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Over the last few decades, the study of microbial biofilms has been gaining interest
among the scientific community. These microbial communities comprise cells adhered to
surfaces that are surrounded by a self-produced exopolymeric matrix that protects biofilm
cells against different external stresses. Biofilms can have a negative impact on different
sectors within society, namely in agriculture, food industries, and veterinary and human
health. As a consequence of their metabolic state and matrix protection, biofilm cells are
very difficult to tackle with antibiotics or chemical disinfectants. Due to this problem,
recent advances in the development of antibiotic alternatives or complementary strategies
to prevent or control biofilms have been reported. This Special Issue includes different
strategies to prevent biofilm formation or control biofilm development and includes full
research articles, reviews, a communication, and a perspective.

Regarding the problem per se, Uruén and Chopo-Escuin et al. [1] reviewed the mecha-
nisms by which biofilms are tolerant or resistant to antibiotics, emphasizing the role of the
biofilm matrix, physiological heterogeneity of biofilm cells, quorum sensing, horizontal
gene transfer, and other mutations on biofilms. In the second part of the review, several
alternatives to combat biofilms were discussed. The problem of bacterial resistance was
assessed in an original study by Shenkutie et al. [2], where the biofilm-forming ability of
104 Acinetobacter baumannii clinical strains was evaluated. Moreover, the authors observed
that the minimum biofilm eradication concentrations were significantly higher than the
minimum bactericidal concentrations for several antibiotics, a fact that led to an increase
in persister cell detection on biofilms. In another study, the influence of Escherichia coli
diversity in biofilms composed of up to six different strains isolated from urine was eval-
uated in urinary tract infection conditions. The authors detected that as the number of
strains increased, the number of culturable cells also increased but overall the biofilms pro-
duced less matrix [3]. The impact of the biofilm matrix on flow cytometry in multi-species
biofilms was one of the parameters evaluated by Grainha et al. [4]. Despite the potential of
this technique to assess several aspects of biofilms, the authors reported that results are
very dependent of the microbial strain used, the morphological state of the cells, and the
biofilm matrix.

Another important topic covered in this Special Issue is the prevention of biofilm
formation. Alves et al. studied the initial events of E. coli adhesion to polydimethylsiloxane
and demonstrated that a proper tuning of operational parameters is required to avoid
hydrodynamic blocking, which will allow the scientific community to obtain reliable data
about cell–surface interactions [5]. In another study performed by the same group, the
authors show the effect of pristine and functionalized carbon nanotube incorporation
into poly(dimethylsiloxane) materials. Initial E. coli adhesion was assessed in conditions
simulating urinary tract devices (catheters and stents). The results led the authors to
conclude that the incorporation of carbon nanotubes, even at low loading values, might be
beneficial for the application of biomedical devices for the urinary tract [6].
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Trøstrup et al. and Brum et al. contributed to this Special Issue with two reviews [7,8].
The first is focused on the impact of Pseudomonas aeruginosa biofilms on the local and
systemic host response observed in vitro and in vivo. The authors also discussed the
implications for clinical wound healing and a possible therapeutic approach using an
antimicrobial peptide as immunomodulatory topical treatment [8]. In the second review, a
comparison between the use of polyether-ether-ketone (PEEK) and other commonly used
materials in implant dentistry (titanium and zirconia) as biofilm-preventing or -controlling
agents was comprehensively conducted. The authors concluded that despite pure PEEK
being susceptible to biofilm formation, there are numerous strategies that can improve its
antibiofilm properties, namely PEEK sulfonation, incorporation of therapeutic/bioactive
agents in the PEEK matrix or surface, PEEK coatings, and, finally, the incorporation of
reinforcement agents [7].

Different approaches to control biofilms using antibiotic alternative strategies were
also submitted to this Special Issue. James D. Boub provided a perspective on the use
of phage therapy to combat infectious biofilms [9]. The perspective referred to many
aspects of bacteriophage therapy that should be taken into consideration before their
broader use. The author suggested the development of standardized protocols that will
allow for better and stricter testing of this therapeutic agent in the treatment of biofilm
infections. Regarding this topic, Oliveira et al. used a bacteriophage cocktail to control
P. aeruginosa biofilm formation on endotracheal tubes [10]. Despite some promising results
on reducing bacterial colonization, the authors concluded that this strategy could have more
potential with the development of new coating strategies. Several natural products are also
commonly seen as promising antibiofilm agents. Hoang et al. analyzed the composition
and antibiofilm activity of 15 methanolic extracts from Iris spp. [11]. Iris pallida s.l. leaf
extract was the most effective at both preventing biofilm formation and controlling multi-
species oral biofilms, with no toxicity observed, suggesting its potential application for oral
biofilms. In another study, the antibiofilm activity of cyanobacteria Arthrospira platensis
extracts (free and nanovectorized) was studied on Candida albicans and Cutibacterium acnes
(single- and dual-species biofilms). Efficacy results varied depending on the microbial
species and on the type of biofilm, emphasizing the importance of studying more complex
communities such as polymicrobial biofilms [12].

Using a different approach, Mil-Homens et al. reported the application of a syn-
thetic polycationic oligomer (L-OEI-h) as an alternative to treat Klebsiella pneumoniae infec-
tions [13]. The authors showed that L-OEI-h caused lysis of the cytoplasmic membrane in
a panel of different species. This promising compound showed no visible cytotoxicity on
the Galleria mellonella in vivo model; however, its antibiofilm capacity is yet to be tested.

The last approach published in this Special Issue was the use of electrospun ti-
tanium dioxide (TiO2) nanofibers and their activity against Staphylococcus aureus and
P. aeruginosa [14]. Although, on planktonic cultures, TiO2 nanofibers were more active
against P. aeruginosa than S. aureus, biofilms were prevented in both species in the same
order of magnitude, suggesting their potential use for coating inanimate objects.

From a different perspective, Verran et al. provided a communication discussing
the relevance of public engagement activities in complex phenomena such as biofilms
and Antimicrobial resistance (AMR) [15]. The authors describe three different public
engagement activities focused on biofilm control, namely hand hygiene, plaque control, and
an externally applied antimicrobial coating using quantitative and/or qualitative methods.

This Special Issue collects high-quality original articles and reviews that demonstrate
the relevance of biofilm infections as well as the potential of numerous antibiotic alternative
strategies to prevent or control them. We hope that these articles will encourage researchers
to investigate new antibiofilm strategies and implement them using standardized protocols
that will help research to more effectively move towards clinical implementation.
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