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FOREWORD 

Data conditioning, seismic attributes, and machine learning have been extensively used in 

seismic interpretation, thanks to the evolution of computer hardware. Numerous researchers 

around the world have applied different data conditioning techniques, novel attributes, and 

cutting-edge machine learning algorithms to enhance the interpretation of specific geologic 

targets. However, as I attempted to apply some of these new techniques and algorithms to my 

research area, I usually got stuck where either there was no straightforward procedure to follow, 

or the mathematical formulation was not detailed enough to be reprogrammed by myself. Worse, 

I encountered many problems that were not mentioned in any available publication. Therefore, I 

carefully wrote down step-by-step workflows, re-derived complicated mathematical formulations 

from simpler equations, converted algorithms into pseudocodes, and documented all pitfalls and 

their workarounds (if any) for my research, in a hope that other students, researchers, and 

scientists can easily follow and repeat my work on their own datasets, without having to “learn 

the hard way” as I did. 
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ABSTRACT 

Whether analyzed by a human interpreter or by a machine learning algorithm, 3D seismic 

interpretation is only as good as the data that goes into it. The goal of seismic processing is to 

minimize noise and enhance signal to provide the most accurate image of the subsurface. Once 

imaged, the resulting migrated data volume can be further enhanced to suppress random and 

cross-cutting coherent noise and to better balance the spectrum to improve vertical resolution. 

Next, seismic attributes enhance subtle geologic features that may be otherwise overlooked. At 

this point, skilled human interpreters are very adept at not only seeing patterns in the data, but 

also in constructing correlations in their brain between multiple attributes and geologic features 

of interest. Machine learning algorithms are not yet at this point. Several machine learning 

algorithms require, and many perform better on data that exhibit Gaussian statistics, such that we 

need to carefully scale the attribute volumes to be analyzed. The application of filters that block 

and smooth the attribute volume, mimicking what a human interpreter “sees” provide further 

improvements. In this dissertation, I address most of these data conditioning challenges, as well 

as adapting and recoding the machine learning algorithms themselves. 

Conventional imaging of the shallow targets often results in severe migration aliasing.  

To improve the interpretation of a shallow fractured-basement reservoir in the Texas Panhandle, 

I developed a data conditioning technique called constrained conjugate-gradient least-squares 

migration to the prestack unmigrated data of the study area. I found that constrained conjugate-

gradient least-squares migration can increase the signal-to-noise ratio, suppress migration 

artifacts, and improve seismic inversion results. 

Although 3D seismic surveys are routinely acquired, in frontier areas, much of our data 

consist of a grid of 2D seismic lines. Few publications discuss the application and limitations of 
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modern seismic attributes to 2D lines, and fewer still the application of machine learning. I used 

a grid of 2D lines acquired over a turbidite channel system and carbonate sequences in the 

Exmouth Plateau, North Carnarvon Basin, Australia, to address this question. First, I modified 

3D data conditioning workflows including nonlinear spectral balancing and structure-oriented 

filtering, and found that spectral balancing followed by structure-oriented filtering provides 

superior results. All of the more common attributes perform well, but with analysis of 2D lines 

providing apparent dip and apparent curvature in the inline direction rather than true dip 

magnitude and azimuth, and most-positive and most-negative curvature and their strikes. I 

analyzed coherence, curvature, reflector convergence, and envelope attributes using self-

organizing maps and was able to successfully map turbidite canyon, carbonate mounds, and 

mass-transport complexes (MTCs) in the study area.  

Although some attributes exhibit Gaussian statistics, most do not. Although many 

machine learning algorithms are based on Gaussian statistics, most applications apply a simple 

Z-score normalization. I therefore compared the results of seismic facies classification of a 

Canterbury Basin turbidite system when using the traditional Z-score normalization versus one I 

developed that addresses skewness, kurtosis, and other scaling features in the attribute histogram.  

I found that logarithmic normalizations of skewed distributions are better input to unsupervised 

PCA, ICA, SOM, and GTM classification algorithms, but are worse for the supervised learning 

PNN classification algorithm. In contrast, supervised classification benefits greatly from a class-

dependent normalization scheme, where the training data are normalized differently for each 

class. 
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CHAPTER 1: INTRODUCTION 

Data conditioning, attribute analysis, and machine-learning classifications have been 

applied to 3D seismic data volume since they began to be routinely acquired in the 1990s. Since 

that time, the continued increase in computational power has enabled more sophisticated 

techniques of data conditioning and a long list of geometric, spectral, and texture attributes that 

provide improved input to an expanded list of unsupervised, semi-supervised and supervised 

machine learning techniques.  

 

Seismic Data Conditioning 

The goal of seismic data conditioning is to reduce noise and enhance features of interest 

in the original seismic data. Data conditioning can be as simple as removing abnormal data 

samples (also known as de-spiking) either by manual trace editing (e.g. Cahoj, 2015) or by using 

an absolute or statistical threshold (e.g. Ha and Kang, 2016). Another category of data 

conditioning is spectral balancing (or “whitening”) the seismic data, which enhances the low and 

high frequencies of seismic data that may be less effectively excited and measured by the seismic 

experiment, attenuated due to scattering or absorption in the subsurface, or inadvertently 

suppressed through the seismic processing workflow (Chopra and Marfurt, 2016). More 

sophisticated data conditioning techniques include edge-preserving structure-oriented filtering 

(Hocker and Fehmers, 2002; Marfurt, 2007), which smooths noise and migration artifacts where 

the reflection events are continuous, while sharpening faults and discontinuities where they are 

not. Cabrales-Vargas (2011) performed prestack data conditioning by using a smoothing operator 

as a constraint for least-squares migration, in order to suppress migration operator aliasing. This 

prestack data conditioning workflow is further improved by Guo et al. (2016), in which the 
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smoothing operator is replaced by a prestack structure-oriented filter. Data conditioning can be 

specific, targeting a particular type of noise as in the work of Verma et al. (2016), in which the 

authors suppressed coherent ground-roll by combining linear move-out correction with structure-

oriented filtering. Most recently, Kim (2020) applied convolutional neural network in data 

conditioning by using a complex-valued residual convolutional neural network (ResNet) to 

predict seismic noise in the F-X domain. 

 

Seismic Attribute Analysis 

In simple terms, a seismic attribute is a result of applying mathematical algorithms to the 

original seismic amplitude data. The goal of seismic attributes is to enhance the visibility of 

specific geological features of interest that are otherwise hard to observe in the original 

amplitude data (Chopra and Marfurt, 2007). Different attributes are sensitive to different features 

and thus are suited for different interpretation purposes. The coherence and curvature family of 

attributes are routinely used to map discontinuities (faults, channel edges, erosional surfaces), 

curvilinear features (folds, channel axes, levees, carbonate mounds), as well as chaotic facies 

(salt, karst, mass-transport complexes) (Mai et al., 2009; Fisk et al., 2010; Chopra and Marfurt, 

2011; Machado et al., 2015; Bhattacharya and Verma, 2019; Lyu et al., 2020). For stratigraphic 

interpretation, instantaneous attributes greatly help in picking layer terminations (Hardage, 

1998), while spectral decomposition attributes can estimate layers’ relative thicknesses and are 

sensitive to thin-bed tuning (Marfurt and Kirlin, 2001; Li et al., 2016). The impedance inversion 

family of attributes including P-impedance, S-impedance, vP/ vS ratio, and density (Verma et al., 

2013; Verma et al., 2018; Patel et al., 2019) integrate seismic data with well logs in order to 

estimate lithology, porosity, and geomechanical properties such as brittleness.  
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Machine-Learning Seismic Facies Classification 

Among the first successful applications of machine learning to seismic facies 

classifications are the use of Kohonen self-organizing maps on seismic attributes for 

unsupervised facies analysis by Poupon et al. (1999) and Strecker and Uden (2002) and gas 

chimney semi-supervised classification using seismic attributes and neural networks by Meldahl 

et. al (1999). Since then, various machine-learning techniques have been adopted by seismic 

interpreters around the world, including (but not limited to) principal component analysis (Guo et 

al., 2009; Chopra and Marfurt, 2014), independent component analysis (Honorio et al., 2014; 

Lubo-Robles and Marfurt, 2019), k-means (Coleou et al, 2003; Zhao et al., 2015), Gaussian 

mixture model (Hardisty and Wallet, 2017), distance-preserving self-organizing maps (Zhao et 

al., 2016), generative topographic mapping (Zhao et al., 2015), proximal support vector machine 

(Zhao et al., 2014), random forest decision tree (Kim et al., 2019), and probabilistic neural 

network (Lubo-Robles et al., 2021). 

The release of Google’s Tensorflow in 2015 initiated rapid development of image-based 

classifications and pattern recognition in geological interpretation. Pires De Lima et al. (2020) 

applied convolutional neural network (CNN) to microscopic thin-section images to automatically 

classify fossils. Zhao (2018) applied an encoder-decoder CNN model to classify different 

seismic facies on an entire seismic line at once, rather than patch-based, partial CNN facies 

classification. Zhao (2019) continued these experiments using 3D CNN to design an automatic 

fault detection workflow without the need for a human interpreter to modify the training data 

(Wu et al., 2019; Zhao, 2019). 
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Insufficient Implementation Details 

Despite a large number of existing publications showing promising results, there is still a 

lack of details and descriptions of problems encountered during the implementation of seismic 

data conditioning, attribute analysis, and machine-learning classifications. For example, Guo et 

al. (2016) successfully reduced seismic noise in a Mississippian limestone dataset using 

preconditioned least-squares prestack time migration. However, even with their mathematical 

description and a flow chart of their data conditioning workflow, I found it quite difficult to 

apply their workflow to my data due to the sheer complexity of least-squares migration. 

Hutchinson (2016) provided a workflow to interpret a 2D reconnaissance survey and recognized 

artifacts seen in the data, such as “wrap-ups” on a horizon picked from the 2D seismic lines, and 

glitches that appeared after data conditioning but did not identify their cause. Qi et al. (2020) 

acknowledged the importance of logarithmic data scaling to the input attributes used in their 

semi-supervised classification. However, they neither explained how they formulated their 

logarithmic transformation nor provided a side-by-side comparison between the traditional z-

score normalization and their logarithmic transformation. 

To address these shortcomings, I captured each step as I adopted these previous 

algorithms and workflows to my data volumes, providing details, showing intermediate results 

used in quality control, and where necessary, providing workarounds, with goal of making the 

work reproducible. My dissertation is structured as follows: 

Although not mainstream because of the computational cost, least-squares migration has 

been successfully applied to marine data volumes by several of the larger geophysical service 

companies. The application of least-squares migration to the more sparsely sampled (aliased) 

land acquisition using Kirchhoff migration is much more challenging. In chapter 2, I converted 
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the mathematical formulation of a constrained conjugate-gradient least-squares migration into a 

graphical user interface (GUI) that provides step-by-step instruction for each iteration in the 

workflow, keeping track of data domain at each step (i.e. migrated vs. unmigrated data), and 

providing the processor the ability to modify or even apply new constraints in the process. I then 

applied this workflow to the prestack unmigrated data of a fractured-basement play in the Texas 

Panhandle to improve the signal-to-noise ratio, suppress migration artifacts, and reduce noise in 

P-impedance seismic inversion result. 

Complex trace seismic attributes were first applied to 2D grids of seismic data, but 

almost all subsequent developments, such as coherence, curvature, and GLCM textures, have 

been developed for 3D data volumes. Although 3D acquisition is now routine, large 2D grids of 

seismic data are still acquired and provide significant value in frontier areas, where “frontier” 

may mean offshore Greenland for an international oil company, and eastern Arkansas for a 

domestic shale resource play company. Modifying the algorithms to limit their application to 2D 

lines is relatively straightforward. Constructing software and GUIs to apply such attribute 

analysis to the entire grid of lines at once (rather than invoking hundreds of jobs, one for each 

line) took considerable effort. In chapter 3, I applied 3D seismic data conditioning, attribute 

analysis, and a machine-learning classification called self-organizing maps (SOM) to a 2D 

seismic survey covering about 40000 km2 acquired over the in the Exmouth Plateau, North 

Carnarvon Basin, Australia. I improve the seismic image quality, interpret carbonate lithologies, 

perform facies classification on mass-transport complexes (MTCs), and identify potential targets 

including bright spots and carbonate mounds. I show that it is possible to interpret 2D seismic 

lines using modern 3D interpretation software packages, albeit not without compromises and 

workarounds. Azimuthal attributes, such as reflector convergence, must be extracted and 
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interpolated component-by-component before being combined using trigonometric functions for 

a map view. I also find that the order of data conditioning steps is important to avoid introducing 

artifacts into the results. The display of the 3D grid also requires a workaround involving point-

by-point extraction of SOM results in order to correctly display a regional MTC in a 3D 

viewport. 

Several machine-learning algorithms, including k-means, Gaussian Mixture Models, 

Generative Topographic Maps, Probabilistic Neural Networks, and even Self-Organizing Maps, 

are built on an assumption of Gaussian statistics. Most commercial software packages use a 

simple z-score normalization. However, few attributes exhibit a Gaussian distribution. Although 

many attributes exhibit a log-normal distribution, several important attributes exhibit highly 

skewed and even relatively flat distributions. In chapter 4, I formulate a data adaptive 

logarithmic normalization scheme, using a suite of cascaded mathematical operations. I then 

apply this logarithmic normalization, along with the traditional z-score normalization, to the 

unsupervised classifications of a turbidite system in the Canterbury Basin, New Zealand, and a 

supervised classification of salt in the Eugene Island mini-basin, Gulf of Mexico. In general, a 

single normalization is applied to each attribute. However, for supervised classifications, I 

evaluate the performance of the classification where the normalization not only varies with each 

attribute but also depends on the facies (or class) being evaluated. 
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CHAPTER 2: THE VALUE OF CONSTRAINED CONJUGATE-GRADIENT 

LEAST-SQUARES MIGRATION IN SEISMIC INVERSION: APPLICATION TO A 

FRACTURED-BASEMENT PLAY, TEXAS PANHANDLE 

 

Abstract 

Seismic inversion has become almost routine in quantitative 3D seismic interpretation. 

To ensure the quality of the seismic inversion, the input seismic data need to have a high signal-

to-noise ratio. With the current low oil price environment, seismic reprocessing is often preferred 

over reacquisition to improve the data quality. Common filter pairs include forward and inverse 

f-k and Radon transforms. Forward and inverse migrations (i.e. migration and demigration) are a 

more recently introduced transform pair that, when used together in an iterative workflow, 

results in a least-squares migration algorithm. Least-squares migration compensates for surface 

variation in data density and, when combined with a filter applied to the prestack migrated 

images, suppresses both operator and data aliasing. I apply a least-squares migration workflow to 

a fractured-basement dataset from Texas Panhandle to demonstrate the enhancement in signal-to-

noise ratio, the reduction in acquisition footprint and migration artifacts, and the improvement in 

the P-impedance inversion result. 
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Introduction 

Thanks to improved algorithms and simple user interfaces, seismic impedance inversion 

has become a routine means of incorporating well data to estimate lithological properties in 3D 

quantitative interpretation. However, the quality of seismic inversion depends on the quality of 

the seismic amplitude data. To improve seismic data quality, we either acquire and process new 

data, or reprocess the old data to obtain a better, more amplitude-friendly image. While 

reacquiring data using denser, wider azimuth survey is more likely to produce better images, 

such acquisition is both costly and time consuming. Given the current low oil price, reprocessing 

might be the only feasible choice for many operators. 

Reprocessing old seismic data involves many different tasks, including surface-consistent 

residual statics correction, velocity model refinement, coherent noise suppression, trace 

balancing, 5D interpolation, prestack time/depth migration, and other forms of data conditioning. 

Each of these tasks contributes to the final image improvement. In this chapter, I focus on the 

last two tasks – migration and data conditioning through the use of constrained conjugate-

gradient least-squares migration method. 

Nemeth et al. (1999) were perhaps the first to use migration and demigration (least-

squares migration) as a seismic processing pair with Nemeth et al. (2000) showing how one can 

separate signal from noise. Most subsequent least-squares migration has focused on marine data, 

where the acquisition, while aliased, is still regular, resulting in Yu et al’s (2006) migration 

deconvolution algorithm. Since then, the use of least-squares migration has further advanced, 

with modern implementations by Zeng (2014) inverting for impedance changes rather than 

reflectivity at offset. Applications of least-squares migration of 3D land data have been much 

more limited, with Guo et al. (2016) applying constrained least-squares migration to Mississippi 
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Lime plays in Ness Co., KS and Osage Co., OK, and Verma et al. (2016) applying constrained 

least-squares migration to a Mississippi Lime survey in north Texas. My work builds on these 

last two publications. 

I begin this chapter with a short review of the least-squares migration workflow, with 

mathematical and workflow implementation relegated to the Appendices. I then describe the data 

quality and processing challenges for a 3D data volume acquired over fractured basement in the 

Texas Panhandle. Although this is a modern wide-azimuth survey acquired in 2013 with a 

nominal bin size of 82.5 by 82.5 ft, the shallow target at 2500 ft results in strong operator 

aliasing and acquisition footprint. I apply conventional migration and constrained conjugate-

gradient least-squares migration to this data volume and compare the results. Finally, I validate 

my findings through seismic attributes, improved well ties, and P-wave impedance inversion.  



 

 

16 

 

Method 

Migration is central to seismic imaging. The main idea behind migration is to broadcast 

each amplitude sample onto an ellipsoidal pattern computed from the velocity model and then 

stack all the resulting ellipsoids (Figure 2.1). If adequately sampled on the surface and given an 

accurate velocity model, areas of constructive interference result in reflectors and diffractors. 

Other areas of destructive interference result in low reflectivity. Compared to simple stacked 

images of NMO-corrected gathers, migration collapses diffractors and moves (or “migrates”) 

dipping reflectors to steeper dips in the updip direction. 

If the surface data are insufficiently sampled, the image suffers from two types of 

aliasing. First, the ellipsoids associated with reflected and diffracted energy may not 

destructively interfere at steep dips, giving rise to operator aliasing (Figure 2.1). Second, 

undersampled noise such as ground roll and shallow diffractions, which (if properly sampled) 

should exhibit short apparent wavelength and strong moveout and should be filtered out by 

migration, are instead aliased to longer apparent wavelength and gentler moveout and will be 

passed and subsequently imaged by migration (Pramik, 2011; Dev and McMechan, 2009). 

Biondi (2001) describes a common workflow to suppress operator aliasing that simply filters out 

higher frequencies when migrating to steeper dips. 

The key objectives of my least-squares migration workflow are thus to (1) suppress 

aliased signal and aliased noise in the final image, (2) preserve rather than reject the higher 

frequency information of steeply dipping reflectors (Zeng et al, 2017), and (3) compensate for 

irregular surface sampling that gives rise to acquisition footprint and other amplitude artifacts.  
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To understand constrained conjugate-gradient least-squares migration, let me break down 

the method into four elements: migration, least-squares, conjugate-gradient, and constraint. The 

meaning of each element is discussed below, in that order, with details given in the appendices. 

 

Migration 

The migration operator can be understood as a filter implemented as a matrix operator, 

applied to the prestack data to produce a reflectivity model (i.e. the migrated images). The 

reverse operator is demigration (more commonly known as the forward modeling operator). This 

demigration operator is usually denoted as G (for Greens’ function), which is a filter that, when 

applied to a reflectivity model m, would produce the prestack raw seismic data d: 

d = Gm. (2.1) 

I want to solve for the reflectivity model m. To do so, I need to invert operator G: 

m = G-1d. (2.2) 

However, in almost all cases, the reflectivity model m and the prestack raw seismic data 

d do not have the same dimensional configuration, and therefore the demigration operator G is 

not only a non-square matrix but may also be “rank deficient”, which physically means some 

areas of the subsurface are poorly illuminated (such as shadow zone in Kirchhoff migration). 

Such a matrix G cannot be directly inverted. Fortunately, the inverse of G can be approximated 

by its transpose, GT (Nemeth et al, 2000). Hence, migration is simply the transpose of 

demigration: 

m = GTd. (2.3) 

Using GT as an approximation of G-1 typically produces adequate image quality for dense 

data. However, for old data with low fold or modern data like my application with shallow 
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target, this approximation no longer holds, resulting in the annoying cross-cutting migration 

artifacts seen on the final image. 

 

Least-squares 

The goal of “least-squares” is to find a solution m such that the sum of the squares of all 

elements of the error (d-Gm) is the least. That is, instead of finding m such that 

d-Gm = 0, (2.4) 

I want to find m such that the objective function 

J=(d-Gm)T(d-Gm) (2.5) 

is minimum. 

 

Conjugate-Gradient 

The conjugate-gradient method was first developed by Hestenes and Stiefe (1952). For a 

least-squares problem in the form: 

Ax=b, (2.6) 

The conjugate-gradient method involves finding a set of A-conjugate directional vectors S={p0, 

p1, …, pn-1} and incorporating them to the solution x iteratively. Appendix B explains the 

conjugate-gradient method in detail. 

The key advantage that differentiates the conjugate-gradient method from other first-

order iterative approaches to solve least-squares problems, including QR-decomposition, 

singular value decomposition (SVD), and steepest decent method, is that theoretically, it 

guarantees to converge after n iterations for an n-by-n matrix A, while other methods cannot 

guarantee to converge after a finite number of iterations (Lewis et al, 2006). Therefore, the 
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conjugate-gradient method generally has the fastest convergence rate – the rate at which we 

approach the true solution iteratively. 

 

Constraints 

Last but not least, keep in mind that the data consists of both signal and noise. Because of 

this, if I only focus on solving the exact solution for the least-squares problem, I am in fact 

solving for a reflectivity model that is responsible for both signal and noise. I do not want my 

seismic image to represent the noise in the raw gathers. Therefore, I need to constrain the 

reflectivity model to only represent the signal portion of the data. The constraint I use in my 

least-squares migration workflow is the prestack structure-oriented filtering (SOF). This 

constraint involves calculating structural dip from the stacked volume, computing coherence 

attribute along structural dip, and finally applying lower-upper-middle (LUM) filter to the input 

data based on coherency. Data are filtered where coherency is high (e.g. strong reflectors) and 

are kept the same where coherency is low (e.g. faults and discontinuities). Therefore, SOF 

suppresses random noise and aliasing artifacts that cuts across the dominant reflectors, while 

preserving edges (Zhang et al, 2016). My workflow follows that of Guo et al (2016), while 

appendix E provides details on my implementation of these constraints within the conjugate-

gradient solution framework.  
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Application and Results 

I applied the constrained conjugate-gradient least-squares migration to a Texas Panhandle 

dataset. The Panhandle-Hugoton field, of Texas, Oklahoma, and Kansas, is a giant oil field and 

the largest conventional gas field in North America, with an estimated ultimate recovery (EUR) 

of 1400 million barrels of oil and 75 trillion cubic feet of gas (Sorenson, 2005). Although the 

field has been extensively produced, previously untapped local hydrocarbon accumulations are 

still encountered. Recent drilling activity indicates that some wells produce directly from 

basement fractures, suggesting a shallow “buried-hill” reservoir type (Figure 2.2). My main 

objective is to use seismic attributes and inversion results to identify open fracture zones that are 

potentially filled with hydrocarbon. 

The top basement is very shallow (~2500-ft-deep, equivalent to ~600 ms two-way-travel 

time), giving rise to some processing challenges. Overlaying on top of the basement is a thick 

Permian evaporite layer, causing strong head waves (Figure 2.3). Reflection signals are 

overprinted by strong coherent noise, including ground roll and reverberating refractions (Figure 

2.4). Due to the shallow target, some gaps in the source-receiver geometry, and the nature of the 

orthogonal shot and receiver line acquisition program (Figure 2.5), the seismic data suffer from 

acquisition footprint.  

After applying coherent noise suppression techniques described by Verma et al (2016), I 

evaluated both conventional Kirchhoff prestack time migration and constrained conjugate-

gradient least-squares migration. I then computed geometric attributes and impedance inversion 

from both volumes in order to quantify any improvement from constrained conjugate-gradient 

least-squares migration. 
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Figure 2.6 shows a vertical slice through the seismic amplitude volumes generated by 

conventional Kirchhoff, unconstrained conjugate-gradient least-squares, and constrained 

conjugate-gradient least-squares prestack time migration. The conventional Kirchhoff migrated 

result exhibits strong steeply dipping migration artifacts due to operator aliasing, even though I 

used only the low-frequency components to image steep dips as described by Biondi (2001). 

This aliasing gives rise to acquisition footprint in subsequent attribute and inversion results. 

Without the constraint, least-squares migration image enhances those artifacts because the least-

squares element alone preserves noise components that have leaked through migration. The 

constrained conjugate-gradient least-squares migration result increases the signal-to-noise ratio, 

enhances reflection clarity, and fills in the illumination gaps caused by highways. Both SOF 

constraint and least-squares migration contributes to a higher signal-to-noise ratio and a better 

amplitude balancing. The SOF constraint takes an initial reflectivity model and rejects 

components that are inconsistent with its neighbors and with the local dips. Least-squares 

migration then adjust this model further to better fit the (sparse) surface data. 

Figure 2.7 shows coherence time slices below the top basement generated by 

conventional Kirchhoff and constrained conjugate gradient least-squares prestack time migration. 

Most of the grid-like (hash) artifacts are suppressed on the coherence time slice computed from 

the constrained conjugate-gradient least-squares migration result. 

The same effect can be observed in the near-offset-stack P-impedance inversion results 

and inversion misfit error maps (Figure 2.8 and Figure 2.9). Acquisition footprint is greatly 

reduced in the constrained conjugate-gradient least-squares migration result, making low 

impedance zones of interest smoother and easier to identify. These low impedance zones contain 

producing well locations in the survey area and correspond to open fractures filled with 
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hydrocarbons. The impact on prestack azimuthal anisotropy analysis is also significant (Ha, 

2017). Unfortunately, the absence of an S-wave sonic log prevented prestack inversion.  
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Conclusions 

Evaluation of the results of the constrained conjugate-gradient least-squares migration on 

a Texas Panhandle dataset shows a significant improvement in seismic data quality by reducing 

migration artifacts, suppressing acquisition footprint, and enhancing reflection clarity. Zones of 

low impedance, hydrocarbon-filled open fractures are better delineated using inversion results 

from the constrained conjugate-gradient least-squares migration. Three iterations of the 

conjugate-gradient solution required three prestack migrations and three prestack demigrations, 

with a computation cost six times that of the conventional migration. This increase in 

computation cost is small compared to the velocity analysis cost associated with conventional 

migration followed by residual velocity analysis in a Deregowski loop. In contrast, the same 

velocity is used for each iteration of migration and demigration. My caveat is that interpreters 

must recognize that even this sophisticated workflow needs careful data processing. Specifically, 

a good velocity model, surface consistent residual statics corrections, and coherent noise 

suppression, are equally important. Only together with a good velocity model and higher signal-

to-noise data can constrained conjugate-gradient least-squares migration exhibit its full potential. 
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Appendix A: Least-Squares Migration 

In this section, I provide the mathematical background for least-squares migration, 

starting with the well-known linear equation: 

d = Gm (2.A-1) 

where 

d is the original prestack data measured on the earth’s surface, 

G is the forward Kirchhoff modeling operator (i.e. the “demigration” operator), and 

m is the true migrated result, which is what we seek. 

In general, G is not a square matrix, because d and m may have different lengths. 

Therefore, G cannot be simply inverted and put on the other side of the equation. The transpose 

of G (demigration) operator, GT, is the Kirchhoff migration operator. Usually, 

m’ = GTd (2.A-2) 

is considered as the migrated result, which is an accurate assumption if the surface data are both 

regularly and densely sampled. Typically, the scale of the migrated result is not equivalent to the 

scale of the original data, although relative amplitude changes, such as the AVO and AVAz 

effects, are preserved. GT (migration operator) is a good approximation to the inverse of G 

(demigration operator). This assumption is not valid under the mathematical lens, particularly for 

undersampled or irregularly sampled data. 

Instead, let us solve for m that minimize the following objective function: 

J = ||d-Gm||2 (2.A-3) 

Expanding J, I obtain 

J = ||d-Gm||2 = (d-Gm)T(d-Gm) = dTd-(Gm)Td-dT(Gm)+(Gm)T(Gm) 

= dTd-mTGTd-dTGm+mT(GTG)m = dTd-2dTGm+mT(GTG)m (2.A-4) 
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where the scalars 

mTGTd = dTGm (2.A-5) 

To find the minimum of J, I take the gradient of J (∇J) and set it to zero: 

∇J = -2GTd+2GTGm = 0, or (2.A-6) 

GTGm = GTd (2.A-7) 

An alternative way to write equation 2.A-7 is to turn equation 2.A-1 into a “normal” 

equation by multiplying both sides with the transpose of G (i.e. GT). From here, I can multiply 

both side by the inverse of GTG (i.e. (GTG)-1) to obtain 

(GTG)-1GTGm = (GTG)-1GTd (2.A-8) 

such that the left of m becomes an identity matrix, giving 

m = (GTG)-1GTd. (2.A-9) 

To avoid instability, least-squares solution (such as in deconvolution) often introduces a pre-

whitening factor (εI), which is a fraction of the diagonal of GTG to obtain 

m = (GTG+εI)-1GTd (2.A-10) 

thereby favoring the solution with the minimum reflectivity energy. In my application, I use a 

constraint (SOF) that favors piece-wise continuous (i.e. edge-preserving) solutions over all other 

solutions.  
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Appendix B: Conjugate-Gradient Least-Squares Migration 

The linear system involved in the conjugate gradient method has the form 

b = Ax, (2.B-1) 

where 

A=GTG, (2.B-2) 

x=m, and (2.B-3) 

b=GTd. (2.B-4) 

To understand the conjugate gradient method, I first examine the conjugate direction 

method. A set of vectors S={p0, p1, …, pn-1} is said to be A-conjugate if pi
TApj=0 for i≠j (i, j ϵ 

[0,n-1]). If such a set of vectors is provided, the conjugate direction method is guaranteed to 

converge after n iterations. A summary of the conjugate direction method is as follows: 

Step 0: Choose a starting point x0. Compute r0=b-Ax0. 

For k=0 to (n-1) do: 

- Step 1: 𝜶𝒌 =
𝐩𝐤
𝐓𝐫𝐤

𝐩𝐤
𝐓𝐀𝐩𝐤

 

- Step 2: xk+1 = xk+αkpk 

- Step 3: rk+1 = rk – αkApk 

- Step 4: If the residual ||rk+1|| < ε, a convergence testing threshold, then xk+1 is the solution, 

and one quits the loop. Otherwise, continue. 

Normally the set of vector pi is not known beforehand. Instead, a specific set of vectors pi 

is generated while iterating through the conjugate gradient method: 



 

 

27 

 

Step 0: Choose a starting point x0. Compute r0=b-Ax0. Let p0=r0 

For k=0 to (n-1) do: 

- Step 1: 𝜶𝒌 =
𝐫𝐤
𝐓𝐫𝐤

𝐩𝐤
𝐓𝐀𝐩𝐤

 

- Step 2: xk+1 = xk+αkpk 

- Step 3: rk+1 = rk – αkApk 

- Step 4: If the residual ||rk+1|| < ε, a convergence testing threshold, then xk+1 is the solution, 

and one quits the loop. Otherwise, continue. 

- Step 5: 𝜷𝒌 =
𝐫𝐤+𝟏
𝐓 𝐫𝐤+𝟏

𝐫𝐤
𝐓𝐫𝐤

 

- Step 6: pk+1 = rk+1 + 𝜷kpk 

Among the various methods to solve the least-squares problem, the conjugate gradient 

method usually yields the fastest rate of convergence (the algorithm does not requires external 

input and guarantees to converge after n iterations). For these reasons, it is often the preferred 

method in many fields of study, including migration in geophysics. For consistency with the 

notation used in previous geophysical research, I replace p with h, and r with g: 

Step 0: Choose a starting solution m0. Compute g0=GTd - GTGm0. Let h0=g0 be the 

conjugate direction. 

For k=0 to (n-1) do: 
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- Step 1: 𝜶𝒌 =
𝐠𝐤
𝐓𝐠𝐤

𝐡𝐤
𝐓(𝐆𝐓𝐆)𝐡𝐤

=
𝐠𝐤
𝐓𝐠𝐤

(𝐆𝐡𝐤)
𝐓𝐆𝐡𝐤

 

- Step 2: mk+1 = mk+αkhk 

- Step 3: gk+1 = gk – αkGTGhk 

- Step 4: If ||gk+1|| < ε, a convergence testing threshold, then mk+1 is the solution, and one quits 

the loop. Otherwise, continue. 

- Step 5: 𝜷𝒌 =
𝐠𝐤+𝟏
𝐓 𝐠𝐤+𝟏

𝐠𝐤
𝐓𝐠𝐤

 

- Step 6: hk+1 = gk+1 + 𝜷khk 

Because migration (GT is the migration operator) and demigration (G is the demigration 

operator) are computationally intensive, I want to minimize the number of times I apply them. 

Therefore, I introduce r as the residual in the demigrated domain (i.e. the domain of the original 

data d), in contrast to g which is the residual in the model domain (i.e. the domain of the solution 

m). 

To do so, in step 0, set 

r0=d - Gm0, and (2.B-5) 

g0=GTr0 =GT(d - Gm0) =GTd - GTGm0. (2.B-6) 

Also, to make the result unbiased, I choose 

m0=0. (2.B-7) 

Thus, 

r0=d and (2.B-8) 

g0=GTd. (2.B-9) 
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In step 1: note how A=GTG changes the denominator to a simple dot product. I only need to 

apply demigration G to the conjugate gradient 𝐡𝐤 and save one migration operator GT. 

In step 3: note that gk+1 is the migrated rk+1, and gk is the migrated residual rk (i.e. gk+1=GTrk+1, 

and gk=GTrk). Therefore, I can separate step 3 into two parts: 

rk+1 = rk – αkGhk, and (2.B-10) 

gk+1 = GTrk+1. (2.B-11) 

Since step 1 (calculating 𝛼𝑘) involves reading data from gk and Ghk, it would be more efficient 

to merge step 1 with rk+1 =rk–αkGhk. Similarly, step 5 and step 6 can be merged for the same 

reason. 

Applying the above modifications, I can rewrite the conjugate gradient method for 

migration as follow: 

Step 0: Choose a starting solution m0=0. Set r0=d. Compute g0=GTd. Let h0=g0 be the 

conjugate direction. 

For k=0 to (n-1) do: 

- Step 1: 𝜶𝒌 =
𝐠𝐤
𝐓𝐠𝐤

(𝐆𝐡𝐤)
𝐓𝐆𝐡𝐤

, and rk+1=rk – αkGhk 

- Step 2: mk+1 = mk+αkhk 

- Step 3: gk+1 = GTrk+1 

- Step 4: If ||gk+1|| < ε, a convergence testing threshold, then mk+1 is the solution, and one quits 

the loop. Otherwise, continue. 

- Step 5: 𝜷𝒌 =
𝐠𝐤+𝟏
𝐓 𝐠𝐤+𝟏

𝐠𝐤
𝐓𝐠𝐤

, and hk+1 = gk+1 + 𝜷khk 
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The above suit of equations should be familiar to most people working with conjugate 

gradient least-squares migration. What I have done here is nothing more than a “translation” 

between mathematical papers and geophysical migration, simply by replacing notations of 

variables. 
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Appendix C: Constrained Least-Squares Migration 

The next step is to add a constraint to the least-squares migration workflow. The purpose 

of the constraint is to increase the signal-to-noise ratio and reduce migration aliasing artifacts. A 

constraint is simply a filter F applied to the solution m – a means to “bend” the result to my will: 

𝐦̅𝐤+𝟏 = 𝐅(𝐦𝐤+𝟏) = 𝐅(𝐦𝐤 + 𝜶𝒌𝐡𝐤). (2.C-1) 

To improve the conjugate direction, I also need to apply filter F to hk: 𝐡̅𝐤 = 𝐅(𝐡𝐤) 

Because the filter F might be computationally intensive, F is usually assumed to be a relatively 

linear operator. Therefore, I can reduce computational cost by setting 𝐡̅𝐤 =
𝐦̅𝐤+𝟏−𝐦𝐤

𝜶𝒌
 

As I introduce the constraint to the workflow, I expect the residual rk to be as close to the 

noise portion of the input data as possible. That is, the magnitude of the residual, ||rk||, should 

become smaller and then stabilize, but never reach zero. Since I do not know the magnitude of 

the noise portion in the original data, a constant threshold ε of the residual’s magnitude is no 

longer valid as a stopping criterion. I need a new condition to quit the loop. 

In all of my experiments, the result is considered sufficiently improved for interpretation 

purposes when the change of the residual is within 10% of the residual in the current iteration 

(typcially after three iterations). Therefore, I define a new stopping criterion for my workflow as 

when 
||𝐫𝐤+𝟏−𝐫𝐤||

||𝐫𝐤+𝟏||
< 0.1. 

The constrained conjugate gradient least-squares migration workflow is as follows: 

Step 0: Choose a starting solution m0=0. Set r0=d. Compute g0=GTd. Let h0=g0 be the 

conjugate direction. 

For k=0 to (n-1) do: 
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- Step 1: 𝜶𝒌 =
𝐠𝐤
𝐓𝐠𝐤

(𝐆𝐡𝐤)
𝐓𝐆𝐡𝐤

, and rk+1 = rk – αkGhk 

- Step 2: mk+1 = mk+αkhk 

- Step 3: 𝐦̅𝐤+𝟏 = 𝐅(𝐦𝐤+𝟏) 

- Step 4: If 
||𝐫𝐤+𝟏−𝐫𝐤||

||𝐫𝐤+𝟏||
< 𝟎. 𝟏, then 𝐦̅𝐤+𝟏 is the solution, and one quits the loop. Otherwise, 

continue. 

- Step 5: gk+1 = GTrk+1 

- Step 6: 𝐡̅𝐤 =
𝐦̅𝐤+𝟏−𝐦𝐤

𝜶𝒌
 

- Step 7: 𝜷𝒌 =
𝐠𝐤+𝟏
𝐓 𝐠𝐤+𝟏

𝐠𝐤
𝐓𝐠𝐤

, and hk+1 = gk+1 + 𝜷k𝐡̅𝐤 
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Appendix D: Modification for Weighted Least-Squares Migration 

Seismic data often contain undesirable linear noise, such as head waves. Ideally, such 

noise should be muted before migrating the data. Similarly, the demigration process may include 

some data-truncation artifacts due to the nature of inverse Fourier transform used to apply the iω 

operator, causing potentially wrap-around or other artifacts after migration (Figure 2.D-1). Such 

artifacts in demigrated data must also be muted. 

Muting can be understood as a weighting operator, in which the points representing head 

waves and wrap-around artifacts are set with weights = 0, while the points representing useful 

data are set with weights = 1. Tapering gives weights between 0 and 1. I need a solid 

mathematical ground for the weighted least-squares problem. 

The objective function that I want to minimize now become 

J = ||W(d-Gm)||2 (2.D-1) 

Expanding J, I have: 

J = (W(d-Gm))TW(d-Gm) = (d-Gm)TWTW(d-Gm) = (dT-mTGT)WTW(d-Gm) 

= dTWTWd – mTGTWTWd – dTWTWGm + mTGTWTWGm (2.D-2) 

The two middle terms are basically the transpose of each other, and thus are equal to each other, 

giving 

J=dTWTWd – 2dTWTWGm + mTGTWTWGm (2.D-3) 

To minimize J, I need to find where ∇J=0 with respect to m: 

∇J= – 2(dTWTWG)T + 2GTWTWGm = 0, or (2.D-4) 

GTWTWGm = GTWTWd (2.D-5) 

Updating the workflow, I have: 
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Step 0: Choose a starting solution m0=0. Set r0=d. Compute g0=GTWTWd. Let h0=g0 be 

the conjugate direction. 

For k=1 to n do: 

- Step 1: 𝜶𝒌 =
𝐠𝐤−𝟏
𝐓 𝐠𝐤−𝟏

(𝐆𝐡𝐤−𝟏)
𝐓𝐖𝐓𝐖𝐆𝐡𝐤−𝟏

, and rk=rk-1 – αkGhk-1 

- Step 2: mk=mk-1+αkhk-1 

- Step 3: 𝐦̅𝐤 = 𝐅(𝐦𝐤) 

- Step 4: If 
||𝐫𝐤−𝐫𝐤−𝟏||

||𝐫𝐤||
< 𝟎. 𝟏, then 𝐦̅𝐤 is the solution, and one quits the loop. Otherwise, 

continue. 

- Step 5: gk=GTWTWrk 

- Step 6: 𝐡̅𝐤 =
𝐦̅𝐤−𝐦𝐤−𝟏

𝜶𝒌
 

- Step 7: 𝜷𝒌 =
𝐠𝐤
𝐓𝐠𝐤

𝐠𝐤−𝟏
𝐓 𝐠𝐤−𝟏

, and hk=gk + 𝜷k𝐡̅𝐤 

In practice: applying such weights is equivalent to muting the data in the unmigrated 

domain (i.e. the domain of the original data and the demigrated data). Sometimes, muting is also 

applied in the migrated data domain, in case the demigrated data exhibit enhanced low-frequency 

artifacts at far-offset traces (Figure 2.D-2). 
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Appendix E: Step-by-step Workflow 

The complicated, iterative nature of the constrained conjugate gradient least-squares 

migration makes it difficult to represent the workflow by a simple flow chart. Even the first 

iteration requires many small steps and generates many different outputs, each to be used in 

either the same iteration or the next one. Therefore, I choose to represent the workflow with a 

step-by-step guide for each iteration. 

A step-by-step workflow for a maximum of n iterations of constrained conjugate gradient 

least-squares migration is as follows: 

Iteration #0 (i.e. preparation iteration): 

- Mute the original data to avoid head wave contamination. This is basically multiplying 

WTW with data d: WTWd 

- Compute fold and offset map. This step is a part of Kirchhoff migration procedure, but 

only needs to be done once. 

- Migrate the data with anti-aliasing enabled, using the muted original data and the 

calculated fold and offset map. Anti-aliasing feature in migration reduces migration 

artifacts. Applying the migration operator GT to WTWd: g0=GTWTWd 

- Apply structure-oriented filtering to g0: h0=F(g0). Perform muting if needed. The reason I 

apply SOF in iteration #0 is to further constrain the result to improve the signal-to-noise 

ratio. Plus, running SOF in this iteration means I do not need to run SOF for iteration #1, 

thereby saving one step. 

- Demigrate the SOF migrated result. This is equivalent to applying the forward modeling 

operator G to h0: Gh0 

- Mute the demigrated result. Again, multiplying weight WTW with Gh0: WTWGh0 
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Iteration #1: 

- Update the residual: calculate α1 and r1: 

𝛼1 =
𝐠𝟎
𝐓𝐠𝟎

(𝐆𝐡𝟎)
𝐓𝐖𝐓𝐖𝐆𝐡𝟎

 and WTWr1= WTWd – α1WTWGh0 

The denominator of α1 is basically the square of muted demigrated result WTWGh0. 

Since W consists of 0 and 1 only (i.e. muted: w=0, non-muted: w=1), WTW=W, and thus 

(WTWGh0)T(WTWGh0) = (WGh0)T(WGh0) = (Gh0)TWTW(Gh0) 

Note that in the residual calculation, I use the muted result of original data and 

demigrated data, and thus the updated residual is muted and I can skip the muting step 

later on. 

- Update the model: m1=m0+α1h0=0+α1h0=α1h0 (because m0 is initialized to 0). Since h0 is 

the SOF-applied result, I can skip the constrain step. 

- Migrate the muted updated residual with anti-alias disabled (since I do not want the 

residual to be too smoothed): g1=GTWTWr1 

- (Optional) Mute the migrated residual if needed. 

- Update the conjugate gradient: calculate β1 and h1: 

𝛽1 =
𝐠𝟏
𝐓𝐠𝟏

𝐠𝟎
𝐓𝐠𝟎

, and h1=g1 + 𝛽1h0 

Note that I skip the step of calculating 𝐡̅𝟏. This is because: 

𝐡̅𝟏=
m̅1-m0

α1

=
m̅1

α1

=
α1*h0

α1

=h0 

- Demigrate the updated conjugate gradient: Gh1 

- Mute the demigrated result: WTWGh1 
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Iteration #k (2≤k<n): 

- Update the residual: calculate αk and rk: 

𝛼𝑘 =
𝐠𝐤−𝟏
𝐓 𝐠𝐤−𝟏

(𝐆𝐡𝐤−𝟏)
𝐓𝐖𝐓𝐖𝐆𝐡𝐤−𝟏

 and WTWrk=WTWrk-1 – αkWTWGhk-1 

- Update the model: mk=mk-1+αkhk-1 

- Apply structure-oriented filtering on mk: 𝐦̅𝐤 = 𝐅(𝐦𝐤) 

- Update the directional vector: 𝐡̅𝐤 =
𝐦̅𝐤−𝐦𝐤−𝟏

𝛼𝑘
 

- Migrate the muted updated residual with anti-alias disabled: gk=GTWTWrk 

- (Optional) Mute the migrated residual if needed. 

- Update the conjugate gradient: calculate βk and hk: 

𝛽𝑘 =
𝐠𝐤
𝐓𝐠𝐤

𝐠𝐤−𝟏
𝐓 𝐠𝐤−𝟏

, and hk=gk + 𝛽k𝐡̅𝐤 

- Demigrate the updated conjugate gradient: Ghk 

- Mute the demigrated result: WTWGhk 

 

Iteration #n (last iteration): 

- Update the residual: calculate αn and rn: 

𝛼𝑛 =
𝐠𝐧−𝟏
𝐓 𝐠𝐧−𝟏

(𝐆𝐡𝐧−𝟏)
𝐓𝐖𝐓𝐖𝐆𝐡𝐧−𝟏

 and WTWrn=WTWrn-1 – αnWTWGhn-1 

- Update the model: mn=mn-1+αnhn-1 

- Apply structure-oriented filtering on mn: 𝐦̅𝐧 = 𝐅(𝐦𝐧) 
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Figures 

 

Figure 2.1. Schematic showing the migration process. The main idea is to copy each amplitude 

value along ellipsoids and then stack all the subsequent images together. If the data are 

sufficiently sampled, some areas constructively interfere into reflectors, while others 

destructively interfere into zero-data zones. If the data are insufficiently sampled, there may be 

only partial destructive interference, resulting in aliasing. 
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Figure 2.2. Crab-eye rock at Charon’s Garden, Wichita Mountains (see how it looks like a 

frowny crab?). The rock is composed of fractured granite with multiple sets of joints that are 

several tens of feet apart. This is an outcrop analog to the fractured basement 2500-ft below the 

ground. 
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Figure 2.3. Regional geological cross-section through the Panhandle field (Sorenson, 2005). 

Source rocks are located in the deeper part of the Anadarko Basin and have an age range from 

Ordovician to Pennsylvanian, including the Mississippian Woodford Shale. The most common 

reservoir rocks are the early Permian carbonate and the Granite Wash. Oil also fills joints and 

fractures that formed in the previously exposed basement highs. Above the reservoir rocks, 

middle Permian evaporites act as a seal. Such a thick, high-velocity layer of evaporite is the 

cause of strong head waves in seismic data. 
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Figure 2.4. A representative 3D shot gather sorted by offset with interpreted events, including 

head waves, reflections, air blast (or ground roll?), and reverberations. At the target top basement 

depth (t=0.57s), critical refraction occurs at offset h = 3200ft. Beyond this point, the signal are 

highly contaminated by coherent, moderate bandwidth head waves. 

  

Positive 

Negative 



 

 

44 

 

 
Figure 2.5. Source (red squares) and receiver (blue crosses) geometry of the seismic survey. 

Linear gaps in source and receiver locations are associated with roads. Other smaller, circular 

gaps are areas inaccessible to vibroseis trucks. These gaps, together with the rectangular gridding 

geometry, generate acquisition footprint in seismic data, especially at shallow target depth. 
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Figure 2.6. Vertical slice through the seismic amplitude volume generated from (a) conventional 

Kirchhoff prestack time migration, (b) unconstrained conjugate gradient least-squares prestack 

time migration, and (c) constrained conjugate gradient least-squares prestack time migration. The 

same migration algorithm is used in all cases. Note the cross-cutting migration artifacts (red 

lines) in the conventional migrated image that are enhanced in the least-squares migrated image 

without the constraint. Also note a sudden amplitude decrease (yellow ellipses) where a highway 

intersects the profile. The constrained conjugate gradient least-squares migration suppresses 

those artifacts and provides a better amplitude balancing. 
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Figure 2.7. Coherence time slice at t=0.608s (close to top basement) generated from (a) 

conventional Kirchhoff prestack time migration and (b) constrained conjugate gradient least-

squares prestack time migration. Most of the grid-like low-coherence hash pattern (red lines) 

seen in the conventional migrated coherence map is suppressed in the constrained conjugate 

gradient least-squares migrated coherence map. 
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Figure 2.8. Phantom horizon map 0.14 s below the top basement through P-impedance volumes 

generated from (a) conventional Kirchhoff prestack time migration and (b) constrained conjugate 

gradient least-squares prestack time migration. Impedance map created by constrained conjugate 

gradient least-squares migration exhibits less hash-pattern noise, making it easier to isolate zones 

of low impedance corresponding to potential open fractures filled with hydrocarbons. 
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Figure 2.9. Phantom horizon map 0.14s below the top basement through inversion misfit error 

volume generated from (a) conventional Kirchhoff prestack time migration and (b) constrained 

conjugate gradient least-squares prestack time migration. The constrained conjugate gradient 

least-squares migration errors are smoother and contains less hash-pattern artifacts than those 

created by conventional Kirchhoff migration. 
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Figure 2.D-1. (a) A demigrated CDP gather showing wrap-around artifacts close to time zero. 

These artifacts are inherent to the forward modeling (i.e. demigration) operator, due to the nature 

of the inverse Fourier transform. (b) Migrated result of demigrated data in (a). The high-

amplitude artifacts at the bottom of the migrated CDP gather are caused by such wrap-around 

artifacts. Thus, it is important to mute (or alternatively, sufficiently pad) the top part of the 

demigrated gathers. 
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Figure 2.D-2. (a) A migrated CDP gather showing head waves and reverberations. (b) 

Demigrated result of the migrated data in (a). The low-frequency artifacts at far offset in 

demigrated gather are caused by inadequate suppression of head waves and reverberations. Thus, 

if the muting and noise suppression applied on the original data is insufficient to remove head 

waves and reverberations, the migrated result must be muted as well. 
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CHAPTER 3: PITFALLS AND IMPLEMENTATION OF DATA CONDITIONING, 

ATTRIBUTE ANALYSIS, AND SELF-ORGANIZING MAP TO 2D DATA: 

APPLICATION TO THE NORTH CARNARVON BASIN, AUSTRALIA 

Abstract 

Recent developments in attribute analysis and machine learning have significantly 

enhanced interpretation workflows of 3D seismic surveys. Nevertheless, even in 2018, many 

sedimentary basins are only covered by grids of 2D seismic lines. These 2D surveys are suitable 

for regional feature mapping and often identify targets in areas not covered by 3D surveys. With 

continuing pressure to cut costs in the hydrocarbon industry, it is crucial to extract as much 

information as possible from these 2D surveys. Unfortunately, much if not most modern 

interpretation software packages are designed to work exclusively with 3D data. To determine if 

I can apply 3D volumetric interpretation workflows to grids of 2D seismic lines, I perform data 

conditioning, attribute analysis, and a machine learning technique called self-organizing map 

(SOM) to the 2D data acquired over the Exmouth Plateau, North Carnarvon Basin, Australia. I 

find that these workflows allow me to significantly improve image quality, interpret regional 

geological features, identify local anomalies, and perform seismic facies analysis. However, 

these workflows are not without pitfalls. I need to be careful in choosing the order of filters in 

data conditioning workflow and be aware of reflector misties at line intersections. Vector data, 

such as reflector convergence, need to be extracted and then mapped component-by-component 

before combining the results. I am also unable to perform attribute extraction along a surface or 

geobody extraction for 2D data in a commercial interpretation software package. To address this 

issue, I devise a point-by-point attribute extraction workaround to overcome the incompatibility 

between 3D interpretation workflow and 2D data. 
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Introduction 

Before attempting to interpret seismic attributes computed from 2D surveys, it is crucial 

to understand the differences between 2D and 3D data. Hutchinson (2016) provides a detailed 

discussion regarding the limitations and advantages of 2D versus 3D data in five aspects: (1) 

processing artifacts, (2) sharpness of discontinuities, (3) reflector dip, (4) faults, and (5) 

amplitude contrast. First, due to imaging of out-of-the-plane energy into the vertical plane 

defined by the 2D seismic line in the migration process, 2D data usually show cross-cutting and 

bow-tie artifacts that are otherwise properly focused in 3D data (Figure 3.1). This imaging 

limitation of 2D data also results in blurred discontinuities (Figure 3.2) and incorrect reflector 

dip (Figure 3.3) compared to 3D data. In general, a skilled interpreter can pick similar fault 

“sticks” on 2D data as with 3D data, although the fault connectivity between lines may differ 

(Figure 3.4). Because of acquisition constrains, the shallow amplitude contrast is often better on 

2D data than on 3D data (Figure 3.5). 

It is also important to consider the limitations of each attribute type with respect to the 

number of data dimensions (Table 3.1). While all 3D attributes appear to be compatible with 2D 

data, the majority of them assume a 2.5D earth model, in which the earth looks the same in the 

direction perpendicular to the 2D line. In other words, there is no azimuthal information for 2D 

attribute calculation (e.g. there are only apparent dip and apparent reflector convergence). 

A conventional 2D interpretation workflow starts with picking a horizon – a geological 

boundary of interest. This horizon is then interpolated to form a surface, where the two-way-

travel time of this surface constitute a time-structure map of the geological boundary. The next 

step is to compute surface attributes, such as dip magnitude, dip azimuth, and possibly curvature 

of this surface to further aid the interpretation of the structural relief of the geological boundary. 
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Note that these surface attributes are calculated on a surface rather than on the seismic data itself. 

Thus, the quality of these surface attributes highly depends on the interpreter. To overcome this 

dependency, Bahorich and Bridges (1992) created the Seismic Sequence Attribute Mapping 

(SSAM) workflow, which extracts seismic attributes computed from the 2D amplitude data and 

maps them as a surface. The few published SSAM workflows focused primarily on single-trace 

attributes (e.g. instantaneous envelope, frequency, and phase) rather than multi-trace attributes 

(e.g. inline dip, coherence, and GLCM attributes). Another challenge of this workflow is that 2D 

seismic attribute extraction is not available in many modern software packages that are designed 

to efficiently handle 3D data volumes. 

I begin this chapter with a brief review of the geologic settings of the North Carnarvon 

Basin. I then describe my 2D seismic interpretation workflow, including data conditioning, 

attribute analysis, and SOM facies classification. Next, I discuss my interpretation of regional 

geology and local anomalies from 2D seismic amplitude and attribute profiles. Finally, I show 

the pitfalls encountered during my interpretation workflow, as well as workarounds to avoid 

those pitfalls and to correctly display horizons and geobodies extracted from the 2D seismic 

attribute profiles.  
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Geologic Settings 

The North Carnarvon Basin is a major hydrocarbon reserve in Australia (Chongzhi et al., 

2013) that can be divided into several sub-basins (Figure 3.6). Among these sub-basins, the 

Exmouth Plateau is the largest and contains most of the major gas fields. Thanks to these gas 

fields, numerous seismic surveys have been acquired over the area. The 3D surveys are relatively 

small (<5000 km2), concentrated around known reservoir locations. In contrast, the 2D surveys 

are much larger, allowing the interpretation of regional features and the identification of new 

area that has not been covered by 3D data. 

The North Carnarvon Basin was a passive margin that underwent multiple stages of 

extension, subsidence, and late minor inversion, resulting in NE-SW trending faults (Mihut and 

Muller, 1998; Magee et al.,2013; McArdle et al., 2013; Tellez Rodriguez, 2015). The 

depositional history of the North Carnarvon Basin can be summarized by the simplified 

stratigraphic column shown in Table 3.2. The main source rocks of the Exmouth Plateau are the 

Locker Shale, deposited in early Triassic. The Mungaroo (middle-late Triassic) fluvio-deltaic 

formation and the early Cretaceous Flag sandstone of the Barrow delta are the main reservoir 

rocks. During the middle Cretaceous, post-rifting subsidence enabled a thick deposition of the 

transgressive Muderong Shale throughout the entire basin, which act as a regional seal 

(Chongzhi et al., 2013). During the Tertiary, the Australian Plate drifted northward to warmer 

tropical zones, facilitating development of carbonate sequences, including the Mandu Limestone 

formation (Smith, 2014).  

My project involves 55 lines forming a rectangular grid, spanning an area of ~40,000 km2 

in the center of the Exmouth Plateau (Figure 3.6). These 2D lines were acquired five to ten years 

before the 3D surveys, suffering from low image quality and inaccurate imaging of out-of-the-
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plane energy due to the limitations in acquisition and processing. My goal is to improve seismic 

interpretation of these 2D lines in order to have a better understanding of the regional geology as 

well as possible local hydrocarbon accumulations. 
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Method 

My interpretation workflow consists of data conditioning, seismic attribute analysis, 

followed by self-organizing map (SOM) classification. 

 

Data conditioning 

To improve seismic image quality, I implement a data conditioning workflow developed 

by Hutchinson et al. (2016) by applying spectral balancing and edge-preserving structure-

oriented filtering (Marfurt, 2006) to the data. In my data conditioning workflow, I need to set the 

analysis window’s half-width to five times the bin size of the 2D line due to the high amount of 

noise and cross-cutting artifacts. Appendix A shows a detail list of data conditioning parameters. 

 Figure 3.7 compares a shallow section of a seismic line before and after data 

conditioning. Thin layers are better resolved (yellow ellipse), cross-cutting migration artifacts are 

suppressed (cyan ellipse), while faults are sharper (red arrows), providing an improved 

interpretation. The same benefits can be observed in a deeper section of the same seismic line 

(Figure 3.8).  

 

Seismic attribute analysis 

In order to choose which attributes to be used in my analysis, I examine the attribute 

expression of the seismic facies that I want to identify (Table 3.3). I choose conformal reflectors, 

anomalously strong reflectors, Mass-Transport Complexes (MTCs), and channels as four major 

seismic facies in my project. Based on previous works by Qi et al. (2016), Wallet (2016), and 

Zhao et al. (2016) on channel and MTC interpretation, I choose eight seismic attributes: 
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• seismic amplitude: not used in seismic facies analysis but for traditional horizon picking and 

structural interpretation, 

• energy-ratio-similarity: a high-resolution coherence attribute to differentiate faults, 

stratigraphic edges, as well as rotated blocks and chaotic features internal to MTCs from 

more continuous reflector events (Lin et. al., 2016), 

• structural curvature: a measure of folding and flexing, used to differentiate channel axes, 

levees, and the toe thrust component of MTCs from planar reflectors (Mai et. al., 2009), 

• reflector convergence: measures vertical changes in the dip vector, used to differentiate 

conformal reflectors from pinch-outs, angular unconformities, and chaotic reflector 

orientation (Marfurt and Rich, 2010), 

• coherent energy: the energy of a window of amplitude data, used to differentiate strong 

coherent from weak incoherent reflectors (Chopra and Marfurt, 2007), 

• Gray-Level Co-occurrence Matrix (GLCM) energy and homogeneity: texture attributes that 

measures the variation in lateral seismic response, used to differentiate constant amplitude 

and smoothly varying from laterally chaotic reflectors as well as from noise (Matos et. al., 

2011), and 

• peak frequency: the mode of the decomposed spectral components that is used to 

differentiate thick (lower peak frequency) from thin (higher peak frequency) layers (Marfurt, 

2018). 

Details of attribute calculation parameters are shown in Appendix B. Different seismic 

facies have different distinctive expressions. For example, the slump component of an MTC 

exhibits overall low coherence, while the related block component and conformal reflectors 

exhibit high coherence. Channels are usually coherent near their axes, but incoherent at their 
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edges. Among the four facies examined in our data, incised channels express the highest 

curvature and reflector convergence with the highest spatial variation. 

Due to the limitation of different attributes regarding data dimensionality (Table 3.1), I 

have to make various modifications to the filters and attribute calculators in order to perform 3D 

attribute analysis on 2D data. Among all data conditioning tasks and selected attributes for my 

analysis, only spectral balancing/decomposition works out-of-the-box for 2D data, thanks to its 

trace-by-trace computation nature. For all other attributes, I have to set the crossline analysis 

window size to zero and disable any azimuth or strike outputs, since 2D data do not contain any 

azimuthal information. Some attributes, such as dip, curvature, and reflector convergence, have 

different mathematical formulas between 2D and 3D computations, thus requiring me to program 

each case in a separate code section. 

Since my data consists of 55 individual 2D seismic lines, computing attributes for one 

line at a time is a tedious task. In general, each line forms a separate file. In order to perform 

attribute calculation on all of the 2D lines at once, I merge those lines into a pseudo-3D volume, 

in which the length of the inline axis is the length of the longest line, and the length of the 

crossline axis is the total number of lines (Figure 3.9). Shorter lines are padded with dead traces 

until they reach the length of the longest line. Then, this new pseudo-3D volume is input into 3D 

attribute calculators, with the size of the crossline analysis window set to zero. After the 

computation, I delete the dead traces and reassign each “inline” back to the appropriate line in 

the 2D survey. 
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Self-organizing maps 

One way to combine multiple attributes for facies analysis is to use self-organizing map 

(SOM), an automatic, unsupervised machine learning technique. This process takes N attributes 

residing in an N-dimensional space and projects them onto a deformed 2D manifold. These 

projected data are then mapped against a 2D color table in such a way that voxels within a cluster 

on the 2D latent space have similar colors. A detailed description of SOM is provided by Zhao et 

al. (2016). 

Qi et al. (2016) finds the choice of attributes to be critical to both interactive 

interpretation and machine learning algorithms like SOM. Examining Table 3.3, I note that 

MTCs are characterized by low coherence, low-to-moderate coherent energy, low GLCM 

energy, and low GLCM homogeneity. During my experiment, I find that continuous reflectors 

can have the same expression in reflector convergence, structural curvature, and peak frequency 

as MTCs if those reflectors are slightly undulating and located around the same depth as the 

MTCs. Therefore, reflector convergence, structural curvature, and peak frequency are not 

effective in differentiating MTCs from the continuous reflector background in SOM 

classification. I do not include the seismic amplitude in the SOM analysis either. Rather, I choose 

to co-render SOM result with seismic amplitude after the SOM computation. Thus, my list of 

inputs for SOM classification consists of four attributes: energy-ratio-similarity, coherent energy, 

GLCM energy, and GLCM homogeneity. 

To suppress “salt-and-pepper” effects in unsupervised classification algorithm, I follow 

an attribute preconditioning workflow developed by Qi et. al. (2016). I first smooth the attributes 

along structural dip for two iterations, then apply a Kuwahara median filter to the input 
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attributes. Appendix C shows a flowchart of attribute preconditioning and detail parameters of 

my SOM workflow. 

 

 
Figure 3.10 and Figure 3.11 show energy-ratio-similarity (a) before and (b) after preconditioning. 

Note the salt-and-pepper internal structure of MTCs are lost, but the boundary between chaotic 

and continuous facies are much better defined. Figure 3.12 and Figure 3.13 show the SOM result 

(a) with out and (b) with attribute preconditioning, in the same portions of strike and dip lines as 
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those shown in 

 

 
Figure 3.10 and Figure 3.11. The same salt-and-pepper effect is observed without 

attribute preconditioning, and thus the quality of SOM classification is significantly improved 

after attribute preconditioning. 

  

T
im

e
 (

s
) 

Coherence 
High 

Low 

10 km 

NW SE a 

3.0 

3.4 

3.6 

3.2 

T
im

e
 (

s
) 

Coherence 
High 

Low 

10 km 

NW SE b 

3.0 

3.4 

3.6 

3.2 



 

 

62 

 

Interpretation 

Figure 3.14 shows a 2D seismic line with interpreted faults, key formation tops, MTCs, 

and channels. Major faults terminate against the top of the Muderong Shale, consistent with post-

rifting subsidence during the middle Cretaceous. Figure 3.15 of co-rendered seismic amplitude 

with energy-ratio similarity attribute shows the chaotic, low-coherence nature of MTCs within 

the Muderong Shale. These MTCs can be tens-of-kilometers wide and are present in both the 

Muderong Shale and the shallower Tertiary carbonate sequences. For channels, I follow the 

display scheme described by Wallet (2016) to co-render seismic amplitude with structural 

curvatures to highlight channels’ axes and levees (Figure 3.16). These channels have thicknesses 

ranging from 20 to 100 ms (equivalent to ~ 25-125 m for a velocity of 2500 m/s) and half-widths 

ranging from 0.5 to 1.5 km. 

I find some local anomalies in the SW and NE corner of the seismic survey. Figure 3.17 

is a 3D perspective view showing two perpendicular seismic lines near the SW corner of the 

study area, with two amplitude anomalies marked by yellow arrows. These anomalies are about 2 

km long, exhibiting strong negative amplitude, anticlinal shape, and a lower frequency spectrum 

than the surrounding reflectors. Based on such characteristics, I interpret the two anomalies as 

bright spots that could be potential gas-charged reservoirs. Figure 3.18 is another 3D perspective 

view showing two perpendicular seismic amplitude profiles near the NE corner of the study area, 

with several anomalies marked by pink arrows. These anomalies are dome-shaped features, 

exhibiting velocity “pull-up” effect from their tops to the deeper section. Their characteristics are 

consistent with carbonate mounds around the world. Since these anomalies are within the thick 

Muderong Shale (which is a good seal), they could be potential reservoirs as well, if they are 

filled with hydrocarbons.  
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One way to obtain information regarding the depositional environment at a specific 

geological time is to generate a map of reflector convergence about a horizon of interest. 

Reflector convergence is an attribute that shows where reflectors are converging (pinching out) 

rather than parallel (conformal), which can aid in seismic stratigraphic analysis. Figure 3.19 

shows a map of co-rendered reflector convergence magnitude and azimuth extracted around the 

top of the Muderong Shale formation. Generally, the layers are thinning toward the NW (green 

and cyan color), with some exception in the middle and eastern part of the study area where they 

are thinning toward the NE (purple color). This geometry indicates the presence of a major 

landmass in the NW of the North Carnarvon Basin, as well as some local structural highs in the 

center and NE part of the basin during the late Cretaceous. 

After combining seismic attributes using the SOM algorithm, I co-render the result with 

seismic amplitude as shown in Figure 3.20 and Figure 3.21. I observe that red, light cyan, light 

purple, and blue colors correspond to chaotic portion of MTCs. Yellow and orange colors 

correspond to lower amplitude, conformal reflectors. Bright green color corresponds to moderate 

amplitude, continuous reflectors. Bright purple and dark violet correspond to high amplitude, 

continuous reflectors. To illustrate the chaotic portion of MTCs exclusively, I keep only red, 

light cyan, light purple, and blue colors, while setting all other colors transparent. The result is a 

co-rendered image of seismic amplitude and MTC “clusters” (Figure 3.22 and Figure 3.23), with 

occasional imperfections in which some bow-tie artifacts associated with faults are marked 

(yellow ellipses). Finally, I extract these MTC clusters from a set of 2D lines in my data. The 

size, shape, and internal structure of a gigantic MTC sequence can be observed via 3D 

visualization of the extracted geobodies (Figure 3.24). This MTC sequence is located at the SE 
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part of the survey, in the bottom of the Tertiary carbonate sequences, extending more than 50 km 

in the dip direction and 80 km in the strike direction.  
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Pitfalls and Workarounds 

Applying 3D interpretation workflow to 2D seismic lines is not a straightforward process. 

In this section, I identify several pitfalls I encountered in my study, as well as my workarounds 

to circumvent the incompatibility between 2D data and modern interpretation software. 

 

The order of filters in data conditioning 

There are two main steps in my data conditioning workflow: spectral balancing and 

structure-oriented filtering. Because they are both nonlinear filters, the order of application 

makes a difference. To evaluate the differences, I apply two data conditioning workflows (Figure 

3.25) to a 2D seismic line. I find artifacts around faults when I apply structure-oriented filtering 

first, followed by spectral balancing (Figure 3.26). The other workflow does not generate such 

artifacts. This is because structure-oriented filter is an edge-preserving filter. For vertical faults, 

there is no change in the spectrum of the vertical trace. For dipping faults, however, the edge 

preservation introduces both high and low frequencies into the spectra of the vertical traces. 

These components lead to artifacts in spectral balancing. Therefore, the correct order of filters in 

data conditioning workflow is spectral balancing first, followed by structure-oriented filtering. 

 

Reflector misties at line intersections 

Figure 3.27 shows a 3D perspective view toward the intersection of two perpendicular 

seismic lines near the center of the study area. Migrated reflectors often do not tie at line 

intersections, making it difficult to pick a horizon. In the shallow part (marked by a yellow 

ellipse), reflectors on the right appear to arrive later than those on the left. However, in the 

deeper part (marked by an orange ellipse), the exact opposite phenomenon is observed: reflectors 
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on the right appear to arrive sooner than those on the left. Those misties cannot be fixed by a 

simple time shift. Sattlegger and Egbers (1987) developed a workflow to properly map horizons 

picked on time-migrated 2D lines. They first picked horizons on the time-migrated 2D lines as 

good as possible, depth-converted the time-migrated 2D lines, performed modeling, and repeated 

the process until the horizons tie at line intersections. Next, they interpolated the horizons to 

form maps, and then migrate the maps using a process called “3D map migration.” 

Unfortunately, their workflow requires a velocity model for depth-conversion, which is not 

available to me. My workaround is to construct two separate horizon picks for each physical 

surface. First, I perform horizon picking where the lines tie. Then, I make two copies of the 

common picks and continue to define two separate sets of horizon picks: one parallel to the lines 

trending NW-SE, and one parallel to the lines trending NE-SW (Figure 3.28). Attribute extracted 

along both sets of horizons can then be interpolated to form attribute maps. 

 

Vector attribute extraction along a surface 

Among the modern interpretation software packages I tested, none supports attribute 

extraction from 2D data along a surface. Thus, I need to develop my own tool to extract seismic 

attributes at the intersections between an interpolated surface and the 2D lines. For vector 

attributes, such as reflector convergence, the seismic line’s direction of increasing CDP number 

is important. I need to make sure all lines parallel to a trend have the same direction of increasing 

CDP number. Each line trend should then have a separate set of extracted data points (Figure 

3.29). Next, I generate surfaces from those sets of points (Figure 3.30) and combine them into a 

co-rendered magnitude and azimuth map (Figure 3.19) using the following equations: 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑁𝑊
2 + 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑁𝐸

2  (3.1) 
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𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑎𝑧𝑖𝑚𝑢𝑡ℎ = arctan (
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑁𝐸

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑁𝑊
) + 𝑁𝑊 𝑎𝑧𝑖𝑚𝑢𝑡ℎ (3.2) 

Where 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑁𝑊 is the reflector convergence component along NW-trending lines, 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑁𝐸 is the reflector convergence component along NE-trending lines, and 

𝑁𝑊 𝑎𝑧𝑖𝑚𝑢𝑡ℎ is the azimuth of NW-trending lines. 

 

Geobody extraction from 2D data 

To visualize SOM clusters in 3D, I first attempt to use a geobody extraction tool that 

works well on 3D data. However, almost all geobody extraction engines assume 3D data inputs, 

thus making it impossible to extract or display geobodies from 2D data using modern 

interpretation software. My next option is to use color transparency to highlight only those SOM 

clusters of interest on several 2D lines and then display those lines in 3D. However, I 

encountered a graphical shortcoming in which the line farthest from the viewpoint is sometimes 

not rendered correctly at some angle of view (Figure 3.31). This might be due to the 

interpretation software’s internal graphical engine: some pixels are assumed to be unnecessary 

and therefore not rendered on the computer screen in order to reduce memory usage. Therefore, I 

decided to program my own tool to extract data points of specific values from multiple 2D lines. 

With this tool, I am able to extract SOM clusters corresponding to MTCs and display them in a 

3D viewport (Figure 3.24). 
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Conclusions 

By applying data conditioning to the 2D data, I am able to improve seismic image 

quality. However, I need to consider the order of steps in data conditioning workflow and apply 

spectral balancing first, followed by structure-oriented filtering, in order to avoid unwanted 

artifacts. Seismic attributes, including coherence, envelope, and structural curvature, help me 

interpret regional geological features (such as the wide-spread Muderong Shale and the channels 

within the Tertiary carbonate sequences), as well as local anomalies (such as bright spots and 

carbonate mounds). Analysis of seismic facies, including MTCs and channels, can be accelerated 

using Self-Organizing-Map classification. Nevertheless, using modern interpretation software, I 

can neither extract attributes along a surface nor display geobodies from 2D data. Therefore, I 

need to develop my own point-by-point attribute extraction tools in order to correctly extract and 

display attribute data points from 2D lines. 
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Appendix A: Data Conditioning Workflow Parameters 

This appendix lists parameters of spectral decomposition (Table 3.A-1), structural dip 

computation (Table 3.A-2), dip filtering (Table 3.A-3), coherence computation (Table 3.A-4), 

and structure-oriented filtering (Table 3.A-5). 

 

Appendix B: Attribute Computation Parameters 

This appendix lists parameters of curvature and reflector convergence computation 

(Table 3.B-1) and GLCM attribute computation (Table 3.B-2). Parameters for spectral attribute 

(such as peak frequency) are the same as in Table 3.A-1. Parameters for coherence attributes 

(such as energy-ratio similarity and coherent energy) are the same as in Table 3.A-4.  

 

Appendix C: SOM Workflow Parameters 

This appendix lists parameters of smoothing operation (Table 3.C-1), Kuwahara filtering 

(Table 3.C-2), and SOM classification (Table 3.C-3). Attribute preconditioning flowchart is 

shown in Figure 3.C-1. 
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Figures 

  

Figure 3.1. A portion of (a) a 2D line and (b) the equivalent vertical profile through a 3D data 

covering the same area, showing a syncline (Modified from Hutchinson, 2016). Note the cross-

cutting artifacts (cyan ellipse) and bow-tie artifacts (yellow ellipse) present in (a) but absent in 

(b). 
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Figure 3.2. A portion of (a) a 2D line and (b) the equivalent vertical profile through a 3D data 

covering the same area, showing a channel perpendicular to the plane of view (Modified from 

Hutchinson, 2016). Note how the right edge of this channel (yellow arrow) appears continuous in 

(a) but discontinuous in (b). 
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Figure 3.3. A portion of (a) a 2D line and (b) the equivalent vertical profile through a 3D data 

covering the same area, showing a fault-propagation fold (Modified from Hutchinson, 2016). 

Note the reflectors on the left flank of this fold (yellow ellipse) cross-cut each other in (a) but are 

correctly imaged in (b). The 3D data show that the 2D line is not perpendicular to the strike of 

the fault-propagation fold. Events measured by the 2D line should be imaged out of the plane 

while events need to image this feature on the 2D line are not measured at all. 
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Figure 3.4. A portion of (a) a 2D coherence profile and (b) the equivalent vertical coherence 

profile through a 3D data covering the same area, showing faults (Modified from Hutchinson, 

2016). The image in (b) appears smooth because of the large analysis window size used in 

coherence attribute calculation to overcome noise in 3D data. However, the same fault features 

can be observed in both (a) and (b). 
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Figure 3.5. A portion of (a) a 2D line and (b) the equivalent vertical profile through a 3D data 

covering the same area, showing a shallow section around 1.0 s (Modified from Hutchinson, 

2016). The color bars of (a) and (b) are scaled in such a way that the reflectors indicated by red 

arrow have the same brightness. In the yellow ellipse, the amplitude contrast between peaks and 

troughs in (a) are higher than (b). These differences are most likely due to higher fold at shallow 

depth in 2D seismic data. 
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Figure 3.6. North Carnarvon Basin, Australia (Modified from Chongzhi et al., 2013).  The study 

area (violet rectangle) consists of 55 2D seismic lines at the center of the Exmouth Plateau, 

where most of the major gas fields are located. Acquisition grid shown in upper-right corner of 

this figure. 
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Figure 3.7. A shallow section of a 2D line (a) before and (b) after data conditioning (including 

spectral balancing and structure-oriented filtering). Reflectors exhibit broader bandwidth and are 

more continuous (yellow ellipse), faults are sharper (red arrows), and cross-cutting migration 

artifacts are suppressed (cyan ellipse). 
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Figure 3.8. A deep section of a 2D line (a) before and (b) after data conditioning. A similar effect 

to Figure 3.7 is observed: reflectors are better resolved (yellow ellipses), and cross-cutting 

migration artifacts are suppressed (cyan ellipse). 
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Figure 3.9. Schematic diagram of my multi-line attribute calculation workflow. I pad multiple 

2D seismic lines with dead traces to be of the same length as the longest line and then merge 

them into a pseudo3D volume. This pseudo3D volume is then used as the input to attribute 

calculators but with “crossline” analysis window size set to zero. After the computation, I delete 

the dead traces and reassign each “inline” back to the appropriate line in the 2D survey. 
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Figure 3.10. Energy-ratio-similarity attribute computed on a portion of a strike line (a) before and 

(b) after preconditioning. Note the salt-and-pepper internal structure of MTCs are lost, but the 

boundary between chaotic and continuous facies are much better defined. 
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Figure 3.11. Energy-ratio-similarity attribute computed on a portion of a dip line (a) before and 

(b) after preconditioning. Note the salt-and-pepper internal structure of MTCs are lost, but the 

boundary between chaotic and continuous facies are much better defined. 
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Figure 3.12. SOM result (a) with out and (b) with attribute preconditioning, computed on the same 

portion of a strike line in 

 

 
Figure 3.10. v1 and v2 are the first two eigenvectors of the four attributes used in SOM 

computation. The same salt-and-pepper effect is observed without attribute preconditioning. The 

quality of SOM classification in (b) is significantly higher than that in (a). 
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Figure 3.13. SOM result (a) with out and (b) with attribute preconditioning, computed on the 

same portion of a dip line in Figure 3.11. v1 and v2 are the first two eigenvectors of the four 

attributes used in SOM computation. The same salt-and-pepper effect is observed without 

attribute preconditioning. The quality of SOM classification in (b) is significantly higher than 

that in (a). 
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Figure 3.14. A representative portion of a 2D seismic line, with interpreted events. Major faults 

(red lines) terminate against the top of the Muderong Shale, consistent with post-rifting 

subsidence of the area during the middle Cretaceous. Mass Transport Complexes (MTCs) within 

the Muderong Shale and Tertiary carbonate are chaotic (Figure 3.15). Within the carbonate 

sequences, a wavy pattern of channels can be observed (Figure 3.16). 
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Figure 3.15. Co-rendered coherence and seismic amplitude profile of the region containing 

MTCs. Seismic amplitude is plotted using a red-white-blue color bar. These MTCs are chaotic, 

exhibits low coherence, and are tens-of-kilometers wide (yellow marker). We found MTCs both 

within the Muderong Shale and the Tertiary carbonate sequences. 
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Figure 3.16. Co-rendered curvature and seismic amplitude profile of the region containing 

channels. The opacity curve is set so that only high absolute curvature values are highlighted. 

High negative curvature values correspond to channel axes, similar to Wallet’s observations 

(2016). High positive curvature values correspond to channel levees. These channels have 

thicknesses ranging from 20 to 100 ms (equivalent to ~ 25-125 m for v=2500 m/s) and half-

widths ranging from 0.5 to 1.5 km. 
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Figure 3.17. 3D perspective view showing two perpendicular 2D lines at the SW corner of the 

study area. Yellow arrows indicate two amplitude anomalies within the Muderong Shale. These 

anomalies are approximately 2-km long, exhibiting a stronger negative amplitude, more anticlinal 

shape, and lower frequency spectrum than the surrounding reflectors. I interpret these anomalies 

as bright spots that could be potential gas-charged reservoirs. 
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Figure 3.18. 3D perspective view showing two perpendicular 2D lines near the NE corner of the 

study area. Pink arrows indicate multiple dome-shaped features (~1 km wide) within the Muderong 

Shale. These domes are possibly carbonate mounds developed in the middle Cretaceous that could 

be potential reservoirs if filled with hydrocarbons. 
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Figure 3.19. Co-rendered reflector convergence magnitude and azimuth extracted around the top 

of the Muderong Shale formation. Low magnitude is black and opaque, while high magnitude is 

transparent, allowing the colors of azimuth to be visible. Generally, the layers are thinning 

toward the NW (green and cyan color), with some exception in the middle and eastern part of the 

study area where they are thinning toward the NE (purple color). 
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Figure 3.20. SOM result corendered with seismic amplitude on the same portion of a strike line in 
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Figure 3.10. v1 and v2 are the first two eigenvectors of the four attributes used in SOM 

computation. SOM classification is performed only within the Muderong Shale. Red, light cyan, 

light purple, and blue colors correspond to chaotic portion of MTCs. Yellow and orange colors 

correspond to low amplitude, conformal reflectors. Bright green color corresponds to moderate 

amplitude, continuous reflectors. Bright purple and dark violet correspond to high amplitude, 

continuous reflectors. 
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Figure 3.21. SOM result corendered with seismic amplitude on the same portion of a dip line in 

Figure 3.11. v1 and v2 are the first two eigenvectors of the four attributes used in SOM 

computation. SOM classification is performed only within the Muderong Shale. Red, light cyan, 

light purple, and blue colors correspond to chaotic portion of MTCs. Yellow and orange colors 

correspond to low amplitude, conformal reflectors. Bright green color corresponds to moderate 

amplitude, continuous reflectors. Bright purple and dark violet correspond to high amplitude, 

continuous reflectors. 
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Figure 3.22. The same portion of a strike line in Figure 3.20, keeping only red, light cyan, light 

purple, and blue colors of SOM result. The rest of the SOM 2D color table is set to a neutral gray 

color. The result is a co-rendered image of seismic amplitude and MTC “clusters.” Note that 

some bow-tie artifacts, which have the same chaotic expression as MTCs, are also marked by the 

colors of these MTC “clusters” (yellow ellipses). 
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Figure 3.23. The same portion of a dip line in Figure 3.21, keeping only red, light cyan, light 

purple, and blue colors of SOM result. The rest of the SOM 2D color table is set to a neutral gray 

color. The result is a co-rendered image of seismic amplitude and MTC “clusters.” Note that 

some bow-tie artifacts, which have the same chaotic expression as MTCs, are also marked by the 

colors of these MTC “clusters” (yellow ellipses). 
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Figure 3.24. 3D perspective view showing MTC geobodies extracted from (a) dip lines and (b) 

strike lines. This gigantic MTC sequence is located at the SE part of the survey, in the bottom of 

the Tertiary carbonate sequences, extending more than 50 km in the dip direction and 80 km in 

the strike direction. 
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Figure 3.25. Different order of filters in data conditioning workflow. Should I apply (a) 

structure-oriented filtering first or (b) spectral balancing first? 
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Figure 3.26. A section of a 2D line (a) with structure-oriented filtering applied first, followed by 

spectral balancing, and (b) with spectral balancing first, followed by structure-oriented filtering. 

Note the artifacts present in case (a) that are absent from case (b). 
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Figure 3.27. 3D perspective view showing reflector mismatches at the intersection of two 

perpendicular vertical seismic profiles near the center of the survey. Note the yellow ellipse, 

where reflectors on the right appear to arrive later than those on the left, and the orange ellipse, 

where reflectors on the right appear to arrive sooner than those on the left. These mismatches 

make it difficult to pick a consistent horizon across all lines. 
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Figure 3.28. Workaround for reflector misties: first, pick horizon where reflectors tie (a). Then, 

make two copies of the common picks in (a) and continue to define two separate sets of horizon 

picks: one parallel to the lines trending NE-SW (b), and another one parallel to the lines trending 

NW-SE (c). 
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Figure 3.29. First step in reflector convergence extraction along a surface: perform attribute 

extraction on two separate sets of lines, one trending NE-SW (a), and one trending NW-SE (b). 

Make sure all lines in a set have the same direction of increasing CDP number. 
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Figure 3.30. Second step in reflector convergence extraction along a surface: make two surfaces 

from the two separate extracted point sets: one for lines trending NE-SW (a), and one for lines 

trending NW-SE (b). These surfaces can be converted to reflector convergence’s magnitude and 

azimuth (Figure 3.19) using equation (3.1) and (3.2).  
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Figure 3.31. Transparency approach to display MTC clusters in 3D using a commercial 

interpretation software. The line farthest from the viewpoint is fully rendered at an angle of view 

(a) while not rendered correctly at a slightly different angle of view (b). MTC clusters in the cyan 

ellipse is rendered in (a) and not rendered in (b). 
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Figure 3.C-1. Attribute preconditioning workflow (modified from Qi et. al., 2016). 
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Tables 

Table 3.1. Limitations of different attribute types regarding data dimensionality. 

Attribute 1D Data 2D Data 3D Data 

Instantaneous attributes 

Envelope, 

frequency, 

phase,… 

Envelope, 

frequency, 

phase,… 

Envelope, 

frequency, 

phase,… 

Spectral decomposition 
Spectral 

components 

Spectral 

components 

Spectral 

components 

Coherence Not applicable 
2D 

discontinuities 

3D 

discontinuities 

Dip Not applicable Apparent dip Vector dip 

Curvature Not applicable 

Apparent 

(Euler) 

curvature 

k
1
 and k

2
 

curvature and 

strike 

Texture (GLCM) Not applicable 2D textures 3D textures 

Reflector convergence Not applicable 
Apparent 

convergence 

Vector 

convergence 
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Table 3.2. Simplified stratigraphic column of the North Carnarvon Basin (based on geological 

description from Tellez Rodriguez, 2015). 

Lithology Description 

 

Quaternary sediment 

 

Tertiary carbonate: Mandu limestone 

 

Middle Cretaceous transgressive sequences: Muderong Shale 

 

Middle Triassic - Early Cretaceous sequences: Mungaroo fluvio-

deltaic formation, Barrow delta (Flag Sandstone) 
 

Early Triassic deposit: Locker shale 

 

  



 

 

109 

 

Table 3.3. Attribute expressions of seismic facies. 
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Table 3.A-1. Spectral decomposition parameters. 

Parameter Value 

Average spectrum smoothing window half height (s) 0.5 

Spectral balancing factor (%) 4 

Bluing exponent 0 

Line and CDP decimation 1 

Ormsby filter corner point f1 (Hz) 5 

Ormsby filter corner point f2 (Hz) 10 

Ormsby filter corner point f3 (Hz) 90 

Ormsby filter corner point f4 (Hz) 120 

CWT mother wavelet bandwidth (Hz) 0.26051 

Temporal taper (s)  0.1 

Percentile excluded in spectral shape 0.15 

Lowest output frequency flow (Hz) 5 

Highest output frequency fhigh (Hz) 100 

Output frequency increment Δf (Hz) 5 

 

Table 3.A-2. Structural dip computation parameters. 

Parameter Value 

Algorithm Semblance Search 

Maximum angle searched (degree) 20 

Search angle increment (degree) 5 

Time-to-depth conversion velocity (m/s) 4000 

Vertical window half height (s) 0.02 

Inline window radius (m) 31.25 

Crossline window radius (m) 0 

 

Table 3.A-3. Dip filtering parameters. 

Parameter Value 

Algorithm LUM 

Lower-Upper-Median (LUM) percentile 20 

Vertical window half height (s) 0.02 

Inline window radius (m) 31.25 

Crossline window radius (m) 0 
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Table 3.A-4. Similarity computation parameters. 

Parameter Value 

Vertical window half height (s) 0.02 

Inline window radius (m) 31.25 

Crossline window radius (m) 0 

Low cut filter rolloff  flow (Hz) 5 

High cut filter rolloff  fhigh (Hz) 100 

 

Table 3.A-5. Structure-oriented filtering parameters. 

Parameter Value 

Vertical window half height (s) 0.02 

Inline window radius (m) 31.25 

Crossline window radius (m) 0 

Similarity value slow, below 

which 0% of the filter is applied 
0.3 

Similarity value shigh, above 

which 100% of filter is applied 
0.4 

Similarity value scenter, above 

which smoothing takes place in 

a centered (rather than in the 

best Kuwahara) window 

0.4 

Algorithm Principle-Component 
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Table 3.B-1. Curvature and reflector convergence computation parameters. The four values of 

(λj,wj) define a long-wavelength filter in the wavelength domain applied to the first derivative 

operators in the inline, crossline, and vertical directions applied to the input inline and crossline 

dip components. The time-to-depth conversion velocity is the same as used to compute dip. 

Parameter Value 

Curvature type Structural 

Filter corner point λ1 (m) 200,000 

Filter corner point λ2 (m)  2,000 

Filter corner point λ3 (m)  1,000 

Filter corner point λ4 (m)  500 

Filter weight w1 1 

Filter weight w2 0.666 

Filter weight w3 0.333 

Filter weight w4 0 

 

Table 3.B-2. GLCM attributes (energy and homogeneity) computation parameters. 

Parameter Value 

Vertical window half height (s) 0.02 

Inline window radius (m) 31.25 

Crossline window radius (m) 0 

Number of gray levels 33 
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Table 3.C-1. Smoothing parameters. 

Parameter Value 

Number of iterations 2 

Vertical window half height (s) 0.012 

Inline window radius (m) 312.5 

Crossline window radius (m) 0 

 

Table 3.C-2. Kuwahara filtering parameters. 

Parameter Value 

Vertical window taper (%) 20 

Vertical window half height (s) 0.012 

Inline window radius (m) 125 

Crossline window radius (m) 0 

 

Table 3.C-3. SOM classification parameters, where the decimation factors define the data used to 

train the SOM. Most interpretation software packages are limited to 256 colors, thereby 

(minimally) constraining the maximum number of potential classes. 

Parameter Value 

Number of prototype vectors 

(maximum number of classes) 
256 

Number of standard deviations 

along the first two eigenvector 

directions to define the initial 

16*16=256 prototype vectors on 

the manifold 

±4 

Initial Neighborhood Scale 1.2 

Distance type z-scored Euclidian  

Maximum number of training 

iterations 
50 

CDP decimation 5 

Line decimation 1 

Vertical sample decimation 1 

Grid spacing 150 

Upper horizon Top Muderong Shale 

Lower horizon Top Triassic 
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CHAPTER 4: AN IN-DEPTH ANALYSIS OF LOGARITHMIC TRANSFORMATION 

AND PER-CLASS NORMALIZATION IN MACHINE LEARNING: APPLICATION TO 

UNSUPERVISED CLASSIFICATION OF A TURBIDITE SYSTEM IN THE 

CANTERBURY BASIN, NEW ZEALAND AND SUPERVISED CLASSIFICATION OF 

SALT IN THE EUGENE ISLAND MINI-BASIN, GULF OF MEXICO 

Abstract 

In a machine learning workflow, data normalization is a crucial step that compensates for 

the large variation in data ranges and averages associated with different types of input measured 

with different units. However, most machine learning implementations do not provide data 

normalization beyond the z-score algorithm which subtracts the mean from the distribution and 

then scales the result by dividing by the standard deviation. Although z-score converts data with 

Gaussian behavior to have the same shape and size, the majority of seismic attributes exhibit log-

normal, or even more complicated distributions. Because many machine learning applications 

are based on Gaussian statistics, I wish to evaluate the impact of more sophisticated data 

normalization techniques on the resulting classification. To do so, I provide an in-depth analysis 

of data normalization in machine-learning classifications by formulating and applying a 

logarithmic data transformation scheme to the unsupervised classifications (including PCA, ICA, 

SOM, and GTM) of a turbidite channel system in the Canterbury Basin, New Zealand, as well as 

implementing a per-class normalization scheme to the supervised probabilistic neural network 

(PNN) classification of salt in the Eugene Island mini-basin, Gulf of Mexico. Compared to the 

simple z-score normalization, a single logarithmic transformation applied to each input attribute 

significantly increases the spread of the resulting clusters (and corresponding color contrast), 

thereby enhancing subtle details in projection and unsupervised classification.  However, this 
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same uniform transformation produces less-confident results in supervised classification using 

probabilistic neural networks. I find that more accurate supervised classifications can be obtained 

by applying class-dependent normalization for each input attribute.  
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Introduction 

Machine learning has been applied to seismic facies classification for more than 20 years, 

with early successes reported for both supervised classification by Meldahl et al’s (1999) and 

West et al. (2002) and for unsupervised classification by Poupon et al. (1999) and Strecker and 

Uden (2002). Since that time, a wide variety of both commercial and research implementation of 

machine learning facies classification algorithms have been adopted by the seismic interpretation 

community. A key assumption of most machine learning workflows is that the input data 

approximate Gaussian-shaped distributions. However, if I wish to measure the distance of a 

given data point to a cluster center, I need to account for the differences in units. For example, P-

wave impedance may exhibit values that range from 1,500 to 12,000 g/cm3.m/s, whereas 

Poisson’s ratio may vary from 0.1 to 0.45. In this case, a simple z-score normalization of each 

sample j of the kth attribute, ajk, by its mean, μk, and standard deviation, σk,  

𝑎̅𝑗𝑘 =
𝑎𝑗𝑘−𝜇𝑘

𝜎𝑘
    (4.1) 

removes the effect of using different measurement units and assigns equal importance to each 

measurement. Although seismic amplitude and some seismic attributes can be well represented 

by a Gaussian distribution, most seismic attributes are skewed, while some may exhibit an 

approximately uniform distribution (e.g. cosine of instantaneous phase), suggesting the need for 

a nonlinear transformation (Figure 4.1).  

Generally, machine-learning classifications can be categorized into two major types: (1) 

unsupervised classification, which automatically assigns different colors to different groups of 

data, and (2) supervised classification, which requires a human interpreter to explicitly label a 

subset of the data as belonging to a given class or seismic facies. 
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Unsupervised Classifications 

Unsupervised classifications, in turn, can be divided into two categories: (1) projection 

techniques, in which N input attributes are projected onto a latent space of smaller 

dimensionality (usually 2-3 dimensions allowing mapping against a 2D or 3D continuous color 

matrix), and (2) clustering techniques, in which different data points are arranged into different 

clusters, with each cluster assigned with a distinct color. 

The most well-known projection technique is Principal Component Analysis (PCA), in 

which the input attributes are projected onto two or more eigen vectors of their covariance matrix 

in order to capture the maximum variation of the input data (Guo et al., 2008; Chopra and 

Marfurt, 2014). Although the principal components are orthogonal and theoretically 

uncorrelated, seismic facies are not, such that PCAs can mix different seismic facies. Honorio et 

al. (2014) and Lubo-Robles and Marfurt (2019) address this issue using Independent Component 

Analysis (ICA), which is a non-orthogonal projection method based on higher order statistics. 

Among the latest projection methods is a stochastic, non-linear projection technique described by 

Wallet and Ha (2019), which utilize an autoencoder deep-learning neural network to “encode” N 

input attributes into a 3-dimensional latent space to be displayed via RGB blending. 

Zhao et al. (2015) applied different clustering techniques, including K-means, Self-

Organizing Maps (SOM), and Generative Topographic Mapping (GTM) to a turbidite system in 

the Canterbury Basin, New Zealand. Among those clustering techniques, K-means is the 

simplest and fastest method, in which the input training data are “partitioned” into a user-defined 

number of clusters based on the distance from a data point to the clusters’ centers. In general, K-

means does not take into account the size and shape of each cluster in the classification. In 

contrast, an extension of K-means results in a Gaussian Mixture Model (GMM), in which each 
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cluster is assigned its own multidimensional Gaussian density functions. The size, shape, and 

position of each Gaussian density function is modified in an iterative expectation-maximization 

scheme (Hardisty and Wallet, 2017). A common drawback of both K-means and GMM 

algorithms is that the classification result does not graphically show the proximity of one cluster 

to another. Instead, SOM directly maps the clusters to a deformed manifold, such that the relative 

position of each cluster is defined (Zhao et al., 2015). The manifold is in turn mapped to a latent 

space amenable to color mapping. While early SOM algorithms (e.g. Poupon et al., 1999) used a 

1D curve mapped against a rainbow color bar as the manifold, 2D deformed surfaces mapped 

against a 2D color bar are now more common (e.g. Strecker et al., 2005; Castro de Matos et al., 

2010; Roden et al., 2015; Zhao et al., 2015), although 3D manifolds can be mapped against 

RGB.  Castro de Matos et al. (2010) and Zhao et al. (2016) used Sammon mapping to better 

measure the distances in n-D attribute space to a deformed 2D manifold. Zhao and Marfurt 

(2017) evaluate different training data extraction schemes, constraining SOM analysis with 

stratigraphy (Zhao et al., 2017), and, most recently, applying a data-adaptive weighting scheme 

for SOM input attribute selection (Zhao et al., 2018). The original SOM algorithms perform 

clustering by finding the closest prototype vector (or neuron) to a data sample and does not 

provide a measure of the confidence of the clustering process (Roy et al., 2014; Chopra and 

Marfurt, 2014). More recent innovations construct a Gaussian distribution after clustering, which 

then provides a measure of the confidence of each clustered data point (Roden and Chen, 2017).  

In contrast, Generative Topographic Mapping (GTM) provides a direct measure of the likelihood 

that a data point falls within a given class by estimating the contributions of all the latent space 

grid points to a data sample using a mixture of Gaussian density functions (Zhao et al., 2015). 
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Supervised Classifications 

Supervised classifications also consist of two main types: (1) semi-supervised 

classifications, in which a clustering algorithm is trained (or labeled) by an interpreter to 

associate a cluster with a specific class or seismic facies, and (2) purely-supervised neural 

network classifications, in which an input sample is fed through a number of hidden neuron 

layers to determine to which class, or “label”, it belongs. 

Qi et al. (2016) show how the otherwise unsupervised GTM can be modified to be a 

semi-supervised classification algorithm. First, they apply a Kuwahara median filter to the input 

attributes to smoothen the interior of seismic facies, while sharpening the boundaries between 

different facies. The authors then define training samples belonging to N classes, which are 

mapped onto to a regularly gridded GTM “manifold” and assigned with the corresponding N 

Gaussian density functions, allowing the classification to generate a probability density function 

for each facies. 

Many of the explicitly supervised neural network algorithms were applied to predicting 

the well log response from one or more seismic attribute volumes (Verma et al., 2012; Torres et 

al., 2018). Neural network application to well logs occurred first because the limited 

computational power of interpretation workstations was able to train the network for a suite of 

1D well logs, but not on seismic data volumes that are typically two to three orders of magnitude 

larger in size. Meldahl et al. (1999) were among the first to classify seismic facies using artificial 

neural networks, starting with defining a single target facies (a gas chimney) and everything else. 

Here, the training data were attribute vectors selected by a skilled interpreter on the computer 

screen. West et al. (2002) developed an ANN algorithm that classified some seven different 

seismic facies.  Since then, other machine learning algorithms have been evaluated. Zhao et al. 
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(2014) performed lithofacies classification in the Barnett Shale by applying Proximal Support 

Vector Machine (PSVM) on density, gamma ray, and sonic logs. Qi et al. (2019) used mud logs 

and applied this same algorithm to predict areas of low and high rate of penetration in drilling 

horizontal wells in the Mississippian cherty-lime reservoirs of Oklahoma. Verma et al. (2012) 

mapped high-frackability and high-TOC zones in the Barnett Shale by predicting a gamma ray 

volume from seismic attributes extracted along well paths, using Probabilistic Neural Network 

(PNN). Similarly, Torres et al. (2018) applied PNN on a suite of seismic attributes and inversion 

results extracted along well paths to map TOC distribution in the Woodford Shale, Oklahoma. 

With the rapid evolution of PC hardware, Lubo-Robles et al. (2021) were able to implement 

PNN in supervised seismic facies classification using 3D seismic attributes. Kim et al. (2019) 

also used 3D seismic attributes in their supervised classification based on random forest (RF) 

algorithm. The authors carefully selected relevant input attributes for their RF supervised 

classification by computing both linear and non-linear correlation coefficients between each pair 

of input attributes and rejecting redundant attributes that are highly correlated to the others.  

 

Negligence to Data Normalization 

 The vast majority of machine learning publications, unsupervised and supervised alike, 

do not describe how the training data were normalized. Although some papers specify a z-score 

normalization step in their machine learning workflow, most do not mention normalization at all. 

A rare exception is a paper by Qi et al. (2020), outlining an attribute scaling step in an automatic 

attribute selection workflow for a supervised classification scheme based on GTM and GMM 

algorithms. The authors find that most of the input attributes used in their supervised 

classification, such as coherence, energy, and GLCM texture attributes, requires a logarithmic 
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scaling scheme to better approximate the data distributions by Gaussian curves. However, the 

authors did not specify the reason behind their simple formula of logarithmic scaling, such as 

log(1.0-x) for coherence and log(5.0-x) for GLCM Entropy attribute. Neither did the authors 

provide a comparison between logarithmically scaled and z-score normalized final classification 

results. 

Without a comprehensive analysis and formulation of data normalization in the literature, 

the goal of this research is to define a suite of useful normalization schemes using only basic 

elements of mathematics. To simplify my demonstration, I separate the mathematical 

formulation and pseudocode of my logarithmic transformation in Appendices A and B for 

seismic interpreters and computer scientists who want to incorporate my logarithmic 

transformation into their own workflows. I then implement and compare my logarithmic 

transformation and per-class normalization methods to the traditional z-score normalization and 

bulk normalization schemes in two case studies: (1) unsupervised classifications of a turbidite 

system in the Canterbury Basin, New Zealand, and (2) supervised classification of salt facies in 

the Eugene Island mini-basin, Gulf of Mexico. Finally, I analyze the histograms of the input data 

and the classification results to explain the differences made by using different normalization 

schemes. 
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Case Study 1: Unsupervised Classification of a Turbidite Channel System in The 

Canterbury Basin, Offshore New Zealand 

Geologic Settings 

The Canterbury Basin, New Zealand, is well known for the complexity of its turbidite 

channel systems. The study area is located in the northern Waka3D seismic survey, at the 

transition between continental shelf and slope (Figure 4.2). The Canterbury Basin underwent 

three main stages of geological deformation. A thick layer of clastic and coaly sediments was 

deposited during Middle to Late Cretaceous rifting and subsidence (Sutherland and Browne, 

2003). Then, organic-rich black shale and widespread limestone were formed when the basin 

entered a transgression from the Late Cretaceous to Middle Tertiary (Cozens, 2011). Since the 

Late Tertiary, the basin underwent a regression due to uplifting and minor tectonic inversion, 

thus shifting the study area into a transition zone between continental shelf and slope, where 

many paleo-canyons and turbidite channels were formed (Zhao et al., 2016). These canyons and 

channels were filled with late Tertiary carbonate debris and thus are potential reservoirs for 

hydrocarbons (Wallet and Ha, 2019). 

 

Methods 

Figure 4.3 represents my unsupervised classification workflow. The first step is to select 

the input attributes that are relevant to the classification of turbidite facies. Following the work 

by Wallet and Ha (2019), I choose six attributes as the input for our unsupervised classification 

(Figure 4.4): 

- (1) Coherent energy: for measuring reflector strength, 

- (2) Structural Curvedness: for highlighting channel axes and levees, 
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- (3) GLCM entropy and (4) GLCM homogeneity (texture attributes): for differentiating 

architectural elements that have different seismic texture appearance, 

- (5) Peak frequency and (6) Peak magnitude (spectral decomposition attributes): for 

measuring most dominant layer thicknesses and reflector strength. 

To ensure the training data adequately represents different facies in a turbidite system, I 

follow the work by Zhao and Marfurt (2017) and Zhao et al. (2018) to constrain the training data 

extraction to three adjacent horizon slices: one at my horizon of interest, one above, and one 

below, amounting to a total of about three million data samples. Parameters of attribute 

computations and unsupervised training data extraction are listed in Appendix E. I then perform 

z-score normalization and logarithmic transformation on the training data. Mathematical 

descriptions of the z-score normalization and my logarithmic transformation are shown in 

Appendices A and B.  

The original input data distributions are shown in Figure 4.5a. All six input attributes are 

non-negative and have skewed distributions. Note that z-score normalization does not change the 

shapes of the original distributions, but rather only shifts and stretches them (Figure 4.5b). In 

contrast, logarithmically transformed data have much more symmetrical shapes that closely 

resemble the “bell” curve of an ideal Gaussian distribution (Figure 4.5c). 

I then feed the normalized training data to different unsupervised classification 

algorithms, including two projections techniques (PCA and ICA) and two clustering techniques 

(SOM and GTM), using the exact same parameter configuration for both z-score normalization 

and logarithmic transformation. Depending on whether the classification generates two or three 

output components, I perform 2D color crossplot or RGB blending (Figure 4.6) to display the 

results. 
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Principal Component Analysis (PCA) 

The purpose of PCA is to find an orthogonal coordinate system that best captures data 

variation and to project the input attributes onto this new coordinate system (Figure 4.7). 

Mathematically, PCA is equivalent to first computing the covariance matrix of the input 

attributes, then finding the eigen vectors and eigen values of the covariance matrix, and finally 

performing matrix multiplication between the input data and the eigen vectors to obtain the 

principal components. Each eigen vector represents the direction of a principal coordinate axis, 

whereas each eigen value represents the amount of data variation along an axis. I choose three 

output principal components corresponding to the three largest eigen values for my analysis to 

capture the majority of the data variation. 

Figure 4.8 shows the 2D histograms of three output principal components. Each 2D 

histogram corresponds to a pair of principal components. To reduce the effect of extreme values 

on the histogram displays, I clip 5% data at the extreme negative and 5% data at the extreme 

positive of each principal component. I observe that logarithmic transformation produces 2D 

histograms that are more symmetric, circular, and diffuse than those generated from z-score 

normalization.  

The final RGB blended images of three output principal components are shown in Figure 

4.9. Overall, the colors in the logarithmically transformed result are balanced, while z-score 

normalization is biased toward the green (2nd component). Zooming in the yellow box in the 

logarithmically transformed image, I can distinguish between the magenta crevasse splay 

(marked by a magenta arrow) and the orange crevasse splays (marked by orange arrows), which I 

hypothesize are composed of different types of sediment. In the z-score normalized image, those 
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splays appear to a more uniform purple. A close-up inspection of the red box in the 

logarithmically transformed image reveals small, yellowish channels that make up the internal 

structure of a larger orange crevasse splay. In the z-score normalized image, those details are 

absent, and the splay appears as a homogeneous dark red patch. 

 

Independent Component Analysis (ICA) 

One assumption of PCA is that the data can be represented by a single multi-dimensional 

ellipsoidal “cloud”. However, in practice, a data distribution can be composed of different clouds 

with different shapes, sizes, and orientations, making orthogonal principal components unable to 

fully capture the variation among all the data clouds (Figure 4.10). By finding a non-orthogonal 

coordinate system in an iterative manner, using higher order statistics, ICA aims to further 

separate different seismic facies and capture even more data variation (Lubo-Robles and Marfurt, 

2019). To make it consistent with my PCA workflow, I specify three output independent 

components for my ICA model. Detailed parameter configuration of our ICA implementation is 

listed in Appendix E. 

Similar to PCA, I construct a 2D histogram per each pair of output independent 

components (Figure 4.11). ICA 2D histograms exhibit the same phenomenon that I observed in 

PCA 2D histograms: logarithmic transformation produces 2D histograms that are more 

symmetric and diffuse than those generated from z-score normalization. Yet, there is a critical 

difference between ICA and PCA 2D histograms. In PCA, even though the shapes of the data 

“clouds” are different between logarithmic transformation and z-score normalization, there is 

still a common pattern between a 2D histogram produced by logarithmic transformation and a 

corresponding one produced by z-score normalization. For example, the data cloud in Figure 
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4.8c is somewhat similar to the data cloud in Figure 4.8f. However, in ICA, logarithmically 

transformed histograms show radically different data clouds than the corresponding z-score 

normalized histograms. For example, the data cloud in Figure 4.11a has a totally different shape, 

size, and orientation from the data cloud in Figure 4.11d. This is likely because the rank and 

polarity of the output independent components are undefined (Lubo-Robles and Marfurt, 2019). 

In other words, unlike PCA where principal components are ordered by their corresponding 

eigen values, it’s impossible to tell before-hand that an independent component captures more 

data variation than another. Using a different normalization scheme somehow changes the 

polarity and possibly the order of the independent components, causing ICA algorithm to 

converge to completely different results.  

The radical histogram difference between logarithmic transformation and z-score 

normalization is also reflected in the final RGB blended images of three output independent 

components (Figure 4.12). The images exhibit completely different color gamut. Level of details 

and color contrast in logarithmically transformed and z-score normalized ICA images are similar 

to each other and are both comparable to the logarithmic PCA image in Figure 4.9b. It is difficult 

to tell which normalization scheme is better, even in the zoomed-in sections. Therefore, for ICA, 

there is little difference in using a more sophisticated logarithmic transformation rather than the 

simpler z-score normalization. 

 

Self-Organizing Maps (SOM) 

Originally used in medical research for gene pattern recognition, SOM is now widely 

adopted as a clustering algorithm for seismic facies thanks to its relatively fast computation and 

its capability to show the proximity of one cluster to another (Zhao et al., 2015). SOM algorithm 
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works by defining an initial grid of prototype vectors (neurons) on a plane defined by the first 

two eigenvectors called the manifold, which in turn are mapped to a 2D color table. As the 

process iterates, the manifold deforms to better represent the input training data (Figure 4.13). 

Clustering is done by finding the closest prototype vector to the data vector at each voxel. In my 

SOM implementation, I output not only the class number, but also the coordinates of each class 

on the two axes of the latent space, thereby allowing me to use commercial crossplotting tools to 

define features of interest. Parameter configuration of my SOM model is listed in Appendix E. 

Figure 4.14 shows the crossplot images of the two SOM components along with the 

corresponding 2D histograms. The crossplot of the z-score normalized SOM components 

requires a strong data clipping in order to have a similar color contrast with the non-clipped 

crossplot of the logarithmically transformed SOM components. White pixels in the z-score 

normalized image represent clipped extreme data points. Appendix C explains what happens if I 

under-clip or over-clip the data for 2D crossplot. I observe that z-score normalized image, even 

after a strong clipping, is a lot greener than the logarithmically transformed image, due to the 

data distribution being skewed to the lower left corner of the z-score normalized 2D histogram. 

In contrast, the logarithmic transformation produces a much more color-balanced image and a 

more diffuse 2D histogram, allowing interpreters to better delineate different facies, such as 

distinguishing the yellow and orange crevasse plays from the green flood plain or mud-filled 

channels. 

 

Generative Topographic Mapping (GTM) 

Similar to SOM, GTM also aim to generate and iteratively deform a gridded manifold to 

best fit the input training data. However, the difference is in how the clustering is done. As noted 
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by Zhao et al. (2015), while SOM “snaps” a data point to the closest grid node to generate a 

cluster, GTM put a Gaussian probability distribution function at each and every grid node on the 

manifold to estimate the contribution of all the grid nodes to a data point (Figure 4.15). 

Parameter configuration of our GTM model is listed in Appendix E. 

My GTM implementation results in two GTM components, which I display using 

crossplots (Figure 4.16). Unlike SOM, no clipping is needed for both z-score normalized and 

logarithmically transformed GTM components. Again, I observe a similar phenomenon in the 2D 

histograms: the data are more evenly distributed in the logarithmic 2D histogram, while the z-

score normalization exhibits very high data concentration within a single cell just below the 

center of the 2D histogram, causing the z-score crossplot image to have more green and greyish 

yellow pixels than the logarithmic crossplot image. Although the z-score crossplot image appears 

to enhance small details, these “details” are not geological, but rather random noise, thus causing 

the actual geological features (such as crevasses splays and channels) to appear more segmented 

than those in the logarithmic crossplot image.  
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Case Study 2: Supervised Classification of Salt in The Eugene Island Mini-basin, 

Gulf of Mexico 

Geologic Setting 

The Eugene Island mini-basin (Figure 4.17) contains one of the largest oil and gas fields 

in the northern part of the Gulf of Mexico, offshore Louisiana. The development of the Eugene 

Island mini-basin occurs in relatively recent geologic time, during the Pliocene-Pleistocene 

(Joshi and Appold, 2016), and consists of three phases: (1) pro-delta, (2) proximal deltaic, and 

(3) fluvial (Alexander and Flemings, 1995). During the pro-delta phase, rapid deposition of 

shales and turbidite caused the underlying Miocene salt to withdraw from the basin and buoy 

upward, leading to the creation of salt diapirs (Joshi and Appold, 2016). Salt continued to 

mobilize during the proximal deltaic phase, creating more accommodation space for low-stand 

shelf-margin deposition of alternating sand-shale sequences (Alexander and Flemings, 1995). At 

the final fluvial stage, salt withdrawal ended, leading to the formation of erosional 

unconformities during low-stands and the deposition of shallow-water deltaic and fluvial sand 

and shale during high-stands (Joshi and Appold, 2016). Most of the major reservoirs are laterally 

extensive sand sheets deposited during the proximal deltaic phase, which are sealed by laterally 

extensive shale layers on the top and by salt diapirs on the sides (Alexander and Flemings, 1995). 

 

Methods 

Figure 4.18 shows my supervised classification workflow. As with unsupervised 

classification, the first step is to select input attributes relevant to the supervised classification of 

salt. Lubo-Robles et al. (2021) performed an exhaustive search to find the best combination of 

input attributes and the best corresponding parameters for a PNN supervised classification. The 

authors found that a combination of seismic attributes given by coherence, gray-level 
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cooccurrence matrix (GLCM) contrast, total energy, and dip deviation yield the lowest global 

validation error. However, as I implemented the exhaustive search to different normalization 

schemes, I found that each normalization scheme leads to a different optimal combination of 

input attributes (see Appendix D for more details). Since my research focuses on data 

normalization, I want my supervised classification workflow to be consistent with different 

normalization schemes. This requires me to use the same set of input attributes for all 

normalization schemes. I notice that the coherence attribute is found in all four normalization 

schemes’ optimal input combinations. Therefore, to simplify my demonstration, I decide to use 

coherence attribute as the sole input for all of my supervised classifications. 

In the next step, I follow the work by Qi et al. (2016) and apply a Kuwahara median filter 

to the input coherence attribute in order to smooth the internal noise of the salt diapirs, while 

sharpening the boundaries between the salt diapirs and the surrounding sedimentary layers 

(Figure 4.19). Parameters of the Kuwahara median filter are listed in Appendix E. 

I pick different polygons inside and outside a salt diapir to denote salt and not-salt 

training data (Figure 4.20). After that, I extract the training samples within those polygons from 

the Kuwahara-filtered coherence attribute volume.  Parameters of supervised training data 

extraction are listed in Appendix E. 

Figure 4.21 illustrates the difference between bulk normalization scheme (in which I 

compute and apply the same normalization to the training data of all classes) and per-class 

normalization scheme (in which I normalize the training data of each class separately). Together 

with logarithmic transformation and z-score normalization, I perform a total of four different 

normalization schemes on the training data: (a) logarithmic bulk normalization, (b) logarithmic 

per-facies normalization, (c) z-score bulk normalization, and (d) z-score per-facies 
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normalization. I then feed the four normalized training datasets into the PNN algorithm to 

generate four models, and finally classify the entire volume using the generated models. 

 

Probabilistic Neural Network (PNN) 

Essentially, PNN algorithm performs supervised classification by estimating the 

probability density functions of different classes or facies (hence the name probabilistic neural 

network), most commonly by approximating a Gaussian distribution to the input training data of 

each class (Specht, 1990; Masters, 1995; Lubo-Robles et al., 2021). I summarize the 

mathematical description of PNN algorithm in Appendix D. Again, to make sure my workflow is 

consistent, I set PNN smoothing parameter r=1.0 in all four normalization schemes. 

Figure 4.22 shows the prediction results of PNN supervised classification using four 

normalization schemes. Green corresponds to salt facies, red corresponds to not-salt facies, and 

black corresponds to muted and no-permit zones. I observe several green patches (yellow 

ellipses) outside the salt diapir in the prediction result associated with the logarithmic bulk 

normalization scheme (Figure 4.22a), which do not appear in the prediction result associated 

with the z-score bulk normalization scheme (Figure 4.22c). The faulted region above the salt 

diapir (blue ellipse) is correctly classified as the not-salt facies in the prediction results associated 

with per-facies normalization (Figure 4.22b and Figure 4.22d), but are misclassified as salt facies 

in the prediction results associated with bulk normalization (Figure 4.22a and Figure 4.22c). 

Within per-facies normalization scheme, logarithmic transformation and z-score normalization 

appear to yield very similar prediction results (Figure 4.22b and Figure 4.22d). However, as I 

display the salt probability results (Figure 4.23) corresponding to the prediction results in Figure 

4.22, using the same probability scale from 0.0 to 1.0, I notice that logarithmic per-facies 
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normalization scheme (Figure 4.23b) yield a dimmer, lower-contrast image of salt probability 

than z-score per-facies normalization scheme (Figure 4.23d). This means the PNN algorithm is 

less confident in classifying salt facies with logarithmic per-facies normalization scheme than 

with z-score per-facies normalization scheme.  
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Discussion 

Given such radical differences in machine learning results using different data 

normalization scheme, there are several questions to be addressed. Why did logarithmic 

transformation improve unsupervised classification but not supervised classification? What is the 

reason behind the enhancement made by per-class normalization scheme to supervised 

classification? The answers to these questions are given by a fundamental difference between 

unsupervised and supervised classifications (other than the obvious need for human interaction). 

 

Unsupervised Essence: Color Mapping 

In unsupervised classification, the manner in which colors are mapped to the results is 

critical. In fact, the whole idea behind unsupervised classification is to “paint” each and every 

single data point in such a way that points having similar values (i.e. belonging to the same 

cluster) have similar colors. However, if a group of data points is assigned with one single color, 

then the differences among that group of points are lost when displaying the classification 

results. The loss of color differences is illustrated in the SOM and GTM crossplots using z-score 

normalization scheme (Figure 4.14a and Figure 4.16a). The 2D histograms of z-score SOM and 

GTM show that the data are highly concentrated within a cell, thus “painting” a large chunk of 

data points with the same color in the crossplots. In contrast, 2D histograms of logarithmic SOM 

and GTM (Figure 4.14b and Figure 4.16b) show a more diffuse distribution, highlighting subtle 

variations of data points near the center of the data distribution, thus allowing more colors and 

fine detail to appear in the crossplots. 

Another illustration of color mapping in unsupervised classification is the RGB blending 

process of PCA results. Examine the first principal component projection plotting against the red 
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color channel (Figure 4.24). The histograms are clipped in the same way as in RGB blending of 

the PCA projections: only 90% of the data distribution is shown, while the 5% data at the 

extreme left and the 5% data at the extreme right of the distribution are clipped. Even at such a 

strong clipping, z-score data distribution is skewed to the right and has a narrower shape 

compared to logarithmic data distribution, meaning a large portion of the data is concentrated 

near the peak of the distribution. Thus, fewer colors are used to map the area about the peak of 

the distribution. In contrast, the logarithmic data distribution exhibits a much wider and 

symmetric shape than the z-score normalization. Thus, more colors are mapped near the peak of 

the distribution. Essentially, the logarithmic transformation “squeezed” the extreme positive data 

points to the center and “stretched” the left side of the data distribution, thereby increasing the 

resolution near the peak of the distribution while reducing the resolution of the extrema. 

Fortunately for me, the subtle geological detail of the turbidite channel system resides near the 

peak of the distribution and thus was better resolved using the logarithmic transformation. I 

anticipate that logarithmic transformation would have produced worse unsupervised 

classification results than z-score normalization if my analysis had instead focused on resolving 

the extreme data points. 

 

Supervised Essence: Shapes of Clusters and Distances among Clusters 

Unlike unsupervised classification’s dependence on color mapping, supervised 

classification relies exclusively on the ability of the internal algorithm to distinguish among 

different clusters. Whether the clusters are distinguishable or not, in turn, heavily depends on the 

shapes of the clusters and the distances from one cluster to another. To illustrate the differences 

in the shapes of the clusters and the distances among the clusters for different normalization 
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schemes, I plot the histograms of PNN’s input coherence attribute in four cases (corresponding 

to the four PNN salt probability images shown in Figure 4.23): (a) logarithmic bulk 

transformation, (b) logarithmic transformation based on training data of salt facies, (c) z-score 

bulk normalization, and (d) z-score normalization based on training data of salt facies (Figure 

4.25). These histograms display 100% of the data distribution and are resized to the same 

horizontal scale. Because salt is incoherent, the salt cluster have lower coherence values than the 

not-salt cluster, and thus the salt cluster falls to the left, while the not-salt cluster falls to the right 

of the histograms. 

I observe that with the bulk normalization scheme, the distance between salt and not-salt 

clusters are approximately the same in z-score and logarithmic histograms, but the shape of the 

salt cluster associated with logarithmic transformation (Figure 4.25a) is significantly wider than 

that associated with z-score normalization (Figure 4.25c). This is likely due to an inherent 

characteristic of logarithmic function, which tends to stretch the data points whose values are 

close to zero (which is where the salt cluster is located). With the logarithmic transformation, the 

wider shape of the salt cluster makes it harder for the supervised algorithm to discriminate salt 

from not-salt facies, thus causing many coherent data points to have high salt probability (yellow 

ellipses in Figure 4.22a). 

In the per-class normalization scheme, the distance between salt and not-salt clusters is 

shorter in the logarithmic histogram (Figure 4.25b) than in the z-score histogram (Figure 4.25d), 

because logarithmic transformation tends to “squeeze” the right side of the data distribution, 

thereby moving the not-salt cluster closer to the salt cluster. The shorter distance between the 

two clusters means the supervised classification is less confident in distinguishing the two facies, 
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causing an overall dimmer salt probability image associated with logarithmic transformation 

(Figure 4.23b). 

On the other hand, for both logarithmic and z-score normalization, the distance between 

the salt and not-salt clusters associated with per-class normalization scheme (Figure 4.25b and 

Figure 4.25d) is much greater than that associated with bulk normalization scheme (Figure 4.25a 

and Figure 4.25c). This is because bulk training data in supervised classification is a collection of 

different clusters and thus, by definition, has a greater variation than the individual clusters. By 

normalizing the training data per each seismic facies, the distance between the two clusters 

become much larger, allowing the supervised algorithm to distinguish between different classes 

with a much higher confidence, hence significantly higher contrast in the PNN probability result 

(Figure 4.23b and Figure 4.23d). 
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Conclusions 

My verdict is that data normalization, despite being a hidden step that is most often set to 

default in a machine learning workflow, deserves more attention. Different data normalization 

schemes can generate significantly different classification results. Logarithmic transformation 

produces unsupervised classification results with more subtle details and higher color contrast 

than z-score normalization because the logarithmic function tends to collapse the extreme 

positive data points while simultaneously expanding the near-zero values, effectively allowing 

more colors to be mapped around the peak of a distribution – where the data concentrates the 

most. However, for the same reason, the logarithmic transformation tends to shift the clusters of 

different classes closer together, thereby reducing the confidence of a supervised algorithm to 

distinguish between different classes, compared to z-score normalization. Per-class 

normalization scheme yields significantly greater distances among different clusters than the 

typical bulk normalization scheme, thus producing much higher contrast in the probability 

results. Therefore, it is critically important to try different normalization schemes on the input 

training data, carefully analyzing the distributions of the training data and the classification 

results, and comparing side-by-side the final displays in order to obtain the most optimal 

normalization scheme for a specific machine learning workflow.  
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Appendix A: Derivation of Logarithmic Transformation 

Expectation vs. Reality 

Mathematically, a logarithmic transformation refers to the application of the logarithmic 

function, logk(x), to the input data. My goal is to use a logarithmic transformation to reshape a 

non-negative, right-skewed data distribution to be more symmetric and thus closer to an ideal 

“bell”-shaped Gaussian distribution (Figure 4.A-1). However, if I directly apply logk(x) to the 

input data, I would instead end up with an even more asymmetric data distribution, only this time 

it’s left-skewed, with a very long left “tail” stretching to negative infinity. This undesired result 

occurs because logk(x) approaches negative infinity as x goes to zero (Figure 4.A-2). 

Furthermore, logk(x) is undefined for negative values of x, the results of which in a computer are 

commonly represented by NaN, (abbreviation for Not-a-Number), which is detrimental to all 

subsequent computations. To find a better way to apply the logarithmic transformation, I need to 

go back to the basics, where I will first generalize linear transformations, including the well-

known z-score normalization. 

 

Z-score Normalization Revisited: Generalizing a Linear Transformation 

Z-score, or standard score, is by far the most widely used data normalization scheme. The 

process involves subtracting the mean from the data, then divide the result by the data’s standard 

deviation: 

𝑦𝑛 =
𝑥𝑛−𝜇

𝜎
, (A-1) 

where 

x is the input data vector of length N: x = [x1, x2, …, xN], 

µ is the mean (or the arithmetic average) of x: 𝜇 =
∑ 𝑥𝑛
𝑁
𝑛=1

𝑁
, (A-2) 
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σ is the standard deviation of x:  𝜎 = √
∑ (𝑥𝑛−µ)

2𝑁
𝑛=1

𝑁
, and (A-3) 

y is the normalized data vector: y = [y1, y2, …, yN]. 

Equation A-1 can be rewritten into a different form, in which the subtraction is equivalent 

to an addition of negative mean, and the division is equivalent to a multiplication of the 

reciprocal of the standard deviation: 

𝑦𝑛 =
1

𝜎
[𝑥𝑛 + (−𝜇)] (A-4) 

Equation A-4 can be further generalized as: 

𝑦𝑛 = 𝑏(𝑥𝑛 + 𝑎) (A-5) 

Where 𝑎 = −𝜇 is the shift factor, and 𝑏 =
1

𝜎
 is the scale factor of z-score normalization. There 

are only two parameters (shifting and scaling) associated with a linear transformation, and any 

normalization scheme that has the form of Equation A-5 is a linear transformation.  

The goal of z-score normalization is to transform the input data into one with a mean of 

zero and a standard deviation of one, similar to a normal distribution (hence the term 

“normalization”). Z-score normalization assumes the input data distribution has approximately 

the same “bell” shape of a normal distribution. However, in practice, the majority of seismic 

attributes are non-negative, exhibiting skewed and asymmetrical distribution that are poorly 

represented by “bell” shape assumption. The linear z-score normalization neither changes the 

skewness nor the asymmetricity of a distribution to more closely resemble a normal distribution. 

 

Generalizing the Logarithmic Transformation 

Based on the generalized formula of linear transformation in Equation A-5, a fully 

generalized logarithmic transformation is equivalent to first linearly transforming the input, 
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followed by the application of the logarithmic function and then followed by yet another linear 

transformation in the logarithmic domain: 

𝑦𝑛 = 𝑐{log𝑘[𝑏(𝑥𝑛 + 𝑎)] + 𝑑} (A-6) 

where: 

logk() is the logarithmic function of base k, 

d is the shift factor in the logarithmic domain, and 

c is the scale factor in the logarithmic domain. 

Recalling from high-school algebra, there are three important properties of the 

logarithmic functions. First, the logarithmic function of base k can be rewritten using the natural 

logarithmic function: 

log𝑘(𝑢) =
ln (𝑢)

ln (𝑘)
. (A-7) 

Second, the power rule of the logarithm states that 

ln(𝑢𝑚) = 𝑚 ln(𝑢). (A-8) 

Third, and most importantly, the logarithm of a product is the sum of the individual logarithms: 

ln(𝑢𝑣) = ln(𝑢) + ln(𝑣). (A-9) 

Using equations A-7, A-8 and A-9, I rewrite equation (A-6) as: 

𝑦𝑛 = 𝑐 {
ln[𝑏∗(𝑥𝑛+𝑎)]

ln(𝑘)
+
ln(𝑘𝑑)

ln(𝑘)
} =

𝑐

ln(𝑘)
{ln[𝑏(𝑥𝑛 + 𝑎)] + ln(𝑘

𝑑)}, thus 

𝑦𝑛 =
𝑐

ln(𝑘)
{ln[𝑘𝑑𝑏(𝑥𝑛 + 𝑎)]} (A-10) 

Note that in equation A-10, 
𝑐

ln(𝑘)
 can be viewed as a single factor of scaling in the logarithmic 

domain, while 𝑘𝑑𝑏 can be viewed as a single factor of scaling in the original data domain. This 

simplification occurs because shifting in the logarithmic domain can expressed as scaling in the 

original data domain, as implied by equation A-9. Thus, the generalized formula for logarithmic 
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transformation can be rewritten as follow: 

𝑦𝑛 = 𝑐{ln[𝑏(𝑥𝑛 + 𝑎)]} (A-11) 

Essentially, I have reduced the number of parameters in the logarithmic transformation from five 

(a, b, c, d, and k in equation A-6) to three (a, b, and c in equation A-11). Even at three 

parameters, there are still unlimited possibilities for a logarithmic transformation. I need to 

define some constrains for logarithmic transformations in order to reshape the input data 

distribution as close to a Gaussian distribution as possible.  

 

Finding Optimal Logarithmic Transformation Parameters 

One way to reframe the Gaussian reshaping problem is to simplify the shape of a data 

distribution into three anchor points: the left (L), the right (R), and the peak (P) (Figure 4.A-3a). 

In my implementation, in order to avoid the effects of the extreme values, I retain only 95% of 

the data distribution by defining xL as the 2.5% percentile instead of the minimum value, and xR 

as the 97.5% percentile instead of the maximum value. The goal of the Gaussian reshaping 

process is that after the logarithmic transformation, the transformed left and right anchor points 

are symmetric about zero, while the peak of the transformed distribution is located exactly at 

zero: 

{
𝑦𝐿 = −𝑦𝑅
𝑦𝑃 = 0

. (A-12) 

Substituting equation A-11 into equations A-12, we have: 

{
𝑐{ln[𝑏(𝑥𝐿 + 𝑎)]} = −𝑐{ln[𝑏(𝑥𝑅 + 𝑎)]}

𝑐{ln[𝑏(𝑥𝑃 + 𝑎)]} = 0
→ {

𝑎 =
𝑥𝑃
2−𝑥𝐿𝑥𝑅

𝑥𝐿+𝑥𝑅−2𝑥𝑃

𝑏 =
1

𝑥𝑃+𝑎

 (A-13) 
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Using the derived parameters in equation bracket A-13, I expect the transformed data 

distribution to be a nice symmetrical one (Figure 4.A-3b). Instead, I end up with a slightly 

skewed distribution (Figure 4.A-3c). As logarithmic transformation reshapes the data 

distribution, it also moves the relative position of the peak! In other words, the peak of the 

transformed distribution is not at the same position with the peak of the original distribution. 

Therefore, I need to compute the transformation parameters iteratively by recomputing the peak 

anchor point of the original distribution xP from the peak of the transformed distribution yP at 

every iteration j: 

𝑥𝑃
(𝑗)
=

exp(𝑦𝑃
(𝑗)
)

𝑏(𝑗)
− 𝑎(𝑗).  (A-14) 

As I soon find out, reality is far from expectation. Using equation A-14 in an iterative manner, 

the peak of the transformed distribution does not converge in some cases, but instead “jumps” 

left and right alternatively, and may diverge in some extreme cases. My final remedy to this 

peak-jumping issue is to compute the average peak of all iterations up to the current jth iteration: 

𝑥𝑃
(𝑗)
=

1

𝑗+1
{𝑥𝑃

(0)
+ ∑ [

exp(𝑦𝑃
(𝑚)

)

𝑏(𝑚)
− 𝑎(𝑚)]

𝑗
𝑚=1 }. (A-15) 

Where xP
(0) is the actual peak of the original data distribution. Although equation A-15 does not 

provide a mathematically accurate convergence of the peak anchor point, the computation is 

relatively fast, is guaranteed to converge, and results in a good approximation to a Gaussian 

distribution. In all of my tests, with only M=100 iterations, the peak was able to converge within 

at least four to five significant digits. With about 3 million training samples in my project, it took 

only 5 seconds to finish 100 iterations, without parallelization, using Fortran code. 

Even though the peak of the reshaped distribution is centered about zero, the mean of the 

transformed distribution is not necessarily at the same position as the peak. Therefore, at the end 
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of the iterative computation, I need to add another term to the linear scale factor b in equation 

bracket A-13 in order to shift the mean of the reshaped distribution to zero: 

𝑏̃ = 𝑏(𝑀)exp(−𝜇𝐿𝑂𝐺
(𝑀)

) =
exp(−𝜇𝐿𝑂𝐺

(𝑀)
)

𝑥𝑃
(𝑀)

+𝑎(𝑀)
    (A-16) 

where: 

M is the last iteration, and 

µLOG
(M) is the mean of the last iteration’s result: 𝜇𝐿𝑂𝐺

(𝑀)
=

∑ ln[𝑏(𝑀)(𝑥𝑛+𝑎
(𝑀))]𝑁

𝑛=1

𝑁
 (A-17) 

Note that in equation bracket A-13, there is no solution for the logarithmic scale factor c.  

Instead, c is defined as the reciprocal of the standard deviation of the reshaped data, in order to 

ensure the final transformed data has a standard deviation of one. Additionally, if the distribution 

is flipped (i.e. the linear scale factor 𝑏̃ is negative), then the sign of the logarithmic scale factor c 

needs to be reversed as well: 

𝑐 =

{
 
 

 
 

1

𝜎𝐿𝑂𝐺
(𝑀)  𝑖𝑓 𝑏̃ > 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝑏̃ = 0

−
1

𝜎𝐿𝑂𝐺
(𝑀)  𝑖𝑓 𝑏̃ < 0

 (A-18) 

where σLOG
(M) is the standard deviation of the last iteration’s result: 

 𝜎𝐿𝑂𝐺
(𝑀)

= √
∑ {ln[𝑏(𝑀)(𝑥𝑛+𝑎

(𝑀))]−𝜇𝐿𝑂𝐺
(𝑀)

}
2

𝑁
𝑛=1

𝑁
 (A-19) 

Using equations A-11, A-13, A-16, and A-18, I summarize the logarithmic 

transformation in the following pseudocode: 

Function log_transform(x) 

• sort(x) 

• xP=peak(x) 

• xL=percentile_2.5(x) 

• xR=percentile_97.5(x) 
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• sum=xP 

• Loop j=1 to 100: 

o a=(xP^2-xL*xR)/(xL+xR-2*xP) 

o b=1.0/(xP+a) 

o If b==0 or b==±∞ or a==±∞: 

➢ Fall back to z-score: 

➢ a=-mean(x) 

➢ b=1.0/standard_deviation(x) 

➢ y=b*(x+a) 

➢ Return y, a, b 

o End If 

o y=ln(b*(x+a)) 

o yP=peak(y) 

o sum=sum+exp(yP)/b-a 

o xP=sum/(j+1) 

• End Loop j 

• b=b*exp(-mean(y)) 

• c=1.0/standard_deviation(y) 

• If (b<0): c=-c 

• y=c*ln(b*(x+a)) 

• Return y, a, b, c 

End Function log_transform 
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Appendix B: Finding The Peak (or The Mode) of a Data Distribution 

As described in Appendix A, one of the critical tasks in the computation of logarithmic 

transformation parameters is to find the peak of a data distribution. The peak (in statistics, more 

precisely denoted as the mode) of a data distribution is the location of greatest data density. 

Usually, the process of determining the peak of a data distribution involves segregating the 

distribution into multiple histogram columns and then locating the highest-valued column 

(Figure 4.B-1). The precision of the peak depends on the width of each histogram column. 

Furthermore, if there is a spike in a data distribution (where multiple data points having exactly 

the same value, such as zero samples belonging to a dead trace or a muted zone), this method 

will most likely pick the spike instead of the desired peak. 

In this appendix, I present an alternative method to find the peak of a data distribution 

based on the binary search algorithm described by Lin et al. (2019). The process starts by 

limiting the search between the 15% percentile and the 85% percentile of a distribution with the 

assumption that, in most cases, the peak falls within such a range around the distribution center 

(Figure 4.B-2). I then divide this range into two halves that have exactly the same width. Next, I 

choose the denser half (i.e. the half representing the greater number of data points) and start 

dividing it into another two halves, and repeat. The assumption is that the peak of a distribution 

will always reside in the denser half, and thus by successively choosing and dividing the denser 

half, eventually I will come down to two halves with exactly one data point in each. At the end, I 

simply take the average of these two points to represent the peak of the distribution. 

As with every other algorithm, there are pros and cons to this binary-search method to 

find the peak of a data distribution. One of the algorithm’s positive features is that it is highly 

precise, on the order of one half the distance between two adjacent data points. It is inherently 
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fast because binary search algorithms have a worst-case-scenario efficiency of O(log N) (Lin et 

al., 2019). And since it’s limiting the search to the center part of the distribution, it is robust 

against zero-value spikes caused by dead traces and muted zones, which are usually located at 

the extreme left of the distributions of non-negative seismic attributes, provided that the spikes 

do not constitute a significant portion of the data (i.e. less than 15%). 

In terms of negative features, the algorithm requires the data to be sorted in ascending 

order (though in logarithmic transformation, sorting is already required to estimate the 2.5% 

percentile and 97.5% percentile for the left and right anchor points). A more serious issue arises 

when, after dividing a denser half into two, the resulting two halves have exactly the same data 

count of a large quantity (Figure 4.B-3). In this case, the midpoint between the two halves is set 

as the peak of the distribution and the binary search would stop, even though the actual peak 

might still be located within either of the two halves. This is rare, but not impossible, and 

becomes more likely when the total number of data points is relatively small (on the order of 

thousands or less) and the data distribution contain more than one cluster of similar sizes. To fix 

this issue, I need to further divide the two halves into four quarters and choose the quarter with 

the maximum data count, assuming that the four quarters have different data counts and the 

actual peak of the distribution is in the biggest quarter. 

I summarize my peak binary search method in the following pseudocode: 

Function peak_binary_search(x) 

• n=length(x) 

• If not_sorted(x): sort(x) 

• j_mid=index_percentile_15(x) 

• j_right=index_percentile_85(x) 

• left_count=0 

• right_count=j_right-j_mid+1 

• Loop While right_count>1: 

o Loop While left_count≠right_count: 

➢ If left_count<right_count: 
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✓ j_left=j_mid 

➢ Else 

✓ j_right=j_mid-1 

➢ End If 

➢ mid_val=0.5*(x(j_left)+x(j_right)) 

➢ Loop j_mid=j_left+1 to j_right: 

✓ If x(j_mid)>=mid_val: 

✓ Exit Loop j_mid 

➢ End Loop j_mid 

➢ left_count=j_mid-j_left 

➢ right_count=j_right-j_mid+1 

o End Loop While left_count≠right_count 

o If right_count>1: 

➢ mid_left_val=0.5*(x(j_left)+x(j_mid-1)) 

➢ mid_right_val=0.5*(x(j_mid)+x(j_right)) 

➢ Loop j_mid_left=j_left+1 to j_mid-1: 

✓ If x(j_mid_left)>=mid_left_val: 

✓ Exit Loop j_mid_left 

➢ End Loop j_mid_left 

➢ Loop j_mid_right=j_mid+1 to j_right: 

✓ If x(j_mid_right)>=mid_right_val: 

✓ Exit Loop j_mid_right 

➢ End Loop j_mid_right 

➢ left_1_count=j_mid_left-j_left 

➢ left_2_count=j_mid-j_mid_left 

➢ right_1_count=j_mid_right-j_mid 

➢ right_2_count=j_right-j_mid_right+1 

➢ max_left=max(left_1_count,left_2_count) 

➢ max_right=max(right_1_count,right_2_count) 

➢ If max_left<max_right: 

✓ j_left=j_mid 

✓ j_mid=j_mid_right 

✓ mid_val=mid_right_val 

✓ left_count=right_1_count 

✓ right_count=right_2_count 

➢ Else: 

✓ j_right=j_mid-1 

✓ j_mid=j_mid_left 

✓ mid_val=mid_left_val 

✓ left_count=left_1_count 

✓ right_count=left_2_count 

➢ End If max_left<max_right 

o End If right_count>1 

• End Loop While right_count>1 

• Return mid_val 

End Function peak_binary_search 
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Appendix C: Data Clipping in Crossplot 

This appendix shows the effect of different data clipping strategies on the 2D crossplot 

between two components where I will use the crossplot of two z-score SOM output components 

as an example. Figure 4.C-1 shows the SOM crossplot image without any data clipping. The 

entire range from the minimum value to the maximum value of each component is used in the 

construction of the crossplot. I observe that the image is very pale (i.e. has very low color 

contrast) and is mostly cyan. I can barely see any geological detail. This lack of contrast is 

because the data are mapped mostly to the upper left corner of the 2D histogram, which 

corresponds to a variety of cyan colors. 

More careful inspection of the 2D histogram of full-range SOM crossplot in Figure 4.C-1 

reveals that the majority of the data distribution falls within -2.6 to 3.0 for SOM component 1 

and -3.0 to 3.0 for SOM component 2. By clipping the data using these ranges, I end up with 

Figure 4.C-2. The color contrast is good, but there are too many white pixels representing 

clipped data values (or “outliers”). 

Therefore, I slightly increase the ranges of SOM components for the crossplot, from -2.6 

to 4.0 for SOM component 1 and -3.5 to 3.5 for SOM component 2 (as indicated in Appendix E), 

in order to reduce the number of white pixels while maintaining most of color contrast. The 

result is Figure 4.C-3, which is exactly the same with Figure 4.14a. This strategy does require 

some trial-and-error attempts to configure data clipping in order to obtain the (subjectively) best 

display of the 2D crossplot. 
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Appendix D: Mathematical Description of PNN Exhaustive Search 

In this appendix, I summarize the mathematical equations of the probabilistic neural 

network (PNN) algorithm and the exhaustive search to determine the best combination of input 

attributes and the corresponding PNN parameters. Following Specht (1990), Masters (1995) and 

Lubo-Robles et al. (2021), the PNN algorithm estimates the probability density function of each 

class in the input supervised training data, most commonly by using the Gaussian function. The 

estimated density function of the M-element attribute data vector xj at voxel j, with respect to 

class k is: 

𝑔𝑘(𝒙𝑗) =
1

𝑁𝑘
∑ exp [∑

(𝑥𝑗𝑚−𝑢𝑛𝑚𝑘)
2

𝑟2
𝑀
𝑚=1 ]

𝑁𝑘
𝑛=1  (D-1) 

where: 

Nk is the number of training samples assigned to class k, 

M is the number of input attributes, 

xjm is the value of the mth attribute of the normalized input data vector at voxel j, 

ujmk is the value of the mth attribute of the nth normalized training sample belonging to class k, 

and 

r is the smoothing parameter, which is also the only PNN parameter that requires further 

optimization. 

gk(xj ) is then normalized by the sum of estimated density functions for the input data 

vector xj with respect to all K classes, resulting in the probability of sample xj belonging to class 

k as: 

𝑃𝑘(𝐱𝑗) =
𝑔𝑘(𝒙𝑗)

∑ 𝑔𝑞(𝒙𝑗)
𝐾
𝑞=1

. (D-2) 

The probability of an input sample xj belonging to class k depends on the proximity of xj to all of 
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the training samples unk belonging to class k. The class exhibiting the highest probability is 

defined as the predicted class of the input sample xj. A PNN model is just a collection of the 

smoothing parameters r, the normalized training samples unk, and the normalization parameters. 

Note that for a per-class normalization scheme, I calculate the normalization parameters for class 

k using only the training samples belonging to class k. Then, I normalize both the input to-be-

classified samples x and the training samples unk using class k’s unique normalization parameters 

before the probability computation. 

To perform an exhaustive search using PNN algorithm, Lubo-Robles et al. (2021) iterated 

through all possible combinations of input attributes. For each combination of input attributes, 

the optimal smoothing parameter r is the one that yields the lowest global validation error: 

𝐸 =
1

𝑁𝑣
∑ 𝑒𝑘(𝑥𝑗)
𝑁𝑣
𝑗=1  (D-3) 

where: 

Nv is the number of validation samples (i.e. blind-test samples), and 𝑒𝑘(𝑥) is a continuous error 

function (Masters, 1995) defined as: 

𝑒𝑘(𝑥) = [1 − 𝑃𝑘(𝑥) ]
2 + ∑ [𝑃ℎ(𝑥)]

2
ℎ≠𝑘  (D-4) 

Lubo-Robles et al. (2021) found that a combination of coherence, GLCM contrast, total energy, 

and dip deviation attributes, with smoothing parameter r=0.1, yields the lowest global validation 

error of 0.01689. I follow Lubo-Robles et al. (2021) and apply their PNN exhaustive search for 

each of my normalization schemes and find that for different normalization schemes, there are 

different validation errors and hence a different best combination of input attributes with 

different smoothing parameters (Table 4.D-1). 
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Appendix E: Lists of Computing Parameters 

For case study 1, Tables 4.E-1 to 4.E-6 list parameters of attribute computations, 

including dip attributes (which are required as input to define the orientation of the structure for 

almost of the other attributes), dip filtering, coherence, structural curvature, GLCM attributes, 

and spectral decomposition. Table 4.E-7 lists parameters of training data extraction. Tables 4.E-8 

to 4.E-11 list parameters of individual algorithm’s modeling and plotting (including PCA, ICA, 

SOM, and GTM). 

For case study 2, Tables 4.E-12 to 4.E-14 list parameters of attribute computation, 

including dip, dip filtering, and coherence attributes. Tables 4.E-15 and 4.E-16 list parameters of 

Kuwahara median filter. Table 4.E-17 lists parameters of training data extraction and PNN 

modeling. 
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Figures 

 
Figure 4.1. Most machine learning workflows assume the input data distributions are Gaussian. 

However, almost all seismic attributes have skewed distributions. Although conventional z-score 

normalization compensates for different data ranges, it does not reshape the data distribution. 

Can logarithmic normalization “Gaussianify” data distributions? How? And would logarithmic 

normalization give better machine learning results than the simple z-score normalization? 
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Figure 4.2. Seafloor bathymetry of the Canterbury Basin, New Zealand (Modified from Zhao et 

al., 2016). The study area indicated by the red rectangle is in the northern part of the Waka3D 

survey images multiple turbidites at the transition between continental shelf and slope. 
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Figure 4.3. Flowchart of my unsupervised classification. 
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Figure 4.4. Horizon slices through six input seismic attributes used in unsupervised 

classification: coherent energy, structural curvedness, GLCM entropy, GLCM homogeneity, 

peak frequency, and peak magnitude. Training data were extracted from three adjacent horizon 

slices within the Late Tertiary sequences, showing various turbidite architectural elements. 

  

Coherent Energy Structural Curvedness GLCM Entropy 

Low High 

GLCM Homogeneity 

Low High Low High 

Low High 10Hz 70Hz 

Peak Frequency Peak Magnitude 

Low High 

0 8000 ft 



 

 

162 

 

 
Figure 4.5. Histograms of (a) original data, (b) data after z-score normalization, and (c) data after 

logarithmic transformation. All inputs are non-negative and exhibit different value ranges. Z-

score normalization shifts and stretches/squeezes the original distributions so that the resulted 

distributions have mean μ=0 and a standard deviation of σ=1. However, z-score normalization 

does not change the skewness of the original distributions. In contrast, a logarithmic 

transformation reshapes the distributions to better approximate a Gaussian distribution. 
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Figure 4.6. Color models used to (a) crossplot two components and (b) corender three 

components generated by unsupervised classification algorithms. 
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Figure 4.7. Illustration of Principal Component Analysis (PCA). The first eigenvector v1 best 

represents the variation in data cloud. The first principal component (PCA 1) is generated by 

projecting each data point onto the v1 axis. The second eigenvector v2 best represents the data not 

represented by v1 and is orthogonal to it.  The second principal component (PCA 2) is generated 

by projecting each data point onto the v2 axis. 
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Figure 4.8. 2D histograms of the first three principal components computed from (a), (b), (c) z-

score normalized and from (d), (e), (f) logarithmically transformed input. To avoid the effect of 

extreme values on the histograms, 5% data at the extreme positive and 5% data at the extreme 

negative of each principal component are clipped and fall outside the images. The logarithmic 

histograms exhibit more evenly distributed, elliptical, and symmetric distributions than the z-

score histograms. Note that there is still a recognizable common pattern between each pair of 

histograms (a) to (d), (b) to (e), and (c) to (f). For example, (f) looks like a zoomed-in section 

near the center of (c). 
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Figure 4.9. RGB blended images of three principal components computed using (a) z-score 

normalization and (b) logarithmic transformation. Overall, (b) is more evenly distributed against 

the 3D color bar whereas (a) is biased towards green. In the yellow box of (b), we can distinguish 

the crevasse splays indicated by the magenta and orange arrows from each other, whereas all 

three splays have the magenta purple color in (a). In the red box of (b), note the small, yellowish 

channels within the orange crevasse splay, whereas in (a), the splay appears as a homogeneous 

dark red mass. 

  

Z-score 

0 8000 ft 

a) 

Logarithmic 

0 8000 ft 

b) 



 

 

167 

 

 
Figure 4.10. Illustration of Independent Component Analysis (ICA) (Lubo-Robles and Marfurt, 

2019). Instead of a single, multi-dimensional, ellipsoidal “cloud” of input data, there can be 

several “clouds” of different shape, size, and orientation in a data distribution, and thus an 

orthogonal coordinate system like principal components cannot fully capture the data variation. 

ICA fills this gap by using higher-order statistics to find a set of non-orthogonal independent 

components that better represent the non-orthogonal sub-distributions, thus better separating 

different geological features. 
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Figure 4.11. 2D histograms of independent components computed on z-score normalized inputs 

(a, b, c) and on logarithmically transformed inputs (d, e, f). Similar to PCA, 5% data at the 

extreme positive and 5% data at the extreme negative of each independent component are 

clipped. Again, logarithmic histograms show more spread-out, circular distributions than z-score 

histograms. Note that for each pair of independent components (a-d, b-e, c-f), z-score and 

logarithmic histograms show completely different clouds of data with no common pattern. This 

is likely because output independent components are not ranked, and using different 

normalization schemes somehow changes the polarity and/or the order of the output components. 
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Figure 4.12. RGB blended images of three output independent components with (a) z-score 

normalization and (b) logarithmic transformation. (a) and (b) have completely different color 

gamut. In the yellow boxes, I can distinguish the upper crevasse splay (purple arrow) from the 

lower two crevasse splays (orange arrows) in both (a) and (b). Regarding the detail of a crevasse 

splay’s internal structure (red boxes), both are on par with logarithmic PCA results in Figure 

4.9b. 
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Figure 4.13. Illustration of Self-Organizing Maps (SOM) (modified from Zhao et al., 2015). 

SOM first initializes a 2D grid on the plane defined by the first two eigen vectors. This 2D grid is 

then deformed iteratively into a 2D manifold that best fit the input training data. Clustering is 

done by “snapping” a data sample to the nearest grid node. 
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Figure 4.14. 2D color crossplot of two output SOM components with (a) z-score normalization 

and (b) logarithmic transformation. I clip the extreme values of the z-score SOM components to 

allows the z-score image in (a) to have approximately the same level of color contrast as the 

logarithm scaled image (b), which does not require any data clipping at all. White pixels in (a) 

represent clipped data. Even after such strong clipping, the z-score image is biased towards green 

representing the data distribution skewed to the lower left of the 2D histogram. Many of the data 

points are highly concentrated within one cell (white arrow). The logarithm transformation 

image in (b) is more diffuse and better spans the 2D color bar, thereby better delineating the 

yellow and orange crevasse splays from the green flood plain. 
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Figure 4.15. Illustration of Generative Topographic Mapping (GTM) (modified from Zhao et al., 

2015). Similar to SOM, GTM also generates a 2D gridded manifold that best fits the input 

training data. However, instead of “snapping” a data sample (green cube) to the closest grid 

node, each node (blue spheres) is given a Gaussian distribution function (big translucent grayish 

spheres) to measure the probability of a data sample to a grid node. All Gaussian distributions 

are of the same size. This size and the positions of the Gaussian distributions change with each 

iteration in the clustering process. At the end, the “responsibility” of each node to a given data 

vector is computed. In unsupervised classification, the most “responsible” grid node of a data 

sample is plotted against a 2D color table. In semi-supervised classification (e.g. Roy et al., 

2014; Qi et al., 2016) a probability density function is computed and output as a separate volume 

for each class, resulting in a measure of probability that a data sample belongs to a given class. 
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Figure 4.16. 2D color crossplot of two output GTM components with (a) z-score normalization 

and (b) logarithmic transformation. No data clipping is needed in both (a) and (b). Again, data 

are highly concentrated at a cell just below the center of the z-score 2D histogram, whereas 

logarithmic 2D histogram shows a more spread-out distribution. The two crossplots have very 

similar color gamut, and at first glance, the z-score crossplot appears to better enhance smaller 

“features”. However, a close inspection reveals that these “features” are not geologically 

meaningful, but rather represent random noise, causing the real geological features like channels 

and crevasse splays to be less continuous than those in the logarithmic crossplot. 
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Figure 4.17. Eugene Island mini-basin, Gulf of Mexico. 
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Figure 4.18. Flowchart of my PNN supervised classification workflow. 
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Figure 4.19. AA’ Vertical slices through the (a) original and (b) Kuwahara-filtered coherence 

volumes. The Kuwahara filter smooths the internal detail of a salt diapir and sharpens the edges. 

Because the low coherence faults are thinner than the 3×3×3 Kuwahara window, they are also 

attenuated, avoiding their misclassification as a seismic facies. 
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Figure 4.20. Vertical slice BB’ and time slice at t=2.0s through the Kuwahara-filtered coherence 

volume, showing the picked polygons of salt and not-salt facies. I carefully define the polygons 

in such a way that the area covered by the salt polygons is approximately equal to the area 

covered by the not-salt polygons. I then extract supervised training data from these polygons. 
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Figure 4.21. Difference between bulk normalization (a), in which I apply the same normalization 

to the training data of all classes, and per-class normalization (b and c), in which I normalize the 

training data of each class separately. The histograms were aligned at zero and resized to have 

the same horizontal scale. Magenta dashed lines represent ideal normal distribution curves – the 

ultimate desired outcome of normalization. With bulk normalization, the ideal curve is in the 

middle of the two clusters, while with per-class normalization, the ideal curve is at each cluster’s 

distribution, though not perfectly aligned. 
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Figure 4.22. Vertical slices AA’ through the PNN prediction volumes associated with (a) 

logarithmic bulk normalization, (b) logarithmic per-class normalization, (c) z-score bulk 

normalization, and (d) z-score per-class normalization. Yellow ellipses highlight some mis-

classified salt patches within the not-salt region of (a). Blue ellipses highlight the faulted region 

above the salt diapir that are mis-classified as salt in (a) and (c). Logarithmic per-class 

normalization (b) and z-score per-class normalization (d) produces very similar predictions. 
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Figure 4.23. Vertical slices AA’ through the PNN salt probability volumes associated with (a) 

logarithmic bulk normalization, (b) logarithmic per-class normalization, (c) z-score bulk 

normalization, and (d) z-score per-class normalization. All displays have the same fixed scaling 

of salt probability from 0.0 to 1.0. Note the dimmed image produced by logarithmic per-facies 

normalization (b), while z-score per-facies normalization image (d) has a much higher contrast. 
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Figure 4.24. Histograms of the first principal component projection associated with (a) z-score 

normalization and (b) logarithmic transformation, blended with black-to-red color gradient to 

illustrate the process of color mapping against the red color channel. The histograms are clipped 

in such a way that only 90% of the data distribution is shown, while 5% percentile in the extreme 

left and 5% percentile in the extreme right of the distribution are discarded. Note the wider and 

more symmetric histogram curve associated with logarithmic transformation, allowing more 

colors to be mapped near the peak of the data distribution, making the final RGB blended image 

of principal component projections capable of showing subtle, fine detail of the turbidite channel 

system in Canterbury Basin, New Zealand. 
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Figure 4.25. Histograms of PNN’s input coherence attribute, showing different shapes of clusters 

and distances between clusters via different normalization schemes: (a) logarithmic bulk 

transformation, (b) logarithmic transformation based on training data of salt facies, (c) z-score 

bulk normalization, and (d) z-score normalization based on training data of salt facies. Among 

the histograms, z-score per-class normalization distribution (d) has the largest distance between 

salt and not-salt clusters, which corresponds to the PNN salt probability image with the highest 

contrast (Figure 4.23d). The general trend is that z-score histograms have greater distances 

between clusters than logarithmic histograms, and per-class normalization scheme yields 

significantly greater distances between clusters than bulk normalization scheme. Note that in (a) 

and (c), the distances between the two clusters are approximately the same, but salt cluster in 

logarithmic histogram (a) has a wider distribution than z-score histogram (c), causing many 

coherent data points to be mis-classified as salt (yellow ellipses in Figure 4.22a). 
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Figure 4.A-1. Illustrations of (a) original distribution of a typical non-negative, right-skewed 

attribute, (b) the expected symmetric, “bell”-shaped distribution after logarithmic transformation, 

and (c) the bitter reality of directly applying a logarithmic function to the original data: a left-

skewed, even more asymmetric than original distribution with a left “tail” stretching to negative 

infinity. 
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Figure 4.A-2. Graph of the logarithmic function. As x goes to zero, the logarithmic function 

approaches negative infinity, thus causing the long left “tail” of the actual distribution in Figure 

4.A-1c. Also, note that logarithmic function is not defined where x<0. 
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Figure 4.A-3. Three anchor points on the original distribution (a): left (L), right (R), and peak 

(P). The goal of the logarithmic transformation is to reshape the distribution in such a way that 

the left and right anchor points are symmetric about zero, while the peak is exactly at zero (b). 

However, even after a careful derivation of logarithmic parameters using the three-anchor point 

scheme, the reality (c) is still far from expectation because the logarithmic transformation moves 

the relative location of the peak! This means I need to compute the parameters of the logarithmic 

transformation in an iterative manner. 
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Figure 4.B-1. (a) Illustration of the peak (or statistical mode) of a distribution. The traditional 

procedure to find the peak is to construct histogram columns and locate the column with the 

greatest number of points (b). The precision of the peak is determined by the width of a 

histogram column. However, if there is a spike in the distribution, such as zero-value samples 

belonging to dead traces and muted zones, the highest histogram column could represent the 

spike instead of the actual peak (c). 
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Figure 4.B-2. Illustration of my method to find the peak of a data distribution using a binary 

search algorithm. First, I limit the search between the 15th and 85th percentiles of the distribution 

to avoid the effect of spikes at the extreme left and right, assuming the peak is most likely 

located within this range near the distribution center. I divide this range into two halves of the 

same width and count the data points residing in each half. I then choose the half with greater 

data count, divide it into another two halves and start counting data points within these new 

halves again. The process is repeated until there is exactly one data point in each half, at which 

time I define the peak of the distribution as the average of the last two data points. 
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Figure 4.B-3. In some rare occurrences, when a data distribution has more than one cluster and 

the total number of data points is relatively small, it is possible that after a division, the two 

halves have exactly the same data count of a large quantity. If this happens, the binary search 

would stop, and the midpoint of the two halves is considered to be the peak, while the actual 

peak may reside in one of the two halves. A partial solution to this issue is to further divide two 

halves into four quarters and find the quarter with the maximum data count, assuming the peak 

belongs to the densest quarter. 
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Figure 4.C-1. 2D color crossplot of two output SOM components using z-score normalization, 

without any data clipping. The crossplot is mostly cyan because the data distribution is heavily 

skewed to the upper left corner of the 2D histogram, which corresponds to a variety of cyan 

colors in the 2D color table. I can barely see any geological detail due to low color contrast. 
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Figure 4.C-2. 2D color crossplot of two output SOM components using z-score normalization, 

with strong data clipping. The color contrast is good, but the crossplot has too many white pixels, 

which represent clipped data points. 
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Figure 4.C-3. 2D color crossplot of two output SOM components using z-score normalization, 

with moderate data clipping. The number of white pixels (i.e. clipped data points) are greatly 

reduced, and the color contrast increased over Figure C-1. This figure is the one displayed as 

Figure 4.14a. 
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Tables 

Table 4.D-1. Optimal combination of input attributes of each normalization scheme, together 

with the corresponding PNN smoothing parameter r and validation error. Note that coherence 

attribute is found in all four normalization schemes’ optimal combination of input attributes. 

Normalization Scheme 
Optimal Combination of 

Input Attributes 

PNN smoothing 

parameter r 

Validation Error 

(lower is better) 

Logarithmic bulk 

Coherence, 

GLCM Contrast, 

GLCM Entropy 

2.1 0.047 

Logarithmic per-facies 
Coherence, 

GLCM Contrast 
0.6 0.031 

Z-score bulk Coherence 1.3 0.037 

Z-score per-facies 
Coherence, 

Most Positive Curvature 
1.9 0.024 
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Table 4.E-1. Parameters of dip computation in case study 1. 

Parameter Value 

Algorithm Semblance Search 

Maximum angle searched (degree) 15 

Search angle increment (degree) 3 

Time-to-depth conversion velocity (m/s) 4000 

Vertical window half height (s) 0.02 

Inline window radius (m) 12.5 

Crossline window radius (m) 25.0 

 

Table 4.E-2. Parameters of dip filtering in case study 1. 

Parameter Value 

Algorithm LUM 

Lower-Upper-Median percentile 20 

Vertical window half height (s) 0.02 

Inline window radius (m) 12.5 

Crossline window radius (m) 25.0 

 

Table 4.E-3. Parameters of coherence computation in case study 1. 

Parameter Value 

Vertical window half height (s) 0.02 

Inline window radius (m) 12.5 

Crossline window radius (m) 25.0 

Similarity Power 2.0 

Low cut filter rolloff  flow (Hz) 5 

High cut filter rolloff  fhigh (Hz) 100 

 

Table 4.E-4. Parameters of curvature computation in case study 1. 

Parameter Value 

Curvature type Structural 

Filter corner point λ1 (m) 22016.2 

Filter corner point λ2 (m)  800 

Filter corner point λ3 (m)  400 

Filter corner point λ4 (m)  200 

Filter weight w1 1 

Filter weight w2 0.666 

Filter weight w3 0.333 

Filter weight w4 0 

Constant multiplier of curvature 1000 

Maximum operator radius (m) 1000 

Vertical compression factor 0.25 

Operator truncation value 0.01 
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Table 4.E-5. Parameters of GLCM computation in case study 1. 

Parameter Value 

Vertical window half height (s) 0.004 

Inline window radius (m) 25.0 

Crossline window radius (m) 50.0 

Number of gray levels 33 

 

Table 4.E-6. Parameters of spectral decomposition in case study 1. 

Parameter Value 

Spectral balancing factor (%) 4 

Bluing exponent 0 

Line and CDP decimation 5 

Ormsby filter corner point f1 (Hz) 5 

Ormsby filter corner point f2 (Hz) 10 

Ormsby filter corner point f3 (Hz) 100 

Ormsby filter corner point f4 (Hz) 120 

CWT mother wavelet bandwidth (Hz) 0.26051 

Temporal taper (s)  0.1 

Percentile excluded in spectral shape 0.15 

Lowest output frequency flow (Hz) 10 

Highest output frequency fhigh (Hz) 100 

Output frequency increment Δf (Hz) 1 

 

Table 4.E-7. Parameters of training data extraction in case study 1. 

Parameter Value 

Inline Start 1005 

Inline End 1570 

Inline Increment 1 

Crossline Start 4645 

Crossline End 6395 

Crossline Increment 1 

Vertical Boundary Type About a horizon 

Horizon Late Tertiary 

Window above horizon (s) 0.004 

Window below horizon (s) 0.004 

Vertical Increment (s) 0.004 
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Table 4.E-8. Parameters of PCA in case study 1. 

Parameter Value 

Number of principal components 3 

Minimum display percentile (%) 5 

Maximum display percentile (%) 95 

 

Table 4.E-9. Parameters of ICA in case study 1. 

Parameter Value 

Number of independent components 3 

Error Tolerance 1.0E-6 

Maximum number of iterations 500 

Minimum display percentile (%) 5 

Maximum display percentile (%) 95 

 

Table 4.E-10. Parameters of SOM in case study 1. 

Parameter Value 

Number of prototype vectors 

(maximum number of classes) 
256 

Number of standard deviations along 

the first two eigenvector directions to 

define the initial 16*16=256 prototype 

vectors on the manifold 

±4 

Initial Neighborhood Scale 1.2 

Distance type Mahalanobis 

Maximum number of training 

iterations 
50 

Grid spacing 150 

Z-score clipping range of SOM axis 1 -2.6 to 4.0 

Z-score clipping range of SOM axis 2 -3.5 to 3.5 

 

Table 4.E-11. Parameters of GTM in case study 1. 

Parameter Value 

Number of samples in 2D latent space 256 

Number of basis functions 144 

Relative width of basis functions 0.5 

Weight regularization factor 0.05 

Number of training iterations 50 

 

  



 

 

196 

 

Table 4.E-12. Parameters of dip computation in case study 2. 

Parameter Value 

Algorithm GST 

Time-to-depth conversion velocity (ft/s) 10000 

Vertical window half height (s) 0.02 

Inline window radius (ft) 82.5 

Crossline window radius (ft) 82.5 

 

Table 4.E-13. Parameters of dip filtering in case study 2. 

Parameter Value 

Algorithm LUM 

Lower-Upper-Median percentile 20 

Vertical window half height (s) 0.02 

Inline window radius (ft) 82.5 

Crossline window radius (ft) 82.5 

 

Table 4.E-14. Parameters of coherence computation in case study 2. 

Parameter Value 

Vertical window half height (s) 0.02 

Inline window radius (ft) 82.5 

Crossline window radius (ft) 82.5 

Similarity Power 2.0 

Low cut filter rolloff  flow (Hz) 5 

High cut filter rolloff  fhigh (Hz) 100 
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Table 4.E-15. Parameters of median smoothing in case study 2. 

Parameter Value 

Number of iterations 5 

Vertical window half height (s) 0.008 

Inline window radius (ft) 165.0 

Crossline window radius (ft) 165.0 

 

Table 4.E-16. Parameters of Kuwahara filtering in case study 2. 

Parameter Value 

Vertical window taper (%) 20 

Vertical window half height (s) 0.004 

Inline window radius (ft) 82.5 

Crossline window radius (ft) 82.5 

 

Table 4.E-17. Parameters of PNN supervised classification in case study 2. 

Parameter Value 

Inline Increment 5 

Crossline Increment 5 

Vertical Increment (s) 0.02 

Number of salt samples 5480 

Number of not-salt samples 6368 

Smoothing parameter r 1.0 
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CHAPTER 5: CONCLUSIONS 

Although the three major applications of this dissertation are quite different, the unifying 

theme is the importance of data conditioning. Simply stated, the quality of the result from even 

the most mathematically elegant algorithm is only as good as the quality of the input data. In 

principle, least-squares migration provides the reflectivity in the subsurface, that when forward 

modeled, best reproduces the data measured on the surface. However, when the data area aliased, 

there are many subsurface models that can fit the given surface data. To address this issue, I’ve 

defined a least-squares migration workflow, controlled by a GUI, that provides a flexible way to 

add internal constraints to the conjugant gradient process. Such constraints can be as simple as a 

structure-oriented filter or as complex as a kx-ky filter to suppress acquisition footprint. Such 

filters allow the retention of long offsets in the input and steep dips in the output, providing 

improved images of fractured basement in Texas Panhandle survey. 

Many filters are nonlinear, such that the order of their application is important. I found 

that in the presence of dipping faults, edge-preserving structure-oriented filtering sharpens the 

dipping fault edges. When analyzed on trace-by-trace vertical profiles, such sharpening 

introduces frequencies up to Nyquist that were not in the original seismic data, leading to 

impulse response artifacts in subsequent spectral balancing. In contrast, such artifacts are 

circumvented if I first spectrally balance the seismic data and then apply edge-preserving 

structure-oriented filtering. 

Machine learning requires data conditioning as well. For the Canterbury Basin survey, I 

observed that all input attributes are non-negative and some attributes, such as coherent energy, 

are highly skewed. To analyze these data, the “preconditioning” involves scaling the data so that 

exhibit a simple mean and standard deviation. The simple linear z-score normalization works 
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well for some attributes but does not account for kurtosis, skewness, or other deviations from a 

non-Gaussian distribution. I developed a data-driven nonlinear normalization that provides 

superior facies discrimination for simple projection and unsupervised classification algorithms. 

For supervised classification, I found better facies discrimination when the nonlinear 

normalization for each attribute also adapted to the distribution of each target class. 

 


