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Abstract— Reinforcement learning depends on agents being 

learning individuals, and when agents rely on their instincts 

rather than gathering data and acting accordingly, the 

population tends to be less successful than a true RL population. 

“Riskiness” is the elementary metric for determining how 

willing to rely on learning an individual or a population is. With 

a high learning parameter, as we denote riskiness in this paper, 

agents find the safest option and seldom deviate from it, 

essentially using learning to become a non-learning individual. 

With a low learning rate, agents ignore recency entirely and 

seek out the highest reward, regardless of the risk. We attempt 

in this paper to evolve this “risk neutrality” in a population by 

adding a safe exploration nurturing period during which agents 

are free to explore without consequence. We discovered the 

environmental conditions necessary for our hypotheses to be 

mostly satisfied and found that nurturing enables agents to 

distinguish between two different risky options to evolve risk 

neutrality. Too long of a nurturing period causes the evolution 

to waver before settling on a path with essentially random 

results, while a short nurturing period causes a successful 

evolution of risk neutrality. The non-nurturing case evolves risk 

aversion by default as we expected from a reinforcement 

learning system, because agents are unable to distinguish 

between the good risk and bad risk, so they decide to avoid risks 

altogether.  

I. INTRODUCTION 

Reinforcement learning (RL) is the most fundamental 

method for evolving an intelligent AI system. RL 

involves each agent in a population making a choice at 

each trial and receiving some sort of feedback, which 

the system must then use to improve. The population 

will undergo many iterations, called “generations”, 

throughout which the AI will ideally improve and 

optimize its reward function. This method of learning 

does not involve any specific aid or supervision and 

does not necessarily include nurturing in any form. 

Niv et al. [1] demonstrated that the RL model can be 

applied to animal behaviors and found a method for 

evolving the ideal learning rules to maximize reward 

in an uncertain environment. Their research set a basis 

for many future experiments with reinforcement 

learning, and their most relevant discovery to this 

paper is the observation that RL causes risk averse 

behavior to emerge as the optimal strategy in a 

population. It has been quantified and further 

demonstrated that RL without nurturing consistently 

causes the evolution of risk aversion, meaning the 

agents who choose the safe option outperform agents 

who choose the risky option, and as a result pass on 

their genes more frequently.  

Risk aversion refers to the tendency of an agent to 

create or fall into a positive feedback loop in which the 

safe option is chosen the vast majority of the time, in 

order to keep receiving reward, even if the average 

reward for the risky option is higher; however, Roberts 

[5] demonstrated that there is a threshold for the 

average reward difference, above which a population 

which formerly developed risk aversion will no longer 

always divert to the safe option, and may tend towards 

the risky option. Risk neutrality refers to a tendency to 

choose based on average or expected reward, rather 

than the actual probability of receiving zero reward 

from each option. Risk averse populations place more 

weight on recent results, and risk neutral populations 

place more weight on the overall trends of their results, 

rather than recency.  

A risk-seeking individual would choose the risky 

option without regard to its average or expected 

reward, meaning even a state in which the risky option 

has a lower average than the safe option, but the 

nonzero outcome is higher than the safe option, could 

cause a risk-seeking population to diverge on the risky 

option. This type of behavior can manage to take over 

a population if a few individuals get lucky with the 

risky option, and then multiply by more than a factor 

of two each generation (due to a large tournament 

size). We want to avoid this effect in our experiment 

and only promote the evolution of risk neutrality or 

risk aversion.  We explain how we plan to avoid this 

in the experimental design, section III. 

A relatively recent emergence in the artificial 

intelligence field is the introduction of nurturing, in 

forms such as direct supervision, education, safe 

exploration, etc. A virtuous cycle of nurturing and 



learning has been proposed, in which the evolution of 

nurturing promotes the evolution of learning, which in 

turn promotes greater nurturing, continuing the loop 

[2-4]. In this paper, we are exploring the ways in which 

the addition of a safe exploration period may affect the 

evolution of a “learning parameter” which is 

correlated to the riskiness level of a certain agent. This 

learning parameter is described in more detail in the 

experimental design, section III. 

Safe exploration is a form of nurturing in which each 

agent is free to explore its options for a certain number 

of trials near the start of its life without any 

punishment; this allows it to alter expected rewards 

and learn a strategy which is likely to lead to success 

once the safe exploration period has ended and fitness 

calculation has begun. It was shown by Hoke [4] that 

the addition of a safe exploration period can cause 

learning itself to be more likely to evolve, so we are 

curious what effect safe exploration will have on a 

population with a set learning procedure and variable 

riskiness. Shah’s results [2] indicate that nurturing 

promotes learning only in certain environments where 

it is desirable, which suggests that the effect of 

nurturing on a learning population is not always 

predictable. We hypothesize in our study that risk 

aversion will be less likely to emerge as the optimal 

strategy in the nurturing case, since the population will 

have time to learn that the risky option has a higher 

expected reward.  

Conversely, it is not necessarily evident that risk 

aversion must evolve in any non-nurturing population. 

Roberts [5] demonstrated that reinforcement learning 

with knowledge sharing causes risk neutrality to 

emerge in a population, rather than the risk aversion 

which prevails when each agent is on its own. This 

experiment suggests a basis for enhanced knowledge 

leading to a population drifting toward risk neutrality. 

Since safe exploration similarly leads to an increase in 

knowledge confidence, this follows the same line of 

reasoning as our first hypothesis.  

II. HYPOTHESES 

Reinforcement learning has been shown to cause a 

drift toward risk aversion on its own [1], due to the 

impact each choice has on the continued success of the 

individual and the population. If this impact is 

removed for the majority of the individual’s lifetime 

with the addition of nurturing [4], it would follow that 

more risks could be taken safely, and risk aversion 

would not emerge until near the end of its lifetime, if 

at all. Consequently, a long enough safe exploration 

period could directly cause a population to become 

risk neutral. Thus, hypothesis 1 follows: 

 H1: Reinforcement learning with nurturing in 

the form of a long safe exploration period leads to the 

evolution of a risk neutral learning parameter. 

Accordingly, if our assumptions about the effect of 

nurturing are valid, the complement to hypothesis 1 

should also be true, leading to hypothesis 2: 

 H2: The absence of nurturing will cause the 

learning parameter to evolve to be risk averse. 

It is not necessarily accurate to state that both of these 

hypotheses must be true or false together, because 

even if the learning parameter evolves in a direction 

that agrees with our first hypothesis, the addition of 

nurturing may have had a negligible impact on the 

actual evolution of the learning parameter. It should be 

evident in our results that the difference in nurturing 

between cases is the source of the trends we see in the 

evolution of the learning parameter, and the 

differences in the outcome of the learning parameter 

should be statistically significant. 

III. EXPERIMENTAL DESIGN 

At the start of each trial, every individual will be 

presented with a choice between three options, A, B, 

and C. Option A is the “safe” option, with a guaranteed 

turnout and a low average reward. Option B and C are 

the “risky” or “uncertain” options, with a 50% 

probability of turnout for both. B has a higher average 

reward than A, and C has a lower average reward than 

A. Each individual will evolve their learning 

parameter between trials using reinforcement learning, 

and this parameter will be used to evaluate risk and 

choose option A, B, or C during each trial. The 

learning parameter L will be in the range (0, 1). An L 

value of 0 describes complete risk neutrality, where 

risk, reward, and recency are completely ignored when 

making a choice, while an L value of 1 represents 

complete risk aversion, where only the most recent 

trial is considered. We expect that with an L value very 

close to 1, there will be no deviation once the safe 

option is chosen, regardless of the potential reward 

from the other option. At the end of each generation, a 

variety of data is written to a summary file, including 

the average, minimum, and maximum of all L values 

for the population, the average fitness of the 

population, and the ratio of choices made in favor of 

each option. There is also a graphing method which 

has various different sets of outputs that are 

compatible for graphing; the output set is defined by 

combinations of three Boolean parameters in the setup 

file. After writing to the file, the next generation will 

be formed.  

The individual will have N trials in which to acquire 

fitness before the next generation is formed. This 

resource gathering period will be called its “lifetime” 

for simplicity, although it is implied that the 

individuals in the nurturing case would persist for one 

more “lifetime” to provide the nurturing period for the 

next generation. The reward gained by an individual in 

a specified ith trial is represented by Ri. For our initial 

set of data, there will be 500 trials in one lifetime. The 

reward for all 500 will be averaged to obtain the fitness 



F for the lifetime of a non-nurturing individual, as in 

Eq. (1), and for a nurturing individual the total fitness 

F will be the average reward gained during the final 

350 trials, ignoring the first 150, as in Eq. (2). 
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The procedure for an agent making its choice between 

options A, B, and C at each trial uses a Boltzmann 

algorithm. This algorithm uses an agent’s expected 

reward for each option to generate a probability of how 

likely each is to produce the greater comparative 

reward, and then boosts the chance of the agent 

choosing the option of greater expected value. For 

example, if the options are 80%, 10%, and 10%, the 

agent is realistically more certain to receive a greater 

reward from the 80% option, so the algorithm makes 

it more likely that the 80% option is chosen (i.e., its 

chance of being chosen is greater than 80%). This 

method leaves a small chance of the lesser option(s) 

being chosen to prevent a ceiling or floor effect, and to 

account for random chance. The Boltzmann algorithm 

uses a temperature variable T in its calculations, 

representing how certain the individual is in its choice. 

A higher value of T represents lower certainty in 

expected rewards, and a T value approaching 0 

represents complete certainty, and would cause the 

individual to pick whichever option has a higher 

expected reward 100% of the time. It would be 

interesting to scale the temperature variable 

throughout an individual’s lifetime, where it would 

start out high when an individual is young and doesn’t 

have much sample data, but would decrease and cause 

an agent to be very confident in its data by the end of 

life. For this experiment, however, we will follow 

Roberts’ procedure [5] and use a constant temperature 

value of T = 20, rather than scaling it with an agent’s 

lifetime. This is done with the intent of avoiding the 

introduction of confounding variables to our study 

which could alter our results. 

Each agent’s current expected reward values are used 

by the Boltzmann algorithm to generate probabilities 

and ultimately make each choice. Every time a choice 

is made, the expected reward for the option that was 

chosen is updated. The expected reward E is changed 

following the same update rule as used by Eskridge 

[3], in which a simple weighted average is calculated, 

using the learning parameter to define the weights. The 

learning parameter L denotes the weight of the new 

reward R just obtained, versus the current expected 

reward E0. This update rule is shown in Eq. (3). It is 

evident from this equation that an L value approaching 

1 would place very little weight on previous data and 

all weight on the most recent result; conversely, an L 

value approaching 0 would have the opposite effect, 

where essentially no weight is placed on the most 

recent result, and previous data is carried through.  

 𝐸𝑛𝑒𝑤 = (1 − 𝐿)𝐸0 + 𝐿𝑅 ( 3 ) 

There will be 500 generations in total, each containing 

50 individuals. Each new generation will be formed 

with tournament-style selection, where two 

individuals of the current population of fifty are 

selected at random, and the member of that group of 

two with the highest fitness is selected to be copied to 

the next generation, allowing the same individual to be 

selected more than once, even in the same tournament. 

This tournament size is so low because a higher 

tournament size (tested up to five) disproportionately 

favors lucky risks from individuals, and causes all 

cases to regress toward risk-seeking individuals, as we 

discussed in section I. This process will be done fifty 

times to form a new population of 50 individuals. This 

formation method translates to an individual’s 

selection likelihood being correlated to its end-of-life 

fitness and allows for a small chance of low-fitness 

individuals to also advance, while maintaining a high 

chance to prune off gene lines of low fitness. This 

selection method also removes the necessity of 

calculating a cost-of-living fitness and killing off low 

performing individuals, as the punishment for low 

fitness is simply that they are less likely to reproduce 

and pass on their genes.  

Selected individuals will be assigned a mutation value 

M from a normal distribution with mean 0 and 

standard deviation 0.05, so 𝑀~𝑁(0, 0.052). The value 

of M will be added to L to generate the learning 

parameter value for the new individual, as in Eq. (4). 

The value of L will not be altered during an agent’s 

lifetime, and only changes due to mutations between 

generations, which is why we have a relatively small 

population size and a large number of generations. 

This method of evolution serves two important 

purposes: it simulates natural selection by eliminating 

individuals from the gene pool who significantly 

underperformed compared to the rest of the 

population, and it simulates the carrying capacity of 

the environment by maintaining the size of the 

population. 

 𝐿𝑛𝑒𝑤 =  𝐿𝑜𝑙𝑑 +  𝑀 ( 4 ) 

Instincts are represented by the initial values of 

weights such as the learning parameter and anticipated 

values of options A, B, and C, which would affect risk 

evaluation by skewing the expected values of each 

option, altering the individual’s willingness to 

undertake risks. We anticipate that if the instincts for 

each individual in a population were independently 

random, the generational algorithm would cause the 

same effect as if all were initially average, and 

eventually weed out poorly performing genes.  It 



would be interesting to see how a systematic initial 

instinctual preference in the population would affect 

the evolution of the learning parameter, and how it 

would distort the overall success of the population 

through several generations; however, in this 

experiment we will not perform tests with instinctual 

differences. At the start of every generation, all 

expected values will be set to 100 to ensure that these 

values are learned every generation, and the 

individual’s performance will be based solely on their 

learning parameter value, rather than on any initial 

preference. 

At the start of the first generation, the learning 

parameter of each agent will be set to 0.5, starting the 

individuals out with no risk preference. This will allow 

the parameter to dip towards 0 or 1 with equal 

likelihood due to random chance, and evolution will 

proceed further from 0.5 until a balance is reached. We 

hope to avoid a ceiling or floor effect, where the result 

of both the nurturing and non-nurturing case are so 

close to the same boundary (0 or 1) as to be 

indistinguishable. All values discussed in this section 

are represented in Table 1 for the nurturing case. 

Setup Parameter Value 

Initial Learning Parameter 0.5 

Standard Deviation of Mutation 0.05 

Tournament Size 2 

Num. of Nurturing Trials 150 

Num. of Total Trials per Gen. 500 

Num. of Agents per Gen. 50 

Number of Generations 500 

Value of Choice A 100 

Value of Choice B 0 or 220 

Value of Choice C (symmetric) 0 or 180 

Value of Choice C (asymmetric) 0 or 150 

Table 1: The set of parameters which are used to initialize and run 

the simulation in the nurturing case. The only difference in the non-

nurturing case is that the number of nurturing trials is set to 0. Notice 

the value for A is 100, which is higher than the average value of C 

(90 or 75), and lower than the average value of B (110). 

IV (a). RESULTS (TWO-STATE) 

Figures 1 and 2 represent data taken over much fewer 

generations and trials than in Table 1, and in a two-

state environment containing only options A and B. 

Contrary to what we expected to see from our results, 

there seems to be no definitive set of parameters for 

which the addition of nurturing causes a consistent 

change from risk aversion to risk neutrality. Our data 

showed a progression of the average learning 

parameter value that depended entirely on the random 

choices and rewards in the early generations, rather 

than the fitness calculation differences between the 

nurturing and non-nurturing cases. Ten runs of our 

simulation showed five which approached 0 and five 

which approached 1. These runs are shown together in 

Figure 1, clearly demonstrating the random variations 

which in some cases cause the average learning 

parameter to fluctuate wildly throughout the dataset. 

This fluctuation and the aspect of randomness seem to 

be far less apparent and influential in the non-

nurturing case than in the nurturing case. Thirty runs 

of the simulation are shown in Figure 2, and it is clear 

that there is almost no variation in the evolutionary 

process or the results. Every non-nurturing dataset 

resulted in an evolution of risk neutrality, even in runs 

which approached 1 in early generations. 

 

Figure 1: Our simulation, with the same parameters each time, 
produces results which essentially do not depend on the nurturing 

factor. Shown above are 9 nurturing runs, with average learning 
parameter plotted as a function of generation number. It is clear that 

these results are virtually random in their evolution.  

 

Figure 2: Thirty non-nurturing runs which for the most part show a 
consistent progression toward risk neutrality in every run. This is in 

opposition to the nurturing case, which has very indeterminate 

results. 

When we increase the number of generations and trials 

(but keeping the two-state environment), we see the 

results shown in Figures 3 and 4, where the results are 

opposite our expectations.  

 



 

Figure 3: Average L as a function of generation number. Thirty non-

nurturing runs which are very random but mostly end up with an 

average learning parameter value around 0.2 (very risk neutral).  

 

Figure 4: Average L as a function of generation number. Thirty 

nurturing runs which almost entirely end up with an average 

learning parameter value around 0.8 (very risk averse).  

We anticipated that the safe exploration period would 

allow a cost-free method for an agent to learn that the 

risky option B has a higher average value and should 

be the obvious choice, evolving risk neutrality. We 

also expected in the non-nurturing case that 

individuals who evolved risk neutrality would’ve lost 

too much fitness in the process of discovering the 

higher average value and would be eliminated from 

the population during tournament selection. What 

actually seems to occur is that individuals in the non-

nurturing population who happen to get lucky a few 

times with the risky option make it through the 

tournament selection and are passed on multiple times, 

which snowballs each generation until the entire 

population evolves to be risk-neutral. In the nurturing 

case, some agents discover that option A is more 

reliable and have success choosing this safe option 

every time, whereas other agents discover that option 

B has a higher expected reward and have success with 

choosing this risky option the majority of the time. 

This effect causes a wide spread of the L values during 

any given generation, with an average that fluctuates 

around the center until dipping towards 0 or 1. Figure 

5 shows the progression of this spread by displaying 

the minimum, maximum, and average L values for 

each generation, as well as the L values representing 

the first and third quartile in a data set for a nurturing 

case. These data are a clear indication of the obtuse 

lack of precision when compared to the non-nurturing 

data in Figure 6. 

 

Figure 5: Progression of 5 measures for learning parameter in one 

nurturing case. Notice the wide disparity between the minimum and 

maximum values, as well as between the first and third quartile.  

 

Figure 6: Progression of the same 5 measures as in Fig. 3, but for a 

non-nurturing case. Data spread is far more precise and finds the 

optimum learning parameter very early without much fluctuation.  

On an individual level rather than a generational level, 

the data also show unexpected trends. It is evident by 

the plots in Figures 7 and 8 that although a decrease in 

average learning parameter of the population does not 

change the average fitness by much, it is enough to 

noticeably increase variability in the spread of fitness 

values. 

 

Figure 7: Non-nurturing case. Most agents quickly evolve risk 

neutrality (L→0) and the general spread remains the same for 

generations 50-200.  

In terms of expected values, the agents are calculating 

and updating their expectations as we would expect 

based on their actions, as shown in Figure 7. They are 

also changing their behavior to match their 

expectations, choosing option B more often the higher 

its expected value is. There seems to be a linear 

relationship between the proportion of an agent’s 

choices during its fitness-collection period, which is 
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acceptable and predictable given the Boltzmann 

algorithm we are using.  

 

Figure 8: Nurturing case. In gen 50, most agents are consistently 

(mildly) successful with risk aversion (to the right on the graph) 

but few individuals obtain higher fitness by going left. By gen 100, 

these few have dominated the gene pool and nearly all agents are 

risk neutral, with the same spread as in Figure 5. The data in the 

nurturing case are sometimes mirrored from this plot, when risk 

aversion evolves. 

We originally thought all this to mean our hypotheses 

were wrong, however we decided to try reducing the 

randomness and inconsistency before making any 

definitive claims about these results. This is why we 

introduced a third state, option C.  

IV (b). RESULTS (THREE-STATE) 

With all three states in play, the average between the 

two “uncertain” options (B: 110 and C: 90) average 

the same as the “safe” option (A: 100). This means that 

being random is not beneficial anymore, because 

being risky is on average the same as being risk averse, 

and is therefore deterred, because with no change in 

reward, individuals will want to decrease variability. 

The graphs shown in Figures 9 and 10 each represent 

a single agent in a single generation. This is the first 

iteration of our three-state environment. Ideally the 

estimations will each converge to their real mean 

values, but this does not happen successfully yet. 

Significant spikes and drops mean the agent has a 

high L and is very risk averse, whereas if the lines 

experience minimal change, the agent has a low L 

and is very risk neutral. As these two figures show, 

our results still oppose our hypotheses, but more 

importantly, the agents still fail to distinguish 

between the two “uncertain” options, B and C. 

  

Figure 9: Non-nurturing case. Fitness and estimations as a function 

of trial number. 200 trials per generation.  

 

Figure 10: Nurturing case. Fitness and estimations as a function of 

trial number. 200 trials per generation. The flat segment of the 

fitness line is the nurturing period, wherein fitness is not tracked. 

This nurturing period lasts for the first 150 trials. 

In the physical world, nurtured organisms 

(e.g., humans) live well beyond their nurturing 

period. For this reason, we increased the total number 

of trials to 500, leaving the nurturing period at 150 

trials. This stretches the relative length of the 

nurturing period from 75% down to 30% of an 

agent’s life. This change causes nurtured agents to 

also evolve risk neutrality, and both sets of agents are 

more successful, as shown in Figures 11 and 12.  

 

Figure 11: Non-nurturing case. Fitness and estimations as a 

function of trial number. 500 trials per generation.  
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Figure 12: Nurturing case. Fitness and estimations as a function of 

trial number. 500 trials per generation. Nurturing period is the first 

150 trials, so no fitness is tracked during this time.  

The next development was the reintroduction of 

asymmetry to the states, but rather than in the two-

state system, the safe option is favored over blanket 

riskiness, and even over randomness. We achieve this 

by lowering the average value of option C to 75, 

while leaving the average for B at 110. This means 

the average of B and C (i.e., what an agent would get 

if they are risk neutral but cannot distinguish between 

the two choices) is 92.5, i.e., lower than option A 

(100). Because it is lower, being risky is bad unless 

an agent can tell the difference between B and C. 

This is the key; option B choosers will end up with 

110 fitness, which puts them at the top of the 

population, and therefore the B choosers will take 

over the gene pool over enough generations.  

What we see in our final results (Figures 13 and 14) 

is that nurturing allows agents to learn to choose B 

and avoid C, evolving risk neutrality; however, 

without nurturing, agents avoid both B and C, 

evolving risk aversion and choosing A the majority 

of the time. This behavior satisfies both our initial 

hypotheses, and the environment fits our criteria, 

producing reliable and consistent data.  

 

Figure 13: Non-nurturing case. Fitness and estimations as a 

function of trial number. 500 trials per generation. Negatively 

skewed asymmetry. Risk averse, as seen by the large spikes in 

estimations. This population ended closely gathered around a mean 

fitness of 100. 

 

Figure 14: Nurturing case. Fitness and estimations as a function of 

trial number. 500 trials per generation. Nurturing period is the first 

150 trials, so no fitness is tracked during this time. Negatively 

skewed asymmetry. Risk neutral, as seen by small changes in 

estimations with each trial. This population ended very spread out 

around a mean fitness greater than 100. 

V. DISCUSSION 

Our final results with the simulation demonstrate that 

our second hypothesis, H2, is correct. Agents in the 

non-nurturing case are unable to distinguish between 

options B and C, so they develop risk aversion in order 

to skip both of these options entirely.  

The story with our first hypothesis, H1, is a bit more 

complicated. Agents in the nurturing case are able to 

choose B while avoiding C and are thus able to evolve 

risk neutrality. However, this does not happen with a 

“long” safe exploration period, but rather happens 

with a short nurturing period lasting only 30% of the 

agent’s life. This is, as we discovered in the course of 

running this experiment, due to the simple statistical 

fact that a fitness collection period which is too short 

gives too much power to random chance, rather than 

actual decision-making, causing the large spread in the 

data shown in Figures 7 and 8. We initially thought H1 

to have been proven false because of its underlying 

predictions about reinforcement learning, but it turned 

out to be false because of our requirement of a long 

nurturing period. A modified H1 which is true would 

be as follows: 

 H1(modified): Reinforcement learning with 

nurturing in the form of a short safe exploration period 

leads to the evolution of a risk neutral learning 

parameter. 

Moving on from our hypotheses, the situation our 

simulation models in our final setup can be described 

as a “fitness landscape.” This fitness landscape (Figure 

15) has two optima in the learning parameter (L) scale, 

and which one gets settled by the population depends 

on whether nurturing is present.  

• Risk neutrality is the global optimum, and 

can be found when the population has a low 

average L. This optimum has a small basin of 

attraction, meaning it is hard to find.  



• Risk aversion is a local optimum but is less 

lucrative than the global optimum. It can be 

found when the population has a high average 

L. This optimum has a large basin of 

attraction, meaning it is easy to find. 

 

Figure 15: Fitness landscape of our simulation’s environment. It is 

evident that the global optimum at L=0.2 is much narrower and is 

thus harder to find. The simulation starts at L=0.5, so agents will 

follow the upwards curve to the local optima at L=0.8; however, 

nurturing enables agents to experiment and dip into the global 

optimum’s basin of opportunity 

This experiment has served to demonstrate the type of 

environment (i.e., fitness landscape and fitness 

function) that is required in order for a population to 

be able to develop risk neutrality and/or risk aversion, 

and for the insertion of nurturing to be able to make a 

difference to the results of the evolution. This will 

enable us to have some idea of what to expect when 

attempting to evolve a neural network for a specific 

purpose, and even allow us to guide its evolution by 

predefining a certain fitness landscape.  

VI. FUTURE WORK 

The most significant work still to be done is to increase 

the number of choices available to each agent, as we 

did from two to three while refining this experiment. 

Being able to generalize these findings and this model 

to any number of choices would be outstanding, and 

this is what my primary goals for my own personal 

future work entail. It is also a subject of interest to 

make some choices become unavailable and reopen 

over the course of the agent’s lifetimes or across 

generations, to force adaptation and see how well a 

nurturing versus non-nurturing population would do in 

surviving the changes.  

It would be feasible to put nurturing and non-nurturing 

agents in the same simulation, such that the two 

populations are opposed and must find separate niches 

to both survive. This would turn the competition from 

a data comparison into a real-time test of natural 

selection and would really reveal the intricacies of 

each group’s behavior. 

In future experiments, it would be interesting to 

include additional factors for evolution such as 

instincts which carry over between generations, an 

initial instinctual preference, and varying initial values 

of the learning parameter within the same generation 

or different runs. We assumed in this experiment that 

variance in the first generation’s initial expected 

values and learning parameter would lead to the same 

progression as a population with each individual 

beginning with average values, given the same 

evolution parameters. A possible follow-up 

experiment would be to determine the accuracy of this 

assumption, and the conditions under which it fails. 

We wonder if a threshold exists for the variance in the 

initial instincts, and if it can pass a point after which 

its behavior changes and is no longer predictable by 

our model.  

We also assume that a significant difference in the 

initial average value of the learning parameter will 

affect the direction towards which it drifts through 

evolution (towards 1 for risk aversion or towards 0 for 

risk neutrality). This assumption was not relevant in 

this experiment, as we began each trial with the same 

learning parameter value which allowed a drift to 

occur in either direction, but this is something which 

could most certainly stand to be challenged or proven 

in future experiments.  

This experiment could be repeated with an aspect of 

variance in some of our parameters which remained 

unchanged throughout the entirety of the experiment, 

such as the standard deviation of the mutation value, 

the number of agents in a population, the tournament 

size, and the temperature value used in the Boltzmann 

algorithm. Specifically, we proposed in the 

experimental design (Section III) that the temperature 

value could be decreased through the duration of every 

individual’s lifetime, such that they become more 

confident in their answers as their lives go on. With 

this strategy, the temperature value would not undergo 

evolution, but rather would start at a constant value of 

20 at the beginning of every generation, and would be 

decreased by the same amount each trial such that it 

will reach 0 in the final trial of every lifetime. 

Evolution with this sort of condition would place 

disproportionate weight on earlier trials compared to 

later, as the expected values are less able to change 

later on in an agent’s life. 

A different standard deviation of the mutation value 

would alter the weight of each specific generation, as 

the learning parameter would change more or less each 

generation, causing a general less or more drastic 

change of the average L value as generations proceed. 

Further experimentation could be conducted in which 

the standard deviation is changed between data sets, 

and there is a possibility of altering this value within a 

data set to simulate changes in the environment which 

either necessitate more rapid adaptation or constrict 

the population to less rapid adaption.  
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