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Abstract:

• Irregularly spaced time series are commonly encountered in the analysis of time series.
A particular case is that in which the collection procedure over time depends also on
the observed values. In such situations, there is stochastic dependence between the
process being modeled and the times at which the observations are made. Ignoring
this dependence can lead to biased estimates and misleading inferences. In this paper,
we introduce the concept of preferential sampling in the temporal dimension and we
propose a model to make inference and prediction. The methodology is illustrated
using artificial data as well a real data set.
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1. INTRODUCTION

Analysis of experimental data that have been observed at different points
in time leads to specific problems in statistical modeling and inference. In tradi-
tional time series the main emphasis is on the case when a continuous variable is
measured at discrete equispaced time points, [24]. There is an extensive body of
literature on analyzing equally spaced time series data, see for example [5] and
[8]. However, unevenly spaced (also called unequally or irregularly spaced) time
series data naturally occurs in many scientific domains. Natural disasters such
as earthquakes, floods, or volcanic eruptions typically occur at irregular time
intervals. In observational astronomy, for example, measurements of properties
such as the spectra of celestial objects are taken at irregularly spaced times de-
termined by seasonal, weather conditions, and availability of observation time
slots. In clinical trials (or more generally, longitudinal studies), a patient’s state
of health may be observed only at irregular time intervals, and different patients
are usually observed at different points in time.

It must be noted that sometimes equally spaced time series are treated as
irregularly spaced time series, namely time series with missing observations and
multivariate data sets that consist of time series with different frequencies, even
if the observations of each time series are reported at regular intervals.

There are few methods for the analysis of irregularly spaced series. Some
authors, like [15], [16], [4] and [7] have suggested an embedding into continuous
diffusion processes. The focus of this literature is mainly on the modeling of
univariate autoregressive moving average (ARMA) processes, which oppose the
development of a complete set of tools similar to that available for equally spaced
data.

Observations with irregularly spaced sampling times are much harder to
work with, partly because the established and efficient algorithms developed for
equally spaced sampling times are no longer applicable, [19]. A common ap-
proach to perform parametric estimation is to construct a log-likelihood function
in terms of the unknown parameter [6]. When the sampling times are consid-
ered deterministic, the traditional approach is to build the classical Gaussian
log-likelihood function. However, because the inversion of the covariance matrix
has to be performed, numerical evaluation of this Gaussian log-likelihood func-
tion is in general very expensive, [18]. One way to overcome this computational
effort is to regulate the sampling scheme, using some form of interpolation, and
consider it as being equally spaced. Under the assumption of equally spaced
sampling times, the Gaussian log-likelihood function can be approximated, at
least for a sufficiently large sample, by the Whittle log-likelihood function [26].
This approach has been successfully applied to irregularity caused by missing
values, [21]. While, this methodology, may be reasonable to deal with the mi-
nor irregularities in sampling times caused by missing values, the interpolation
procedure will typically change the dynamic of the underlying process, leading
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to biased estimates for the parameters [13]. Moreover, there is little understand-
ing of which particular interpolation method is the most appropriate on a given
data set. Alternatively, a convenient continuous time domain dynamic model
may be assumed for the underlying continuous time stationary process such as
the Continuous time ARMA (CARMA) model. [24] reviews the application of
Kalman recursion techniques to the parametric estimation of CARMA processes.
[17] estimate the parameters of an irregularly sampled CARMA process using a
Bayesian framework.

A particular case of irregularly spaced data is that in which the collection
procedure along time depends also, for practical constraints, on the observed val-
ues. For example, a certain health indicator for an individual may be measured
at different time points and with different frequencies depending on his health
state. In a completely different setting, the times of occurrence of transactions
in the financial markets depend largely on the value of the underlying asset. In
environmental monitoring applications, or in the context of smart cities if it is
decided to monitor more frequently when a value considered critical to human
health is exceeded. Therefore, additional information on the phenomena under
study is obtained from the frequency or time occurrence of the observations. In
such situations, there is stochastic dependence between the process being mod-
eled and times of the observations. In this work, we introduce the concept of
preferential sampling, first presented by [11] in the context of spatial statistics,
to the temporal dimension, under a model based approach, accounting for the
conditional distribution of the time point process on a latent process, with the
aim of modeling the unevenly observed process.

Preferential sampling in time could be seen as a version of informative
follow-up in longitudinal studies, see, for example, [20]. In these studies the
follow-up time process is considered dependent on the longitudinal outcome pro-
cess and it should not be regarded deterministic in the design of the study. The
analogous problem in the context of longitudinal clinical trial data has been stud-
ied too in the context of issues concerning missing values and dropouts, in the
sense that a missing observation conveys partial information about the value that
would have been observed. See, for example, [10], [14] and [9].

The paper is organized as follows. Section 2 describes our proposed model
for preferential sampling in time dimension, namely to make inference and predic-
tion. In Section 3 we describe the Monte Carlo Maximum Likelihood Estimation.
In section 4 we conduct a numerical illustration, in a artificial data set, to analyze
the quality of the proposed model and we show the application of the previously
described methodology to a real data set relative to lung function of an asthma
patient. Section 5 is devoted to make some concluding remarks.
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2. A MODEL FOR PREFERENTIAL SAMPLING

In time series, data are obtained by sampling a phenomenon S(t) : t > 0
at a discrete set of times ti, i = 1, . . . , n. Admiting the possibility that the
sampling design may be stochastic, T = (t1, . . . , tn) denotes a stochastic process
of observation times. In many situations, S(t) cannot be measured without error,
hence, if Yi denotes the measured value at time ti, a model for the data takes the
form:

(2.1) Y (t) = µ+ S(t) +N(0, τ2), t > 0

where µ is a constant mean effect and S(·) is a stationary Gaussian process with
E[S(t)] = 0. An equivalent formulation is that conditional on S(·), the Yi are
mutually independent, normally distributed with mean µ + S(ti) and common
variance τ2.

We consider S(·) as a continuous time autoregressive process of order 1,
CAR(1), that satisfies the differential equation dS(t) +α0S(t)dt = dW (t) where,
α0 is a constant and W (t) is a Brownian motion with variance parameter σ2w.
Y = (Y1, . . . , Yn) is multivariate Gaussian with mean µ and covariance matrix

ΣY = σ2
w

2α0
Ry(α0) + τ2In where In is the n × n identity matrix and Ry(α0) has

elements rij = ρ (|ti − tj | ;α0) defined by

(2.2) ρ(h) =
γ(h)

γ(0)
= e−α0|h|

where γ(·) is the covariance function.

Admitting that the sampling times are stochastic, a complete model needs
to specify the joint distribution of S, T and Y . Considering the stochastic depen-
dence between S and T , the model to deal with preferential sampling is defined
through [S, T, Y ] written as:

(2.3) [S][T |S ][Y |S(T ) ]

where [·] means ”the distribution of”, S = {S(t) : t > 0}, T = (t1, . . . , tn) and
S(T ) represents {S(t1), . . . , S(tn)}.

We define a specific class of models through the additional assumptions:
conditional on S, T is an inhomogeneous Poisson process with intensity λ (t) =
exp {a+ βS (t)} and unconditionally T is a log-Gaussian Cox process. The log-
Gaussian Cox process is a flexible class of point pattern models that allows condi-
tioning the sampling times to the variable of interest. For example, when β = 2
the sample times are concentrated, predominantly, near the maximum of the
observed values and when β = 0 it corresponds to the situation of an homoge-
neous, non-preferential, sampling. Conditional on S and T , Y is a set of mutually
independent Gaussian variates with τ2 being the measurement error variance.
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To obtain the predicted value of S(·) at an unsampled time point tni <
t0 < tnj , S(t0|T ), we use the fact that the process CAR(1) is Markovian, [8] and
thus
(2.4)
S(t0|T ) = E

[
S(t0)|Y (T )

]
= exp (−α0(t0 − tni))Y (t)+µ (1− exp (−α0(t0 − tni)))

The variance of the prediction is

(2.5) σ2(t0) = V ar
[
S(t0)|Y (T )

]
=

σ2w
2α0

(1− exp (−2α0(t0 − tni)))

3. MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

We consider a discretization of the S process with N points and a partition
of S into S = {S0, S1} where S0 denotes the values of S at each of n times ti ∈ T ,
and S1 are the values of S at the remaining (N − n).

The likelihood function for data T and Y can be expressed as
(3.1)

L(θ) = [T, Y ] =

∫
S

[S][T, Y |S]dS =

∫
S

[S][T |S][Y |T, S]dS =

∫
S

[S][T |S][Y |T, S]dS

where θ = (µ, σw, α0, τ, β) represents all the model parameters.
As [Y |T, S] can be approximated by [Y |S0], we can rewrite the integral as

(3.2) L(θ) =

∫
S

[S][T |S][Y |S0]
[S|Y ]

[S|Y ]
dS

Considering that [S] = [S1, S0] = [S1|S0][S0] and replacing the term [S|Y ]
in the denominator of expression (3.2) by [S|Y ] = [S0, S1|Y ] = [S1|S0, Y ][S0|Y ] =
[S1|S0][S0|Y ], equation (3.2) becomes

L(θ) =

∫
S

[S1|S0][S0][T |S][Y |S0]
[S|Y ]

[S1|S0][S0|Y ]
dS

=

∫
S

[T |S]
[Y |S0]
[S0|Y ]

[S0][S|Y ]dS

= ES|Y

[
[T |S]

[Y |S0]
[S0|Y ]

[S0]

]
(3.3)

Taking into account that the above conditional expectation can be approx-
imated by Monte Carlo, MLE’s are obtained by maximizing the Monte Carlo
likelihood

(3.4) LMC(θ) = m−1
m∑
j=1

[T |Sj ]
[Y |S0j ]
[S0j |Y ]

[S0j ]
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where Sj are simulated from [S|Y ] and m is the number of Monte Carlo repli-
cas. With this purpose, we use a technique known as conditioning by krig-
ing [23] and we use the following construction. The new sample Sj = U +

ΣSA
T
(
AΣSA

T + τ2In
)−1

(V −AU) where A is the n × N matrix whose ith
row consists of N − 1 0s and a single 1 to identify the position of ti within

T = (t1, . . . , tn); U = Σ
1/2
S u ∼ MVN(0,ΣS) with u ∼ N(0, 1) and Σ

1/2
S is ob-

tained from the Cholesky decomposition and V ∼ MVN(y,ΣY ). Then Sj has
the required multivariate Gaussian distribution of S given Y = y. In practice,
we use antithetic pairs of realizations to reduce Monte Carlo variance [11].

T |Sj in (3.4) is an inhomogeneous Poisson process with intensity

(3.5) λ(t) = exp(a+ βSj(t))

For computational reasons, we work with logarithm and thus,

(3.6) log([T |Sj ]) =

n∑
i=1

(a+ βSj(ti))− nlog
(∫ T

0
exp(a+ βSj(t))dt

)

As the Sj replica is not known in [0, T ] domain, we can not calculate the
integral presented in expression (3.6), so, we approximate the integral using the
composed trapezium formula for unequally spaced data.

[S0j ] in (3.4) is multivariate Gaussian with mean 0 and covariance matrix

ΣS0j = σ2
w

2α0
RS0j (α0), where RS0j (α0) is the n×n correlation matrix with elements

rij = ρ (|ti − tj | ;α0) defined by (2.2).

[S0j |Y ] in (3.4) is multivariate Gaussian with mean µS0j |Y = ΣS0jΣ
−1
Y (y − µ1)

and covariance matrix ΣS0j |Y = ΣS0j−ΣS0jΣ
−1
Y Σt

S0j
. For more details about con-

ditional distribution see for e.g. [3].

Obtained the Maximum Likelihood Estimates (MLE’s) we can plug them
into (2.4) and (2.5), treating them as known. We are in position of doing the
so-called plug-in predictions.

4. NUMERICAL ILLUSTRATION

4.1. ARTIFICIAL DATA SET

In this section we assess the performance of estimation procedure proposed
in Section 3 and compare the model based approach proposed with the traditional
Kalman filter approach (used in cts package [25]). We generate 400 equally
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spaced time points from model (2.1), with α0 = 0.2, σ2w = 1, µ = 0, σ =√
σ2
w

2α0
= 1.581, φ = 1

α0
= 5 and τ = 0.1 and conditional on the realization of

S we obtained n = 70 sampling times T following an inhomogeneous Poisson
process with intensity function defined in (3.5). We simulated 250 realizations of
S and conditional on each realization of S we obtained n = 70 sampling times
T following an inhomogeneous Poisson process with intensity function defined in
(3.5). We conducted three separate sampling procedures over each realization of
S:

• preferential sampling where the observed times are determined with a value
of β = 2 in the Poisson process intensity function;

• irregular sampling with β = 0, illustrating the situation without preferential
sampling;

• regular sampling with equidistant observations.

The parameters µ, σ, φ, τ and β are the target of estimation. The estimates are
obtained under (3.4), henceforward denoted by MCMLE’s and from the Kalman
filter, denoted by MLE’s. For the maximization of our Monte Carlo log-likelihood
function we considered a total of grid points N = 400 and a total number of
replicas m = 1000.

Figure 1 shows a realization of one of these simulations, on a single real-
ization of the process S. We have 70 sampling times (black points), considering
β = 2 in the process intensity function, in which the preferential nature of the
sampling process results in sample times falling predominantly near the maxima.
For 70 sampling times (white points), we consider β = 0, the situation without
preferential sampling and with irregularly sampling points. For the remaining 70
points (star points) we have the situation of regular spaced sampling times.

The results of the mean and standard errors of each parameter, obtained
from a total of 250 independent samples are summarized in Table 1.

PS Data set (β = 2) Irregularly Sampling (β = 0) Regular sampling
True PS model CTS PS Model CTS PS Model CTS

µ̂ 0 0.13 (0.18) 0.38 (0.31) 0.04 (0.12) 0.26 (0.34) 0.02 (0.22) 0.71 (0.62)
σ̂ 1.58 1.53 (0.21) 0.99 (0.18) 1.64 (0.11) 1.52 (0.21) 1.60 (0.13) 1.45 (0.24)

φ̂ 5 5.71 (1.01) 3.17 (2.55) 5.20 (0.48) 5.52 (1.96) 5.12 (0.89) 6.78 (2.93)
τ̂ 0.1 0.12 (0.04) 0.27 (0.13) 0.11 (0.01) 0.30 (0.18) 0.11 (0.02) 0.55 (0.28)

β̂ 2 or 0 1.76 (0.39) 0.00 (0.07) 0.00 (0.02)

Table 1: Maximum likelihood estimates, under PS model (MCMLE’s)
and by cts package (MLE’s), mean (standard errors) obtained
from a total of 250 independent samples.

Analysing table 1 we conclude that the model for Temporal Preferential
Sampling presents estimates for the parameters less biased, even when the prefer-
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Figure 1: Sample times with preferential sampling nature (black points),
without preferential sampling and irregularly spaced time points
(white points), regular spaced time points (star points) and un-
derlying process S (gray line).

ability degree is null, with regular and irregularly sampling.

To analyse the impact of ignoring preferential sampling on the quality of
predictions, we conducted a second simulation study. We simulated 250 realiza-
tions of S and for each we constructed a preferential sampling data set. Then,
the proposed MCMLE’s and the MLE’s from the Kalman filter approach were
obtained and plugged-in equation (2.4) to predict S(t) at 50 equally spaced time
points. These together with the corresponding standard errors, in (2.5), allowed
us to calculate prediction 95% confidence intervals and estimate their coverage.

Figure 2 represents one simulation of S(t) (black line), the correspond-
ing preferential sampling data (black points) and the predictions acquired from
MCMLE’s (white points) and MLE’s (gray points). The results indicate that
the latter overestimate the observations and underestimate the variability of the
underlying process. In fact, in the overall simulation results confidence intervals
from MCMLE’s present an estimated coverage of 88% while the MLE’s provide
an estimated coverage of just 73%.

4.2. LUNG FUNCTION OF AN ASTHMA PATIENT

[4] analyzed 209 measurements of the lung function of an asthma patient.
The time series is measured mostly at 2 hour time intervals but with irregular
gaps as demonstrated by the unequal space of tick marks in Figure 3. This data
is available in the package cts [25] with the name of ”asth”.
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Figure 2: Predictions acquired from MCMLE’s (white points) and MLE’s
(gray points), dashed line are confidence bands, black points are
the preferential sampling data and black line is the underlying
process S .

Figure 3: Measurements of the lung function.

To assess the performance and the utility of the proposed model we select
the last 50 observations of ”asth” data, corresponding to the period with more
missing observations. We considered a log-transformation in the data, which
leads to more symmetric distribution of measured values and we make predictions,
within the period of these observations, aiming to ”complete” the data set. Figure
4 shows predictions of (log of), the variable of interest for that patient at regular
time points. The MCMLE’s for model parameters are µ̂ = 6.18, φ̂ = 2.83,
σ̂ = 0.06, τ̂ = 0.03 and β̂ = 0.62. The positive value for β̂ can be justified by
observed points being closer to maxima. This kind of study is important, for
example, to analyse when a new measurement of the patient’s health indicator
should be taken.

Besides the previous analysis, we also conducted three separate analysis
each one with 50 time points selected from the 209 measurements considering:
two preferential samples, where the sampling times are determined with a value
of β = −2 and β = 2 in (3.5), as an illustration of a case when the patient
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was observed in a state of poor health and in a healthy state respectively; and
a non-preferential sample with β = 0. Estimated coverage from 95% nominal
CI obtained from MCMLE’s and MLE’s calculated in the preferential sample, as
described before, are 92% in both preferential samples (β = ±2) and 97% in the
case of the random sample. These results help to justify the acceptable behavior
of proposed model even under a preferential sampling design.

500 550 600 650
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6.4

time (hours)

log
(lu

ng
 fu
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n)

Figure 4: Predictions of (log of) the variable of interest (black line) and
Confidence Intervals (dashed line). Black points are observa-
tions for the logarithm of lung function of an asthma patient.

5. Concluding Remarks and Future Work

In this work we propose a methodology to deal with irregularly spaced
time series but also a methodology that take into account the frequency or time
occurrence of the observations. The proposed model not only provides good
estimates for model parameters but also reveals quite satisfactory results for
prediction. A key aspect of this methodology is that it provides a tool, for
example in the context of clinical trials, supporting a better knowledge of the
underlying stochastic process, goal of study.

[12] affirm that the use of a single parameter in (3.5) to capture both the
strength of the non-preferentiality and the amount of non-uniformity in sampling
locations is somewhat inflexible. Alternatively, a more flexible and computational
more efficient class of models, based on the proposal of [22], is discussed. These
authors suggest an extension to the model proposed by [11], by adding a second
Gaussian process and use of stochastic partial differential equation models. For
future investigation we intend to adapt those suggestions to the time dimension.
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