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14 Abstract. Being immune to corrosion, and having a tensile strength up to three times 

15 higher than structural steel, glass fiber reinforced polymer (GFRP) bars are suitable for 

16 reinforcing concrete structures exposed to aggressive environmental conditions. 

17 However, a relatively low elasticity modulus of GFRP bars (in respect to the steel) 

18 favors the occurrence of relatively large deformability of cracked reinforced concrete. 

19 Lack of ductility and degradation of properties under high temperature can be also 

20 identified as debilities of GFRP bars over steel ones. Combining GFRP and steel bars 

21 can be a suitable solution to overcoming these concerns. Nevertheless, the application 

22 of such reinforcement systems requires reliable material models. Unfortunately, the 

23 influence of the relative area of GFRP and steel bars on the tensile capacity of cracked 

24 concrete (generally known as tension stiffening effect) was never investigated from 

25 the experimental point of view, mainly crossing results from different tools on the 

26 assessment of the cracking process. This paper experimentally investigates 

27 deformations and cracking behavior of concrete prisms reinforced with different 
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28 arrangements of steel and GFRP bars. The test results of 11 elements are reported. 

29 Based on the experimental results a conceptual tension stiffening stress-strain 

30 relationship is proposed. The cracking process in terms of crack width and crack 

31 spacing is analyzed considering the hybrid reinforcement particularities and a 

32 preliminary approach is proposed for the prediction of the crack width for this type of 

33 reinforced concrete elements.

34

35 Keywords. B. Mechanical properties; B. Transverse cracking; C. Analytical modelling; D. 

36 Mechanical testing.

37

38 1. INTRODUCTION

39 Since the early 1980s, fiber reinforced polymers (FRP) are considered to be a promising 

40 alternative to steel reinforcement, especially in concrete structures subjected to 

41 aggressive environment or to the effects of electromagnetic fields [1]. Being immune 

42 to corrosion, and having a tensile strength up to 3 to 6 times higher than structural 

43 steel, FRP bars can be a suitable reinforcement for concrete structures, mainly those 

44 exposed to environmental aggressive conditions, like buildings and infrastructures in 

45 coastal and maritime zones. However, the low elastic modulus of some types of FRP 

46 materials (in respect to the steel), such is the case of glass fiber reinforced polymer 

47 (GFRP) bars, favors the occurrence of relatively large deformability in FRP reinforced 

48 concrete (RC) elements [2, 3]. Taking into consideration price and mechanical 

49 performance attributes of FRP reinforcements, GFRP bars are the most used in 

50 structural applications [4-6]. The higher deformability of concrete structures reinforced 
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51 with GFRP bars is also caused by the smaller bond stiffness of these bars, when 

52 compared to the actual generation of steel bars used for the reinforcement of 

53 concrete structures [7-9]. This aspect promotes the occurrence of smaller number of 

54 cracks (larger crack spacing) of larger crack width at serviceability limit state (SLS) 

55 conditions, when steel reinforcement is considered for comparison purposes [10-12]. 

56 The larger crack width may not be a concern, considering the immunity of GFRP bars to 

57 corrosion. However, the tensile stress in the GFRP bars crossed by a crack increases 

58 significantly with the crack opening, which can be problematic in terms of premature 

59 local tensile rupture of these bars, mainly in structures submitted to fatigue loadings 

60 [13, 14]. If this type of failure occurs, the structural rupture can be catastrophic if no 

61 further ductile reinforcement is present to sustain the loss of capacity due to the 

62 failure. Furthermore, it is well known the debility of FRP bars to high temperatures [15-

63 17]. Therefore, in case of a fire, the tensile capacity and bond conditions of FRP bars 

64 decrease significantly [18-21], compromising the structural safety of RC structures not 

65 properly designed for these circumstances.

66

67 Some attempts are being made to attenuate, or even overcome, the drawbacks 

68 pointed out to FRP reinforcements. One of the promising strategies is combining FRP 

69 and steel bars for the flexural reinforcement, by applying the FRP bars with the highest 

70 internal arm, i.e., with the minimum concrete cover thickness as possible, in order to 

71 take advantage of the relatively high tensile capacity of this reinforcement and its 

72 immunity to corrosion. For guaranteeing the required level of ductility, as well as the 

73 necessary safety in case of a fire, steel bars are also used with a sufficient concrete 
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74 cover [22-24]. Such reinforcement layout also ensures protection from corrosion of the 

75 steel bars since the outer layer of the FRP reinforcement offers resistance to the 

76 development of macro cracks by promoting the formation of multiple secondary 

77 cracks. This FRP/steel reinforcement is regularly designated by hybrid reinforcement. 

78 Combining different materials in the same bar has also been explored in the context of 

79 hybrid reinforcement [25-28]. The cost competitiveness and reinforcement 

80 performance seem, however, lower than the previous concept of hybrid 

81 reinforcement, where bars of different type of materials are disposed in the concrete 

82 structure in order to mobilize, as much as possible, their potentialities [24, 29-32].

83

84 Mazaheripour et al. [8] has demonstrated that below a certain concrete cover 

85 thickness (15 mm), the bond of GFRP is detrimentally affected due to the formation of 

86 splitting tensile cracks in the alignment of the GFRP bars used for the flexural 

87 reinforcement. The susceptibility to the formation of this type of cracks should be 

88 dependent of the axial stiffness of the flexural reinforcement, by increasing with this 

89 stiffness. In this context, Erki & Rizkalla [33] and Borosnyoi & Balazs [34] stated that 

90 the minimum cover requirement for FRP systems should exceed the values specified 

91 for the steel reinforcement to avoid concrete cover splitting failures. The producers of 

92 GFRP bars [35, 36] recommend the two-diameter condition as a rational limitation for 

93 the minimum cover thickness.

94

95 For predicting the contribution of the tensile capacity of concrete surrounding the 

96 hybrid flexural reinforcement for the cracking behavior, a tension stiffening model was 
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97 developed capable of estimating the crack width and crack spacing from the relevant 

98 properties of the intervening materials and assuming a bond low for FRP/steel versus 

99 surrounding concrete [37]. To validate the proposed model, reliable test data is 

100 essential. However, limited number of direct tensile tests of concrete elements 

101 reinforced with FRP and steel bars is available. The investigation by Coccia et al. [38] 

102 should be mentioned as an exceptional contribution in this concern, though a uniform 

103 deformational behavior for the GFRP and steel bars was not ensured in these tests. 

104 According to the knowledge of the present authors, the influence of the relative 

105 percentage of this hybrid reinforcement on the post-cracking tensile capacity of 

106 surrounding concrete (generally designated as tension stiffening effect) was never 

107 investigated from the experimental point of view; therefore, no reliable experimental 

108 results exist for this purpose. This information is of paramount importance for 

109 simulating the contribution of concrete in tension in these circumstances when using a 

110 fibrous or layer approach, or a much more sophisticated numerical approach based on 

111 the finite element method (FEM). In this last type of approaches, especially when using 

112 a smeared crack model, the post-cracking tensile capacity of concrete not influenced 

113 by reinforcement can be derived from the recommendations of Model Code 2010 [39], 

114 based on the principles of fracture mechanics. However, for modeling the post-

115 cracking tensile capacity of concrete under the influence of the bond mechanisms of 

116 the hybrid flexural reinforcement, the available information is quite scarce.

117

118 This paper experimentally investigates deformations and cracking behavior of concrete 

119 prisms reinforced with different arrangements of steel and GFRP bars. Due to extra 
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120 challenges in terms of testing setup, its detailed description is provided. In an attempt 

121 of having reliable information of the cracking process for assisting in the interpretation 

122 of test results, digital image correlation (DIC) technique was also adopted, 

123 complementing an extensive monitoring system for measuring the deformation of the 

124 constituent materials. The experimental program is composed of eleven direct tensile 

125 tests, three of them exclusively reinforced with steel bars for serving as reference 

126 results, and the remaining eight ties are organized in four groups of two twins with 

127 different hybrid reinforcement configurations. Based on the experimental results, this 

128 work aims to evaluate the influence of relevant properties of the hybrid reinforcement 

129 on the tensile capacity of the surrounding concrete, crack opening and spacing, in 

130 order to contribute for the development of strategies for modeling the tension 

131 stiffening effect and cracking behavior of hybrid reinforced concrete structures.

132

133 2. EXPERIMENTAL RESEARCH

134 2.1. Test Program

135 The experimental program consists of eleven ties: eight with hybrid reinforcement (i.e. 

136 combination of steel and GFRP bars); and three reinforced exclusively with steel bars 

137 (reference). All ties had the same 150 × 150 mm cross-section and 500 mm length of 

138 the concrete part; the concrete cover was also constant and equal to 30 mm. All ties 

139 were reinforced with eight bars. The type of GFRP bars of 8 and 12 mm diameter, and 

140 steel bars of 6, 8 and 10 mm diameter, shown in Fig. 1, were used for the 

141 reinforcement. To determine the mechanical properties of the steel, three samples of 

142 each bar diameter were tested. The average stress-strain diagrams of the steel bars 
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143 are presented in Fig. 2. The GFRP bars were not tested, since available information 

144 indicates the mechanical properties specified by the producer can be reliably used 

145 [40]. The corresponding mechanical properties are given in Table 1, which also includes 

146 the relevant properties obtained in the tensile tests of steel bars.

147

148 The adopted reinforcement configurations are presented in Fig. 3 and Table 2. 

149 Nomenclature of the ties characterizes the configuration of the reinforcement, 

150 including the number, material (the letter “G” defines GFRP, while “S” represents 

151 steel), and diameter of the bars. Nomenclature of the prisms with hybrid (steel + GFRP) 

152 reinforcement consists of two components separated by the slash symbol (“/”). Each 

153 of the hybrid reinforcement layouts is represented by two prisms (twin-specimens) 

154 numbered as “1” and “2”, e.g., 4G12/4S10-1 and 4G12/4S10-2 represent the first and 

155 second specimen, respectively, of the group reinforced with 4 GFRP bars of 12 mm 

156 diameter and 4 steel bars of 10 mm diameter. The experimental program also includes 

157 three reference prisms reinforced with eight steel bars of 10 mm diameter: one with a 

158 cross (X) shape distribution of the bars (8S10X), and two with a rectangular (R) 

159 arrangement of the bars (8S10R-1, 8S10R-2).

160

161 For taking into consideration the existence of different materials in the hybrid 

162 reinforcement configurations, the concept of equivalent steel reinforcement ratio, 

163 ρs,eq, is used:

164 (1)𝜌𝑠,𝑒𝑞 =
1
𝐴𝑐

∙ (𝐴𝑠 + 𝐴𝑓 ∙
𝐸𝑓

𝐸𝑠),
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165 where the GFRP reinforcement is transformed in an equivalent steel reinforcement. In 

166 this equation Ac is the area of concrete section (150 × 150 mm minus the area 

167 occupied by the steel, As, and GFRP bars, Af), As and Af are the cross sectional area of 

168 the steel and GFRP reinforcement, respectively, and Es and Ef are the modulus of 

169 elasticity of steel and GFRP reinforcement. The obtained values for ρs,eq are indicated 

170 in Table 2. Varying from 0.8% to 2.1%, the ρs,eq, is within a so-called rational range of 

171 reinforcement ratio(0.4% to 3.5%) identified by Gribniak et al. [41] using test data of 

172 more than 300 RC ties. The latter range covers RC prisms representative for the 

173 analysis of the tension stiffening effect. In this table, the ratio between the axial 

174 stiffness of GFRP (AfEf) and steel reinforcements (AsEs), herein denominated as 

175 reinforcement stiffness ratio, is also included:

176 (2a)𝑘 𝑎𝑓 𝑠 =
𝑘𝑎

𝑓

𝑘𝑎
𝑠

=
𝐴𝑓𝐸𝑓

𝐴𝑠𝐸𝑠

177 in order to assess its influence on the behavior of the tested ties. It should be realized 

178 that this concept is the same of the following one:

179 (2b)
𝜌𝑓→𝑠

𝜌𝑠
=

𝐴𝑓

𝐴𝑠
∙

𝐸𝑓

𝐸𝑠
,

180 where the GFRP reinforcement ratio, transformed in an equivalent steel reinforcement 

181 ratio (  = [Af · Ef / Es] / Ac) is divided by the steel reinforcement ratio (  = As / Ac).𝜌𝑓→𝑠 𝜌𝑠

182

183 Gribniak & Rimkus [42] developed a specific anchorage blocks for fixing the multiple 

184 bars, as part of the test setup shown in Fig. 4. Each anchorage block is connected to 

185 the tension equipment using a spherical hinge (Fig. 4) that allows avoiding a possible 

186 imperfection in applying the tensile load (related to an inhomogeneity of the concrete 
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187 tie and non-uniform development of the cracks). Steel clamps are used for an 

188 additional confinement of the bars within the anchorage blocks.

189

190 The specimens were produced using similar site-mix concrete with maximum 

191 aggregate size of 8 mm and compressive strength class C30/37. All samples (including 

192 12 cylinder specimens) were stored into water to reduce the shrinkage effect. The ties 

193 were tested at 9, 10 and 11 days after have been cast. The results of the compressive 

194 150 × 300 mm cylinder tests are presented in Table 3. As can be observed, the 

195 average compressive strength of the concrete interpolated at the tie test day was 

196 equal to 42.4 MPa, which indicates that the adopted concrete can be considered of 

197 strength class C35/40 at testing age (the characteristic value of cylinder compressive 

198 strength is about 35 MPa).

199

200 The tensile tests were performed using a servo-hydraulic testing machine of 600 kN 

201 capacity in displacement control at the rate of 0.2 mm/min. The load was monitored 

202 by the electronic load cells of the testing equipment. The axial deformations were 

203 measured using linear variable displacement transducers (LVDT) that were attached to 

204 the reinforcement bars and to the concrete surface, as shown in Fig. 4.

205

206 2.2. Test Results and Discussion

207 2.2.1. Deformations

208 The determined load versus average strain diagrams are shown in Fig. 5, while the 

209 respective average normalized stress versus average normalized strain relations are 
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210 illustrated in Fig. 6. The average strains (abscissa) were divided by the theoretical 

211 cracking strain, εcr = fctm / Ecm, where the average tensile strength fctm and the modulus 

212 of elasticity Ecm of concrete were determined by the recommendations of Model Code 

213 2010 [39] using respective values of the compressive strength fcm at testing age (from 

214 Table 3). The secondary abscissa (shown at the top of the diagram) shows the actual 

215 strain scale. The ordinate represents the tensile stress σct divided by the fctm. The 

216 diagrams shown in Figs. 6a and 6b were determined using the average deformations of 

217 the reinforcement and of the concrete surface, respectively.

218

219 The concrete tensile stress-strain diagrams presented in Fig. 6a (whose post-cracking 

220 stage represents the tension-stiffening effect) were determined using the average 

221 strain measured in the reinforcement bars (εr):

222 (3a)𝜎𝑐,𝑟 =
𝐏 ‒ 𝐍𝑟,𝑟

𝐴𝑐
=

𝐏 ‒ 𝜀𝑟 ∙ (𝐴𝑓𝐸𝑓 + 𝐴𝑠𝐸𝑠)
𝐴𝑡 ‒ (𝐴𝑓 + 𝐴𝑠) ; 𝜀𝑟𝐸𝑡 ≤ 𝑓𝑦,

223 where At is the cross section of the tie (150 × 150 mm); P is the applied tensile load; 

224 Nr,r is the force supported by the reinforcement, determined from the strains 

225 measured in the reinforcement; εr is the average strain of the reinforcement bars; fy is 

226 the yielding stress of the steel reinforcement. In the hybrid specimens the εr was in 

227 fact evaluated from the average deformation recorded in the GFRP bars (Fig. 4), having 

228 been assumed that steel bars presented equal average strain, which seems a realistic 

229 assumption due to the test setup adopted.

230
231 The stress-strain diagrams presented in Fig. 6b were determined using the average 

232 deformations of the concrete surface:
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233 (3b)𝜎𝑐,𝑐 =
𝐏 ‒ 𝐍𝑟,𝑐

𝐴𝑐
=

𝐏 ‒ 𝜀𝑐 ∙ (𝐴𝑓𝐸𝑓 + 𝐴𝑠𝐸𝑠)
𝐴𝑡 ‒ (𝐴𝑓 + 𝐴𝑠) ; 𝜀𝑐𝐸𝑡 ≤ 𝑓𝑦,

234 where Nr,c is the force supported by the reinforcement determined from the average 

235 strain measured on the concrete surface, εc. It can be observed that the stress-strain 

236 diagrams determined using the average strains of reinforcement bars and concrete 

237 surface are different. The differences can be attributed to the non-uniform distribution 

238 of tensile strains within the concrete. A more detail discussion of this issue can be 

239 found in the study conducted by Rimkus [43].

240

241 Figs. 5 and 6 indicate that the hybrid combination of reinforcement is quite efficient 

242 allowing to exploit the steel reinforcement within the post-yielding stage. The 

243 diagrams of Fig. 5a and 6a show a hardening stage of the specimens after the yielding 

244 of the steel bars. If steel was the unique reinforcement, the load carrying capacity of 

245 the tie will be almost coincident with the yield initiation of the steel reinforcement. 

246 Stiffness of the ties with hybrid reinforcement, however, starts decreasing after the 

247 yield initiation of steel bars. This decrease has the tendency of being the higher the 

248 smaller is  (the axial stiffness of GFRP reinforcement decreases regarding the axial 𝑘 𝑎𝑓 𝑠

249 stiffness of steel reinforcement). This is not visible in the 4G12/4S10 ties because the 

250 tests of these ties were interrupted at yield initiation of the steel bars. The reported 

251 tendency can also be inferred by adding the theoretical “bare bar” response Fig. 5a, 

252 which was done by adopting the material properties presented in Table 1.

253
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254 The tests of the 4G8/4S6-1 and 4G8/4S6-2 specimens (reinforced with 8 mm GFRP and 

255 6 mm steel bars) were terminated after rupture of the steel bars within the uncovered 

256 part of the specimens (Fig. 7), but these ties did not fail completely since the GFRP bars 

257 were capable to resist the tensile load. To avoid the brittle failure of the GFRP bars, 

258 these specimens were tested until the tensile deformations approached the 

259 theoretical ultimate strain of these bars (Table 1).

260

261 Differences of the tensile stress-strain diagrams of Fig. 6a are due to different origins. 

262 The following comments can be made in this regard:

263  For εr / εcr above of approximately 20, the specimens 4G8/4S8 (with the lowest 

264  ratio) presented a negative concrete post-cracking tensile capacity 𝑘 𝑎𝑓 𝑠

265 σc,r / fct < 0. The relatively low axial stiffness of GFRP bars maybe not capable of 

266 uptaking the stresses transferred from reinforcement to surrounding concrete 

267 after yield initiation of steel bars. The “negative” tension stiffening effect 

268 obtained by using Eq. (3a) may also be justified by the assumed equal average 

269 strain for the steel and GFRP bars (εr = εs = εf). As already indicated, the εr was 

270 obtained by measuring exclusively the strains in the GFRP bars; therefore, 

271 εr = εf. However, if strains in the steel bars are less than the strains measured in 

272 the GFRP bars the negative concrete tensile capacity can be eliminated. This 

273 can also happen in case the real Ef value be smaller than the one provided by 

274 the supplier.

275  In combination with a relatively low  ratio, high relative equivalent 𝑘 𝑎𝑓 𝑠

276 reinforcement ratio (ρs,eq) in the ties 4G12/4S10 has contributed for these ties 
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277 have had similar behavior to the one of the reference specimens (reinforced 

278 with steel bars).

279  Reinforcement layout of the ties 4G12/4S6 seems to be the most effective 

280 amongst the considered samples in terms of providing the highest concrete 

281 post-cracking tensile capacity.

282 Adequate assessment of the tension stiffening effect is one of the most challenging 

283 issues for adequate modelling of RC members, mainly for serviceability limit state (SLS) 

284 conditions, due to its influence on the stiffness evolution of cracked concrete [44]. 

285 Bond of the reinforcement to the surrounding concrete is also a property of relevant 

286 influence of the performance of RC structures at SLS. Deficient bond demonstrated by 

287 some FRP reinforcements, amplifies the difference between εc and εr, due to relatively 

288 large sliding between these reinforcements and surrounding concrete, being more 

289 arguable the use of εc for the evaluation of the tension stiffening diagrams.

290

291 Based on the results presented in Fig. 5a and 6a, the physical representation of the 

292 tensile stress-strain diagram for ties with hybrid reinforcement is illustrated in Fig. 8, 

293 where the post cracking tensile capacity of concrete represents the tension-stiffening 

294 effect. For assisting on the justification of the influence of the cracking process on the 

295 tension stiffening diagrams, two representative specimens were selected, and this 

296 information is represented in Fig. 9. The diagrams of Fig. 9 are characterized by the 

297 following stages (represented in Fig. 8 for generalization of the concepts): 0A – linear 

298 elastic stage, where A corresponds to the load Pel and the strain εel when microcracks 

299 are formed; AE – crack formation stage; EG – stabilized cracking stage. The stage AE 
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300 can be decomposed on the following sub-stages: AB – the stiffness of the tie decreases 

301 due to the micro-cracking propagation (Fig. 8a), but the tensile capacity of concrete is 

302 still increasing (Figs. 8b and 9). At the end of this sub-stage, the load and 

303 corresponding strain are represented by Pcr and εcr, respectively, and the first crack 

304 becomes visible (Fig. 9, in this AB sub-stage the micro-cracks were not visible); BC – 

305 intense propagation of cracks with an abrupt decay of the tensile capacity of concrete, 

306 while the load was maintained almost constant (the stages AB and BC are mainly 

307 governed by the fracture energy of the concrete, Gf); CD – the load carrying capacity 

308 increases up to an average strain in the reinforcement equal to the yield strain of the 

309 steel bars (load Psy and corresponding strain εsy). Note that when εr = εsy (point D) the 

310 steel reinforcement has already yielded at a cracked section level. The stress decay 

311 during this stage is as higher as smaller is  and pf / ps, see Table 2 and Fig. 8a, which 𝑘 𝑎𝑓 𝑠

312 can be justified by the better bond properties of steel bars compared to the GFRP bars 

313 and relative bond perimeter between these reinforcements. In these circumstances, 

314 the end of the cracking stabilization process tends to occur for average strain levels in 

315 the reinforcement higher than the yield initiation of the steel reinforcement, εr > εsy, (E 

316 point stays in the DF stage). This is illustrated in the cracking process of 4G8/4S6-2 

317 represented in Fig. 9b, where the last visible crack has been formed after yield 

318 initiation. The cracking process of 4G12/4S10-1 represented in Fig. 9a demonstrates 

319 that all cracks were formed before yield initiation due to relatively high ρs,eq and low 

320 . After yield initiation (represented by point D), a pseudo-hardening stage (Figs. 6a, 𝑘 𝑎𝑓 𝑠

321 8b and 9b) can be formed, and is as pronounced as smaller is ρs,eq and higher is  and 𝑘 𝑎𝑓 𝑠

322 pf / ps, due to the reasons already exposed, which was also demonstrated by 
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323 Mazaheripour et al. [37]. In these circumstances, the crack stabilization process 

324 coincides with the peak stress that occurs after the yield initiation of the steel bars 

325 (represented by point F in Fig. 8). After the stabilized cracking stage, and steel 

326 reinforcement already yielded, the response is mainly governed by the stiffness of the 

327 GFRP reinforcement, and the cracks already formed are opening, with a smooth 

328 decrease of the concrete post-cracking tensile capacity (Figs. 6a, 8b and 9b), which is a 

329 consequence of the bond damage propagation.

330

331 In resume, and according to the main evidences from the analytical model of 

332 Mazaheripour et al. [37], the experimental results obtained in the tests carried out 

333 demonstrated that in the relevant stages of the post-cracking process, the concrete 

334 tensile capacity increases with  and pf / ps.𝑘 𝑎𝑓 𝑠

335

336 2.2.2. Cracking

337 The final crack pattern of the ties with hybrid reinforcement is shown in Fig. 10. As it 

338 can be observed, the shape of the crack patterns is not regular in most cases. 

339 Moreover, the final patterns are related with different ultimate strains of 

340 reinforcement, εr,ult.

341

342 To compare crack evolution, the DIC system was used. In Fig. 10, the surface exposed 

343 for the image correlation procedure (surface “1”) is designated as (DIC). The digital 

344 images were captured using two digital cameras Imager E-lite 5M. The cameras, 

345 incorporating a charge-coupled device (CCD) detector, have a resolution of 2456×2085 
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346 pixel at 12.2 fps rate. The cameras were placed vertically on a tripod at 2.5 m distance 

347 from the test specimens. The use of two cameras enabled reliable capturing of image 

348 data within their respective focal zone to minimize errors due to aberration. The DaVis 

349 8.1.6 software by La vision was used for tracing relative displacements of the surface 

350 points. Fig. 11 presents an example of the evolution of the cracks identified by the DIC 

351 system in the 4G8/4S8-2 specimen. The cracking development tendencies are evident 

352 from the captured digital views (the vertical white strip at the specimen center 

353 corresponds to the shadow of the bar supporting the LVDT, as shown in Fig. 4).

354

355 Fig. 12 presents series of the cracking patterns identified by the DIC system. The 

356 patterns identified for all considered specimens are related to the same average strain 

357 of the reinforcement, εr. This figure also includes results of the reference prisms 

358 (8S10X and 8S10R-1/2) reinforced with steel bars only. The reference specimens 

359 demonstrate a different cracking character than those observed on the prisms with 

360 hybrid reinforcement. The differences are evident in the earliest loading stages 

361 (εr = 0.05% to 0.10%), when multiple cracks have been formed in the reference 

362 specimens, while smaller number of cracks was registered in the hybrid reinforced 

363 specimens for this stage. The decrease of the number of cracks is accentuated with the 

364 decrease of ρs,eq, due to the smaller load level applied to the tie.

365

366 A quasi-stabilized crack pattern is attained at an average strain in the reinforcement in 

367 the interval of 0.20% to 0.25% (εr = 0.002–0.0025), which is in agreement with the 

368 interpretation provided in Fig. 8. To deep analyze the cracking process, crack width 
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369 tendencies were also investigated. As Mazaheripour et al. [37] demonstrated, the 

370 average crack width, , and the average strain of element, , could be related as 𝑤𝑐𝑟 𝜀𝑟/𝑐

371 following:

372 (4a)𝜀𝑟/𝑐 =
𝑤𝑐𝑟

𝐿𝑐𝑟
+ 𝜀𝑐𝑟,

373 where the average crack spacing, , and the average crack width, , are 𝐿𝑐𝑟 𝑤𝑐𝑟

374 determined as

375 (4b)𝐿𝑐𝑟 =
∑𝑛𝑐𝑟

𝑖 = 1𝐿𝑐𝑟,𝑖

𝑛𝑐𝑟

376 and

377 . (4c)𝑤𝑐𝑟 =
1

𝑛𝑐𝑟
∑𝑛𝑐𝑟

𝑖 = 1𝑤𝑐𝑟,𝑖

378 In the above equations, ncr is the number of cracks formed in the concrete prism; wcr,i 

379 and Lcr,i are the crack width and crack spacing of the ith crack;  is the average strain 𝜀𝑐𝑟

380 of element at concrete cracking initiation. However, as it was shown in the previous 

381 section, significant differences were registered in the average strains recorded on the 

382 reinforcement and on the concrete surface. To investigate adequacy of Eq. (4a), the 

383 crack widths registered experimentally were also considered for this analysis.

384

385 At selected loading levels, the crack width was measured using digital microscope 

386 CK102 with 40× magnification as shown in Fig. 13. The cracks were measured at the 

387 surface exposed to the DIC system. The measurement points were at the intersection 

388 of the crack with the GFRP bars, as illustrated in Fig. 10. In this figure, the dashed lines 
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389 indicate the position of the GFRP bars, while the dots correspond to the measurement 

390 position. The dot numbers indicate the cracking sequence; the letters “L” (“left”) and 

391 “R” (“right”) correspond to the monitoring line.

392

393 Fig. 14 presents the relationship between crack width (averaging “L” and “R” 

394 measurements for each crack, Fig. 10) and average strain in the reinforcement. 

395 Stochastic development of the internal cracks might be responsible for the evident 

396 differences in the number of visible cracks (Fig. 12): no pair of nominally identical twin-

397 specimens demonstrates the same number of cracks. Averaging procedure, however, 

398 remedies the cracking results. As can be observed in Fig. 14, the average crack width is 

399 very similar in all hybrid specimens though the number of cracks varies significantly.

400

401 Fig. 15 shows the relationship between equivalent steel reinforcement ratio, ρs,eq, and 

402 average crack width obtained using optical microscope. It can be observed that the ties 

403 with higher equivalent reinforcement ratio (ρs,eq = 2.1%) maintains practically constant 

404 crack width (independently on the reinforcement strain, εr). By decreasing ρs,eq, the 

405 crack width becomes more sensitive to the strain level applied to the reinforcement. 

406 Furthermore, cracks in these elements were only visible at higher deformation levels 

407 (Fig. 12).

408

409 The rate  / εr has also a tendency to increase with the coefficient  and the ratio 𝑤𝑐𝑟 𝑘 𝑎𝑓 𝑠

410 pf / ps due to the lowest bond performance of GFRP bars over steel bars, as already 

411 indicated. In fact, for the series of largest  and pf / ps (4G12/4S6) a value of about 𝑘 𝑎𝑓 𝑠
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412 0.065 mm/‰ was obtained, while in the series of smallest values for these variables 

413 (4G8/4S8) a value of about 0.056 mm/‰ was determined.

414

415 Width of the cracks was also estimated using the DIC system. Fig. 16 shows the 

416 distribution of the relative displacements of the surface of the 4G12/S46-1 specimen 

417 corresponding to the average strain of the reinforcement r = 0.42%. The relative 

418 displacement distribution profile in the alignment of a GFRP bar (referred in Fig. 16 by 

419 S-S section) was obtained using digital images of the concrete surface. For this 

420 purpose, the position of each point on the surface is identified by applying a particular 

421 correlation algorithm (DaVis 8.1.6 software by La vision) to the same points from 

422 reference image. Knowledge of the precise position of every point at every loading 

423 step allows tracking the surface movement for obtaining the distribution map of the 

424 strains. Displacement profile is collected from points on the surface at intervals of 0.3 

425 mm along the S-S section. The peak displacements correspond to the locations of the 

426 actual cracks. The area beneath the identified surface strain diagram represents the 

427 accumulative displacement of the concrete surface. The area above the theoretical 

428 cracking strain cr (Fig. 16) is equivalent of the cumulative crack opening deformations. 

429 Following this concept, the average crack width can be determined by applying the 

430 following equations:

431 (5a)𝑤𝑐𝑟 =
∫𝐿

0𝜀 ∗
𝑐 𝑑𝑙

𝐿 ∙ 𝐿𝑐𝑟 ∙ 𝑘𝑤,

432 where the corresponding positive strain, , obtained by shifting the abscissa to the 𝜀 ∗
𝑐

433 theoretical cracking strain point, εcr, is expressed as
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434 (5b)𝜀 ∗
𝑐 = {𝜀𝑐 ‒ 𝜀𝑐𝑟, 𝜀𝑐 > 𝜀𝑐𝑟

0, 𝜀𝑐 ≤ 𝜀𝑐𝑟
,

435 while the profile shape coefficient kw is determined as the ratio between the 

436 cumulative length of the segments corresponding positive values of the strain  to 𝜀 ∗
𝑐

437 the total length of the concrete prism L:

438 (5c)𝑘𝑤 =
1
𝐿∑

𝑖𝐿𝑤,𝑖.

439 In above equations, the average crack distance  is obtained from Eq. (4b).𝐿𝑐𝑟

440

441 Table 4 summarizes the cracking results. In this table, the average crack distance  is 𝐿𝑐𝑟

442 determined considering cracks captured by using the DIC system in the surface of the 

443 concrete prism exposed for the image correlation procedure. This surface is designated 

444 as (DIC) in Fig. 10. The crack patterns presented in Fig. 12 demonstrates the diverse 

445 behavior (length) of the external and internal concrete blocks formed, respectively, 

446 between the transverse cracks and at extremities of the prisms. Thus, the average 

447 crack distance assessed by averaging the lengths of all uncracked segments was 

448 assumed inadequate. Therefore, the average crack distance  is determined 𝐿𝑐𝑟

449 excluding external uncracked blocks of the concrete. The crack widths are related with 

450 average deformations of both, bar reinforcement, εr, and concrete surface, εc. Results 

451 extracted from DIC data are based on selective relative strain (εc > εcr) associated with 

452 crack locations and their widths as described above. In some cases, however, the 

453 number of cracks measured with the microscope has not corresponded to the number 

454 of cracks observed using DIC technique (these results are shown at bold in the 

455 respective column). In these cases, experimental values obtained using DIC technique 
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456 were assumed more reliable and adopted for the analysis. In some cases, significant 

457 noise of digital images has not allowed a precise identification of the cracking results 

458 by using the DIC system. The corresponding crack values are in between square 

459 brackets. These results should be considered as not reliable. From results presented in 

460 Table 4, the following conclusions can be pointed out:

461 1. Evaluating the average crack width ( ) from Eq. (4c) by using for the 𝑤𝑐𝑟

462 corresponding average strain the value registered in the reinforcement (𝜀𝑟/𝑐 =

463 ) provides in general higher values than when adopted the average concrete 𝜀𝑟

464 strain ( ) because, as already shown in Fig. 5, > .𝜀𝑟/𝑐 = 𝜀𝑐 𝜀𝑟 𝜀𝑐

465 2. The  values obtained from Eq. (4c) by using  are closer to the ones 𝑤𝑐𝑟 𝜀𝑟/𝑐 = 𝜀𝑐

466 obtained with the microscope and DIC because all these approaches are based 

467 on records executed at concrete surface.

468 3. Crack width based on DIC is generally smaller than by microscope, mainly at 

469 larger deformation levels.

470 To improve the theoretical predictions based on application of Eq. (4a), a modification 

471 is suggested based on the physical interpretation of the Fig. 17 that shows the 

472 relationship between εc/εr and εr in the tested specimens. All the specimens present 

473 similar response, with a pronounced decrease of the εc/εr with the increase of εr up to 

474 a εr value in the interval of 0.02% and 0.07% corresponding to the strain range where 

475 cracks become visible in the surface of the specimens (see also Figs. 5a, 9 and 12). This 

476 limit corresponds to the point B in Fig. 8. In this stage, the load applied to the 

477 reinforcement has mainly induced strain increment in the reinforcement with relative 

478 small variation of strains in the concrete surface during the load transference process 
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479 from the reinforcement to the surrounding concrete. Above this strain level in the 

480 reinforcement, the εc/εr has increased with εr, but this increase has tended to a εc/εr 

481 value of approximately 0.7. In this phase, the increase of εc/εr with εr was initially quite 

482 pronounced, which corresponds to the first phase of the crack propagation stage, 

483 defined by the branch BC in Fig. 8. With the formation of more cracks up to the 

484 cracking stabilized stage the increase of εc/εr with εr has continuously become less 

485 pronounced up to attain the above indicated limit. Two specimens have, however, not 

486 tended to this limit value of εc/εr, namely 4G8/4S6-2 and 4G12/4S6-2 (designated in 

487 Figs. 5b, 6b, and 17), which can be justified by the following reasons. The failure of the 

488 4G8/4S6-2 prism was localized outside the monitoring zone (Fig. 7), which conducted 

489 to a lower bound envelope of the εc/εr-εr relationship; in the opposite, the upper 

490 bound envelope of the εc/εr-εr relationship registered in the 4G12/4S6-2 prism might 

491 be related with a possible measurement error.

492

493 This tendency enables to formulate the following improvement of the crack prediction 

494 model based on Eq. (4a):

495 (6)𝑤𝑐𝑟 = 𝛼𝜀(𝜀𝑟 ‒ 𝜀𝑐𝑟)𝐿𝑐𝑟,

496 where  is a reduction coefficient that allows to estimate the average crack width at 

497 concrete surface from the average strain in the reinforcement. At yield initiation of the 

498 steel reinforcement ≈0.65. This value is well agreeing with the numerical simulation 

499 results of concrete prisms reinforced with multiple bars reported in the reference [45].

500
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501 The corresponding results (modified crack widths) are presented in brackets in Table 4. 

502 It is important to note, however, that the suggested value of the coefficient  is 

503 adequate for the particular loading scheme and geometry of the specimens. 

504 Identification of this coefficient values in different loading conditions and 

505 reinforcement schemes should be the object of further research.

506

507 The negative portion of the relative deformations determined in Fig. 17 could be 

508 attributed to a “negative” deformation of the concrete surface at the loads 

509 approaching the cracking moment. This effect could be also observed in Figs. 5b and 

510 6b. In this regard, it should be recalled that the concrete prisms were loaded by 

511 applying tension load to the reinforcement bars (Fig. 4). Such loading scheme causes 

512 deformation localization in the concrete prism when transferring the bond stresses 

513 from the reinforcement to the surrounding concrete [43].

514

515 It is also worth to mention that, in concrete reinforced with steel bars, the previous 

516 indicated relationship is only valid up to yield initiation, due to the cracking localization 

517 in the yielded section. In specimens with hybrid reinforcement, the relationship 

518 between wmax and  will increase after yield initiation, but due to the linear elastic 𝑤𝑐𝑟

519 stage of FRP reinforcement, the increase of this ratio should be much smaller than in 

520 conventional reinforced concrete. Fig. 18 shows that, in fact, after yield initiation, the 

521 average and maximal crack width ratio  / wmax (obtained using the optical 𝑤𝑐𝑟

522 microscope) has varied in a relative small interval, between 0.65 and 0.8 up to the end 

523 of the tests.
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524 3. CONCLUSIONS

525 Glass fiber reinforced polymer (GFRP) bars as structural reinforcement are suitable for 

526 application in concrete subjected to aggressive environmental conditions. However, 

527 limitations of mechanical properties, such as the low elasticity modulus, ductile failure, 

528 and debility to high temperatures, are becoming essential for development of 

529 engineering projects. Combined application of steel and GFRP bars can be considered 

530 as a prominent way for improving the structural performance at both serviceability 

531 and ultimate limit state conditions. The GFRP/steel reinforcement is regularly 

532 designated by hybrid reinforcement. Unfortunately, the influence of the relative area 

533 of GFRP and steel bars on tensile capacity of the cracked concrete (generally known as 

534 tension stiffening effect) was never investigated from the experimental point of view.

535

536 This paper experimentally investigates deformations and cracking behavior of concrete 

537 prisms reinforced with different arrangements of steel and GFRP bars. The conclusions 

538 are based on the tensile test results of 11 ties: eight with hybrid reinforcement (i.e. 

539 combination of steel and GFRP bars); and two reinforced exclusively with steel bars 

540 (reference). All ties had the same 150 × 150 mm cross-section and 500 mm length of 

541 the concrete part; the concrete cover was also constant and equal to 30 mm. All ties 

542 were reinforced with eight bars, of 8 and 12 mm diameter for the GFRP bars, and 6, 8 

543 and 10 mm diameter for the steel bars. The area ratio of GFRP-to-steel varied from 

544 one to two. Based on the obtained results, the following conclusions can be pointed 

545 out:
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546 1. The developed anchorage system is applicable for performing tension tests of 

547 concrete prisms reinforced with hybrid reinforcement systems. The proposed 

548 layout of monitoring devices enables identifying average deformations of both, 

549 bar reinforcement and concrete surface. The digital image correlation system is 

550 applicable for determining the crack width at concrete surface. The obtained 

551 information is useful for estimating strain distribution and crack formation in 

552 the concrete.

553 2. The average deformations of the reinforcement and of the concrete surface 

554 was found different. The difference can reach tenth times at the pre-cracking 

555 stage. It decreases with the increase of the reinforcement deformation.

556 3. After the yield initiation, elements with hybrid reinforcement demonstrate a 

557 pseudo-hardening stage. The “hardening” effect increases with the relative 

558 area of GFRP reinforcement and overall decrease of the reinforcement ratio. 

559 Arrangement of the hybrid reinforcement with the minimum total 

560 reinforcement ratio and relatively increased area proportion of GFRP bars 

561 provided the highest concrete post-cracking tensile capacity. To represent this 

562 specific behavior, a conceptual tension stiffening model was proposed. This 

563 information is of paramount importance for simulating the contribution of 

564 concrete in tension in these circumstances when using a fibrous or layer 

565 approach, or a much more sophisticated numerical approach based on the 

566 finite element method.

567 4. The cracking process in terms of crack width and crack spacing is analyzed 

568 considering the hybrid reinforcement particularities. Stochastic formation was 
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569 found responsible for the observed differences in the crack patterns: no pair of 

570 nominally identical twin-specimens demonstrates the same number of cracks. 

571 Averaging procedure, however, remedies the cracking results. By decreasing 

572 the reinforcement ratio of the hybrid reinforcement system the crack width 

573 becomes more sensitive to the strain level applied to the reinforcement. The 

574 variation of the average crack width with the applied average strain in the 

575 reinforcement had a tendency to increase with the relative axial stiffness and 

576 relative bond contact of the hybrid reinforcement due to the lowest bond 

577 performance of GFRP bars over steel bars. The average and maximal crack 

578 width ratio has varied in a relative small interval, between 0.65 and 0.8 up to 

579 the end of the tests.

580 5. A simple approach is proposed for estimating the average crack width at 

581 concrete surface from the average strain in the reinforcement. However, 

582 further investigation must be conducted in this regards in order to verify the 

583 eventual dependency of this approach on non-considered parameters like 

584 reinforcement configurations, concrete cover thickness, concrete strength 

585 class, and loading conditions.

586
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716 Table 1. Relevant tensile properties of steel (experimental tests) and GFRP bars (from 

717 the supplier).

Yielding End of plastic 
stage Ultimate load

Material , 
mm

Er, GPa
εy

y, 
MPa

εp p, MPa εu
u, 

MPa
Steel 6 205.9 0.0023 500.4 0.0035 577.7 0.0193 616.7
Steel 8 201.8 0.0025 520.3 0.0050 580.75 0.0391 626.0
Steel 10 191.7 0.0030 580.3 0.0242 620.1 0.0791 676.9
GFRP 8 63.5 – – – – 0.0236 1500.0
GFRP 12 63.5 – – – – 0.0213 1350.0

718
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720 Table 2. Characteristics of the reinforcement configurations adopted in the 

721 experimental program.

GFRP reinforcement Steel reinforcement
Tie , 

mm
Af , mm2 Ef, GPa , mm As, mm2 Es, GPa ρs,eq, % 𝑘 𝑎𝑓 𝑠 pf/ps

4G12/4S10-1 12 452.4 63.5 10 314.2 194.6 2.05 0.47 1.2
4G12/4S10-2 12 452.4 63.5 10 314.2 194.6 2.05 0.47 1.2
4G12/4S6-1 12 452.4 63.5 6 113.1 203.6 1.13 1.25 2
4G12/4S6-2 12 452.4 63.5 6 113.1 203.6 1.13 1.25 2
4G8/4S8-1 8 201.1 63.5 8 201.1 197.1 1.18 0.32 1
4G8/4S8-2 8 201.1 63.5 8 201.1 197.1 1.18 0.32 1
4G8/4S6-1 8 201.1 63.5 6 113.1 203.6 0.78 0.55 1.3
4G8/4S6-2 8 201.1 63.5 6 113.1 203.6 0.78 0.55 1.3

8S10X – – – 10 628.3 194.6 2.78 – –
8S10R-1 – – – 10 628.3 194.6 2.78 – –
8S10R-2 – – – 10 628.3 194.6 2.78 – –

722
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724 Table 3. Concrete compressive strength in cylinder specimens.

Cylinder Age, days Strength fc, MPa Average strength fcm, MPa CoV, %
C1 7 40.57
C2 7 41.30
C3 7 40.74

40.9 1.0

C4 14 44.39
C5 14 45.11
C6 14 43.81

44.4 1.5

C7 21 44.43
C8 21 47.55
C9 21 47.15

46.4 3.7

C10 28 50.68
C11 28 48.80
C12 28 48.30

49.3 2.5

725

726
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727 Table 4. Cracking analysis results.

Average strain Average crack width, mm
Calculated by Eq. (4a)
with the reference toReinf.

r

Concrete
surface

εc

Average
crack

spacing
*, mm𝐿𝑐𝑟 εr

† εc

Experimental
(microscope)

Experimental
(DIC)

4G12/4S6-1
0.00169 0.00116 99.77 0.1580 (0.103) 0.1048 0.1188 0.1194
0.00224 0.00152 99.77 0.2132 (0.139) 0.1410 0.1563 0.1545
0.00420 0.00286 99.7 0.4080 (0.265) 0.2746 0.3075 0.2388

4G12/4S6-2
0.00098 0.00081 194.52 0.1697 (0.110) 0.1356 0.0650 0.1351
0.00158 0.00143 97.26 0.1432 (0.093) 0.1281 0.0890 0.1657
0.00211 0.00187 97.26 0.1945 (0.126) 0.1715 0.1380 0.2336
0.00400 0.00350 77.81 0.3030 (0.197) 0.2640 0.2142 0.2646

4G12/4S10-1
0.00070 0.00033 112.09 0.0657 (0.043) 0.0248 0.0775 0.0758
0.00130 0.00077 123.02 0.1469 (0.095) 0.0810 0.1067 0.1344
0.00186 0.00115 100.15 0.1751 (0.114) 0.1040 0.1583 0.1462
0.00243 0.00154 75.11 0.1746 (0.113) 0.1076 0.1513 0.1292

4G12/4S10-2
0.00073 0.00037 182.60 0.1141 (0.074) 0.0480 0.0775 [0.1784]
0.00138 0.00076 91.30 0.1158 (0.075) 0.0595 0.1400 0.1434
0.00196 0.00118 80.68 0.1495 (0.097) 0.0861 0.1300 0.1421
0.00259 0.00163 81.21 0.2012 (0.131) 0.1232 0.1280 [0.1570]

4G8/4S8-1
0.00107 0.00034 66.12 0.0634 (0.041) 0.0154 0.1050 [0.0372]
0.00186 0.00106 66.17 0.1158 (0.075) 0.0627 0.1010 0.0986
0.00278 0.00176 66.17 0.1766 (0.115) 0.1096 0.1520 0.1255
0.00688 0.00479 66.17 0.4480 (0.291) 0.3096 0.3658 [0.1880]

4G8/4S8-2
0.00110 0.00043 84.99 0.0839 (0.055) 0.0270 0.1025 [0.0695]
0.00196 0.00099 91.64 0.1695 (0.110) 0.0807 0.1238 0.1709
0.00293 0.00162 91.64 0.2585 (0.168) 0.1385 0.1600 0.1957
0.00715 0.00504 92.90 0.6541 (0.425) 0.4579 0.4070 0.2776

4G8/4S6-1
0.00199 0.00116 111.32 0.2093 (0.136) 0.1165 0.1867 0.1606
0.00681 0.00466 73.02 0.4894 (0.318) 0.3325 0.3633 [0.1876]

4G8/4S6-2
0.00213 0.00111 125.93 0.2547 (0.166) 0.1263 0.1733 0.1587
0.00692 0.00396 83.95 0.5718 (0.372) 0.3235 0.5050 [0.1732]

728 *Average crack spacing obtained excluding external blocks of the concrete
729 †The calculated values in brackets improved by using the reduction coefficient  from Eq. (6)𝛼𝜀
730
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732

Schöck ComBAR Ø12

Core diameter 12 mm Exterior diameter 13.5 mm

Schöck ComBAR Ø8

Core diameter 8 mm Exterior diameter 9 mm

Steel reinforcement

Groove width 3.5 mm Rib width 6 mm

Rib width 7 mmGroove width 3.5 mm

Ø10 mmØ8 mmØ6 mm

733 Fig. 1. Geometric characteristics of the GFRP and steel bars adopted in the ties.
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736 Fig. 2. Stress-strain curves from tensile tests with steel bars.
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739 Fig. 3. Configurations of the reinforcement arrangements of the experimental program 

740 (concrete cover thickness: 30 mm of GFRP bars; 50 mm of steel bars).
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743 Fig. 4. Setup of the direct tensile tests.
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746 Fig. 5. Load-average strain diagrams determined using data of LVDT attached to: a) 

747 GFRP bars; b) concrete surface.
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750 Fig. 6. Normalized average stress (divided by the theoretical tensile strength of the 

751 concrete) versus normalized average strain (divided by the theoretical cracking strain 

752 of the concrete) of: a) reinforcement; b) concrete surface.
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755 Fig. 7. Tensile rupture of the steel bars of the 4G8/4S6 ties in their uncovered 

756 extremities.
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759 Fig. 8. Physical representation of the tension stiffening diagrams in concrete prisms 
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763 Fig. 9. Cracking process versus tension stiffening in the selected specimens: a) 

764 4G12/4S10-1; b) 4G8/4S6-2.
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766 Fig. 10. Final crack patterns of the ties with hybrid reinforcement.



47

767

P = 1 kN
r ≈ 0

P = 78 kN
r = 0.063%

P = 97 kN
r = 0.16%

P = 98 kN
r = 0.17%

P = 142 kN
r = 0.34%

P = 202 kN
r = 0.77%

4G8/4S8-2
15

0

150

4×Ø8
GFRP

4×Ø8
steel

768 Fig. 11. DIC applied for the assessment of the cracking process in 4G8/4S8-2 sample.
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771 Fig. 12. Crack patterns of all ties identified using the DIC system.
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773

774 Fig. 13. Crack measurement using digital microscope CK102 (with 40× magnification).
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777 Fig. 14. Crack evolution in the ties with hybrid reinforcement (numbers indicate 

778 cracking sequence).
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781 Fig. 15. Relationship between equivalent steel reinforcement ratio, ρs,eq, and average 

782 crack width obtained using the optical microscope.

783



52

784
-0.05

0

0.05

0.10

0.15

0 50 100 150 200 250 300 350 400 450 500

Strain c Strain profile of specimen 4G12/4S6-1 at r =0,0042  

cr

L

Lw,i

Specimen lemgth l, mm

Strain profile of specimen 4G12/4S6-1 at r=0.42%Strain c

The strain profile corresponding to GFRP bar location 

S S

785 Fig. 16. A schematic illustration of the crack estimation using the DIC results.
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788 Fig. 17. Evolution of the average concrete and reinforcement strain ratio, εc/εr, with 

789 increasing deformations of the reinforcement.
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792 Fig. 18. Relationship between average strain of reinforcement and average and 

793 maximal crack width (obtained using the optical microscope) ratio.


