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Abstract

With the advancement of sequencing technologies, genomic data sets are constantly being
expanded by high volumes of different data types. One recently introduced data type in
genomic science is genomic signals, with genomic coordinates associated with a score or
probability indicating some form of biological activity. An example of genomic signals is
Epigenomic marks which represent short-read coverage measurements over the genome, and
are utilized to locate functional and nonfunctional elements in genome annotation studies.
To understand and evaluate the results of such studies, one needs to explore and analyze

the characteristics of the input data.

Information visualization is an effective approach that leverages human visual ability in
data analysis. Several visualization applications have been deployed for this purpose such
as the UCSC genome browser, Deeptools, and Segtools. However, we believe there is room
for improvement in terms of programming skills requirements and proposed visualizations.
Sigtools is an R-based exploratory visualization package, designed to enable the users with
limited programming experience to produce statistical plots of continuous genomic data.
It consists of several statistical visualizations such as value distribution, correlation, and
autocorrelation that provide insights regarding the behavior of a group of signals in large
regions — such as a chromosome or the whole genome — as well as visualizing them around

a specific point or short region.

To demonstrate Sigtools utilization, first, we visualize five histone modifications downloaded
from Roadmap Epigenomics data portal and show that Sigtools accurately captures their
characteristics. Then, we visualize five chromatin state features, probabilistic generated
genome annotations, to display how sigtools can assist in the interpretation of new and

unknown signals.

Keywords: Genomic Signals; Data Visualization; Epigenomics; Histone Modifications;

Chromatin State Features
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Glossary

3D genome architecture In addition to its linear structure, the genome also has a 3-
dimensional organization within the cell. Understanding this configuration is an es-

sential step in studying gene regulation. 1

annotation Genome annotation is the process of locating different genomic elements on a

genome. 6

assembly Genome assembly is the process of regenerating the original DNA fragment from

the outputted sequenced reads. 6

ATAC-seq A sequencing technique that measures chromatin accessibility across the genome.
1

cell The basic structural component of living beings. It comprises several elements namely

proteins and nucleic acids which are frequently referred to within this thesis. 1
ChIP-seq A sequencing technique for assessing protein interactions with the genome. 1
chromatin An organization structure for DNA. Consists of protein and DNA. ix

chromatin accessibility Describes how compact the chromatin is which indicates whether

proteins such as transcription factors can bind to that piece of DNA. 1

chromatin state Just like histones, a chromatin’s function can also be altered when the
chromatin is modified by other molecules. To facilitate the study of chromatin modi-

fications, scientists have classified them into separate states. 3

chromosome An organization of DNA. The entire genome of an organism can be arranged

into one or many chromosomes. 17

contig Result of a genome assembly process. A long sequence of ordered reads produced

by overlapping reads. 6

coverage The coverage of a DNA base denotes the average number of sequenced reads

mapped to that base. 1

ix



DNA A double helix molecule that can be considered as a library that carries the entire
viability information of an organism. It comprises four bases: A, C, G, and T. These

bases are also called nucleotides. 1

DNA methylation When a methyl molecule attaches to a DNA segment. Plays an im-

portant role in gene expression. 1

dominant trait A trait that will definitely appear in an offspring once he/she inherits it

from his/her parents. 2

downstream A single DNA strand has a direction much like a one-way street. For a DNA
strand that contains a gene, the downstream region denotes the side of the gene which

is closer to the end of the strand. 3

enhancer A short genomic element that enables expression level increase for a particular

gene. xi

gene A strand of DNA that codes for an RNA or protein. x

gene expression The process during which instructions in a gene are converted to func-

tional molecules such as proteins. 2
gene regulation When the expression level of a gene is increased or decreased. 1
genome The complete chain of an organism’s DNA. 1
genomic A field in biology. The study of the genome and its contents. iii
genomic feature A segment of the genome that has a function. 6

Genotype-Tissue Expression A genomic dataset that contains gene expression in mul-

tiple tissues across people. viii, 7

histone modification When another molecule attaches to a histone protein and the func-

tion of that histone is altered. 3
interactional Related to protein interaction. 1
locus A specific location on a chromosome where a gene is positioned. 2

multiple sequence alignment Arranging two or more sequenced reads in a pile to find

their similarities. 2

nucleotide A building unit molecule for DNA and RNA. 1



omics A branch of science comprises biology fields that end in -omics such as genomics. 6

protein A chain molecule responsible for many vital tasks within an organism. 1
protein interaction When two or more proteins establish physical contact. 1

protein-coding gene A gene that contains the instructions regarding producing a partic-

ular protein. 1

read A limited sequence of DNA base pairs that a sequencer machine obtains from a single
DNA fragment. A complete sequencing process results in the generation of millions of

reads. 1

regulatory element A genomic element that is able to increase or decrease the expression

level of a gene. 1

RNA A molecule with a single chain of nucleotides that is responsible for many vital tasks

in a cell. x

RINA-Seq A sequencing technique that measures the number of existing RNAs in a given

sample. 1

sequencing device A machine that is able to determine the order of the base pairs in a

given DNA sequence. 1

single nucleotide polymorphism The variation of a single nucleotide between two DNA
fragments that belong to the same position in two different individuals of the same

species. 6

super-enhancer A genomic element with multiple enhancers. It has a more significant

effect on gene expression than a single enhancer. 2

tissue A body of cells that have similar structure and functions. 2
trait A specific inherited characteristic in a living being. x

transcription binding factor A protein that binds to specific genomic elements and in-

creases or decreases the amount of expression of the adjacent gene. 2

transcriptome The collection of all the transcribed DNA in a cell at this moment. 1

upstream A single DNA strand has a direction much like a one-way street. For a DNA
strand that contains a gene, the upstream region denotes the side of the gene which

is closer to the beginning of the strand. 3

xi



Chapter 1

Introduction

Within the cell(s) of any organism lies its genome, the entire chain of its DNA that contains
all the instructions regarding the viability of that living being. Understanding the structure,
behavior, and interactions of those DNA contents has been the objective of hundreds of
thousands of studies. Such studies are possible by DNA sequencing technologies that are able
to determine the order of the nucleotides (A, C, G, and T) in a DNA sequence, generating
various large datasets namely genomic signals.

A genomic signal is a continuous variable across the genome indicating the presence
of a biological activity such as protein interaction, DNA methylation, and regulatory ele-
ments [10]. These activities are called epigenetic factors which are environmental changes
that modify the genome without changing its underlying DNA sequence [21]. To obtain a
signal in a lab, a high-throughput sequencing device sequences DNA fragments bound to a
certain protein, hence generating a large number of short reads which are then mapped back
to the original genome. Genomic coordinates associated with the coverage measurements
of this mapping is recorded as a genomic signal. RNA-Seq, ChlIP-seq and ATAC-seq are
technologies specifically designed to generate transcriptome, interactional, and chromatin
accessibility signals respectively.

Genomic signals are particularly intriguing since they can be utilized in a wide range
of studies such as locating protein-coding genes [16, 18], investigating gene regulation in
cancer research [14], and understanding 3D genome architecture [23]. However, Sequencing
technologies are improving to such an extent that data analysis has become the bottleneck
of genome-related studies [25].

The Human visual system provides a great bandwidth for image transmission to the
human cognition system, which is excellent at detecting patterns and comparing graphical
figures; given that the data has been appropriately mapped to the existing visual channels.
Data visualization systematically develops refined presentations of data that would be more
comprehensible to the human brain, which would result in acquiring new insights into data
and faster analysis, problem detection, message communication and other tasks that could

benefit from human involvement.



Several visualization tools have been developed to leverage the human visual system
in genomic signals behaviors and characteristics investigation. Many of these publications,
namely browsers [10, 20, 8], preserve the sequential nature of these signals by presenting
them in a linear layout, possibly with parallel arrangements to enable comparison between
signals [27]. Such tools are commonly used to investigate local behaviors around specific
regions, for example, to depict regulatory elements near a particular gene [13] or displaying
read numbers for different signals at a specific locus [34].

Others employ statistical procedures to illustrate the global behavior of the signals [31,

]. Accordingly, this class of tools usually work with multiple sequence alignment data for-
mats (SAM/BAM), rather than continuous-valued data formats (WIG/bigWig/BED /bed-
Graph) which contain the actual —or normalized— value of the signals at each position or bin.
Example application of these tools include plotting DNA methylation average values over
protein-coding genes to investigate their role in organism development [7], generating pro-
files of transcription binding factors over super-enhancers regions to discuss super-enhancer’s
cell-specific impacts on genetic risk of disease [39], and illustrating gene expression levels
for multiple tissues to examine the cause of dominant traits [30].

Although the reviewed tools above offer a wide selection of processing and visualization
features for genomic signals analysis, we identified the need for a set of tools that assist
scientists in the early steps of genomic signal analysis, such as the value range, variation,
and covariation. Novel genomic signals are being generated both in wet labs by biologists
or via learning models by computer scientists. When someone in either of those professions
comes across a new signal, some common questions need to be discussed before this signal
could be introduced to the genomic society and be employed in other studies: what numeric
range does this signal cover? Does it contain noise? If positive, how much noise is there in
the data? How much data variation does it have? Does it behave similarly to any previously
studied signal? How does it behave in general around specific genomic elements?

Interpreting a signal is to discover which biological activity it represents. Afterward,
these signals can be direct representatives of a class of genomic elements or they can be
utilized in learning genomic annotation models to identify the location of genomic elements.

This thesis introduces SigTools, an R-based package with four visualization modules
for facilitating genomic signals statistical characteristic exploration and global behavior
analysis. 1) sigtools_distribution module offers three recognized distribution plots for
depicting value frequency: empirical cumulative distribution, kernel density plot, and box-
plot. These plots uncover insights for later model training, refinement, and development. 2)
sigtools_autocorrelation module generates a line plot of the input signals’ autocorrela-
tion. This plot provides an estimation for the change rate of signal variation. A signal with
little variation indicates smaller active regions. 3) sigtools_correlation module gener-
ates a heatmap of pairwise correlation of for sets of signals. A high correlation coefficient

between two signals indicates a high behavioral similarity in the sense that wherever the



value of one of the signals increases, an increase in the other signal’s value should be ob-
served. 4) sigtools_aggregation module illustrates the overall behavior of a signal over
recurring genomic elements. Answering questions such as "does the signal have a high value
within gene regions?" "How does the signal behave over enhancer regions?" "Does the signal
have a distinguished behavior over genes upstream or downstream?" could be most helpful
for the signal’s interpretation relative positions. In addition to the visualization modules,
SigTools offer several data processing modules to make the tool compatible with different
genomic signals format.

Although we implement a novel encoding modification for aggregation plots (read more
about this in Subsection 3.2.2), the contribution of this thesis is not in the field of Human-
Computer Interaction or visualization as we did not invent a new visualization for genomic
signals. The objective of this thesis is to provide a cohesive package that contains all the
essential data analysis tasks for scientists who are working with novel genomic signals and
do not want to carry out an additional coding workload to their project. Furthermore, this
thesis also introduces SigTools-Shiny, a web-based graphical user interface that includes all
Sig'Tools preprocessing and visual modules as an alternative for users who want to eliminate
command-line interaction in their experience.

This thesis is written from a computational biologist’s perspective therefore some fre-
quently used vocabularies are obtained from the field of biology, hence might not be familiar
to the general computer science audience. A brief explanation of those terms is provided in
the glossary section so that this thesis could reach a broader range of audiences.

Chapter 4 includes two use cases to demonstrate SigTools visualization modules’ util-
ity. The first use case examines several previously studied genomic signals named histone
modifications. This use case is mentioned to demonstrate how SigTools can be beneficial for
satisfying scientists’ curiosity in exploring and establishing recognized datasets. The second
use case examines a dataset of novel chromatin state features which are novel genomic sig-
nals generated by a learning model[!]. This use case demonstrates how SigTools can assist
in exploring the characteristics and behavior of novel signals towards their interpretation.

The SigTools source code, installation guide, and manual are available on http://
github.com/shohre73.

The following chapter, Chapter 2, describes the genomic signals data type, format, and
characteristics in greater detail together with mentioning some prominent instances of their
visualization. Chapter 3 contains SigTools® proposed user tasks and example use cases of
how SigTools fulfills them. Afterward, presentation and interaction choices in the SigTools-
Shiny app are explained in Chapter 4. Finally, Chapter 5 reviews the tool, its contribution,

and future advancements.
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Chapter 2

Data and Visualization Approaches

2.1 Genomic Signals Data and Formats

Sequencing Technologies perform a series of physical and biochemical operations to detect
the order of nucleotides in a given DNA sequence. Currently, these devices are not able to
record the entire given DNA sequence with a single scan. Instead, they generate a great
multitude of sub-strings obtained from the many identical copies of the original DNA.

These sub-strings of ordered DNA bases are called reads and are banked in text-based
formats, FASTA and FASTQ. A brief example of a FASTA file is displayed in Fig. 2.1a. In
practice, the size of such files may exceed 1 Gigabyte.

Sequenced reads constitute the underlying data for genome-related studies. Like pieces of
a puzzle, these reads also have similar edges. To align these reads is to identify their overlaps,
and it is the principal method for reducing the size and complexity of their datasets. Fig. 2.1b
is an example alignment of reads in Fig. 2.1a. Sequence Alignment/Map (SAM) [22] and its
binary equivalent BAM are formats specifically designed for systematically maintaining the
alignment of multiple reads to a single reference sequence. Binary formats are compressed
versions of their text-based formats that provide faster access to the data. See an example
in Fig. 2.1c. In this context, the coverage of a position is defined as the number of sequences
that extend over that base.

Rather than aiming for uniform coverage, some sequencing methods such as RNA-Seq,
ChIP-seq, and ATAC-seq, target specific DNA fragments that are bound to certain proteins
and generate a mass of short reads from these isolated regions. Mapping these reads back to
a reference sequence results in distinct coverage measurements across its bases. A genomic
signal contains the exact or normalized values of such coverage. The two most common

formats for genomic signals are WIG —or its binary equivalent bigWig— and bedGraph.



N

>ref
AGCATGTTAGATAAGATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

3 >r001

TTAGATAAAGAGGATACTG

5 >r002

N

AAAAGATAAGGGATAAA
>r003

AGCTAA

>r004
ATAGCTCTCAGC

(a) An example FASTA file. Lines starting with ">’ indicate the name of the subsequent sequence.

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
+r001 TTAGATAAAGGATA*CTG

3 +r002 AAAAGATAA*GGATA
+r003 GCCTAAGCTAA

5 +r004 RTAGEIT ¢ 6 0 00000000000 TCAGC

(b) An example alignment of the reads in Fig. 2.1a.

@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45

3 001 0 ref 7 30 8M2I4M1ID3M * O O TTAGATAAAGGATACTG *
r002 0 ref 13 30 3S6M1P1I4M * O O AAAAGATAAGGATA *
5 003 0 ref 4 30 5S6M * 0 0 GCCTAAGCTAA *
r004 0 ref 22 30 6M14N5M * 0 0 ATAGCTTCAGC *

(¢) A SAM file can start with an optional header followed by an alignment section. The header
gives information about the overall alignments while each line in the alignment section contains
information about one specific alignment such as its start position and mapping quality.

chr start end signal_value

Lo T T - B - ]

1 3 0
4 6 1
7 12 2
13 14 3
15 12 2
23 25 2
26 28 1
29 42 0
43 45 1

(d) An example bedGrph file.

Figure 2.1: Examples of a FASTA file, multiple sequence alignment, SAM file, and a bed-
Graph file, inspired by an example in SAMtools documentation.



2.2 Proposed Visualizations

Computer-based visualization systems provide visual representations of datasets

intended to help people carry out some task better. (Munzner [21] p. 3)

As Munzner defines, data visualization provides graphical representations of data to
enhance the human comprehension of data parameters. This approach is widely employed
in omics studies to empower scientists with a deeper understanding of the voluminous and
complex data they are engaging with [12, 28, 27].

Likewise, numerous visualization tools have been developed for genomic signals inter-
pretation and pattern discovery. We classified these developments into two groups of Locus-
Specific and Locus-Agnostic visualizations. The rest of this section discusses these two

categories in detail and displays some of their instances.

2.2.1 Locus-Specific Visualizations

Visualization tools that map the genomic data to a horizontal axis are commonly denoted
as genome browsers and are frequently employed for analysis, discussion, and comparison of
genomic signals over specific coordinates. Interactivity is one of the essential design elements
of these tools since, at each time, only a limited window of data appears on the screen.
Navigation (moving back and forward on the genome), zoomin in and out, and selection are
common classes of interaction established in these tools.

The UCSC genome browser [1(0)] is a well-known genome browser for visualizing genomic
signals together with other genomic feature sets such as annotations, genes, single nucleotide
polymorphisms (SNPs), and assembly contigs. These sets are aligned horizontally to create a
parallel arrangement for enabling comparison at different resolution levels. Each horizontal
strip is called a track, and users can add, remove, or displayed in different modes (showing
different levels of details). This genome browser divides the screen into three sections. At
the top, there are navigation controls for moving forward or backward, and zooming in or
out. Users can also jump to a specific coordinate using the search bar. The dynamic mid-
dle section displays genomic feature sets (tracks). The bottom section contains additional
optional control for modifying the middle section.

Jbrowse [5] and Ensembl Genome Browser [17] are other instances of genome browsers.

Genome browsers provide an excellent platform for genomic data integration. Yet, due
to the extensive length of the genome, visualization tools with a linear layout are commonly
employed to display specific genomic coordinates. To reach a general conclusion via these
tools requires the user to go through all the instances of occurrence of that specific element.
Extending the scale of genomic data analysis enables data comparison across multiple re-

gions simultaneously.
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Figure 2.2: A screenshot of the UCSC Genome Browser, extracted from its 2017 update [38],
displaying eight RNA-seq tissue-specific read coverage tracks and bar graphs of Genotype-
Tissue Expression (GTEx) for five protein-coding genes.



2.2.2 Locus-Agnostic Visualizations

Instead of preserving the sequential nature of the genomic data, global visualizations tools
employ statistical methods and aggregation plots in order to support such analyses.

Prior to the introduction of such tools, we ought to review some frequently employed
visualization keywords:

e Heatmaps: a heatmap is a two-dimensional matrix with specific categories assigned
to its rows and columns. Each row-column pair is associated with a value encoded
with color, and the value variety is represented by different hues or intensities. Rows
and columns can have either specific or arbitrary ordering and they can be clustered
according to the similarity of their vectors.

o Aggregation plot: in the context of genomic signals, an aggregation plot for a specific
genomic element is a heatmap generated to display how a signal behaves in regards to
that element throughout the genome. Each row of this heatmap is a vector indicating
the signal’s value over a specific occurrence of that element and each column represents
the relative position of each cell to the center or edges of that element.

o Aggregation line chart: a summary line chart is mostly associated with an aggregation
plot, and it outlines the commonly observed behavior of that signal over the selected
regions. Its x-axis corresponds to the columns of the aggregation plot, and its y-axis
corresponds to the signal value.

e Scatter plots: a two-dimensional scatter plot consists of two orthogonal axis and dots
that represent the data. The x axis and the y-axis correspond to the value of the first
and the second variables, V7 and V5, respectively. Each dot corresponds to a pair of
set {(v1,v2)|v1 € Vi&wy € Va}.

o Correlation plots: another common analysis regarding two signals is to investigate
whether it is possible to infer the changes of one signal from the value alteration of
the other signal. If two signals positively correlate to each other, and the value of one
of them is being increased, it can be included that the value of the other signal is also
rising. A heatmap for pairwise correlation values is frequently used in comparative
genomic signals analysis.

One of the earliest tools in this category is deepTools [31], a collection of tools developed
for exploration, quality control, and visualization of the next-generation sequencing data.
Accordingly, its primary input formats are the aligned reads formats (SAM and BAM,
see Section 2.1) though, it also accepts and generates coverage formats such as BigWig
in certain cases. See examples of deepTools analysis in Fig 2.3. To obtain a visualization
in deepTools, users usually need to perform two operations. The first one outputs the
underlying computation of the intended visualization, usually in the form of a matrix. The
next one maps that computation to a graphic representation. An example of such workflow

is to perform plotCorrelation after multiBamSummary to obtain a correlation matrix of



different coverage samples (Fig 2.3c). Suchlike workflow eliminates repetitive computations
in cases where figure regeneration only applies changes in visual parameters. However, it
increases the overall complexity of the tool. See Table 2.1 for detains on deepTools command.
deepTools is also part of Galaxy [11], a web-based platform for biomedical data investigation,
to facilitate accessibility and integration with other NGS data analytics tools.

genomation [1] is an R based assisting studies investigating the association of short-read
coverage with discrete genomic features denoted here as genomic intervals. It defines multi-
ple functions for importing genomic intervals formats (BED and GFF), detecting overlaps
between a new set of genomic intervals and an existing one, visualizing that overlap with
summary and heatmap aggregation plots. Fig 2.4 displays an instance of a heatmap gen-
erated by genomation. In addition to profiling plots, ngs.plot [36] also provides a database
of genomic elements to facilitate region selection. Fig 2.5 shows an example application of
this tool.

SegTools [6] enables the interpretation of probabilistic generated genomic segments by
facilitating their comparison with known genomic signals at a genome-wide scale. During
interpretation, a genomic label is assigned to different genomic segments (with different
lengths) and declares the role of those segments. SegTools encourages short-read indepen-
dent segment and signal analysis by using genomedata [15] as the input format for genomic
signals. See example of SegTools analysis in Fig 2.6. SegTools commands either provide anal-
ysis for a single genomic segment set or enable comparing between a segment set and other
related data sets (Table 2.2 and Table 2.3 respectively). You can find a brief description of
Sig'Tools Utilities in Table 2.4.

Exploratory Data Analysis (EDA) is an essential step in any data-dependent study that
highlights data anomalies, patterns, and provides a deeper understanding of the data.

All the mentioned tools above deliver plots that facilitate such analyses for genomic
signals and several other relevant datasets (NGS short reads and genomic intervals). Yet,
there are still some aspects of this data that either have not been discussed or have not
included a systematic package. Our proposed package, SigTools, contains new modules that
uncover other aspects of this data such as range, shape, variation, and covariation. The
following list describes each of the mentioned terms:

o Data range: the statistical range of a variable is a measure of spread and is defined
as the difference between its highest and lowest values. In case the dataset contains
extreme values (outliers), other measures of dispersion such as Standard Deviation
should be employed.

e Data shape: the shape of a dataset describes how it is spread across a distribution
graph such as a histogram or a kernel density curve. The shape of a quantitative
variable can be symmetric or skewed, with one or multiple peaks. This helps us to
decide which average, mean, or median values best describe the variable’s center, or

informs us about gaps and outliers in the data.



e Data variation: variability describes the extent to which data values are different than
each other. Weather data points of a variable are accumulated around particular areas
or contain a wide range of values is a good measure for comparing different variables.

e Data covariation: the covariance measure describes the relationship between two vari-
ables in terms of the expected changes in one variable when the other one changes.

In addition, our corresponding web application, SigTools-Shiny, extends the accessibility

scope of these modules to people who are more comfortable working with graphical user

interfaces instead of command-line tools.

Table 2.1: Brief descriptions of a number of deepTools modules.

Module name Description

multiBamSummary Computes the read coverage of one or more BAM files. The
coverage measurements are either calculated over regular size
windows (bins) over the entire genome, or for specific genomic
regions. The second option requires providing a BED file. The
output of this module can be forwarded to plotPCA or
plotCorrelation for visualization.

plotPCA Computes and plots principal component analysis (PCA) for
read coverage obtained from the multiBamSummary module.
PCA enables detecting similar clusters in multi-dimensional
data, see an example in Figure 2.3a and Figure 2.3b.

plotCorrelation Computes and visualizes the pairwise correlation of samples
coverage obtained from multiBamSummary module either in the
form of a table, scatter plots (Figure 2.3d), or heat-map
(Figure 2.3c).

plotFingerprint Plots cumulative coverage over sampled bins. See an example
in Figure 2.3g. This plot was specifically proposed for ChIP-seq
quality control.

plotCoverage Aggregates the coverage for 1 million sampled base-pairs and
generates two plots, the first one displays the distribution
curve of this coverage. and the second one is a reverse
cumulative distribution( Figure 2.3g).
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(f) deepTools’ plotCoverage plots. The left plot indicates that about 1% of the H3K9Me3 sample

base-pairs were covered by 2 reads. And the right plot denotes that about 5% of the H3K4Me3

sampled base-pairs were covered at least 16 times.
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Figure 2.3: deepTools visualizations. Reprinted from deepTools: tools for exploring deep se-
quencing data by the Bioinformatics Facility at the Max Planck Institute for Immunobiology
and Epigenetics, Freiburg. Retrieved from https://deeptools.readthedocs.io/en/develop/.
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(a) A heatmap with genomic signals as rows
and genomic segments as columns. Colour in-
dicates the mean value of a signals associated
with specific labels.

(b) Relative occurrence of specific segments
over established genomic segments.

Figure 2.6: Examples of SegTools visualizations.

Table 2.2: SegTools commands, single file analyses.

Commands
Length length-distribution
Segment analysis Order transition
Signal signal-distribution

Table 2.3: SegTools commands, multiple file analyses.

Commands

Segments & Sequence nucleotide-frequency

compare
Segments & Segments

flatten

aggregation
Segments & Annotations overlap

feature-distance
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Table 2.4: Brief descriptions of SigTools utilities. Each module outputs a figure and a text
file containing the figure’s related statistics.

Command name Description

length-distribution Generates a violin plot that discusses the length distribution
for each discrete genomic labels, a horizontal bar chart
indicating the fraction of base-pairs that each label covers, and
a text file containing statistical measures such as mean,
median, and standard deviation length of segments, number of
segments, number of covered base-pairs, the fraction of covered
base-pairs for each label.

transition Outputs a graph with weighted edges and a heat-map
indicating consecutive labels. Every time a segment with label
Y appears after a label X, it is counted as a X — Y transition.

aggregation Given a set of genomic elements (annotations) this command
displays the number of times each label occurs at those
positions. This command has multiple options such as
--normalize to smooth the plot, ——mode to be chosen from
point, region or gene.

feature-distance The distance from one genomic element to another is defined
as the minimum number of bases between those two elements.
Given two sets of genomic elements (for example, a
segmentation and an annotation set) this command generates a
histogram of all the calculated distances in addition to a
tab-delimited text file containing the distances and elements.

overlap Outputs a confusion matrix that indicates how much a
probabilistic generated segmentation overlap with a set of
established annotation. A confusion matriz describes how much
an output of a predicting model meets or disregards the truth.

signal-distribution Generates a heatmap, with signals on rows and labels on the
vertical axis. The color indicates the mean value of a signal
over each label, the black bar represents the standard deviation
of that value. It also displays a clustering for similar rows and
columns at the top and the right side of the heatmap. (See Fig
2.6a)

flatten Given multiple segmentations, this command outputs a new
segmentation that contains all the input segments in addition
to new labels for regions covered by two or more segments.
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Chapter 3

SigTools

Publications mentioned in Section 2 are all well-known tools enabling the exploration of
genomic signals data sets. Along with the aggregation plots, which the most prominent
visual representations for genomic signals analysis, Sigtools includes several modules that
were previous neglected in developments. Additionally, SigTools-Shiny offers these modules

through a graphical user interface.

3.1 Input Format

Recent studies [1] promote computational genomic signals to direct representatives of ge-
nomic elements rather than the mere indication of protein binding regions. Hence, Sig-
Tools pursues alignment-free genomic signal analysis by choosing the multi-column bed-
Graph (.mulColBedg) as its primary input format for the visual tasks. Multi-column bed-
Graph format is a tab-delimited text-based file that contains several signals associated with
regular-size stretches over the entire chromosome (see an example in Figure 3.1). This for-
mat boosts later comparative tasks since it includes several signals data within one file,

hence eliminating the need to work with multiple files.

chr start end H3K9me3 H3K27me3 H3K36me3 H3K4me3 H3K4mel H3K27ac

21 37262800 37263000 0.399 0.000 0.000 0.000 0.000 0.000
21 37263000 37263200 0.069 0.000 0.094 0.353 0.000 0.391
21 37263200 37263400 0.314 0.222 1.127 0.051 0.000 0.206
21 37263400 37263600 0.592 0.501 0.211 0.026 0.960 1.562
21 37263600 37263800 0.413 1.955 1.074 0.595 1.257 0.363

Figure 3.1: A few lines of a multi-column bedGraph file.
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3.2 Implementation and modules

A software package is a platform to organize several related functions and user documenta-
tion to create a unified set of tools to carry specific tasks. All SigTools’ code and associated
files are contained within an R package, hence facilitating sharing this utility. Addition-
ally, the package automatically manages the dependencies and required libraries. Sigtools
should be installed and loaded in an R session, which automatically get activated by opening
Rstudio.

> install.packages(sigtools)
> library(sigtools)

SigTools’ user manuals are maintained in .Rd formats under man directory, and are
generated by roxygen2 which is an R package designed to generate standard user manuals.
The .R4 is the format for R documentation, is automatically converted into LaTeX and
HTML format when the package is installed. Either of the first two following commands
will convert the .Rd file of the specified function to a readable document. The last command

runs an example of that function. (See an example in figure 3.2)

> 7function_name
> help("function_name")

> example("function_name")

~fdev/sigtools - master - RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

S .| O =~ Go to file/function 5 - - Addins - & sigtools — dev -
Console  Terminal Jobs = Environment History Connections Build Git |
-/dev/sigtools/ ® - Y .
> ?sigtools::concatenate Files Plots Packages Help Viewer ==
= help("concatenate") ﬁ
= example("concatenate”) —
R: Concatenates multi-column bedgrapg files = Find in Topic |
cnctnt> concatenate('../compCan/ssmEdited', "exp73-7-E*_edited", 3,
outpuE_nare = "exp73-T-Estar_edited nulColBedy) Concatenates multi-column bedgrapg files '
[1] "concatenate_cellTypes(): ../compCan/ssnEdited /exp73-7-E003_edit |
ed” |
[1] "sampling: TRUE population_per: 8.1 population_ratio: 12" Description |
[1] "chri.bed” )
[1] "chrig.bed" Concatenates multi-column bedgrapg files
[1] "chril.bed" |
[1] "chri2.bed" Usage
concatenate(
path,
pattern,

num_signals,

output name,

sampling = TRUE,
population per = 8.1,
population_ratie = c(1, 2), |
header = FALSE,
sep = "\t"

Figure 3.2: generated user manual for a particular SigTools module and a running example
of that function.
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3.2.1 Preprocessing

SigTools offers several modules that prepare the available data for future visualization tasks.

sigtools_convertToMultiColBedg

This module converts several bedGraph files with different bin sizes to a single mulColBedg
file at the desired resolution. Changing the resolution of genomic signals data sets to a larger
bin size is a beneficial strategy for reducing data points particularly for visualizations that

discuss an entire chromosome or genome.

sigtools_sampling

Genomic signal data sets are generally large. Besides increasing signals’ resolution (enabled
by sigtools_convertToMultiColBedg), choosing random stretches of signals is a technique
that can be employed to reduce signals’ file size. This approach is particularly useful for
obtaining quick results. sigtools_sampling provides two parameters to enable different
sampling approaches:

o pop_per: the relative size of the sample to the original file. The default argument for
this parameter is 0.01 which means unless indicated otherwise, the number of rows in
the obtained sample will be one-hundredth of the number of rows in the original file.

o pop_ratio: for any given file, a generated sample constitutes a matrix that has the
randomly picked stretches as its rows. Hence this matrix has as many rows as the
count of the picked stretches and as many columns as the width of these stretches
(all stretches have the same length). The sample matrix generated by pop_ratio =
c(2,1) has twice as many rows as its columns. To have only one long random stretch

from each file, the user can set the parameter to NA.

sigtools_concatenation

For a particular cell type, the signal data for different chromosomes is usually stored in
separate files. This module appends multiple input files together and outputs a single
large .mulColBedg file that can be used for whole-genome or multiple cell-type analysis.
sigtools_sampling can optionally be incorporated into this process, preventing the final

file to become too heavy.

sigtools_stats

This module outputs a .csv containing the five-number summary (min, lower quartile,
median, mean, upper quartile, max) of the present signals in a .mulColBedg file. Although
SigTools focuses on visual analytics, the text-based output of this module is beneficial in

pipeline and learning model development.
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3.2.2 Visualizations

SigTools employs ggplot2 to conduct its visualization tasks. Each of the following functions
has a range of parameters that modify either the underlying data or the visualization. Here
is the list of share parameters among all visualization modules and their description:

e path_mulColBedg: the path to the input multi-column bedgraph file

o outdir: name of the output directory [default: function_name]

o header: does the input file include headers? [default: FALSE]

o prefix: if the input file does not have a header, this prefix is use for naming the signals

[default: >s’]. This is the name that signals will be represented with on SigTools plots.

o sep: the field separator character in the input file [default: >\t ’]

e img_title: plot title.

e font_size: plot font size.

e x_label: the x axis label.

e y_label: the y axis label.

e img_width: image width.

o img_height: image height

sigtools_distribution

Depicting the value frequency of a variable is a quick approach to get an estimation of its
primary characteristics; namely the existence of multiple local maxima, the overall range,
and the outliers. SigTools generates several distribution plots for genomic signals. The Ker-
nel Density plot prints a curve giving an estimation of the estimated recurrence count of

observed values over a continuous data range, presenting the spread and shape of the signals.

pPEINEAsLE (3.1)

kDensityDist(x) =
o

In the empirical cumulative distribution plot or ECDF, for each value, the count of
all instances is equal or less than the plotted value. This enables quick detection of most

repeated numbers.

1 n
ECDF(z) = ~ > lai—a (3.2)
=1

And the box-plot is best at presenting the summary statistics over a horizontal axis.
The options for the distribution plots are removing a certain upper percent of the data
with percentile, removing the zero population with nozero, and plotting the enrichment

distribution with enrichment.
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sigtools_autocorrelation

SigTools includes autocorrelation plot as a measure of the dependency among consecutive
bins, within the signals. Signals with higher autocorrelation have smoother picks and valleys.
SigTools uses R acf() for autocorrelation value calculation. The autocorrelation plot is
an orthogonal plot with x-axis presenting lags (shift), and y-axis presenting the value of
autocorrelation at each lag, which is the correlation of the signal with itself when shifted

lag times.

autoc(lag) = corr(sig, sigyiag) (3.3)

If the input data is the result of concatenation or sampling of several chromosomes,
meaning the successive sequences may not necessarily be adjacent in the original data, the
autocorrelation at each lag (shift) is the correlation of all the pairs of different sequences
shifted by that lag.

Autocorrelation can also be used to measure the dependency of genomic signals among
adjacent elements such as neighboring genes [9]. To use this module in such way, users can

set the mode to "regions".

sigtools_correlation

The correlation between a pair of variables calculates the linear association of those vari-
ables. SigTools correlation outputs a heat-map presenting the pair-wise correspondence
of two sets of different signals.

cov(sigy, sigy)

Psig1,sigr — — (34)

Osig10sigo
sigtools_aggregation

This feature inspects signal values upon every occurrence of a specific element for an en-
tire chromosome or genome and illustrates that signal’s general behavior. Such figures
are essential in signal interpretation and assessment and have been suggested by multi-
ple tools [29, 31, 1]. In addition to interval data retrieval and aggregation, the underlying
computations for such plots need to perform data modification and normalization for the
resulting plot to be meaningful and beneficial.

The primary information of the elements under examination — such as the chromosome
they are located on, their starting and ending coordinate, and direction — should be inputted
as a .bed or .gene_info file. To generate an aggregation plot for a signal S, an aggregation
matrix needs to be computed. For each indicated element, an array of S’s value over that

element is retrieved. As the input elements vary in length, these arrays do not have the

21



same length, so unless they undergo an operation that unifies their length, they can not be
assembled into a matrix.

The mode parameter controls the length unification process in sigtools_aggregation
module. This parameter accepts two arguments: point and region. If point is chosen,
all arrays will be centrally aligned and the smaller arrays will be padded with zeros. As
indicated by the name, this option results in value accumulation over a specific point hence
a biased conclusion over the edges of the elements. On another note, the region option
unifies the arrays’ length by stretching shorter arrays using smooth interpolation.

Our novel approach to the conventional aggregation plots is highlighting the differences
between high and low signal values by adding a shifted origin line to the plot, and use
different color encoding for upper and lower regions of this line. Different approaches can
be pursued for choosing the value of the introduced shifted origin line (1), but not all of
them disclose what is truly happening within that data set.

Genomic signals data sets generally contain a large population of zeros. Accordingly the
mean value of a signal S is a small number close to zero. Setting the shifted origin to a
signal’s mean (I = mean(S)) will cause most of the aggregated points to stand above the
line, hence resulting in an overrated aggregation plot.

Assigning the mean of non-zero signal values (mean({s € S|s > 0})) to [ results in most
of the aggregated points to stand below the [. A large count of zeros included in genomic
signal data sets belongs to quiescent genomic regions, hence do not bear any more informa-
tion than telling us these regions do not have any functionality. Yet, there still exist some
important zeros that indicate the absence of a specific activity, and removing them results
in an underrated aggregation plot.

Following the calculation of the aggregation frame (the average signal values over the
specified repeated element), another potential choice for the shifted origin line (1) is the
mean of the present values in the aggregation frame. However, the drawback of neglecting
the signal values that did not participate in the creation of the aggregation matrix is that
the shifted origin does not reveal any indications of how this signal is behaving over the
specified elements in comparison to the rest of the chromosome or the genome.

Blacklist genomic regions have empirically shown to only commit artifact data in next-
generation sequencing. Accordingly, the dismissal of these regions has proved to improve the
result of several genomic signal related studies [2]. To capture an accurate aggregation plot,
sigtools_aggregation offers an option for excluding the values that lie within blacklist
regions, hence eliminating the bias that the large zero population or redundant extreme
values introduce to the mean value.

The discussed approaches result in different shifted origins for different genomic signals
while having a unified shifted origin value enables an effortless comparison between multiple

aggregation plots. Towards this notion, sigtools_aggregation contains the option to gen-
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erated the aggregation plot with the enriched signal, which is the input signal normalized

by its mean value. The shifted origin in this case is set to be 1.

3.3 Web Application Interface

Command-line packages are necessary for pipeline development yet a large number of
prompt parameters often discourage users to explore their data. Graphical user interfaces
are ideal choices for users with limited command-line experiences to interact with their data.
Shiny is an R package enabling the assembly of an interactive web-based user interface from
R scripts [33]. The increasing number of Shiny apps in data visualization, particularly ge-
nomic data visualization [11, 19, 32, 12] indicates the effectiveness of this approach in
enhancing the accessibility of developed packages. All SigTools utilities are also embodied
in an interactive Shiny web application.
To start SigTools Shiny application, users need to click on the project file sigtools-shiny.

Rproj to open Rstudio, then click on the Run App button or enter the following command

in Rstudio’s console:
> runApp('sigtools.R')

SigTools-Shiny is structured based on a Shiny dashboard which consists of a vertical
navigation bar and a main body. The navigation bar provides access to SigTools-Shiny’s
four pages: Data, Plots-static, Plots-Interactive, and About. By clicking on each of these
sidebar items, their corresponding page appears in the main body.

The Data page (Figure 3.3a) contains several boxes, one for each data operation dis-
cussed in Section 3.2.1 and one for data import controls. When a file is uploaded, the
five-number summary of its contents appears in a box on the right side of the window, con-
firming that the uploading process was successful. This summary file can be downloaded
using the Download button.

The Plots-Static page (3.3b) contains only one box named Canvas which contains several
tabs each for a specific plot: Boxplot, Impirical Cummulative Distribution, Kernel Density
Distribution, Autocorrelation, Correlation, and Aggregation. Each tab has a sidebar and a
main panel. All the data and plot modification options are located on the sidebar panel.
The GO! button initiates the plot generation process and eventually the plots is displayed
on the main panel.

Much like the Plot - Static page, the Plot - Interactive page (Figure 3.3¢) also consists
of only one canvas, with multiple tabs. Yet, the plots in this page offer interactions such as
zooming in and out and data selection. These plots are generated by Plotly, an R package

that enables creating interactive web-based figures.
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~fdev/sigtools-shiny - Shiny -+ X

http://127.0.0.1:4038 | 5 | Open in Browser <3 Publish =

Sigtools

Data Processing -

Select all your
bedgraph files

Browse... o file s

Bin size

200

ok

Input Data -

Use Example input Summary =

signals Min 1st Qu Median
. . 1 H3Kdmel ] 0 0.17230
The Main multi-column bedGraph 2 H3Kdme3 @ 0 0.09123
Browse.. = E003-assays_chr2l_bin200_ 3 H3KImez @ ® 0.30250
4 H3KZT7ac @ B 0.06558
5 HK2Tned © 0 0.17310
6 H3K36me3 @ 0 0.23380
«| Header? r
Prefix
H
Upload

(a) A screenshot of SigTools-Shiny’s first page, Data. A click on the Browse button opens an upload
control and the users can select their file. Here the successful upload of a multi-column bedgraph
file with a header is indicated by the summary table displayed on the right.
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~/dev/fsigtools-shiny - Shiny

http://127.0.0.1:4038 | 2 | Open in Browser <%, Publish =

Sigtools

Canvas |

Box Plot Impirical Cumulative Distribution Kernel Density Distribution Autocorrelation

Correlation Aggregation

Percentile

H3K36me3 1 . [
99 K
Enrichment? H3K27me3 4 .__ r
No zeros? H3K27ac | .
H3K9me3 { - |
H3K4me3 1 l—_

X-axis Title:
signal H3K4me1 1 .

signal

Plot Title:

Y-axis Title: 0 1 2 3 4
value value
GO! |
& Download

(b) A screenshot of SigTools-Shiny’s second page, Plots - Static. A click on the GO! button
generates a static box plot from the 99th percentile of the data, including zeros, with "signal" as
the y-axis label and "value" as the x-axis label. The Download button opens a download control,
allowing to store the generated image in a chosen location.
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~/dev/sigtools-shiny - Shiny - + X

http://127.0.0.1:4038 | ; | Open in Browser <%, Publish ~

Sigtools

Canvas |

Smooth Density
- i |
Percentile
99 H3K4mel
i
Enrichment? H3K4me3 \
No zeros? — H3K9m93 :
H3K27ac 1
Plot Title: f
— H3K27me3 |
. H3K36me3 | |
X-axis Title:
signal
Y-axis Title: 0 1 2 3 4
value Value
GO!
]

(¢) A screenshot of SigTools-Shiny’s third page, Plots - interative. A click on the GO! button
generates an interactive distribution density curve from the 99th percentile of the data, including
zeros. The x-axis indicates signal values and the y-axis indicates the observed frequency of each
value. Different curves are distinguished with different colors. By hovered over data points a tooltip
appears displaying their exact data values. The interaction also enables zooming in and out.

Figure 3.3: Three pages of SigTools Shiny App.
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Chapter 4

Results

The two case studies presented in this section demonstrate SigTools effectiveness in the
interpretation and evaluation of genomic signals data sets. The first case study explores
several previously studied genomic signals and concludes that SigTools accurately captures
their characteristics. The second case study investigates the attributes of a novel set of

genomic signals and exhibits how SigTools can reveal their associate biological function.

4.1 Case Study 1 — Exploratory analysis of known histone
modifications

Histones are proteins that play a crucial role in DNA structure and chromosome organi-
zation. It is possible for these proteins to be modified by connecting to a methyl group
(methylation) or acetyl group (acetylation) and these modification heavily impact gene ex-
pression. Accordingly, many studies have been focused on histone modification and what
particular activity they represent.

Our first dataset contains six modification signals of protein histone H3 —H3K/mel,
H3K/me83, H3K9me3, H3K27ac, H3K27me3, and H3K36me3— over chromosome 21 of the
human genome. Table 4.1 displays the elements and their associated locations that each of
these signals represents. The signals were downloaded from Roadmap Epigenomic Data Por-
tal [20] in indexed binary format (bigWig) with single base-pair resolution. These files were
processed into a multi-column bedGraph file with 200bp resolution using sigtools_con
vertToMultiColBedg function.

The following mentioned analyses are subfigures of Fig 4.1, and in this case, they were
proposed to explore and acknowledge the already established insights.

To obtain a quick grasp of the data distribution, we generated an ECDF plot using
the 99 percentile of the data (Fig 4.1a) using sigtools_distribution function with ecdf
option. We observe that repeated zero values constitute almost 50 percent of all the signals,
which is not surprising since a great portion of human DNA is non-coding sequences with

largely unknown functionality, though some contain regulatory elements [35]. Next, we
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Table 4.1: The function and the location of the signals investigated in the first case study.

Assay Acting as: Location

H3K4mel  Primed enhancer Spatially close to the promoter, though it might
lineary be away from the gene.

H3K4me3  Active Promoter Found near the beginning of the gene.

H3K9me3  Heterochromatin Contains very few genes.

regions

H3K27ac Active enhancer Commonly found near the transcription start site
(TSS).

H3K27me3 Active promoter Found near the beginning of the gene.

H3K36me3 Exons (occasionally )  Gene bodies

examine non-zero values within the 99 percentile by generating a kernel density plot (Fig
4.1b, sigtools_distribution function with curve option) which uncovers that most of the
remaining population rest within the (0, 2) interval. Having an estimation of variable ranges
is particularly necessary when deciding whether to apply any normalization techniques on
data before directing it to a learning algorithm.

Having studied value variation, the autocorrelation plot indicates how sudden or smooth
the values shift in consecutive bins. Fig 4.1c displays that out of the six modifications,
H3K4me3 has the sharpest picks and deepest valleys, hence it has the smallest active regions.
Accordingly, the signal with the highest autocorrelation, H3K36me3, has the the largest
active regions since not much value transformation is indicated.

To understand if there is a linear association between these value variations, we generated
the correlation plot, which uses two visual variables (size and color) to encode Pearson
correlation for all pairs of given signals. In this case, Figure 4.1d displays a high correlation
between H3K27ac—indicator of active enhancers—and H3K4mel—a signal representing all
enhancers.

The remaining subplots of Fig 4.1 discuss the average enriched behavior of two of the
mentioned histone modifications over gene bodies of chromosome 21. H3K4me3 exhibits
high values near the beginning of genes as a promoter does (Fig 4.1e) And H3K9me3 has
little variability throughout the considered regions which comply with characteristics of

heterochromatin regions (Fig 4.1f).
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Figure 4.1: Exploratory analysis of histone modifications. a) Empirical Cumulative Dis-
tribution b) Kernel Density Distribution ¢) Autocorrelation d) Correlation HeatMap e)
H3K4me3 Aggregation f) H3K9me3 Aggregation
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4.2 Case Study 2 — Interpreting Chromatin State Feature

A recent study [1] proposes chromatin state features for capturing genomic elements instead
of discrete annotation. These features are continuous genomic signals which are obtained
from histone modifications refined by a Kalman filter state-space model. We chose a set of
three features for this case study to demonstrate how SigTools can assist in interpretation
of novel genomic signals.

Since these features are to project characteristics of histone modifications, it is expected
when the ECDF plot (Fig 4.2a) of the 99 percentile of feature data displays a large popula-
tion of zeros in the dataset. We can also obtain an estimation about the range of the data
which is about [0,0.5) for all the signals.

Removing the zero population and the distribution curve plot (Fig 4.2b) displays that
out of the three features, featurel is denser within the range of (0,1). Despite this smaller
variation, the autocorrelation plot (Fig 4.2c) displays that featurel contains more sudden
changes.

Fig 4.2d displays that featurel mainly correlates with H3K27ac, H3K4mel and H3K4me3
which are responsible for transcription enhancement. Accordingly, these three assays drop
the most in autocorrelation. Plotting the average enrichment of this feature over gene body
regions (Fig 4.2e) make an even stronger argument that featurel also represents enhancer

activity.
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Chapter 5

Discussion and Conclusion

Exploratory data analysis can never be the whole story, but nothing else can

serve as the foundation stone — as the first step. (Tukey [37] p. 3)

An ever-increasing number of genomic signals are being generated by next-generation
sequencing technologies and are being widely utilized in studies such as genome annota-
tion [10, 16], cell development, and gene regulation. The analysis of these signals is often
associated with the analysis of short-read sequences or genomic elements. However, in re-
cent annotation studies [1] theoretically generated signals have been promoted to be a
direct representative of biological activities. Regarding the importance and the increasing
number of genomic signals and their novel applications we believe there is a growing need
for refined tools that enable convenient exploratory analysis and facilitate genomic signals’
interpretation and assessment.

The primary contributions of this work are briefly listed below:

e The design, development, and implementation of an R-based data analysis package,
SigTools, to be used by biologists or computer scientists who work with known and
novel genomic signals. This package includes several recognized statistical plots that
are frequently employed for exploratory data analysis in genomics and other fields.
Table 5.1 is an overview of SigTools visualization modules and their availability in
other genomic signal analysis tools. This table indicates that no other tool offers a
function for generating distribution and correlation plots for this type of data, the
correlation plot is offered only by one other tool, and the aggregation plot is offered
by all of them.

e An aggregation plot is a powerful visualization that has been frequently employed in
genomic signals analysis. Table 5.1 displays that the aggregation plot is incorporated
in all locus-agnostic visualization tools discussed in Section 2.2.2. In this thesis, we
implement a novel visual encoding for this plot. By introducing a shifted origin line to
this plot, we aimed to highlight the difference between high and low signal values and
enable comparison between different aggregation plots for one signal over different

sets of elements, or multiple signals across the same elements.
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o Offering a web-based application, SigTools-Shiny. This graphical user interface would
be an additional option for users who prefer to limit their interaction with a command-
line environment and feel more comfortable inspecting their data with different com-
binations of plots and parameters through a GUI. SigTools-Shiny also includes some
interactive versions of SigTools visualizations, these interactive Java-Script plots are
generated by an R package named Plotly.

SigTools enables users who work with both experimental or statistical generated ge-
nomic signals to obtain text-based or graphical statistical summaries of their datasets, to
understand what activities their novel signals represent, and investigate the relation of their
recently obtained signals with previously studied signals.

As for working with any other extensive dataset, the large size of genomic signals is the
challenge that requires close consideration. For obtaining faster results, SigTools offers two
solutions: working with modified data to a bigger resolution size, or working with a random
subset of the data. The file size can particularly cause issues in web applications when users
have to pause their analysis due to multiple uploads when working with diverse datasets.
To overcome this issue, some frameworks such as GALAXY [I1] offer cloud workstations
to their users, hence uploaded data is stored in the user’s account and it can be accessed
at any time. As a part of GALAXY, deepTools users benefit from such an online work
station. Being a stand-alone tool allowed SigTools to have a flexible user interface design,
yet finding a solution for reducing the number of uploads should be included in SigTools
future versions. Future versions of SigTools should also focus on including an additional
number of visualization and enable comparison between continuous and discrete genomic
data.

Table 5.1: Sigtools’ features and their availability in other tools.

aggregation '

Tools distibution correlation autocorrelation (summary) | web-app
\
SigTools v v v v i v
CdeepTools ¢
genomation v |
ngs.plot v i
SegTools v |
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