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Abstract. A magnetic graph is a graph G equipped with an orientation structure σ on its edges. The discrete

magnetic Laplace operator LσG, a second-order difference operator for complex-valued functions on the vertices of G,
has been an interesting and useful tool in discrete analysis for over twenty years. Its role in the study of quantum

mechanics has been examined closely since its debut in a classic paper by Lieb and Loss in 1993. In this paper,

we pose some boundary value problems associated to this operator, and adapt two classic techniques to the setting
of magnetic graphs to solve them. The first technique uses the spectral properties of the operator, and the second

technique utilizes random walks adjusted to this particular setting. Throughout, we will prove some useful results

including a Green’s identity, mean value characterization of harmonic functions, and extensions of the solution
techniques to Kronecker product graphs.
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1. Introduction and Notation

1.1. Introduction. The study of discrete Laplace operators on graphs is rich and active. [12] describes some
interesting general results related to this area and some surprising limitations on the felixibility of discrete Laplace
operators to model real-world phenomena. Applications are manifold in the world of geometry processing and
computer graphics, as well as in the mathematical models of molecular and atomic structures [9]. In the classic
papers by Chung [5] [4], one finds an accessible introduction to the subject, detailing some theory and results related
to the classical combinatorial Laplacian, the rich spectral theory it produces, and many interesting stochastic and
geometric problems. In the spirit of both [4] and [9], we state and solve some boundary value problems associated to
the magnetic Laplace operator for graphs which possess a magnetic structure; for an introduction, see [9]. We will
first solve a Poisson-type problem adapting spectral theoretic methods due to Chung, then solve a Dirichlet-type
problem using random walks, that is, discrete-time Markov chains. The probabilistic interpretation of the Dirichlet
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problem associated to the classical combinatorial Laplace operator on connected graphs is well-known; for detailed
descriptions, see [8], [10]. The first section will cover preliminaries for the rest of the paper. In the second section,
we cover the Poisson problem as well as Green’s functions and their extensions to graph products. The third section
will cover the Dirichlet problem in detail, and will also introduce the notion of a magnetic lift and extensions of the
results to graph products.

1.2. Some graph theory. In this subsection, we will focus on some graph theoretic preliminaries.
Let G “ pV pGq, EpGqq be an undirected graph on n ă 8 vertices, without loops or multiple edges, and let V pGq

and EpGq denote its vertex and edge sets, respectively. Henceforth, we will call such a graph simple. If v P V pGq,
we denote by dGv as the degree of the vertex in the graph G. If two vertices u, v P V pGq are adjacent, we write
u „ v.

If u P V pGq, we define the vertex neighborhood of u to be the set

Npuq :“ tv „ u : v P V pGqu Y tuu Ă V pGq.

The q ˆ q identity matrix will be called Idq. We define the adjacency matrix of G to be the matrix AG indexed
by the vertex set of G defined by

(1) AGpu, vq “

#

1 u „ v
0 otherwise

.

Definition 1.2.1. Suppose J,K are two finite graphs without loops or multiple edges. We define the Kronecker
product graph J ˆK by the vertex set V pJq ˆ V pKq and the edge set

EpJ ˆKq :“ ttpu, vq, pu1, vqu : pu, u1q P EpJqu Y ttpu, vq, pu, v1qu : pv, v1q P EpKqu.

Note here that this formulation of a product graph is by no means unique; this particular definition is merely
conventional. It is used in both [4] and [6], which provide frameworks for our spectral theoretic and probabilistic
solution techniques, respectively. It originated in [13], and bears the name Kronecker since the adjacency matrix
of the product graph is the Kronecker product of the original adjacency matrices. Since this is the only notion of
graph product we consider, this qualifier is dropped.

We shall term a proper subset of vertices H Ĺ V pGq a subconnected subset of V pGq or G if it induces a connected
subgraph. Let us impose on H a few anatomical structures. First, we define the vertex boundary of H to be given
by

(2) BH :“
 

x P V pGq : tx, yu P EpGq, y P H,x R H
(

which for our purposes is a good way to define the boundary of H. The closure of H is the set H Y BH Ă V pGq.
We supply an illustration of these definitions below.

Figure 1. A dodecaheral platonic graph with subconnected subset H, its vertex boundary BH,
and a particular vertex neighborhood Npuq.

We will work in function spaces of the form

`2pV pGqq :“ tf : V pGq Ñ Cu
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with obvious generalizations to any subset of V pGq. We equip this space with standard Hermitian inner product
x¨, ¨yG given by

xf, gyG “
ÿ

uPV pGq

fpuqgpuq

where the subscript on the bottom right of the bracket indicates the graph over which the inner product is being
taken, if not obvious from the context. We observe that this space is naturally isomorphic to the finite-dimensional
Hilbert space Cn. In general, we identify functions in `2 with column vectors in Cn.

Define the oriented edge set of G by

EorpGq :“
 

pu, vq, pv, uq : tu, vu P EpGq
(

.

By a signature on a graph G, we mean a map

σ : EorpGq Ñ tz P C : |z| “ 1u : pu, vq ÞÑ σuv

satisfying the algebraic condition σvu “ σuv “ σ´1
uv . The trivial signature is given by σ ” 1, and the negative

signature is given by σ ” ´1. By a magnetic graph, we mean a pair pG, σq consisting of a graph G and a particular
signature σ. We define the signed adjacency matrix of G to be the matrix Aσ

G indexed by the vertex set of G defined
by

(3) Aσ
Gpu, vq “

#

σuv u „ v
0 otherwise

.

The following definition is a property achieved by some signatures which will be useful later.

Definition 1.2.2. Let pG, σq be a magnetic graph. We say that σ is balanced if for every cycle C :“ tu0, u1, ..., un´1u Ă

V pGq where ui „ ui`1 for 0 ď i ď n and un`1 ” u0, we have

n
ź

i“0

σuiui`1
“ 1.

In other words, the product of the signature along every cycle comes to 1. Otherwise, we say σ is unbalanced.

We now specify a magnetic structure on a product graph.

Definition 1.2.3. Let pJ, ρJq, pK, ρKq be two graphs as in (1.2.1), now equipped with signatures. For two adjacent
vertices in V pJ ˆKq of the form ppu, vq, pu1, vqq, and ppu, vq, pu, v1qq, define a new signature ρ on the product graph
by

ρppu, vq, pu1, vqq “ ρJuu1

ρppu, vq, pu, v1qq “ ρKvv1

i.e. ‘push’ the signature back onto the graph from which the particular oriented edge originated.

The reader is invited to verify that this indeed forms a signature on the product graph.

1.3. Operators on `2. In this section, we will formulate our Laplace operator of interest, the magnetic Laplacian,
and introduce some other helpful operators which will be important later. Let G,H be as in the previous subsection.
To be thorough, let us recall the combinatorial Laplacian associated to G (see [4, p. 2] for more detail):

Definition 1.3.1. The combinatorial Laplacian associated to G is the n ˆ n matrix LG, with rows and columns
indexed by V pGq, defined by

LGpu, vq “

#

dGv u “ v
´1 u „ v
0 otherwise

.

If f P `2pV pGqq, we may speak of its combinatorial Laplacian as the matrix product LGf . We have the formula

(4) pLGfqpuq “
ÿ

v„u

fpuq ´ fpvq.
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Now let us take pG, σq to be a magnetic graph. Using the same framework as (1.3.1) and taking into account the
signature, we have the following definition.

Definition 1.3.2. The magnetic Laplacian of G is the nˆ n matrix with rows and columns indexed by the vertex
set of G with entries given by

LσGpu, vq “

#

dGv u “ v
´σuv u „ v

0 otherwise
.

Similarly, if f P `2pV pGqq we have the magnetic Laplacian of f given by the product LσGf , and we have the
equation

(5) pLσGfqpuq “
ÿ

v„u

fpuq ´ σuvfpvq.

As a matter of notation, since the combinatorial Laplacian will not be used beyond this introduction, we often omit
the superscript of σ when using the magnetic Laplacian when the signature is clear from context. Also, if H Ĺ V pGq
is a proper subset of vertices in G, then the symbol LH will be used to refer to the magnetic Laplacian associated
to the subgraph in G induced by H.

We may consider LσG as a second order difference operator on `2pGq. Immediately we see that as an operator,
LGσ is formally self-adjoint, since its matrix representation is easily verified from the definition of σ to be Hermitian.
If the Laplacian of a function vanishes at a vertex v, then we say the function is harmonic at v. If a function is
harmonic at every vertex of a (sub)graph, then we say the function is harmonic on the (sub)graph.

Let us define two more operators, this time optimized for analysis on a subset of V pGq.

Definition 1.3.3. Suppose H Ĺ G as above. We define the magnetic Dirichlet Laplacian of H to be the principal
submatrix LH of LG indexed by the vertex set of H.

LH is self-adjoint on `2pHq, inheriting this from LG. Finally,

Definition 1.3.4. Let pG, σq, H Ĺ V pGq be as before. We define normal derivative to be the operator B
Bη on `2pHq

given by

Bf

Bη
puq “

ÿ

v„u
vPV pHq

fpuq ´ σuvfpvq

for each f P `2pHq, u P H.

This derivative operator, in some sense, outputs a signed quantity measuring how much the function f flows
inward towards a vertex u.

1.4. MVP and Green’s identity for the magnetic Laplacian. In this section, we take a closer look at the
magnetic Laplacian LG to develop a useful mean value characterization of harmonic functions and a Green’s identity,
similar to the combinatorial ones developed in [1].

Theorem 1.1 (Magnetic Mean Value Property). A function f P `2pV pGqq is harmonic on a magnetic graph pG, σq
if and only if at each vertex u P V pGq, the following holds:

fpuq “
1

dGu

ˆ

ÿ

v„u
vPG

σuvfpvq

˙

.
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Proof. We verify the claim directly:

f is harmonic on G ðñ

pLGfqpuq “ 0 for each u P V pGq ðñ
ÿ

v„u
vPG

`

fpuq ´ σuvfpvq
˘

“ 0 ðñ

fpuq “
1

dGu

ˆ

ÿ

v„u
vPG

σuvfpvq

˙

.

�

We now state and verify a useful Green’s identity adapted to the setting of magnetic graphs.

Theorem 1.2 (Magnetic Green’s Identity). Let pG, σq, H be as before and f, g P `2pV pHqq. Then the following
holds:

ÿ

uPH

pLHfqpuqgpuq ´ fpuqpLHgqpuq “
ÿ

uPBH

fpuq
Bg

Bη
puq ´

Bf

Bη
puqgpuq.

Proof. We prove the identity by computation. Notice that
ÿ

uPH

LHfpuqgpuq ´ LHgpuqfpuq

“
ÿ

uPH

gpuq
ÿ

v„u
vPH

`

fpuq ´ σuvfpvq
˘

´
ÿ

uPH

fpuq
ÿ

v„u
vPH

`

gpuq ´ σuvgpvq
˘

“
ÿ

uPH

ÿ

v„u
vPH

`

gpuqfpuq ´ σuvgpuqfpvq
˘

´
`

fpuqgpuq ´ σvufpuqgpvq
˘

which yields the following:
ÿ

uPH

LHfpuqgpuq ´ LHgpuqfpuq

“
ÿ

uPH

ÿ

v„u
vPH

σvufpuqgpvq ´ σuvgpuqfpvq.
(6)

One verifies that the summand on the R.H.S. is anti-symmetric. For any pair u „ v with u, v P H, the two terms in
the sum evaluated at these vertices in different order will cancel each other. Hence, all terms of the sum taken over
edges strictly inside of H will vanish. The only terms which will not cancel are those evaluated on vertices inside
of H with adjacent vertices in the vertex boundary BH. Hence, (6) reduces to

ÿ

uPBH

ÿ

v„u
vPH

σuvgpuqfpvq ´ σvufpuqgpvq.

This will yield the identity as follows:
ÿ

uPBH

ÿ

v„u
vPH

σuvgpuqfpvq ´ σvufpuqgpvq

“
ÿ

uPBH

ÿ

v„u
vPH

`

fpuqgpuq ´ σvufpuqgpvq
˘

´
`

fpuqgpuq ´ σuvgpuqfpvq
˘

“
ÿ

uPBH

fpuq
Bg

Bη
puq ´

Bf

Bη
puqgpuq.

�

1.5. Random walks on a graph. Let pG, σq, H be as before, and let us further assume that G is a connected
graph. In this paper, we will use the language of Markov chains to describe various random walk processes on G and
H. We will generally follow the conventional notation from probability, see [7] for precise definitions of expectation
and probability measure. For Markov chain theory outside the scope of this paper, see [10].

We consider a random walk on pG, σq to be a Markov chain tStutě0 on the state space V pGq, with initial
state determined by initial distribution µ0, and transitioning between adjacent vertices with uniform probability,



6 SAWYER JACK ROBERTSON

generating a sequence of distributions tµtutě0. We think of distributions in this context as nonnegative real-valued
functions on V pGq whose values sum to 1, which at time t describe the probability of St being at any particular
vertex. In the case where the initial distribution is δu, the unit impulse function at vertex u, we say the random
walk starts at u. In order to have proper and effective formulations, we shall deal identify distributions with row
vectors indexed by V pGq following the typical conventions in this area. The process of transitioning from one step
in the random walk to the next is described by the transition matrix associated to G, denoted PG.

Definition 1.5.1. The transition matrix associated to G is the nˆ n matrix PG with rows and columns indexed
by V pGq defined by

PGpu, vq “ PrSn`1 “ v
ˇ

ˇSn “ us “

#

1
dGu

u „ v

0 otherwise

where Pr¨
ˇ

ˇ¨s denotes conditional probability as usual.

The possible positions of a random walker at time step t are described by the t-th distribution µt. Recalling the
classical result which asserts that any discrete Markov chain may be determined uniquely by its initial distribution
and transition matrix, we have the following expression for µt:

(7) µt “ µt´1PG “ µ0P
t
G t ě 1

2. Magnetic Poisson Problem via Spectral Theory

In this section, we will state and solve a Poisson-type boundary value problem on a magnetic graph. We will
follow classical techniques due to Chung which have been adapted to this magnetic setting. These may be explored
in the setting of the combinatorial Laplace operator in [4]. We will round out this section by exploring Green’s
functions briefly, and giving a formula for the Green’s function for the product of two magnetic graphs, once again
utilizing tools from [4].

2.1. Magnetic Poisson problem. Let pG, σq be a finite connected graph on n vertices without loops or multiple
edges. Let H Ĺ V pGq be a proper subset of k vertices, which is assumed to induce a connected subgraph.

Problem 2.1.1 (Poisson problem). Let f P `2pHq and g P `2pBHq be given functions. We wish to find a function
Ψ P `2pHq for which

(8)

#

pLGΨqpuq “ fpuq u P H
Ψpuq “ gpuq u P BH

Unsurprisingly, we will solve (8) by looking at two associated problems individually.

Problem 2.1.2 (Problem 1). We consider a Dirichlet-type problem: let g P `2pBHq be given as in (8). We wish to
find a function ψ P `2pHq for which

(9)

#

pLGψqpuq “ 0 u P H
ψpuq “ gpuq u P BH

Problem 2.1.3 (Problem 2). We consider an nonhomogeneous-type problem: let f P `2pHq be given as in (8). We
wish to find a function φ P `2pHq for which

(10)

#

pLGφqpuq “ fpuq u P H
φpuq “ 0 u P BH

If we may find unique solutions ψ, φ to (9), (10), respectively, then we may obtain a unique solution Ψ by setting
Ψ “ ψ ` φ.

Theorem 2.1 (Solution 1). Let teiu1ďiďk be an orthonormal basis of `2pHq of eigenvectors for LH , associated to
real eigenvalues tλiu1ďiďk, counted with multiplicity. Extend this system on H to a family treiu on H by setting
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rei ” 0 on BH. Then the unique solution to (9) may be given by

(11) ψpwq “

#

´
řm
i“1

eipwq
λi

„

ř

uPBH
B rei
Bη puqgpuq



w P H

gpwq w P BH
.

Proof. Here, we adapt a technique due to Chung, seen in [4]. We know the values of ψ in BH, so we solve for the
values of ψ in H. To this extent, for w P H we have a unique expression of ψ as a linear combination of ei:

ψpwq “
m
ÿ

i“1

cieipwq, w P H.

Let us solve for ci. First,

ci “ xψ, eiyH

λici “ λixψ, eiyH

“ xψ,LHeiyH

(12)

Let an extension g0 : H Ñ C of g be given by

g0puq “

#

0 u P H

gpuq u P BH
.

Then (12) becomes

λici “ xψ ´ g0, LHeiyH

“ xLHpψ ´ g0q, eiyH

“ xLHpψ ´ g0q, reiyH
“ x´LHg0, reiyH
“

ÿ

uPH

´LHg0puqreipuq

“
ÿ

uPH

g0puqLH reipuq ´ LHg0puqreipuq

where LH is the magnetic Laplacian associated to the connected subgraph in G induced by H. Moreover, the last
equality follows by noting that rei ” 0 on BH, and g0 ” 0 on H. By complicating the sum a bit, we have clear
access to the Green’s identity from Theorem (1.2), though the reader should note that a complex conjugation was
applied. The computation is almost complete:

λici “
ÿ

uPBH

reipuq
Bg0
Bη
puq ´

Brei
Bη
puqg0puq

“ ´
ÿ

uPBH

Brei
Bη
puqgpuq

whence

ψpwq “ ´
m
ÿ

i“1

eipwq

λi

”

ÿ

uPBH

Brei
Bη
puqgpuq

ı

, w P H.

This completes the proof. �

Solving (10), it turns out, is merely some linear algebra relying on a key observation. In particular, we present
the following lemma.

Lemma 2.1.1. Let pG, σq and H be as in the beginning of this subsection. Then LH is an invertible matrix.

Proof. Assume per contradiction that there exists a nonzero solution h P `2pHq to the homogeneous linear system

LHh ” 0.



8 SAWYER JACK ROBERTSON

Put |hpu˚q| “ maxuPH |hpuq| ą 0. Then from the definition of LH , we have

|hpu˚q| “
1

dGu˚

ˇ

ˇ

ˇ

ˇ

ÿ

v„u˚

vPH

σuvhpvq

ˇ

ˇ

ˇ

ˇ

ď
1

dGu˚

ÿ

v„u˚

vPH

|hpvq|

ď
1

dHu˚

ÿ

v„u˚

vPH

|hpu˚q|

“ |hpu˚q|

where dHu˚ is the degree of the vertex u in the subgraph induced by H. From this we have forced two conclusions:
(i) that the degree of u˚ in G is the same as in the subgraph induced by H, and (ii) that |hpvq| “ |hpu˚q| for each
v adjacent to u˚ in H. Hence we may do the same computations on any vertex incident with u˚ in H; in turn,
the conclusions we made apply to all of these vertices as well, and their neighbors in H, and so on. Since H is
connected as a subgraph of G, after finitely many iterations of this process we have the conclusion that the degree
of each vertex u P H taken in H agrees with the degree of said vertex taken in G. This cannot be the case since we
assumed H induces a proper subgraph of G, and that G is connected. The claim follows. �

We may now present a solution to the second problem.

Theorem 2.2 (Solution 2). The unique solution φ to (10) may be written

(13) φpwq “

#

pL´1
H fqpwq w P H

0 w P BH
.

Proof. Notice that since φ is assumed to take the value 0 on BH, one verifies

LHφ ” LHφ

whence (10) is equivalently stated
#

pLHφqpuq “ fpuq u P H
φpuq “ 0 u P BH

Since LH is invertible by (2.1.1), the claim follows immediately. �

In the next section, we will take a closer look at the matrix L´1
H – notice that it can be loosely interpreted as

a discrete Green’s function. To wrap things up, we will explicitly write down the spectral solution to the Poisson
problem as stated at the beginning of this section.

Theorem 2.3. The unique solution to (8) may be written Ψ “ ψ ` φ, explicity given by

Ψpwq “

#

pL´1
H fqpwq ´

řm
i“1

eipwq
λi

„

ř

uPBH
B rei
Bη puqgpuq



w P H

gpwq w P BH

where ei, rei, λi are defined in (11).

2.2. Greens’ functions for magnetic graphs and products. In this subsection, we explore an interesting
interpretation of the matrix L´1

H which showed up in (13), once again adapting techniques from [4] to this magnetic
setting. In [4], Chung interprets this matrix as a discrete Green’s function. Indeed, the matrix is a key part in
constructing the solutions to both (10) and (8). We will now explicity construct this matrix from the eigensystem
of the magnetic Laplacian, and show how we may be construct a Green’s function for the product of two magnetic
graphs, when their respective spectral systems are already identified.

Theorem 2.4. Let G be a finite connected graph without loops or multiple edges, and let H Ĺ V pGq be a proper
subset of k vertices which is assumed to induce a connected subgraph. Let teiu

m
i“1, and tλiu

m
i“1 be the orthonormal
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system associated to LH as in (11). Let L´1
H be interpreted as a function on H ˆH. We have the following

L´1
H pi, jq “

m
ÿ

k“1

1

λk
ekpiqekpjq

where pi, jq P HˆH (we use slightly different notation for vertices in H here to be consistent with the teiu notation).

Proof. Since LH is Hermitian, it admits an elementary decomposition

LH “ UDU˚

where D “ diagpλ1, λ2, ..., λmq is the diagonal matrix of eigenvalues and U “ re1 e2 ... ems is the matrix of
eigenvectors, and U˚ is its Hermitian conjugate. After carrying out a standard pointwise computation for the
entries in the inverse matrix L´1

H “ UD´1U˚, the claim follows. �

The preceding theorem is particularly useful in that an explicit construction of the Green’s function for H
depends only on the spectral system associated to H. Though this can be a difficult system to work with in
practice, obtaining it using computation software for a particular graph is a tractable task. The identification of
this system for general families of graphs remains an interesting, and quite open, research question.

The extension of the previous theorem to a product graph is not very difficult. Indeed, it requires only that we
identify the spectral system associated to the product of two proper subsets. However, a technicality stands in our
way of this identification. Recall that whenever G,H are not necessarily connected, we cannot always conclude that
LH is invertible. This becomes a problem because even if two graphs are connected, we have no reason to believe
that their product is itself connected. As such, we must recall a result stated in [13] which clarifies the conditions
required for a product to be connected.

Theorem 2.5 (Weichsel). Let G1, G2 be connected graphs. Then the following are equivalent:

(a) The Kronecker product G1 ˆG2 is connected.
(b) At most one of G1 or G2 is bipartite.
(c) There is at least one odd cycle in either G1 or G2.

Theorem 2.6. Let pJ, ρJq, pK, ρKq be two signed, connected graphs and let M Ĺ V pJq, N Ĺ V pKq be two proper
subsets of m,n vertices, respectively, which induce connected subgraphs in their respective parent graphs. Assume
both that J ˆK is connected, and that M ˆN Ă V pJ ˆKq induces a connected subgraph (i.e. each satisfies some
condition in Theorem (2.5)). Finally, let txiu

m
i“1 and tyju

n
j“1 be orthonormal bases for `2pMq, `2pNq respectively,

associated to eigenvalues tµiu, tνju counted with multiplicity. Then, the eigenvectors for the operator LMˆN on
`2pM ˆNq may be identified as txiyjui,j , where xiyj is defined pointwise. The eigenvalues are tµi ` νjui,j .

Proof. Let us fix some pp, qq PM ˆN and 1 ď i, j ď m,n (resp.) and compute

`

LMˆNxiyj
˘

pp, qq “
ÿ

pp1,q1q„pp,qq
pp1,q1qPMˆN

xippqyjpqq ´ ρppp, qq, pp
1, q1qqxipp

1qyjpq
1q

“
ÿ

p1„p
p1PM

xippqyjpqq ´ ρ
J
pp1xipp

1qyjpqq

`
ÿ

q1„q
q1PN

xippqyjpqq ´ ρ
K
qq1xippqyjpq

1q

“ yjpqq
`

LMxi
˘

ppq ` xippq
`

LNyj
˘

pqq

“ pµi ` νjqpxippqyjpqqq.

This shows txiyjui,j are all eigenvectors with eigenvalues tµi`νjui,j . Moreover, since dim p`2pM ˆNqq “ dim `2pMq¨
dim `2pNq, these account for all of the eigenvectors and, up to multiplicity, the eigenvalues associated to LMˆN . �

We will now draw this section to a close by giving a formula for the Green’s function on a product.
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Theorem 2.7. Let pJ, ρJq, pK, ρKq, M,N , and txiyju
m,n
i,j“1, tµi` νjui,j be as in (2.6). Recalling Theorem (2.4), we

have the following expression for the Green’s function L´1
MˆN :

L´1
MˆN

`

pp, qq, pp1, q1q
˘

“

m
ÿ

i“1

n
ÿ

j“1

xippqyjpqqxipp1qyjpq1q

µi ` νj
.

3. Magnetic Dirichlet Problem via Random Walks

In this chapter, will will once again formulate a boundary value problem and give its solution. This time,
our approach is that of random walks. The first subsection will cover probabilistic preliminaries, the second will
introduce the notion of a magnetic ‘lift,’ the third will concern the formal statement of the problem and its solution,
and the fourth will consider extensions of these results to the product case.

3.1. Probabilistic preliminaries. In this subsection, we will cover the probabilistic interpretation of the combi-
natorial Dirichlet problem and resolve questions of convergence and ‘exiting.’

On a graph G, the random walk process is well studied. This might be because of the numerous recreational
interpretations of the Dirichlet problem associated to the combinatorial Laplacian of G. If we have a subconnected
subset H Ĺ V pGq of vertices which induces a connected subgraph, and we consider a random walk starting at some
vertex u P H, the expected value of the boundary condition at the vertex on which the random walker steps upon
‘exiting’ H becomes, in fact, the solution to the combinatorial Dirichlet problem. This idea is formalized in the
classic ‘Gambler’s Ruin’ problem [8, p. 14].

Let pG, σq be a connected simple magnetic graph on n vertices. We consider a random walk tStutě0. The first
order of business is to give a meaning to the convergence of Sn. Notice from the formulation in 1.5 that we may
characterize the set of all possible distributions on V pGq as the probability simplex in Rn, henceforth defined

SG :“
 

ν : V pGq Ñ R : ν ě 0,
ÿ

uPV pGq

νpuq “ 1
(

and similarly for any subconnected subset H Ĺ V pGq. Note that SG can be identified as a compact, convex subset
of Rn. We have many options for a norm or metric on this set. We will generally work with the commonly used L1

distance, noting that this norm is trivial on SG. For each µ, ν P SG we set

||µ´ ν||1 “
ÿ

uPV pGq

|µpuq ´ νpuq|

In turn, a sequence of distributions tνtutě0 Ă SG converges to ν P SG provided

(14) lim
tÑ8

||νt ´ ν||1 “ 0.

More concretely put, we say a random walk tStutě0 with initial distribution µ0 will converge to a limit distribution
µ provided

lim
tÑ8

||µ0P
t
G ´ µ||1 “ 0.

By a stationary distribution η P SG on G we mean a left eigenvector for PG with eigenvalue 1. That is, η is invariant
under PG.

We wish to specify the conditions on G which are sufficient to guarantee that such a distribution exists. We
recall a result set down by Chung in [5, p. 14].

Theorem 3.1. Let G be a connected simple graph. Then there is a stationary distribution η P SG for G if and
only if the following two conditions hold:

(a) irreducibility, that is, for each u, v P V pGq there is t ě 0 for which Pt
Gpu, vq ą 0

ðñ G is connected.
(b) aperiodicity, that is, for each u, v P V pGq, g.c.d.tt : Pt

Gpu, vq ą 0u “ 1 ðñ G is not bipartite.

Moreover, we may write down the stationary distribution as

ηpvq “
dv

2|EpGq|

where |EpGq| is the number of edges in G [5, p.15]. This can be checked, for instance using the Perron-Frobenius
theorem applied to P t for t large, to be the unique stationary distribution in SG. In fact, the conclusion is even
stronger, in the sense that if G admits a stationary distribution, then every random walk process on G converges
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in the ||¨||1 metric to the stationary distribution (or any metric induced by a norm) [10, 1.22, p.34]. An important
fact concerning the extension of these results to a product graph is the following theorem, borrowed from [6].

Theorem 3.2. Suppose G1, G2 admit stationary distributions η1, η2 as in Theorem (3.1). Moreover, assume the
product graph G1ˆG2 is connected and not bipartite. Then the stationary distribution for the random walk process
on G1 ˆG2 may be given by η1η2, with multiplication defined pointwise.

We hedge a little bit on the detail of G1 ˆG2 being bipartite since the graph theory literature appears to be a
little unclear here. This is needed to guarantee the existence of a stationary distribution on the product, even if the
stationary distributions on the coordinate graphs exist. Unlike Theorem (2.5), there does not appear to be a full
characterization of a bipartite product in terms of the coordinate graphs. Some insight is given in [2] which asserts
that a product will be bipartite if one of the coordinate graphs is bipartite.

The next order of business is to handle the issue of ‘exiting’ points. By this, we mean clarifying the notion
of a random walker ‘leaving’ a particular region and the time at which the walker does so. Indeed, borrowing
the language of [10], the random walk on G is irreducible and recurrent and as a consequence we may state a
reformulation of the classic Markov Chain result from [10, 1.16, p.22] as follows.

Theorem 3.3. Suppose we have a random walk tStutě0 on a connected simple graph G which starts in a subset
of vertices H Ă V pGq, that is, µ0 “ δu for some u P H. Then there exists T ě 0 for which

PrST P BH : S0 P Hs “ 1.

In other words, St will eventually leave the set H.

Supposing we have some random walk St originating at some vertex in H, in light of Theorem (3.3) we may

define a modified random walk process by setting T “ inftt : PrSt R Hs “ 1u and rSt “ Smin pt,T q, i.e. forcing the
random walk to ‘stop’ at ST . It is this modified random walk which we shall use to construct the solution to the
magnetic Dirichlet problem.

3.2. Magnetic lifts. In this subsection, we will define and analyze a graph theoretic construction known as a
magnetic lift graph. This construction seems to have originated as a discrete interpretation of a topological covering
space, which was then reformulated and adapted to the setting of a magnetic graph. Some interesting exposition
can be found in Biggs, [3, ch. 19]. At the present time, this construction is limited to the case where a magnetic
graph is paired with a signature taking values in a subgroup of S1 Ă C. To this end, set

S1
p :“ tz P C : zp “ 1u.

Definition 3.2.1. Let pG, σq be a magnetic graph. Further assume that σ takes values strictly in S1
p for some

integer p ě 2. Write S1
p “ tωiu

p´1
i“0 We define the lift of G to be the non-magnetic graph pG consisting of vertex set

Gˆ S1
p and edges defined by

pu, ωiq „ pv, ωjq in pG ðñ u „ v in G and ωj “ ωiσuv.

The subsets Gˆ tωiu Ĺ V p pGq for each fixed ωi P S1
p are called the levels of the magnetic graph.

As the reader will see in the next subsection, magnetic lifts are a useful setting in which to start a random walk.
However, before attempting to do so, we must resolve some of the same issues that we encountered when extending
Green’s functions to products. Namely, knowing only that G is connected and non-bipartite, we do not necessarily

know that its lift pG satisfies the same properties, and in turn we may not be able to apply the result in Theorem

(3.1) to a random walk process on pG to obtain a stationary distribution. In fact, a complete answer in the spirit

of Theorem (2.5) to characterize the conditions on G under which pG is bipartite has proven to be nontrivial and

at the present time remains unclear. We present a strong implication of the connectedness of pG, give a partial

converse, and give some partial answers to the question of the bipartiteness of pG. The reader may wish to revisit
the definition of a balanced signature from the introduction which we have yet to use (1.2.2).

Theorem 3.4. Let pG, σq be a magnetic graph, and assume σ takes values in S1
p for some p ě 2. Then if the

magnetic lift pG is connected, then σ is unbalanced. Moreover, if p “ 2, then the converse holds.
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Proof. Assume pG is connected and p ě 2. Fix any u P V pGq and look at the path starting at pu, 1q P V p pGq and
terminating at pu, ωq for some ω P S1

pzt1u. By projecting this path onto the original graph G, that is, viewing

the first coordinates of the path in pG as a path in G, we find that it in fact is a cycle. Moreover, since this path

began on one level in pG and ended on another level in the lift graph, it follows from the definition of the edge set
of a magnetic lift that the product of the signatures along the associated cycle in G cannot be equal to 1; in other
words, σ must be unbalanced. For the partial converse, let us now assume that σ is unbalanced and p “ 2. Let

pu, s1q, pv, s2q P V p pGq be fixed. Since G is connected, we may find a fixed path R :“ tu, ..., vu Ă V pGq connecting
u and v. Also, since σ is unbalanced, there exists some cycle C 1 :“ tu0, u1, ..., unu in G for which

n
ź

i“0

σui,ui`1 “ ´1

where un`1 ” u0. Now by viewing the path R in the lift graph as a path beginning at pu, s1q P V p pGq, one may
construct a new path terminating at pv, sq for some s “ ˘1. If s “ s2 then we have found the desired path connecting
the two vertices in the lift. If s ‰ s2, then proceed by looking at the cycle in G obtained by concatenating a fixed
path connecting v and u0 with the cycle C 1, and then the path connecting u0 to v, the reverse of the fixed one
connecting v to u0. Because the cycle contains the one identified as having a signature product of ´1, when viewed
as a path in the lift, it originates at pv, sq and since s ‰ s2 and p “ 2, it must terminate at pv, s2q. This completes
the proof. �

We shall give some interesting results concerning the question of what happens when pG is bipartite. Unfortunately
these results do not (yet) provide a satisfying answer. In furtherance of this research question, the following theorem
gives a formula for the adjacency matrix of the magnetic lift, an important tool in the study of bipartite graphs.
We need a matrix first, however.

Definition 3.2.2. Let pG, σGq be a simple magnetic graph on n vertices, and assume σ takes values in some S1
p,

p ě 2. Define the signed adjacency matrix associated to the magnetic lift to be the matrix indexed by V p pGq given
by

(15) xAσppu, s1q, pv, s2qq “

#

σGuv pu, s1q „ pv, s2q
0 otherwise

.

This definition is a little tricky since pG doesn’t ‘technically’ have a magnetic structure, but it is rather trivial

since there would be no pG without one. It is useful because including the signature in the entries encodes xAσ with
a little additional information.

Theorem 3.5. Let pG, σq be a simple magnetic graph on n vertices, and assume σ takes values in some S1
p :“

tωju
p´1
j“0 , p ě 2, where as usual ωj “ e

2πij
p . Let xAσ represent the signed adjacency matrix for the magnetic lift pG,

and let Aσ
G be the signed adjacency matrix for G. Decompose Aσ

G into the sum of matrices Aωj which take the
same value as Aσ

G whenever σuv “ ωj . That is,

(16) Aσ
G “

p´1
ÿ

j“0

Aωj .

Let tPju
p´1
j“0 represent the family of permutation matrices of size p ˆ p. Then the signed adjacency matrix of the

lift xAσ satisfies

xAσ “

p´1
ÿ

j“0

Pj bAωj .

where b represents Kronecker matrix product [13].

Proof. One verifies that in a manner similar to (16), we have

xAσ “

p´1
ÿ

j“0

yAωj



TWO NEW METHODS FOR BVPS ON MAGNETIC GRAPHS 13

where yAωj corresponds to the restriction of (15) the to the edges which have signature ωj . Indeed, if we chose to

enumerate the vertices of pG by fixing an enumeration of V pGq and then ordering the ‘copies’ of V pGq in V p pGq by

the indices of ωj , each of the matrices pAωj is in fact revealed to have a block structure described by Idp blown up
by Aωj via Kronecker product, then subjected to a block permutation through right multiplication by the matrix
Pj b Idn. That is,

yAωj “ pIdp bAωj qpPj b Idpq “ pIdpPjq b pAωj Idnq “ Pj bAωj

where we make use of a multiplicative property of the Kronecker product: for matrices A, B, C, D,

pAbBqpC bDq “ pACq b pBDq

whenever the products AC,BD make sense. Summing over j yields the result. �

This decomposition of the signed adjacency matrix for the lift yields the next theorem which is more concrete,
if a bit limited.

Theorem 3.6. Let pG, σq be a simple magnetic graph on n vertices, and assume σ takes values values in a proper

subgroup of S1
p, p ě 2, of order q :“ p

2 . Then pG is bipartite.

Proof. The matrix Aωj as in (16) is identically 0 for each ωj R S1
q. In turn, we apply Theorem (3.5) to obtain

xAσ “
ÿ

ωjRS1
q

Pj bAωj

where Pj is a permutation matrix as in Theorem (3.5). This in fact completes the proof, since up to a block
permutation (i.e. relabeling the vertices), this adjacency matrix is of the form corresponding to a bipartite graph
(though this is not technically a classical adjacency matrix, its nonzero entries correspond to one) [3, p.11, 2c]. �

3.3. Dirichlet problem via random walks. In this subject we will formulate the main problem and give two
ways to solve it. The first technique will be for general simple and connected magnetic graphs, and the second,
slightly slicker technique will be for magnetic graphs with signature structures on a group S1

p for some p, utilizing
magnetic lifts.

Problem 3.3.1 (Dirichlet). Let pG, σq be a simple and connected magnetic graph and let H be a proper subcon-
nected subset in G. Let f P `2pBHq be a given boundary condition. We wish to find a function Ψ P `2pHq for
which

(17)

#

pLGΨqpuq “ 0 u P H
Ψpuq “ fpuq u P BH

.

We have the following result.

Theorem 3.7 (Dirichlet Solution 1). Let G,H, f,Ψ be as in (17). Let St be a random walk with associated initial
distribution µ0. The unique solution to (17) may be given by

(18) Ψpuq “ ErfpĂST q
T
ź

i“1

σSi´1Si : µ0 “ δus, u P H

where rSt is the modified random walk process formulated at the end of subsection 3.1.

Proof. Uniqueness follows from applying the MVP in Theorem (1.1) to two the difference of two solutions Ψ1´Ψ2.
We now simply check that the solution as stated in (18) indeed solves (17). Let Ψ be given by (3.7). If u P BH,

Ψpuq “ ErfpĂST q
T
ź

i“1

σSi´1Si : µ0 “ δus

“ Erfpuq : µ0 “ δus “ fpuq.
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Now if u P H, we have

Ψpuq “ ErfpĂST q
T
ź

i“1

σSi´1Si : µ0 “ δus

“
ÿ

v„u

Prµ1 “ δv : µ0 “ δusErfpĂST q
T
ź

i“1

σSi´1Si : µ0 “ δu, µ1 “ δvs

“
ÿ

v„u

1

dGu
ErfpĂST qσuv

T
ź

i“2

σSi´1Si : µ0 “ δu, µ1 “ δvs

“
ÿ

v„u

1

dGu
σuvErfpĂST qσuv

T
ź

i“1

σSi´1Si : µ0 “ δvs

“
1

dGu

˜

ÿ

v„u

σuvΨpvq

¸

.

In the second line we used a fact about the expectation operator for random variables on finite proability spaces;
namely, if tAiui forms a disjoint partition of some probability space on which a random variable X is defined, we
have ErXs “

ř

i PrAisErX : Ais.
We once again appeal to the mean value characterization of harmonic functions in Theorem (1.1) to see that Ψ

is harmonic on H. This concludes the proof. �

The main drawback of this formulation for the solution to (17) is that the random variable in the expectation
from (3.7) depends both on the position of the random walker and the product of the signatures along the path
which the walker takes. Magnetic lifts seek to circumvent this problem, in that the position of a walker on a
lift graph itself encodes information about the signature product in (3.7). To this end, we present the following
alternative to (3.7).

Theorem 3.8. Let G,H, f,Ψ be as in (17). Assume further that σ takes values in some S1
p “ tωiu

p´1
i“0 for p ě 2 and

that the lift pG is connected and not bipartite. Let St be a random walk on pG on vertices of the form St “ put, σtq,

with associated initial distribution µ0 on the lift pG. The unique solution to (17) may be given by

(19) Ψpuq “ ErfpĂuT qσT : µ0 “ δpu,ω0qs, u P H

where rSt is the modified random walk process formulated at the end of subsection 3.1.

Proof. This is just a special case of the previous solution derivation. All that need be checked is (i) that σpT q is

equal to the signature product in (3.7), which is easy to verify from the definition of the edge set of pG, and (ii) that

fpĂuT q is a well-defined random variable when the walk is on pG and not G, which follows from Theorem (3.3). �

4. Concluding Remarks

Combinatorial-type Laplace operators for graphs without magnetic structure have played a surprisingly important
role in the worlds of geometry processing [12], image analysis, probability theory [11], and information theory. This
author hopes that as research on the magnetic Laplace operator moves forward, its applications in some of the
quantum cousins of the preceding applied topics will become more apparent. Also of interest is the resolution of
the unanswered questions on magnetic lifts and graph products. In particular, if the second stochastic technique
presented in the last section is to be useful, then a better understanding of the graph theoretic properties of a
magnetic lift is essential. At the present time, it can be rather mysterious. Underpinning the partial results we
covered is the conjecture of the author that a magnetic lift might have a more convenient representation as some
sort of graph product as opposed to its usual interpretation as a ‘covering’ graph [3, ch. 19], though the precise
formulation of this conjecture is undetermined at the present time.
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