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Abstract: Fatigue is one of the main forms of deterioration in asphalt mixtures, endangering their
service life due to the progressive appearance and expansion of cracks. A sustainable approach to
increase the lifetime of asphalt pavement has been found in self-healing technology, especially if
boosted with metal by-products due to their economic and environmental interest. Under these
circumstances, this research addressed the fatigue behavior of self-healing asphalt mixtures including
industrial sand blasting by-products obtained from sieving and aspiration processes. Hence, a
uniaxial fatigue test was carried out to determine whether these experimental mixtures can provide
a similar response to that of a reference asphalt concrete (AC-16). This analysis was undertaken
with the support of descriptive and inferential statistics, whose application proved the absence of
significant differences in the fatigue performance of self-healing experimental mixtures with respect
to conventional asphalt concrete. These results suggest that designing self-healing mixtures with
metal by-products is a sustainable approach to increase the lifetime of asphalt pavements, while
contributing to the circular economy through diverse economic and environmental benefits.

Keywords: asphalt mixture; fatigue; metal by-products; statistical analysis; self-healing; waste
valorization

1. Introduction

Fatigue cracking is one of the most frequent types of failure in asphalt mixtures [1].
This phenomenon is related to the deterioration experienced by pavements because of
the repeated application of loads with less magnitude than the maximum resistance of
the materials forming them [2]. However, fatigue is not only affected by the structural
composition and intrinsic characteristics of the materials, but also by environmental factors
that cause additional distresses, such as the thermal stresses entailed by the existence of
oscillations in temperature [3]. In the end, the combination of these conditions leads to the
progressive cracking of the mixtures, which eventually results in their breaking.

This process is usually divided into three steps related to the creation of higher stresses
around the location of cracks, which in turn cause their subsequent expansion [4]. Hence,
first is crack initiation, which involves a decrease in the dynamic modulus of the mixture.
Then, cracks propagate to result in larger cracks due to the merger of those generated in
the first instance. Finally, the last stage involves the rapid evolution of these macrocracks
until they cause the breakage of the mixture.

As such, fatigue is associated with the service life of asphalt mixtures. In this sense,
it is related to the concept of self-healing, which seeks to extend the lifetime of asphalt
mixtures by including metal particles whose heating fluidizes bitumen to fill cracks caused
by aging phenomena [5]. Self-healing has evolved a lot in the past few years due to its
potential to produce more economically and environmentally efficient asphalt mixtures,
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especially when adding metal by-products [6]. This has resulted in a variety of studies
where self-healing is tested in laboratory [7,8] and modeled using different numerical
methods [9,10].

Some authors, such as Arabani and Mirabdolazimi (2011) [11], conducted fatigue tests
on asphalt mixtures containing waste iron powder, achieving an increase in their strength
in comparison to conventional samples. These results were aligned with those obtained
by Shafabakhsh and Ani (2015) [12], whose investigation led to an improved fatigue life
in asphalt mixtures with modified bitumen and steel slags as additives. However, these
studies were only oriented to determine the contribution of metal particles to improving
the resistance of asphalt mixtures, disregarding their healing potential.

Instead, several studies have focused on pairing the concepts of fatigue and self-
healing to ensure the environmental sustainability of asphalt pavements. One of the first
examples found in the literature was carried out by Kim et al. (2003) [13], who evaluated
the innate capacity of sand asphalt samples to heal during rest periods after fatigue tests.
This approach is aligned with that presented by Yang et al. (2016) [14], who checked
the self-healing of asphalt by undertaking four-point fatigue tests with and without rest
periods. Other authors have focused on the induced healing of asphalt mixtures. Hence,
the healing effect of asphalt mixtures reinforced with steel wool after being subject to
a four-point bending fatigue resistance test was addressed in Liu et al. (2012) [15] and
Liu et al. (2012) [16]. Their conclusions coincided with those achieved by Menozzi et al.
(2015) [17], suggesting that the service life of asphalt concrete can be extended if induction
heating is applied.

Considering the scope of these studies, a research gap was found in the evaluation
of the fatigue behavior of self-healing asphalt mixtures including metal by-products. On
the one hand, there are investigations devoted to the fatigue testing of asphalt mixtures
containing waste by-products; however, they exclusively focused on the resistance of the
mixtures whose design was not validated in terms of self-healing capacity. On the other
hand, some studies did assess the fatigue response of asphalt mixtures designed for healing
purposes. However, the inductors in these mixtures were virgin metal particles instead of
by-products. In addition, fatigue tests were applied to deteriorate the specimens and then
heal them via magnetic induction, without reaching their breakage point.

In this context, this research aimed at evaluating the fatigue response of asphalt
mixtures containing metal by-products suitable for self-healing purposes. Thus, three types
of mixtures were tested in laboratory, two of which included metal wastes to replace part
of the aggregates and the filler. Then, a statistical analysis was conducted to determine
whether the fatigue behavior of the experimental mixtures significantly differed from that
of a conventional asphalt concrete.

2. Materials and Methods

A graphical summary of the steps taken to carry out this study is provided in Figure 1.
First was the design of three groups of asphalt mixtures, two of which included two
shortlisted metal by-products because of their proven capacity for boosting self-healing.
Then, a series of samples prepared from these mixtures were subject to fatigue tests to
determine their damage characteristic curves. Finally, the results achieved in laboratory
were examined with the support of descriptive and inferential statistics. Below is provided
a more detailed description of these steps.
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Figure 1. Graphical summary of the main steps forming the proposed methodology.

2.1. Asphalt Mixture Design

This study was framed in Spain, where the majority of warm mix asphalt production
(69%) was in the form of surface courses in 2019. In turn, 81.2% of these surface courses
was made of asphalt concrete during that year [18]. As such, a dense asphalt concrete
(AC-16) mixture including ophite as coarse aggregate and limestone as fine aggregate was
dosed as a reference (REF). The experimental mixtures also contained metal by-products
from sandblasting processes. These by-products were incorporated into the mixtures
straightforwardly, without applying any previous treatment to facilitate their addition.
This course of action was adopted to obtain a realistic vision of the viability of using metal
wastes to replace virgin materials in asphalt mixtures.

In the case of the first group of experimental samples (SB1), the by-products (4.4%)
stemmed from a sieving process and were used to replace part of the fine aggregates. The
second group (SB2) included by-products from sieving and aspiration processes (7.9%),
such that they performed as substitutes for both fine aggregates and filler. These two by-
products were selected for testing due to their remarkable response in terms of self-healing
and high waste content, respectively [10].

Their healing potential was evaluated via a break-heal-break process through which
asphalt mixtures containing metal wastes were subject to a three-point bending test and
magnetic induction [19]. The results of this experiment revealed that by-products stemming
from sandblasting processes (SB1 and SB2) were especially suitable to perform as heating
inductors. Figure 2 depicts the texture of these sandblasting by-products depending on the
process used for their extraction.

Coatings 2021, 11, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Graphical summary of the main steps forming the proposed methodology. 

2.1. Asphalt Mixture Design 
This study was framed in Spain, where the majority of warm mix asphalt production 

(69%) was in the form of surface courses in 2019. In turn, 81.2% of these surface courses 
was made of asphalt concrete during that year [18]. As such, a dense asphalt concrete (AC-
16) mixture including ophite as coarse aggregate and limestone as fine aggregate was 
dosed as a reference (REF). The experimental mixtures also contained metal by-products 
from sandblasting processes. These by-products were incorporated into the mixtures 
straightforwardly, without applying any previous treatment to facilitate their addition. 
This course of action was adopted to obtain a realistic vision of the viability of using metal 
wastes to replace virgin materials in asphalt mixtures. 

In the case of the first group of experimental samples (SB1), the by-products (4.4%) 
stemmed from a sieving process and were used to replace part of the fine aggregates. The 
second group (SB2) included by-products from sieving and aspiration processes (7.9%), 
such that they performed as substitutes for both fine aggregates and filler. These two by-
products were selected for testing due to their remarkable response in terms of self-heal-
ing and high waste content, respectively [10]. 

Their healing potential was evaluated via a break-heal-break process through which 
asphalt mixtures containing metal wastes were subject to a three-point bending test and 
magnetic induction [19]. The results of this experiment revealed that by-products stem-
ming from sandblasting processes (SB1 and SB2) were especially suitable to perform as 
heating inductors. Figure 2 depicts the texture of these sandblasting by-products depend-
ing on the process used for their extraction. 

  
(a) (b) 

Figure 2. Texture of the sandblasting metal by-products used in the experimental mixtures accord-
ing to their extraction process: (a) sieving; (b) sieving and aspiration. 
Figure 2. Texture of the sandblasting metal by-products used in the experimental mixtures according
to their extraction process: (a) sieving; (b) sieving and aspiration.



Coatings 2021, 11, 385 4 of 14

Given the differences in the extraction processes used to obtain the by-products, the
dosage of the experimental mixtures was approached to match the particle size distribution
curve of the reference samples (AC-16), instead of making it according to the weight or
volume of their components [19]. In other words, the AC-16 particle size distribution
determined how much material might be added to the experimental mixtures without
causing important deviations from the spindle. This enabled comparing the experimental
samples with the reference mixture regardless of the amount of materials replaced by
by-products in the former.

The percentage of bitumen was determined according to the Spanish Standard EN
13108-1 [20], which establishes a minimum content of 4.5% in mixtures with aggregates
with a density of 2.65 g/cm3. Hence, the required bitumen content (rbc) for the mixtures
was computed as a function of the density (ρ) of the aggregates and metal particles (when
applicable), as shown in Equation (1). Table 1 compiles the resulting ratios of bitumen
in the mixtures, as well as the particle size distribution of their aggregates according to
UNE-EN 933-2/1M:1999 [21].

rbc (%) = 4.5
2.65
ρ

(1)

Table 1. Bitumen content and particle size distribution of the aggregates forming the asphalt mixtures
tested.

Group Bitumen (%)
Sieve Size (mm)

16 8 4 2 1 0.5 0.25 0.13 0.063

REF 4.2 100.0 67.0 43.0 32.0 23.5 14.2 10.4 - 5.8
SB1 3.9 100.0 70.4 44.4 32.3 24.8 16.7 11.3 8.4 6.0
SB2 3.8 100.0 69.2 43.6 31.0 22.3 15.0 11.3 8.7 6.1

The groups to be tested in subsequent steps were combined in a mixer in the following
order: coarse aggregates, fine aggregates along with by-products (when appropriate) and
bitumen. After mixing these components in a drum for a minute, the filler was added,
and the resulting mixture was blended during four additional minutes. The by-products
were previously heated at 170 ◦C along with the fine aggregates and the filler to facilitate
their distribution across the mixtures. Coarse aggregates were also heated at 170 ◦C before
mixing, while this process was carried out at 155 ◦C in the case of the bitumen.

2.2. Laboratory Test

The asphalt concrete mixtures defined in the previous section were characterized
using the Standard Method of Test for Determining the Damage Characteristic Curve of
Asphalt Mixtures from Direct Tension Cyclic Fatigue Tests (AASHTO TP 107-14) [22]. This
test consists of applying repeated loads to cylindrical asphalt specimens until their failure.
Such specimens must be prepared to result in a nominal maximum size aggregate less than
or equal to 37.5 mm.

The output of the test is the damage characteristic curve, which stands for the relation-
ship between the structural integrity and the amount of damage in a mixture. As such, it is
calculated by relating the damage (S) and the pseudo secant modulus (C), whose values
are represented in the form of a curve. Considering the viscoelastic properties of asphalt,
the results of this test can be used to assess the fatigue of the samples tested.

The fatigue test was carried out on specimens cored from larger Superpave gyratory
compacted samples. Given the design approach used, whereby the experimental mixtures
(SB1 and SB2) were dosed to resemble the particle size distribution of the reference (REF),
the air voids’ content was made constant for all three groups. To this end, the Superpave
gyratory compactor was set to reach 8% air voids in the specimens.

This value decreased to 5% when the core was extracted and its top and bottom
surfaces were cut to result in cylinders with 100 mm diameter and 130 mm height, as
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represented in Figure 3a,b. In this sense, it is worth mentioning that the experimental
mixture with the highest content of metal by-products (SB2) exhibited higher resistance to
be cut, which caused greater abrasion on the saw, thereby hindering its application to these
samples. Then, the specimens were glued and prepared (Figure 3c) for the uniaxial fatigue
test in the AsphaltQube machine designed by CONTROLS Group [23], which led to their
total breakage in some cases, as illustrated in Figure 3d.
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An example of the outputs derived from the test is provided in Figure 4, including
a graph of the number of cycles withstood by the samples according to the modulus and
phase angle. Figure 4 also includes the values of other parameters determined before
running the test, such as the compliance factor (K), whose calculation was automated by
the software associated with the machine from the peak-to-peak strain amplitude.

The fatigue test served to evaluate the traction-compression fatigue resistance of the
mixtures, which were studied in subgroups of three specimens. A deformation of 300 mi-
crostrains was applied to test the first group. Based on the number of cycles resisted by this
specimen, the values of deformation for the two other groups were determined to result in a
curve representing the fatigue response of the mixtures in the most comprehensive possible
manner. In the case of this research, these values corresponded to 250 and 350 microstrains.
Overall, there were a total of nine samples per mixture, such that each value of deformation
was used to test a subgroup of three specimens.
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2.3. Statistical Analysis

A statistical analysis was performed to prove the suitability of replacing virgin ma-
terials with metal by-products in terms of fatigue resistance. This was accomplished by
applying descriptive and inferential statistics. Figure 5 summarizes the main statistical
tests considered for the analysis of the results obtained in laboratory.
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On the one hand, a descriptive analysis was conducted to explore and characterize
the results derived from the laboratory [24]. First, a descriptive statistical summary of
the three groups of mixtures tested was carried out. This included a variety of statistical
measures (mean, standard deviation, skewness, kurtosis, median, etc.), a histogram and a
representation of the confidence intervals of the samples.

In addition, this summary also provided the results of the Anderson–Darling (A–D)
test [25], which determined whether the types of mixtures were normally distributed or
not. The existence or absence of normality in the data was checked using the concept of
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p-value, which represents the probability of rejecting the null hypothesis (H0) when it is
true [26]. As opposed to the alternative hypothesis (H1), H0 indicated that the number of
cycles resisted by the specimens of a group followed a normal distribution. The p-value
was compared with a significance level (α) of 0.05 [27] to determine the probability of
wrongly rejecting H0.

Then, the degree of association between the values of deformation set for the fatigue
test and the number of cycles resisted by the specimens was calculated using the Pearson’s
correlation coefficient [28]. In the case of this test, H0 refers to the absence of a statistically
significant correlation between microstrains and number of cycles. Therefore, the alterna-
tive hypothesis (H1) can be accepted if the p-value is below 0.05, indicating a statistically
significant relationship.

To further explore the patterns of the results collected in laboratory, the Grubbs’ test
was applied to detect the presence of outliers [29]. This step is important to identify
phenomena such as errors in the experiments, anomalous dispersion, etc. When referred to
the Grubbs’ test, a p-value below 0.05 enables accepting the alternative hypothesis (H1),
which denotes the presence of exactly one outlier.

Inferential statistics were used to extrapolate the results of the laboratory tests [30]. In
the context of this study, the application of inferential statistics was intended to demonstrate
that asphalt mixtures including metal by-products can exhibit a fatigue behavior no worse
than conventional ones.

Inferential statistics were used in the form of comparison tests to determine whether
there was a statistically significant different between the fatigue resistance of reference (REF)
and experimental (SB1 and SB2) mixtures. These tests can be parametric (ANOVA and
Student’s t test) or non-parametric (Kruskal-Wallis, Mood’s Median and Mann-Whitney
U tests) depending on whether the datasets under study were normally distributed and
homoscedastic or not. Hence, one test or another was used depending on the number of
groups to compare (2 or more than 2) and the characteristics of the data.

Homoscedasticity was evaluated through the Levene’s test, which is based on deter-
mining the deviation of the fatigue-related results from the median of values in the group to
which they belong [31]. If H0 is accepted (p-value > 0.05), then the dataset is homoscedastic.
In case both assumptions were met, a one-way analysis of variance (ANOVA) [32] and the
Student’s t test [33] could be used to compare all three groups and each pair of groups,
respectively. A p-value ≤ 0.05 would suggest the existence of statistically significant
differences in the fatigue response of the samples.

Non-parametric tests were used if any of the three datasets was found to violate
either normality or homoscedasticity. The overall analysis of differences among the three
groups required an additional verification in the case of non-parametric tests, since the
Kruskal–Wallis [34] or the Mood’s median [35] tests are applicable depending on whether
there are outliers in the data or not. Pairwise comparisons can be carried out using the
Mann–Whitney U test [36] in all cases.

3. Results and Discussion

A summary of the results obtained in laboratory is provided in Table 2, including the
number of cycles achieved by each specimen according to the microstrains considered. As
mentioned in the description of the laboratory works, each group of samples was further
divided into three subgroups, such that each of them was tested at a deformation level: 250,
300 and 350 microstrains. Below are presented and discussed the outputs derived from
applying the statistical tests illustrated in Figure 5 to these data.
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Table 2. Compilation of the results yielded by the uniaxial fatigue test.

Group Sample Microstrains No. of Cycles

REF

1 300 13,750
2 350 5860
3 250 47,840
4 300 11,980
5 350 6260
6 250 37,390
7 300 17,860
8 350 5160
9 250 34,200

SB1

1 300 10,780
2 350 3450
3 250 36,820
4 300 11,640
5 350 3200
6 250 25,320
7 300 9940
8 350 4210
9 250 40,320

SB2

1 300 14,030
2 350 4650
3 250 31,900
4 300 7390
5 350 4600
6 250 12,940
7 250 54,430
8 300 8760
9 350 4520

3.1. Descriptive Analysis

To explore the characteristics of each group of samples, their descriptive statistical
summary was produced as depicted in Figure 6. The values of skewness and kurtosis were
especially relevant, since they differed a lot for the mixtures with sandblasting by-products
obtained from sieving and aspiration (SB2). On the one hand, its high value of skewness
indicated that the right tail of the distribution was larger than the left one, so that the
samples achieving a higher number of cycles were more separated from the mean in this
group than in the others. On the other hand, its high value of kurtosis suggested a higher
concentration of data around the mean. In the end, both measures pointed to the high
variability exhibited by this type of mixture in terms of fatigue resistance.

As a validation step, the Pearson’s correlation coefficient between the microstrain
levels considered and the number of fatigue cycles resisted by the samples before breaking
was determined. When calculated for the three types of samples, the coefficient was −0.821
(p-value = 0.000), which suggested a strong negative and statistically significant correlation.
This result is logical, since high displacements due to stress corresponded to a reduced
number of cycles withstood by the samples. If this analysis was carried out separately, the
results were −0.880 (p-value = 0.001), −0.919 (p-value = 0.000) and −0.734 (p-value = 0.024)
for REF, SB1 and SB2, respectively.

Although it was high too, the strength of the association between both variables
slightly decreased in the case of the mixtures with sandblasting by-products from sieving
and aspiration processes (SB2). This was mainly due to the high dispersion in the perfor-
mance of the samples tested for 250 microstrains, whose number of cycles ranged from
12,940 to 54,430. As indicated in Figure 6, the results of the A-D test suggested that REF
and SB1 were approximately normal. Instead, the p-value associated with SB2 was below
the significance level (0.05). As such, the Grubbs test was computed for the case that the
second experimental mixture contained an outlier.
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Figure 7 shows the results of applying this test to the three groups, which confirmed
that the maximum number of cycles reached in SB2 was an outlier, since it was 2.29 standard
deviations more than its mean (p-value < 0.05). The reason behind this variability may lie
in the different origins of the high content of waste present in this mixture (7.9%), which
might be affecting the homogeneity of its dosage and, therefore, the consistency of results
in terms of fatigue.
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3.2. Inferential Analysis

A main effects plot (Figure 8) was prepared to examine how the mean of the response
variable (number of cycles resisted by the specimens) was affected by the two main factors
under consideration: the type of asphalt mixture (group) and the deformation (micros-
trains). Horizontal lines (parallel to the x axis) are interpreted as a signal of absence of
influence of the factor on the response, and vice versa for vertical patterns. Hence, Figure 8
reveals that deformation was relevant for the fatigue behaviour of the mixtures, especially
in the case of 250 microstrains. The aspect of the left part of the plot suggests that the
number of cycles reached in the tests might be similar for all the specimens regardless of
the group they belonged to.
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To confirm the inferences drawn from the main effects plot, the fatigue resistance of the
three groups of samples was compared. To this end, the first step consisted of identifying
the types of statistical tests that best fitted the characteristics of the dataset. These tests
might be parametric or non-parametric depending on whether the distribution of the data
resembled normal patterns or not. Figure 4 shows the results of the Anderson–Darling
test, which suggested that the samples belonging to the reference group were normally
distributed (p-value = 0.104); however, this assumption could not be guaranteed for those
mixtures including steel wastes (p-values < 0.050). This circumstance may indicate that
the presence of wastes can hinder the symmetric distribution of values around the mean
number of cycles withstood by the samples.

Under this premise, non-parametric tests must be used for subsequent analysis. Since
there was an outlier in the second group of experimental mixtures (Figure 7), the whole
group of samples was assessed using the Mood’s median test (Figure 5). The p-value
achieved in the test (>0.050) suggested that the differences among the fatigue resistance
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of the mixtures were not statistically significant, as shown in Table 3. In other words, this
result provided evidence of the viability of using industrial by-products for designing
asphalt pavements in terms of fatigue resistance, since the performance of the experimental
samples could not be concluded to be worse than that of the reference mixtures.

Table 3. Comparative evaluation of the three groups of asphalt mixtures using the Mood’s median test.

Group Median N ≤ Overall
Median

N > Overall
Median Q3–Q1 Chi-Square p-Value

REF 14,815 3 7 28,838 - -
SB1 10,780 6 3 27,240 - -
SB2 8760 5 4 18,340 - -

Overall 11,810 - - - 2.71 0.258

To further ratify the general trend of the results compiled in Table 3, the Mann–Whitney
U test was applied to compare the number of cycles resisted by each pair of asphalt mixture
groups. The p-values included in Table 4, which were above the significance level in all
cases (0.050), not only confirmed the absence of differences between the performance of
experimental and reference samples (REF × SB1 and REF × SB2), but also the lack of
influence of the process used to obtain wastes in the fatigue resistance of the mixtures
(SB1 × SB2). Therefore, this inference was also promising in the sense of encouraging the
testing of the fatigue response of asphalt mixtures including different wastes.

Table 4. Comparative evaluation of each pair of groups of asphalt mixtures using the Mann–Whitney
U test.

Comparison Difference CI for Difference Achieved Confidence W-Value p-Value

REF x SB1 2410 (−7460; 22,560) 95.77% 96.00 0.377
REF x SB2 2300 (−7770; 24,450) 95.77% 96.00 0.377
SB1 x SB2 −440 (−9820; 17,930) 95.45% 83.00 0.860

Overall, these results mean that the experimental mixtures tested have a similar fatigue
behaviour to that of conventional asphalt. As such, they would be completely valid to
withstand traffic loads if implemented in the field. However, high amounts of waste can
lead to high dispersion in the results, especially in long tests (i.e., those with low values of
deformation). This might be related to the heterogeneity caused by this high content of
by-products, which in turn hinders the preparation of specimens and their uniformity for
subsequent testing.

In this sense, checking how this heterogeneity may affect the results if conducting the
analysis per strain level would also be of great interest. However, this breakdown was
hindered by the limited number of replications available. In turn, this was a consequence
of the difficulties found in acquiring larger amounts of metal by-products with analogous
characteristics, since the sieving and aspiration processes leading to them caused great
variations in their particle size distribution. This circumstance was ascertained by the
receipt of new batches of SB1 and SB2 by-products that were discarded for fatigue testing
due to their incompatibility with those included in the first consignment.

Still, this segmented analysis was carried out with the data available. Due to the very
limited number of specimens per group and strain level, it was conducted for exploratory
purposes only. To improve its relevance, the values corresponding to SB1 and SB2 were
merged to increase the sample size of the experimental mixtures, which are susceptible to
greater dispersion. Instead, REF is a conventional mixture whose fatigue behaviour can
be expected to be rather homogeneous. The p-values derived from applying the Mann–
Whitney U test for these two groups (REF × SB1_SB2) under the three strain levels (250,
300 and 350) were greater than 0.15 in all cases, which is above the significance level of 0.05.
Although these results cannot be extrapolated beyond the boundaries of this study, they
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suggest that the fatigue response per strain level achieved by the experimental specimens
would not significantly differ from that of the reference mixture either.

4. Conclusions

This research demonstrated the suitability of self-healing experimental mixtures in-
cluding metal by-products to provide an analogous fatigue behavior to that expected in
conventional asphalt pavements. The results leading to this inference were derived from
a uniaxial fatigue test applied to three groups of asphalt mixtures (one conventional and
two experimental). The use of descriptive and inferential statistical techniques revealed the
absence of significant differences in the fatigue response of the experimental mixtures in
relation to the conventional one.

The fact that the by-products included in the experimental mixtures were previously
tested and validated in terms of self-healing guaranteed their complete functionality to be
used in the field. However, the mixture containing a higher content of metal by-products
(7.9%), whose origin stemmed from two different sources (sieving and aspiration), caused
some difficulties when cutting and preparing it for testing. This was due to its heterogeneity,
which resulted in a more disperse behavior in terms of number of cycles resisted.

Still, the coupling of the fatigue and self-healing potential of the experimental mixtures
tested suggests that the use of industrial by-products is a sustainable approach to increase
the lifetime of asphalt pavements. As such, demonstrating the functionality of these kinds
of mixtures can help generalize the inclusion of metal wastes in pavement design. Given
the massive presence of asphalt roads across the world, the benefits entailed by this course
of action would not only increase their durability and limit traffic disruptions, but would
also involve important contributions to the three Rs of the circular economy: reduce, reuse
and recycle. In turn, this may lead to diverse economic and environmental benefits, such
as new profit opportunities or fewer GHG emissions.

Despite the promising results obtained in this study, further research should explore
testing higher number of mixtures with different combinations of metal by-products in
terms of both type and content. This would not only enable obtaining more relevant
findings according to the strain level applied, but also optimizing the fatigue resistance
of self-healing asphalt mixtures through numerical models. Still, the results presented
in this study provide evidence of the promising future and sustainability of self-healing
technology, demonstrating how metal wastes can be valorized to both result in economic
and environmental gains and extend the service life of asphalt pavements.
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