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Abstract: Resting tremor in Parkinson’s disease (PD) is one of the most distinctive motor symptoms.
Appropriate symptom monitoring can help to improve management and medical treatments and
improve the patients” quality of life. Currently, tremor is evaluated by physical examinations during
clinical appointments; however, this method could be subjective and does not represent the full
spectrum of the symptom in the patients” daily lives. In recent years, sensor-based systems have
been used to obtain objective information about the disease. However, most of these systems require
the use of multiple devices, which makes it difficult to use them in an ambulatory setting. This
paper presents a novel approach to evaluate the amplitude and constancy of resting tremor using
triaxial accelerometers from consumer smartwatches and multitask classification models. These
approaches are used to develop a system for an automated and accurate symptom assessment without
interfering with the patients’ daily lives. Results show a high agreement between the amplitude
and constancy measurements obtained from the smartwatch in comparison with those obtained in
a clinical assessment. This indicates that consumer smartwatches in combination with multitask
convolutional neural networks are suitable for providing accurate and relevant information about
tremor in patients in the early stages of the disease, which can contribute to the improvement of PD
clinical evaluation, early detection of the disease, and continuous monitoring.

Keywords: machine learning; wearable sensors; resting tremor; deep learning; convolutional neural
networks; Parkinson’s disease; multitask

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disease associated with progressive
dopaminergic nigro-striatal dysfunction, one of the main neural networks responsible by
coordinating human movements [1,2]. Worldwide, an estimated 7-10 million people are
living with this disease, and its prevalence increases with age, being rare before age 50 and
more common in men than in women [3-6]. The prevalence of PD increases with age and
PD affects 1% of the population above 60 years of age [7].

Several symptoms are present in PD. The most common symptoms are stiffness of the
trunk and the extremities (increased muscle tone), slowness of movement (bradykinesia),
rigidity, tremor (resting tremor and re-emerging postural tremor), postural instability, and
gait impairment [8,9]. Among these symptoms, resting tremor is usually the most evident
and clinically distinctive [10].
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Specific medications such as levodopa and dopamine agonists remain the most effec-
tive drugs, at least in early clinical phases [11]. However, after several years of treatment,
these therapies decrease their effectiveness and produce side effects such as motor fluctua-
tions and dyskinesias [12,13].

Tremor is the involuntary oscillatory and rhythmic movement produced by syn-
chronous or alternating contractions of agonist/antagonistic muscles. Tremor can be
experienced in the hands, head, trunk, or legs [14]. In PD, tremors can appear in the early
stages of the disease and reduce the quality of life by interrupting activities such as reading,
writing, and eating [15]. More than 70% of all PD patients experience resting tremors in the
course of the disease and their effects tend to be more severe with aging [16].

Tremor in PD can be divided into resting tremor, which occurs when patients relax
their muscles, and action tremor (postural and kinetic) which occurs while the subjects
make voluntary muscle movements [17]. The tremor usually occurs at a frequency of
between 3.5 and 7.5 Hz [18], although different frequency ranges can be found in the
related literature such as 3-5 Hz [19] or 4-6 Hz [20].

The current standard for PD evaluation consists of a clinical examination of patients by
aneurology specialist, usually in an ambulatory hospital clinical setting and in sparse visits
per year. In these examinations, medication scheme and dosing are adjusted, based on
self-reported symptoms and a brief assessment of motor function. Although this method is
widely used, the results depend on subjective clinical judgment and the patient’s report,
potentially compromised by wrong self-perception due to cognitive impairment, making
it difficult to accurately monitor the patient’s condition and disease progression [21].
Therefore, there is a need for continuous and objective monitoring of motor symptoms in
PD to improve the therapeutic regimen and enhance the outcomes of clinical trials [22,23].

In the literature, several works have analyzed PD tremors using sensor technolo-
gies such as electromyography (EMG) [24-26], electromagnetic motion trackers [27], or
noncontact measurements obtained from devices such as Kinect [28] or laser Doppler
vibrometers [29]. However, the use of accelerometers or gyroscopes has been of par-
ticular interest due to their compact size, which allows their integration into portable
systems [22,30].

The use of smart technologies for PD applications has increased in recent years, be-
ing important complementary clinical tools in early diagnosis and objective quantification
of symptoms over time [30]. Data collected through wearable technology, combined with
the capabilities of artificial intelligence to analyze data employing machine learning algo-
rithms, can be used to estimate the severity of the tremor with high accuracy, based on the
analysis of movement patterns obtained from different sensors.

Early studies have used gyroscopes [15,18,31] to detect tremor and other PD symptoms,
as well as accelerometers for clinical and ambulatory monitoring [32-35]. Some approaches
have proposed the use of several sensors placed on different parts of the body [32,33,35-39],
while recent approaches tend to use sensors placed on the wrist, fingers [40-43], foot [44],
and smartphones with writs adapters or watch-like devices [45-50]. Also, these approaches
have been used in companion with automatic classification algorithms [36-40,46], threshold
approaches [51-55], and deep learning technics [15,49,50,56] to provide low cost and non-
invasive solutions for remote monitoring [45,57].

Although the use of wearable technology shows high potential as a complementary
tool for clinical assessment, challenges remain in the development of systems and algo-
rithms for automated monitoring of PD symptoms. For example, there is a need to develop
autonomous monitoring systems capable of analyzing symptoms with high confidence
to reduce subjectivity in the assessment and provide relevant information for the clinical
assessment.

Additionally, affordable systems must be developed to improve the monitoring pro-
tocol through continuous tracking of the symptoms over time, taking advantage of the
processing and communication capabilities of smart technology. Furthermore, the devel-
opment of systems based on wearable devices that can be used in an unobtrusive fashion
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(such as watches or wristbands) [22] without increasing the burden to the patients due to
the use of specific sensorization or the use of several sensors placed on the body is required.

Hence, this paper investigates the feasibility of using nonmodified consumer smart-
watches and deep learning techniques to provide a self-contained and low-cost alternative
for automatic detection and assessment of the constancy and amplitude of the resting
tremor in patients with PD. This may allow improvements in the results of clinical trials
through continuous and unobtrusive monitoring.

In this work, the use of a hierarchical approach developed to operate with deep
learning models that analyze multiple tasks simultaneously (context and symptom) is
proposed. The use of multitask models can help to improve the model’s generalization
by leveraging the domain-specific information contained in the training data of related
tasks [58]. To the best of our knowledge, this is the first study that proposes the use of a
pipeline for simultaneous task analysis that takes advantage of multitask convolutional
models for the evaluation of resting tremors.

For the development of this system, the frequency response of the embedded ac-
celerometer has been analyzed using an adapted version of the calibration method for
vibration transducers by comparison with a reference accelerometer. This analysis was
made to identify the accuracy of a consumer smartwatch to measure the amplitude of the
tremor, to be used as a robust indicator of clinical severity.

A data collection protocol has been developed for the evaluation of resting tremors.
With the data collected for the smartwatches, different machine learning classifiers and data
representations proposed in the related literature have been evaluated for the detection of
resting times (context classifier) and the detection of the occurrence of tremors in the upper
limbs (tremor detector). Additionally, novel approaches based on multitask convolutional
neural networks (multitask CNNs) capable of simultaneously analyzing the context and
the occurrence of tremors have been developed and tested.

The vast majority of experiments to evaluate the classifiers have been made using the
leave-one-subject-out (LOSO) cross-validation methodology to identify the ability of the
evaluated models to generalize data from unseen patients.

This study was carried out using data from PD patients who participated in the TECA-
PARK project [59]. These data include weekly records of 18 PD patients who manifested
motor symptoms while performing a variety of scripted activities, including standardized
exercises and upper limb resting periods. The present approach has been compared to the
clinical assessment performed according to the ordinal Unified Parkinson’s Disease Rating
Scale (UPDRS) [60] parts 3.17 (rest tremor amplitude) and 3.18 (constancy of rest tremor),
to validate the results and identify reliable biomarkers for resting tremor monitoring that
can support clinical evaluation, disease monitoring, and decision making.

The remainder of this paper is organized as follows: Section 2 presents the back-
ground, including the related work regarding the tremor assessment. Section 3 presents the
materials and methods proposed in this work, including the data collection and evaluation
methodologies proposed for tremor assessment based on multitasking analysis. Section 4
presents the experiments and results obtained from the evaluation of the proposed system
and the methodology for tremor assessment. Finally, Section 5 presents the discussion and
the conclusions of the results obtained in this work.

2. Background

Currently, the severity of resting and action tremor is analyzed during routine clinical
visits using Part III of the UPDRS scale. During the assessment, patients were asked to
perform three tasks: armrest, arm extension, and nose tip contact with the index finger
(finger to nose test) [60].

While the patient performs these tasks, the maximum amplitude produced by the
tremors was analyzed and rated on a scale ranging from 0 to 4 (where 0 implies that there
is no presence of tremors and 4 indicates tremors with an amplitude of up to 10 cm).
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Furthermore, as part of the UPDRS at the end of the evaluation, the constancy of the
tremor was evaluated considering the percentage of time that a patient presented tremors
during his/her entire examination. In a similar way to the other sections of the UPDRS, the
constancy is qualified on a discrete scale from 0 to 4. Although this type of evaluation is a
widespread method, visits to the specialist are spaced several months apart and often fail
to capture the full spectrum of symptoms that the patients with PD may experience in their
daily lives [61]. Therefore, tools for remote monitoring could help to improve treatments by
collecting data in-home settings, reducing the number of clinic visits in situations similar
to those produced by the COVID-19 pandemic emergency, where medical appointments
have experienced a significant reduction.

In the literature, several works have analyzed the use of wearable devices in health
care applications [62-64]. Many studies are focused on the development and validation of
systems for the analysis and quantification of motor symptoms remotely using a variety of
inertial sensors. The most commonly used sensors include accelerometers and gyroscopes
due to their compact size and affordability [65-70].

The sensors named micro-electromechanical (MEMS), due to their low cost, have con-
tributed to the development of compact monitoring systems, which can be used for mon-
itoring PD and other movement disorders continuously [71]. Additionally, systems em-
ploying machine learning techniques have allowed the improvement and automation of
PD motor symptom detection with higher speed and reliability than standard analysis
methods [65,67,68]. As a result, these technologies have led to the development of solutions
for automated and continuous monitoring, allowing a reduction in overall cost [72].

An important aspect considered in the related literature has been the quality of the
data obtained from this type of device and sensors because it has a significant impact on
the performance of these systems. Thus, an appropriate selection of sensors and algorithms
have supported the improvement in the performance of these systems, also considering the
computational costs for real-time applications, such as those related to health care, where a
trade-off between performance and efficiency is required [73].

The approaches identified in the literature have reported high performances in iden-
tifying tremors and high correlations with UPDRS scores. The main differences found
in these studies are related to the configuration (single device or multimodal devices),
the number of sensors, the positioning of these sensors in the patient’s body, and the
monitoring protocol such as temporary evaluation or continuous evaluation. Table 1 sum-
marizes previous highlighted works since 2010, regarding the development and validation
of tremor analysis systems using wearable sensors.

Table 1. Summary of highlighted research articles for tremor analysis using wearable sensors.

Sensors and . . Analysis Main Aims or .
Work Year Location Participants Methods Findings Main Results
The results
.. .1 . Error values of
8 uniaxial . . indicate that is
lerometer. Machine learning;: ible 3.4% for tremor
Patel etal. [36] 2010 geceierometers, 12 PD patients Support Vector posstbie 1o detection using
located on the . estimate clinical
Machines . hand-crafted
arms and legs scores with a low
features.
error
High accuracy in ~ Accuracy of 87%
6 accelerometers 23 subjects (18 PD tremor de'tectlon. for tremor
. located on the : . It is possible to severity,
Rigas et al. . patients and Hidden Markov N .
2012 wrists, ankles, discriminate maximum
[37] 5 healthy model e o

sternum, and the controls) tremors from specificity 97%,

waist other PD and sensitivity

symptoms. 95%
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Table 1. Cont.
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. triaxial 11 PD with propose a
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[47] models tremor detection.
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Early studies by Salarian [18,31] have used spectral analysis from signals obtained
from gyroscopes placed on the wrists to detect tremors, showing symptom detection with a
specificity of 99.5% and sensitivities of up to 94.2%. Keijsers et al. [33] obtained specificities
and sensitivities of 0.97 using six accelerometers placed on different parts of the body.
Giuffrida et al. [34] have shown high correlations (r> = 0.89) when comparing the root-
mean-square (RMS) magnitude of accelerometers and gyroscopes with the clinical scores.

In recent years, most of the works concerning the analysis of tremors have used
supervised machine learning techniques to identify the presence of tremors using different
types of “hand-crafted” features extracted from inertial signals in both time and frequency
domains [15,36-40,46,55-57]. Other authors have used threshold-based algorithms, taking
advantage of the heuristic knowledge of the symptom to determine objective indicators for
monitoring the symptom [43,45,47,51-55].

Some other approaches [15,49,50,56] have started to use deep learning techniques
for tremor detection, mainly Convolutional neural networks (CNNs) [74] and recurrent
neural networks such as Long short-term memory (LSTM) [75], showing, in several exper-
iments, a higher performance than the methods based on shallow algorithms. The deep
learning techniques have enabled the development of end-to-end classifiers used in many
applications such as human activity recognition (HAR), using data acquired from multiple
sensors [76] or data from sensors of smart devices such as smartphones or smartwatches to
detect the user context or the activity performed at any given time [77].

Among the solutions based on wearable technology, the use of consumer devices such
as smartphones [45,57] and smartwatches [51,54] has been identified. These studies show
that the use of smart devices is feasible, reliable, and well-related to clinical scores, whereas
in the case of smartwatches they show good acceptance from the patients, which may allow
their use as continuous monitoring devices.

Although a great advance can be identified in the area of PD tremor monitoring,
several challenges have been identified that need to be addressed. For example, few studies
have focused on characterizing, from a metrological point of view, the amplitude or
the frequency response of the accelerometers of consumer devices to provide accurate
indicators for clinical monitoring and assessment. Additionally, the results of the detection
systems are not always associated with clinical ratings and in some cases lack the expected
clinical outcomes for enhanced monitoring. Additionally, it is desirable to reduce the
number of devices or sensors placed on different parts of the body to improve usability in
free-living environments.

Finally, differences between our work and the reviewed studies can be categorized
as follows:

e  Several studies have evaluated systems for tremor detection without distinguishing
the type of PD tremor (rest or action tremor); usually, these approaches are focused on
free-living monitoring [15,37-39,43,45,47,52,53,56]. Instead of only measuring features
related to PD, data analysis techniques should be used to identify reliable biomarkers
to support the clinical assessment that can be obtained automatically with wearable
technology and artificial intelligence techniques [68];

e Early studies have used configurations of several sensors placed on different parts
of the body [15,36-39], but these systems could present usability limitations in am-
bulatory settings. In this work, the use of a nonmodified consumer smartwatch is
proposed in contrast to the use of multimodal systems or ad-hoc devices for data
acquisition;

e  Several studies have used threshold or shallow machine learning approaches to detect
the presence or the amplitude of tremor, while few studies have used deep learning
techniques [15,49,50,56]. However, the use of multitask convolutional models has not
been identified for resting tremor assessment.

In contrast to the reviewed works, our study examines the capability of a system
based on a deep learning multitask approach combined with the data acquired from a
single (triaxial) accelerometer sensor of a nonmodified consumer smartwatch for tremor
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assessment (amplitude and constancy). Additionally, the use of standardized metrics for
measuring vibration amplitude such as the acceleration level is compared with the clinical
rating to validate the results of the proposed system.

3. Materials and Methods

This section describes the materials and methods used in the data collection and
evaluation of the proposed systems. This section has been divided into five subsections.
Section 3.1 shows the data collection methodology and the characteristics of the group of
patients involved in the experiments. Section 3.2 shows the analysis methodology and
the frequency response obtained from the evaluation of the acquisition device. Section 3.3
shows the experimental protocol for data acquisition based on a smartwatch and a custom
software application. Section 3.4 shows the methodology for data labeling. Section 3.5
describes the algorithmic approaches used to the development of different classifiers
(context and tremor), as well as the proposed approach for the assessment of the amplitude
and constancy of the resting tremor using models with multiple outputs.

3.1. Data Collection

Data were collected during the TECAPARK project using a custom-built mHealth
mobile and wearable application for tracking motor symptoms of PD patients using smart-
phones and smartwatches [59]. The study was approved by the Ethics Committee of the
Universidad Politécnica de Madrid. The PD patients were previously diagnosed according
to the UK Parkinson’s Disease Society Brain Bank [78]. All subjects gave their written
consent before participating in the experiment.

A total of 18 subjects with PD were recruited from different Parkinson associations
located in Spain and Portugal who were in early stages (<2) of the disease according to
the Hoehn and Yahr (H&Y) scale [79] (age: 64.9 £ 7.6 [47-76] years; gender: 8 M/10 F;
stage H&Y I/11/: 4/14). Patients had a good clinical response to levodopa and /or dopamine
agonists and did not present dementia according to the diagnostic and statistical manual
of mental disorders IV (DSM 1V) criteria [78].

From this group of 18 patients, 4 patients did not present tremors, while the remaining
14 presented tremors with different severities. Amplitude tremor ranged from 0 (no tremor)
to 2 (mild tremor) according to the UPDRS guide section 3.17. Tremor constancy ranged
from 0 (no tremor) to 4 (tremor is present more than 75% of the entire examination period),
evaluated according to the UPDRS guide section 3.18. Patients were assessed in their
best ON state (the ON state is the one in which motor symptoms are controlled by the
medication) as assessed by clinical and patient’s assessment history. During the study,
all patients continued taking their medication as usual.

Figure 1a shows the number of hours that resting tremor signals were analyzed for in
this study; they are distributed according to the amplitude severity evaluated with UPDRS
guide section 3.17, while Figure 1b shows the number of tests performed for the tremor
constancy according to the UPDRS guide section 3.18.

The data generated in the experiments were stored in the internal memory of the
smartwatch and downloaded later for labeling and off-line evaluation. The experiments
for data processing and evaluation were conducted on a computer with an Intel Xeon with
2.30 GHz processor, 12 GB of random-access memory (RAM), and a 12 GB NVIDIA Tesla
K80 graphics accelerator card. The signal labeling, preprocessing, and feature extraction
were performed using the MATLAB software (version R2017a), while the evaluation and
training of the classification models were performed in Python (version 3.6), using the
libraries Keras (version 2.4) [80], TensorFlow (version 2.3) [81], and Scikit-learn (version
0.22) [82].



Sensors 2021, 21,291

9 of 29

Tremor Amplitude (UPDRS 3.17) Tremor Constancy (UPDRS 3.18)
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Figure 1. (a) Number of hours data were analyzed, distributed according to the tremor amplitude severities evaluated
through the UPDRS guide section 3.17; (b) number of constancy tests distributed according to the UPDRS guide section 3.18.

3.2. Acquisition Device (Smartwatch)

A consumer smartwatch was used for data acquisition; the device was placed on the
wrist of the most affected side of each patient. The smartwatch was available on the market
in 2019 and uses the Android Wear operating system. The device has an internal memory
of 4 GB (2 GB of free space), the dimensions are 46.6 mm x 51.8 mm x 12.9 mm, and it has
a weight of 32.5 g. The device has a calibrated accelerometer, with a maximum amplitude
set to £2 g. The sensor can be adjusted to a maximum sampling rate of 100 Hz factory-set
by the operating system.

In this study, the sampling rate was adjusted to 50 Hz, which is considered a suitable
value for human activity recognition (HAR) using sensors placed on the wrist (standard
human activities do not typically exceed 10 Hz) [83,84] and is suitable for evaluating
tremors in the 3.5-7.5 Hz range, as usually occurs in PD [18].

The smartwatch used for the data collection was previously analyzed to identify
its frequency response by using a methodology described in a previous work [85]. The
analysis employs an adapted version of the calibration method by comparison with a
reference accelerometer. For this method, the smartwatch and a reference accelerometer,
the Dytran 3023M3 (Dytran Instruments, Chatsworth, CA, USA), were simultaneously
coupled to an electrodynamic vibration shaker, LDS V406 CE M4 (Bruel and Kjaer). The
vibration signals were generated from a PULSE 7537 vibration analysis system (Bruel and
Kjaer, Copenhagen, Denmark) and a power amplifier, LDS PA 100E (Bruel and Kjaer).

To evaluate the frequency response of the device, six root-mean-square (RMS) de-
terminations were performed for different acceleration values at known frequencies and
amplitudes using discrete sinusoidal signals.

Three different amplitudes (1, 3, and 5 m/ s%) were tested in this experiment for a
single axis at standardized third-octave intervals, with central frequencies in the range
of 3.15-20 Hz. Values for 3.15 and 4 Hz at 5 m/s? could not be determined due to the
limitations of the equipment to reach those magnitudes. The results of the frequency
analysis at different amplitudes are shown in Figure 2, and the deviation percentage (¢) to
the reference accelerometer is shown in Table 2.

Table 2. Percentage of deviation of the smartwatch compared to the reference accelerometer.

Frequency (Hz)

Amplitude 3.15 4 5 6.3 8 10 12.5 16 20
5m/s? - - 1.33% 1.47% 1.44% 0.67% 0.03% —2.38% —4.79%
3m/s? —0.82% —0.51% 1.63% 1.80% 1.85% 0.79% —0.27% —1.94% —4.29%
1m/s? —4.65% —0.3% 0.27% —0.31% 0.47% 0.0% 0.69% —2.01% —4.89%
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Figure 2. Frequency response of the smartwatch built-in accelerometer.

According to the methodology established in [85], an error band has been considered
for amplitude and frequency linearity according to the specifications of the International
Organization for Standardization (ISO) 8041:2005 [86], in which values with a deviation
greater than +6% are considered linearity errors.

For the smartwatch, the results show a linear behavior in frequency and amplitude that
can be useful for the analysis of standard human activities and parkinsonian tremors, with
amplitudes evaluated up to 5 m/s?. For frequencies higher than 16 Hz, a gradual decrease
in amplitude was noted; however, the relative error did not exceed £6% at any analyzed
point, with a maximum error of —4.89% at 20 Hz. Expanded uncertainties equal to or less
than £3% were achieved in all experiments, following the ISO 8041:2005 recommendations
for mechanical tests of amplitude linearity.

3.3. Experimental Protocol

The experimental protocol used for data acquisition was based on the combination
of six scripted activities extracted from UPDRS, including some exercises to assess motor
symptoms in PD, plus a resting time interval of at least 30 s between each exercise. We used
UPDRS exercises because they are a well-known protocol for PD patients, therapists, and
neurologists, and they simplify labeling the signals for comparison with clinical assessment.

To facilitate data collection, a custom mobile application was used to guide the patients
to perform exercises using voice instructions as shown in Figure 3.

Pheoo Thaoo
Monipar Monipar

.'.
r/
K(

P

(b)

Figure 3. (a) Evaluation tests and data acquisition based on a smartwatch. (b) Mobile application.

Patients were evaluated weekly in their care center with the supervision of the center’s
staff during an interval of between 2 and 8 weeks (average 5.8 weeks). Complete evaluation,
including exercises and resting times, took an average duration of 6 min per patient.
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3.4. Data Labeling

Since the data labeling is a costly and time-consuming process, the data used were
initially labeled using a method based on the analysis of the magnitude in the tremor
band (3.5-7.5 Hz), and thresholds were empirically established to identify the presence
of tremors. These labels were then reviewed and corrected by comparison with a video
recording reference for each of the tests. The clinical evaluation of the tremor amplitude
and constancy were performed by an expert according to the UPDRS guide sections 3.17
and 3.18.

For the context classifier, the resting periods were labeled by manually annotating the
intervals from the video recordings.

3.5. Algorithmic Approach

A hierarchical approach has been developed for the evaluation of tremors in PD
disease, analyzing in parallel the resting segments and the presence of tremors. This
approach allows for the analysis of symptom markers such as the constancy and amplitude
of the tremor.

In the proposed approach, the time segments in which the patient is at rest and does
not make any movement with his hands are identified. From here onwards, this will be
referred to as context classification. This classifier prevents the generation of false positives
in the detection of resting tremors due to the performance of other types of activities. At the
same time, a second classifier is used to detect the presence of resting tremors.

For the assessment, in the segments in which the context classifier identifies that the
patient is at rest and the tremor algorithm detects the presence of tremors, the symptom
evaluation is carried out by analyzing the acceleration level in the tremor band. Addi-
tionally, the tremor constancy is analyzed by using the information of the resting and the
tremor periods. The proposed approach was developed according to the scheme shown in
Figure 4.

(most affected side)

: 0H® i

Context

' » classification :

DATA COLLECTION (Resting detection)
|_,| DATABASE | | Tremor Assessment |

GENERATION| : (Amplitude and Constancy)

W -
-l @ m &=

Tremor detector

Figure 4. Algorithmic approach for the assessment of resting tremor.

3.5.1. Context Classifier

The context classifier is designed to automatically detect the time segments in which
the patient is at rest, regardless of the presence of tremors. To validate the performance of
the context classifier, the LOSO cross-validation was used with the data of all patients.

In the LOSO methodology, the data of all patients except one are used for the training
of the model, the data of the remaining subject are used for the evaluation, and this process
is repeated for each patient. The results obtained with the LOSO methodology are the
average of the results of all patients.
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Triaxial
accelerometer
signals

To train and evaluate the algorithms, the signals of the triaxial accelerometer were
divided into fixed intervals (windows) of 2.56 s (128 samples) with a 50% overlap which,
according to [36], is a suitable time interval to analyze tremors with inertial sensors,
while the increase in this time does not present significant improvements. A window was
labeled as resting or nonresting only if more than 50% of its samples were labeled as resting
or nonresting. Windows with samples containing unknown labels or windows with labels
containing less than 50% of their samples labeled as a resting or nonresting were discarded
during training.

The signals were filtered by a Butterworth band-pass filters with cut-off frequencies of
0.5 to 10 Hz and third-order slope, which is a suitable range for human activity recognition
using sensors [84].

For the evaluation of the context classifier, several algorithms and three different types
of data representations were tested. The context classifier was developed following the
scheme shown in Figure 5, by using machine and deep learning techniques.

Signals ReaIISK B chon Classification Resting

Filtering and (_jata} Algorithm detection
normalization

Figure 5. Algorithm for the context classifier using machine and deep learning techniques.

To create a baseline for context classifier, 290 hand-crafted features commonly used
in context detection and automatic human activity recognition with smartphones and
smartwatches were extracted from the acceleration signals [77]. These types of features
are normally used to identify human physical activity (sitting, standing, walking, etc.);
however, in this study they were used to detect the context of the patient corresponding to
resting or nonresting periods.

The features extracted include time and frequency characteristics [77]. This data
representation has been evaluated using an AdaBoost [87] classifier with 100 estimators.
This algorithm was used as a baseline due to its good performance and because it does not
require complex adjustment of hyperparameters for training.

To compare the results obtained with the baseline, a second data representation based
on the frequency spectrum was implemented using the Fast Fourier Transform (FFT) [88]
obtained after calculating the Euclidean Norm of the signals (Equation (1)). This spectral
representation is used because in [40] the authors state that using characteristics extracted
from the frequency domain can provide results with similar performance to those obtained
by combining both time and frequency characteristics.

ali) = /a3 (i) + a3 (i) + a2(i) M)

where ay, ay, a; are the acceleration values related to x, y, and z axes.

The FFT-based data representation was evaluated using AdaBoost and Gradient Boost
classifiers [89].

As a second approach for the context classifier, a CNN was evaluated for classification
with the raw signals as data representation, taking advantage of CNN’s capability to
automatically extract discriminating characteristics from the signals [74]. For evaluating
the CNN, the signals of the triaxial accelerometer were filtered in the interval from 0.5 to
10 Hz and normalized in a range from O to 1.

The CNN used for the context classifier is composed of an input layer (128 samples
and 3 channels) and two one-dimensional convolutional layers (1-D CNN) with Rectified
Linear Unit (ReLU) activations. The first CNN layer has 128 filters (kernel = 8), and it is
connected to a max polling layer (pool size = 2). The second CNN layer uses 96 filters
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(kernel = 8), followed by a global average pooling (GAP) layer [90] which calculates the
average values of each of the feature-maps by reducing them to a dimension of 1 x 1.
For the classification, a dense layer with 190 units (ReLU activation) was connected to an
output layer with a sigmoid activation function to obtain the probabilities that the input
samples correspond to a resting segment. The architecture used for the implementation of
this classifier is shown in Figure 6.

1D Max 1D
Convolution ollin Convolution
_']l poling 1D Global Average
Pooling Full
connected
) 11
Input T
128*3 H
oo e GAP out Dense
| | o 96*1 (190 units)
Tl Feature maps Feature maps - Y g
128@(121*1) 96@(53*1) Classification
L J
Bl

Feature learning

Figure 6. Convolutional neural network used for the context classifier using the raw signals.

Deep neural networks are difficult to train due to the large number of parameters
that must be adjusted in each layer [91]. An accurate selection of these hyperparameters
controls the training process and has a great influence on the performance of the model.
The hyperparameter optimization was made by using the hyperband method [92]. During
this process, the following hyperparameters were adjusted: learning rate, the number of
CNNs and fully connected layers, the number of filters and kernel sizes in the CNN layers,
the number of neurons in the fully connected layers, and the batch-size.

The training is an iterative process that repeats until finding an acceptable solution for
a problem; in this process, the weights of the layers are updated iteratively. These iterations
are named epochs. The correct adjustment of the number of epochs is important to prevent
overfitting and unnecessary computing. The training of the CNN model was performed
by the retro-propagation method using the Adaptive moment estimation (ADAM) [93]
optimizer with a learning rate of 0.0046, the binary cross-entropy as loss function, a batch-
size of 64, and 200 as the max number of epochs. To avoid overfitting, an early-stopping
strategy was employed, which requires subdividing the training data into a proportion
of 80% for training (train—train) and 20% for validation (train-validation). A reduced
batch-size of 64 samples was chosen, allowing the model to achieve a better generalization
capability [94].

3.5.2. Tremor Detector

This detector was created to automatically detect the presence of tremors and was
used in conjunction with the context classifier to assess the symptom. For the evaluation
of this classifier, several feature extraction techniques and algorithms proposed in the
literature were reproduced and evaluated using the signals of the triaxial accelerometer
with windows of 2.56 s. A window was labeled as a tremor or nontremor only if more
than 50% of its samples had these labels. Windows containing unknown labels or windows
with labels containing less than 50% of its samples labeled as a tremor or nontremor were
discarded during training.

For the development of the tremor detector, the scheme proposed in Figure 5 (context
classifier) was used for machine and deep learning approaches.

The sets of features used to evaluate the tremor detector include: the spectral repre-
sentation (FFT) obtained from the Euclidean Norm of triaxial signals (used as a baseline),



Sensors 2021, 21, 291

14 of 29

features composed of the Mel frequency cepstral coefficients (MFCCs) adapted to inertial
signals as used in [49,56], a set of features proposed by Hssayeni et al. [15], a set of features
proposed by Mahadevan et al. [55], and the raw triaxial accelerometer signals used to
evaluate the deep learning approaches.

As in the context classifier experiments, the signals were filtered in the range of
0.5-10 Hz, except for the Hssayeni et al. [15] data representation filtered in the range of
0.5-15 Hz. A summary of the data representations used to evaluate the tremor classifiers is
shown in Table 3.

Table 3. Summary of the data representations used in the tremor detector.

Data Representation Number of Features Description of the Features
FFT 64 Symmetric part of FFT obtained from the Euclidean Norm.
MFCCs [49,56] 36 (12 x 3 channels) Mel frequency cepstral coefficients adapted toinertial signals.

Hssayeni et al. [15]

Power in bands (4-6 Hz and 0.5-15 Hz), autocorrelation features,
39 spectral entropy;, first and second dominant frequencies and
magnitudes, cross-correlations between pairs of the axis.

Mahadevan et al. [55]

RMS, signal range, signal entropy, dominant frequency and

64 (8 x 8 preprocessed signals)  magnitude, the ratio of the dominant frequency band to total energy,

spectral flatness, spectral entropy.

Raw signal

384 (128 x 3 channels) The raw triaxial signal obtained for the accelerometer.

Triaxial
accelerometer
signals

As in the context detector, a CNN model similar to that shown in Figure 6 was
evaluated for tremor detection using the raw signals of the triaxial accelerometer as an
input. The CNN was trained using the same hyperparameters of the context CNN and
using the early-stopping strategy to avoid overfitting.

3.5.3. Convolutional Multitask Models (Multitask CNN)

As a novel approach for the context classifier and tremor detector, a deep neural
network with two independent outputs was implemented and evaluated. The proposed
multitask CNN is capable of analyzing the context and the occurrence of tremors simulta-
neously. The model can reduce the number of trainable parameters that would be required
when using two independent CNN models for context classification and tremor detection.

The scheme proposed for the tremor assessment using the multitask CNN models is
shown in Figure 7.

Context
i classification| |
Feature extraction Multi-Output Tremor

Filtering | or dgta_ ™1 model Assessment
normalization Tremor g
Detector

Figure 7. Algorithm for the tremor assessment using a multitask Convolutional neural network (CNN).

The proposed model has convolutional and polling layers that are shared with two
separated branches with independent fully connected layers used for classification.

The multitask CNN is composed of two 1-D CNNss (128 filters, kernel = 8, and ReLU
activation). The first CNN is connected to a max polling layer (pool size = 2) and the second
is connected to a GAP layer. The convolutional and the polling layers were used for feature
learning. For classification, two individual branches composed of dense layers (each one
with 190 units and ReLU activation and dropout of 0.2) were connected to single-output
layers for context and tremor detection, each one with sigmoid activations.

The architecture used for the implementation of the multitask CNN classifiers is
shown in Figure 8.
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Figure 8. Multitask CNN used for the context classifier and the tremor classifier using raw signals.
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The multitask CNN was tested on the raw signals of the triaxial accelerometer and
the FFT data representation. As in the context classifier and tremor detector, the triaxial
signals was filtered in the range of 0.5 to 10 Hz and normalized in the range of 0-1. For the
multitask CNN with FFT, the input layer was adapted to receive data of 64 features with a
single channel (Input 64 x 1).

As in the CNN for context detection, the hyperparameter optimization was made by
using the hyperband method to identify a suitable learning rate and the number of units in
the fully connected layers of each branch.

The training of the model was performed by the retro-propagation method using an
ADAM optimizer [93], with a learning rate of 0.0039 for the model with raw signals and
0.0046 for the model with FFT. The loss function selected to train the model was the binary
cross-entropy. This loss function was used in the two branches with no weightings applied
to the outputs. Additionally, a batch-size of 64 and 200 as the max number of epochs was
selected. An early-stopping strategy was set in both models to avoid overfitting.

3.5.4. Resting Tremor Assessment

For the assessment, both the amplitude and tremor constancy were evaluated using
data of each experimental visit. These indicators were obtained to offer a long-term
monitoring mechanism to improve the outcomes for the clinical evaluation of the disease.

The evaluation of the amplitude of the tremors was made through the spectral anal-
ysis of the inertial signals. In agreement with the literature, the spectral analysis on the
accelerometer signals shows an increase in the level in the frequency band from 3.5 to
7.5 Hz [18] when the patient presents resting tremors (Figure 9).
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Figure 9. Spectrum of accelerometer signals for different tremor severities: (a) no tremor (UPDRS = 0); (b) slight tremor
(UPDRS = 1); (c) mild tremor (UPDRS = 2).
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In this study, to provide an amplitude indicator the acceleration level (La) of the RMS
amplitude in the tremor band (3.5-7.5 Hz) was calculated for each analysis window. In
windows in which the context detector detects that the patient is at rest and the tremor
detector identifies the presence of tremors, the acceleration level was calculated according
to Equation (2), using the reference acceleration as defined in ISO 1683 [95].

La = 20log a‘io @)

where a is the RMS acceleration (m/s?) and ag is the reference acceleration of 1 pum/s2.
The RMS values in the tremor band can be calculated from the frequency spectrum by
using Pacerval’s theorem (Equation (3)).

®)

where | X(f) | is the module of the FFT components in each spectral line.

After obtaining the acceleration level from all resting tremor windows, the 75th
percentile was obtained to simulate the clinical analysis situation using the UPDRS scale
in which the indicator of the amplitude of the tremors is the highest amplitude identified
during the evaluation.

Following the methodology proposed in [55] to analyze the amplitude of the tremors,
in this study it has been identified that using the acceleration level as a magnitude indicator,
the 75th percentile presents a better agreement with the clinical evaluation through the
UPDRS section 3.17.

For the evaluation of the tremor constancy, data from a weekly visit (6 min) were
analyzed (see Section 3.3). To provide a constancy indicator, the segments in which the
patient were at rest were compared with the segments detected as tremors, to obtain a
percentage of time in which the tremor appears during the examination period. The results
of the constancy of resting tremor were presented as a percentage to improve the resolution
of the analysis, instead of showing them with a discrete scale (from 0 to 4) as it is usually
made according to the UPDRS section 3.18.

4. Experiments and Results

For evaluating the proposed system, the performance of the context classifiers and
tremor detection were analyzed separately. Once the best classifiers were identified, pre-
dictions were made with the whole system and their performances were evaluated by
comparing them with the clinical evaluation made by a neurologist according to the UPDRS
guidelines for tremor constancy and amplitude.

The classifiers were evaluated using the LOSO methodology. The complete LOSO
process was repeated six times in each model to verify the variability in the results due
to the stochastic processes in the training procedure. The LOSO methodology is more
appropriate for the evaluation of data representations that use sliding-windows with
overlap, to prevent signal segments to be shared between training and validation subsets.

This section has been divided into four subsections: Section 4.1 shows the results of
the training of the multitask models. Section 4.2 shows the results of the context classifier.
Section 4.3 shows the results of the tremor detector. Section 4.4 shows a comparison of
the performance of the multitask CNN and the best models reproduced from previous
works. Section 4.5 shows the results of the multitask CNN per patient. Section 4.6 shows a
comparison of the performance of the deep learning models. Section 4.7 shows the results
of the resting tremor assessment using the multitask models.

4.1. Results of the Training of the Multitask Models

The convolutional multitask models shown in Section 3.5.3 have been implemented
and trained with the data representations based on the FFT and the triaxial accelerometer
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signals. The resulting loss curves for the training and test subsets of two models trained
during LOSO evaluation are shown in Figure 10.
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Figure 10. (a) Loss curves obtained from the training of multitask CNN with Fast Fourier Transform (FFT). (b) Loss curves

obtained from the training of the multitask CNN with triaxial signals.

Figure 10 shows that increasing the number of training-iterations (epochs), the value
of the losses decreases for the training and test subsets. The early-stopping strategy was
implemented with the test-loss as monitor and the patience parameter set to 10.

Figure 10a, corresponding to the multitasking CNN with FFT, indicates that there is
no significant improvement in the test-loss after epoch 62. Thus, overall, 72 epochs were
performed. The mean processing time for this model was 4.6 ms per batch (batch size of
64 samples) and 1.9 s per epoch.

Figure 10b, corresponding to the multitask CNN with triaxial signals, indicates
that there is no significant improvement in the test-loss after epoch 55. Thus, overall,
65 epochs were performed. The mean processing time was 6 milliseconds per batch and
2.4 s per epoch.

These results indicate that the multitask models were properly trained with the
configuration indicated in Section 3.5.3.

The mean processing time in the multitask CNN with a raw signal was slightly higher
than the model with FFT. This increase is because the model needs to handle a larger
amount of data corresponding to the three channels from the accelerometer and the model
needs to adjust a greater number of parameters in the training.

Additionally, the presence of overfitting was not identified because of the loss curves
for validation and testing decrease until the training was stopped by the early-stopping
strategy. The early-stopping was configured to restore the weights from the epoch with the
lower test-loss.

4.2. Results of the Context Classifier

For a binary classification problem (resting and nonresting) such as this, the results
obtained from the context classifier are expressed by sensitivity, specificity [96], and the area
under the curve (AUC) of the receiver operating characteristic curve [97]. The sensitivity is
the ratio of positives that are correctly identified, while specificity is the ratio of negatives
that are correctly identified. The values of sensitivity and specificity have been obtained
using a threshold of equal sensitivity and specificity.

Three data representations have been used for the evaluation of this classifier and
several classification algorithms have been evaluated such as AdaBoost (100 estimators),
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Gradient Boost (100 estimators), a CNN model trained with triaxial raw signals (128 sam-
ples x 3 channels) as indicated in Section 3.5.1, and two CNN multiout models trained
with raw signals and FFT, respectively (see Section 3.5.3). The results achieved for the
context classifier and its standard deviations (in parentheses) are summarized in Table 4.

Table 4. Results for the leave-one-subject-out (LOSO) evaluation of the context classifier using different approaches.

Data Representation # of Features Classifier Sensitivity Specificity AUC
HAR [77] (baseline) 290 AdaBoost 88.5% (5.56) 88.6% (5.58) 0.953 (0.037)
FFT 64 AdaBoost 88.6% (4.88) 88.6% (4.89) 0.954 (0.029)
FFT 64 Gradient Boost 89.8% (4.82) 89.8% (4.82) 0.961 (0.029)
Raw signal 384 CNN (with GAP) 89.8% (5.00) 89.8% (5.01) 0.962 (0.029)
Raw signal 384 multitask CNN 92.9% (3.42) 93.0% (3.58) ! 0.981 (0.017) !
FFT 64 multitask CNN 89.0% (4.91)1 89.1% (4.90) 1 0.960 (0.025) !

! Values obtained only from the context classifier output.

The results obtained for the context classifier show a similar performance between
the baseline (HAR features with AdaBoost) and the spectral representation (FFT) with the
AdaBoost, with sensitivities reaching 88.6%. A slight increase in sensitivity and specificity
was achieved when using a Gradient Boost classifier with the spectral representation;
additionally, similar results were achieved using the proposed CNN (single output) with
the raw signal as data representation, reaching a sensitivity and specificity of 89.8%, and
AUC up to 0.962. The best results were achieved using the CNN Multiout models trained
with both raw signals and the FFT.

4.3. Results of the Tremor Detector

The results for the tremor detector were achieved using the LOSO methodology. For
the LOSO evaluation, the results are the average of the partial results from the 14 patients
who presented tremors.

Several systems and algorithms have been evaluated including Support Vector Ma-
chines (SVMs) [98] (with a radial basis function kernel, gamma equal to 0.3, and penalty
parameter equal to 1), AdaBoost (100 estimators, with FIT and MFCCs), Random For-
est [99] (with 10 estimators as stated in [55]), Gradient Boost (with 70 estimators as stated
in [15]), a CNN (single output) with raw signals, and two multitask CNN models trained
with raw signals and the FFT features.

For the tremor detector, the SVM classifier with the FFT data representation was used
as a baseline. The results obtained in these experiments and their standard deviations
using LOSO evaluation are shown in Table 5.

Table 5. Results of the LOSO evaluation for different classifiers with data of patients with tremor.

Data Representation # of Features Classifier Sensitivity Specificity AUC
FFT (baseline) 64 SVM 81.1% (5.89) 80.5% (6.67) 0.872 (0.045)
AdaBoost o 0
FFT 64 (100 estimators) 84.3% (3.20) 84.4% (3.42) 0.918 (0.025)
AdaBoost o o
MECCs [49] 36 (100 estimators) 82.6% (4.86) 82.2% (4.65) 0.905 (0.040)
Random Forest o o
Mahadevan et al. [55] 64 (10 estimators) 82.3% (5.88) 84.0% (4.51) 0.893 (0.049)
. Gradient Boost o o
Hssayeni et al. [15] 39 (170 estimators) 84.1% (4.52) 84.0% (4.13) 0.922 (0.035)
Raw signal 384 CNN (with GAP) 84.1% (4.30) 84.0% (4.20) 0.915 (0.043)
Raw signal 384 multitask CNN 85.0% (5.15) 2 85.3% (5.13) 2 0.923 (0.039) 2
FFT 64 multitask CNN 86.1% (5.37) 2 86.1% (5.49) 2 0.936 (0.024) 2

2 Values obtained only from the tremor detector output.
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According to the results shown in Table 5, the two multitask CNN models present
higher performances in sensitivity and specificity; however, the system proposed by
Hssayeni [15] is the best shallow machine learning approach and presents a higher AUC
value than the multitask CNN with raw signals but presents similar results in terms of
sensibility and sensitivity (84.1% and 84.0%, respectively). According to these results, the
performance of this system could be considered for the implementation of a system based
on independent classifiers with shallow machine learning algorithms.

The AdaBoost algorithm with FFT also presents a good performance over the CNN
(single output), but less than the multioutput models. The remaining approaches have
shown AUC results up to 0.9, with sensitivities and specificities below 84%.

The best result in tremor detection has been achieved using the multitask CNN with
the FFT.

4.4. Comparison of the Multitask CNN Models with Previous Works

In this section, the best results obtained in the context classifier and the tremor de-
tector are analyzed. Additionally, for comparison purposes, the results obtained for both
classifiers are reported with the LOSO evaluation and the stratified 10-fold cross-validation.

For the stratified 10-fold evaluation the dataset was divided into 10 folds that were
created by preserving the percentage of samples for each class. From these folds, nine were
used for training and one for testing, and the process was repeated for each fold. The
results of the evaluation are the mean of the ten iterations. The use of the stratified 10-fold
cross-validation could lead to achieving over-optimistic results since the training and test
data are usually very similar.

Table 6 shows a summary of the best results obtained from the systems reproduced
from previous works and the results achieved with the multitask CNN models for both
context and tremor classification. The results are presented in terms of AUC for the LOSO
and the stratified 10-fold cross-validation.

Table 6. Comparison of the performance of the best systems reproduced from previous works and the best CNN multitask

systems.
Classification Task LOSO AUC Stratified 10-Fold AUC
HAR features [77] + Adaboost (with 100 estimators) Context 0.962 (0.029) 0.970 (0.003)
multitask CNN with raw signal (ours) Context 0.981 (0.017) 3 0.990 (0.002) 3
Hssayeni et al. [15] (Specific tremor features) Tremor 0.922 (0.035) 0.956 (0.003)
multitask CNN with FFT (ours) Tremor 0.936 (0.024) * 0.965 (0.003) *

3 Value obtained only from the context classifier output. * Value obtained only from the tremor detector output.

According to Table 6, the proposed models based on multitask CNN models show a
slight improvement in terms of AUC over the best results obtained from the reproduction of
previous works in both classification tasks and evaluation methodologies. As expected, the
results obtained from the stratified 10-fold cross-validation presents higher performances
over the LOSO evaluation.

The use of spectral representations seems to be suitable for accurate tremor detection,
while the use of complex data representations (including time and frequency features or
raw signals) seems to be suitable for context identification.

The results obtained in the LOSO evaluation present a higher standard deviation than
the stratified 10-fold validation. These variations are produced because some patients
present different movement and tremor patterns, thus producing a higher variation in the
global results.

In contrast, the stratified 10-fold evaluation presents a low standard deviation regard-
less of the system or the classification task, because of the similarity between the training
and test subsets.

A further comparison for each classifier (context and tremor) is provided in
Sections 4.4.1 and 4.4.2.
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4.4.1. Comparison with Previous Works for the Context Classifier

For the context classifier (resting periods), our best results were obtained with the
multitask CNN with the raw triaxial signals from the accelerometer. The best context
classifier shows a sensitivity of 92.0%, a specificity of 93%, and an AUC of 0.981, evaluated
through LOSO cross-validation. This classifier shows an increase in the performance over
the baseline (time and frequency features used in HAR [77] with AdaBoost) up to 4.4% in
the sensitivity and specificity.

In terms of AUC, an increase of 0.02 was achieved over the baseline in both evalua-
tion methodologies. For the context data, a difference of 0.01 in AUC is significant with
p-value < 0.001, according to Hanley’s method [97].

Additionally, a slight improvement in the performance over the baseline has been
shown in Table 4 using different data representations such as FFT and a Gradient Boost
classifier. While the CNN (single output) with raw signals present similar results to the
best shallow machine learning approach (FFT with Gradient Boost).

In addition to the improvement in the performance of the context classifier when
using models with multiple outputs, it can be observed according to Tables 4 and 5 that
the performance of the tremor detector is also increased. This improvement could be pro-
duced because the outputs of the CNN multioutput models share convolutional layers that
are used to automatically learn discriminating characteristics by the two branches of the
classifier, thus increasing the generalization capacity of the network and allowing the con-
volutional layers to learn discriminant characteristics useful for both context classification
and tremor detection.

4.4.2. Comparison with Previous Works for the Tremor Detector

The best result obtained in the present study for detecting resting tremors shows a
sensitivity of 86.1%, a specificity of 86.1%, and an AUC of 0.936 using a multitask CNN
with FFT, evaluated through LOSO evaluation. These results show an increase in the
performance—5% increase in sensitivity and 5.6% for the specificity when compared with
the baseline (SVM with FFT), and 2% (sensitivity and specificity) higher than the best
system [15] reproduced from previous works.

In terms of AUC, an increase of 0.014 and 0.009 was achieved in the LOSO and the
stratified 10-fold evaluation over the best method reproduced from previous works. For
the tremor data, a difference of 0.01 in AUC is significant with p-value < 0.001, according to
Hanley’s method [97]. Even with the increase in the AUC, the CNN multioutput (with FFT)
evaluated through the stratified 10-fold evaluation does not seem to show a significant
difference compared to the best reproduced method.

In the experiments performed in this study, the system proposed by Hssayeni et al. [15]
(handcrafted features with Gradient Boost) presents a higher performance in terms of AUC
among the shallow machine learning classifiers. This system shows a performance even
higher (0.922) than the CNN single-output trained with raw signals. Additionally, the
AdaBoost algorithm with FFT presents a good performance over the CNN single-output
(but less than the multitask models). For this reason, these shallow approaches could be
suitable for the development of systems dedicated only to the analysis of tremors or for
systems based on multiple classifiers.

The remaining approaches for tremor detection based on shallow classification algo-
rithms present lower performances, with sensitivities and specificities ranging from 80% to
84.0%. According to the results obtained in Table 5, the data representation based in MFCCs
(AUC 0.905) could be considered a good trade between performance and computational
burden due to the low number of features to be extracted.

In the related literature for tremor detection, sensitivities and specificities above 94%
have been reported using configurations of four or six accelerometers, such as in the
works of Rigas et al. [37], Keijsers et al. [33], Roy et al. [38] (with an additional EMG), and
Salarian et al. [31] (with two gyroscopes). Although these methods show a great perfor-
mance, the results obtained from the stratified 10-fold cross-validation using the multitask
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CNN presents similar performances, with AUC values up to 0.965, even considering the
use of a single sensor.

These results suggest that it is feasible to develop optimized systems that can reduce
the usability barriers such as the burden for the wearer when using multiple devices or the
need for assistance for the correct placement of the sensors on the body.

4.5. Results of the Multitask CNN Per Patient

For further analysis, Table 7 shows the results per patient obtained from the multitask
CNN models (FFT and triaxial raw data). The results presented are the mean values of
six evaluations obtained per patient using LOSO validation, in a similar manner to the
previous experiments.

Patients 4, 15, 17, and 18 did not preset tremors, therefore AUC values for tremor have
not been obtained.

Table 7. Area under the curve (AUC) results per patient of the multitask CNN models using LOSO
evaluation.

Patient ID Multitask CNN with FFT Multitask CNN with Raw Signals
AUC Context AUC Tremor AUC Context AUC Tremor

1 0.961 (0.003) 0.962 (0.004) 0.969 (0.005) 0.948 (0.010)
2 0.980 (0.002) 0.960 (0.002) 0.994 (0.0002) 0.926 (0.002)
3 0.960 (0.001) 0.981 (0.001) 0.975 (0.006) 0.978 (0.002)
4 0.956 (0.006) - 0.972 (0.001) -

5 0.950 (0.001) 0.928 (0.003) 0.971 (0.001) 0.902 (0.004)
6 0.935 (0.002) 0.913 (0.002) 0.952 (0.001) 0.848 (0.002)
7 0.936 (0.001) 0.933 (0.002) 0.981 (0.0002) 0.952 (0.002)
8 0.940 (0.003) 0.933 (0.004) 0.982 (0.003) 0.959 (0.005)
9 0.949 (0.003) 0.959 (0.005) 0.976 (0.002) 0.954 (0.005)
10 0.962 (0.003) 0.900 (0.003) 0.995 (0.0004) 0.904 (0.003)
11 0.975 (0.003) 0.915 (0.005) 0.990 (0.001) 0.826 (0.010)
12 0.890 (0.003) 0.924 (0.004) 0.951 (0.005) 0.887 (0.003)
13 0.985 (0.003) 0.909 (0.003) 0.995 (0.0003) 0.927 (0.003)
14 0.982 (0.0003) 0.932 (0.001) 0.996 (0.0005) 0.930 (0.007)
15 0.984 (0.001) - 0.997 (0.0003) -

16 0.957 (0.003) 0.959 (0.002) 0.969 (0.005) 0.935 (0.002)
17 0.981 (0.0001) - 0.991 (0.0004) -

18 0.993 (0.001) 0.998 (0.0004) -

According to Table 7, the multitask CNN model with FFT presents values over the
0.935 for the AUC Context with a maximum value of 0.993, except for patient 12 with an
AUC of 0.890. The AUC tremor present values over 0.900 in all cases, reaching a maximum
of 0.981.

For the multitask CNN model trained with raw triaxial signals, the AUC context
presents higher performances than the model trained with FFT. AUC Context values over
0.951 have been achieved with a maximum value of 0.998. In contrast, the AUC tremor
presents a lower performance than the FFT, although this model presents AUC values over
0.902, patients 6, 11, and 12 present lower performances (between 0.826 and 0.887) reducing
the overall performance of the model in tremor detection.

These results show an accurate performance in multiple task classification (context
and tremor) in the majority of the patients in both models. The standard deviation of the
six evaluations (trainings) present low variation for each patient and regardless of the
classification task, which indicates that the model generalizes well with data it has not seen
before using the configuration indicated in Section 3.5.3.
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4.6. Comparison of the Performance and Number Trainable Parameters of the Deep Learning
Models

Since the CNN models have presented higher performances for context and tremor
detection, this section analyses the number of parameters that must be trained for each of
the models. Table 8 shows a comparison of the number of trainable parameters and the
performance of the CNN approaches for context and tremor detection.

Table 8. Comparison of the number of trainable parameters and the performance of the convolutional models.

Model

Data Representation = Number of Trainable Parameters AUC Context AUC Tremor

CNN context (single output)
CNN tremor (single output)
multitask CNN
multitask CNN

Raw signal 120,221 0.962 (0.029) -

Raw signal 120,221 - 0.915 (0.043)

Raw signal 183,802 0.981 (0.017) 0.920 (0.044)
FFT 136,794 0.960 (0.025) 0.936 (0.024)

According to Table 8, the best result for context detection was achieved using the
multitask CNN with raw signal whereas the best result for tremor has been achieved by
the multitask CNN with FFT, over the CNN single-output models.

On the one hand, the multitask CNN with FFT has 16,573 additional parameters
compared with the single-output models. A reduced number of parameters could be used
to implement an efficient system that avoids the execution of two models which requires a
total of 240,442 parameters to perform the tremor assessment with a pipe such as the one
shown in Figure 4.

On the other hand, the use of the multitask CNN with raw signals present a higher
number of parameters (183,802 parameters). The use of this model could be justified by
the fact that it presents the best performance for context detection and it does not require
preprocessing, reducing the number of tasks that the system must perform to be used for
long-term monitoring.

According to results achieved in the context and tremor classification, the subse-
quent experiments were performed with the CCN multioutput models to evaluate the
methodology for tremor assessment.

4.7. Results of the Resting Tremor Assessment

Since the assessment of the symptom using amplitude and constancy is one of the
main objectives of the proposed system, the results obtained from the complete system were
compared with the clinical evaluations assessed by a neurologist from video recordings
according to the UPDRS sections 3.17 and 3.18. The results for the amplitude and constancy
were obtained using the best models (multitask CNN) trained during the LOSO evaluation
of context and tremor classifiers.

4.7.1. Results of the Amplitude Assessment

To evaluate the agreement between the acceleration level from the tremor band and
the amplitude obtained through the clinical evaluation performed by the neurologist, a
Kruskal-Wallis test was used, obtaining a chi-square = 20.84, p = 2.98 x 10~ for the
multitask CNN with FFT and a chi-square = 22.61, p = 1.23 x 10~ for the multitask CNN
with raw signals. Previously, a Shapiro-Wilk test was used to verify that the variables
grouped according to the clinical score do not follow normal distributions.

Post-hoc Dunn’s test was used for pairwise comparisons. Both multitask CNN ap-
proaches were able to significantly differentiate (p < 0.05) among all pairs of clinical scores
(pairs adjacent and nonadjacent). Figure 11 shows the agreement between the acceleration
level obtained from the multitask CNN models and the clinical evaluation (UPDRS 3.17).
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Figure 11. Agreement between the measurements of acceleration level derived from the resting tremor assessment and
the UPDRS clinical score. (a) Agreement obtained with the multitask CNN with FFT. (b) Agreement obtained with the
multitask CNN with raw signals.

4.7.2. Results of the Constancy Assessment

For the tremor constancy evaluation, the correlation between the clinical evaluation
and the constancy obtained by the proposed system for each of the weekly experimental
tests was analyzed.

As shown in Figure 12, a strong correlation was found between the constancy obtained
by video evaluation and the multitask CNN approaches.

=
o
o
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0 20 40 60 80 0 20 40 60 80
Video Tremor Constancy (%) Video Tremor Constancy (%)

() (b)

Figure 12. Correlation between the clinical evaluation and the constancy obtained by the system. (a) Correlation obtained
with the multitask CNN with FFT. (b) Correlation obtained with the multitask CNN with raw signals.

For the multitask CNN with FFT, a Person r = 0.969, p = 3.99 x 10~% was found,
while for the multitask CNN with raw signals, a Person r = 0.959, p = 1.56 x 10~ was
achieved. The results are shown in percentages to offer a better resolution for monitoring.

5. Discussion and Conclusions

This study analyzes the use of consumer smartwatches and their embedded accelerom-
eters for monitoring and evaluating resting tremor in PD patients. The proposed method is
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composed of a context classifier that detects resting times, a tremor detector, and a module
that assesses the amplitude and constancy of resting tremors. According to the results
achieved, the proposed approaches based on CNN with multiple outputs are capable of
deriving significant measures of the amplitude and constancy of resting tremors from the
data collected during the performance of a set of programmed activities and rest periods.

The frequency response of the embedded accelerometer from the smartwatch has been
verified to analyze the accuracy of the device for measuring the amplitude of the tremor.
The results of the comparison with a reference accelerometer show a linear frequency
response in the range of 3.15-20 Hz for amplitudes of 1 and 3 m/s?, and a linear frequency
in the range of 5-20 Hz for an amplitude of 5 m/s?, which is a suitable frequency range
for tremor analysis and activity detection. Additionally, the maximum amplitude range of
the sensor (£2 g factory-set) has not been exceeded in the tests performed in this study for
slight and mild tremor severities according to section 3.17 of the UPDRS guide.

It should be noted that an accurate selection of the data acquisition devices and sensors
is relevant to develop systems with high performances. Optimized systems should be
able to maintain high performance despite the variability of movement patterns or motor
symptoms among patients, even by resorting to the use of a single sensor. In this study, the
technical characteristics of a consumer smartwatch and its built-in accelerometer seem to
be suitable for the acquisition of data to assess resting tremor in patients with PD.

The experimental protocol for data collection was carried out with 18 PD patients who
performed a series of scripted activities alternated with rest periods. From the data collected
in these experiments, several implementations of context classifiers (resting periods) and
tremor classifiers have been evaluated.

For the implementation of the system, a hierarchical system was developed to si-
multaneously identify the resting times and the presence of tremors of the upper limbs.
This approach opens opportunities for continuous monitoring in free-living environments
without interrupting the patients’ daily lives. Additionally, with this approach, the sec-
tions identified as movements can be used to evaluate other PD motor symptoms such as
bradykinesia.

When evaluating the complete system, the errors made by the context classifiers and
the tremor detector did not appear to have a significant impact on the symptom assessment
results; however, there was a risk of error propagation (if any of the classifiers present
a high error). For this reason, novel algorithms, such as the proposed CNN classifiers
(single and multioutput) shown in Sections 3.5.1 and 3.5.3, could be used to improve the
performance and reduce the risk of error propagation, even considering an increase in the
number of parameters to be used for the classification models.

The evaluation of the context classifier using the LOSO methodology shows that the
best results were obtained through the use of a multitask CNN, using the raw signals as
input. Although this approach presents the best performance, the model has a higher
number of trainable parameters (183,802) among the models presented in this work. The
use of this model could be supported by the fact that the system implemented did not
require preprocessing techniques besides the extraction of the acceleration level. The
development of models similar to this could support the implementation of end-to-end
systems where a complex feature extraction creation and evaluation process is not required.

For the tremor classifier, it was identified that the approach based on the multitask
CNN with spectral representation presents a higher performance. As in [40], it was found
that features extracted only from the frequency domain may allow tremor detection with
sufficient accuracy to be used for the assessment of amplitude and constancy of tremor.
This situation presents opportunities for the improvement and development of optimized
systems for continuous operation, considering novel deep learning architectures and spec-
tral data representations. For evaluating the performance of the resting tremor assessment,
the present approach was compared with the clinical assessment made by the UPDRS
sections 3.17 and 3.18. The results show a high agreement between the clinical assessment
of the tremor amplitude and the acceleration level obtained from the data acquired by
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the smartwatch and using the multitask CNN models (Kruskal-Wallis chi-square = 20.84;
p =298 x 107> for the multitask CNN with FFT and a chi-square = 22.61; p = 1.23 x 107>
for the multitask CNN with raw signals). The pairwise comparisons show a capacity to
significantly differentiate between the absence of tremor (clinical score 0) and the presence
of tremors with clinical scores of 1 and 2.

Additionally, a high correlation has been identified between the tremor constancy
obtained through video evaluation and the constancy obtained from the multitask CNN
(Person r=0.969; p = 3.99 x 10~% for the multitask CNN with FFT, and Person r = 0.959;
p =156 x 107 for the multitask CNN with raw signal).

The best results obtained in this study for multitask classification with LOSO evalua-
tion show a sensitivity and specificity of 86.1% for tremor detection using the multitask
CNN model with a spectral data representation while maintaining high performance in
context detection (sensitivity of 89% and specificity of 89.1%).

These findings suggest that it is feasible to obtain significant measures of the amplitude
and constancy with the accelerometers from consumer smartwatches and deep learning
techniques based on multitask classification using convolutional networks to monitor
patients in the early stages of the disease.

Although this paper presents an approach that analyzes tremor during rest periods
based on a sequence of scripted activities (including exercises extracted from the UPDRS),
the presented system is completely transferable for use in free-living environments, taking
advantage of the capability of the context classifier to determine if the patient is at rest
and is not performing any activity. During these periods, the whole system may be able to
extract information that can be used to make an accurate analysis of the evolution of the
symptom over time in an automated manner.

The smartwatch used in this study is capable of storing over 1000 discrete tests of six
minutes (1.5 MB each test sampled at 50 Hz) in its internal free memory (2 GB). A high
amount of data storage may be required to store the accelerometer data for continuous
analysis—for example, performed over several months.

A possible solution to handle a high amount of data is the implementation of on-
device processing (edge computing) to reduce the amount of data stored in the device.
Additionally, it is possible to use cloud storage, for both inertial signals and the tremor
assessment results obtained from automatic identification systems such as the one proposed
in this work. These solutions can be implemented by taking advantage of the processing
and wireless communication capabilities of the smart wearable devices [64].

The main contributions of this paper are the characterization of the embedded ac-
celerometer of a consumer smartwatch to identify its accuracy to measure the amplitude of
the tremor to be used as an indicator of the severity of the symptom, using standardized
metrics (acceleration level) and reference values for measuring vibration levels. Addition-
ally, the implementation and evaluation of novel approaches based on multitask CNNs
to assess the resting tremor in PD. These approaches have been evaluated using both raw
signals and spectral data representations as inputs. The results obtained from these models
indicate an increase in the performance for context and tremor detection when compared
with the reproduction of systems proposed in the related literature.

Despite the potential advantages of the system, it should be noted that an accurate
amplitude evaluation requires a properly calibrated sensor to provide an accurate rep-
resentation of the movement. Additionally, it must be taken into account that there is a
possibility that the system may underestimate the highest amplitude scores due to the
configuration of the analysis range established at the factory in the sensors (+2 g). Future
studies will analyze the influence of the sensor for the evaluation of patients in more
advanced stages of the disease, who could present tremors with higher amplitudes.

Although certain technical limitations in the smartwatches were identified, the results
suggest that the approach based on consumer smartwatches and deep learning techniques
can be feasible and derive significant measures for symptom monitoring in patients in the
early stages of the disease. The use of affordable wearable technology shows high potential
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and opportunities for the development of tools that can be integrated into the routine care
and assessment of PD patients. In this way, affordable tools can be developed to improve
the management and monitoring protocol through objective evaluations, which can be
made automatically and in a continuous manner, enabling the development of effective
treatments in clinical and ambulatory settings.
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