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Noise Corrected Sampling of Online Social Networks

MICHELE COSCIA, IT University of Copenhagen, Denmark

In this paper, we propose a new method to perform topological network sampling. Topological network
sampling is a process for extracting a subset of nodes and edges from a network, such that analyses on the
sample provide results and conclusions comparable to the ones they would return if run on whole structure.
We need network sampling because the largest online network datasets are accessed through low-throughput
API systems, rendering the collection of the whole network infeasible. Our method is inspired by the literature
on network backboning, specifically the noise corrected backbone. We select the next node to explore by
following the edge we identify as the one providing the largest information gain, given the topology of the
sample explored so far. We evaluate our method against the most commonly used sampling methods. We do
so in a realistic framework, considering a wide array of network topologies, network analysis, and features
of API systems. There is no method that can provide the best sample in all possible scenarios, thus in our
results section we show the cases in which our method performs best and the cases in which it performs
worst. Overall, the noise corrected network sampling performs well: it has the best rank average among the
tested methods across a wide range of applications.
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1 INTRODUCTION
Nowadays, humanity produces data—particularly network data—at an unprecedented pace. For
instance, in January 2020 Facebook alone reached 2.5 billion active users1 producing new content
and connections on its platform. These large online social media are the most valuable resources to
study global-scale social phenomena. However, their API platforms grant access to their data, and
they severely limit the accessible throughput. For this reason, a network scientist needs to select
wisely the subset of nodes and edges they access. In other words, they need to perform topological
network sampling.
Topological network sampling is a process for extracting a subset of nodes and edges from a

larger network. Typically, the starting point is one or more “seed nodes”. The algorithm collects
all connections from the seed nodes and then has to decide which of the discovered nodes to
explore next. The aim of network sampling is to reconstruct a sample able to produce results and
1https://www.theverge.com/2020/1/29/21114130/facebook-q4-2019-earnings-instagram-whatsapp-messenger, date of ac-
cess: April 1st, 2020.
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conclusions comparable to the larger whole network. For this reason, many different methods have
been defined.

The difference between two methods lies in the criteria they use to select the next node to explore.
The exploration strategy has a massive effect on the potential results of analyses on the sample.
That is because the size of the samples are usually negligible compared to the original structure. For
instance, due to Twitter’s API limitations, a one-year sampling process would only collect 0.14% of
its monthly active users—assuming no connectivity issues.

Given the importance of sampling and the enormous size of online social networks, developing
new and better sampling procedures is an important issue. Current topological sampling methods
are limited in the amount of information from the collected sample they use to make their next
move. Most sampling methods use almost no information at all: e.g. Breadth and Depth First
explorations only check whether the next selected node had been already explored or not. Other
methods only use limited local information: e.g. the popular Metropolis-Hastings Random Walk
only compares the degree of the next node to explore and of the currently explored node. Here we
propose a method that analyzes the entire currently collected sample to inform the decision about
the next node to explore.

To do so, we draw on our previous work on noise-corrected network backboning [6]. Our previous
work deals exclusively with the network backboning problem: to identify the most significant
connections in a dense weighted network to sparsify it for network analysis. In noise-corrected
backboning, we implement a Bayesian framework, which associates to each connection the amount
of surprise – i.e. information gain – that the connection gives us about the whole structure.
In this paper, we expand our previous work by applying it to the network sampling problem.

The difference is that, in network backboning, we filter edges out of a complete observation. In
sampling, we are observing an incomplete portion of the network. The information gain from our
method guides us towards the edges we should follow, because they are the ones which would
allow us to discover more about the whole network. Thus we provide additional contributions such
as a new application scenario and new experiments.
We evaluate our approach against the most commonly used sampling methods. The space

of application scenarios and possible analyses in network science is vast. To evaluate network
sampling, we cover a wide array of dimensions: (i) different network topologies (from random
graphs to clustered networks with communities); (ii) different network analyses (from estimating
the exponent of the degree distribution to community detection); and (iii) different API systems.
The latter is an important dimension because, as we see in previous work [7], it influences the
amount of information obtainable from a social media in non-trivial ways.
Given the vastness of the search space, it is impossible to define a single network sampling

strategy that always provides the best sample. Instead, when presenting a new sampling strategy, we
need to highlight in which scenarios the new algorithm is a valuable – if not the best – alternative
to what is already present; and in which other scenarios it should be avoided. For this reason, in
our experiments section, we show the cases in which the noise corrected sampling performed best
among the alternatives, and the ones in which it performed worst.

Overall, we believe that our approach is a valuable addition to the network sampling literature.
When performance is averaged across all analyses, network topologies and API systems, it ranks
best among the tested alternatives. Its strengths are mostly due to good performance at high
crawling budgets. If the researcher has the ability of collecting a reasonably large sample, our
proposed approach is expected to return the best samples.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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We make our code available for the usage of our sampling method2. The provided archive
contains also the data and the code on which our results are based are available, for replicability
purposes.

2 RELATEDWORK
This paper deals with the problem of sampling social network data via API systems. There are
many ways in which one might want to sample a network. The main split in the literature is
between static sampling and online sampling of an evolving structure [31]. For this paper, we focus
on static network sampling. The reason is that social media are vast, and thus their topological
characteristics change slowly, on much larger time scales than most crawling processes.
The second main split is between topological and non-topological sampling. In this paper we

focus on topological sampling because non-topological sampling is not compatible with API systems,
since it requires to either have some knowledge of the global network structure or it requires
accessing nodes in ways that are not supported by API systems – e.g. uniformly at random.

To understand this point, consider one example of non-topological sampling: induced sampling.
In induced sampling, one determines a set of nodes (node-induced) or a set of edges (edge-induced)
and then generates a sample by collecting all nodes/edges adjacent to the sample. Popular edge
sampling methods are Partially and Totally Induced Edge Samples (TIES and PIES [1, 2]), while
node sample methods include fully uniform, degree (RDN) and PageRank weighted samples (RPN)
– see [17] for a discussion of these methods. However, to perform and edge induces sample we must
be able to access edges individually, which is something one cannot do with social media APIs, as
one can only query nodes. On the other hand, one cannot extract nodes at random because this
would imply knowing their IDs, which are usually unpredictable random alphanumeric strings
rather than progressive numbers.

Other sampling methods that require information not available via API systems are ones based
on knowing in advance the partition of the original network in communities [8]; or exploring the
graph via learning automata [32], which require a pre-processing phase to estimate the importance
of nodes.
In topological sampling, which is the type of method we explore in this paper, one chooses a

random starting point and then explores the network with a walk along its edges. The walk can
be deterministic – as in classical Depth or Breadth First Search or Snowball sampling –, or it can
be probabilistic – as in random walks [15, 18, 30, 34, 37] and probabilistic modifications of the
deterministic approaches such as forest fire [17] or Neighbor Reservoir Sampling [3, 19]. We need
to understand these methods in detail, because they represent the main comparison with our new
proposed network sampling methodology.

In Breadth-First Search (BFS) [24, 25], we start from a seed 𝑣 and we put its neighbors in a First-In,
First-Out (FIFO) queue. In this case we call 𝑣 a parent, and its neighbors are its children. Children
of the same parent are siblings. We then explore the neighbors one by one, inserting the neighbor’s
neighbors in the FIFO queue. All the siblings of a node will be explored before switching to their
children. Figure 1(a) shows an example of this approach. Depth-First Search (DFS) [38] is similar
to BFS, but uses a Last-In, First-Out (LIFO) queue instead of a FIFO (see Figure 1(b)), exploring
children before siblings, rather than the other way around.
Snowball sampling [11] is almost identical to BFS, but explores at most 𝑛 neighbors of a node

(Figure 1(c)). In social media data gathering, there is often little cost in exploring all neighbors of
a node: in that case Snowball is equivalent to BFS – one can set 𝑛 to be so high that it does not

2http://www.michelecoscia.com/?page_id=1788
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(a) BFS (b) DFS (c) Snowball

(d) Random Walk (e) MHRW (f) Forest Fire

Fig. 1. Examples of how different network sampling strategies explore a given network. Each node is labeled
with the order in which it is explored. The node color shows whether the node was sampled (green) or not
(red), assuming a budget of 15 units and a constant cost of 1 unit per node. Snowball example assumes 𝑛 = 3
(unlabeled nodes are not explored due to this parametric restriction), while Forest Fire example has a burn
probability of .5.

affect the sampling process any more –, and that is the reason why we do not include it in our
experiment section.

Some authors pointed out the benefits of biased network samples [39]. For instance, the highest
degree nodes are the most important nodes in a network and thus should be sampled, at the expense
of under-sampling the periphery of the network. This philosophy is implemented by the Sample
Edge Counts (SEC) method [20]. SEC ranks the neighbors of all the sampled nodes according to
their degree and then explores the neighbor with the highest edge count towards already explored
nodes.
When sampling a network using random walks (RW), the procedure starts from 𝑣 and chooses

one of its neighbors at random [17, 18]. The same process is repeated for every node visited. In many
practical applications, random walk sampling takes a parameter 𝑝 which establishes a probability
of restarting the walk from the seed 𝑣 , or teleporting to an arbitrary node. Figure 1(d) shows an
example of this approach.
A simple extension of RW sampling is m-dependent Random Walk (MRW) [33]. This involves

performing𝑚 random walks at once. The random walkers are not independent: we choose which of
the𝑚 random walker to make progress proportionally to the degree of the nodes they are currently
visiting. Thus, if there are three random walkers and they are currently on nodes with degrees 3, 2,
and 1, we will continue from the first random walker with 3/(3 + 2 + 1) = 0.5 probability.

Exploring a network through random walks has known biases. The probability of visiting a node
is proportional to its degree. As a consequence, high degree nodes are oversampled, leading to
representativeness issues. The Metropolis-Hastings correction for random walk sampling (MHRW)
remedies this problem [15, 37]. The network is explored via random walks. However, after selecting
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𝑣 ’s neighbor 𝑢 at random with probability 1/𝑘𝑣 , the move is accepted with probability 𝑘𝑣/𝑘𝑢 (which
is capped to one if 𝑘𝑣 > 𝑘𝑢 ), where 𝑘𝑣 is 𝑣 ’s number of connections (degree). In practice, if 𝑢 has a
higher degree than 𝑣 , there is a chance that we will attempt to select a different 𝑢 ′ to continue the
random walk. Figure 1(e) shows an example of this approach.

The final approach in the random walk family is the re-weighted correction [30, 34] (RWRW, also
known as Respondent Driven Sampling, or RDS). In RWRW, the network exploration is conducted
with the vanilla RW approach described above. Once the exploration is done, we use the sample
to estimate the statistical properties of the original graph. The downside of RWRW is that it can
return a correct estimation of the original graph’s properties, but not a sample that can be then used
as input for any arbitrary algorithm: the extracted sample is equivalent to the one extracted with a
vanilla RW. This is why we do not include RWRW in our experiments: we are interested in the
actual extracted samples, for which it is equivalent to RW. A similar node attribute reconstruction
approach [26] is discarded for the same reason.
In Forest Fire [17] (FF), one starts by performing a BFS exploration of the graph. However, FF

introduces a new parameter: the “burning probability”. If a node passes the burning probability
test, the node is “burned” and the BFS exploration will move on to its neighbors. Figure 1(f) shows
an example of this approach.

Finally, we have Neighbor Reservoir Sampling [3, 19] (NRS). NRS starts by building a small core
of explored nodes using RW. However, the majority of NRS’s budget is spent on a second phase. In
the second phase, nodes in the sample are replaced by neighbors of sampled nodes randomly, with
a decreasing probability and making sure that the sample retains a single connected component.
NRS is by far the most computationally expensive method because at each potential node addition
it has to verify that the sample still has a single connected component. Also, given the diminishing
acceptance probability, the last units of budget take a long time before they are spent. For this
reason, we cannot include this method in our experiment section, because we cannot run it enough
times to guarantee the statistical robustness of our results.
Sampling a network directly is a different operation than sampling it via an API system. API

systems usually paginate results, meaning that they return only a subset of a node’s edges. Moreover,
they impose restrictions on how frequently one can query them. In previous work, we build a
framework to test the effectiveness of network sampling techniques [7]. We show that API systems
with lower throughput in number of edges returned per second can still return more representative
samples, due to the typical broad degree distributions of real-world networks.

This paper presents a new sampling technique that is inspired by our work on network backbon-
ing [6]. Network backboning is the search for significant connections in a dense weighted network.
We present the details of our noise-corrected sampling strategy in Section 3.

Of course, other network backboning techniques could also provide us with strategies to select
the next edge to explore in a network sampling process. In High Salience Skeleton [12], for example,
one re-weights edges according to the number of shortest path trees passing through them and
then filters out the least used edges. In the Doubly-Stochastic Transformation [36] one reweights
the edges so that each row and column of the adjacency matrix sums to one, and then filters the
network according to these new weights. In Disparity Filter [35], edge weights are tested against
a null model of the node emitting them: if an edge weight is significant compared to the total
outgoing weights of the node, the edge is kept in the backbone. Finally, an approach similar to ours
sees edges as the result of an extraction process from a Polya urn [21]. In Section 4 we motivate our
choice of focusing on the noise-corrected technique, due to its better performance in reconstructing
backbones.

A sister problem of network backboning is error correction [28, 29]. Given a complete network
dataset, the objective is to identify which edges are likely to be omitted and which present edges
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are likely to be spurious. Just like our noise-corrected backboning, many of these approaches assign
to edges an estimation of how much information it gives about the full structure. Thus, some of
these methods could also be used for sampling large complex networks. We leave exploring the
performance of each alternative for future work.

3 METHODS
The algorithm at the basis of noise-corrected sampling is simple. We initialize the system by
collecting all the edges incident to the seed node and one of its neighbors at random. Then, we use
the noise corrected backboning technique to estimate the z-score of each edge. We then follow the
edge with the maximum z-score and we collect all the neighbors of the node connected to it. If two
edges have the same z-score, we break the ties randomly. We stop when we spent the entire crawl
budget.
We explain in Section 3.1 how we calculate the z-score. Section 3.2 reports the experimental

setup, including the budget spending criterion via a simulated API system, and our criteria for
evaluating the performance of a sampling strategy.

3.1 Noise-Corrected Sampling
The aim of a sampling method is to collect as little data as possible from the original network
while gathering as much information as possible about it. The noise-corrected backbone estimates,
for each edge, how much information it gives us about the network. Therefore, it is natural to
collect a sample by recursively following the maximum-information edges. The way noise-corrected
backboning estimates the amount of information carried by an edge is by estimating its z-score,
namely how much surprising its existence is over null expectation. For this reason, we start by
explaining how we make this estimation.

Note that what follows in this subsection is not an original contribution of this paper. The noise
corrected backbone was originally developed in supplementary materials Section D4.2 of [27] and
expanded in our previous work [6]. We refer to these papers for the full details about its rationale.

3.1.1 Estimating the z-score. To clarify what the z-score of an edge would be, we need to summarize
how noise-corrected backboning works. This is explained in more detail in our previous work [6].
Hereafter we assume that the network is directed and weighted, i.e. that we work with a graph
G = (V, E, 𝑁 ), whereV is the set of vertices; 𝑁 ⊆ R+ is the set of non-negative real edge weights;
and E is a set of triples (𝑖, 𝑗, 𝑛) with 𝑖, 𝑗 ∈ V and 𝑛 ∈ 𝑁 . However, we can assume that all edges are
reciprocal and have weight equal to one, and the sampling strategy will still work.

If we want to estimate the z-score of an (𝑖, 𝑗) edge weight 𝑁𝑖 𝑗 we cannot do so directly, because
most real world networks have broad edge weight distributions [35], and thus violate the normality
assumption. Thus we transform 𝑁𝑖 𝑗 in two steps. First, we calculate by how much it exceeds our
expectation:

𝐿𝑖 𝑗 =
�̂�𝑖 𝑗

𝐸 [𝑁𝑖 𝑗 ]
,

with

𝐸 [𝑁𝑖 𝑗 ] = 𝑁𝑖 .

𝑁. 𝑗

𝑁..

,

and 𝑁𝑖 . =
∑

𝑗 𝑁𝑖 𝑗 is the sum of outgoing weights of 𝑖; 𝑁. 𝑗 =
∑

𝑗 𝑁𝑖 𝑗 is the sum of incoming
weights of 𝑗 ; and 𝑁.. =

∑
𝑖, 𝑗 𝑁𝑖 𝑗 the sum of all weights in the network.

Then we ensure that 𝐿𝑖 𝑗 becomes a symmetric measure centered on zero:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Noise Corrected Sampling of Online Social Networks 111:7

�̃�𝑖 𝑗 =
𝐿𝑖 𝑗 − 1
𝐿𝑖 𝑗 + 1

=
^𝑁𝑖 𝑗 − 1
^𝑁𝑖 𝑗 + 1

(1)

where ^ = 1
𝐸 [𝑁𝑖 𝑗 ] . We can now estimate the z-score of �̃�𝑖 𝑗 . To do so, we need to compute its

variance, which is given by:

𝑉
[
�̃�𝑖 𝑗

]
= 𝑉

[
^𝑁𝑖 𝑗 − 1
^𝑁𝑖 𝑗 + 1

]
.

Applying the delta method, we get:

𝑉
[
�̃�𝑖 𝑗

]
= 𝑉 [𝑁𝑖 𝑗 ]

©«
2
(
^ + 𝑁𝑖 𝑗

𝑑^
𝑑𝑁𝑖 𝑗

)
(
^𝑁𝑖 𝑗 + 1

)2 ª®®¬
2

with

𝑑^

𝑑𝑁𝑖 𝑗

=
1

𝑁𝑖 .𝑁. 𝑗

− 𝑁..

𝑁𝑖 . + 𝑁. 𝑗(
𝑁𝑖 .𝑁. 𝑗

)2 .
The only thing we need to estimate in this equation is 𝑉 [𝑁𝑖 𝑗 ]. In this paper, we interpret edge

weights as the result of a series of discrete interactions between nodes. Each time two nodes interact
with each other, we add one to their edge weight. Thus, 𝑁𝑖 𝑗 is simply the number of times nodes 𝑖
and 𝑗 interact. Following this assumption, 𝑁𝑖 𝑗 distributes as a binomial variable with variance:

𝑉
[
𝑁𝑖 𝑗

]
= 𝑁..𝑃𝑖 𝑗

(
1 − 𝑃𝑖 𝑗

)
(2)

𝑃𝑖 𝑗 is the unitary interaction probability of nodes 𝑖 and 𝑗 , i.e. the probability that, at the next
interaction in the network, the weight of the (𝑖, 𝑗) edge will increase by one. This is unknown, but
can be estimated as the observed frequency with which interactions occur:

𝑃𝑖 𝑗 =
𝑁𝑖 𝑗

𝑁..

.

A problem arises when edge weights are zero for certain node pairs: 𝑁𝑖 𝑗 = 0. Given that many
real-world networks are sparse, this situation is quite common. For these node pairs, 𝑉

[
𝑁𝑖 𝑗

]
= 0,

which would suggest that measurement error is absent in these edges. However, in reality, there
is simply too little information to estimate 𝑃𝑖 𝑗 with sufficient precision. This affects not only
cases where edge weights are zero, but also where information is sparse, i.e., when focusing on
the interactions among nodes of low degree. To improve on this, we estimate 𝑃𝑖 𝑗 in a Bayesian
framework. That is:

𝑃𝑟
[
𝑁𝑖 𝑗 = 𝑛𝑖 𝑗

��𝑁.. = 𝑛.., 𝑃𝑖 𝑗 = 𝑝𝑖 𝑗
]
=

(
𝑛..
𝑛𝑖 𝑗

)
𝑝
𝑛𝑖 𝑗
𝑖 𝑗

(
1 − 𝑝𝑖 𝑗

)𝑛..−𝑛𝑖 𝑗

Using Bayes’ law, we get:

𝑃𝑟
[
𝑃𝑖 𝑗 = 𝑝𝑖 𝑗

��𝑁.. = 𝑛.., 𝑁𝑖 𝑗 = 𝑛𝑖 𝑗
]
=

𝑃𝑟
[
𝑁𝑖 𝑗 = 𝑛𝑖 𝑗

��𝑁.. = 𝑛.., 𝑃𝑖 𝑗 = 𝑝𝑖 𝑗
]
𝑃𝑟

[
𝑃𝑖 𝑗 = 𝑝𝑖 𝑗 |𝑁.. = 𝑛..

]∫ 1
0 𝑃𝑟

[
𝑁𝑖 𝑗 = 𝑛𝑖 𝑗

��𝑁.. = 𝑛.., 𝑃𝑖 𝑗 = 𝑞𝑖 𝑗
]
𝑃𝑟

[
𝑃𝑖 𝑗 = 𝑞𝑖 𝑗 |𝑁.. = 𝑛..

]
𝑑𝑞𝑖 𝑗

(3)
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Choosing a 𝐵 [𝛼, 𝛽] beta distribution, the conjugate prior of the Binomial distribution, as a prior
for 𝑃𝑖 𝑗 , the posterior distribution is also a beta distribution. In particular, the posterior distribution
of 𝑃𝑖 𝑗 becomes:

𝑃𝑖 𝑗 ∼ 𝐵
[
𝑛𝑖 𝑗 + 𝛼, 𝑛.. − 𝑛𝑖 𝑗 + 𝛽

]
. (4)

We still have to choose values for 𝛼 and 𝛽 that would give plausible prior expectations for the
mean and variance of 𝑃𝑖 𝑗 . To do so, assume that the total weight of 𝑖 and 𝑗 is given. In other words,
think of edge weights as arising from a process in which, each time node 𝑖 increases its total weight
by one, it draws a node 𝑗 at random from the pool of possible nodes. That is, edge weight generation
follows a hypergeometric distribution. This gives the following prior means and variances for 𝑃𝑖 𝑗 :

𝐸
[
𝑃𝑖 𝑗

]
= 𝐸

[
𝑁𝑖 𝑗

𝑁..

]
=

1
𝑁..

𝐸
[
𝑁𝑖 𝑗

]
:=

1
𝑁..

𝑁𝑖 .𝑁. 𝑗

𝑁..

𝑉
[
𝑃𝑖 𝑗

]
=

1
𝑁 2
..

𝑉
[
𝑁𝑖 𝑗

]
:=

1
𝑁 2
..

𝑁𝑖 .𝑁. 𝑗 (𝑁.. − 𝑁𝑖 .)
(
𝑁.. − 𝑁. 𝑗

)
𝑁 2
.. (𝑁.. − 1) .

The := equality indicates where we make our assumptions. From the 𝐵 [𝛼, 𝛽] distribution, we
get:

𝐸
[
𝑝𝑖 𝑗

]
= ` =

𝛼

𝛼 + 𝛽
(5)

𝑉
[
𝑝𝑖 𝑗

]
= 𝜎2 =

𝛼𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
(6)

Solving for 𝛼 and 𝛽 , we get:

𝛼 =
`2

𝜎2 (1 − `) − ` (7)

𝛽 = `

(
(1 − `)2

𝜎2 + 1
)
− 1 (8)

Eqs. 4, 5, 6, 7 and 8 now define a posterior expectation for 𝑃𝑖 𝑗 for each node pair. We can use this
posterior expectation of 𝑃𝑖 𝑗 to recalculate variances of edge weights in Eq. 2. Because the posterior
expectation of 𝑃𝑖 𝑗 is always strictly larger than zero, variance estimates do not degenerate.

Since now we have an estimation of expected edge weight and the variance of such expectation,
we can combine them with the observed edge weight to derive the z score:

𝑧𝑖 𝑗 =
�̃�𝑖 𝑗

𝑉
[
�̃�𝑖 𝑗

] .
Recall that �̃�𝑖 𝑗 is centered on zero and already contains a comparison with expectation, thus it

can be negative if the observed edge weight 𝑁𝑖 𝑗 is lower than expectation (𝐸
[
𝑁𝑖 𝑗

]
).

3.1.2 Adaptation to Sampling. In the previous section we described how to calculate the z-scores
for each edge in the currently sampled network. Here we show how to apply this backboning
technique to perform a topological sample of a network. The basic algorithm is simple. If 𝐺 ′ is
the current sample,𝐺 ′ contains 𝑉 ′ nodes. Some of those nodes were explored, while others were
discovered, i.e. they were not explored, but at least one of their neighbors was. We perform the
noise corrected backbone on𝐺 ′ and we explore the discovered node that is attached to the edge
with the highest z-score.
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Fig. 2. Exploring an unweighted undirected graph using the noise corrected strategy. Node color determines
the status of the node: green = explored, blue = discovered, red = unknown. The edge thickness represents its
z-score (with the exception of Figure 2(a), where we show the input unweighted network).

We show an example of how this strategy works. We start from the toy network in Figure 2(a).
We specifically choose to use an unweighted network as our example, to show that edge weights
are not necessary. Our example would work also with weighted and directed edges.
During the initialization phase in Figure 2(a), we pick a random seed node, in this case node 7,

and we explore it. This means that our sample after the first step is a star centered on node 7. In this
situation, all edges have the same z-score, and thus we follow one at random, in this example to
node 3 (Figure 2(b)). Now that we discovered that nodes 7 and 3 have common neighbors (nodes 2
and 8), the interested edges become the least significant edges in the structure and they are ignored,
in favor of any neighbor of 7 (or 3) that is not in common with already explored nodes (Figure
2(c)). In Figure 2(c), we perform multiple steps at once, since each step follows the same logic: we
always explore one of the neighbors of 7. Specifically, we choose the neighbor that has no common
neighbors with the already explored nodes – thus skipping nodes 2 and 8.
In other words, we preferentially explore discovered nodes with degree equal to one. Once we

run out of this type of node around 7, we discover another one of such nodes: node 4 (Figure
2(d)). We continue with the same logic exploring node 9 (Figure 2(e)) which leads to a full graph
exploration: all nodes are either explored or discovered. If we were to keep going, we would explore
the neighborhood of node 9 (Figure 2(f)) before turning to the remaining nodes 2 and 8, in that
order.

3.1.3 Scalability. Sampling networks via noise corrected backboning cannot be as time efficient as
alternative methods. Sampling via backboning means to check, for every sampling step, all edges
in the sample at least once. This cannot beat methods like random walks or DFS, because at each
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Fig. 3. The amount of time it takes to calculate the noise corrected backbone (y axis) for a network with a
given number of edges (x axis).

sampling step their complexity is O(1), given that they exclusively use local information about the
currently explored nodes, rather than information coming from the entire current sample.

However, we argue that this is not amajor issue, for two reasons. First, noise corrected backboning
has a linear complexity in terms of number of edges, O(|𝐸𝑠 |). This means that even large samples
can be efficiently analyzed.We illustrate this point in Figure 3. The figure shows that the relationship
between the number of edges in the sample and the runtime is linear.
The figure also provides support for the second reason why scalability is not an issue: even for

the largest samples, the runtime is negligible, less than one tenth of a second. When sampling
online social media, the computation happening locally to determine the next sampling step is not
usually the bottleneck. The sum of all delays – network latency, the time required for the server to
retrieve the information, and the time it takes to transfer the information – is likely higher than the
backboning computation time. For instance, the average ping time we measured for Instagram’s
APIs was ∼ 27ms, and this is considering that no computation nor data transfer was requested
from the server.
Moreover, as we see in the next section, social media platforms usually impose temporal rate

limits between queries. This means that a sampler needs to wait one or more seconds between
requests. The sampler can perform its local computations during the waiting period, rendering
irrelevant the time cost of running the noise corrected backboning.

3.2 Evaluation Criteria
When evaluating a sampling method, one has to determine how good a sample is, given the budget
needed to obtain it. In this paper, we assume that the sampler runs for a given amount of time, after
which it terminates. This simulates the data gathering phase of a research project. Thus, the unit
we use to measure a budget is the number of available seconds we have to perform the crawl.

This paper specifically focuses on the problem of sampling networks via the API system of an
online social media. Thus we need to use a realistic evaluation framework, targeted to this specific
scenario. We use the benchmark we developed in previous work [7], which allows us to simulate
calls to an API system. This, in turn, allows us to estimate the time cost of sampling a node, which
we can use to spend our time budget. We have three main dimensions over which we evaluate
methods: by social media API policy, by target analysis, and by network topology.

3.2.1 API Policies. Sampling via an API system introduces restrictions and peculiarities that are
rarely considered in the network sampling literature. The first peculiarity of online social media
is their pagination policy. Pagination means that, even if the connections of a single node are
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API 𝑝𝑠 𝑡𝑠 𝑝𝑠/𝑡𝑠
SPHL 10 10 1
SPLL 5 2 2.5
LPHL 100 20 5
LPLL 40 4 10

Table 1. The characteristic of each API system: 𝑝𝑠 = number of edges per request; 𝑡𝑠 = time lag between
requests; 𝑝𝑠/𝑡𝑠 = API throughput, in edges per second.

potentially available through a single call, the actual number of calls needed to gather them is
defined by the number of connections of the node and by the size of the page allowed by the social
media platform. In the case of a node 𝑣 member of a social network 𝑠 , the number of calls required
to collect all its connections will be:

𝑐𝑎𝑙𝑙𝑠 (𝑣, 𝑠) =
⌈
𝑘𝑣

𝑝𝑠

⌉
,

where 𝑘𝑣 is 𝑣 ’s degree, and 𝑝𝑠 is the number of edges returned with each call as defined in social
media’s 𝑠 pagination policy, which we call “page size”.
The second peculiarity of online social media is rate limits. APIs regulate the number of calls

per unit of time that a sampler is allowed to make. By restricting how many calls to the API are
possible per second, rate limits define the actual budget, expressed in time, needed to collect the
list of edges incident to a node. Using 𝑡𝑠 as the number of seconds social medium 𝑠 forces the user
to wait before submitting another query to the API system, the final cost – in number of seconds –
of crawling node 𝑣 is:

𝑐𝑜𝑠𝑡 (𝑣, 𝑠) = 𝑡𝑠 × 𝑐𝑎𝑙𝑙𝑠 (𝑣, 𝑠).
This cost function seems relatively innocuous, but our previous work [7] shows that it has pro-

found repercussions on the performance of network samplers. One could be tempted to characterize
social media APIs by their edge throughput: how many edges they return per unit of time. Yet, in
some cases APIs with lower throughput can allow a more efficient sampling of a network. This is
because 𝑐𝑜𝑠𝑡 (𝑣, 𝑠) is linked to 𝑘𝑣 , the degree of node 𝑣 : in real world networks, most nodes have
low 𝑘𝑣 . Thus, a policy with low 𝑝𝑠 and 𝑡𝑠 can explore more nodes per unit of time than a policy
with high 𝑝𝑠 and 𝑡𝑠 , even if the latter returns more edges per second. This is provided that most
nodes have 𝑘𝑣 ≤ 𝑝𝑠 , which is true for most realistic scenarios.
For this paper, we test the network sampling models on four archetypal API systems, defined

across the page size and query latency dimensions. The page size can be either large (LP = Large
Page) or small (SP = Small Page); the wait time between queries can either by high (HL = High
Latency) or low (LL = Low Latency). Thus, the four archetypal API systems are: SPHL, SPLL, LPHL,
and LPLL. Table 1 shows the characteristics of each API system.

3.2.2 Analyses. Some network sampling methods are developed with a specific analysis in mind,
meaning that they attempt to preserve a key characteristic of the network in the sample. As a
consequence, the type of analysis one wants to perform on the network is important in determining
which sampling method to choose. Here, we target a set of six network properties as a possible
analyses one might want to perform.

Degree distribution. If we think that the network at large has a power law degree distribution,
we might want the sample to have the same distribution exponent. Thus, for this analysis, we
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calculate the Kolmogorov-Smirnov distance [22] between the degree distributions of the original
network and of the sample.

Node centrality. We want to make sure that the nodes that are central/peripheral in the original
network are also central/peripheral in the sample. The way we estimate the sample quality is by
calculating the Spearman rank correlation between the degrees of the nodes in the original network
and in the sample.

Assortativity / Disassortativity. Nodes have attributes, which they usually correlate across
the network [23]. An assortative node attribute means that nodes with the same value tend to
connect to each other, a disassortative attribute means that nodes tend to connect with neighbors
with an unlike value. Here, we calculate the absolute difference between the assortativity of the
attribute in the original network and in the sample. This is a double test, because we generate two
binary attributes: one assortative and one disassortative.

Community similarity. We want to group sampled nodes into the same communities as in
the original network. Thus groups should contain the same nodes. We can estimate the similarity
of two partitions by calculating their mutual information [41]. In this scenario, a good sample
is one that has a high normalized mutual information with the original graph. This test is only
performed for networks that actually have communities, i.e. the LFR benchmarks we present in the
next section.

3.2.3 Topologies. Not all social networks have the same topology, and not all topologies can be
efficiently explored with the same strategy. Thus we test network sampling methods on a set of
synthetic topologies and real world networks. For the synthetic networks, we range from least to
most realistic by examining: Erdős-Rényi random graphs (both unipartite and bipartite), preferential
attachment, powercluster networks, and LFR benchmarks.
An Erdős-Rényi random graph is a graph in which any pair of nodes is connected with a fixed

probability [9]. This is the least realistic type of network, which satisfies some key real-world
graph properties such as low average degree and small world – i.e. the longest shortest path grows
logarithmically with the network size in number of nodes. It has an unrealistic degree distribution
and clustering coefficient, and it lacks communities, a commonly observed network property. We
also make a bipartite version of it, splitting nodes in two classes – 𝑉1 and 𝑉2 – and then extracting
random links running exclusively between nodes of unlike classes.

The preferential attachment model [4] adds a realistic power law degree distribution to the Erdős-
Rényi random graph. It does so by growing a network one node at a time from a seed of nodes.
Each new node in the network connects to 𝑘 already existing nodes, with a probability proportional
to their current degree. The powercluster model [14] works exactly like the preferential attachment,
but at each new node it also closes a possible triangle in the network at random. Thus, it not only
has a realistic power law degree distribution, but it also has a realistic clustering coefficient. Finally,
the LFR benchmark [16] is a network with all the desirable characteristic of a real-world network.
It plants communities in the structure and adds edges preferentially among nodes in the same
communities.

All synthetic networks have 10𝑘 nodes and approximately 50𝑘 edges. While this is significantly
smaller than real world networks, we decide to strike a compromise between size and statistical
robustness: we need to perform the experiments multiple times from different starting seeds to
make sure that the results are robust. This is not possible for larger networks.

We also test on two real world network. The first is a social media network based with geolocation
metadata [5]. The weight of the edge is determined by the number of check-ins the two friends
have made in the same location plus one – to include friends who never checked in the same
location. This network has 56𝑘 nodes and 213𝑘 edges. The second network is bipartite, connecting
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Fig. 4. Recovery of the true backbone of synthetic Barabasi-Albert networks.

pathogens to the locations they were sampled on [42]. The weight of the edge is the number of
times the connection was observed in a sample or in a publication. This network has 74𝑘 nodes
and 157𝑘 edges.

4 MOTIVATION
In this section we reproduce the main experiments from the original noise corrected backboning
paper [6]. The aim of this section is to motivate our choice of the noise corrected backbone over
the alternative most used backboning strategies: High Salience Skeleton [12], Doubly-Stochastic
Transformation [36], and Disparity Filter [35]. The idea is that any backboning method could be
used to drive the sampling process, and we focus on noise corrected backboning because it is the
one performing the best among the currently available alternatives.

4.1 Synthetic Networks
In this section we test the performance of each method in recovering the backbone of synthetic
networks. In this scenario, we have perfect information about which edge is part of the actual
network and which edge reflects noise. We generate several Barabasi-Albert random networks
with average degree 3 and 200 nodes. We set [ as our noise parameter. Each actual edge in the
Barabasi-Albert network carries the following weight:

𝑁𝑖 𝑗 = (𝑘𝑖 + 𝑘 𝑗 ) × U([, 1),

where 𝑘𝑖 is the degree of node 𝑖 , andU([, 1) is a number extracted from a uniform distribution
with minimum [ and maximum 1. In practice, we use a fraction of at least [ of the sum of the
degrees of the connected nodes. In this way, we ensure broad edge weight distributions locally
correlated with the network topology. Then, the complement of the adjacency matrix is filled with
noisy edge weights, which are defined with the same formula, only changing the uniform element
withU(0, [). In practice, a noisy edge can have at most a fraction [ of the degrees of 𝑖 and 𝑗 .

For all methods we set the parameters (if any) so that the backbone will return the same number
of edges as the underlying actual network. Our quality target is the Jaccard coefficient between the
set of edges of the original non-noisy network and the backbone. It is equal to one if the two edge
sets are identical, and to zero if they do not share a single common edge.

Figure 4 reports the results. For very low amount of noise, the two best performing solutions are
the Disparity Filter and the naive thresholding. However, our Noise-Corrected backbone is more
resilient to increasing noise with the best overall performance, while also performing very well
in low-noise environments. As noise increases, there is no significant difference between DF and
naive thresholds.
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Fig. 5. Coverage per backbone for varying threshold values. From left to right: (top) Country Space, Flight,
Migration; (bottom) Ownership, Trade.

4.2 Real World Data
Our test set includes five networks. In all networks, nodes are countries and connections are
relationships among them, calculated in five different ways. The five networks, in alphabetical and
discussion order, are as follows.

• Country Space: two countries are connected with the number of products they both export
in significant quantities. This is an undirected co-occurrences network, observed in the
years 2011, 2012 and 2013. Trade data comes from [10]. To determine whether exports are
significant we use the same criterion of [13], based on the concept of Revealed Comparative
Advantage.

• Flight: two countries are connected through the existing passenger capacity in flights from
airports in one country (origin) to another (destination). This is a directed flow network,
observed in the years 2010 and 2014. Proprietary data from OAG3.

• Migration: two countries are connected through the number of total migrants from one
country (origin) currently living in another (destination). This is a directed stock network,
observed in the years 1990, 2000, 2010 and 2013. Data from the UN [40].

• Ownership: two countries are connected through the number of total establishments in a
country (destination) reporting to a global headquarter in a different country (origin). This is
a directed stock network, observed in the years 2008, 2011 and 2014. Proprietary data from
Dun & Bradstreet4.

• Trade: two countries are connected through the total dollar value of all products exported by
one country (origin) and imported by another (destination). This is a directed flow network,
observed in the years 2011, 2012 and 2013. Trade data have been cleaned with the same
procedure outlined in [13].

As the first quality criterion, we focus on the topology of the backbone. In general, backbones
ideally isolate as few nodes as possible: each node dropped by the backbone is a node for which

3http://www.oag.com/
4http://www.dnb.com/
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Method Country Space Flight Migration Ownership Trade
Doubly Stochastic 2.0975 n/a 1.5153 n/a 0.9287
Naive Threshold 0.6834 0.5196 1.1616 1.2384 0.3935
Disparity Filter 1.4082 0.8569 2.0715 0.5374 0.9024
High Salience Skeleton 1.6549 0.9447 1.2597 0.9744 0.8662
Maximum Spanning Tree 1.9180 0.7981 1.0036 0.9288 0.9532
Noise-Corrected 2.2437 1.4676 2.1493 1.4165 1.1037

Table 2. The improvement in predictive power when using backbones in our five networks.

we will not have any result from the network analysis. Thus, we define the Coverage as the ratio
between non-isolated nodes in the backbone over non-isolated nodes in the original network, or:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
|V| − |𝐼 ∗

𝐺
|

|V| − |𝐼𝐺 |
.

Figure 5 reports the number of nodes preserved in each backbone as a function of the share of
edges that was preserved. Note that the Doubly Stochastic method is present only for the networks
Country Space, Migration and Trade, as for the other networks the stochastic transformation was
not possible. Note that DS and MST do not require any parameter, so they appear in the plot as a
point rather than as a line.
Many data points overlap because in many instances all methods were able to preserve the

entirety of the node set. However, it is easy to detect the cases in which a particular method was
not able to achieve perfect coverage. MST, DS and HSS achieve perfect coverage by definition (the
latter fails only for very strict parameter choices). There is no clear winner between NC and DF,
as in some networks one achieves better coverage than the other, while the converse is true for
others. However, the DF is the only method underperforming the naive method in one case (the
Ownership network), which is a critical failure.

As a second test, we argue that a good backbone lets the underlying properties of the data emerge
from the noisy data. To prove this point we create a series of models for OLS regressions. These
models all have the same structure:

log(𝑁𝑖 𝑗 + 1) = 𝛽𝑋𝑖 𝑗 + 𝜖𝑖 𝑗 .

Here, 𝑁𝑖 𝑗 is the edge weights of the network, 𝑋𝑖 𝑗 is a collection of variables that are supposedly
good predictors of 𝑁𝑖 𝑗 , and 𝜖 is the error term. In practice, we propose a model to explain the con-
nection strength between countries. Then, for each backbone methodology we run two regressions.
In the first regression𝑀𝑓 𝑢𝑙𝑙 , we use the complete set of observations. In the second model𝑀𝑏𝑏 , we
restrict the observations edges that are contained in the network backbone. Quality is then defined
as:

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑅2
𝑀𝑏𝑏

𝑅2
𝑀𝑓 𝑢𝑙𝑙

,

which is the ratio of the quality prediction (the 𝑅2 of the OLS model) obtained using the backbone
to restrict observations over the baseline quality that uses all edges. A value of 1 means that the
two regressions have equivalent predictive power, while a value higher than 1 means we improve
over the full network.

To allow for a fair comparison of different backbone methodologies, we fix the number of edges
we include in the backbone. We usually choose the number of edges obtained with low threshold
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Fig. 6. Stability per backbone for varying threshold values. From left to right: (top) Country Space, Flight,
Migration; (bottom) Ownership, Trade.

values for the High Salience Skeleton, because it is the most strict backbone methodology in our
collection, always returning the fewest number of edges. Note that this does not apply to the MST
and DS backbones, since they do not have parameters and thus the number of edges cannot be
tuned.

Table 2 reports the results. We highlight the best performing methodology in boldface. Note that
in some cases the doubly stochastic transformation was not possible, thus we label these instances
as “n/a”. In all cases, the NC backbone performs better than any other backbone. What is more, the
NC backbone is also the only method that always returns a quality value higher than one, meaning
that the backbone outperforms the original, unfiltered, network in all cases.
Finally, we are interested in the stability of a backbone. Because most of our networks should

be relatively stable, we consider wild year-on-year fluctuations in an edge’s weight as a sign that
the edge weight is imprecisely measured. Our backbone should contain fewer noisy edges and
therefore be more stable than the original network. The stability of a backbone method can be
calculated as:

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐𝑜𝑟𝑟 (𝑁 𝑡
𝑖 𝑗 , 𝑁

𝑡+1
𝑖 𝑗 ),

where 𝑐𝑜𝑟𝑟 is the Spearman correlation coefficient between the two vectors. In principle, any
distance metric is appropriate for this task, but we prefer the nonparamatric nature of the Spearman
correlation, which mimics our task of ranking edges according to their significance. We calculate
the correlation using only the edges present in the backbones. This means that a perfectly stable
backbone will have a stability of 1, while a value of 0 implies that there is no relation between the
backbones of time 𝑡 and 𝑡 + 1. We calculate stability across different thresholds.

Figure 6 depicts the results. There is no clear winner in this quality criterion. All backbones are
very stable, with stability always exceeding .84.

In conclusion, we can say that the Noise-Corrected backbone performs well on three critical
evaluation criteria. NC backbones can handle low and high amounts of noise, as shown in synthetic
network experiments. NC backbones have comparable coverage and stability with the state of
the art. NC backbones are of high quality, being able to improve the performance of edge weight
predictive models, also in real-world scenarios, as our case study shows.
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Fig. 7. The score (y axis) of each sampling method (color) for increasing budget levels (x axis). Result averaged
across all analyses and topologies. (Higher is better)

5 EXPERIMENTS
Summing up the Methods section, we are performing tests across: (i) four different API systems
(SPHL, SPLL, LPHL, and LPLL); (ii) six network characteristic analyses; and (iii) seven network
topologies. This is a total of 4 × 6 × 7 = 168 tests. Rather than reporting on all of the tests, we
aggregate them across two dimensions, leaving one dimension to be examined at a time.

When aggregating over the measures presented in Section 3.2.2, we have the problem that they
are expressed in different units. Moreover, some are similarities (e.g. degree correlations) and some
are distances (e.g. mean absolute error). Thus we need to reduce them to comparable units. We do
so by standardizing the result of each analysis so that its average is zero and its standard deviation
is equal to one. Then we multiply by minus one those tests – like mean absolute error – for which
“lower is better”. Then, we can average score results across different tests into a single score for
which “higher is better”.

Note that the aim of this section is not to show that the noise corrected sampling is better than
the alternatives in all scenarios. No method is. Rather, the objective of this section is to find out
in which scenarios noise corrected sampling is better and in which scenarios it is worse. This is
the reason why, for each subsection, we only show two plots: the one corresponding to the test
in which the noise corrected sampling performed best (relative to the alternatives) and the one
corresponding its worst relative performance. The supplementary materials contain all plots.

Here we test the noise corrected sampling method against: DFS, BFS, RW, MHRW, MRW, FF, and
SEC. Since in total we have eight methods, an average rank lower than 4 indicates a better-than-
average performance.

5.1 By API Features
The first dimension we analyze is the features of the API system. The question we ask here is:
under which combination of page size and query latency does noise corrected work better than the
alternatives? To answer this question, we calculate the rank of the noise corrected sample among
all tested methods, averaged across budget levels. An average rank of 1 means that the method was
always the best across all budget levels.

Figure 7 shows the score evolution for increasing budgets – recall that, in this test, we are looking
at the aggregated score for which “higher is better”. According to the average rank method, the
noise corrected sampling works best for the SPLL API (average rank of 1.16 – Figure 7(a)) and worst
for LPHL (average rank of 2.66 – Figure 7(b)). In general, noise corrected prefers low latencies over
high ones, and small pages over large ones. We can see that in SPLL, noise corrected is best at
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Fig. 8. The score (y axis) of each sampling method (color) for increasing budget levels (x axis). Result averaged
across all APIs and topologies. (Lower is better)
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Fig. 9. The score (y axis) of each sampling method (color) for increasing budget levels (x axis). Result averaged
across all analyses and APIs. (Higher is better)

almost all budget levels, while in LPHL it underperforms for low budgets and it is best for high
budgets.

5.2 By Analysis
Here, we repeat the analyses from the previous section, but aggregating results not across API
systems, but across all network analyses.

Figure 8 shows the score evolution for increasing budgets. According to the average rank method,
the noise corrected sampling works best to reconstruct the network’s disassortative attribute
(average rank of 1 – Figure 8(a), note that this is a mean absolute error, so lower is better) and worst
to recover the network’s communities (average rank of 4 – Figure 8(b), not that this is normalized
mutual information so higher is better). In general noise corrected allows precise estimation of
node-level properties (disassortativity, assortativity, and centrality all have average rank < 3) while
it performs poorly for meso-level analyses such as the ones involving communities and degree
distributions (average rank > 3).

5.3 By Topology
In the third aggregation dimension, we look at the performance of each sampling method on average
across a network topology. We use the aggregated score performance, thus we are following the
logic of “higher is better”.
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Fig. 10. The score (y axis) of each sampling method (color) for increasing budget levels (x axis). Result averaged
across all topologies, analyses, and APIs. (Higher is better)

Figure 9 shows the score evolution for increasing budgets. The network topology on which noise
corrected sampling works worst is the Erdos-Renyi random graph (average rank of 5.16 – Figure
9(b)). This is a comforting result, because this is the least realistic network topology we tested, and
it is thus unlikely to be a fair representation of the types of topologies one could find in the real
world. The noise corrected sampling obtains the best performance for the powercluster network
topology (average rank of 1 – Figure 9(a)), which is the second most realistic synthetic topology we
test.

In the case of real world networks, noise corrected sampling performed well: the average ranks
were 1.16 and 2.3 for the social media and the bipartite network, respectively, well below the
average rank of 4.

5.4 Global ranks & Use Cases
Finally, we aggregate the performance of the network sampling methods across all dimensions,
distinguishing only if we are looking at a weighted or at an unweighted network. Again, for this
section, “higher is better”.
Figure 10 shows the overall performance. We can see that the noise corrected sampling has a

clear edge for high budget situations, it suffers – while still being close to the top of the lot – under
lower budgets.
Finally, Table 3 sums up the overall rank of each method across all our dimensions, including

budget levels. As we can see, the highest ranking method is our proposed method. However, one
should be cautious in taking these results at face value. We have shown cases in which noise
corrected performed poorly, and should thus be avoided in case those analytic scenarios are the
ones targeted by the analyst. One cannot take Table 3 as a proof that NC sampling is best in all
cases: rather, it is best only in the general case where there is no knowledge of the underlying
network topology, API characteristics, or of the final analysis to be performed on the network.
We conclude this section by summing up the most promising use cases for the noise corrected

network sampling method. The NC method should be used when working with low-query-latency
platforms, when the estimation of node-level attributes is important, and for networks with realistic
topologies (power law degree distributions and high clustering). If the researcher is not sure about
the type of analyses they will run, nor of the underlying topological characteristics of the network,
the NC sampling is still a good general choice.
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Method AVG Rank
NC 3.52
DFS 3.74
FF 3.95
MRW 3.98
RW 3.99
MHRW 4.06
BFS 4.13
SEC 4.28

Table 3. The average rank of each sampling method, across all budget levels, topologies, analyses, and APIs.
(Lower is better)

6 CONCLUSION
In this paper, we proposed a new approach to the topological network sampling problem. In
topological network sampling, one starts from a seed node and tries to identify which connections
to follow, with the aim of creating a small sample out of a larger network. The sample should be
built such that the analyses on it will support the same conclusions as if they were to be run on
the whole structure. We use a noise corrected backboning technique to identify the connections
with the highest information gain, which should be the ones to be followed to sample a new node.
We tested our approach over a number of dimensions: different underlying network topologies,
different network analyses, and different API systems (in case network data are being crawled from
social media platforms). We identified the scenarios in which our noise corrected sampling works
best: analysis of node attributes, realistic topologies with power law degree distributions and high
clustering, and API systems allowing for fast querying. When averaging across different analytic
scenarios, our method is the best performing, with a clear advantage in case of high crawling
budgets.
Our paper paves the way for further improvements in the field of network sampling. First, to

our knowledge, this is the first time that the network backboning and network sampling problems
are shown to be related. We could investigate the performance of other backboning methods in
identifying the next node to be sampled. Second, we only directly applied the noise corrected
backboning to the sampling problem without adapting its edge-centric approach. The sampling
problem is node-centric, thus an adaptation of noise corrected backbone to estimate the node
information gain, rather than the edge information gain, is promising. Finally, this paper relies on
small test networks. Testing these methods on real world data is challenging, as we would need
the entire network to evaluate performance, but it would provide further information about the
sampling methods’ performances.
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