Excellent mechanical properties 

Biocompatible 

Osteointegration 

Personalized manufacturing 

Corrosion 

Risk of toxicity of metal ions 

Poor vascularization 

(Zakhary and Thakker 

2017; Bhattacharya et al. 

2016) 

Ceramics Biocompatible 

High mechanical stiffness 

Good mechanical properties 

Excellent resistance to corrosion 

Britlle 

Low elasticity 

Poor vascularization 

Bionert 

(Bhattacharya et al. 2016) 
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Polymers Biocompatible 

Stable at high temperatures 

Good mechanical properties 

Low young modulus 

Poor vascularization 

Bionert 

 

(Bhattacharya et al. 2016) 

 

3.3 Bone tissue engineering products 

Tissue Engineering (TE) has evolved of the need to repair organs and tissues damaged and has been 

gaining importance in the last years (Karp et al. 2003; Salgado et al. 2004).  A TE approach is based on 

the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather 

than just to implant new spare parts (Salgado et al. 2004). The main purpose of tissue regeneration is to 

support and facilitate the requisite physiological functions at the injury site (Shrivats et al. 2014). TE can 

be applied to all types of tissues that compose our body such as bone tissue (Shrivats et al. 2014; Roffi 

et al. 2017), osteochondral (Cengiz et al. 2014; Yousefi et al. 2015), cartilage (Devitt et al. 2017; Deng 

et al. 2016), neural tissue (Sensharma et al. 2017); skeletal tissue (Kwee and Mooney 2017); skin (Frueh 

et al. 2017); meniscus (Cengiz et al. 2017); or even blood vessels (Dimitrievska and Niklason 2017). A 

prospective randomized study was performed in 25 patients with benign bone tumors that were surgically 

treated with either bioactive glass S53P4 (BG) or autogenous bone (AB) as bone graft material. After 36 

months that no significant difference between the AB and BG groups was observed, however, glass 

granules integrated in new bone were still visible (Lindfors et al. 2009). More recently developed calcium 

phosphate cements can be injected as a doughy substance that solidifies over several hours to yield a 

material with maximal compressive strength greater than that of normal cancellous bone (McAuliffe 

2003).  

The first injectable biologic cement was marketed in 1998 by FDA.  Injectable mineral cements 

are widely used in bone tissue engineering due to their chemical composition being close to the mineral 

component of bone extracellular matrix. They have an advantage over blocks, granules, and pellets, that 

a custom fill of the defect is possible (Ilan and Ladd 2002). In a retrospective chart review a direct 

comparison of autografts, bone cement, and demineralized bone matrix in terms of function and 

outcomes was performed. A total of 28 patients underwent cranioplasty. Demineralized bone matrix was 
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the primary reconstructive material used in six patients. Seventeen patients had bone cement as the 

reconstructive material for cranioplasty; six patients had demineralized bone matrix; and five patients had 

bone autografts. It was concluded that residual defects and revision rates were significantly less when 

autograft or bone cement was used (Plum and Tatum 2015). An injectable BG/calcium sulfate composite 

cement with high content of BG was recently tested in vivo in a rabbit femoral condyle defect. The 

outcomes revealed that the cement had a better capacity than the PMMA and CSPC in terms of bone 

regeneration as well as the resorption rate observed in a critical-sized rabbit femoral condyle defect model 

which make this cement promising for the treatment of bone defects (Ren et al. 2017).  A large number 

of bone-graft alternatives are currently commercially available for orthopedic use. They vary in 

composition, mechanism of action, characteristics and include mineral composites, ceramics, mineral 

cements, bioactive glasses and synthetic bone substitutes (Giannoudis et al. 2005; Ilan and Ladd 2002). 

The majority form of bone biomaterials used in clinics are presented in the form of putties or paste. An 
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important observation on what are being commercialize is that most of these products aim to fill the 

defect and not to promote bone regeneration. In figure 3-1 is represented some commercially solutions. 

3.4 Scaffolds for bone tissue engineering 

3.4.1 Non degradable 

Figure 3-1 Current solutions for the treatment of bone defects. A- D) quantification of bone ingrowth and contact area in an 

Actifuse® sample. A) A 3-D reconstruction of the middle third of the rat tibia (yellow) with the region-of-interest (blue) determined 

by applying convex hull to the biomaterial. The volume and surface area of the bone (yellow) and biomaterial (green) inside the 

region-of-interest are calculated in (B). Scale bar in A and B is 1 mm. (C) A top-down view slice through the region-of-interest and 

bone, with the region-of-interest outlined in blue. (D) The contact area between the bone (grey) and biomaterial (white) as a red 

outline (Midha et al. 2013); E) autograft; F) injectable cements; G)Morcelized homologous bone graft obtained from a banked 

(Campana et al. 2014); lower panel images of x ray. (a–c) X-ray of a 36 year-old male patient few days following curettage of a 

low-grade chondrosarcoma of the left proximal tibia. (b and c) Follow-up radiographs 7 and 13 months following index surgery 

showing integration but no resorption of the artificial bone graft substitute (Friesenbichler et al. 2017). 
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A scaffold is a three-dimensional (3-D) construct that provides the necessary support for cells to proliferate 

and differentiate, they can appear in different shape like membranes or meshes (Hutmacher 2000; 

Kellomäki et al. 2000; Ribeiro et al. 2016). TE solutions for bone treatment can be divided into two 

groups: those that stimulates bone regeneration and those that provide a permanent solution, as a 

substitute of bone (Paxton 2017). For the treatment of bone defects the ideal scaffold should be developed 

to meet some requirements, in Table 3-3 is represented the most important. 

Table 3-3 Requirements for the design of scaffolds in bone tissue engineering (Wang et al. 2016; Zakhary and Thakker 2017; Pina et al. 
2016; Rahaman et al. 2011). 

Criteria for scaffold design Function 

Biocompatibility Capacity to be in a host tissue without 

initiate inflammatory response. 

Suitable surface topography Influence cellular behavior such as 

adhesion, proliferation and 

differentiation 

3D structure Host of the new formed tissue 

Mechanical properties Support the defect area 

Porosity Allow tissue ingrowth, nutrient and 

oxygen change and neovascularization 

Osteoinductive Able to recruit and differentiate 

mesenchymal cells 

 

The biomaterial’s biocompatibility can be evaluated by assessment methods which are provided by 

International Organizations Standards (ISO), Food and Drug Administration (FDA) and European 

Medicines Agency (EMA). 

In the design of tissue engineering scaffolds, parameters including surface topography, 

chemistry, surface energy and wettability, pore size, shape, mechanical properties should be optimized 

to maximize the bone ingrowth (Jones et al. 2009; Tejero et al. 2014). Moreover, elasticity, compression 

or shear stress can influence cell behavior and even epigenetic status (Jean et al. 2004; Engler et al. 

2006). Surface characteristics are critical for the successful design and medical application of 
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biomaterials as the surface is the earliest contact with the biological environment (Wu et al. 2014; 

Wennerberg and Albrektsson 2009). Surface properties, both chemical and topographical, can influence 

cellular adhesion and proliferation as it is involved in many of biological events occurring after 

implantation, which range from protein adhesion to bone remodeling (Albertini et al. 2015; Salgado et al. 

2004). Topographies such as random nanofibers normally can influence cells into spreading and 

polygonal shapes which promotes the process of osteogenic differentiation (Liu et al. 2013). Many studies 

have shown a relation between cell attachment and surface roughness. Yavari and colleagues 

studied three variations of surface-modified porous titanium and concluded that the surface 

treatment  improved cell response (Yavari et al. 2014). Cells can adapt their morphology according to the 

surface topography. It was observed by Quian et al. (Qian et al. 2013) that cells exhibit protruding filopodia 

in honeycomb-like scaffolds of PCL/nHA which indicates a proper cell spread. For a suitable scaffold 

integration, a surface with roughness is favorable as it enhances attachment, proliferation and 

differentiation of anchorage dependent bone forming cells (Albertini et al. 2015; Karageorgiou and Kaplan 

2005; Wennerberg and Albrektsson 2009). Parameters such as wettability and surface free energy can 

influence cell growth more than surface roughness as Hallab et al. (Hallab et al. 2001) demonstrated. In 

their study, they concluded that surface free energy was a critical parameter for cellular adhesion and 

proliferation rather than roughness. 

The importance of having a porous scaffold in bone regeneration was shown by Kuboki and his 

colleagues in 1998 when using a rat model to implant subcutaneously solid and porous scaffolds of 

hydroxyapatite for BMP-2 delivery (Kuboki et al. 1998). For proper bone regeneration in a scaffold, 

vascularization is necessary and cells from the surrounding must be able to penetrate.  Pore size is a 

very important feature since if the pores are too small, pore occlusion by the cells will happen and which 

is also an important factor for protein adsorption, cellular migration and osteoconduction (Salgado et al. 

2004; Prananingrum et al. 2016). Pore sizes greater than 300 µm are recommended for bone ingrowth 

in comparison with smaller pore size (Bohner et al. 2011; Karageorgiou and Kaplan 2005; Murphy et al. 

2010; Jones et al. 2004). Fukuda et al. (Fukuda et al. 2011) compared the osteoinduction for different 

pore sizes, 500 µm, 600 µm, 900 µm, and 1200 µm, in identical environments. They concluded that 

the 500 μ m pore size presented excellent osteoinduction. In another study with different pore sizes, 

Taniguchi et al. (Taniguchi et al. 2016) implanted porous titanium scaffolds with a pore size of 300 μ m, 

600 μ m and 900 μ m. They observed significantly higher fixation ability in 600 μ m pore size than those 

with a pore size of 300 μ m and 900 μ m and the 300 μ m implant exhibited inferior bone ingrowth in 
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cancellous bone. A experiment with scaffolds with pore sizes of 60 μ m , 100 μ m, 200 μ m and 600 μ m 

was performed by Prananingrum et al. (Prananingrum et al. 2016) three weeks after implanted into rabbit 

calvaria the scaffold with 600 μ m pore size showed a greater bone ingrowth. Though, after 20 weeks the 

pore size of 100 μ m presented greater bone ingrowth than the other pore sizes. In this study they 

suggested that bone regeneration into porous scaffolds is pore size-dependent whereas bone ingrowth 

was most prominent for the 100 μ m-sized pores after 20 weeks in vivo. Porosity and pore size of a 

scaffold for bone tissue regeneration are key factors that will biologically improve allowing bone ingrowth 

and penetration of cells and nutrients. Nevertheless, these features become conflicting with others as the 

increase of pore size, the strength of the scaffold decreases which can lead to failure in vivo.  

 

Metallic biomaterials 

Metallic biomaterials are mainly used for the fabrication of scaffolds to replace hard tissue such as 

artificial hip joints, bone plates, and dental implants due to their mechanical properties and corrosion 

resistance (Nielsen 1987; Niinomi 2003, 2008). Stainless steel was the first metallic biomaterial used 

successfully as an implant and it is one of the main metallic materials used amongst with cobalt (Co) 

based alloys, titanium (Ti) and its alloys (Elias et al. 2008; Goriainov et al. 2014; Niinomi 2003). Stainless 

steel biomaterials are the most practical and are often used as acceptable cup (one half of an artificial 

hip joint) applications (Dewidar et al. 2007; Niinomi 2008). Stainless steel materials are resistant to a 

wide range of corrosive agents due to their high Cr (Chromium) content which allows the formation of the 

strongly adherent, self-healing and corrosion resistant coating oxide. Several types of stainless steel are 

available and the most widely used for implants manufacture is austenitic stainless steel (Navarro et al. 

2008). 

Co-Cr-based alloys are the representative Co alloys for biomedical applications (Niinomi 2002). 

They are advantageous for the fabrication of medical devices parts subjected to wear, such as the heads 

of artificial hip joints (Niinomi 2002, 2008). These materials have a high elastic modulus (240 GPa) 

similar to stainless steel (210 GPa) and an order of magnitude higher than that of cortical bone (3-30 

GPA) as presented in Table 1. In contact with bone, the metallic devices will take most of the load due to 

their high modulus, producing stress shielding in the adjacent bone. The lack of mechanical stimuli on 

the bone may induce its resorption that will lead to the eventual failure and loosening of the implant 

(Navarro et al. 2008). Co alloys for biomedical devices are grouped into two categories: cast alloys and 

wrought alloys, the latter are used for applications were high strength is needed (Niinomi 2002, 2008). 
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Titanium and its alloys are getting much attention for biomedical applications because of their 

excellent mechanical, physical and biological performance, corrosion resistance and their outstanding 

biocompatibility (Rack and Qazi 2006; Niinomi 2003; Xiang and Spector 2006). Fujibayashi et al. in 2004 

implanted porous titanium in the dorsal muscles of beagles and observed bone formation after twelve-

months, this was the first report using only porous titanium (Fujibayashi et al. 2004). Titanium and its 

alloys, originally used in aeronautics, became materials of great interest in biomedical field, due to their 

excellent properties that include a good corrosion resistance and a low density (Navarro et al. 2008). 

Commercially pure Ti (CP Ti), typically with single phase alpha microstructure, is currently used in dental 

implants while titanium with 6% aluminum and 4% vanadium, Ti-6Al-4V, is mostly used in the orthopedic 

field. The Al and V alloy elements stabilize the alpha-beta microstructure, and improve the mechanical 

properties (Navarro et al. 2008). Ti-6Al-4V is used for its excellent corrosion resistance and their elastic 

modulus (113 GPa) that is approximately half that of stainless steel (210 GPa) and cobalt– chromium 

alloys (240 GPa) and consequently the stress shielding will be lower (Xiang and Spector 2006; Geetha et 

al. 2009; Wally et al. 2015). 

 

Ceramic biomaterials 

Ceramics are generally defined as inorganic, non-metallic materials (Chevalier and Gremillard 2009). 

Bioinert ceramics such as alumina, zirconia and several porous ceramics are the most used in orthopedic 

devices (Piconi et al. 2003; Navarro et al. 2008). Alumina have a great performance under compression, 

but is brittle under tension and has been used for nearly 20 years owing to its low friction and wear 

coefficients (Piconi et al. 2003; Navarro et al. 2008). 

Zirconia is a polymorph that can be categorized into three crystallographic phases (El-Ghany and 

Sherief 2016; Piconi and Maccauro 1999). Pure zirconia is monoclinic (m) at room temperature and 

pressure in the form of a deformed prism with parallelepiped sides. As the temperature increases the 

material transforms to tetragonal (t) by approximately 1170 ºC and it has the form of a straight prism 

with rectangular sides, and then to a cubic (c) fluorite structure starting about 2370 ºC and melting by 

2716 ºC in the form of straight prism with square sides (El-Ghany and Sherief 2016; Kelly and Denry 

2008; Piconi and Maccauro 1999). These transformations are characterized by: being diffusionless which 

means that only involves coordinated shifts in lattice positions versus transport of atoms); occurring 

athermally implying the need for a temperature change over a range rather than at a specific temperature 
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and involving a shape deformation (volumetric expansion) (Kelly and Denry 2008; Douillard et al. 2012). 

Alloying pure zirconia with stabilizing oxides such as CaO, MgO, Y2O3 or CeO2 allows the retention of the 

tetragonal structure at room temperature (which is metastable) and therefore the control of the stress-

induced due to the phase transformation, efficiently arresting crack propagation and leading to high 

toughness (Chevalier 2006; Denry and Kelly 2008).  Zirconia is one of the ceramic materials with the 

highest strength suitable for implants and presents other advantages like being bioinert, having excellent 

resistance to corrosion and wear, high fracture toughness and is biocompatible (El-Ghany and Sherief 

2016; Navarro et al. 2008; Scarano et al. 2003). These favorable mechanical properties are a 

consequence of phase transformation toughening, which increases its crack propagation resistance 

(Chevalier 2006; Chevalier and Gremillard 2009). 

Biomedical grade zirconia containing 3mol% Yttria (Y2O3) as a stabilizer is a new ceramic material 

with unique properties: it has favorable mechanical properties comparatively to the highest values of oxide 

ceramics and has high fracture toughness because of the energy-absorption property during martensitic 

transformation of tetragonal particles to monoclinic ones, which results in a characteristic similar to steel 

(Ichikawa et al. 1992; Denry and Kelly 2008; Han et al. 2016). 

 

Polymeric Biomaterials 

PEEK is a semi-crystalline linear polycyclic aromatic thermoplastic and it represents the dominant 

member of the PAEK polymer family (Kurtz and Devine 2007; Ma and Tang 2014). PEEK is 

biocompatible, chemically and physically stable, with excellent mechanical properties and it can be 

processed using a variety of commercial techniques (Johansson et al. 2014; Kurtz and Devine 2007). 

Moreover, PEEK is stable at high temperatures with a high melting point of 334 ºC, is insoluble in all 

conventional solvents at room temperature, with exception of 98% sulfuric acid and it remains stable in 

sterilization processes (Johansson et al. 2014; Kurtz and Devine 2007; Ma and Tang 2014). The major 

beneficial property for orthopedics application is its lower Young’s (elastic) modulus (3-4 GPa) being close 

to human bone (17.7 GPa) in comparison with Ti alloy (113 GPa) and Co-Cr alloy (240 GPa) which 

reduces the stress shielding after implantation (Najeeb et al. 2016; Akkan et al. 2014; Ma and Tang 

2014). Due to its strength PEEK is used in many orthopedic applications (Panayotov et al. 2016). 

3.4.2 Degradable 
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Today, biomaterials that are used to prepare scaffolds can be natural or synthetic, degradable or non-

degradable. For example natural polymers such as chitin and chitosan or collagen are being used for 

applications in tissue engineering (Deepthi et al. 2016; Kuttappan et al. 2016). Synthetic polymers such 

as Polycaprolactone (PCL) are biodegradable and can be produced with different features for applications 

in bone tissue engineering (Tian et al. 2012). Hydrogels which are hydrated polymer chains are gaining 

attention as a delivery system of cells and growth factors for bone tissue engineering applications (Bacelar 

et al. 2017; Rice et al. 2013). Biodegradable materials are materials that fragment over time after 

being implanted in the body. Many different terms have been used to describe them such as 

absorbable, resorbable and degradable. The concept of bioabsorbable was first introduced by 

Kulkarini et al. (Kulkarni et al. 1966).  

 

Biodegradable Polymers 

Biodegradable polymers can be classified into two types: natural polymers and synthetic polymers. 

Synthetic polymers have been widely studied especially polyglycolic acid (or polyglycolide (PGA)), 

polylactic acid (or polylactide (PLA)), polylactide-co-glycolide (PLGA), poly (d,l-lactic acid), polyethylene 

glycol (PEG), and poly(ε-caprolactone) (PCL) (Canadas et al. 2014). PGA is very similar to PGA 

however PLA exhibits different chemical, physical, and mechanical properties because of the presence 

of a pendant methyl group on the alpha carbon (Gentile et al. 2014). This polymers can be used as a 

drug delivery system (El Bialy et al. 2017). Although they present characteristics like having good 

processability and manageability they lack of rigidity and stability (Elgali et al. 2017). 

In a recent study, Alenezi et al. (Alenezi et al. 2017) sustained release of clarithromycin from 

PLGA microspheres within β-TCP for bone regeneration was evaluated in rabbit a calvaria defect model. 

They showed that PLGA was capable of releasing clarithromycin increasing the bone regeneration. 

Collagen is a natural polymer that provides strength and structural stability to tissues. Gelatin a 

derivative of collagen. Ren et al. (Ren et al. 2016) described a nanoparticulate mineralized collagen 

glycosaminoglycan scaffold that is capable of promote bone regeneration in rabbit cranial defects. These 

results are interesting as it was not added expanded stem cells or exogenous growth factors. 

Chitosan is a polysaccharide that can be used in many applications. It exhibits antibacterial 

activity, along with antifungal, mucoadhesive, analgesic and haemostatic properties (Croisier and Jérôme 

2013). Oryan et al. (Oryan et al. 2017b) studied the healing potential of a composite scaffold consisting 

of chitosan (CS), gelatin (Gel) and platelet gel (PG). They observed that their scaffold showed significantly 
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higher new bone formation, density of osseous and cartilaginous tissues, bone volume, and mechanical 

performance. 

 

Biodegradable Ceramics 

Calcium phosphate ceramics have been widely used as bone substitutes, coatings, cements, drug 

delivery systems and tissue engineering scaffolds (Lobo and Livingston Arinzeh 2010). Tricalcium 

phosphate (TCP) Ca3 (PO4)2 is a bioactive and biodegradable ceramic material. Tricalcium phosphate 

implants have been used for two decades as the synthetic bone void fillers in orthopedic and dental 

application, as it can be observed in table 3-4 the majority of commercially products are composed by 

calcium phosphates. 

Bioactive glass and its related glass ceramic biomaterials are an interesting biodegradable 

biomaterial used in the production of scaffolds for bone regeneration (Fernandes et al. 2017). Gantar et 

al. (El-Rashidy et al. 2017) prepared a bioactive-glass-reinforced gellan-gum spongy-like hydrogel. In figure 

3-2 there is a comparison of the performance in vivo of different materials. 

 

 

 

 

 

 

Figure 3-2Gross morphologic, radiologic and three dimensional (3D) CT-scan images of the injured healed radial bones of rats (Oryan 
et al. 2017a). 
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Table 3-4 List of some bone tissue engineering products commercially available. 

Company name Product name Composition Reference 

Synthes Norian SRS Calcium Phosphate (Giannoudis et al. 

2005). 

Isotis Orthobiologics OrthoBlast 19.5% demineralized 

bone and 12.5% 

cancellous allograft 

(Kim et al. 2010). 

Wright Medical 

Technology 

PRO-STIM 50% calcium sulfate, 

10% calcium phosphate, 

and 40% DBM 

(Teufack et al. 2014) 

Exactech Optefil DBM/gelatin (Patel 2015) 

Neo Dental Chemical 

Products 

Vitapex Mix of calcium hydroxide 

and iodoform 

(Wu et al. 2016). 

Medtronic Infuse Silicate substituted 

calcium phosphate 

(Midha et al. 2013) 

Zimmer CopiOs dibasic calcium 

phosphate and type 1 

collagen 

(Roberts et al. 2011). 

Wright Medical 

Technology 

Allomatrix calcium sulphate and 

DBM 

(D’Agostino and 

Barbier 2013). 
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Baxter International ACTIFUSE Porous silicon 

substituted HA granules  

(Midha et al. 2013) 

Pioneer Surgical 

Technology 

nanOss Bioactive 3D Porous hydroxyapatite 

granules + porous 

porcine gelatin-based 

foam matrix 

(Walsh et al. 2013) 

Orthovita Vitoss porous β-TCP combined 

with type I bovine 

collagen 

(Walsh et al. 2017) 

 

Regardless of notable progress in bone tissue engineering relatively few orthopedic designs have been 

used in clinical (Fernandez-Yague et al. 2015). The main limitation regarding to current solutions is 

insufficient vascularization and poor nutrient transport in the scaffold resulting in death of cells which 

leads to a reduced osteointegration. Another limitation and although there is a great demand in producing 

porous scaffolds, is the mechanical strength as it is heavily dependent on porosity and geometry of the 

scaffold. Therefore the big challenge in producing scaffolds for bone regeneration is in developing a 

solution that allows cell penetration, nutrient and oxygen exchange and still be able to support load (Sarkar 

and Lee 2015; Fernandez-Yague et al. 2015). 

In vitro assays allow us to understand the fundamental biological mechanism, the biological activity, 

toxicity and also the evaluation of the cell response to the biomaterial. In this sense, animal models are 

crucial in providing complementary information on biological reactions such as inflammatory reactions 

between scaffolds and bone and even to evaluate the performance of the scaffold. A number of animal 

models, such as rat/mouse, rabbit, sheep, goat, and pig have been used to simulate human environment 

(Josset et al. 1999; Li et al. 2015a). Table 3-5 gives the current state of bone tissue engineering studies. 

Table 3-5 Scaffold biomaterials used in the recent in vivo experiment for bone tissue engineering studies, and the outcomes. 

Biomaterial Cells Growth 

factors 

Animal 

model 

Follow 

up 

Reported 

outcome 

Re

f. 
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Ti-6Al-4V - - Rabbit 

femoral 

bone 

10 weeks Ostiointegration 

was observed. 

(C

ohen 

et al. 

2017) 

Ti-6Al-4V - - Goats 12 months At 12 months 

was observed new 

bone formation at 

both ends and in the 

middle of scaffold. 

(Li 

et al. 

2016) 

PEEK - - Rat femoral 

segmental 

defect 

12 weeks Bone ingrowth 

into the pore 

network was 

observed. 

 

(Ev

ans et 

al. 

2015) 

PEEK - - Rabbit 

femoral 

bone 

12 weeks Adjacent tissue 

integration and bone 

ingrowth was 

observed. 

(HI

EDA et 

al. 

2017) 

Titanium + 

Gelatin 

- VEGF; 

TGF-ß1;   

TGF-ß2 

Rabbit skull 8 weeks Bone and 

vessels regeneration 

was observed. 

(Z

hu et 

al. 

2017) 

Ti6Al4V 

coated 

Hydroxyapatite 

- - Rabbits 12 weeks Osteointegration 

and osteogenesis 

observed. 

(Li 

et al. 
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2015b

) 

Titanium - - Pigs skull 5 weeks Osteointegration 

of the scaffold was 

observed. 

(G

uyer et 

al. 

2016) 

HA/Alumina - - Dog Tibia 8 weeks New bone 

formation in the 

defect. 

(Ki

m et 

al. 

2015) 

β -

tricalcium 

Phosphate 

BMSCs - Non-Human 

Primate 

femur 

15 months Five of seven 

cases showed bone 

union of the defect. 

In the group without 

BMSCs four of five 

failed the 

regeneration. 

(M

asaoka 

et al. 

2016) 

β -

tricalcium 

Phosphate + 

platelet rich 

fibrin 

- - Pig tibial 

defect 

12 weeks This study aimed 

to evaluate the effect 

of PRF alone and 

combined with β-

TCP. They observed 

more new bone 

formation with the 

combination of PRF 

and β-TCP. 

(Yil

maz et 

al. 

2014) 
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3.5 Biodegradable coatings 

Each biomaterial has its own advantages and disadvantages as bone scaffold material which could be 

overcome by combining different materials. To improve the properties of scaffolds for bone tissue 

applications, to take advantage of the good mechanical properties of some materials and the bioactivity 

Poly(L – 

Latic- acid) – 

poly (ε 

caprolactone 

SSCs - Sheep 

Tibia 

12 weeks The analyses 

confirmed a trend 

towards increasing. 

bone formation, 

however this study 

had a small number 

of animals studied 

(n=4). 

(S

mith et 

al. 

2017) 

Poly (glycerol 

sebacate) 

Blood cells - Rabbits 

Ulna 

8 weeks The ulna critical 

defect was full 

regenerated in 8 

weeks. 

(Zaky 

et al. 

2017) 

β -tricalcium 

Phosphate 

coated with 

poly lactic-co-

glycolic acid 

MSCs and 

EPCs 

VEGF Dog 

mandibula 

8 weeks The bone formation 

was better in 

scaffolds containing 

MSC, either mixed 

with EPC or 

incorporating VEGF. 

In this study it can 

also be concluded 

that there is no 

benefit in adding 

both EPC and VEGF. 

(Khoja

steh et 

al. 

2017) 
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of other materials, researchers have been coating them with materials that mimic the natural bone 

surface (Shin et al. 2017; Galliano et al. 1998).  

There are several different techniques to coat the scaffold surface such as: spin coating, which is 

one of the most popular technique to obtain uniformly thin coatings (Yuan et al. 2016); sol-gel process is 

being used to prepare bioactive glasses (Fathi and Doostmohammadi 2009); electrophoretic deposition 

(EPD) is gaining attention in biomedical field as it can achieve uniform coating in scaffolds with complex 

and porous shapes (Molino et al. 2017); auto-catalytic deposition (Oliveira et al. 2005); dip coating (Lee 

et al. 2017); spray deposition (Tang et al. 2006); ion beam assisted deposition (Bai et al. 2012) and 

other techniques. 

Geesink et al. (Geesink et al. 1988), in 1988, used plasma-spray to coated titanium implants with 

apatite and evaluated in vivo in a canine model. They concluded that apatite-coated implants could bond 

as strong as cortical bone itself. Calcium phosphate-based materials such as hydroxyapatite (HA), ß-

tricalcium phosphate (β  -TCP) and biphasic calcium phosphate have similar composition of natural bone 

which allows them to directly bond to living bone (Rahaman et al. 2011; Yazdimamaghani et al. 2017). 

HA (Ca5 (PO4)3(OH)) is an important calcium phosphate, since its chemical composition and structure 

are very similar to the mineral component of bone. It has exceptional characteristics such as bioactivity, 

biocompatibility and can achieve very high mechanical strength. As a coating, it can provide to the scaffold 

osteoconducity that enhance the cell attachments and proliferation (Zakaria et al. 2013; Campana et al. 

2014; Søballe 1993). β -TCP is a well characterized osteoconductive biomaterial that can be used for 

bone regeneration applications.  

  In 1971, L. L. Hench and co-workers discovered that bioactive glass (BG), a silicate glass 

based, was able to bond with bone and soft tissues (Hench et al. 1971). 45S5 and 13-93 are two well-

known bioactive glasses. This material has the amazing ability to form an interfacial bond with the host 

tissue; when implanted, they induce the formation of a dense surface layer of hydroxycarbonate apatite 

(HCA), which is very similar to the mineral component of bones and ensures a great adhesion. Bioactive 

glasses are a silicate based and by varying the proportions of sodium oxide, calcium oxide, and silicon 

dioxide, all range of forms can be produced from soluble to non-resorbable. They possess both 

osteointegrative and osteoconductive properties (Giannoudis et al. 2005; Rahaman et al. 2011). One 

limitation for the use of 45S5 glass and other bioactive glasses is that the local biological 

microenvironment is influenced by their degradation products (Rahaman et al. 2011). Borate bioactive 

glasses present properties that allow cell proliferation and differentiation in vitro (Liu et al. 2010). In a 
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study, Zhang et al. (Zhang et al. 2015) compared the ability to repair bone defects of both β  -TCP and 

BG and concluded that BG had better performance, they also observe that the dissolution products of BG 

were capable of promoting osteogenic differentiation which lead to the regeneration of the defect. 

Although BG has good potential for regenerate bone the concentration of boron release is still a concern.  

Ye et al. (Ye et al. 2017) developed and tested a 3D porous structure of Ti-6Al-4V coated with BG. The in 

vitro results demonstrated cell attachment, proliferation and differentiation of human bone marrow 

stromal cells. The obtained coating presented stability and interfacial adhesion. 

The surface properties are crucial for the good performance of a scaffold. The functionalization of 

the scaffolds surface with bioactive coats is a promising strategy. As can be observed in figure 3-3 surfaces 

with coatings promote a better bone growth and a better integration with the host tissue. 
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3.6 Other regenerative strategies 

To overcome the limitations of scaffolds researchers started to use different approaches such as 

introducing cells like bone marrow cells or incorporating growth factors into the scaffolds.  There are five 

types of cell that are currently used in bone regeneration: embryonic stem cells (Kuhn et al. 2013); fetal 

stem cells (Todeschi et al. 2015); human umbilical vein endothelial cells (Kargozar et al. 2017); induced 

pluripotent stem cells (de Peppo et al. 2013) and adult stem cells (Grayson et al. 2015). 

Figure 3-3 Performance of coated scaffolds in vivo. Upper panel: a – h) Implantation of the scaffolds in skull defects for 1 
and 2 months. a, b) The treated and control scaffolds implanted in the skull for 1 month were examined using micro-CT. c, 
d) The treated and control scaffolds implanted in the skull for 2 months were examined by micro-CT. The micro-CT image was 
captured at the middle level of the entire scaffold. Green represents normal tissue, while red represents the titanium scaffold. 
The treated group showed more tissue ingrowth than the control group. Hard-tissue sections after H&E staining (e–h). The 
large black area represents the titanium edge under the microscope. The small and irregular pieces of black chips observed 
in the pores reflect cut titanium. Under H&E staining, the bone tissue was only slightly white and showed slight nuclear staining 
(Zhu et al. 2017); lower left panel: a-d)  Histological observations of the TI and HA-TI groups at low magnification(Van Gieson 
stain, 16 ×).The distribution of new bone (red) and fibrous tissue (dark blue) in the TI group at 2 months post-implantation 
(A),the HA-TI group at 2 months post-implantation (B), the TI group at 4 months post-operation (C), and the HA-TI group at 
4 months post-operation (D) (Huang et al. 2015); lower right panel: Histological images of transverse sections through titanium 
implants upon which had been deposited a layer of calcium phosphate bearing a BMP-2 concentration of 500 μg/g of coating 
(A) 3 and (B) 6 weeks after their insertion into the proximal tibial bone. (A) At the 3-week juncture, the resorption of bone 
outweighed its formation in both the mesh and the peri-implant spaces, as evidenced by the lack of staining for osseous 
tissue. (B) By the end of the 6th week, the balance between bone resorption and bone formation had been tipped in favour 
of the latter process (Hunziker et al. 2016). 
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Mesenchymal stem cells (MSCs) are the main cells used for bone tissue approaches mostly due to 

their pluripotency and they were discovered in 1966 (Pittenger et al. 1999; Friedenstein et al. 1966). 

They can be isolated from mesenchymal tissues including bone marrow and are capable of differentiate 

into osteoblasts when submitted to a osteoinductive signal (Stanovici et al. 2016). Arne et al. (Berner et 

al. 2015) reported that a delayed injection of MSCs into a biodegradable composite scaffold 4 weeks after 

the defect occur led to an improvement of bone regeneration compared with pre seeded scaffolds. There 

are evidences of the paracrine effect of MSC on bone regeneration (Linero and Chaparro 2014). 

Moreover, recently evidence have shown that MSCs’ ability to produce a large variety of trophic factors 

that stimulate adjacent parenchymal cells to start repairing damaged tissues can enhance a proper bone 

regeneration (Fu et al. 2017). Regardless to their potential, there are still concerns about sudden death 

of cells, sedimentation into other organs causing undesired differentiation, inflammation and secondary 

cancers (Bružauskaitė et al. 2016). Adipose tissue is abundant, accessible and a source of stem cells 

that as the potential to be an alternative to MSCs as they have the capacity to differentiate into osteoblast 

lineage (Gimble and Guilak 2003). The acquirement of adipose tissue is less expensive than bone marrow, 

with less invasive operation and available in more quantity (Zhu et al. 2008). Liao et al. (Liao et al. 2016) 

showed ADSCs high osteogenic differentiation rate in a study using porcine ADSCs in combination with 

polycaprolactone – β – TCP scaffolds coated with collagen. 

More recent regeneration scaffolds are incorporating growth factors related with bone healing, 

osteoinduction and osteoconductivity such as platelet-derived growth factors (PDGFs), basic fibroblast 

growth factor (b FGF), transforming growth factor-β (TGF-β) and vascular endothelial growth factor 

(VEGF). BMP, known as bone morphogenetic protein are secreted signaling molecules that belongs to 

TGF-β superfamily and can induce new bone formation and it was discovered in 1965 (Urist 1965; Ducy 

and Karsenty 2000). BMP-2, BMP-4, BMP-6, and BMP-7 have long been recognized as osteoinductive, 

and BMP-2 is the most widely used BMP for conferring osteoinductivity to orthopedic implants (Wang et 

al. 2014; Bessa et al. 2008). However, only the use of recombinant human BMP2 and BMP7 has been 

approved for clinical application in treatment of open tibia shaft fractures and nonunion bone fractures, 

respectively. Moreover, suitable dosage, carcinogenesis and its long-term effects are still unknown 

(Barcak and Beebe 2017; DeVine et al. 2012). In a recent study Thoma et al. (Thoma et al. 2017) 

compared both recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant platelet-

derived growth factor (rhPDGF-BB) for bone regeneration. They concluded that rhBMP-2 shows a higher 

enhance of bone regeneration. 
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Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during 

embryogenesis, skeletal growth and reproductive functions. It promotes angiogenesis in tridimensional in 

vitro models and VEGF-releasing scaffolds demonstrated significant improvements in blood vessel density 

(Ferrara et al. 2003; Leach et al. 2006). Khojasteh and colleagues prepared a β-TCP scaffold coated with 

poly lactic co-glycolic acid (PLGA) containing VEGF as a carrier of MSC–endothelial progenitor cell and 

evaluated its performance in mandibular defect of dogs. They compared three types of scaffolds: scaffolds 

with VEGF; with VEGF and MSC; with VEGF and MSC/EPC. Khojasteh concluded that scaffolds with VEGF 

and MSC show better results as they present higher bone formation (Khojasteh et al. 2017). 

3.7 Conclusions and final remarks 

Bone loss persists to be an important challenge in surgery, and many alternatives are now available. 

There is a great demand in achieving the perfect combination of porous scaffolds with proper mechanical 

properties as it is crucial for bone regeneration support and pore size that allow cell and vessels 

penetration.  The use of coatings with ions similar to the bone is an interesting solution for the lack of 

osteointegration. Hybrid materials incorporating cells and growth factors for tissue growth stimulation 

have been recognized as a key component in high-quality bone regeneration. Yet, due to the heterogeneity 

of the studies it is difficult to conclude which is the best solution for bone regeneration. The poor 

vascularization and poor diffusion of oxygen into the scaffolds remains the main limitation for bone tissue 

engineers. To achieve proper vascularization strategies such as: scaffold porosity, introduction of 

angiogenic factor delivery or pre-vascularization are being studied. Growth factors delivery treatments 

presented successful results in many studies but there have been increasing the issues about dangerous 

side effects caused by the use of certain growth factors, over dosage, long term results needing standard 

randomized clinical trials prior to be approved for routinely clinical use. It is important to optimize the 

scaffolds so they can match the mechanical characteristic of bone. The majority of the strategies were 

only tested in minor models and testing in superior models can add problems. It is crucial to establishing 

protocols such as the best dosage of growth factors, identify the more suitable biomaterial with the proper 

mechanical properties for bone defects and identify the best choice and dosage whether for the use of 

growth factors or cells. In brief, researchers are focused on the production of a single material to be able 

to promote bone regeneration and there is thoughtfulness to patient specific implant that would be 

designed to restore the specific defect. 
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Abstract 

Bone is a dynamic tissue with an amazing capacity of self-healing. However, when the defect reach a 

critical size bone loses this capacity and medical intervention is needed. Bone is the second most 

transplanted tissue in the world and there is a huge need for bone grafts and substitutes which lead to a 

decrease in bone banks donors. In this study, we developed Ti6Al4V, ZrO2 and PEEK three-dimensional cell 

scaffolds based on Ti6Al4V, ZrO2 and PEEK for bone repair applications. Mechanical compressive tests 

were also performed to evaluate the elastic modulus and compressive stress. The scaffolds presented a 

maximized mechanical strength for load-bearing applications revealing an elastic modulus of 6.5 GPa, 

9.04 GPa and 1.67 GPa minimizing the effect of stress shielding. The crystallographic phase of ZrO2 was 

analysed by XRD revealing tetragonal phase of ZrO2. To assess the chemical composition of the scaffolds, 

XPS analyses were performed in Ti6Al4V, ZrO2 and PEEK three-dimensional cell scaffolds. And results 

showed that the main elements, Titanium, Zirconium, Carbon and Oxygen, of the scaffolds were present. 

Overall, the scaffolds developed presented different hydrophilicity properties and an elastic modulus 

similar to bone which can minimized the phenomenon of stress shielding. Finally, their efficacy as scaffold 

material for bone tissue regeneration applications was evaluated in vitro by seeding SaOS-2 onto the 
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scaffolds. Then cells’ viability, proliferation and differentiation were analyzed up to 14days of culturing. 

The in vitro results revealed that Ti6Al4V, ZrO2 and PEEK scaffolds were cytocompatible allowing cell 

attachment, proliferation and differentiation along the osteogenic lineage. Our results suggest the 

potential applications in bone tissue engineering of these scaffolds. 

 

Keywords: Ti6Al4V scaffolds; ZrO2 scaffolds; PEEK scaffolds; SaOs-2 cells; Bone tissue engineering. 

4.1 Introduction 

Bone is a complex, hierarchic and dynamic tissue with an amazing capacity of self-healing, however 

when a defect exceeds a critical size it loses the capacity of repairing and external intervention is needed 

(Bose et al. 2013). Current strategies used for the treatment of bone defects such as Masquelet technique 

or the use of autografts requires invasive bone collection with donor site morbidity as well as painful 

surgical procedures. This leads bone to be considered one of the most common tissue transplantation 

procedure after blood and kidney (Bentley and Hanson 2014; Morelli et al. 2016). Bone tissue 

engineering (BTE) approaches are demanded to overcome the limitations of current solutions. A key 

component in BTE is the scaffold structure once it serves as a template for cell interactions and the 

formation of bone-extracellular matrix to provide structural support to the newly formed tissue. 

When developing a successful bone engineered scaffold, it is important to understand bone 

structure and mechanics. Bone has a hierarchical structure and its mechanical properties vary with age, 

site and bone quality (Boskey 2013). There are various mechanical properties that can describe bone 

tissue but the most important in the conception of bone scaffolds is the elastic Modulus (Wang et al. 

2016). The elastic Modulus of trabecular bone goes from 0.02-2 GPa and of compact bone can vary 

between 3 and 30 GPa (Yang et al. 2001; Wang et al. 2016). They must be sufficient and not collapse 

during the surgical procedure neither in patient’s life. However, if the scaffold has higher elastic Modulus 

than bone the scaffold will take the load leading to bone resorption also known as stress shielding (Nair 

and Laurencin 2007; Leong et al. 2008).  

Metallic biomaterials due to their mechanical properties and corrosion resistance are mainly used 

for the fabrication of scaffolds for the replacement of hard tissue, such as artificial hip joints, bone plates, 

and dental implants (Nielsen 1987; Niinomi 2003, 2008). Titanium alloy, Ti6Al4V, is used for their excellent 

corrosion resistance and their modulus of elasticity 113 GPa. 
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 Ceramics are generally defined as inorganic, non-metallic materials. Ceramics such as alumina, 

and zirconia ceramics are the most used in orthopedic device. Zirconia combines high strength and 

fracture toughness with an attractive biocompatibility. Tetragonal zirconia, ZrO2, especially 3% Yttria 

stabilized has been used as a conventional material for medical restorations due to its mechanical 

properties with an elastic modulus of 200 GPa. (Denry and Kelly 2008; Yin et al. 2017).  

Synthetic polymeric biomaterials are much more easily reproducible. Poly-ether-ether-ketone, 

PEEK, is a semicrystalline polymer with high chemical resistance and it also presents high fracture 

toughness. But the major beneficial property for orthopedics application its lower elastic modulus 3– 4 

GPa (Rae et al. 2007).  

The scaffold’s architecture is critical and it should possess a pores that allows cells penetration, 

growth, proliferation and differentiation. It has been shown previous by Kuboki et al. the importance of 

porous scaffolds for the formation of new tissue (Kuboki et al. 1998; Wu et al. 2014). Additionally, other 

studies shown better results in pore size greater than 300 µm for bone ingrowth (Bohner et al. 2011; 

Karageorgiou and Kaplan 2005; Murphy et al. 2010; Jones et al. 2004). Although pore size of a scaffold 

for bone tissue regeneration is key factor however it becomes conflicting with others properties. In this 

sense the increase of pore size affects directly the strength of the scaffold 

In this reasoning, the purposed of this study was to evaluate 3 different scaffolds made of Ti6Al4V, 

ZrO2 and PEEK, produced by selective laser melting and CNC milling not only in terms of physicochemical 

properties but also in terms of its effect on cells’ behavior as novel approaches for bone tissue engineering 

applications. 

4.2 Materials and Methods 

4.2.1 Scaffolds Preparation 

In this study open-cellular structures were produced with an open pore size of 400 µm, these structures 

were designed having throughout holes. 

The production of Ti6Al4V samples were performed under an Argon and Nitrogen atmosphere, using 

a platform at a constant temperature of 200 °C and using the processing parameters already described 

previous by Bartolomeu et al (Bartolomeu et al. 2016). 
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ZrO2 and PEEK porous specimens with 5 mm of height and with an average pore diameter of 400 

µm were produced by CNC milling (Roland DWX-50). ZrO2 used to produce the scaffolds was Zirconia 

comercial Dental Direkt Bio ZW iso and for PEEK was PEEK comercial Dental Direkt Peek MED. The 

cutting tool used to produce the porous scaffolds of ZrO2 was made of hard metal with a 0.5 mm diameter 

spherical top. During process the cutting tool penetrates 0.20 mm, rises and then penetrates a further 

0.20 mm and so on until the hole is completed (feedrate), its rotation speed is 30000 rpm. The speed 

rate used was 5 mm sec-1. After machined the samples are cleaned and sintered using a stage at 1500 

° for 2 hours with heating and cooling rates of 8°C min-1. To machined PEEK samples a cutting tool used 

was made of hard metal with a 0.4 mm diameter spherical top and a speed rate of 30000 rpm. The 

speed rate used was 8 mm sec-1 and the feedrate of the cutting tool was 0.10 mm. After the processing 

all samples were ultrasonically cleaned in isopropanol for 10 min in order to remove any loose debris or 

surface contamination. 

4.2.2 Physicochemical characterization 

X- ray diffraction 

The qualitative analyses of crystalline phases presented on the samples were obtained by X- ray diffraction 

(XRD) using a conventional Bragg–Brentano diffractometer (Bruker D8 Advance DaVinci, Germany) 

equipped with CuKα radiation, produced at 40 kV and 40 mA. Data sets were collected in the 2θ range 

of 10–60º with a step size of 0.02º and 1s for each step. 

X-ray photoelectron spectroscopy 

Surface chemistry of each scaffold material was analyzed by X-ray photoelectron spectroscopy (XPS) 

using Axis Supra for the elemental composition of the scaffolds. The XPS analysis of a surface provides 

qualitative and quantitative information on all the elements present (except H and He) from the binding 

energies of the main lines and the peak area, respectively. Three regions were located in each scaffold 

and the analyzer was used at the constant Δ E mode with 20 eV pass energy. 

X-ray micro-computed tomography 

The quantitative and qualitative evaluation of the scaffolds’ structure were performed using a high-

resolution X-ray micro-computed tomography system Skyscan 1272 (Skyscan, Kontich, Belgium). The 

scanning of the scaffolds was conducted using a pixel size of 5 µm and an X-ray source fixed at 50 keV 

and 200 µA. The two-dimensional (2D) images in each data set were binarized automatically using the 
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manufacturer's software (CT Analyzer v1.17, SkyScan, Kontich, Belgium). Formerly, the images were 

used for morphometric analysis by quantification of mean porosity, mean pore size, mean wall thickness. 

The porosity, pore size and wall thickness were also determined on the 2D images. Three samples were 

used for the qualitative and quantitative microstructure evaluation. 

Surface roughness 

The polishing was performed using a MECAPOL P251 and different types of sand papers with different 

meshes. With this procedure, the purpose was to polish the surface of the samples in order to obtain 

smother surfaces. The series of sand papers used for polishing all the samples were: Ti6Al4V specimens 

were polished with P4000 grit size, ZrO2 with grit from P180 to P4000 size and PEEK samples were 

polished with P600 to P4000 grit size and then further polish was complete using a diamond suspension 

with particle size of 3 µm (DiaPro Dur). The roughness of both polished and processed surfaces were 

measure by means of profilometry (Mitutoyo SJ 210). Throughout the test the rugosimeter’s needle 

dislocated horizontally with a 6 μs speed along the length of the sample with measurements being 

acquired in every 2.5 μm of dislocation. The presence of micro peaks and valleys, during the roughness 

measurement, created vertical movements in the touch probe that were, then, converted by the existing 

transducer into electrical signs and these were amplified vertically and horizontally being converted later 

into dimensional values. 

Contact angle and surface energy 

Wettability can be defined as the propensity of liquid to spread on a solid surface and normally consist 

on the measurement of contact angles as the primary data, which indicates the degree of wetting when 

a solid and liquid interact. Contact angles were obtained using the sessile drop method with an instrument 

(GONIOMETER OCA15+), this fully automated apparatus, with integrated pump, delivers accurate 

droplets and the built-in camera captures an image to measure the static contact angle. All specimens 

were ultrasonically cleaned with alcohol before the measurement to minimize physical and chemical 

contamination of the surfaces. Distilled water was used for contact angle measurements. The calculations 

were performed at room temperature and the drop was put directly on the scaffolds’ surface. 

Diiodomethane (Sigma-Aldrich Química, S.L., Portugal) and distilled water were used for surface free 

energy calculations. Three drops were analyzed for each scafold material. The final contact angle used 

for comparison of different samples was the average of left and right angles of each drop. 

Scanning electronic microscope 
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To assess the microstructure of the different materials the scaffolds and the ability to cells adhere and 

spread along the porous scaffolds surface scanning electronic microscope was used (JEOL JSM-6010LV). 

For that, the scaffolds were collected after 14 days of culture and fixed with 10% formalin for 20 min. 

Then they were washed with ultra-pure water three times. The samples were then dehydrated in increased 

concentrations of ethanol from 30% to 100% and air dried overnight. Before observe in SEM the 

specimens were coated with gold.  

Compression tests 

The mechanical characterization of Ti6Al4V, ZrO2 and PEEK was carried out in a compressive system (Lloyd 

Instruments LR 50K plus) which is equipped with a cell load of 50kN. The tests were performed at room 

temperature on dry samples and with a crosshead speed of 2 x 10-3 mm.min-1 until mechanical failure of 

the scaffolds. Each sample was placed in the center of the compressive system’s frame to ensure the 

compressive load was uniformly applied. 

4.2.3 Scaffolds in vitro characterization  

Cell culturing 

In order to perform the seeding onto scaffolds osteosarcoma - derived cell line (SaOS-2) were expanded 

until 90% confluence using basic culture medium Dulbecco’s modified Eagle’s – DMEM - with 10% fetal 

bovine serum (Life Technologies Europe BV, Netherland) and 1% antibiotic/antimicotic (Life Technologies, 

Scotland) solution. 

The scaffolds were transferred to non-adherent 48-well plates where the air inside the scaffolds 

was removed by flushing medium through the pores. Afterwards, the cells were detached with TriplETM 

Express with Fenol Red. A cell suspension was prepared (33.19 x106 cells.mL-1) and seeded onto the 

scaffolds in a drop-wise manner, at a cellular density of 200 million cells per scaffold. After 3 hrs, 500 

µL of culture medium was added to the well plates. A control was prepared by seeding 10 x103 cells per 

well in adherent 12-well plates and maintained under the same conditions and for the same period of 

time. Medium was changed twice a week during the time of the experiment. 

Cell viability 

Samples were collected on days 1, 3, 7 and 14 after seeding for the assessment of cell viability by Alamar 

blue test (Bio-Rad, UK). For that, a solution with 10% of Alamar blue (Bio-Rad, UK) was prepared, added 

to each well and incubated for three hours at 37ºC. Afterwards, 100 µL were transferred to a well of a 
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96-well black plate and the fluorescence was read at an excitation of 530/25 nm and an emission of 

590/35 nm using a microplate reader (Gen 5 2.01, Synergy HT). The sample were analyzed in triplicates 

and the experience was performed once due to the limited number of scaffolds. 

 

Cell proliferation 

Cell proliferation was assessed by DNA quantification. For that, scaffolds used for Alamar blue assay were 

washed with PBS and transferred into 1.5 mL microtubes containing 1 mL ultra-pure water. The control 

with the 2D seeded cells was washed with PBS and then 1 mL of ultra-pure water was added. Then, both 

scaffolds and 2D control were incubated for 1 h at 37ºC. Concerning 2D control, the volume of each well 

was transferred into a 1.5 mL microtubes. Then, all samples were stored in a −80ºC freezer, promoting 

a thermal shock and thus potentiating the cell lyses. Additionally, before DNA quantification, cell lysates 

were defrosted at room temperature and then sonicated in an ultrasonic bath for 15 min. Finally, DNA 

concentration was quantified by using the kit Quant-IT PicoGreen dsDNA Assay kit 2000 assays (Life 

Technologies, Scotland), accordingly with manufacturer’s instructions. Briefly, 28.7 µL of sample or 

standard, 71.3 µL of PicoGreen solution and 100 µL of Tris–HCl–EDTA buffer were mixed in each well 

of an opaque 96-well plate and were incubated in the dark for 10 min. Triplicates were made for samples 

and standards. After that, fluorescence was measured using an excitation wavelength of 485 nm and an 

emission wavelength of 530 nm. A DNA standard curve was prepared with concentrations varying 

between 0 and 2 µg.mL-1 and sample DNA values were read off from the standard graph. 

 

Cell differentiation 

For ALP activity assessment, molecular absorbance spectrophotometry measurement and Fast Violet B 

staining was performed. Concerning the first, for the quantification of ALP activity cell lysates produced 

for DNA quantification were used. Briefly, 20 µL of each sample and 60 µL of substrate solution (0.2% 

w/v p-nytrophenyl phosphate (pnPP) in 1 M Diethanolamine) were added to each well of a transparent 

96-well plate and incubated in the dark for 45 min at 37 ºC. Then, 80 µL of a solution to stop the reaction 

composed of 0.2 M NaOH and 0.2 mM EDTA was added to each well. Absorbance was read at 405 nm 

using a microplate reader (Gen 5 2.01, Synergy HT). A p-nytrophenol standard curve was prepared with 

concentrations varying between 0 and 0.2 nmol.mL-1 and sample values were read off from the standard 

graph. 
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In the case of ALP staining, after 14 days of culture, cells were fixed with 10% formalin for 20 

minutes and stained with Fast violet B (Sigma-Aldrich Química, S.L., Portugal) with Naphthol (Sigma-

Aldrich Química, S.L., Portugal). In this sense, as a result of phosphatase activity, Naphthol is liberated 

and immediately coupled with a diazonium salt, forming an insoluble, visible pigment at sites of 

phosphatase activity. For that, a mixture of both reagents was prepared and added to each sample. After 

1 hour of incubation at 37ºC, the solution was removed, washed with PBS and air dried. The images of 

the staining were taken in a Stereo Microscope (Stemi 2000-C Zeiss). 

4.2.4 Statistical analysis 

Statistical analyses were performed using GraphPad Prism 5.0 software version 5.0a. The non-parametric 

Mann–Whitney test was used to compare two groups, whereas comparison between more than two 

groups was performed using the Kruskal–Wallis test followed by Dunn’s comparison test. A value of p < 

0.05 was considered statistically significant. Data are presented as mean ± standard deviation. Data in 

each figure are from three independent experiments each one with n=3.  

4.3 Results 

4.3.1 Physicochemical characterization 

X-ray diffraction 
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The X-ray Diffraction (XRD) was used to identify the crystalline phase of ZrO2 scaffolds. As depicted in 

figure 4.1, the ZrO2 scaffolds showed the typical intensity peaks corresponding to the tetragonal 

ZrO2 phase (marked with *), with good consistency with their respective ICDD standard card 00-060-

0502. 

  

X-ray photoelectron spectroscopy  

In order to obtain information about the surface-near chemistry, all samples were analyzed by X-ray 

photoelectron spectroscopy (XPS) as depicted in figures 4.2, 4.3 and 4.4. Figure 4.2a shows the survey 

scan of Ti6Al4V scaffolds, showing the typical peaks of Oxygen (O) 1s, Titanium (Ti) 2p and Carbon (C) 1s, 

as expected. Additionally a high resolution XPS spectra of Ti6Al4V scaffolds was obtained (figure 4.2b), 

where it is possible to observe a peak with binding energy of 458.7 eV, corresponding to metallic titanium 

(Ti 2p).  

 

Figure 4-1 XRD plot of tetragonal phase of ZrO2. 
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In the case of ZrO2 scaffolds, XPS analysis is shown in figure 4.3. The survey scan XPS spectrum of 

ZrO2 scaffolds (figure 4.3a) showed a range of binding energies between 39.66 eV and 1205.66 eV with 

4 different peaks that corresponds to O 1s, Zirconium (Zr) 3p3/2, Zr 3p1/2 and Zr 3d. Moreover, in the high 

resolution XPS spectra of ZrO2 scaffolds (figure 4.3 b) is possible to see the peak of Zr 3d that presented 

an energy binding of 182.0 eV. Furthermore, in the high resolution spectra was also possible to identify 

Yttria (Y) 3d with an energy binding of 157.0 eV (figure 4.3c), which was not visible in the survey scan 

due to its low quantity (3%). 

Figure 4-2 XPS plot of Ti6Al4V. a) Survey scan XPS spectra (b) high-resolution XPS spectra of Ti6Al4V showing the peak of Ti 2p. 
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The XPS spectra of PEEK is displayed in figure 4.4. As observed in figure 4.4 a, the peaks of O 1s and C 

1s were detected in the survey scan of PEEK, as expected for polymers. These peaks had an energy 

binding of 533.6 eV, in the case of O 1s, and 285.0 eV, in the case of C 1s, as depicted in the high 

resolution XPS scan presented in figure 4.4 b and c respectively.  

Figure 4-3 XPS plot of ZrO2. a) Survey scan XPS spectra showing to O 1s, Zr 3p3/2, Zr 3p1/2 and Zr 3d peaks; (b) high-resolution 
XPS spectra of Y 3d; c) high-resolution XPS spectra of Zr 3d. 



Three dimensional cell-scaffold constructs for application in bone tissue engineering 

 

74 

 

X-ray micro-computed tomography 

The qualitative and quantitative analysis of porosity, mean pore size and mean pore thickness of the 

scaffolds were assessed by micro-CT (Table 4-1). Micro-CT histomorphometric analysis did not show 

substantial differences in the mean porosity between the samples. As expected, significant differences 

were observed when comparing PEEK with Ti6Al4V samples in terms of mean wall thickness and mean 

pore size. In this sense, PEEK samples presented higher values of mean wall thickness and mean pore 

size. 

 

Figure 4-4 XPS plot of PEEK. a) Survey scan XPS spectra showing O 1s and C 1s peaks; (b) high-resolution XPS spectra of O 1s; 
c) high-resolution XPS spectra of C 1s. 
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Table 4-1 3D reconstructions of Ti6Al4V, ZrO2 and PEEK samples, mean porosity, pore size and trabeculae thickness, calculated from the 

micro-CT data, presented as mean ± standard deviation. 

Material Scaffold image 

reconstruction 

Mean porosity 

(%) 

Mean wall 

thickness [µm] 

Mean pore size 

[µm] 

Ti6Al4V 

 

38.0 ± 1.78 138.1 ± 4.62 172.8± 28.74 

ZrO2 

 

39.4 ± 0.77 224.3 ± 7.07 250.2 ± 3.36 

PEEK 

 

37.3 ± 0.74 250.1 ± 6.83 368.5 ± 10.09 

 

Surface roughness  

Another parameter analyzed was the surface roughness (Ra) as presented in table 4-2. The machined 

scaffolds analyzed by profilometry showed a surface roughness of Ra= 0.966 µm for Ti6Al4V, Ra= 2.03 

µm for ZrO2 and Ra= 1.051 µm for PEEK. After the polishing of the scaffolds, the average values of 

surface roughness significantly decreased (p = 0.0015), as expected. In this sense, the values obtained 

were Ra = 0.144 µm for Ti6Al4V; Ra = 0.013 µm for ZrO2; and Ra = 0.192 µm for PEEK. 

Table 4-2 Mean ± standard deviation values of Ra for machined and polished samples. 

 

 

 

Type of scaffolds Processed (µm) Polished (µm) 

Ti6Al4V 0.966 ± 0.13 0.144 ± 0.02 

ZrO2 2.030 ± 0.35 0.039 ± 0.02 

PEEK 1.501 ± 0.39 0.192 ± 0.07 
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Contact angle and surface energy 

Contact angles were also assessed as shown in Table 4-3. The values were obtained by the sessile drop 

method on the different surfaces before (i.e. machined) and after (i.e. polished) the scaffolds had been 

processed. In both conditions, machined and polished, ZrO2 samples demonstrated similar contact angles 

values, which were lower than 90º, indicating that these scaffolds presented a hydrophilic surface. 

Whereas, machined and polished Ti6Al4V and PEEK samples showed similar contact angles higher than 

90º, which correspond to hydrophobic surfaces.   

 

Table 4-3Contact angle measurement values of machined and polished samples. 

 

 

 

 

 

 

Additionally, the surface energy of rough and polish surfaces was studied and the values obtained are 

presented in table 4-4. As shown, the values of surface energy increased for Ti6Al4V and PEEK samples 

after the polishment, while in the case of ZrO2 samples, the surface energy decreased. 

 

Table 4-4Surface energy measurement values of machined and polished samples. 

Machined Sample Surface Energy (mN.m-1) Polished Sample Surface Energy (mN.m-1) 

Ti6Al4V 18.20 Ti6Al4V 25.16 

ZrO2 31.68 ZrO2 29.8 

PEEK 30.55 PEEK 34.36 

 

Compression test 

Machined Sample Contact angle (θ) Sample Polished Contact angle (θ) 

Ti6Al4V 102.70 ± 10.72 Ti6Al4V 90.2 ±12.29 

ZrO2 78.75 ± 5.57 ZrO2 83.85 ± 8.24 

PEEK 99.05 ± 9.65 PEEK 96.15 ± 3.24 
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The elastic modulus was assessed since this parameter is important for the successful of new materials 

for bone tissue engineering approaches. In fact, this parameter measures the capability of a scaffold to 

resist to deformation once a stress is applied to it. For that, compression tests were performed in order 

to obtain the elastic modulus of each scaffolds. Moreover, the compressive maximum stress was also 

calculate. As depicted in figure 4.5a and b, ZrO2 scaffolds presented the higher vertical elastic modulus 

values and horizontal elastic modulus values. Interestingly, as we can observe in figure 4.5a and b there 

was a significant decrease on the elastic modulus values comparing vertical and horizontal position of 

Ti6Al4V and ZrO2. In this sense elastic modulus of Ti6Al4V decreased from 6.50 GPa to 4.36 GPa (p = 

0.0357) and the elastic modulus of ZrO2 decreased from 9.04 GPa to 6.14 GPa (p = 0.0357). This 

difference was caused by the position of pores. Considering the elastic modulus of PEEK, although the 

values decreased from 1.67 GPa to 0.59 GPa, the decrease was not significant, which can be explained 

by the composition of the scaffold. In what concerns maximum compressive stress, ZrO2 also presented 

the higher values for vertical analysis but in the case of horizontal analysis no differences where observed. 

Figure 4-5Mechanical Properties of scaffolds. a and b) Elastic modulus for vertical and horizontal position; b e c) Maximum compressive 
stress for vertical and horizontal position. Data is presented as mean±stdev (n=3), (*) denotes statistical differences (p<0.05). 



Three dimensional cell-scaffold constructs for application in bone tissue engineering 

 

78 

4.3.2 Biological characterization 

 

Cell adhesion and spreading  

Cell adhesion and spreading was visualized by Scanning electron microscopy (SEM) as depicted in figure 

4.6. In figures 4.6 a, b and c, it is possible to observe the unseeded scaffolds, which presented an average 

height of 5mm. After the seeding of SaOS-2 it was possible to clearly observe that cells adhered to the 

surface (figure 4.6 g, h and i) when compared with unseeded scaffolds (figure 4.6 d, e and f). Looking 

more closely, it was visible that both, Ti6Al4V and ZrO2, presented more cells adhered and spreaded 
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throughout their surface, when compared with PEEK scaffold surface (Figures 4.6 j, k, l, m, n and o). As 

observed Ti6Al4V scaffolds present a quite high surface which should promote cell adhesion of SaOS-2. 

Figure 4-6 SEM analysis. SEM image of a) Ti6Al4V scaffold; b) ZrO2 scaffold; c) PEEK scaffold; d) unseeded Ti6Al4V scaffold; e) unseeded 
ZrO2 scaffold f) unseeded PEEK scaffold; g) and j) seeded Ti6Al4V scaffold; h) and k)  seeded ZrO2 scaffold i) and l) seeded PEEK  scaffold; m) 
cells adhered and spread onto the surface Ti6Al4V scaffolds at higher magnification; n) cells adhered and spread onto the surface ZrO2 
scaffolds at higher magnification; o) cells adhered and spread onto the surface PEEK scaffolds at higher magnification. 
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Cell viability 

The Alamar blue results elucidate about the cells’ metabolic activity, which consequently can be 

transduced in cell viability. In this sense, cells are able to metabolize resazurin, the active ingredient of 

Alamar blue reagent, and reduce it into resorufin, a compound that is red in color and highly fluorescent. 

When viable cells convert resazurin to resorufin, the overall fluorescence of the media surrounding cells, 

increases. The results obtained along the 14 days of culture of SaOS-2 cells in 2D standard cultures (2D-

Control) and on the scaffolds were normalized by DNA concentration and are presented in figure 4.7. As 

shown, after 1 day, cells cultured on Ti6Al4V scaffolds and 2D-Control were more metabolic active when 

compared with ZrO2 and PEEK scaffolds. Nevertheless, the metabolic activity of these same cells 

decreased after 14 days of culture, while cells cultured on ZrO2 and PEEK scaffolds presented similar 

values to day 1. Concerning ZrO2 and PEEK scaffolds, although no differences between them were 

detected on day 1, cells cultured on ZrO2 scaffolds showed to be more active than cells cultured on PEEK 

scaffolds on day 14. Noteworthy, the values presented by cells cultured in 2D-Control at day 14 were 

significantly lower than cells cultured on scaffolds.  It is important also to point out that, in 2D-Control, 

cells were more metabolic active along the first 7 days of culture, decreasing on day 14, indicating that 

cells were differentiating along the osteoblastic lineage, as expected.  
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Figure 4-7 SaOS-2 cells’ metabolic activity normalized by DNA concentration, along 14 days of culture. Symbols 
denote statistically significant differences (p < 0.05) in comparison to: (*) ZrO2 and PEEK scaffolds, ($) scaffolds; 
(#) PEEK scaffolds; (£) day 7; and (§) day 1. Data is presented as mean±stdev (n=3). 
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Cell Proliferation 

Cell proliferation was assessed by DNA quantification along the 14 days of culture of SaOS-2 cells on 2D 

standard cultures and scaffolds, as depicted in figure 4.8. At day 1 there is a clear difference between 

2D control and scaffolds, which can be explained by the different cell concentration used for both 

conditions. Along the 14 days of culturing, although cells under all conditions proliferated, higher DNA 

content was observed in 2D control as compared with scaffolds.  Interestingly, cells cultured on ZrO2 

scaffolds showed higher proliferation rates than cells cultured on PEEK scaffolds and slightly higher than 

Ti6Al4V scaffolds at day 1. But at day 14, cells showed an opposite proliferation rate, being significantly 

lower than Ti6Al4V and PEEK cell scaffolds. 

 

 

Cell Differentiation  

Alkaline phosphatase (ALP) activity is an early osteoblastic phenotypic marker and therefore an indicator 

of osteoblastic differentiation (Postiglione et al. 2003; Farley et al. 1991). For so, ALP activity was 

evaluated by molecular absorbance spectrophotometry measurement and by staining with Fast Violet B, 

figure 4.9 and 4.10 respectively. Considering ALP measurements at day 3, values were similar for all 

conditions. However, ZrO2 scaffolds showed higher values when compared with 2D control. When looking 

to values of day 7, only cells on 2D control had higher activity than day 3, which decreased until day 14, 

showing the typical peak of expression. Moreover, the values of ALP activity of 2D control were higher 

Figure 4-8 SaOS-2 cells’ proliferation rates by DNA concentration, along 14 days of culture. Symbols denote statistically 
significant differences (p < 0.05) in comparison to: ($) scaffolds; (#) PEEKl scaffolds; (§) day 1; and (£) ZrO2 scaffolds. Data 
is presented as mean±stdev (n=3). 
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than scaffolds, while amongst the scaffolds, cell seeded Ti6Al4V and ZrO2 showed higher values than cell 

seeded PEEK scaffolds. In the case of ALP activity at day 14, all conditions showed lower values than day 

3 and day 7, however, ALP qualitative activity was still detected by Fast Violet B staining as depicted in 

figure 4.10.  Interestingly, 2D control showed the lowest values at this time point. Once more, Ti6Al4V 

scaffolds showed higher values than PEEK and ZrO2 scaffolds, which was corroborated by the ALP staining 

(figure 4.10).  
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Figure 4-9 SaOS-2 cells’ ALP activity along 14 days of culture. Symbols denote statistically significant differences (p < 0.05) in 
comparison to: (£) ZrO2 scaffolds; ($) Scaffolds; (§) day 3 (#) PEEK scaffolds; and (*) day 7. Data is presented as mean±stdev (n=3). 
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4.4 Discussion  

Tissue engineering approaches have been essential for the development of some commercially available 

products for the use in bone defects treatments (Infuse; Vitoss). But none of those products is able to 

induce bone regeneration. In fact, for bone applications, it is crucial to have proper mechanical properties 

and have the capacity to host cells. A common problem with current available solutions is their mismatch 

with bone in terms of elastic modulus. It has been reported that when elastic modulus, between an 

implant and bone, presents a mismatch, stress transfer happens This phenomenon calls stress shielding 

and leads to bone reabsorption(Navarro et al. 2008; Zhang et al. 2016). One approach to solve these 

problem is to reduce the elastic modulus of materials by introducing pores. Additionally, the introduction 

of pores presents another advantage for the scaffolds as it facilitates cell penetration, tissue ingrowth and 

vascularization. 

In the presented study, three dimensional (3D)-scaffolds, with different material compositions, 

Ti6Al4V, ZrO2 and PEEK, with a pore size of 400 µm chosen according to studies previous published were 

prepare (Yamane et al. 2007; Im et al. 2012). They were evaluated regarding their surface’s 

characteristics, mechanical properties, and influence in cell. XRD was performed to assess the 

crystallographic phase of ZrO2 scaffolds after processing. In fact, ZrO2 can present three crystallographic 

Figure 4-10 ALP stained SaOS-2 cells on scaffolds and respective controls (scaffolds without 
cells) after 14 days of culture. Insets shows ALP stained cells on scaffolds at higher 
magnification. 
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phases: monoclinic (m), tetragonal (t), and cubic (c), being the tetragonal the more stable phase for ZrO2 

(Denry and Kelly 2008). Each crystallographic phase can develop during heating or cooling processes. 

As we can observed in 4-1 the ZrO2 XRD plot present a typical tetragonal phase plot, indicating that the 

ZrO2 materials used during this study were stable and is in agreement with published data related to 

tetragonal phase of ZrO2 (Tsunekawa et al. 2005; Watanabe and Yoshinari 2016).For the chemical 

composition XPS was performed and all the main compounds of scaffolds. The peaks of Ti, Zr, C and O 

were identify as expected (Ramires and Guastaldi 2002; Shard and Badyal 1992; Lu et al. 2015; 

Tsunekawa et al. 2005; Watanabe and Yoshinari 2016).  

Furthermore, micro-CT analysis was used to assessed porosity, mean pore size and mean pore 

thickness of the scaffolds. As expected the porosity was similar in all scaffolds. But, interestingly, only in 

the case of PEEK scaffolds it was obtained pore size values similar to the theoretical size (≈ 400 µm). 

There are several topographical parameters that influence cells’ behavior. For example, it was 

previously shown that contact angle and surface energy can influence the cell adhesion (Hallab et al. 

2001). Moreover, the measurement of contact angles is extremely useful as they characterize the average 

of wettability of material’s surface (Yuan and Lee 2013). Since all thescaffolds were polished, the 

influence of roughness on the wetting properties was evaluated by contact angle measurement analysis 

of rough and polished Ti6Al4V, ZrO2 and PEEK samples. As it was observed on table 4-3, rough ZrO2 showed 

an angle lower than 90º, indicating that ZrO2 exhibited a hydrophilic surface, whereas Ti6Al4V and PEEK, 

with an angle higher than 90º, exhibited a hydrophobic surface. Surface energy is also an important 

parameter in surface topography that influences biological response, once it is related with the wettability 

of the surface and thus its hydrophilicity. In fact, it is known that hydrophilic surfaces allow protein 

absorption to the implant surface and subsequent interaction with cells. In contrast, hydrophobic surfaces 

that are subjected to air bubbles entrapment hinder forbidding protein absorption and thus cell adhesion. 

In this context, many studies have concluded that a moderate hydrophilicity improves the biological 

response (Gittens et al. 2014). 

Finally, the last property analyzed were the mechanical properties assessed by the elastic 

modulus analysis.  In the literature is possible to find that the typical values of elastic modulus for bulk 

Ti6Al4V, ZrO2 and PEEK materials are: 113 GPa; 200 GPa and 3-4 GPa, respectively (Osman and Swain 

2015; Najeeb et al. 2016; Jung et al. 2014). During the compression test all scaffold presented a typical 

stress-strain curve. As expected, the elastic modulus obtained when tested the scaffolds was lower than 

in bulk structure as shown in figure 4-5 and were in agreement with previous data published (Weißmann 
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et al. 2016).  This difference can be explained by the presence of pores. Moreover, the values obtained 

were in the range of elastic modulus of cortical bone, which is compromised between 3 GPa and 30 GPa. 

Another interesting finding was that the scaffolds presented high values of maximum compressive 

stress with improved capacity to withstand the applied loads, corroborating the suitability of the scaffolds 

to be used in bone tissue applications. 

After physicochemical properties analysis, cells’ behavior, namely, cell adhesion and spreading, 

cell viability, cell proliferation and cell differentiation was assessed. For that, an osteosarcoma - derived 

cell line (SaOS-2) was used since it was more physiologically relevant when considering the ultimate 

application. SaOS-2 cells, a good and well-characterized osteosarcoma human cell line, have been widely 

used as a model system for osteoblastic cells mostly due to their exhibition of the entire differentiation 

sequence of osteoblastic cells (Postiglione et al. 2003; Hausser and Brenner 2005). 

By observing SEM images in figure 4-6 it was possible to observe that cells were able to adhere 

and spread at some extent in each material. Nevertheless, it was noticed a higher cell adhesion and 

spreading in Ti6Al4V and ZrO2 scaffolds when compared to PEEK scaffolds. This could be explained by the 

higher roughness presented by Ti6Al4V and ZrO2 scaffolds, which was described to improve not only cell 

adhesion but also cell spreading (Huang et al. 2004; Yang et al. 2016). 

In the case of cell viability evaluation, metabolic activity was assessed. As shown in figure 4-7, 

the metabolic activity of SaOS-2 cultured on standard 2D cultures (2D control) followed a normal profile. 

In this sense, cells’ metabolic activity increased until day 7 and decreased until day 14 indicating that at 

this time point cells were probably differentiating along the osteoblastic lineage. On the other hand, 

scaffolds showed always similar or lower values along the culture as compared to day 1. Even so, DNA 

quantification results showed that cells proliferated along the entire time of culture in all conditions.   

Considering the application of these materials for bone tissue approaches, the differentiation of 

SaOS-2 along the osteogenic lineage was also motif of study. In fact, the information about osteogenic 

differentiation markers, as alkaline phosphatase, are important to evaluate the influence of the different 

materials on bone formation and implant osseointegration. Several studies suggest that differentiation 

toward an osteoblastic phenotype correlates with a decrease in cell proliferation and an increase in 

alkaline phosphatase activity (Postiglione et al. 2003). Indeed, the 2D – control, as shown in figure 4-9, 

showed a typical development in terms of ALP activity, i.e. SaOS-2 ALP activity peaked at day 7 and 

decreased, but cells were proliferating the entire time of culture. For so, one can conclude that cells were 

only in the beginning of the differentiation pathway. In the case of Ti6Al4V, ZrO2 and PEEK scaffolds, 
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although cells expressed ALP the entire culture as observed by ALP activity quantification and detection 

by staining, it decreased along the 14 days. One explanation for the low levels of ALP activity observed is 

the deficient cell-cell contact as reported in previous studies (Cao et al. 2015; Tang et al. 2010) and 

supported by the continuous increase in the proliferation rate throughout the experiment time. Another 

explanation is that this study was not realized in osteogenic differentiation conditions, i.e. in the presence 

of ascorbic acid, dexamethasone and β-glycerophosphate, resulting in a slower differentiation profile.  

All together the obtained results demonstrated the suitability of the proposed scaffolds for bone 

tissue engineering applications. As determined by their improved mechanical properties and their effect 

on cell’s behavior, especially in the case of Ti6Al4V and ZrO2 scaffolds.  

4.5 Conclusion 

In this study, novel scaffolds were prepared by SLM and CNC machining. The scaffolds presented suitable 

porosity and mechanical properties for bone applications, with special attention for the superior 

mechanical properties of Ti6Al4V and ZrO2. Their in vitro cytocompatibility and osteogenic ability were 

screened using SaOS-2 cells showing that samples were non cytotoxic for cells and were able to host 

cells for the time of culture and allowed them to differentiate along the osteoblastic lineage. Thus, this 

type of porous architecture and materials can be used for bone tissue engineering applications. Although 

complementary in vivo studies are necessary to evaluate the long-term biological performance and 

stability of the scaffolds in subcutaneous and orthotopic models, the obtained results indicated that the 

developed scaffolds are promising structures for bone regeneration applications. 
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5. FINAL REMARKS AND FUTURE WORK 

During this study 3D porous scaffolds were prepared and their characterization was extensively 

performed. The pore size was chosen as well as wall thickness in order to ensure the 3D scaffold had 

proper compressive strength.  

Surface topography and pore was evaluated by means of SEM images and Micro CT. Important 

topographical parameters that influence directly cell behavior such as roughness and the hydrophobicity 

was also evaluated. ZrO2 exhibit a hydrophilic surface which is favorable for protein adhesion and thus 

cell adhesion and spreading.   

This work reported interesting mechanical properties especially the low elastic modulus near of 

the bone of 3D scaffolds made of a titanium alloy, Ti6Al4V, ZrO2 and PEEK. This is an interesting result as 

the stress shielding is one of the main reasons for implant failure in load bearing applications. The 3D 

cell scaffolds also revealed a high compressive stress, a special attention for the results of ZrO2 which 

present high maximum compressive stress with a low elastic modulus. 

The in vitro performance of samples was also evaluated with promising results related to cell 

adhesion and proliferation. The tests showed that samples were not toxic for cells and were able to host 

cells for the time of culture. Thus, this type of porous architecture and materials can be used for bone 

engineering applications since cell are one important component on this solutions.  

Further research has to be done in the scope of this study. Future work should essentially focus 

on the following lines of investigation: 

- In vitro assays during 28 days;  

- Production of scaffolds with different pore size or interconnected pores; 

- In vivo studies of histocompatibility by subcutaneous implantation in mice; 

- In vivo validation in bigger animal models, implantation of bone defect in bigger animals 

such as goat or dogs; 

- Study the effect of different surface roughness in cell behavior; 

- Coat scaffolds with bioactive material such as TCP; 

- Bioactivity studies to evaluate the formation of an apatite layer; 

- In vitro evaluation with uncoated and coated scaffolds; 
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- Culturing cells such as stem cells to evaluate the osteogenic potential;  

- Incorporation of growth factors to promote bone regeneration. 


