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Abstract  

As the global threat of antibiotic resistance grows the approval rate of new antibiotics falls. Pharma 

companies are dropping their antibiotic research programmes at the time when new antibiotics are 

needed the most due to antibiotic resistance. Paradoxically antibiotic resistance is one of the many 

reasons that the discovery of new antibiotics is not lucrative enough for it to be a financially viable 

pursuit. Promising high-throughput technologies have been unsuccessfully employed to streamline 

drug discovery due to the lack of novel chemicals within libraries. Natural products have contributed 

massively to drug discovery in the past although its contribution to the declining number of 

antibiotics discovered recently has also diminished. To revive the drug discovery pipeline invasive 

weeds were targeted as a potential source of novel chemical compounds. Three species; Fallopia 

japonica, Impatiens glandulifera and Rhododendron ponticum were collected. Each species was 

extracted and fractioned to discover any potential antimicrobial compounds. A particularly active 

compound 2-methoxy-1,4naphthoquinone (MNQ) was discovered. This compound was found to 

have a broad range of activity against clinically relevant bacteria. The methoxy group was found to 

be crucial for the potent antimicrobial activity of this compound. It was also a potent inhibitor of 

Schistosoma mansoni. Cytotoxicity of this compound was found to be a potential issue with mixed 

results. High throughput metabolomic methodologies were developed to understand the 

mechanism by which MNQ inhibits the growth of MRSA. The metabolomic effect of MNQ was 

compared to other antibiotics, it was found that MNQ had a distinctive metabolomic effect. This 

unique effect was further investigated with in-depth metabolic pathway analysis using statistical 

methods twinned with KEGG metabolomics pathway database. Once a tentative mode of action was 

identified transmission electron microscopy and specific antimicrobial assays were used to support 

this theory.   
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 This research project has discovered a promising antimicrobial and anthelminthic 

compound and the developed metabolomic methodology yielded a large amount of useful data 

regarding the mode of action of MNQ and other antibiotics.   
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Chapter 1 - Natural Products; Invasive weed species as a 

potential source of antimicrobials  

1.1 – Introduction – Natural Products  

1.1.1 - Chapter Aims 

 Natural products have been used to treat disease for thousands of years yet traditional 

approaches to drug discovery have been declining with the modernisation of the drug discovery 

pipeline. With an emphasis on synthetic methods and high throughput screening in recent research 

there has been a decline in the number of novel drugs being discovered. The effectiveness of drug 

discovery is critical especially in the face of antibiotic resistance. The contribution of natural 

products and alternative methods to drug discovery will be discussed as well as the issue of 

antibiotic resistance. Invasive weeds are a problematic yet could potentially be a plentiful source of 

novel antimicrobial compounds. Three particularly plentiful and aggressive invasive weed species 

were chosen for analysis. A bioactivity led purification process will be carried out to identify 

compounds which have the potential to treat MRSA infections. 

1.1.2 - History of natural products  

 Humans have always been dependant on nature to cater for their basic needs such as food 

and shelter but also medicines. Initially medicines were in the form of crude treatments such as 

tinctures, teas, poultices, powders and other herbal formulations. There is evidence that 

Neanderthals living 60,000 years ago used plants from the Alcea genus to treat infections (Stockwell, 

1988), this plant genus is widely used in ethnomedicine and there are current research efforts 

attempting to identify active compounds within this genus (Seyyednejad et al., 2010; Ghasemi and 

Atakishiyeva, 2016; Azab, 2017). More recent approaches involved the isolation of a single active 

compound (Balunas and Kinghorn, 2005). The first active compound to be isolated in this way was 
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morphine from opium by Friedrich Setürner in 1804 (Schmitz, 1885). Morphine was used as a potent 

analgesic at this time and became the first of the opioid drug class. Current semi-synthetic opioid 

drugs, such as oxycodone, are all derived from the initial research on Papaver somniferum 

commonly known as the breadseed or opium poppy. Much natural product research at this time 

was based on plants linked to known medicinal properties and this led to discoveries such as aspirin, 

quinine, and pilocarpine (Butler, 2004). The analgesic aspirin is synonymous with the willow tree 

because in the 18th century willow extracts were used to relieve pain. The active components of 

the willow tree were identified as salicilin and salicylic acid (Mahdi, Mahdi and Bowen, 2006). The 

salicylic acid synthetic derivative acetylsalicylic acid (aspirin) is a Nonsteroidal anti-inflammatory 

drug (NSAID) which is a drug class which reduces pain, fever and inflammation. It also reported to 

have a range of other beneficial health benefits being said to have, antiproliferative, anticancer 

properties (Ridker et al., 1997; Mahdi, Mahdi and Bowen, 2006). Pilocarpine, a treatment for 

intraocular pressure and xerostomia, is another example of an effective natural product isolated 

from Pilocarpus jaborandi in 1874 which is still in use today (Sneader, 2005). Quinine has origins as 

far back as the 1600s when the bark of the cinchona tree was used to treat malaria.  Later the active 

component was identified as quinine and the use of which to treat malaria marked the first 

successful treatment of an infectious disease. It was replaced as the frontline treatment for malaria 

in 2006 yet it remains as an alternative if artemisinin fails and is still the favoured antimalarial drug 

in pregnant patients (Achan et al., 2011). The replacement frontline treatment for malaria is now 

artemisinin which is a natural product derived from Artemisia annua. It was discovered in 1972 

although the medicinal properties of the herb have been known for over 2000 years. The herb 

immersed in 2 L of water was prescribed between 284-346 CE and the handbook remains (Tu, 2011). 

From these examples isolated natural products alone or with some synthetic variation have made 

major contributions to medicine even before the causes of diseases were understood.   

  It was not until the late 19th century that microorganisms were known to causes disease, 

despite microorganisms being discovered by Robert Hooke and Antoni Van Leeuwenhoek in 1665. 
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The link between microorganisms and disease was not made until Louis Pasteur between 1860-

1864. With the definition of Koch’s postulates (basic criteria for demonstrating a disease was caused 

by an organism) the discovery of the causative bacterium enabled drugs to be disease/bacteria 

specific. However, up to this point toxic substances were used to treat such diseases where the 

“drugs” being used were just as poisonous to human as to the bacteria causing the disease. For 

example, mercury was used to treat syphilis. Using the insights gained from discovery of 

microorganisms Paul Ehrlich developed approaches to detect specific substances which would kill 

microbes without harming human cells using dyes. He also coined the term ‘chemotherapy’ and 

’magic bullet’, which is the best description for modern day medicines. The first successful ‘magic 

bullet’ was arsphenamine which was able to treat syphilis, sold under the trade name salvarsan in 

1910. This was synthesised, opposed to the traditional method of searching for the active compound 

from plant extracts (Ehrlich and Hata, 1910; Williams, 2009). This systematic screening approach 

developed by Ehrlich became the cornerstone for drug research in pharmaceutical industry leading 

to the identification of thousands of drugs, not only antimicrobials.   

 Around the same time in 1928 was possibly the most famous discovery made in the 

antibiotic era, the discovery of penicillin. Its discovery was serendipitous and contrasted with the 

methodical systematic approaches laid down by Ehrlich a few years earlier. Its discovery was 

unplanned, untargeted and it was a purely natural origin rather than being (semi) synthesised.  

 The discovery of a potent antimicrobial compound was desperately needed at the time of 

World War II and led to the discovery of many more antimicrobial agents. Given the example of 

penicillin there is no absolute correct way to carry out drug discovery.  It should use of historical 

knowledge and the technological advances available at the time, while also taking advantage of 

unforeseen opportunities which may arise at the time.   

 Research into natural products has diminished in the past two decades due to a lack of 

interest by major pharmaceutical companies. Caused by the laborious nature of natural product 
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discovery and its incompatibility with high throughput screening (HTS) directed at molecular targets 

(Harvey, Edrada-Ebel and Quinn, 2015). HTS have many benefits; they provide large amounts of 

high-quality data in relation to standard techniques, it is high throughput (as the name suggests) 

therefore large volumes of samples can be tested in small duration of time, increased cost-

effectiveness. The increase popularity of HTS has also led to the development of underlying 

technologies such as automation, miniaturisation, data capture, data analysis, and new bioassay 

formats. However, the results of HTS large chemical libraries have been disappointing in practice 

(these libraries containing a range of compounds from many diverse sources) and so natural 

products have emerged with a significantly higher hit rate compared to fully synthetic and 

combinatorial libraries (Sukuru et al., 2009). Furthermore, it has been shown that 83% of core ring 

scaffolds present in natural products are not represented in commercially available screening 

libraries leading to fewer drug leads (Hert et al., 2009). This stated HTS should be considered as a 

tool to be used alongside other drug discovery methods and should not be the only means for drug 

discovery (Macarron et al., 2011).   

  Even with the recent neglect of natural products as a source of drugs, plants have been the 

single most productive source of leads, particularly as anti-cancer agents and anti-infectives (Harvey, 

2008). Using the most recent Newman and Cragg paper results tracking the number of new 

antimicrobial agents approved between 1981 and 2002 and then in 4-year intervals up to 2014 

(Figure 1). There are three main trends in approved antimicrobials between 2002-2014: i) the new 

biological compound, ii) the sharp rise in the number of vaccines iii) and the consistent performance 

of natural and synthetics. (Newman, Cragg and Snader, 2003; Newman and Cragg, 2007, 2012, 

2016).    
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Figure 1: Total number of antibacterial drugs approved in different ways from 01/01/1981 to 
Recent Years (data adapted from Newman, Cragg and Snader, 2003; Newman and Cragg, 2007, 

2012, 2016) 

 

 Biologicals as defined by Newman & Cragg are “usually large (>50 residues) peptides or 

proteins either isolated from an organism/cell line or produced by biotechnological means in a 

surrogate”. The example given is Raxibacumab; a recombinant human monoclonal antibody 

developed against inhalation of Bacillus anthracis. A part of B. anthracis pathologic process it 

produces the anthrax toxin, which is composed of two binary combinations, each containing a 

protective antigen (PA) responsible for binding, which can combine with either an oedema factor or 

a lethal factor to form the respective toxin. Raxibacumab binds the PA preventing the formation of 

either toxin. Raxibacumab therefore does not have any antibacterial activity but works by 

preventing the internalisation of toxins and the progression of infection. As such it should be used 

alongside other antibiotic treatments (Kummerfeldt, 2014). The treatment of bacteria with non-

lethal drugs such as raxibacumab, quorum sensing inhibitors which reduce virulence of the 
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pathogen could potentially have a lower selective pressure compared to targeting critical molecular 

targets that result in death and lead to a slower onset of resistance (Hentzer and Givskov, 2003; 

Rasmussen and Givskov, 2006).  

  Similarly, there has been a sudden increase in the number of vaccines between 2010-2014, 

almost doubling from 14 to 27. Most of the new vaccines treat meningococcal vaccines, but also 

include most notably the first vaccine for typhoid fever (Newman and Cragg, 2016).   

  One new natural compound, fidaxomicin was the first in a new class of narrow spectrum 

macrocyclic antibiotics used to treat Clostridium difficile. The original discovery of this compound 

from Actinoplanes deccanensis ATCC 21983 dates to 1975, with the structure elucidated in 1988, 

approval for use as a drug in 2011 and the mode of action revealed in 2012. This compound inhibits 

RNA polymerase, but unlike other antibiotics such as rifampicin, fidaxomicin binds to and prevents 

the movement of the switch regions of RNA polymerase (Parenti, Pagani and Beretta, 1976; Cavalleri 

et al., 1988; Artsimovitch, Seddon and Sears, 2012). Other new natural derivatives and synthetic 

compounds have also been approved. For example, natural derivatives have included ceftaroline 

(cephalosporin), cetolozane (cephalosporin with tazobactam β-lactams inhibitor), dalvabancin 

(glycopeptide), and oritavacin (glycopeptide). There were no new classes of antibacterial 

compounds. One synthetic drug of interest, bedaquiline is a quinolone-based antibacterial. The first 

tuberculosis drug in 40 years with a unique activity which inhibits proton pumps of mycobacterial 

ATP synthetase enabling efficacy against multidrug resistant TB (Matteelli et al., 2010).   

 The pharmaceutical industry has been deemphasising its natural products since before 2002 

even though they also provide a platform for synthetic derivatisation to take place and enhance the 

pharmacophoric spaces available in HTS libraries. In 2013 there were 14 classes of antibiotics, of 

these 4 had a synthetic origin and the remaining 10 were all from natural sources (Lewis, 2013). 

Therefore, due to the vast diversity of natural products and wide possible applications means that 

their isolation and characterisations for medicinal purposes remains of importance today.  
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1.1.3 - Antimicrobial Resistance  

 Antimicrobial efficacy is highlighted following their introduction; circa 1930 pre-antibiotic 

hospitals were populated with patients suffering from pneumonia, meningitis, bacteraemia, typhoid 

fever, endocarditis, mastoiditis, syphilis, tuberculosis, and rheumatic fever. While in the post-

antibiotic era wards of the 1980s were filled with patients with cancer, heart disease, or 

complications from diabetes or hypertension (McDermott and Rogers, 1982; Cohen, 1992). 

Therefore, antibiotic resistance will have a profound effect and was forewarned when penicillin was 

first used to treat disease:  

“The time may come when penicillin can be bought by anyone in the shops. 

Then there is the danger that the ignorant man may easily underdose 

himself and by exposing his microbes to non-lethal quantities of the drug 

make them resistant. Here is a hypothetical illustration. Mr. X. has a sore 

throat. He buys some penicillin and gives himself, not enough to kill the 

streptococci but enough to educate them to resist penicillin. He then infects 

his wife. Mrs. X gets pneumonia and is treated with penicillin. As the 

streptococci are now resistant to penicillin the treatment fails. Mrs. X dies. 

Who is primarily responsible for Mrs. X’s death? Why Mr. X whose negligent 

use of penicillin changed the nature of the microbe. Moral: If you use 

penicillin, use enough”  

(Fleming, Chain and Florey, 1945).  

 Even with this forewarning we have been unable to prevent the global propagation of 

antibiotic resistance, due to a range of factors. The inappropriate prescription of antibiotics is a 

completely avoidable contributing factor to antimicrobial resistance. Antibiotics are not 

recommended for coughs, colds, and viral sore throats however, half of these conditions were 

incorrectly provided with an antibiotic prescription in the UK between 1995-2011 (Hawker et al., 
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2014). Antibiotics are provided in these situations in fear of a suppurative complication or to ease 

the severity or duration of the illness, but these concerns are not supported by data.  For example, 

it has been shown that the risk of serious complications following a sore throat, otitis media, and 

upper respiratory tract infections is low and the number of antibiotics needed to prevent one 

serious complication is over 4,000 prescriptions (Petersen et al., 2007). Furthermore, there is little 

evidence that antibiotics significantly reduce duration or severity of a sore throat (Little et al., 2013) 

and the inappropriate use of antibiotics has no clear benefit to the patient and will only act to further 

propagate antibiotic resistance. This has been evidenced by randomised double-blind placebo-

controlled study for the macrolides, azithromycin and clarithromycin, which showed a significant 

increase in the proportion of macrolide-resistant Streptococci in healthy patients (Malhotra-Kumar 

et al., 2007). A future consequence of this increased carriage of resistant bacteria may include the 

spread of bacteria which could also cause a resistant infection to develop. The inappropriate 

prescription of antibiotics is widespread, but the variations can vary significantly in relatively small 

area. There is a marked variation in antibiotic prescriptions between clinical commissioning groups 

in England, with, 8.4% of patients provided antibiotics in Newcastle West compared to only 4% in 

Camden with a national average of 6.4% (Shallcross and Davies, 2014).   

 When compared to rest of the European Union, UK consumption was slightly lower with 

18.8 defined daily doses per 1000 habitants (DID) compared to the EU average of 14.9 DID. France 

reported the highest antibiotic consumption (32.2 DID) and the Netherlands with the lowest (10.0 

DID) (Goossens et al., 2005). Most countries are now taking further measures against antibiotic 

resistant bacteria such as isolating MRSA and multi-drug resistant (MDR) Staphylococci colonised 

patients in specialised and have been key in reducing MRSA (Cooper et al., 2004). Similar approaches 

are taking for other serious drug resistant bacterial infections such as C. difficile (Hsu et al., 2010), 

Klebsiella pneumoniae, E. coli, Enterobacter cloacae (Gupta et al., 2011) infections. However, no 

matter how well individual countries perform in prevention, prescriptions and isolation, resistant 
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bacteria do not respect international boundaries with active infections and colonising drug-resistant 

bacteria being spread throughout the globe by population movement.  

 Therefore, this is a global issue which needs coordinated antibiotic controls between all 

countries however, this can be challenging due to limited coordinated action at political, 

governmental and international levels (Laxminarayan et al., 2013). Self-medication with antibiotics 

is common in many parts of the world (Väänänen, Pietilä and Airaksinen, 2006; Plachouras et al., 

2010; Morgan et al., 2011). This is unacceptable when the repercussions of not completing a course 

of antibiotics have been known since they were first discovered.  

  Another source of antibiotic resistance is the millions of kilograms of antibiotics used for 

agricultural. Whereby, approximately 80% of antibiotics sold in the US are used animal agriculture 

and 60% of which are medically important for human disease. These antibiotics are administered 

through animal feed to marginally improve growth rates and prevent infection and are predicted 

according to the FDA to increase overall in the next 15 years (Martin, Thottathil and Newman, 2015). 

Tracking the recent total use antibiotics over the past few years from 2009-2016 based on US Food 

and Drug Administration (FDA) figures submitted over consecutive years (Figure 2) there has been 

steady increase in the antibiotic use in the agricultural industry up to 2015, with a significant drop 

in 2016.  

 The impact of non-action or lack of action over the misuse of antibiotics could result in a 

return to pre-antibiotics conditions in hospitals. Where the contraction of a relatively harmless 

bacterial infection by modern standards this could result in a death sentence. Although currently 

unimaginable, if resistance spreads globally current antibiotics will become obsolete. If effective 

controls are not placed on antibiotic use, the fate of future antibiotic efficacy will depend on new 

antibiotics being developed. 
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Figure 2: Bar chart showing percentage of medically important and unimportant antibiotics used 
for agricultural use over time and line showing the total mass of antibiotics used in the agricultural 

industry annually (Cvm, 2017) 

 The rise in antimicrobial resistance in bacterial is compounded by a decrease in the number 

of new classes of antibiotics being developed, with only two new classes: fidaxomicin and 

bedaquiline introduced in 2011 and 2012, respectively. This slight upward trend in novel 

antimicrobial discovery, although encouraging, is unlikely to solve the problems of resistance. Figure 

3 is a timeline of antibiotic discovery from 1936 to 2012, during this time 14 classes antibiotics were 

discovered. Five of which; tetracyclines, streptogramins, lipopeptides, fidaxomicin, and bedaquiline 

(diarylquinolines class), resistance was detected before they were approved for use as an 

antimicrobial agent. A combination of a slow discovery rate and lengthy approval processes the 

antibiotic discovery pipeline has run dry. The market is crowded with many versions of the same 

class, neglecting to risk the potential benefits of discovering new modes of action. The development 

of new antibiotics is high risk and expense, the development process can be separated into 5 

sections: Lead compound identification, Lead compound optimisation, preclinical testing, phase I 

clinical trials and phase II clinical trials. The associated cost of each stage can vary massively; lead 

compound identification can range for € 100,000 to more than € 1 million and can take between 6 

months and 4 years. Optimisation is far more costly, estimated to cost between € 1-5 million and 

expected to take between 6 month and 4 years.  Preclinical testing would be expected to take one 

to two years and cost € 1-5 million but can be as high as € 10 million. The cost of phase I clinical 
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trials ranges from less than € 1 million to as much as € 15 million, taking around 1 year to complete. 

Phase II costs are likely to be higher ranging from less than € 1 million to over € 20 million (Årdal et 

al., 2018). Additionally, obtaining regulatory approval is often a significant obstacle for drugs 

attempting to make it to market (Gould and Bal, 2013; Ventola, 2015).  

 

Figure 3: Column cluster graph showing the number of years taken to approve antimicrobial class 
for use in humans from the first point of discovery compared to the time taken for resistance to 

develop. With the first approved antimicrobials on the left to the newest approved on the right. *-
indicate instances where resistance developed before approval. (Graph made using data from 

Lewis, 2013).  

 The nature of antibiotics is that they are “singe use”, only required when there is an 

infection and once the course is complete, they are not needed. This reduces their profitability 

compared to other drugs for chronic conditions which are required to be taken over a long period 

of time or drugs can be taken sporadically as and when needed. The single use nature of antibiotics, 

the significant expenditure required to take a new drug to market, the inevitability of resistance, 

and a global lack initiative to prevent misuse of antibiotics are all contributors which have led to big 
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pharmaceutical companies reducing their interest in antibiotic discovery. This is especially true for 

early phase interest which are vital for discovering novel compounds yet are extremely unlikely to 

make it to market. Of tens of thousands of drug candidates which have found to be active can be 

whittled down to just one approved medicine afters years of investment.  

1.1.4 - Invasive Weeds  

 Invasive non-native species (INNS) are organisms that have been introduced into a new 

environment once established are able to outcompete the native flora/fauna. These species have 

generally been introduced by humans into areas outside their natural range and can have drastic 

effects on the ecosystem. These INNS can also incur economic cost due to control and eradication, 

structural damage to infrastructure and loss of crop production with impact to the UK estimated to 

be between £200-300 million (Williamson, 2002). However, it can be proposed that INNS may 

provide an alternative source in the discovery of new pharmaceuticals. (Williams et al., 2010).   

  When INNS are introduced into a new environment, they may be eaten by native insects 

which can result in a reduce their likelihood of survival (Singer, Thomas and Parmesan, 1993). The 

INNS could be phytochemically like the native species herbivores often switch to novel hosts 

compared to their traditional host (Strong, Lawton and Southwood, 1984). Conversely, if the INNS 

have a different phytochemical make up this could deter insect feeding; referred to as the enemy 

release hypothesis (ERH). Reduced feeding by herbivores and other natural enemies can result in a 

rapid increase in distribution and abundance (Keane and Crawley, 2002). However, it is not only 

herbivory which could influence the success of the INNS but the outcome of interaction with soil 

microbiological communities (Kourtev, Ehrenfeld and Häggblom, 2002) and other plant species 

through allelopathy (Callaway and Ridenour, 2004). For example, 57.5% of phytochemicals from 

invasive plants have shown activity against more than one type of microorganism and several had 

general biocidal effects (Cappuccino and Arnason, 2006). The increases in novel phytochemistry and 

bioactivity were linked to invasive plants which benefit from the ERH. These plants can produce a 
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plethora of novel compounds in their new environment as the herbivorous, bacterial and 

allelopathic pressures are avoided and may provide a continually evolving source of novel 

antimicrobial compounds. For this study three invasive weeds were used and explained in detail 

below. There were chosen since they are currently widespread throughout the UK as a result would 

be a plentiful source of biomass for extraction of bioactive compounds. They are also problematic 

therefore their removal in large amounts will be beneficial to the environment.  

1.1.4.1 – Impatiens glandulifera  

 Impatiens glandulifera or Himalayan balsam is a tall annual herb with explosive seed heads 

native to west and central Himalayas. It has pink-purple flowers, fleshy stem and finely serrated 

leaves. It was first introduced in the early 19th century as an ornamental and nectar producing plant 

and later recoded in the growing wild in 1885 becoming widespread in the UK and throughout the 

norther hemisphere (Beerling and Perrins, 1993). It is currently widespread and common across the 

UK, primarily on riverbanks and in other damp areas (NNSS, 2018). Due to the height of I. 

glandulifera it casts shade reducing the germination and establishment of other species beneath its 

canopy, resulting in a 25% reduction in the richness of diversity (Hulme and Bremner, 2006). I. 

glandulifera has an estimated annual cost of £1,000,000 on the UK economy (Williams et al., 2010). 

I. glandulifera is native to high altitude meadows and fringe woodland and have been found to grow 

taller in non-native sites. The invasive plants within the UK show clear signs of the EHS, where 

generalist natural enemies are not inflicting as much damage as the specialists within the native 

environment (Tanner et al., 2014). 

1.1.4.2 – Fallopia japonica  

  Fallopia japonica or Japanese knotweed is a tall herbaceous perennial with bamboo-like 

stem which grows into dense thickets. It was introduced into the UK from Japan as an ornamental 

garden plant in the 19th century and has now become widespread in a range of habitats particularly 

on roadsides, riverbanks and derelict land displacing native flora. It causes serious structural damage 
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to buildings and infrastructure due to its rapid growth rate and ability to push through tarmac, 

concrete and drains. The presence of Japanese knotweed can devalue housing, damage roads and 

rail networks, displace of local flora to impact on leisure and tourism. The costs linked to its presence 

and removal can be considerable, estimated to be £165, 609,000 within the UK in 2010 (Williams et 

al., 2010).   

1.1.4.3 – Rhododendron ponticum  

  Rhododendron ponticum is a large evergreen shrub with attractive purple to pink flowers, 

leathery leaves and solid stems. R. ponticum is extensively naturalised throughout the British Isles 

with very few natural enemies facilitating its widespread growth (Judd and Rotherham, 1992) and 

adverse impact on forestry (Cross, 1981). It is unclear from which area R. ponticum originated prior 

to introduction into the UK, as well as the extent of introgression which has altered British species 

(Cross, 1975). The total cost of R. ponticum to the UK in 2011, which includes public, charities, 

private and forestry related cost, was calculated to be £670,924 (Dehnen-Schmutz, Perrings and 

Williamson, 2004) yet the annual cost has also been estimated to be £8,621,000 on the UK economy 

by Williams et al., 2010. 

1.1.5 – Liquid Chromatography 

1.1.5.1 – Overview  

 The term chromatography was first coined in 1906, when coloured constituents of leaves 

were separated using a column of calcium, alumina, and sucrose. The International Union of Pure 

and Applied Chemistry’s (IUPAC) definition of chromatography is:  

“Chromatography is a physical method of separation in which the 

components to be separated are distributed between two phases, one of 

which is stationary (stationary phase), while the other (the mobile phase) 

moves in a definite direction.” 
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 The two principle types of chromatography are gas chromatography and liquid 

chromatography. Gas chromatography separates gaseous substances based on adsorption on or 

partitioning in a stationary phase. Liquid chromatography includes a range of techniques based on 

molecular size, charge, adsorption or partitioning from a liquid phase. All chromatography is based 

upon the establishment of an equilibrium between a stationary phase and a mobile phase. The 

distribution of this equilibrium is described by the distribution constant (Equation 1). 

𝐾𝑐 =
[𝑋]𝑠

[𝑋]𝑚
 

Equation 1: The distribution constant (Kc). Where [X]s is the concentration of component X in the 
stationary phase at equilibrium and [X]m is the concentration in the mobile phase.  

 This is dependent upon temperature, type of compound, and the stationary and mobile 

phases. A larger Kc value will result in a stronger affinity to the stationary phase moving slowly along 

the column and those with lower values have a stronger affinity to the mobile phase and move 

quickly along the column. (Christian, 2003). Pre-1970s liquid chromatography was based on the use 

of large columns with large particles under gravity feed and fractions collected manually for 

measurement in a spectrophotometer. With the advancements of increased flow pressure and small 

silanized silica particles resulting in improved peak dispersion becoming known as high powered 

liquid chromatography (HPLC). In addition to conventional HPLC columns, Ultra High-Pressure Liquid 

Chromatography (UHPLC) is also an option, which as the name suggests, operates at a higher 

pressure then HPLC. This higher pressure results in more rapid chromatography (typically <10 min) 

with better resolution and efficiency due to smaller particle size (<3 µm). The conventional 

maximum operating pressure of HPLC is around 400 bar (6,000 psi), whereas UHPLC operates at 

pressures as high as 1300 bar (19,000 psi) (Fekete et al., 2014). As well as smaller particle sizes 

Superficially Porous Particles (SPP) are an alternative to smaller particles sizes, comprised of a solid 

core coated with porous silica layer, offering increased efficiency and speed comparable to HPLC. 

The most important measure of successful chromatography is the resolution of the peaks, this is 
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vital whether chromatography is being used for purification of analysis. In order to obtain good 

resolution three key factors, retention, selectivity and efficiency need to be considered. There is a 

visual summary of these in Figure 4. 

 

Figure 4: Typical chromatography highlighting the major measurable factors of chromatography. 

 Retention is the time an analyte spends on the column compared to unretained compounds 

which pass through the column unaffected by the stationary phase. Analytes are retained on a 

column based in their affinity with the stationary/mobile phase. There are many different stationary 

phases available which retain analytes based on their polarity in the case of normal and reversed 

phase but also charge in the case of ion-exchange chromatography and size-exclusion 

chromatography. In order to obtain desired retention, the correct stationary phase is the most 

important first step. Once a relevant column is selected then mobile phase selection and 

composition need to be considered carefully. Each type of column is only suitable with certain 

solvents and the most effective way to alter retention is to change mobile phase composition.  

 The retention of peaks needs to be controlled so analytes are clearly defined from one 

another, this is selectivity. The selectivity factor is the ability of a chromatographic system to 

distinguish between different components. This can be visualized as the distance between two peak 
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and measured as a ratio of the retention time of two peaks.  Selectivity factor is calculated by 

dividing the latest retaining peak by the earlier retaining peak, the larger the selectivity factor the 

better the separation between peaks. The space between peaks is dependent on the retention, if 

too strong mobile phase is used peaks will elute quickly and there will be poor separation between 

the peak causing them to coelute. The pH of the mobile phase effects the retention and particularly 

the selectivity of certain analytes which have ionisable groups. The pH has a significant effect on the 

ionization state of the analyte, for successful chromatography. For example, when pH = pKa the 

analyte can be in both ionized and neutral states, these two forms will have different retention 

properties and lead to broad, tailing or splitting peaks. If an acidic analyte is present within acidic 

mobile phase which has a pH below the pKa there will be sufficient protons to maintain a neutral 

analyte which will retain for longer on the column. If this acidic analyte is in a basic environment the 

analyte dissociates into its ionized conjugate base, resulting in less retention. However, if an analyte 

is particularly polar or ionic then ion pairing agents can be added to the mobile phase which will 

bind to ionized molecules increasing their retention (Berg et al., 2009).  

 Efficiency is the ability to obtain the correct peak shape, which is as thin as possible. This is 

vital for good chromatography and the efficiency of a column is measured using a plate count 

equation (Equation 2) 

𝑁 = 5.54 (𝑡𝑟/W0.5) 

Equation 2: Where tr is the retention time and W0.5 is the peak width at half height. There are 
other plate count calculations, but this is the most widely used.  

The larger the number of plates the more efficient the column. The length of the column as well as 

the particle size and pore size have a significant effect on efficiency of a column. Smaller particles 

and pores result in higher number of plates due to reduced eddy diffusion, which is the lateral 

movement through column packing. Longer columns result in poor peak shape due to longitudinal 
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diffusion. Both lateral and longitudinal diffusion are key factors within the Van Deemter equation 

(Equation 3):  

𝐻 = 𝐴 +
𝐵

𝑢
+ 𝐶𝑢 

Equation 3: Van Deemter equation is a measure of the resolving power of a column (H). Where A is 
eddy diffusion, B is longitudinal diffusion, C is equilibration time and u is linear flow rate.  

Each of these factors have an effect in the efficiency of the column and can be used to calculate the 

flow rate required to obtain the ideal chromatography (Van Deemter, Zuiderweg and Klinkenberg, 

1956).  

1.1.5.2 – Normal Phase  

 Normal phase as the name implies is the original form of chromatography. The columns are 

made from silica, which is an ideal material for chromatography. These rigid particles resist 

compaction due to flow and have a large surface area. This has been the main packing material for 

HPLC columns for decades. The surface of the silica is covered with strongly polar silanol groups (Si-

OH) which form hydrogen bonds, π- π bonds and dipole-dipole interactions with analytes in a 

nonpolar mobile phase. Typical normal phase stationary phases include bare silica, cyano, diol and 

amino bonded phases. Cyano bonded silica is the most robust of all normal phase options with the 

ability to retain dipolar compounds such as chloro, nitro and nitrile substituents more strongly than 

other normal phases. Diol is the most polar and retains amines, ethers, ester and ketones more 

strongly. Amino being the least robust of the boned phases and have similar properties to that of 

diol but have the ability to separate vitamins A and D. Silica alone is the least convenient for stability 

and reproducibility reasons but it does have the ability to separate isomers and particularly useful 

for large scale applications due to its simplicity. Normal phase works well with analytes which are 

insoluble in water and can even separate isomers, due to separation selectivity being greatly 

influenced by altering the mobile phase constituents and solvent ratios. Another advantage of 

normal phase is that organic compounds are highly soluble in normal phase solvents and these 
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solvents have a low viscosity therefore allowing higher flow rates increasing sample throughput 

(Jandera, 2011)  

1.1.5.3 – Reversed Phase 

 Reversed phase chromatography was chronologically the second mode of chromatography 

after normal phase. It is named reversed because the mobile phase used is more polar than the 

stationary phase, effectively the reverse of normal phase. Reversed phase stationary phases are 

silica at their core but with the addition of hydrophobic groups. Typically, these groups include 

differing lengths of carbon chains, C4, C8 or C18. Reversed-phase columns do not suffer for poor 

reproducibility from solvent usage resulting in reversed-phase becoming the main HPLC technique. 

The retention of an analyte on a column is primarily dependent on its hydrophobicity. Linear carbon 

chains of increasing length result in higher retention.  

1.1.5.4 – Other Liquid chromatography and their uses 

 Ion exchange chromatography is particularly useful for proteins, nucleotides and other 

macro biomolecules. It is based on the attractive forces between the charged solute molecules and 

immobilized groups of the opposite charge. This method is not compatible with MS and other 

analytical equipment and is solely used as a purification technique (Kopaciewicz et al., 1983). 

Similarly, size exclusion chromatography is also a technique used for protein analysis rather than 

small molecules. This chromatography is based on the observation that zeolites could act as a 

molecular sieve to exclude molecules based on their size (Barrer, 1944). 

 Hydrophilic interaction liquid chromatography (HILIC) provides a chromatography approach 

to separate small polar compounds which combine characteristics from normal, reversed phase and 

ion exchange chromatography. HILIC uses polar stationary phases like those of normal phase but 

utilizes mobile phases like those used in reversed phase. HILIC overcomes reversed phase solid 

phases which are unable to retain particularly polar molecules and overcomes the polarity limits of 

normal phase mobile phases which are unable to solubilize very polar molecules. HILIC is also able 



31 
 

to separate ionic analytes without the addition of ion paring agents required by ion exchange 

chromatography. In contrast to reversed phase, HILIC gradients begin with organic solvents such as 

acetone and increase in polarity up to high aqueous content mixtures to elute increasingly polar 

analytes (Guo and Gaiki, 2005).  

 Solid phase extraction (SPE) is a sample preparation technique which allows samples to be 

extracted, concentrated and cleaned prior to other purification techniques or analysis. SPE 

cartridges are available in a range of sizes from small scale < 1 mL to over 1 L and a range of phases: 

normal, reversed, ion exchange and adsorption (Thurman and Mills, 1998). Flash purification is a 

cost-effective high-throughput alternative to chromatography purification. It requires less 

optimization and offers a range of columns options and sizes depending on the scale of the sample. 

Like HPLC solvent is forced through a column under pressure resulting in fast flow rates in 

comparison to HPLC but at far lower pressure. The columns used for flash purification tend to be 

much larger and wider than HPLC allowing purification of several grams of sample in a short time 

with moderate resolution (Andrews, 1986). 

1.1.6 – Mass Spectrometry 

 Mass spectrometry is an analytical technique which measures the mass-to-charge ratio of 

compounds and fragments. The invention of mass spectrometry began in 1858 when Julius Plucker 

attempted to pass electricity through a vacuum and discovered cathode rays (Plucker, 1858) and 

later the discovery of electrons by J.J. Thomson. Thomson went on to construct a parabola mass 

spectrograph which is was the forerunner to modern mass spectrometer (MS). The original MS 

released a beam of positive ions through parallel magnetic and electrical fields which would deflect 

the beam onto a fluorescent screen or photographic plate. It was observed that the extent of 

deflection was related to the mass-to-charge ration of the positive ion (Thomson, 1913). In 1918 

Dempster constructed the first true MS which ionized a salt by electron bombardment and 

accelerated the ions through a magnetic field into a mass analyser (Dempster, 1918). MS 
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instrumentation can be broken down into three parts: ionization source, mass analyser and the 

detector. Each of these underwent rapid development following 1918 to obtain the various 

ionization sources, mass analysers and detectors available for modern MS. 

 There are a wide variety of ionization sources available, Electrospray Ionization (ESI) being 

one of the most popular, as well many others; Electron Ionization (EI), Chemical Ionization (CI), Field 

Ionization (FI), Fast Atom Bombardment (FAB), Field Desorption (FD), Plasma Desorption (PD), Laser 

Desorption (LD), Matrix-Assisted Desorption Ionization (MALDI), Thermospray, Atmospheric 

Pressure Ionization, Atmospheric Pressure Chemical Ionization, Atmospheric Pressure 

Photoionization, and Atmospheric Pressure Secondary Ion MS which is Direct analysis on real time 

(DART). Each with their own advantages and disadvantages depending on the samples to be 

analysed. The chosen ionization sources must be combined with a mass analyser, of which there are 

also many to choose from each with different capabilities; electric sector, magnetic sector, 

quadrupole, ion trap, time-of-flight, Fourier transformation ion cyclotron resonance, Fourier 

transform orbitrap and hybrids of these different analysers. The final constituent of a MS instrument 

is the detector which can be a: Photographic Plate, Faraday Cup, Electron Multiplier or an Electro-

optical Ion Detector. 

1.1.6.1 – Ionisation  

 EI ionization required the sample to be in gas-phase through which a beam of electrons is 

passed, electrons collide with the neutral analytes to produce a charged ion. The common term 

“collide” and “impact” to describe how electrons impart charge to molecules is a misconception, an 

electron has a certain wavelength and kinetic energy value which are correlated. A 2.7 Å wavelength 

has an energy of 20 eV and 1.4 Å is equal to 70 eV. When this energy corresponds to a transition 

within the molecule it leads to various electronic excitement, where there is enough energy an 

electron can be expelled resulting in a changed analyte (Bentley and Johnstone, 1970). EI is a hard 

ionization technique which induces extensive fragmentation which provides useful information for 
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elucidating the structure of unknown analytes, however the molecular ion is not always observed. 

CI is a softer ionization technique which yields spectra with less fragmentation and molecular ion is 

clearly recognized. Like EI, CI also uses electron “impact”, but it is used to ionize a reagent gas which 

then reacts with the analyte to produce an ion. This is a softer ionization technique that EI which 

was particularly useful for larger molecules and polyfunctional compounds (Munson and Field, 

1966). FAB ionization is like CI and is a relatively low fragmentation technique. It is carried out by 

colliding electrons with slow moving atoms such as Ar, Xe, or Cs to ionize them. These ionized atoms 

are then accelerated to a beam which is directed at a sample which is either solid or within a matrix 

such as glycerol, which in turn ionizes the analyte. FAB is particularly useful for large, non-volatile, 

thermally unstable compounds as samples are not required to be in gas-phase for analysis (Barber 

et al., 1981). FI uses very strong electric fields to produce ions from gas-phase molecules. The energy 

transferred during FI is a fraction of 1 eV, therefore generates ions with an extremely low excess of 

internal energy thus exhibiting no fragmentation. FI is one of the softest ionization methods, 

however it does require the samples to be volatile and thermally stable as breakdown of the analyte 

can occur during the evaporation process (Beckey et al., 1969).  

There are several desorption ionization techniques, the first of which was field desorption. 

Desorption based methods overcomes the need for samples to be in gas phase, allowing non-

volatile samples to be analysed using MS. FD has be mostly replaced by other desorption methods 

yet it remains particularly useful for the analysis of high molecular mass non-polar compounds such 

as polymers (Beckey, 1977). The most widespread and powerful desorption ionization technique is 

MALDI, which is ideal for the analysis large, non-volatile, and thermally liable compounds such as 

proteins, oligonucleotides, synthetic polymers and large inorganic compounds. MALDI involves the 

analyte is dissolved in a matrix. This matrix is a solvent containing small organic molecules which 

have strong absorption at the laser wavelength. The analyte and matrix are dried prior to placing 

under vacuum and then ablated by intense laser pulses over a short duration. Although not fully 

understood, the laser irradiation is believed to induce rapid heating which causes sublimation of the 
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matrix crystals which also removes analyte for the surface. The charged matrix then imparts charge 

to the analyte via proton transfer. MALDI is more sensitive than other laser ionization techniques 

due to the matrix minimizing damage to the analyte from the laser pulse and increasing energy 

transfer to the analyte (Zenobi & Knochenmuss, 1998). MALDI can detect femtomoles of proteins 

with a molar mass up to 300,000 Da (Spengler & Cotter, 1990).  

Although there is are plentiful ions sources available to most relevant for the use of identifying a 

wide range of unknown plant compounds and bacterial metabolites is ESI. The success of ESI is due 

to its versatility, although was originally considered to be an ionization technique for protein 

analysis. ESI its use extended to polymers, biopolymers and small polar molecules. ESI allows very 

high sensitivity to be reached and is easily coupled with HPLC. ESI is based on the generation of gas-

phase ions from a solution flowing through a small outlet, when voltage is applied. Once enough 

voltage is supplied between the solution and MS inlet, the solution is dispersed in fine droplets with 

the aid of a sheath gas which is usually N2 which undergo a succession of solvent evaporation and 

coulombic fission, lastly leading to multi-charged molecular ions with intact analytes (Rohner, Lion 

& Girault, 2004). Electrospray can used with either positive or negative applied voltage leading to 

the formation of cations or anions, respectively. A power supply is connected the solution and a 

counter electrode, when there is no voltage applied the only force acting on the liquid is surface 

tension causing the surface to be hemispherical. Once electrostatic force is applied and is balanced 

with the surface tension, the surface forms a conic shape called the Taylor cone (Taylor, 1964). With 

a slight increase in applied potential, the solution/air interface at the apex of the cone becomes 

unstable dispersing the solution into charged droplets. The droplet evaporates and as the coulombic 

repulsion exceeds the surface tension, each drop explodes to produce further smaller droplets. 

Continuous generation of smaller and smaller droplets leads to the production of gas-phase ions 

(Rosell-Llompart & De La Mora, 1994). The sensitivity of ESI is based on the concentration of the 

analyte rather than the quantity of samples injected into the source, in fact sensitivity is improved 

the lower the flow rate of sample down to tens of nanolitres per minute.  
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ESI along with all other ionization methods suffer from ion suppression, which is a phenomenon 

occurring when there is a high concentration of non-volatile compounds inhibiting droplet 

formation, release into gas phase and ultimately the detector. Highly concentrated samples 

compete for limited charges and space on the droplet.  This results in the molecules with higher 

mass suppressing smaller molecules, and more polar compounds are more susceptible to 

suppression. (Sterner et al., 2000, Bonfiglio et al., 1998, and Annesley, 2003). Ion suppression can 

be affected several variables, system variable, compound variables and method variables. System 

variables are electric field, ES-capillary diameter, ES-capillary voltage, distance to counter electrode, 

heat capillary of ambient gas, solvent saturation level of ambient gas. Compounds variables are 

surface activity, proton affinity, pKa and solvation energy. Method variables are flowrate, electrolyte 

concentration, pH and surface properties such as boiling point and surface tension (King et al., 

2000). The presence of electrolytes is vital to observe a stable spray, however normal solvents 

contain enough electrolytes for this purpose. As the maximum tolerable concentration of 

electrolytes to have good sensitivity is 10-3 M, it is more important to remove electrolytes for the 

samples to obtain good ionization (Hoffmann & Stroobant, 2007). Therefore, ion suppression can 

be reduced by implementing several strategies. Sample matrix, coeluting compounds and crosstalk 

can contribute to ion suppression, therefore sample purification using SPE (or other means of 

purification) and suitable chromatographic separation can reduce this effect. With respect to 

sample matrix impacting on ion suppression TFA is a known to be one of the best liquid 

chromatography modifiers. TFA does not interfere with spectrophotometric detection but it does 

significantly cause problems for mass spectrometric analysis. TFA increases the surface tension of 

the mobile phase which causes the “Taylor cone” to be unstable causing the spray to often break 

down reducing the analyte ion signal, by using a weaker acid such as acetic or formic acid ion 

suppression can be reduced (Hayati et al., 1986).  

ESI ion formation occurs at ambient pressure meaning that there are numerous collisions between 

ions and molecules which are not seen in a vacuum. Proton transfer, producing a cation or anion is 
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the most common ion-molecules reaction at ambient or high pressure. This reaction is based on 

proton affinity, the neutral or anionic acceptor of a proton must have a higher affinity that the 

neutral or cationic donor thus transferring the proton. This reaction also occurs when the molecule 

fragments, the proton can only be present on one of the fragments. An adduct is an ion formed by 

the combination of a neutral molecule and an “ionizing” ion other than a proton. Sodium (M+23)+ 

and ammonium (M+18)+ are common positive adducts and chlorine (M+35)- , (M+37)- and acetate 

(M+59)- are common negative adducts. Commonly acids are added to mobile phases and can for 

adducts such as formic acid forming formate (M+45)- negative ions. Dimers and other aggregates 

can also form (M+M+H)+ (Hoffmann & Stroobant, 2007).  

1.1.6.2 – Mass Analyser 

 Once gas phase ions have been produced, they must be separated based in their masses 

and determined. The physical property which is measured is the mass to charge ratio rather than 

the mass alone, therefore multiply charged ions will be a fraction of the actual mass. There are 5 

main characteristics of mass analysers: mass range limit, analysis speed, transmission, mass 

accuracy and resolution. Mass range is the limit of m/z over which a mass analyser can measure, 

and analysis speed is the rate at which the analyser is able to measure over that range. Transmission 

is a measure of the number of ions lost during mass analysis, it is the ratio between the ions reaching 

the detector and the ions entering the mass analyser. Mass accuracy is a measure of the difference 

between the measured m/z and the theoretical m/z, high mass accuracy has significant applications 

in elemental composition determination. Resolution concerns the ability of an analyser to 

distinguish between two ions with small m/z differences. Mass analysers ability to resolve m/z are 

categorized into low and high; the distinction being less than or greater than 10,000 FWHM 

(Hoffmann & Stroobant, 2007). 

 Quadrupole analysers separate ions based on the stability of their trajectory in oscillating 

electric fields. Quadrupoles are made up of a source, focusing lenses, and four perfectly parallel 
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rods. As the ions enter the focusing lenses, they are passed longitudinally through the centre of 

these charged parallel rods to the detector. Opposite rods are electrically connected with RF and/or 

DC voltages, meaning adjacent rods have opposite charges. The ions will be drawn laterally to the 

opposite charge. If the potential changes sign before it discharges itself on the rod, the ion will 

change direction. If the lateral pull to either charged rod remain stable for the length of the 

quadrupole the ion will be detected, electrical potentials are adjusted so only certain ions with 

specific m/z are selected to pass through the rods to the detector. RF only voltage results in a wide 

range of m/z traversing through the quadrupole, which is usually used for ion-focusing. When both 

DC and RF are applied ions of a specific m/z can be tuned, by increasing the DC and RF voltage and 

keeping the ratio constant the mass range can be scanned to transmit ions of increasing m/z to 

acquire a mass spectrum. In practice the highest detectable m/z of a quadrupole is about 4,000 Th 

and resolution of around 3,000 FWHM making them low resolution instruments. Quadrupoles are 

the cheapest analyser but are also very robust, they do not depend of kinetic energy of the ions, 

robust in terms of pressure changes and have high scan speed therefore are well suited to be 

coupled with chromatographic techniques. Multiple quadrupoles can be applied in tandem to obtain 

fragmentation analysis. If three quadrupoles were lined up a collision gas such as He would be 

introduced into the central quadrupole and then the first and last could either scan of a range of 

ions or select for specific m/z ranges.  

 Ion trap analysers use an oscillating RF quadrupolar electric fields to trap ions in two or three 

dimensions and store them. An ion trap analyser is made up of a circular electrode with two ellipsoid 

caps. They work in similar way to a quadrupole only in a loop instead of a rod. Instead of changing 

the potentials to allow ions through the rods, ions of different masses are stored within the ion trap 

and then expelled according to their masses to obtain a spectrum (Stafford et al., 1984). Ions can be 

produced by injecting electrons in the ion trap. The 3D ion trap also known as Paul ion trap is subject 

to spatial charge effects which effect the stability of the ions within the trap when there are too 

many ions present. This effect is lessened in 2D ion trap known as linear ion traps (LIT), which can 
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accommodate ten-fold more ions than 3D without suffering from poor resolution. Ion traps are 

often combined with other mass analysers in order to improve the efficiency of the MS instrument 

allowing more ions to be analysed (Douglas et al., 2005). 

 Time of flight (TOF) analysers separates ions based on the velocity of the ions within a flight 

tube after being accelerated by an electric field. TOF analysers work well with ion sources which 

produce pluses of ions such as laser-based techniques. The m/z is measured by the time ions takes 

to move from the source to detector. TOF analysers have a high analysis speed, broad m/z ranges 

and no upper limit therefore ideally suited to soft ionisation techniques and work with proteins. 

However, they detect a weak number of ions which is insufficient to produce high precision and 

resolution (Moniatte et al., 1996). 
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1.2 - Methods – Natural Products  

1.2.1 – General Reagent 

Table 1: List of all general reagents, suppliers and grades. 

Reagent name Supplier  Grade 

Methanol (MeOH) Fisher Scientific  HPLC grade 99.9 % 

Methanol-d4 Sigma-Aldrich 99.8 atom % D 

Dimethyl Sulfoxide (DMSO) Supelco –  LiChrosolv ≥99.7 % 

Water  Milli-Q 18.2 Ω – Q-pod purifier 

Formic acid (FA) Supelco  LC-MS LiChropur 98-100% 

2-methoxy-1,4-naphthoquinone 
(MNQ) 

Merck 98% 

Mueller Hinton agar  Merck For microbiology 

Mueller Hinton broth  Merck For microbiology 

Yeast malt agar Merck For microbiology 

Yeast malt broth Merck For microbiology 

Brucella Agar with 5% Sheep Blood, 
Hemin and Vitamin K  

Millipore  For microbiology 

Dulbecco’s modified eagle media 
(DMEM) 

Gibco Suitable for cell culture 

Hepes Gibco 1 M, Suitable for cell culture 

Foetal Calf Serum  Gibco Suitable for cell culture 

Kanamycin solution Sigma-Aldrich 10 mg/mL in 0.9% NaCl, BioReagent, 
suitable for cell culture 

Amphotericin B solution  Sigma-Aldrich 250 mg/L in deionized water, 
BioReagent, suitable for cell culture 

Defibrinated sheep blood Oxoid NA 

Phosphate buffered saline  Sigma-Aldrich 10x concentrate, suitable for cell culture 

Triton-X 100 Sigma-Aldrich Laboratory grade 

Eagle modified essential media 
(EMEM) 

Gibco Suitable for cell culture 

Basement membrane extract with 
phenol red 

Gibco Suitable for cell culture 

Foetal Bovine Serum (FBS) Gibco Value FBS, suitable for cell culture 

MEM Non-essential amino acid 
solution (100x) 

Gibco Without glutamine, BioReagent, 
suitable for cell culture 

L-Glutamine  Gibco 200mM, suitable for cell culture 

Ampicillin sodium salt Sigma-Aldrich Powder, BioReagent 

Meropenem trihydrate Sigma-Aldrich Powder, BioReagent 

Ciprofloxacin HCl Supelco Pharmaceutical secondary standard 

Lithium Mupirocin  Sigma-Aldrich Powder, >95% 

Levofloxacin  Sigma-Aldrich Powder, >98% 

Chloramphenicol  Sigma-Aldrich Powder, BioReagent 

Rifampicin  Sigma-Aldrich Powder, BioReagent 

Tetracycline  Sigma-Aldrich Powder, 98-102% 

Cefotaxime sodium salt Sigma-Aldrich Powder, BioReagent 
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Nalidixic acid sodium salt Sigma-Aldrich Powder 

Gentamycin sulphate Sigma-Aldrich Powder 

Streptomycin sulphate salt Sigma-Aldrich Powder, BioReagent 

2-hydroxy-1,4-naphthoquinone 
(HNQ or lawsone) 

Sigma-Aldrich 97% 

Urea  Supelco 8 M (after reconstitution with 16 mL 
high purity water) 

DL-Dithiothreitol (DDT) Sigma-Aldrich >98% 

Iodoacetamide Sigma-Aldrich BioUltra 

TRIS Solution Millipore OmniPur, 1.0 M pH 7.5 

Trypsin Promega Mass Spectrometry Grade 

Chloroform Sigma-Aldrich HPLC Plus, ≥99.9% 

 

1.2.2 – Extraction and purification  

 I. glandulifera was collected from a riverbed in Llanfarian, Ceredigion, Wales, UK 

(52.37667°N, -4.07833°W). F. japonica was collected from a riverbed in Penparcau, Aberystwyth, 

Ceredigion, SY23 3TL (52.403472°N, -4.068028°W). Rhododendron ponticum plant material was 

collected from Llanilar, Aberystwyth, Ceredigion, SY23 4SB (52.352833°N, -4.020306°W). Only the 

aerial parts of the plant were collected and stored in a -80 °C freezer within 1 hour of collection.  

 In order to fully extract all compounds contained within each plant all cellular structure 

needed to be disrupted therefore all plant material was ground into a powder using liquid nitrogen, 

pestle and mortar. Powdered plant material was extracted in 75% aqueous methanol stirring at 

room temperature for 24 hours. The plant material was separated from the solvent using a sieve, 

discarding the plant material and drying the solvent under vacuum.  

 Purification and analysis of samples will be carried out using C-18 solid phase, therefore 

samples need to be prepared as such. After conditioning a 10 g LC-18 SPE cartridges (Supelco, UK), 

dry sample extract was added. Water was added to the sample and pulled through the cartridge 

under vacuum. This fraction was collected and will be referred to as “unbound”. This is because 

analytes present within this fraction have not bound to the C-18 solid phase within the SPE cartridge. 

Further purification and analysis of this fraction would require chromatographic techniques which 

are suitable for the most polar of analytes such as HILIC. Due to the benefits and ubiquity of reversed 
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phase chromatography (see 1.1.5 – Liquid Chromatography) it was decided that analytes which are 

suitable for these separation technique would be the main focus. However, the unbound fraction 

was freeze dried under vacuum and stored at -80 ˚C, should we need to return to this sample. The 

cartridge was then washed with methanol and collected separately. This fraction will be referred to 

as the “bound” fraction, as any analytes which are passed through the column can be separated 

using reversed phase chromatography. This fraction was also freeze dried at stored at -80 ˚C. In 

addition to separating the analytes relevant for further purification based on which type of 

chromatography would be most relevant this also cleaned the samples for further purification. Any 

particulate matter or analytes which cannot pass through a C-18 column would be removed 

improving the quality of any further chromatography carried out.  

 Using the bound fraction, further separation was carried out using Isolera 4 (Biotage, 

Sweden) flash purification system into fractions using a gradient of ultrapure 18.2 Ω H2O and 

analytical grade MeOH from 0-100% MeOH (flow rate of 100 mL/min) using a 60 g Biotage SNAP 

Ultra C18 flash cartridge (Biotage, Sweden). This “SNAP Ultra” column allowed the bound fraction 

of sample to be purified quickly and with the highest purification performance offered by the 

Biotage flash purification system. This yielded a range of fractions for each plant which were assayed 

for a range of biological activities. A fraction was exhibiting potent biological activity and further 

purification using C18 semi-preparative HPLC system (Dionex, ThermoFisher Scientific, UK). A 

custom isocratic gradient using ultra-pure 18.2 Ω H2O and analytical grade MeOH were used to 

purify this fraction into two pure compounds only one of which was found to be a potent 

antimicrobial.   

1.2.3 – HPLC-PDA-MS Analysis   

1.2.3.1 – HPLC-PDA- Low resolution MS  

 The instrumentation and method described below was used to analyse crude plant extracts 

and fractions from flash purification. This is run a relatively long gradient to isolate peaks and 
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tentatively identify their structure. The aim was not full structural characterisation but to 

understand the purity and type or compounds present within these samples.  

  The bound and unbound plant extract (100 μL) were inserted into HPLC vials. The analysis 

used a Thermo-Finnigan HPLC/MSn system (Thermo Electron Corporation, USA) which comprised a 

Finnigan surveyor photodiode array (PDA) plus detector and a Finnigan LTQ (linear trap quadrupole) 

with an electron spray ionisation (ESI) source, the system was linked to an analytical workstation. 

The column used was a reversed phase Waters C18 Nova-Pak (4 μm, 3.9 mm × 100 mm). 10 μL of 

sample was injected for each run. The PDA detection wavelengths were set between 240 nm – 600 

nm, with a flow rate of 1 mL min-1. The mobile phase consisted of water-formic acid (solvent A; 

100:0.1, v/v) and HPLC grade methanol-formic acid (solvent B; 100:0.1, v/v). The starting condition 

was 95%A/5%B, with the percentage of solvent B increasing linearly to 100% over 30 minutes. The 

LC-MS interface used N2 as the sheath and auxiliary gas and He was used as the collision gas. For 

ionisation in negative mode, the interface and mass-selective detection parameters were as follows: 

sheath gas, 30 arbitrary units; auxiliary gas, 15 units; spray voltage, -4 kV; capillary temperature 320 

°C; capillary voltage, −1 V; tube lens offset, −68 V. Xcalibur analytical software (Thermo Fisher 

Scientific, USA) was used to process the chromatographic data. Results were compared to various 

online libraries such as KEGG ligand (KEGG, Japan) and Mass bank (Horai et al., 2010) as well as 

scientific journals.  

1.2.3.2 –HPLC-PDA- High resolution MS  

 The instrumentation and method described below was used once pure compounds were 

achieved. A relatively short gradient and run time was utilised as these compounds did not require 

separation. The aim of this method was to be able to aid in the full structural characterisation of 

compounds using the high-resolution MS and running standards for comparison.  

 LC-HRMS analysis was performed on an Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Scientific) that was coupled to an UltiMate 3000 liquid chromatographic system (Dionex, Thermo 
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Scientific). A Hypersil Gold (Thermo Scientific) reversed phase C18 column (2.1 mm x 150 mm; 

particle size 5 µm) was used and maintained at a temperature of 60 °C at a flow rate of 0.6 

mL/minute. 10 µL was injected and eluted using a gradient mobile phase system with eluent A 

containing ultra-pure water (18.2 Ω) with 0.1% formic acid (mass spectrometry grade, Fluka), and 

eluent B MeOH (HPLC grade, Fisher Scientific) with 0.1% formic acid. The initial conditions were sat 

at 95% A with a linear increase to 95% B over 7 minutes. 100% B was held for 3.5 minutes before 

equilibration at initial conditions for a further 2.5 minutes. 

 Ions were generated in a HESI-II source with a source voltage of 3500/2500 V for 

positive/negative mode. The sheath gas was set to 45 psi, aux gas flow set to 13 AU, with a vaporiser 

temperature of 358 °C and an ion transfer temperature of 342 °C. Ions were detected in profile 

mode over 100-2000 m/z in the orbitrap detector at a resolution of 240000 and an injection time of 

100 milliseconds in both positive and negative mode. 

1.2.4 – NMR Analysis 

 1H NMR spectra were recorded on a Bruker DRX500 instrument operating at 500 MHz using 

CD3OD as the solvent and SiMe4 as the internal standard. Chemical shifts (δ) are given in ppm 

relative to SiMe4. Post-acquisition processing was performed on MestReNova (Version 6.0.2) 

Mestrelab Research, Compostela). 1H spectra were processed using automatic peak picking and 

manual integration. Where applicable, coupling constants (J) were calculated using the MestReNova 

manual multiplet analysis function and are expressed in Hz.  

 

1.2.5 – Antimicrobial susceptibility testing – 24-hour growth curve  

   Initial plant extracts and early purified products were subjected to a 24-hour growth 

curve antimicrobial assay. This method allows many samples to be tested on one plate against 4 

different aerobic bacterial species: Bacillus subtilis ATCC 663, Escherichia coli – ATCC 25922, 
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Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 29213. All samples were 

tested in triplicate with no serial dilution at concentration of 1 mg/mL. 

 Bacterial suspensions were prepared by direct colony suspension in Mueller Hinton broth 

(Merck, Darmstadt) and incubated overnight at 37 °C in a temperature-controlled orbital shaker at 

300 rotations per minute (rpm). The overnight cultures were standardized to a McFarland standard 

value of 0.5 which is equivalent to 1 × 108 cfu/mL. This is done by diluting the suspension to obtain 

an optical density (OD) of 0.1 at 600 nm using a spectrophotometer (Wiegand, Hilpert and Hancock, 

2008; Hecht et al., 2007). A further 1 in 10 dilution of this bacterial suspension was carried out to 

make a standardised bacterial solution of 1 × 107 cfu/mL. Mueller Hinton broth (150 μL) was added 

to each well in the 96-well plate. Into rows A-E was added 40 μL of 5 mg/mL solution of sample was 

added and mixed, one sample per row. Rifampicin (61 μM, control) was added to row F. The wells 

in rows G and H were left untreated. Standardized overnight culture (10 μL; 1 × 107 cfu/mL) was 

added to rows A−G to provide a final in-well concentration of 5 × 105 cfu/mL. Row H left with no 

sample and no bacteria as a blank and a contamination control. Plates were incubated in a Hidex 

Sense Plate Reader (LabLogic, Sheffield UK) at 37 °C within an orbital shaker at 300 rpm for 24 hours. 

The OD was measured at 600 nm every 20 minutes for 24 hours this data was used to produce a 

growth curve. The high concentration is justified as the samples contain a mixture of many 

compounds therefore a high concentration is required to see any activity. By measuring growth over 

24 hours any disturbances in growth can be analysed even if the sample did not affect the total 

amount of bacteria present after 24 hours. A percentage inhibition can be calculated by dividing the 

OD at 24 hours of a sample by the OD at 24 hours of the positive control and multiplying by 100.  

1.2.6 – Antimicrobial susceptibility testing – Minimum inhibitory concentration  

 Calculating the minimum inhibitory concentration (MIC) of a compound was carried out 

once a pure compound has been obtained and involves testing a range of concentrations to show 
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the lowest amount of compound which can prevent the growth of different bacteria over the 

generation tome of the bacteria.  

 Bacterial suspensions were prepared by direct colony suspension in Mueller Hinton broth 

(Merck, Darmstadt) and incubated overnight at 37 °C in a temperature-controlled orbital shaker at 

300 rpm. The overnight cultures were standardized to a McFarland standard value of 0.5 which is 

equivalent to 1 × 108 cfu/mL. This is done by diluting the suspension to obtain an OD of 0.1 at 600 

nm using a spectrophotometer (Wiegand, Hilpert and Hancock, 2008; Hecht et al., 2007). Broth (190 

μL) was added to each well in the 96-well plate. Further broth (160 μL) was added to wells A1− A12, 

followed by test solution (40 μL). The sample was mixed, and aliquots (200 μL each) were taken and 

added to each well through to row E. Rifampicin (61 μM, control) was added to row F. The wells in 

rows G and H were left untreated. Standardized overnight culture (10 μL; 1 × 107 cfu/mL) was added 

to rows A−G to provide a final in-well concentration of 5 × 105 cfu/mL. Plates were incubated in a 

Hidex Sense Plate Reader (LabLogic, Sheffield UK) at 37 °C within an orbital shaker at 300 rpm for 

24 hours (72 hours in the case of B. anthracis). The OD was measured at 600 nm at initial time point 

and after 24 hours, this was used to calculate the percentage growth when compared to bacterial 

growing without the presence of an antimicrobial compound.  

 Samples and bacterial combinations were carried out in triplicate, the lowest concentration 

of MNQ which inhibited the growth of bacteria was deemed to be the MIC. If there is a discrepancy 

between the triplicate analyses an average of the three MIC values were taken.  

 Most of the bacteria used for this test were all aerobic; Bacillus anthracis NCTC 10340 (72-

hour generation time), Bacillus subtilis ATCC 663, Escherichia coli – ATCC 25922, Pseudomonas 

aeruginosa ATCC 27853, Salmonella enteritidis wild type, Staphylococcus aureus ATCC 29213 and 

Staphylococcus aureus MRSA ST8: USA300. 

 Two isolates of Clostridium difficile were also assayed; 291 previously described by Calabi et 

al. 2001, and 630 previously described by Farrow, Lyras and Rood 2000. These are strictly anaerobic 
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bacteria, meaning they are very sensitive to the presence of oxygen. They were incubated in an 

anaerobic chamber with a gas mix of 5% CO2, 10% H2, 85% N2. Unfortunately, there was no option 

to shake while incubating so they were placed on an orbital shaker at 300 rpm for 10 mins prior to 

taking the initial OD reading then entering the anaerobic chamber. The same was shaking was 

carried out prior to the final reading taken at 72 hours.  

1.2.7 – Antifungal susceptibility testing – 24h growth curve and minimum inhibitory 

concentration  

  Antifungal assays were carried out in the same format as antimicrobial assays only using 

Candida albicans (ATCC 10231) and yeast malt broth (Merck, Darmstadt) as a growth medium. The 

only fungal species used for this assay was Candida albicans NCTC 3255.  

1.2.8 – Schistosoma mansoni schistosomula culture compound screening - Roboworm 

Platform 

  S. mansoni (Puerto Rican Strain, Naval Medical Research Institute- NMRI) cercariae were 

collected from infected Biomphalaria glabrata (NMRI) snails after exposure to 2 hours of light at 

26°C and then mechanically transformed into schistosomula as described (Colley and Wikel, 1974). 

Newly transformed schistosomula were prepared for 72 hours high throughput screening (HTS) in 

384-well black-sided microtiter plates (Perkin Elmer, MA, USA) as described in Nur-E-Alam et al., 

2017, with a final DMSO concentration of 0.625%. The effect of compounds on 72 hours cultured 

schistosomula was deduced by analysing the effect on both motility and phenotype of treated 

schistosomula using the image analysis model described by Paveley et al., 2012.  

1.3 - Results – Natural Products  

 The following summarises the strategy used to isolate anti-microbial compounds. All 

powdered plant material was extracted in 75% methanol, dried under vacuum and bound to C18 

reversed phase silica prior to flash purification using gradient of ultra-pure 18.2 Ω H2O and analytical 
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grade MeOH from 0-100% MeOH (flow rate of 100 mL/min) using a 60 g Biotage SNAP Ultra C18 

flash cartridge. To identify which fractions and compounds were of interest a range of biological 

assays were carried out. Following flash purification 24h bacterial growth assays were carried out at 

1 mg/mL. Further purified fractions and compounds were tested for antimicrobial activity using MIC 

assay and other bioassays. Following flash purification fractions of interest were purified further 

using semi-preparative HPLC. HPLC-PDA-ESI-MS/MS was carried out to identify compounds. For 

compounds of interest which were purified fully NMR was also carried out.  

1.3.1 – Impatiens glandulifera 

1.3.1.1 – Impatiens glandulifera - Isolation of compounds – Flash Purification 

 In order to obtain antimicrobial compounds of interest from the plant extract a bioactivity 

led purification method was employed, this is summarised in Figure 5. The I. glandulifera plant 

extract was prepared for purification by passing through a C18 SPE cartridge firstly eluting with 

water and then methanol. The methanol fraction was purified further using C18 reversed phase 

flash purification. The mobile phases were water and methanol, a gradient from 0-100% methanol 

over 30 mins at a flow rate of 10 mL/min was used (Figure 6). 
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Figure 5: Summary of the separation pathway of I. glandulifera material 

 

  

Figure 6: Flash purification of I. glandulifera material, which was separated into 5 fractions 
denoted by the vertical black lines. The coloured area of the graph represents the total UV 

absorption of the analytes leaving the column at that time. The red line represents UV absorption 
at 280 nm and black line represents UV absorption at 330 nm. Colour changes indicated that the 

flash purification system has detected a significant change in UV absorption which could indicated 
a different analyte being eluted. The blue line represents the increasing gradient of methanol over 

time. 

Impatiens glandulifera 

Unbound Bound 

Flash Purification  

IG1 IG2 IG3 IG4 IG5 

HPLC 

IG5.1 IG5.2 
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1.3.1.2 – Impatiens glandulifera -Identification of compounds 

 Five fractions of I. glandulifera were obtained using flash purification each was analysed 

using HPLC-PDA-ESI-MS/MS (Appendix 1). Each major peak present in both PDA and negative mode 

mass chromatogram is shown in Error! Reference source not found.. The tentative identifications 

are based upon the use of online mass spectral database MZedDB and based on their fragmentation 

patterns.  

Table 2: Summarised HPLC-PDA-ESI-MS/MS data of the 5 fractions obtained from I. glandulifera  

Fraction 
No.  

RT  
(min)  

PDA  λ  
max (nm)  

MS1 [M-H]- 
ions (m/z)  

MS2 [M-H]- ions  
(m/z)  

Tentative 
identification   

1  6.25  289, 312  400.62  302.89,  228.80, 
200.80  

Unknown   

9.39 251, 273,  
326 

316.92 229.79,228.77, 200.79, 
184.80  

Myricetin 

2  2.53  261  286.73  240.74  Unknown   

5.20  281  480.87  258.73,  288.70,  
212.72, 200.73  

Unknown   

8.25  272, 355  332.82  272.79,  260.74,  
104.54  

Unknown   

9.35  251, 273,  
326  

316.92  229.79,  228.77,  
200.79, 184.80  

Myricetin   

10.64  285, 379  258.81  258.75,  231.88,  
230.74  

Unknown   

11.17  252, 282,  
338, 379  

634.90 616.82,  482.82,  
472.77, 454.81  

Trigalloyl glucose  

3  8.92  274, 343  550.37  303.11  8-methylsulfinyl-
noctylglucosinolate  

9.39  289, 340,  
379  

584.74  538.69, 376.60  Unknown   

11.22  252282,338, 
379  

634.90 616.82,  482.82,  
472.77, 454.81  

Trigalloyl glucose  

12.63  255, 353  548.62  504.8  Quercetin-3-
Omalonylglucoside  

14.06  265, 345,  
379  

532.50 488.79  Luteolin-7-O-
6malonylglucoside  

4  11.96  255, 354  462.95  301.88,  300.85,  
299.87  

Quercetin-3-O-
glucoside  

12.16  255, 354  608.96  300.73  Rutin  

13.52  265, 347  593.00 286.00, 284.87  Tiliroside  
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5  12.09  249, 278,  
339, 379  

462.95  301.88,  300.85,  
299.87  

Quercetin-3-O-
glucoside  

 

1.3.1.3 – Impatiens glandulifera -Antimicrobial activity of flash purification fractions 

 In order to streamline the purification process, antimicrobial assays were carried out on the 

5 flash purification fractions obtained from I. glandulifera prior to any further purification. A 24-

hour antimicrobial growth curve method was carried out using fractions at 1 mg/mL (see 1.2.5). The 

total percentage inhibition of growth over 24 hours for each fraction was calculated and displayed 

in Table 3. 

Table 3: Summary of all flash purification fractions (1 mg/mL) antimicrobial activity 
expressed as percentage inhibition after 24 hours of growth (n=3) 

Fraction E. coli 
(ATCC 25933) 

P. aeruginosa 
(ATCC 700603) 

S. aureus 
(ATCC 29213) 

B. subtilis 
(ATCC 6633) 

 

IG 1 
 

9 0 20 17 

IG 2 
 

15 0 16 20 

IG 3 
 

3 0 47 19 

IG 4 
 

17 0 53 0 

IG 5 
 

55 0 95 48 

 

 Of the 5 fractions tested, IG5 clearly showed the most significant antimicrobial activity. IG5 

had the highest % inhibition against all the bacterial species tested, although P. aeruginosa 

remained unaffected by all the fractions. IG5 showed the most significant activity against S. aureus, 

allowing only 5% growth over a 24-hour period. 

1.3.1.4 – Impatiens glandulifera – Isolation of compounds – HPLC Purification of IG5 

 Of the five fractions IG5 was chosen for further purification due to its significant 

antimicrobial activity. To obtain pure compounds HPLC purification was carried out using a Nova-
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Pak C18 Prep Column, 60 Å, 6 µm, 7.8 mm X 300 mm on a preparative HPLC system with a PDA 

detector (Dionex, ThermoFisher Scientific, UK). 100 µL of a 10 mg/mL solution was made up in 60% 

MeOH and injected using a custom gradient of 60% Methanol to 80% methanol over 10 minutes 

before washing at 100% and returning to starting conditions over a total of 25 minutes. The PDA 

detector was set to 240 nm and all eluent was collected into tubes. This method was developed to 

obtain two well-resolved peaks along with four small peaks. The two main peaks were named IG5.1 

and 5.2 yielding 2 and 5 mg of dry product respectively, the other smaller peaks were also collected 

but their weights were negligible. The injection volume as increased to 200 µL and the resolution 

between peaks was maintained, and repeated a further 20 times, obtaining around 10 mg of IG5.1 

and over 25 mg of IG5.2.  

1.3.1.5 – Impatiens glandulifera – Antimicrobial activity of IG5.1 and IG5.2  

 Using the material gained from the HPLC purification along with the flash purification 

fractions an MIC assay was carried out against MRSA (Table 4). This clearly demonstrates the result 

of the purification, it has marginally improved the potency of IG5 in the case of IG5.2 by removing 

any inactive impurities, present in IG5.1 and other peak too small to carry out an assay. This 

compound has shown activity 20-fold better than any other fraction against MRSA. 

Table 4: Minimum inhibitory concentration of IG fractions against MRSA ST8: USA300 (n=3) 

Fraction MIC (mg/L) 

IG 1 1420 

IG 2 1660 

IG 3 490 

IG 4 1130 

IG 5 39 

IG 5.1 100 

IG 5.2 23 
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 The Les Bailie group had a range of interesting pathogens which I was able to also able to 

use. This widened the scope of the anti-bacterial activity of the IG5.1 and 5.2. Their interest was in 

Bacillus anthracis along with a few other bacteria (Table 5). Yet again the IG5.2 fraction showed 

impressive antimicrobial activity against more species of bacteria, C. difficile. Although these results 

are not as impressive as the activity seen against S. aureus.  

Table 5: Minimum inhibitory concentration of IG5.1 and IG5.2 against a further 5 strains 
of bacteria (mg/L) (n=3) 

Fraction Bacillus 
anthracis 

Bacillus 
subtilis 

Salmonella 
enteritidis 

Clostridium 
difficile (291) 

Clostridium 
difficile (630) 

IG5.1 462 >1000 895 256 >1000 

IG5.2 116 533 329 79.7 290 

 

1.3.1.6 – Impatiens glandulifera –Identification of IG5.2 

 The fraction IG5.2 was identified as 2-methoxy-1,4-naphthoquinone (MNQ) using NMR 

(Figure 7 and Table 6) and HR-MS (Figure 8). 1H NMR revealed that IG5.2 only had 4 distinct proton 

environments, in combination with the HRMS data it was known that this was a small molecule with 

a molecular mass of 188 m/z (189.05472 [M+H]+). Using this information and literature (Yang et al., 

2001; Mitchell et al., 2007) to support this compound being derived from I. glandulifera the 

structure was confirmed to be MNQ. For further proof of this structural elucidation commercially 

available MNQ was obtained (Merck, Darmstadt) and run using the same HR-MS methodologies and 

compared the chromatography obtained from IG5.2 (Figure 9). The retention time matched and the 

MS ion was the same, therefore the structure is confirmed as MNQ. 
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Figure 7: 1H NMR spectrum of IG5.2  

 

  

Table 6: 1H NMR chemical shifts and identification of IG5.2 as 2-methoxy-1,4- 
naphthoquinone (MNQ) 

Carbon 
Number  

Chemical 
shift 1H 

  

C-1 - 

C-2 - 

C-3 6.18 s 

C-4 - 

C-5 8.13 dd 

C-6 7.67 dt 

C-7 7.73 dt 

C-8 8.08 dd 

C-9 - 

C-10 - 

C-11 3.92 s 
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Figure 8: HPLC-HR-MS of IG5.2. The top graph is a mass chromatogram over the 7 min run time 
showing the relative abundance of ions being detected at certain retention times. The bottom 
graph is a mass chromatogram taken at the apex of the peak within the mass chromatogram. 

 

  

Figure 9: HPLC-HRMS of commercially available MNQ. The top graph is a mass chromatogram over 
the 7 min run time showing the relative abundance of ions being detected at certain retention 

times. The bottom graph is a mass chromatogram taken at the apex of the peak within the mass 
chromatogram. 
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1.3.2 – Fallopia japonica 

1.3.2.1 – Fallopia japonica - Isolation of compounds  

 The same methodologies used for I. glandulifera were also applied to F. japonicum.  A 

summary of the purification and assays carried out is depicted in Figure 10. The plant extract was 

prepared for purification by passing through a C18 SPE cartridge firstly eluting with water and then 

methanol. The methanol fraction was purified further using C18 reversed phase flash purification. 

The mobile phases were water and methanol, a gradient from 0-100% methanol over 30 mins at a 

flow rate of 10 mL/min was used (Figure 11). 

  

Figure 10: Summary of the purification of F. japonica 

  

Fallopia japonica 

Unbound Bound 

Flash Purification  

 

FJ1 FJ2 FJ3 FJ4 

HPLC 

FJ4.1 

FJ5 
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Figure 11: Flash purification of F. japonica material which was separated into 6 fractions denoted 
by the vertical black lines. The coloured area of the graph represents the total UV absorption of the 

analytes leaving the column at that time. The red line represents UV absorption at 280 nm and 
black line represents UV absorption at 330 nm. Colour changes indicated that the flash purification 

system has detected a significant change in UV absorption which could indicated a different 
analyte being eluted. The blue line represents the increasing gradient of methanol over time. 

 

1.3.2.2 – Fallopia japonica – Identification of compounds  

 Five fractions of F. japonica were obtained using flash purification each was analysed using 

HPLC-PDA-ESI-MS/MS (Appendix 2). Each major peak present in both PDA and negative mode mass 

chromatogram were summarised in Table 7.  

Table 7: Summarised HPLC_PDA_ESI_MS/MS data of the 5 fractions obtained from F. japonica  

Fraction  RT  
(min)  

PDA  λ  
max (nm)  

MS1  [M-
H]-  
ions (m/z)  

MS2  [M-H]-  
ions (m/z)  

Tentative identification   

FJ1  5.5  310  336.89  190.78, 162.76   Trans-5-para-coumaroylquinic 
acid  

6.46  323  366.99  192.80,  
193.85,  
172.81, 133.77  

Feruloylquinic acid  
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1.3.2.3 – Fallopia japonica – Biological Assays 

 Antimicrobial assay was carried using the F. japonica fractions in the same way as for I. 

glandulifera for comparison (Error! Reference source not found.). Fractions 3,4 and 5 showed the 

6.65  325  352.94  191.96,  
190.82, 178.82  

3-O-caffeoylquinic acid  

7.96  313  294.76  162.74,  
148.70, 130.59   

Para-coumaroyl-pentose  

 8.88  327  324.86  192.83  Feruloyl tartaric acid  

FJ2  8.29, 
9.29  

311  336.89  190.78, 162.76  Trans-5-para-coumaroylquinic 
acid  

 7.9  279  578.69  301.03,  
288.87, 245  

Naringin  

 10.5  314  308.87  276.81 162.77,  
144.72  

Unknown  

FJ3  9.31  304  434.75  388.74, 227.06  Resveratrol glycoside  

FJ4  10.08  306  435.75  388.74, 227.06  Resveratrol glycoside  

FJ5  12.48  256, 354  609.06  300.86  Unknown  

 13.34  256, 353  478.47  337.22, 460.14  Myricetin-O-hexoside  

 13.6  256, 349  492.48  472.98,  
447.07, 286.90  

Patulitrin  
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most significant activity against S. aureus, however this activity was far below that seen in I. 

glandulifera.   

Table 8: Summary of all flash purification fractions (1 mg/mL) antimicrobial activity 
expressed as percentage inhibition after 24 hours of growth (n=3) 

Fraction E. coli  
(ATCC 25933) 

P. aeruginosa 
(ATCC 700603) 

S. aureus  
(ATCC 29213) 

B. subtilis 
(ATCC 6633) 

FJ 1 2 0 0 0 

FJ 2 4 0 0 0 

FJ 3 13 0 39 0 

FJ 4 8 0 37 0 

FJ 5 9 0 30 0 

 

 Due to the low level of antimicrobial activity seen in these fractions no further purification 

was carried out and these fractions were not assayed against other bacteria species. However, the 

Hoffmann Research Laboratory offered their services to Life Sciences Research Network Wales 

projects. They have a high-throughput screening platform called Roboworm, which tests the ability 

of compounds to inhibit the viability of a larval schistosomula. As these fractions were plentiful and 

not as important as the IG5.2 fraction, which was critical, these fractions were a good opportunity 

to trial this assay. As these fractions were not active against bacteria, there is no reason they would 

not be a potent inhibitor of Schistosoma mansoni schistosomulae. Figure 12 shows that JK5 manage 

to significantly affect the motility of the schistosomulae but unfortunately did not affect the 

phenotype enough to be considered a hit compound and this was not investigated further.  
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Figure 12: Anti-helminthic activity of F. japonica fractions against S. mansoni. There are two 
parameters measured, motility and phenotype. In order to regarded as an active compound (a hit 

within the green area) the compound must score below -0.15 for phenotype and below -0.3 for 
motility. Auranofin (AUR) and Praziquantel (PZQ) are proven anti-schistosomal drugs. 

 

1.3.3 – Rhododendron ponticum 

1.3.3.1 – Rhododendron ponticum - Isolation of compounds  

 As for the previous two plants a summary of the purification carried out is shown in Figure 

13 and Figure 14 shows the flash purification of R. ponticum which was carried out in the same way 

as previous sections using a C18 column after SPE.  
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Figure 13: Summary of the purification of R. ponticum  

 

 

Figure 14: Flash purification of R. ponticum material which was separated into 3 fractions denoted 
by the vertical black lines. The coloured area of the graph represents the total UV absorption of the 

analytes leaving the column at that time. The red line represents UV absorption at 280 nm and 
black line represents UV absorption at 330 nm. Colour changes indicated that the flash purification 

system has detected a significant change in UV absorption which could indicated a different 
analyte being eluted. The blue line represents the increasing gradient of methanol over time. 
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1.3.3.2 – Rhododendron ponticum – Identification of compounds  

Three fractions of R. ponticum were obtained using flash purification each was analysed using HPLC-

PDA-ESI-MS/MS (Appendix 3). Each major peak present in both PDA and negative mode mass 

chromatogram were summarised in Table 9. 

Table 9: Summarised HPLC_PDA_ESI_MS/MS data of the 3 fractions obtained from R. 
ponticum (*-PDA data not available) 

Fraction 
No.  

RT  
(min)  

PDA λ 
max (nm)  

MS1 
[MH]- ions 
(m/z)  

MS2 [MH]- 
ions (m/z)  

Tentative identification   

1  1.96  270  204,  
338.76  

168.99,  
468.88  

Unknown   

4.57  296,  
323  

353.07  190.92,  
178.92  

5-hydroxy-6-methoxy-3'-4'- 
methylenedioxyfuranol [2",3":7,8] 
flavanone  

5.433  287  370  324.93,  
162.95  

Unknown   

5.88  287,  
298  

337.06  163  2-O-acetyl-trans-coutaric acid   

2  1.96  N/A* 168.99  124.88  Unknown   

3.27  N/A* 593  425  Quercetin 2-glucoronide sulphate   

4.74  N/A* 577.01  424.99  Kaempferol 3-glucoronide-7-
sulphate   

5.03  N/A* 577.01  424.99  Kaempferol 3-glucoronide-7-
sulphate   

5.89  N/A*  337.06  163  2-O-acetyl-trans-coutaric acid   

6.61  N/A* 483.08  207.98  Artonin P  

7.58  N/A* 502.65  456.94  Unknown   

8.12  N/A* 334.86  288.98  Unknown   

10.27  N/A* 373.04  327.04  Ovalitenone   

10.94  N/A* 479.05  315.95,  
316.98  

Myricetin 3-galactoside   

11.87  N/A* 463.07  315.97,  
316.94  

Catechin 3-O-(1-hydroxy-6-oxo-2-
cyclohexane-1-carboxylate)  

3  9.78  288  243.11,  
259.05  

N/A Unknown   

 10.28  251,  
340  

259.1  N/A Dihydropyrans  
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 10.94  255,  
357  

243.14  N/A Geranyl benzoquinone   

 11.85  256,  
352  

258.97  N/A Caffeic acid-3-sulphate   

 12.38  255,  
354  

259.08  N/A Dhelwagin  

 13.53  256,  
354  

249.06  N/A Lunularin  

 

1.3.3.3 – Rhododendron ponticum – Biological Assays 

 As for the other two plants the same antimicrobial assay was carried out for R. ponticum 

(Table 10).  

Table 10: Summary of all flash purification fractions (1 mg/mL) antimicrobial activity 
expressed as percentage inhibition after 24 hours of growth (n=3) 

Fraction E. coli  
(ATCC 25933) 

P. aeruginosa 
(ATCC 700603) 

S. aureus  
(ATCC 29213) 

B. subtilis 
(ATCC 6633) 

RP 1 25 46 20 37 

RP 2 19 58 37 55 

RP 3 8 22 13 11 

 R. ponticum fraction 1 and 3 showed barely any activity against any bacterial species when 

carrying out a 24-hour assay. Although RP2 showed moderate antimicrobial activity across all four 

bacterial species. An MIC assay was carried out using RP2, although the antimicrobial activity was 

not enough to kill the bacteria at a concentration tested. In order to display this data in a meaningful 

way the minimum concentration of RP2 required to limit the growth of the bacteria to 50% and 90%. 

This is referred to as the minimum limiting concentration (MLC) (Table 11). The concentration of 

RP2 required to inhibit the growth of all four bacteria is relatively poor compared to that of I. 

glandulifera. Although activity was relatively poor RP was consistently active against all four species, 

which was not seen in any other plant. The activity seen against P. aeruginosa was particularly good 

considering the other plant fractions were unable to affect the growth of this bacteria in the 

slightest.  



63 
 

Table 11: The minimum concentration of R. ponticum fraction 2 required to limit growth of 
four bacterial species by 50 and 90% over 24 hours (mg/L) (n=3) 

Bacterial Species  MLC50  MLC90  

E. coli  740  1340  

S. aureus  530  950  

P. aeruginosa  470  840  

B. subtilis  450  810  

 To increase the breadth of the biological testing carried out the R. ponticum fractions were 

also assayed for their ability to inhibit the growth of Candida albicans. This opportunistic pathogenic 

yeast is common in human mouths and throughout the gastrointestinal tract. These yeast cells are 

morphologically like bacteria and able to develop the antimicrobial susceptibility testing to be able 

to also assay C. albicans (Figure 15).  
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Figure 15: The 24-hour growth curve of C. albicans ATCC 102313 in the presence of three R. 
ponticum fractions (1 mg/L), hygromycin as an antifungal control, with no inhibiting compounds as 

a positive control and no fungi as a negative contamination control. 

 None of the fractions showed significant activity, with RP1 showing the best antifungal 

activity with an MLC50 of 1.4 mg/L, which was calculated based on the linear extrapolation of the 

single concentration tested.  

1.4 - Discussion – Natural Products  

1.4.1 – Impatiens glandulifera   

 I. glandulifera fractions were found to be effective against E. coli, S. aureus and B. subtilis at 

1 mg/mL. Fraction IG5 was by far the most active fraction overall; 55%, 95% and 48% inhibition 

respectively yet it was unable to affect P. aeruginosa (Table 3). Further purification was carried out 

on IG5 which yielded two fractions, IG5.1 and IG5.2. Of these two fractions IG5.2 was found to be 

an extremely potent inhibitor of MRSA, Bacillus anthracis, B. subtilis, Salmonella, and C. difficile 

(Table 4 and Table 5). The best activity was seen against MRSA, with an MIC of 23 mg/L. A range of 

antibiotics can be used to treat MRSA infections each with ranging MIC values depending on the 

strain; clindamycin (0.125-0.5 mg/L), daptomycin (0.063-4 mg/L), Doxycycline (0.25-32 mg/L), 

Erythromycin (0.25-<64 mg/L), Linezolid (2-32 mg/L), trimethoprim-sulfamethoxazole (0.06-20 

mg/L), and vancomycin (1-4 mg/L) (Fowler et al., 2006; Kalil et al., 2014; LaPlante et al., 2008). 

Comparing the MIC of MNQ to currently used antibiotics it is around 10-fold less potent. However, 

activity can be dependent on the strain being used. The above studies did not use USA300 so it 

cannot be directly compared. Further strains will need to be tested to fully understand the potential 

of MNQ. Only IG5.2 has been tested, which is a plant extract, commercially available MNQ has been 

purchased and further screens can be carried out using this. Looking at the mass chromatograms 

Figure 8 and Figure 9, the purchased MNQ has a cleaner chromatogram than the plant extract. This 

increase in purity could improve the potency to rival the efficacy of antibiotics such as vancomycin.  
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 Using a combination of HPLC-PDA-HRMS and NMR (Table 6 and Figure 8) IG5.2 was 

identified as 2-methoxy-1, 4-naphthoquinone (MNQ). This compound has been isolated previously 

from Impatiens balsamina which is a close relative of I. glandulifera, and MNQ was also shown to 

inhibit the growth of bacterial species Staphylococcus aureus, Bacillus cereus, B. megaterium, B. 

subtilis Aeromonas salmonicida, Aquaspirillum serpens and fungal species Candida albicans, 

Fusarium oxysporum, Aspergillus fumigarus, Macrospore gypseum, Trichophyton mentagrophytes 

(Yang et al., 2001). The activity of MNQ against S. aureus in this paper was found to be 16 mg/L 

which is marginally better than this study. This could be due to the strain or the presence of 

impurities as discussed earlier.  

1.4.2 – Fallopia japonica  

  The most active fractions FJ3 & FJ4 isolated from F. japonica showed moderate 

antimicrobial activity against S. aureus (Table 8). The major compounds present in these fractions 

were identified as resveratrol glycoside using HPLC-PDA-ESI-MS/MS (Error! Reference source not 

found.). According to the mass spectrometry data, FJ3 and 4 yielded a base ion of m/z 435 and 

secondary fragmentation ion of 389 [(M-H)-46]- which is consistent was a formate adduct formed 

due to there being formic acid in the mobile phase. Therefore, the molecular ion is 389 [M-H]-. There 

is further fragmentation from m/z 389 to 227 which is a loss of m/z 162 which is consistent with the 

loss of a hexose sugar in literature (Jerkovic et al., 2007; Vukics and Guttman, 2010). FJ3 and 4 have 

different retention times although they share the same mass spectra, resveratrol has two isomers 

in cis and trans conformation and these effects the retention time on C18 column chromatography 

(Lamuela-Raventos et al., 1995).  

  Resveratrol has been identified in over 70 plant genera and has been shown to have many 

beneficial biological activities; antimicrobial activity, anti-inflammatory, anticancer, and antioxidant 

activity (Frémont, 2000; Joe et al., 2002; Pervaiz, 2003). The presence of resveratrol in F. japonica is 

well documented as being considered as a commercially viable source of raw material for resveratrol 
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production as well as other anthraquinones such as emodin and physcion (Chen et al., 2013). Due 

to the fact resveratrol and F. japonica are so well documented no further research was carried out 

on F. japonica.  

1.4.3 – Rhododendron ponticum    

  All three R. ponticum fractions were consistently active against E. coli, P. aeruginosa, S. 

aureus, B. subtilis and the fungi C. albicans. Although the level of activity was relatively low 

compared to other fractions, R. ponticum was the only plant which was able to inhibit the growth 

of P. aeruginosa. Although level of activity was not significant, to see any activity against the gram-

negative bacterium P. aeruginosa is interesting as this suggests the compounds within this fraction 

of R. ponticum are showing a different pattern of antimicrobial activity to that found in the other 

plant extracts.  

  The compounds tentatively identified in RP2 using HPLC-PDA-ESI-MS/MS were mainly 

flavonoid, flavonoid glycosides and related compounds, because there was characteristic mass 

fragmentation which matches that see in the literature (Vukics and Guttman, 2010) (Table 9). 

Flavonoids and their glycosides have been previously reported and were shown to have anti-

inflammatory, antinociceptive (Erdemoglu et al., 2008), antiapoptotic (Zhang et al., 2010). The 

antibacterial and antifungal activity of Rhododendron species have been previously studied (Ertürk 

et al., 2009). The activity seen previously was tested using plate diffusion assays and the activity 

seen in our study exceeds that seen by Ertürk et al. This difference could be accounted due to 

different methods. However, the increased activity in the UK variety could be due to the UK variety 

being invasive. As an invasive species this plant is not exposed to its natural predators and pests 

which would be present in Turkey. The predator-prey relationship would have evolved over time to 

keep both species in check, once the predator is removed by moving the plant to the UK this plant 

is able to grow faster and be more aggressive. Without the stress of the predator the UK variety may 
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be able to produce different bioactive, or in different quantities which cause a more antimicrobial 

extract. This could be an example of the ERH in action.   

 Unfortunately, the flash purification of R. ponticum did not yield as many fractions as the 

other two plants. Fortunately, in the case of the other two plants a relatively pure, biologically active 

fraction was yielded, identified and assayed. The issue with carrying out bioactivity led purification 

when all fractions show relatively low activity it is difficult to choose which fraction to purify further. 

Ideally a better first round of purification should have been carried undertaken, this could have been 

done by either utilising a longer, slowed gradient which would have separated peaks better or a 

customised step gradient. A step gradient approach would involve running a series of isocratic 

elutions only increasing the percentage of organic solvent when it looks like there are no more 

analytes being eluted. This could have easily been applied to purification using the Biotage flash 

purification systems PDA detector.  

1.5 – Conclusion   

 The focus of this project is to discover novel drug candidates for the treatment of MRSA. 

The aim of this chapter is to screen a range of problematic invasive weed species for molecules 

which show antimicrobial activity. Antibiotic resistance is a particularly big issue facing society and 

MRSA is the most high-profile pathogen of all. If a compound can be found which is able to treat 

this infection, then this will be the highest priority of all.   

 The main candidate compound found in F. japonica was tentatively identified as a 

Resveratrol glycoside. This compound is well documented and has a broad range of bioactivities. 

However, the activity against S. aureus isn’t particularly impressive and does not have any potential 

to be a future treatment for MRSA infections. Therefore, no further research was carried out on F. 

japonica.  
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 R. ponticum showed a low level of activity against all bacteria and fungi. This is interesting 

as no other compounds had any impact on the growth of P. aeruginosa. The quality of the 

purification of the R. ponticum was not as effective as the other plants. No single compounds were 

isolated or identified. The low level of activity could be due to active compounds being diluted by 

the presence of other non-active compounds being present in the fractions.  This plant has the 

potential to produce an active inhibitor of gram-negative bacterial growth. However, this is not the 

focus of this project and R. ponticum did not show significant activity against S. aureus.  

 A potential drug has been found within I. glandulifera, in the form of MNQ. This exciting 

molecule has been shown to have antimicrobial activity far beyond any other found within this 

project. It was found to have a broad range of activity against a range of pathogenic bacteria but 

showed particularly potency against S. aureus and MRSA. This molecule will be the focus of this 

project going forward. 
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Chapter 2 Lead Compound MNQ bioactivity and Drug 

suitability 

 

2.1 Introduction – MNQ Bioactivity  

2.1.1 – Chapter Aims   

 The major outcome of the first chapter was the isolation of MNQ from I. glandulifera which 

was shown to have potent antimicrobial activity, especially against MRSA which was comparable to 

that of current antibiotics. The known bioactivity of naphthoquinones will be discussed to 

understand the potential of this molecule as a future antibiotic. MNQ has been tested against a 

relatively small range of bacteria. To comprehensively understand the antibacterial profile, a broad 

range of clinically relevant bacterial species and strains must be tested. Although MRSA is the focus 

of this project it is important to understand the full bioactive ability of this molecule. Schistosoma 

mansoni is a pathogenic parasite which needs new treatment options, therefore MNQ will be tested 

against three stages of the S. mansoni life cycle. Cytotoxicity is vital factor for any potential drug, 

MNQ must show selective toxicity against bacteria so a range of tests must be carried out to assay 

the toxicity of MNQ. 

2.1.2 Bioactivity of Naphthoquinones   

 Naphthoquinones (NQ) are a class of organic compounds derived from naphthalene, the 

simplest polycyclic aromatic hydrocarbon, with the addition of two ketones. These carbonyls can be 

in various positions; 1, 2-NQ and 1, 4-NQ:   
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Figure 16: Chemical structure of 1,2-naphthoquinone (A) and 1,4 naphthoquinone (B)  

 

2.1.2.1 - 1, 2-Naphthoquionines  

  A range of 1, 2-NQ derivatives have been found to show potent anti-diabetic activity based 

on their ability to inhibit protein tyrosine phosphate 1B (PTP1B). PTP1B pays a role in the negative 

regulation of insulin signalling and is involved in the insulin resistance associated with Type-2 

diabetes (Kennedy and Ramachandran, 2000). 1, 2-NQ itself with no alteration was considered a hit 

with an IC50 of 1.64 µM. Thirty-one 1, 2-NQ derivatives were synthesised by Ahn et al. with 

alteration made to the 4 position (to increase stability by preventing Michael type nucleophilic 

addition) and subsequently evaluated for their in vitro inhibitory activity against recombinant 

human PTP1B. 5 of the 31 derivatives were completely inactive, 10 showed improved activity verses 

the original NQ and 17 were still active but no improvement on the original 1, 2-NQ core. The 

addition of aryl groups significantly improved antidiabetic activity of 1, 2-NQ derivatives and the 

addition of fluorine or hydroxide groups to the aryl further improved potency. Addition of a 

cyclohexyl group, proved to be the most potent (IC50 of 0.32 µM) but other alkyl substitutions only 

decreased activity (Table 12) (Ahn et al., 2002).   

 

 

A   B   
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Table 12: Inhibitory activity of 1,2-naphthoquinone 
derivatives against PTP1B (Ahn et al.,2002) 

Position 4 derivative  IC50  

Cyclohexyl 0.32 

C6H4–4-OH 0.44 

C6H3–2,5-F2 0.5 

C6H5 0.86 

C6H4–4-OCH2CO2Et 1.07 

3-Indole 1.13 

C6H4-2-NO2 1.17 

Benzyl 1.42 

C6H4COOCH3 1.54 

C6H4–2-OH 1.6 

C6H4–2-OCH2CO2Et 2.15 

1-Naphthyl 2.15 

3-Indole-5-carboxylic acid 3 

(CH2)5CH3 3.3 

Cyclopentyl 4.2 

3-Indole-6-carboxylic acid  4.56 

C6H5–2,5-Cl2 5.05 

C6H5OCH3 5.24 

SO3Na 5.29 

Biphenyl 5.4 

C6H2-3,5-di-t-butyl-4-OH 5.73 

Isopropyl 10.13 

NH2 24.59 

OCH3 29.11 

N(CH3) C6H5 34.88 

OCH2CH2CH2OH 36.47 

N(CH2)4 N/A 

3-Indole-1,2–(CH3)2 N/A 

–3-Indole-2–C6H5 N/A 

Butyl N/A 

Decyl N/A 

 

 1,2-NQs are also known to disrupt the effects of other Protein Tyrosine Phosphatases (PTP) 

which are involved in a wide range of biological functions. The presence of two neighbouring 
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carbonyls which is seen in all 1,2-NQs is essential for PTP inhibition which (Urbanek et al., 2001). For 

example, CD45 is involved in cellular growth, differentiation, mitotic cycle and oncogenic 

transformations, and is critical for T-cell receptor mediated T-cell activation. Derivatives of 1, 2-NQ 

with aryl alterations at the position 4 were found to be potent inhibitors of CD45 and T-cell 

proliferation in vitro. It is suggested that the 1, 2 NQs carbonyl of the dione attaches to the active 

site cysteine851 of CD45 rendering the enzyme catalytically inactive. However, removal of the 

vicinal carbonyl groups (replaced with Fluorine) yielded no activity and 1,4-NQs showed poor activity 

implicating additional mechanisms of action. Nocardione A (1,2-NQ with a hydroxyl group at 

position 7 and a pentose attached directly onto positions 3 and 4) inhibit three different type of 

PTPs; CDC25B (involved in cell proliferation), PTP1B (T-cell activation), and FAP-1 (linked to cell 

death and apoptosis) (Otani et al., 2000).  

 1,2-NQ have been shown to have anti-tumour activity. 1,2-NQ with thiosemicarbazone (TSC) 

group in the 2-position showed significant inhibitory activity against MCF-7 human breast cancer 

cells. Unaltered 1,2-NQ had an IC50 of 13.37 µM, the addition of TSC significantly improved the 

activity with an IC50 of 3.14 µM. Further improvement can be made by forming a NQ-TS Ni2+ 

complex which has an IC50 of 2.25 µM. Other metal complexes were formed with Cu and Pd, but 

these marginally decreased the activity (Chen et al., 2004).   

2.1.2.2 - 1, 4-Naphthoquionines  

  1,4-Naphthoquinones have a wide variety of biological activities including antibacterial and 

anticancer. For example, shikonin is a major component of Lithospermum erythrorhizon which is a 

Chinese herbal medicine with various biological activities, one of which is the inhibition of human 

immunodeficiency virus (HIV) type 1-induced cytopathology (Chen et al., 2003).  Four 1 ,4-NQ 

derivatives have been assessed for anti-fungal activity based around shikonin (5,8-dihydroxy-6-(1-

hydroxy-4-methyl-3-pentenyl)-1,4-naphthalenedione). These derivatives at position 6; include the 

additions of either an acetyl group, a hydroxy-iso-valeryl group or removal of the hydroxy group. 
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Each derivative showed decreased potency against a range of fungal species, compared to shikonin 

which showed similar levels of activity to fluconazole, a first generation triazole (Sasaki, Abe and 

Yoshizaki, 2002). This illustrates that natural selection can produce the most bioactive derivative so 

any synthetic changes have the potential to reduce potency.  

 Several 1, 4-naphthoquinoe derivatives have also been tested for anti-cancer activity 

against Walker 256 carcinosarcoma implanted into rats. Two active derivatives were 

2,3bis(phenylsulfanyl)-1,4-naphthoquinone and 5,8-dihydroxy-2-methyl-1,4-naphthoquinone 

(Tandon et al., 2004). While another 1,4-naphthoquine derivative, S-(1,4-naphthoquinone-2-yl)-

mercaptoalkanoic acid amide, was active against Lymphoid leukaemia P 388 in rats (Tandon, Singh 

and Yadav, 2004).  

 For anti-viral activity two 1,4-NQs; S-(1,4-NQ-2-yl)-5,8-dihydroxymercaptoalkanoic acid with 

an additional hydroxyl group and 5,8-dihydroxy-2-arylthio-1,4-NQ showed in vitro anti-viral activity 

against influenza-A virus and Herpes simplex virus. (Tandon, Singh and Yadav, 2004).   

 NQs have been shown to be useful in areas other than biology; 1,4-NQ has been shown to 

inhibit the corrosion of aerated and de-aerated aluminium in sodium chloride solutions. Showing 

that the presence of this naphthoquinone reduced pitting potentials, decreased anodic currents, 

and surface polarisation resistances are increased. The most effective concentration of 

naphthoquinone was found to be 1x10-3 M (Sherif and Park, 2006). Combining the broad 

antibacterial activity and the anti-corrosion activity of 1,4-NQs means this molecule could have 

potential as a cleaning solution for medical devices. 

2.1.3 Biosynthesis of naphthoquinones  

 NQs are a diverse group of natural products naturally occurring in many plant species, fungi 

and even bacteria. If MNQ is to be considered as potential antibiotic it is important to understand 

how this molecule is produced by plants and what purpose it serves. 
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 The o-succinylbenzoate (OSB) pathway which begins with chorismate and after 9 reactions 

results in MNQ (Figure 17). The OBS pathway was first discovered in the 1960s when [14C]-shikimate 

fed to E. coli (Cox & Gibson, 1964) and maize shoots (Whistance, Threlfall & Goodwin, 1966) to 

investigate the biosynthesis of vitamin-K. Tracer studies carried out using I. balsamina and [U-14C]-

α-ketoglutarate showed that this was incorporated into lawsone (Grotzinger & Campbell, 1972). 

Although this pathway has been studied for many years many reactions are not fully understood. 

 

Figure 17: The o-succinylbenzoate (OSB) biosynthetic pathway producing 2-methoxy-1,4-
naphthoquinione (MNQ) from shikimate via 10 reactions. The first 6 steps convert shikimate into 

chorismate, then isochorismate, then 2,2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexane-2-
carboxylate (SEPHCHC), then 3, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-2-carboxylate (SHCHC), 
and finally OBS into OBS-coenzyme A (CoA). These steps have genetic evidence to support these 

reactions. The reaction which converts OBS-CoA to dihydroxynaphthoyl (DHNA)-CoA has a lack of 
supporting genetic evidence to be sure this is the correct reaction. All further reactions from DHNA 

into other naphthoquinones have little supporting genetic information and the enzymes 
responsible for these reactions are unknown. 
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 The pathway begins with chorismate which is derived from shikimate, an important 

metabolite for the biosynthesis of aromatic amino acids (Herrmann & Weaver, 1999). The first 

reaction is the isomerisation of chorismate to isochorismate by isochorismate synthase (Garcion et 

al., 2008). Followed by the addition of α-ketoglutarate which is catalysed along with the next two 

reactions by the trifunctional enzyme PHYLLO; containing 2-succinyl-5-enolpyruvyl6-hydroxy-3-

cyclohexene-2-carboxylate (SEPHCHC) synthase, 2-succunyl-6-hydroxy-2,4-cyclohexadiene-2-

carboxylate (SHCHC) synthase, and OBS synthase domains (Gross et al., 2006). This addition of α-

ketoglutarate results in SEPHCHC (Grotzinger & Campbell, 1972), followed by the 2,5-elimination of 

pyruvyl side chains to form SHCHC (Jiang et al., 2008), and dehydration to form OSB (Meganathan 

& Bentley, 1983). The ring (now aromatic) will form one of the rings of the naphthalene. OSB-

Coenzyme A (CoA) ligase attaches a CoA group to the succinyl side chain of OSB which is then 

cyclised by dihydroxynaphthoic acid (DHNA)-CoA synthase to form the second ring of the 

naphthalene core in DHNA-CoA (Kwon, Bhattacharyya & Meganathan, 1996). The removal of CoA 

by hydrolysis catalysed by thioesterases results in DHNA (Meganathan, 2001). At this point there is 

a significant fork in the pathway, where DHNA can be converted into phylloquinones (Lohmann et 

al.,2006), anthraquinones (Eichinger et al., 1999), juglone (Leistner & Zenk, 1968), and most 

importantly for this project lawsone which is a precursor of MNQ (Zenk & Leistner, 1967). Lawsone 

is formed into MNQ via an S-adenosylmethionine-dependent O-methyltransferase (Liscombe, Louie 

& Noel, 2012). 

 There are two other NQ producing metabolic pathways stemming from chorismate, the 

homogentisate (HGA)/mevalonic acid (MVA) pathway which produces chimaphillin (Bolkart & Zenk, 

1969) and the 4-hydroxybenzoic acid/MVA pathway yields deoxyshikonin, shikonin, alkannin and 

other derivatives (Schmid & Zenk, 1971). One other metabolic pathway, the acetate-polymalonate 

pathway, can produce NQs. These are plumbagin, droserone, 5-O-methyldroserone and 7-

methyljuglone although the reactions and enzymes responsible for these NQs are unknown (Durand 

& Zenk, 1971). 
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 NQs are synthesized by organisms throughout all kingdoms of life involved in a range of 

metabolic processes. For example, within plants and algae 1,4-NQs are involved in photosynthesis 

although this is not linked to their bioactivity which is not relevant to this project (Brettel, Sétif & 

Mathis, 1986). NQs produced by certain plants have an allelopathic effect on the plants around 

them, an example of this would be the phytotoxic effect of juglone from Juglans nigra. By excreting 

this NQ into the surrounding area to prevent growth of other plants (Soderquist, 1973). This 

allelopathic activity has also been observed in I. glandulifera and the compounds responsible is 

thought to be MNQ, this is likely a contributing factor to this plant’s successful invasion of most of 

the norther hemisphere (Ruckli et al., 2014). NQs produced by plants also interact with bacteria and 

fungi to the benefit on the plant. As has been clearly shown MNQ has significant antimicrobial 

activity and this will protect I. glandulifera from any bacterial of fungal infections. MNQ has been 

shown to be an effective inhibitor of Ecdysone 20-Monooxygenase, which is the insect cytochrome 

P450-dependent hydroxylase which plays a pivotal role in insect reproduction and development 

(Mitchell et al., 2007). Many species of fungi produce a wide range of different NQ which cause 

pigmentation of fruiting bodies for sexual reproduction as well as protection from UV light and 

insects (Studt et al., 2012). They are also produced in reaction to unfavourable factors in the 

environment, combining this with their broad range of biological activity it can assumed these 

compounds play a protective role (Medentsev & Akimenko, 1998; Darvill & Albersheim, 1984). 

Within the bacteria Actinomycetes numerous 1,4-NQs are produced which have a range of 

bioactivity seen previously but these are also used as precursors to produce polyketides which also 

have a broad range of bioactivities with protective properties (Moore & Hopke, 2001).  

 The natural purpose of NQs are for protections from other organisms, whether that be plant 

versus plant in the case of allelopathy see in I. glandulifera, or plant versus pest in the case of MNQ 

inhibiting insect development enzymes, or fungi producing NQs for a selective advantage over 

competitors in unfavourable environments. Many antibiotics, most famously penicillin, are 

produced by fungi in order to harm surrounding competitors to gain a selective advantage (Losada 
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et al., 2009). Antibiotic compounds such as penicillin are isolated and utilised by humans to destroy 

infectious pathogens. NQs seemingly serve the same protective purpose within plants, fungi and 

bacteria; therefore, it can be assumed these molecules can also be utilised to treat infections. 

2.1.4 Bacterial Cell Membranes   

 Bacteria can be grouped generally into three groups based on their membranes; gram-

negative, gram-positive and mycobacteria. Each offer different challenges for antibiotic compounds 

which need to be overcome to prevent the growth of bacteria. These structures can influence the 

efficacy of drugs with many antibiotics being selective for gram-positive, gram-negative, 

mycobacteria or in some cases broad spectrum covering a wide variety of bacteria. These factors 

are important to consider when determining the antimicrobial profile of MNQ.  

  A wide range of bacterial species and strains will be tested in this chapter tested for 

susceptibility against MNQ to evaluate its potential as an antimicrobial chemotherapeutic agent. 

Two factors which are important when selecting which bacteria to screen is variation in cell wall 

composition and possible resistance mechanisms. These can provide information on the suitability 

of the potential drug to a therapeutic use and any known resistance mechanism which can thwart 

its activity. Although MRSA is the focus of this project the bioactivity of MNQ is considerable, so to 

fully understand its potential a broad range of bacteria will be tested with different barriers to 

overcome. 

 Gram negative cell envelopes are made up of three principle layers; the outer membrane 

(OM), the peptidoglycan cell wall, and the inner membrane (IM). Between these two concentric 

membranes are areas called periplasmic spaces. The OM is a lipid bilayer composed of phospholipids 

on the inner leaflet with the outer composed of glycolipids, principally, lipopolysaccharides (LPS) 

(Kamio and Nikaido, 1976). The OM is crucial for the survival of E. coli and other gram-negative 

bacteria, yet its only known function is to serve as a protective barrier. It is known to contain 

enzymes such as phospholipase, protease, and enzymes which modify LPS, but these are not 
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essential as mutants lacking these shown no striking phenotype (Silhavy, Kahne and Walker, 2010). 

There are two classes of protein embedded within the OM; lipoproteins and β-barrel proteins which 

are involved in bacterial growth (Wu et al., 2006). There are about 100 lipoproteins encoded by in 

E. coli and the function of most are unknown (Miyadai et al., 2004). Most of the integral 

transmembrane proteins are assumed to be β-barrel proteins, they are formed of β-sheets wrapped 

into cylinders which cross the OM. These are also referred to as porins and they allow passive 

diffusion of small molecules, such as monosaccharides, disaccharides, and amino acids (Cowan et 

al., 1992). LPS play a crucial role in the barrier function of the OM and represent an effective barrier 

against hydrophobic molecules. Within this OM there is also a rigid peptidoglycan exoskeleton which 

determines bacterial cell shape.  Peptidoglycan is made from disaccharide N-acetyl glucosamine-N-

acetyl muramic acid repeating units crosslinked by pentapeptide chains. The peptidoglycan in gram 

negative bacteria is smaller than in gram positive bacteria but it still plays a significant role, 

interacting with proteins in the cell envelope and providing stability (Godlewska et al,. 2009). 

Between the OM and the IM is the periplasmic space, which is an aqueous compartment filled with 

proteins, that are more viscous than cytoplasm (Mullineaux et al., 2006). This compartment allows 

bacterial to sequester potentially harmful degradative enzymes but also beneficial proteins which 

serve a range of functions. Which include periplasmic binding proteins, involved in sugar and amino 

acid transport and chemotaxis as well as chaperone-like molecules are involved in envelope 

biosynthesis (Ehrmann, 2007).   

 Eukaryotic cells contain several membranous organelles such as mitochondria for energy 

production, smooth endoplasmic reticulum (ER) for lipid synthesis, rough ER for protein secretion, 

and cytoplasmic membrane sense the environment and transporting molecules. Bacteria do not 

have these organelles therefore these membrane-associated functions are performed by the IM 

which is a phospholipid bilayer. There are several structures embedded into this envelope such as 

flagella, secretion systems, and efflux pumps. Efflux pumps play important roles in pathogenicity 



79 
 

and antibiotic resistance, they export xenometabolites such as antibiotics from the cell across the 

envelope and into the surrounding media (Eswaran et al., 2004).   

 The gram-positive cell envelope differs in several ways, the major difference being the lack 

of an OM. As discussed earlier this outer membrane provides protection from toxic molecules and 

structural rigidity along with the peptidoglycan and periplasmic space. Gram-positive bacteria often 

live in harsh environments just like their negative counterparts yet are less protected and as a result, 

the peptidoglycan layer in gram positive bacteria is far thicker (30-100 nm versus a few nm in gram-

negative) In addition to the increased thickness, there are teichoic acids (TA) threading though gram 

positive peptidoglycan. These are linear anionic polymers consisting of repeating units of ribitol and 

glycerol linked by phosphodiesters, covalently bonded to the peptidoglycan giving the wall and net 

negative charge. TA can form larger structures such as wall teichoic acids (WTA), by coupling to 

peptidoglycan, and lipoteichoic acids (LTA), anchored to the cell membrane. WTAs are mostly 

composed of disaccharide linkages of polyribitol phosphate (polyRboP) or polyglycerol phosphate 

(polyGroP) with as many as 60 repeating units. These extend perpendicularly through the 

peptidoglycan mesh to form a “fluffy” layer beyond the cell envelope (Neuhaus and Baddiley, 2003). 

While LTAs are composed of polyGroP polymers, often with D-alanine or a sugar moiety, and their 

glycerolphosphate repeating units have the opposite chirality to those in WTAs. They also typically 

contain fewer repeating units and are shorter resulting in the molecules extending from the cell 

membrane into the peptidoglycan, rather than through and beyond. These TA are not essential for 

viability, but biosynthetic mutants show morphological and growth defects demonstrating a 

structural importance (Morath, von Aulock and Hartung, 2005). TAs also have roles in cation 

homeostasis (Marquis, Mayzel and Carstensen, 1976), influencing the rigidity and porosity of the 

cell wall and its susceptibility to antibiotics (Peschel et al., 2000). Several functionally important 

proteins are also bound to the peptidoglycan surface of the cell, some analogous to those found in 

the periplasm of gram-negative bacteria (Lambert, 2002; Dramsi et al., 2008). The structure of 

peptidoglycan in gram positive bacteria also differs from gram negative with peptides cross-linking 
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between the glycan strands a connected through pentaglycine branches extended (instead of 

pentapeptide side chains) from the third amino acid of the stem peptide (Vollmer, 2008). These 

branches are assembled by nonribosomal peptidyl transferases which are crucial for the survival of 

the bacteria. The branched stem peptide plays a variety of roles; they serve as attachment sites for 

covalently associated proteins and implicated in β-lactam resistance (Rohrer and Berger-Bächi, 

2003). Proteins present on the surface of the peptidoglycan layer play many pivotal roles; adhesins, 

fibronectin, fibrinogen and elastin are vital for colonisation of the host, modifications of the cell 

envelope for immune system evasion, internalisation, phage binding are carried out by sortases 

(Silhavy, Kahne and Walker, 2010).  

 Mycobacterial cell walls are more complex than those of typical gram-positive bacteria and 

this increased complexity contributes to their virulence. They possess a standard IM attached to a 

peptidoglycan layer, but this contains arabinogalactan which is covalently attached to long chain (up 

to C90) mycolic acids.  In addition, modified peptidoglycan mycobacteria have a symmetrical OM 

which is dependent on mycolic acids, but their organisation is unclear (Hoffmann et al., 2008). This 

cryptic barrier provides an extremely permeable barrier to noxious compounds resulting the in the 

high intrinsic resistance of mycobacteria to many drugs (Brennan & Nikaido, 1995). 

2.1.5 – Schistosomiasis   

 The levels of potency seen within MNQ and the breadth of its activity within the literature 

is such that it could be considered as a potential treatment for parasitic infections as well as 

bacterial. There is a clear need to fight antibiotic resistance, yet parasitic diseases are also 

devastating and are in desperate need to new treatments. In collaboration with Hoffmann Research 

Laboratory at Aberystwyth University a range of Schistosomal screens would be carried out using 

MNQ.  

 Schistosomiasis is the most devastating parasitic disease in humans behind malaria. It is an 

infection with blood fluke from the genus Schistosoma with 200 million people infected and a 
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further 800 million people at risk (Steinmann et al., 2006). There are 5 species of Schistosoma 

parasites in humans; S. mansoni, S. haematobium, S. japonicum, S. intercalatum and S. mekongi. S. 

mansoni which is the widest geographically distributed of all species is transmitted by Biomphalaria 

snails and causes intestinal and hepatic schistosomiasis in Africa, the Arab peninsula, and South 

America, Adult Schistosomes are white/greyish worms 7-20 mm in length with cylindrical bodies, 

two terminal suckers, a complex tegument, a blind digestive tract, and reproductive organs. Other 

trematodes have separate sexes which live independently and must meet for reproduction to take 

place. Both male and female S. mansoni worms exist together, the male body forming a groove in 

which the longer thinner female is held, the permanently embraced couples live within the 

mesenteric venous plexus feeding on blood and globulins. The females produce hundreds to 

thousands of eggs daily which migrate to the hosts intestine for excretion and can remaining viable 

for up to 7 days. Once out of the primary human host it begins the search for an intermediate host 

such as a freshwater snail, it does this by releasing a miracidium on contact with water guided by 

light and chemical stimuli. Once within the intermediate host asexual multiplication occurs 

producing multicellular sporocysts and later into cercarial larvae with embryonic suckers and 

characteristic bifurcated tail. After 4-6 weeks in the snail infectious cercariae are released to return 

to a human/mammalian host by penetrating the skin. This maturing larval form of the parasite is 

called the schistosomula and requires 5-7 weeks to become an egg producing adult worm, with the 

adult surviving 3-10 years on average (Colley et al., 2014). An adult worm pair can produce and 

disseminating thousands of eggs daily propagating the disease further. Evidence suggest that 

schistosome eggs are the cause of morbidity rather than the adult worm. Many eggs are not 

excreted and become permanently lodged in the intestines or liver. Trapped eggs cause an 

aggressive response from the host immune system along with many pathologies; anaemia, growth 

stunting, impaired cognition, decreased fitness, periportal fibrosis, portal hypertension, urogenital 

inflammation and scarring, hepatosplenism and other organ-specific effects (Burke et al., 2009). 
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 Praziquantel (PZQ) in the current drug of choice for schistosomiasis, effective against all 

Schistosoma species but the mechanism of action is not fully understood. PZQ is also ineffective 

against certain stage of the life cycle of S. mansoni. Multiple people within a population are likely to 

be infected at once, however, not all will be showing symptoms and therefore do not take PZQ. This 

leads to the propagation of the disease within communities and makes it difficult to treat 

comprehensively (Pica-Mattoccia and Cioli, 2004). This leads to massive repeated use on large 

number of individuals accelerating the development of resistance. PZQ is currently a broad-

spectrum anthelminthic yet certain parasites such as Fasciola hepatica and F. giganica are refractory 

and S. mansoni and S. japonicum are becoming resistance (Chai, 2013). It can be argued that new 

treatments for parasitic infections are needed as badly as bacterial infections. Due to this great need 

for anthelminthic drugs MNQ will also be assayed for its ability to inhibit the growth of S. mansoni 

at multiple stages of its life cycle to ensure it does not have the same issues as PZQ.  

2.2 Methods – MNQ Bioactivity   

2.2.1 - Antimicrobial susceptibility testing – All aerobic bacterial strains   

  This method is described in section 1.2.6 – Antimicrobial susceptibility testing – Minimum 

inhibitory concentration were carried out by the Specialist Antimicrobial Chemotherapy Unit at 

Public Health Wales which offer this antimicrobial evaluation service through the Life Sciences 

Research Network Wales who fund this PhD. A list of all bacteria used can be seen in Appendix 4 – 

All bacterial strains. 

2.2.2 - Antimicrobial susceptibility testing – Clostridium difficile and Bacteroides fragilis   

  The Clinical and Laboratory Standards Institute (CLSI) agar dilution procedure was 

undertaken to assess the susceptibility of a range of C. difficile and B. fragilis strains. Brucella agar 

supplemented with lysed sheep blood, haemin and vitamin K (Hecht et al., 2012). These assays were 

carried out by the Specialist Antimicrobial Chemotherapy Unit at Public Health Wales which offer 
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this antimicrobial evaluation service through the Life Sciences Research Network Wales who fund 

this PhD. 

2.2.3 - Antimicrobial synergistic assay  

  The antimicrobial synergistic checkerboard assay was performed as previously described by 

Orhan et al (2005) using MNQ in combination with a range of known antibiotic compounds and 2-

hydroxy-1,4-naphthoquinone against MRSA ST8:USA300. As a measure of the synergistic activity the 

fractional inhibitory concentration (FIC) index (ΣFIC) (Equation 4):  

𝛴𝐹𝐼𝐶 = 𝐹𝐼𝐶 𝐴 + 𝐹𝐼𝐶 𝐵  

𝑀𝐼𝐶 𝑀𝑁𝑄 𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 

𝐹𝐼𝐶 𝐴 =    

𝑀𝐼𝐶 𝑀𝑁𝑄 𝑎𝑙𝑜𝑛𝑒 

𝑀𝐼𝐶 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑀𝑁𝑄 

𝐹𝐼𝐶 𝐵 =   

𝑀𝐼𝐶 𝑎𝑛𝑡𝑖𝑏𝑖𝑜𝑡𝑖𝑐 𝑎𝑙𝑜𝑛𝑒 

Equation 4: Fractional inhibitory concentration (FIC) index (ΣFIC) 

 

 The combination of antimicrobial agents which result in an ΣFIC or ≤0.5 is considered 

synergistic, a value >0.5 and <2 is indifferent and ≥2 is antagonistic (Orhan et al., 2005) although the 

due to low reproducibility in other research the level for antagonism has also been set to ΣFIC>4 in 

other literature (Odds, 2003).  Both values will be considered. 

2.2.4 - Schistosoma mansoni schistosomula culture compound screening - Roboworm 

  This method was used in chapter 1 for F. japonica fractions to find some novel bioactivity 

within this plant extract, however none of the fractions met the “hit” criteria. The most bioactive 
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compound in the form of MNQ has been identified and will be assayed for its anthelmintic activity 

in the same way, see 1.2.8 – Schistosoma mansoni schistosomula culture compound screening - 

Roboworm Platform.  

2.2.5 - Schistosoma mansoni adult worm culture and compound screening  

  MF-1 mice (Harlan, UK) were infected by percutaneous exposure to 200 cercariae. Mature 

adult parasites were recovered from hepatic portal veins by perfusion seven weeks post infection 

as described by Smithers and Terry. Three adult male and three adult female worms (i.e. three worm 

pairs) were cultured per well in a 48-well tissue culture plate (Fisher Scientific, Loughborough, UK) 

containing 1 mL of Dulbecco’s modified eagle media (DMEM) (Gibco, Paisley, UK) media (containing 

10% v/v Hepes (Sigma-Aldrich, Gillingham, UK), 10% v/v Foetal Calf Serum (Gibco, Paisley, UK), 0.7% 

v/v 200 mL-Gluta-mine (Gibco, Paisley, UK), 1% v/v Kanamycin/Amphotericin B (Gibco, Paisley, UK)). 

6 worm pairs per treatment were incubated for 1 hour at 37°C in a humidified atmosphere 

containing 5% CO2 before being dosed with test compounds obtaining final concentrations of 50, 

25, 12.5 and 6.25 mM (0.3% DMSO final concentration). While all worms were scored manually after 

24, 48 and 72 hours using microscopic methods described in the literature (Ramirez et al., 2007), 

only motility metrics at 72 hours are reported. At 72 hours, eggs were also collected and counted 

from each well.   

2.2.6 - Erythrocyte Lysis  

 To this point the toxicity of MNQ has been tested against a variety of bacteria which has 

produced positive results. All these positive antibacterial results can be undone if MNQ is found to 

be as toxic against humans. An antibiotic must show selective toxicity against bacteria. Toxic 

phenolic compounds have been shown to have detrimental effects on human erythrocytes, 

including haemolysis (Bukowska & Kowalska, 2004). Haemolysis is a relatively simple assay to carry 

out and will rule out the first possibility of cytotoxicity without the cost or complication of cell lines 

assays.  
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  Defibrinated sheep blood (Oxoid Ltd Hampshire UK) was used to determine the ability of 

the isolated compounds to cause erythrocyte lysis. 1 mL of defibrinated sheep blood (RBC) was 

added to six sterile microcentrifuge tubes and centrifuged for 5 minutes at 1,000 x g (Heraeus 

Biofuge Pico). The supernatant was discarded, and pellet washed three times in phosphate buffered 

saline (PBS) with centrifugation at 1,000 x g between each wash. The RBC were diluted in PBS 50% 

v/v. A 180 µL volume, of PBS was added to wells A1-A12 in sterile, transparent, flat bottomed 96 

well plate and 100 µL to all wells except row G to which 90 µL was added. A total of 20 µL of each 

sample being screened was added to row A in triplicate (four per plate) and serial diluted down the 

plate from A to F. 10 µL of 2% triton-X 100 (Sigma-Aldrich, Gillingham, UK) was added to wells G1-

12 as a RBC lysis control. To each well was added 100 µL of the 50% v/v RBC solution. Plates were 

then covered and left at 37°C for 1 hour. The plates were then centrifuged at 1,000 x g (Heraeus 

Multifuge 3 S-R). The 100 µL of supernatant from each well was transferred to a new transparent, 

flat bottomed 96 well plate. The optical density (OD) of the supernatant was measured at 450 nm 

using a Hidex Sense Plate Reader expressed as percentage haemolysis compared to 0.1% triton-X 

(Blazyk et at, 2001; Oyama et al., 2017).  

2.2.7 - HepG2 cell culture and MTT assay  

  Cells were grown to 80% confluency in culture media (basement membrane extract with 

phenol red for HepG2 cells, 10% v/v Foetal Bovine Serum, 1% v/v EMEM non-essential amino acid 

solution, 1% v/v 200 mM L-Glutamine, 1% v/v gentamycin/amphotericin B). Confluent cells were 

prepared for cytotoxicity assays in the same manner as stated by Nur-E-Alam et al., 2017. Briefly, 

2.5 × 104 were seeded in a black walled 96-well microtiter plate (Fisher Scientific, Loughborough, 

UK) and incubated for 24 h at 37 °C in a humid atmosphere containing 5% CO2. Test compounds in 

triplicate were then added at final concentrations of 100, 75, 50, 25, 10, 1, 0.1, 0.01 μM (1.25 final 

% DMSO) in parallel to negative (DMSO; 1.25%) and positive (1% v/v Triton X-100) (Dayeh et al., 
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2004) controls. Following a further incubation for 24 h, the MTT assay was performed as previously 

described Nur-E-Alam et al., 2017.  

2.2.8 - Galleria mellonella cytotoxicity screen and infection model  

  Galleria mellonella (Live Foods, UK) were purchased and injected within one week of arrival. 

Only individuals between 225 and 275 mg were selected with an assumed average of 250 mg. 

Samples were diluted to working concentrations with a maximum of 10% DMSO and bacteria (MRSA 

USA300) were grown at 37°C overnight in Mueller-Hinton (MH) broth. 500 µL of overnight culture 

was used to inoculate 4.5 mL of MH broth which was incubated at 37 °C, 180 rpm for 3 hours. Cells 

were harvested and via centrifugation and resuspended to obtain an OD600 of 0.1. Larvae were 

inoculated with 10 μL in the front right proleg using 10 μL Hamilton syringe. Bacterial injection was 

used as a negative control showing survival rates when infected with bacteria versus compounds 

and for an infection model as previously described by Desbois and Coote, 2011.   

2.3 – Results – MNQ Bioactivity  

2.3.1 – Antimicrobial susceptibility testing – Aerobic bacteria 

2.3.1.1 – Antimicrobial activity against Staphylococcal Species  

  After identifying that MNQ was the most active compound within the plants tested further 

antimicrobial assays were undertaken to assess the potential of MNQ as an antibacterial agent. As 

this project is aimed at discovering a compound which can counter the challenges of MRSA a broad 

range of Staphylococcal species and strains were tested. Initially, S. aureus ATCC 29213 was used to 

assess anti-staphylococcal activity of plant extracts, but in order to counter the challenges of MRSA 

multi resistant strains must be assayed (Table 13). MNQ was effective against all staphylococcal 

strains tested. The best activity was observed against S. epidermis NCTC 11047. 
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Table 13: Antimicrobial activity of 2-methoxy-1,4-naphthoquinone against a range of 
staphylococcal strains (n=3) 

Bacterial strain   MIC (mg/L)  

S. aureus- ATCC 29213 (MSSA)  19  

S. aureus-ATCC 33591 (MRSA)  11  

S. aureus-H-EMRSA-15 (MRSA)  13  

S. aureus-ST8-USA300 (MRSA)  13  

S. epidermis- NCTC 11047  4  

S. saprophyticus- Wild strain  31  

 MNQ was shown to be active against the highly virulent strains of MRSA however to screen 

a larger number of strains further testing was undertaken at the Specialist Antimicrobial 

Chemotherapy Unit (SACU), University Hospital of Wales (Table 14). The same standard S. aureus 

strain was used by SACU, but the methods used by this laboratory suggested that MNQ had better 

antimicrobial activity than we described previously. Three different stock strains of MRSA were 

tested with either resistance to flucloxacillin (conferred by mecA), erythromycin/clindamycin 

(conferred by macrolidelincosamide-streptogramin B (MLSB) resistance), and vancomycin 

heteroresistance Mu3 strain. In addition to these three strains, S. aureus (11051), a tetracycline 

resistant clinical isolate from a patient in Cardiff hospital, was also tested. The exact mechanism of 

tetracycline resistance in 11051 is unknow. 

Table 14: Antimicrobial activity of 2-Methoxy-1,4-naphthoquininone (MNQ) against a 
range of staphylococcal bacteria by the Specialist Antimicrobial Chemotherapy Unit at 

University Hospital of Wales (n=3) 

Strain No.   Organism   Resistance   

MIC (mg/L)  

Ampicillin  MNQ 

ATCC 29213  S. aureus  -  4  8  

NCTC 12493  S. aureus  Flucloxacillin  >128  8  

ATCC BAA-977  S. aureus  Erythromycin/Clindamycin  64  8  

ATCC 700698  S. aureus  Vancomycin  >128  8  

11051  S. aureus  Tetracycline  >128  8  

25760  S. epidermidis  -  64  4  

25495  S. epidermidis  -  8  4  

194073  S. saprophyticus  -  4  8  
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2.3.1.2 – Antimicrobial activity against other clinically relevant Gram-positive bacteria  

  MNQ was assessed for broad spectrum efficacy against a range of clinically relevant gram-

positive bacteria (Table 15). MNQ was able to consistently inhibit the growth of all gram-positive 

bacteria tested., However, E. faecalis which does not possess any antibiotic resistant mechanisms 

showed the highest level of resistance against MNQ with an MIC of 64 mg/L which is regarded as 

very poor activity. The best activity was seen against M. smegmatis, where MNQ far outperformed 

the antibiotic ampicillin with an MIC of 1 mg/L compared to 16 mg/L. A range of S. pneumoniae were 

tested with three antibiotic resistant strains, MNQ performed consistently against all with an MIC 

of 16 mg/L. 

Table 15: Antimicrobial activity of 2-methoxy-1,4-naphthoquininone (MNQ) against a 
range of gram-positive bacterial species (n=3) 

Strain No. Organism Resistance 

MIC (mg/L) 

Ampicillin MNQ 

ATCC 29212  Enterococcus faecalis  -  2  64  

NCTC 12201  E. faecalis  Vancomycin  4  4  

ATCC 51299  E. faecalis  Vancomycin  8  4  

NCTC 333  Mycobacterium 
smegmatis   

-  16  1  

20456  Streptococcus bovis  -  1  32  

21816  S. bovis  -  1  32  

21818  S. bovis  -  1  32  

22358  S. Group A  -  0.06  16  

22362  S. Group G  -  0.25  16  

ATCC 49619  S. pneumoniae  -  0.25  16  

18778  S. pneumoniae  Erythromycin / Tetracycline  0.25  16  

21394  S. pneumoniae  Penicillin  32  16  

21395  S. pneumoniae  Erythromycin / Clindamycin  0.5  16  

13121  S. pneumoniae  -  0.25  16  

13122  S. pneumoniae  -  0.25  16  

 

2.3.1.3 –Antimicrobial activity against clinically relevant Gram-Negative bacteria  

  MNQ has been shown to inhibit the growth of a wide range of gram-positive bacterial 

species, however, gram-negative cells possess a more complex barrier (outer membrane)that can 



89 
 

have a major effect on the potency of antimicrobial compounds (Table 16). Other than A. baumannii 

and B. cepacia with poor MIC of 32 and 64 mg/L respectively MNQ was unable to affect the growth 

of gram-negative bacteria (≥128 mg/L) 

Table 16: Antimicrobial activity of 2-methoxy-1,4-naphthoquininone (MNQ) against a range 
of gram-negative bacterial species (n=3) 

Strain No.   Organism  Resistance   

MIC (mg/L)  

Ampicillin  MNQ 

572  
Acinetobacter 
baumannii  -  128  32  

NCTC 10661  Burkholderia cepacia  -  >128  64  

ATCC 25922  Escherichia coli  -  8  128  

ATCC 35218  Escherichia coli  Ampicillin  >128  128  

NCTC 13353  Escherichia coli  3rd gen cephalosporins  >128  128  

353  Escherichia coli  Nitrofurantoin/ trimethoprim  >128  >128  

21856  Klebsiella pneumoniae  -  >128  >128  

Controls  Klebsiella pneumoniae  Carbapenems  >128  128  

ATCC 700603  Klebsiella pneumoniae  4th gen cephalosporins  >128  >128  

NCTC 13442  Klebsiella pneumoniae  Carbapenems  >128  128  

NCTC 10975  Proteus mirabilis  -  >128  128  

ATCC 27853  
Pseudomonas 
aeruginosa  -  >128  >128  

8204  Salmonella enteritidis  -  4  128  

 

2.3.2 - Testing antimicrobial activity against anaerobic bacteria  

  Two other bacteria Bacteroides fragilis and Clostridium difficile were also assayed for 

susceptibility to MNQ. These clinically relevant species are obligate anaerobes and required a 

different susceptibility testing methodology to aerobic species (Table 17). MNQ showed very 

consistent activity against all C. difficile strains, on par with the antibiotic in most cases (MIC 1-4 

mg/L). The ability of MNQ to inhibit the growth of B. fragilis ranged from 2 to >128 mg/L. However, 

the >128 mg/L result was due to metronidazole resistance within one strain. This could indicate that 

MNQ has a similar mechanism of action to metronidazole. 
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Table 17: Antimicrobial activity of 2-methoxy-1,4-naphthoquininone (MNQ) 
against a range of Bacteroides fragilis and Clostridium difficile (N=3) 

Strain No.   Organism  Ribotype  

MIC (mg/L)  

Meropenem  MNQ  

ATCC 25285  Bacteroides fragilis  -  0.06  2  

13350  Bacteroides fragilis  Metronidazole 
resistance  

0.03  >128  

1579  Bacteroides fragilis  -  0.125  16  

1580  Bacteroides fragilis  -  0.125  16  

1581  Bacteroides fragilis  -  0.5  16  

1582  Bacteroides fragilis  -  0.125  16  

1583  Bacteroides fragilis  -  0.25  8  

1584  Bacteroides fragilis  -  4  8  

1585  Bacteroides fragilis  -  1  8  

1591  Bacteroides fragilis  -  128  16  

1592  Bacteroides fragilis  -  1  16  

1593  Bacteroides fragilis  -  1  16  

1594  Bacteroides fragilis  -  4  16  

1595  Bacteroides fragilis  -  32  4  

1596  Bacteroides fragilis  -  0.5  8  

1597  Bacteroides fragilis  -  1  16  

1598  Bacteroides fragilis  -  2  16  

1599  Bacteroides fragilis  -  1  16  

1600  Bacteroides fragilis  -  0.125  32  

1601  Bacteroides fragilis  -  0.25  32  

1602  Bacteroides fragilis  -  0.25  16  

R43812  Clostridium difficile  Ribotype 001  1  2  

R43875  Clostridium difficile  Ribotype 001  1  4  

R43935  Clostridium difficile  Ribotype 001  1  1  

R43943  Clostridium difficile  Ribotype 001  1  1  

R43968  Clostridium difficile  Ribotype 001  1  1  

R43883  Clostridium difficile  Ribotype 014  1  2  

R44000  Clostridium difficile  Ribotype 014  1  1  

R44002  Clostridium difficile  Ribotype 014  0.5  1  

R44003  Clostridium difficile  Ribotype 014  0.5  1  

R44015  Clostridium difficile  Ribotype 014  1  2  

R43874  Clostridium difficile  Ribotype 027  2  1  

R43942  Clostridium difficile  Ribotype 078  1  1  

R43997  Clostridium difficile  Ribotype 078  1  1  

R43998  Clostridium difficile  Ribotype 078  1  1  

R44004  Clostridium difficile  Ribotype 078  1  1  

R44007  Clostridium difficile  Ribotype 078  1  2  
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2.3.3 - Synergistic assessment of MNQ interactions with other antimicrobials   

  Antimicrobial drugs as they are often used in combination to treat bacterial infections. 

Therefore, to understand how MNQ works in conjunction with other antibiotics is useful information 

for its development as a potential antimicrobial chemotherapy agent. MRSA USA300 was used as 

the test bacterial strain a model for this assay as MNQ has a good MIC against MRSA. MNQ was 

combined with 11 antibiotics to establish to test for augmented activity against MRSA (Table 18). 

MNQ was found to be synergistic with ciprofloxacin and rifampicin which shows these have 

complementary modes of action. MNQ shows poorer activity when combined with gentamycin, 

streptomycin and lawsone. However, some literature suggests this methodology has poor 

reproducibility and only ƩFIC values of ≥4 should be considered as true antagonism, therefore only 

lawsone showed antagonism with MNQ.  

Table 18: Synergistic activity of 2-methoxy-1,4-naphthoquinone (MNQ) with other antibiotics 
against Staphylococcus aureus MRSA USA 300 (n=3). * - high level of significance 

  MIC (mg/L) MIC MNQ (mg/L) FIC A FIC B  ƩFIC  Activity  

Ciprofloxacin  5  12.5  0.125  0.125  0.25  Synergistic  

Mupirocin  1.25  12.5  0.25  0.5  0.75  Indifferent  

Levofloxacin  1.25  12.5  1  1  2  Indifferent  

Chloramphenicol  3.125  12.5  0.25  0.5  0.75  Indifferent  

Rifampicin  0.07  12.5  0.125  0.0313  0.15  Synergistic  

Tetracycline  6.25  12.5  0.5  0.5  1  Indifferent  

Cefotaxime  25  12.5  1  1  2  Indifferent  

Nalidixic acid  12.5  12.5  0.25  0.5  0.75  Indifferent  

Gentamycin  3.125  12.5  2  1  3  Antagonistic 

Streptomycin  50  12.5  1  2  3  Antagonistic 

Ampicillin  100  12.5  1  1  2  Indifferent  

Lawsone 100  12.5  2  2  4  Antagonistic*  

 

2.3.4 – Schistosoma mansoni schistosomula compound screening - Roboworm Platform 

  MNQ was assessed for its ability to effect general health and viability of both S. mansoni 

adult worms and schistosomula. The effect of MNQ on the schistosomula stage of the life of S. 
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mansoni was assessed using the Roboworm platform. The Roboworm platform is an automated 

high-throughput, imaging analysis platform measures both phenotype and motility of treated 

larvae. To be considered a positive result on this screen the phenotype and motility score of the 

compound must fall below -0.15 and -0.35, respectively, in ≥70% of the larvae assayed. A positive 

control is present in the form of auranofin which is a potent inhibitor of S. mansoni at the 

schistosomula stage of the life cycle. A negative control is also run in the form of DMSO (0.625%) 

which is used to solubilise the samples. MNQ was tested at a concentration of 1.88 mg/L (10 µM) 

with an average phenotype score of -0.614 and average motility score of -0.945. These values are 

far below the activity threshold suggesting that MNQ was an effective anti-schistosomal agent 

(Figure 18).  

  

Figure 18: Anthelminthic activity of 2-methoxy-1, 4-naphthoquinone (MNQ), Auranofin (positive 
control) and dimethyl sulfoxide (DMSO) (negative control) against Schistosoma mansoni 

schistosomula based on mobility and phenotypic impact (n=2) 

2.3.5 – Schistosoma mansoni adult worm compound screening 

 Further tests were carried out using the adult S. mansoni worm, measuring the effect of 

MNQ on the motility in both male and female worms and the total viable egg production. MNQ had 

a significant effect on egg production at all concentrations tested (50-6.25 µM), and significantly 
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inhibited motility at 4.7 mg/L (25 µM) with an IC50 of 4 mg/L (21.71 µM) (Figure 19). MNQ showed 

a preference against female worms with an IC50 3.69 mg/L (19.61 µM) and IC50 4.73 mg/L (25.11 

µM) against male worms, with there being a significant difference between male and female motility 

at 50 µ (Figure 20). This contrasted with PZQ which is more active against male worms.   

 

  

Figure 19: Anthelminthic activity of 2-methoxy-1, 4-naphthoquinone tested at 4 concentrations 
compared to a positive control auranofin (AUR) and negative control dimethyl sulfoxide (DMSO) in 
adult S. mansoni measured using motility score (bar) and counting the total number of viable eggs 

produced (line) after 72 hours (n=6). 
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Figure 20: Anthelminthic activity of 2-methoxy-1, 4-naphthoquinone naphthoquinone tested at 4 
concentrations compared to a positive control auranofin (AUR) and negative control dimethyl 
sulfoxide (DMSO) in adult male and female S. mansoni measured using motility score (n=6). 

 

2.3.6 – Erythrocyte lysis   

  To consider MNQ as a potential chemotherapeutic agent, its human toxicity must be 

established. This was undertaken using a range of assays including; erythrocyte lysis, HepG2 cell 

lines, Galleria mellonella model organism toxicity assay.  

 A simple assay was carried out to determine the concentration of MNQ required to lyse RBC 

(Table 19).  RBC lysis of > 10% was only seen at ≥ 50 mg/L which was considerably greater than most 

MIC of MNQ against susceptible strains ranges from 1-12 mg/L.  
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Table 19: Percentage haemolysis of erythrocytes in the presence of 2-methoxy-1, 4-
naphthoquinone (n=3) 

Concentration (mg/L)  Percentage haemolysis   

100  33.519  

50  13.676  

25  3.741  

12.5  0.830  

6.25  2.702  

 

2.3.7 – HepG2 Cytotoxicity  

  HepG2 human liver hepatocellular carcinoma cells are routinely used as a reproducible cell 

line for the screening liver toxicity of compounds. MNQ was found to have an EC50 of 0.269 mg/L 

(1.431 µM). This was lower than the concentration needed to kill even the most susceptible bacteria 

(Figure 21). At log values below 0 (concentrations below 1 µM) the normalised absorbance values 

are around 100 indicating health cells, however at log 0 there is a large error bar this is because at 

this concentration the cells begin to die and there is a large amount of variability at this point. 

Beyond log 0 the normalised absorbance drops to around 0 because the cells have dies and all 

replicates agree with small error bars.  

 

Figure 21: Line graph of log concentration against normalised absorbance, showing cytotoxicity of 
2-methoxy-1, 4naphthoquinone against HepG2 cells 
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2.3.8 – Galleria mellonella toxicity  

 G. mellonella has been shown to be a simple and inexpensive in vivo infection model which can 

provide information based on the likely cytotoxicity and antibacterial efficacy (Desbois and Coote, 

2011). This wax moth model has been shown to respond similarly to mice in bacterial infection 

models (Jander, Rahme and Ausubel, 2000) and has the added advantage of being less expensive 

and time consuming. This assay tests both the cytotoxicity of MNQ against a live organism and the 

ability to fight an infection within a living system.  

  The tolerance of G. mellonella to MNQ alone needed to be established prior to carrying out 

an infection model experiment to ensure MNQ was not toxic to G. mellonella. A range of MNQ 

concentrations were injected into healthy wax moth larvae and observed over 72 hours monitoring 

the survival rate (Figure 22). MNQ has an MIC of 8 mg/L and 10x and 100x MIC was tested to see if 

any toxicity was observed in the wax moth larvae. Of the 20 replicate larvae in each group, only one 

individual larva died over all MNQ treatment after 72 hours. There was no statistically significant 

difference between the highest MNQ concentration and no treatment (Log-rank (Mantel-Cox) test 

p=0.3173). Showing that MNQ has limited toxicity on wax moth larvae even at 800 mg/L.  

 

Figure 22: Line graph showing he number of  G. mellonella surviving after 72 hours of treatment 
with 2-methoxy-1,4-naphthoquinone (MNQ) at a range of concentrations, vancomycin (VAN), 

dimethyl sulfoxide (DMSO) and untreated.  
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2.3.9 – Galleria mellonella infection model   

  Given the limited toxicity of MNQ it was possible to infect the larvae with MRSA and assess 

if MNQ could reduce infection development of MRSA. A lethal dose of MRSA was injected into the 

100 larvae and separated into 6 groups of 20 for different treatments. Three MNQ treatments were 

applied to the infected larvae at x1 (8 mg/L), x10 (80 mg/L) and x100 (800 mg/L) MIC. Vancomycin 

is a proven treatment for MRSA and one group was injected with 40 mg/L of vancomycin as an 

antibiotic comparison. 20 other larvae were treated using the 10% DMSO solution used to solubilise 

the samples as a negative control. A further 20 larvae obtained from the same batch as the others 

were not infected and not treated as a positive control. This test will show the antimicrobial activity 

of MNQ within a living organism compared to a well-established antibiotic in the form of 

vancomycin. 

 MNQ seemed to show some protective activity at the highest concentration of 800 mg/L 

with 7 larvae surviving after 48 hours and 3 at 72 hours (Figure 23 and Table 20). This was more than 

DMSO alone, however the difference was not found to be significant (Table 21). Even with the 

vancomycin not all the larvae survived but after 72 hours 14 were surviving, significantly more than 

MNQ and DMSO and at a far lower concentration.  



98 
 

 

 

Figure 23: Line graph showing the number of surviving G. mellonella infected with MRSA treated 
with 2-methoxy-1,4-naphthoquinone (MNQ), vancomycin (VAN), dimethyl sulfoxide (DMSO) and 

untreated over 72 hours. 

Table 20: The number of larvae surviving after each time point after injection of a 
lethal dose of MRSA and treatment with antibiotics (n=20) 

Treatment  Alive 0h  Alive 24h  Alive 48h  Alive 72h  

Control  20  20  20  20  

DMSO  20  6  3  2  

MNQ (8 mg/L)  20  5  3  1  

MNQ (80 mg/L)  20  4  4  2  

MNQ (800 mg/L)  20  7  7  3  

VAN (40 mg/L)  20  20  18  14  
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Table 21: Statistical Comparison of Survival curves for 2-methoxy1, 4-
naphthoquinone (800 mg/L) vs Untreated infection model  

Log-rank (Mantel-Cox) Test 

Chi square  0.7554  

df  1  

P value  0.3848  

P value summary  ns  

Are the survival curves sig different?  No  

Gehan-Breslow-Wilcoxon Test 

Chi square  0.3444  

df  1  

P value  0.5573  

P value summary  Ns  

Are the survival curves sig different?  No  

Median survival 

Treatment A  24.00  

Treatment B  24.00  

Ratio  1.000  

95% CI of ratio  0.4846 to 1.515  

Hazard Ratio 

Ratio  0.6265  

95% CI of ratio  0.2182 to 1.798  

 

2.4 – Discussion – MNQ Bioactivity  

  MNQ, which showed promising activity against S. aureus was isolated from I. glandulifera 

and subjected to a broad range of biological assays.   

2.4.1 – Staphylococcal species   

2.4.1.1 – Staphylococcus aureus and MRSA 

  Of the staphylococcal species tested (Table 13 and Table 14) MNQ was most effective 

against S. epidermis NCTC 11047 with an MIC of 4 mg/L. S. epidermis is of clinical interest as it is an 

opportunistic pathogen able to cause a range of diseases (Otto, 2009). The MRSA strains of most 

clinical relevance are ATCC 33591, EMRSA and USA300. These have different resistance profiles to 

antibiotics where ATCC 33591 possesses a type III staphylococcal cassette chromosome (SCC) mec 
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which conveys methicillin resistance. This mobile genetic element is widely disseminated through 

staphylococci and contains four commonly shared features (IWG-SCC, 2009):   

 They carry a mec gene complex:  

 mecA (can be A, B, C, D or E depending on type, A in this case because it is type III) – this is 

a gene encoding penicillin binding protein (PBP) 2A which has lower affinity for β-lactams than the 

usual PBP1,2,3 and 4. This provides an alternative PBP that is not affected by the presence of β-

lactam antibiotics meaning transpeptidase remain active allowing cell wall synthesis to continue 

uninhibited.  

 Two regulatory genes. mecI gene produces a repressor protein (MecI), when bound to mecA 

transcription is repressed. mecR1 a signal transducer protein, when bound to β-lactam antibiotics, 

MecR1 releases a polypeptide with proteolytic activity to degrade MecI increasing transcription of 

mecA, and insertion sequence IS431.  

 They carry a ccr gene complex:  

 Composed of two site specific recombinase genes responsible for the motility of SCCmec, 

this makes the mec gene complex a mobile genetic element allowing this virulent complex to be 

transferred to other bacteria. ccrA3 and ccrB3 (number dependent on SCC type – in this case III) 

catalysing the precise excision, site- and orientation- specific integration of SSCmec elements.  

 They have characteristic directly repeated nucleotide sequences and inverted 

complementary sequences at both ends.   

 They can be accepted into integration site sequence for SSCmec (ISS), situated at the 3’ end 

of orfX.   

 The presence of SCCmec type III in ATCC 33951 provides resistance only to β-lactams. As 

MNQ does not possess a 4 membered lactam ring it is unlikely to have the same mechanism of 

action as β-lactams. The protection which SCCmec type III offers is ineffective as MNQ does not bind 
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to PBP therefore it is unsurprising that MNQ can effectively inhibit the growth of this strain of MRSA 

at the same concentration as MSSA.  

 The other two strains, EMRSA and USA300, are clinical isolates from hospitals and are 

considered the two most successful MRSA strain to disseminate globally and these both have 

SCCmec type IV (Sabirova et al., 2014). The first epidemic of MRSA, designated EMRSA-1 was 

recognised in 1981 and followed by many other outbreaks over the years with EMRSA-15 emerging 

in 1991, rapidly displacing most other EMRSA strains (O’neill et al., 2001). EMRSA-15 accounts for 

>95% of MRSA bacteraemia in UK hospitals (Moore and Lindsay, 2002). This strain has become the 

dominant strain in the UK and has also been identified in Australia, New Zealand, Germany, Sweden, 

and Finland. This strain is characterised by weak lysis with phage 75, production of staphylococcal 

enterotoxin-C (SE-C) and nonproduction of urease. The production of enterotoxins contributes to 

the pathogenicity of staphylococcal infections such as food poisoning and toxic shock syndrome 

(TSS). SE-C is one of the least common and is usually isolated form animals (Marr et al., 1993).  SEs 

are classified as superantigens, which can be defined as a toxin of foreign substance which can 

stimulate large populations of T-cells leading to the production of a cytokines which are usually 

produced by pathogenic bacteria as a mechanism of defence against immune response. SEs bind 

Major Histocompatibility Complex (MHC) class two molecules on antigen presenting cells (APC), 

crosslinking APCs with T-cells eliciting the release of cytokines (Pinchuk, Beswick and Reyes, 2010).   

 USA300 was first reported in 2003, one of eight USA MRSA strains (USA100-800) (McDougal 

et al., 2003) but actually came to the attention of the CDC in 2000 during multiple community MRSA 

infection outbreaks in a Mississippi prison (CDC, 2001) and football players in Colorado, Indiana, 

Pennsylvania and Los Angeles (CDC, 2003). It was remarkable at the time that all these individuals 

were infected with not only the same strain, but these young, healthy individuals are not 

traditionally considered to be at risk of MRSA infection. Over time USA300 became the most isolated 

MRSA strain (other than USA100) and particularly in a community setting amongst otherwise 
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healthy individuals (Tenover and Goering, 2009). USA300 diverged form ST8-MSSA acquiring 

SCCmec type IV leading to strains such as EMRSA 2, 5 and USA500, and diverged further with the 

acquisition of genes encoding Panton-Valentine leukocidin (PVL), arginine catabolic mobile element 

(ACME), and msr(A) erythromycin resistance gene, therefore becoming far more virulent. PVL is a 

β-pore forming cytotoxin (leukotoxin, leukocidin, or more broadly invasin) which causes increased 

virulence of S. aureus infections and the specific production of PVL is preferentially linked to 

furuncles, cutaneous abscesses, and severe necrotic skin infections (Cribier et al., 1992; Couppie et 

al., 1994). Leukotoxins in general (others being γ-haemolysin, leukotoxins ED, and AB/HG) have two 

protein subunits classified ‘S’ and ‘F’, referring to slow and fast based on elution speed. The current 

understanding is that the S subunit serves as a homing component which binds specifically to host 

receptor, and then recruits the F subunit. Once localised on the cell surface, subunits assemble into 

an octameric prepore with four of each subunit alternating. The stem domains of the assembled 

subunits unfold and insert into the cell membrane to form β-barrel pores (Kaneko and Kamio, 2004). 

As the name suggests leucocidins form these pores and therefore lyse cells of the leukocytic lineage, 

yet different leukotoxins target different leukocytes and can be more effective against different host 

species. PVL mostly effects human neutrophils (no effect on RBCs unlike haemolysin) yet mouse and 

monkey cells are resistant to lysis by PVL (Löffler et al., 2010). Although this PVL is strongly 

associated with community acquired MRSA strains (~85%) the contribution of this leukotoxin to the 

pathogenesis of MRSA remains inconclusive (Yoong and Torres, 2013). ACME includes two main 

gene clusters; arc (arcA, B, C, D) and oligopeptide permease operon opp (opp-3A, B, C, D, E). The 4 

arc genes encode a complete arginine deiminase pathway which converts L-arginine to CO2, 

adenosine triphosphate (ATP) and ammonia; the production of which is thought to enhance ability 

to grow and survive within a host. The opp genes encode ABC transporter systems. The current 

understanding is that ACME does not directly enhance virulence but improves general fitness and 

ability to colonise the host (Diep et al., 2008; Shore et al., 2011).   



103 
 

 The three known strains tested in SACU had resistance to Flucloxacillin (conferred by mecA), 

Erythromycin/Clindamycin (conferred by macrolide-lincosamide-streptogramin B (MLSB) 

resistance), and vancomycin heteroresistance Mu3 strain. MLSB resistance is due to the ermC genes 

which encode a 23S rRNA methyltransferase, facilitating methylation of 23S rRNA at adenine. 

Rendering the ribosomes incapable of binding the MLS antibiotics becoming resistant (Jenssen et 

al., 1987). The first MRSA strain with heterogeneous intermediate resistance to vancomycin (hVISA) 

was reported in 1997 in Japan (Hiramatsu et al., 1997). The heterogeneous resistance to vancomycin 

indicates there are subpopulations of vancomycin-intermediate daughter cells that are susceptible 

to vancomycin. hVISA strains of S. aureus quickly gain resistance to vancomycin when exposed to 

the antibiotic with MIC ranging from 8- 24 mg/L (Saito et al., 2014). This strain is very closely related 

to a fully VISA strain Mu50 (Liu and Chambers, 2003). These resistance mechanisms had major 

effects on the efficacy of ampicillin yet no observable impact on MNQ’s ability to inhibit the growth 

of these bacteria. The MICs for MNQ against all S. aureus strains were 8 mg/L. The breadth of this 

activity across so many resistant strains exceeds all current antibiotics. This suggests that MNQ does 

not work in the same way as many of the antibiotics currently used today, an antibiotic with a new 

mode of action is what is needed to counter the challenge of MRSA.  

2.4.1.2 – Staphylococcus epidermis and S. saprophyticus 

 S. epidermis is a common skin coloniser and usually has a benign relationship with its host. 

However, it can become an opportunistic pathogen causing a range of infections. S. epidermis 

belongs to a group of bacteria called coagulase-negative staphylococci (CoNS), which distinguishes 

it from S. aureus which is coagulase-positive. CoNS bacteria commonly cause infections linked to 

medical devices such as catheters, prosthetics, pacemakers, shunts as well as grafts (Rogers, Fey & 

Rupp, 2009).  S. saprophyticus is the second most frequent cause of urinary tract infections, it can 

also cause kidney infections, septicaemia and endocarditis (Hedman & Ringertz, 1991). Growth of 

the three other clinical isolates of S. epidermis and S. saprophyticus with unknown resistance 

mechanisms were also inhibited by MNQ with MICs of 4-8 mg/L, despite one of the S. epidermis 
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strains showing some resistance to ampicillin. MNQ has outperformed the antibiotic against other 

Staphylococcal species. Antibiotics are usually prescribed in advance of identifying the bacteria 

causing the infection, therefore it is important that MNQ can inhibit the growth of many bacterial 

species especially closely related species such as these.  

2.4.2 - Testing antimicrobial activity against clinically relevant Gram-positive bacteria  

2.4.2.1 – Enterococcus faecalis 

  MNQ was assayed for antimicrobial activity against a range of gram-positive bacteria (Table 

15). Enterococcus faecalis is an opportunistic pathogenic commensal bacterium which inhabits the 

GI tract of humans and other mammals yet can cause diseases such as endocarditis, septicaemia, 

UTIs, meningitis etc (Murray, 1990). Three strains have been used; a standard susceptibility testing 

strain, and two strains which are resistant to vancomycin through two different mechanisms, vanA 

and vanB. Glycopeptide antibiotics (vancomycin, teicoplanin etc.) are often used to treat 

Enterococcus and Staphylococcus infections. These antibiotics bind the peptidyl-D-alanine-D-

alanine termini of peptidoglycan precursors blocking their incorporation into the cell wall (Reynolds, 

1989).   

  VanA resistance is characterised by high level resistance to vancomycin (MIC ≥64 mg/L) and 

teicoplanin (MIC ≥16 mg/L). This is mediated by Tn1546 type transposon containing vanA genes 

encoding a D-alanine-D-alanine ligase with results in a peptidoglycan precursor with reduced affinity 

for glycopeptide antibiotics (Bugg et al., 1991; Lester et al., 2006). VanB resistance results in lower 

level vancomycin resistance (MIC 8-64 mg/L), remaining susceptible to teicoplanin, with the vanB 

locus encoded by a conjugative transposon of the TN1549-/Tn5382-subtype (Bjørkeng et al., 2011). 

These plasmid mediated resistances are worrying as it can be spread quickly not only in Enterococci, 

but other species such as Staphylococcus aureus leading to VRSA. MNQ was relatively ineffective 

against the ATCC 29212 strain of E. faecalis with an MIC of 64 mg/L. This strain is considered as a 

control strain in food testing, susceptibility testing, quality control and does not possess any specific 
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resistance mechanisms. However, MNQ was found to be a particularly potent against vanA and vanB 

encoding strains of E. faecalis with an MIC of 4 mg/L. An MIC of 64 mg/L would be considered a very 

poor result for an antibiotic, however its very impressive MIC of 4 mg/L against vancomycin resistant 

strains is interesting. As vancomycin resistance is very common within E. faecalis finding a 

compound which can treat these resistant strains is extremely valuable (Murray, 2000). This is 

especially valuable as it has been found that vancomycin resistance within E. faecalis can transferred 

to S. aureus (Noble, Virani & Cree, 1992).  

 It is odd that the presence of one transposable element in the form of vanA and vanB would 

reduce the ability of E. faecalis to resist the antimicrobial activity of MNQ which seeming has an 

entirely different mechanism of action. However, the acquisition of resistance to an antibiotic does 

come at a fitness cost, these can be measured indirectly by the relative growth rate, survival and 

competition performance in vitro. In most investigations, a chromosomal mutation which yielded 

resistance did incur a fitness cost (Andersson and Levin, 1999). In the specific case of the vanA 

operon within S. aureus, the expression of resistance is costly to the host especially when challenged 

with vancomycin (to ensure the operon is induced) with minimal fitness cost without vancomycin 

(Foucault, Courvalin and Grillot-Courvalin, 2009). The results in Table 15  is a clear representation of 

this fitness cost, represented by the different MICs of MNQ versus vancomycin resistant and 

susceptible strains of E. faecalis. 

 Further to this point, PBP 2 is not capable of cross-linking peptidoglycan which has been 

modified due to van genes (Severin et al., 2004). This means that the van operon which is 

responsible for alteration of peptidoglycan resulting in vancomycin resistance in not compatible 

with mecA which is produces a modified PBP which renders β-lactam antibiotics ineffective. As these 

two mechanisms are conflicting and the fitness cost associated will be very high and there have 

been instances where there has been a deletion of mecA in the presence of vancomycin to 

compensate for this issue (Adhikari et al., 2004; Noto, Fox and Archer, 2008). The incompatibility of 
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different resistance mechanisms is very promising for the use of combination drug therapies, having 

two antibiotics with different modes of action can theoretically slow the onset of resistance 

(Mouton, 1999). Using combination therapy to treat tuberculosis (Chaisson, 2003) and P. aeruginosa 

(Lister & Wolter, 2005) has been found to be successful for slowing the occurrence of resistance. 

However, there are conflicting accounts in the literature which state that combination therapy has 

little to no impact on the development speed of resistance (Sanders Jr & Sanders, 1988l; Carmeli et 

al., 1999). 

2.4.2.2 – Mycobacterium smegmatis  

  Tuberculosis (TB) remains a major global threat caused by the bacterium Mycobacterium 

tuberculosis. It typically affects the lungs but can also affect other such as the skin, lymph nodes, 

urinary tract, skeletal system, central nervous system and many other sites (Dye et al., 1999). 

Overall, only 5-15% of the 2-3 billion people infected with M. tuberculosis will develop TB disease 

during their lifetime, yet one developed without treatment the death rate is high. There were 

estimated to be 1.8 million TB deaths and 10.4 million new cases in 2015 (WHO, 2016). M. 

smegmatis was used as a fast-growing that is widely used as a surrogate for TB. This is the case, 

although M. smegmatis tends to be more robust and can miss active compounds which can 

effectively inhibit the growth of M. tuberculosis (Altaf et al., 2010). MNQ can effectively inhibit the 

growth of M. smegmatis with an MIC of 1 mg/L. This level of activity exceeds its MICs against 

Staphylococcal species suggesting MNQ could prove to be an antitubercular lead compound.  

2.4.2.3 – Streptococcus pneumoniae  

  The Streptococcus genus contains over 50 species that are associated with a wide range of 

infections. Streptococcus pneumoniae typically colonises the respiratory tract and can be carried 

asymptomatically, however in individuals with weaker immune systems cause pneumonia, 

meningitis, sepsis and other diseases (Krzyściak et al., 2013).  A wide range of clinical isolates with 

erythromycin and tetracycline, penicillin, and erythromycin and clindamycin with a non-resistant 
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reference strains were tested. All strains of S. pneumoniae tested were equally susceptible to MNQ 

with an MIC of 16 mg/L. MNQ had the same MIC against S. pyogenes, also known as group A 

Streptococcus (GAS) and S. dysgalactiae also known as group G Streptococcus (GGS). GAS causes 

mild human infections such as pharyngitis, impetigo, and more serious infections such as necrotizing 

fasciitis and streptococcal toxic shock syndrome. GGS typically causes chronic skin conditions among 

other infections. Penicillins are the recommended treatment for GAS and GGS infections and these 

bacteria have remained susceptible with no development of penicillin resistance anywhere in the 

world (Walker et al., 2014).  S. bovis is commonly found as part of the bowel flora of humans and 

animals, responsible for such diseases as bacteraemia, endocarditis, neonatal infection, and 

meningitis. S. bovis was less susceptible to MNQ treatment than other Streptococcus species with 

an MIC of 32 mg/L. MNQ having again such consistent activity against another range clinically 

relevant species is a promising sign that MNQ has real potential as a broad-spectrum antibiotic. 

2.4.3 – Testing Antimicrobial activity against clinically relevant Gram-Negative bacteria  

2.4.3.1 – Acinetobacter baumannii  

  Acinetobacter baumannii has become increasingly significant as a pathogen over the past 

20 years due to its ability to upregulate or acquire resistance determinants and survive for prolonged 

periods in hospital environments threatening the efficacy of antibiotics. There is a wide array of 

antimicrobial resistance mechanisms described in A. baumannii and a global emergence of β-lactam 

resistance A. baumannii (Peleg, Seifert and Paterson, 2008). Therefore, the traditional treatment of 

β-lactam antibiotics are ineffective and other drugs must be used such as colistin, however, this can 

cause a range of side effects and is only used as a last resort (Abbo et al., 2005).  MNQ was shown 

to inhibit A. baumannii growth with an MIC of 32 mg/L. The strain used is a clinical isolate which is 

resistant to ampicillin which has an unknown resistance mechanism against β-lactam. As MNQ has 

been proven to be unaffected by the presence of β-lactam resistance mechanisms within all strains 
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of bacteria tested so far, this indicates that MNQ could hold a potential solution to the global 

emergence of β-lactam resistance.  

2.4.3.2 – Burkholderia cepacia 

  Burkholderia cepacia, an opportunistic human pathogen typically colonizing the airways 

leading to the exacerbations of pulmonary infections. B. cepacia plays a role in cystic fibrosis 

patients’ respiratory failure and can generally cause lung infections. Treatment for this pathogen is 

difficult as it is resistant to most antimicrobial agents (Coenye et al., 2001). Unfortunately, the MIC 

of MNQ for B. cepacia was MIC of 64 mg/L, which is not considered to be particularly good. However, 

this is better than ampicillin which has an MIC >128 mg/L. 

2.4.3.3 – Escherichia coli 

  E. coli which is usually a commensal bacterium of humans and animals and is the most 

common cause of gram negative nosocomial and community-acquired infections causing diseases 

such as gastroenteritis, UTI, meningitis, peritonitis, and septicaemia (Kaper, Nataro & Mobley, 

2004). In addition to causing a range of diseases, drug resistant E. coli has been reported worldwide 

and the occurrence of resistance in increasing (Von Baum and Marre, 2005).  Four strains of E. coli 

were therefore tested for their susceptibility to MNQ, three of which had resistance mechanisms. 

MNQ had an MIC of 128 mg/L against E. coli with no resistance mechanism, ampicillin and 

cephalosporin resistant E. coli. MNQ has an MIC >128 mg/L against nitrofurantoin/trimethoprim 

resistant E. coli. These are very poor activity profiles against E. coli, likely due to the structure of the 

bacterial membranes of gram negative.  

2.4.3.4 – Klebsiella pneumoniae 

 Klebsiella pneumoniae naturally occurs in the soil and the normal flora of the mouth, skin 

and intestines. Again, this bacterium is an opportunistic pathogen causing pneumonia and other 

infections usually in immunocompromised patients (Podschun and Ullmann, 1998). Four strains 

were tested for susceptibility to MNQ. Two strains resistant to carbapenems were susceptible to 
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MNQ at the highest concentration tested, 128 mg/L. MNQ was not able to inhibit the growth of the 

other two strains, one being non-resistance and the other resistant to cephalosporins. These results 

reflect that seen in E. coli further adding to the hypothesis that MNQ is ineffective against gram-

negative bacteria. Also, that the presence of carbapenem resistance is reducing the fitness of K. 

pneumoniae resulting in higher susceptibility to MNQ. 

2.4.3.5 – Proteus mirabilis 

  Proteus mirabilis is widely distributed in the environment, including polluted water, soil, and 

manure where it plays a role in decomposition. These bacteria are the causative agent of a variety 

of opportunistic nosocomial infections in the respiratory tract, eye, ear, nose, skin, burns, throat, 

wounds, also causing gastroenteritis and UTI (Jacobsen et al., 2008). Growth of P. mirabilis was not 

affected by MNQ in any major way, with a high MIC of 128 mg/L, although MNQ is more effective 

than ampicillin. This is promising as MNQ is consistently showing activity even if it is at a high 

concentration suggesting the killing mechanism of MNQ is difficult to resist. 

2.4.3.6 – Pseudomonas aeruginosa 

  Pseudomonas aeruginosa is a versatile bacterium able to grow in soil, marches, habitats as 

well as plant and animal tissue. P. aeruginosa is proficient in the formation of biofilms which is a key 

factor in the cause of disease and resistance to antibiotics (Hardalo and Edberg, 1997; Costerton, 

Stewart and Greenberg, 1999).  P. aeruginosa is one of the top three causes of opportunistic human 

infections which is resistant to antibiotics and disinfectants (Bodey et al., 1983) and MNQ was 

unable to inhibit the growth of P. aeruginosa at the highest concentration tested, 128 mg/L.  

2.4.3.7 – Salmonella enteritidis 

  Salmonella enteritidis is a major pathogen associated with the consumption of eggs and the 

major cause of nontyphoidal salmonellosis (Rabsch, Tschäpe and Bäumler, 2001). MNQ again only 

inhibited the growth of this gram-negative pathogen at 128 mg/L.   
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  The average MIC of MNQ against gram-positive bacteria is 15 mg/L and the MIC against 

gram-negative bacteria is 155 mg/L (assuming MNQ would be able to inhibit MNQ-resistant strains 

at 256 mg/L). This ten-fold reduction in efficacy suggests the presence of an outer membrane has 

had a significant effect on the ability of MNQ to inhibit the growth of bacteria. This extra barrier of 

protection plays a key role in preventing the mechanism of action of MNQ, either by limiting the 

internalisation of MNQ or preventing access to the membrane if this is the site at which MNQ effect 

the bacteria.  

2.4.4 - Testing antimicrobial activity against anaerobic bacteria  

2.4.4.1 – Bacteroides fragilis 

  Bacteroides species comprise nearly half of the faecal flora community with some critical to 

the host nutrition.  B. fragilis account for <1-2% of cultured faecal flora but play a role in the host 

mucosal and systematic immunity. B. fragilis is also an opportunistic pathogen and a leading 

anaerobic isolate in clinical specimens, bloodstream infections, and abdominal abscesses (Sears, 

2009). B. fragilis is inherently resistant to a range of antibiotics due to resistance being conveyed via 

a plasmid which can be quickly passed throughout bacterial population. This plasmid can resist the 

antibiotics clindamycin, erythromycin, streptogramins and tetracycline (Privitera, Dublanchet & 

Sebald, 1979). Therefore Metronidazole (Met) or a complex mix of antibiotics are used to treat 

infections (Wexler, 2007). MNQ exhibited an MIC against B. fragilis between 2-32 mg/L. However, 

there was one Met resistant strain of B. fragilis which was entirely resistant to MNQ with an MIC 

>128 mg/L. 

 Met is administered as a prodrug which is inactive and requires activation by the partial 

reduction of its nitro group, the active form is a toxic nitroso- radical which binds DNA causing 

double strand DNA breakage. Met resistance in B. fragilis can be caused by the nim genes which is 

carried on a novel conjugative transposon (Husain et al., 2013). This gene is thought to code a 

nitroimidazole reductase which reduces the nitro group of 4- or 5-nitroimidazole to an amino group 
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to make the inactive compound, 5-aminoinidazole preventing the toxic effects of nitroso radicals 

key for the antibacterial activity of Met (Müller, 1983; Carlier et al., 1997). The antibacterial activity 

of MNQ is dependent on the presence of the methoxy group as seen in the different MIC of MNQ 

and HMQ. If nitroimidazole reductase can reduce MNQ it will lose the methoxy group therefore lose 

its potency. However, Met resistance can persist within nim-negative strains due to increased efflux 

gene transcription levels, alterations in DNA repair systems, metabolic changes and lack of 

activation of the Met molecule. Similarly, naphthoquinones can produce adducts and reactive 

oxygen species (ROS) which can cause alkylation or oxidation of DNA and proteins (Bolton et al., 

2000). Thus, resistance to Met could explain its poor efficacy of MNQ in this strain. However, as this 

is a clinical isolate it is unknown whether Met resistance is mediated through nim genes, yet we can 

tentatively deduce that the presence of nim genes within bacteria could confer resistance against 

MNQ. This is worrying as nim homologues are found in both gram-negative and positive genera or 

both aerobic and anaerobic bacteria and archaea, suggesting that the nim gene family is ancient and 

widespread (Husain et al., 2013). Although MNQ does not contain a nitro group which requires 

reduction for activation therefore it would not make sense for resistance to be conveyed through 

the presence of a nitroimidazole reductase, unless there are other factors at play as this mechanism 

of resistance is not fully understood.  

2.4.4.2 – Clostridium difficile 

  C. difficile is a spore forming bacterium, which causes symptoms such as diarrhoea, fever, 

nausea and abdominal pain. It is involved in just under half of all infections occurring within hospital 

(CDC, 2012). C. difficile infection (CDI) is a major cause of morbidity and mortality from healthcare-

associated infections in economically developed countries. MNQ was tested against 16 clinical 

isolates of C. difficile including 4 different ribotypes (RT). Certain RT have been linked to severe 

outbreaks. RT 78 has been described as “hypervirulent” which tends to affect a younger population 

and is more frequently community associated when compared to type 027 which is also responsible 

for severe CDI outbreaks and is said to be have increased virulence (Goorhuis, Bakker, et al., 2008). 
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RT 014 is a highly successful among the most common RTs causing CDI, predominantly in paediatric 

populations (Knight et al., 2017). RT 78 is most commonly isolated from swine and calves in the US, 

and associated with human community onset infection (Goorhuis, Debast, et al., 2008). RT 001 has 

been associated with increasing prevalence of CDI in human along with a range of antibiotic 

resistance in Germany (Borgmann et al., 2008).  

 Although RT is linked to virulence and severity of the infection this does not necessarily 

increase resistance to drugs although certain RT do tent to pick up resistance mechanisms more 

readily and are thought to cause epidemics. However, even the link between RT and severity of 

infection has been disputed; RT was found to be not significant as a predictor of severity of CDI. 

Other factors such as white blood cell count and albumin count are more clinically relevant factors 

which effect the severity of CDI (Walk et al., 2012). The MIC of MNQ against C. difficile ranged 

between 1-4 mg/L and did not correlate with RT, this is lowest MIC of MNQ seen against any 

bacteria. The level of activity seen in MNQ was as good as meropenem in most cases which is 

impressive activity increasing the range of bacteria MNQ is known to be effective against. This 

activity against all RT of C. difficile is an indication MNQ possesses the level of potency required to 

be a future treatment for C. difficile infections.  

2.4.5 - Synergistic assessment of MNQ interactions with other antimicrobials   

  With 7 of the 11 antibiotics the presence of MNQ had no effect (“indifferent”). With 

gentamycin and streptomycin their ability to inhibit the growth of MRSA was antagonised by the 

presence of MNQ. Both gentamycin and streptomycin are aminoglycosides which irreversibly bind 

the 30S subunit proteins and 16S rRNA preventing protein synthesis, which presumably for MNQ 

was affecting via an unknown mechanism.  MNQ showed synergistic activity when combined with 

ciprofloxacin and rifampicin. Ciprofloxacin is a fluoroquinolone which inhibits enzymes 

topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA 

replication, transcription, repair, strand supercoiling and recombination (Drlica and Zhao, 1997). 
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Rifampicin specifically inhibits bacterial DNA-dependent RNA polymerase leading to suppression of 

RNA synthesis and cell death (Campbell et al., 2001). Although these two antibiotics have different 

mechanisms of actions, they both have a quinones at their core. This could be a contributing factor 

to their synergistic relationship with MNQ which is also has a quinone core. Ciprofloxacin has been 

shown to stimulate the production of reactive oxygen species (ROS) which have a toxic effect, it has 

been suggested this generation of ROS contributes to the antimicrobial activity of ciprofloxacin 

(Goswami, Mangoli & Jawali, 2006). If a quinolone core is responsible for the generation then MNQ 

is likely also able to form ROS. The presence of two agents generating these toxic molecules will 

have a synergistic affect, therefore explaining these results. However, levofloxacin like ciprofloxacin 

is a second-generation fluoroquinolone and would therefore expect synergism, but it has an ƩFIC 

value of 2 which is perfect indifference.   

  In addition to the 11 antibiotics tested for synergistic activity with MNQ, 2-hydroxy-

1,4naphthoquinone (HNQ) also known as lawsone was also assayed for its activity against MRSA and 

in combination with MNQ. HNQ showed 100-fold higher MIC compared to MNQ, therefore, the 

methoxy group of MNQ is required for the highly potent antimicrobial activity against MRSA. HNQ 

was also found to be the most antagonistic of all the tested compounds. HNQ has been shown to 

inhibit the formation of ROS (Saeed et al., 2013), which was found to be the cause of the synergism 

seen in other antibiotics combined with MNQ. This would explain the significant antagonism seen 

when MNQ and HNQ are combined. 

2.4.6 – Screening for anthelminthic activity  

  The current treatment for S. mansoni infection is praziquantel (PZQ) which is ineffective 

against schistosomula. Its mechanism of action is thought to target the schistosome calcium ion 

channels, causing rapid calcium ion uptake along with vacuolation a blebbing near the surface. In 

addition, PZQ is also thought to increase the exposure of antigens on the worm’s surface increasing 

susceptibility to host antibodies (Doenhoff, Cioli and Utzinger, 2008). PZQ has an IC50 5.44 mg/L 



114 
 

(17.4 µM) against the adult worm (Kasinathan, et al., 2010), although the efficacy is dependent on 

the age of the infection, the sex of the worm and whether they are paired or unpaired. Immature 

28-day schistosomes are 30 times more resistant to PZQ than the 7-week-old adults. Being female 

and unpaired also decreased the efficacy of PZQ. The inconsistency against different forms of the 

same organism is a problem for the clinical use of PZQ (Pica-Mattoccia and Cioli, 2004), therefore it 

is pivotal to develop new anti-schistosomiasis drugs which are effective against all stages of the 

parasite. MNQ was tested in four ways to show its full activity against the S. mansoni parasite; 

inhibitory activity against the larval schistosomula (Figure 18), adult male, adult female and egg 

production (Figure 19 and Figure 20). Each of these factors are important to have a comprehensively 

active anthelminthic agent, the current drug praziquantel is lacking efficacy against the 

schistosomula and female unpaired worms. MNQ showed exceptional activity against the 

schistosomula with and IC50 of <1.88 mg/L (10 µM) but was less effective against the adult worms 

showing a slight preference for the female worm with an IC50 3.69 mg/L (19.61 µM) and IC50 4.73 

mg/L (25.11 µM) against male worms. The efficacy of MNQ matches that of PZQ against adult worm 

and exceeds against the larval stage of the parasite, making MNQ a potential treatment for S. 

mansoni in the future. 

2.4.7 – Cytotoxicity  

  For a potential drug to be a viable treatment option it must be safe to administer to humans, 

ideally with minimal side effects. Conflicting cytotoxicity results were obtained, firstly MNQ was 

found cause minimal lysis of red blood cells (RBC) indicating that MNQ is relatively non-toxic. 

Considering that naphthalene which is at the core of MNQ is known to damage human red blood 

cells which can lead to haemolytic anaemia, it is a sign that MNQ is less toxic as it was unable to lyse 

RBC easily. Exposure to large amounts of naphthalene can cause a range of negative effects such as 

confusion, nausea, vomiting, diarrhoea, blood in the urine, and jaundice (Sanctucci and Shah, 2000). 

The presence of naphthalene in the body is understood to be metabolised by cytochrome P450 and 
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its structure is altered in three ways resulting in either mercapturic acids, 1,2naphthoquinone, 1,4-

naphthoquinone (Waidyanatha et al., 2002) or 1-naphthol. The cytotoxicity of these metabolites 

against mononuclear leucocytes were assayed; where 1,2-NQ, 1,4-NQ and 1naphthol were all found 

to be significant more cytotoxic than naphthalene (Table 22). Previous studies have shown that 

naphthoquinones are toxic to rat hepatocytes which is related to the disturbance of intracellular 

glutathione (Ollinger and Brunmark, 1991). Although the RBC lysis results were initially promising 

due to the high concentration required to lyse RBC, the fact that naphthalene metabolites are all 

highly toxic means that MNQ also toxic.   

Table 22: The effect of naphthalene and its metabolites on mononuclear leucocytes 
(Wilson et al., 1996).  

Metabolite  Percentage cell death of mononuclear leucocytes  ±  

naphthalene   19  10.00  

1-naphthol   49.8  13.90  

1,2- 
naphthoquinone   

51.4  6.60  

1,4- 
naphthoquinone   

49.1  3.40  

 

 It was found that MNQ was an extremely potent inhibitor of HepG2 cells indicating 

cytotoxicity. Other studies have found that MNQ is a potent inhibitor of cancerous cell lines and has 

been investigated as a potential anticancer agent (Mori et al., 2011; Wang and Lin, 2012; Liew et al., 

2014). HepG2 is a cancerous cell line with increased rate of metabolism, and other changes which 

are typical of cancerous cells this could have made HepG2 more susceptible to MNQ. Further in vivo 

studies were carried out using wax moth larvae which are thought to be a good indicator of 

compound toxicity in humans (Desbois and Coote, 2011). MNQ was found to be non-toxic >800 mg/L 

and an infection model experiment was carried out to determine the ability of MNQ to prevent an 

MRSA infection in the larvae. MNQ was unable to significantly prevent death by bacterial infection 

over 72 hours. These results indicated that in vivo MNQ would likely be very toxic and unable to 

successfully treat a bacterial infection.  
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2.5 – Conclusion   

  In conclusion MNQ was found to be a consistently potent antimicrobial all gram-positive 

bacterial tested but was ineffective against most of the gram-negatives bacteria. Synergistic assays 

also suggested the formation of ROS could play a crucial role in the way MNQ kills bacteria, due to 

its synergism with ciprofloxacin and antagonism with HNQ. MNQ was shown to be a potent inhibitor 

of the parasite S. mansoni with similar level of activity to praziquantel and exceeded the current 

drug of choice because MNQ was also a potent inhibitor of the larval schistosomula which 

praziquantel is ineffective against. There were mixed results with the cytotoxicity data and poor 

performance in the infection model. 

 MNQ has been shown to have antibacterial and anthelmintic activity equal to current drugs 

and seems to have a novel mode of action. Unfortunately, there is also a high probability that MNQ 

is toxic and cannot be used as a drug, although the cytotoxicity assays carried out are not exhaustive. 

The most valuable discovery in the fight against resistance would be the novel mechanism of action 

of MNQ. Therefore, further work will be carried out to understand why MNQ is such a potent 

inhibitor of antibiotics resistant S. aureus. 
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Chapter 3 Mode of action studies: Proteomics and 

Metabolomics   

     

3.1 Introduction – Mode of action  

3.1.1 - Chapter aims  

 As a potent antimicrobial compound has been identified from I. glandulifera, the 

mechanism by which it acts upon bacteria needs to be understood. Novel metabolomics and 

proteomics approaches will be used to further understand the mode of action (MoA) of MNQ 

against MRSA. In this chapter, comparisons will be drawn between MNQ and known antibiotics to 

cluster its activity with already understood MoA. In-depth metabolic pathway analysis will be carried 

out to uncover fine detail of the effect MNQ has on MRSA.   

3.1.2 – ‘Omics’ and the central dogma of molecular biology  

  Over the past two decades since the beginning of the twenty-first century there has been 

rapid growth and advances made in the areas of analytical and informatic technologies driving the 

progress in ‘omic’ technologies, which involves the study of huge data sets. The term ‘omics’ is a 

suffix used to suggest the complete study of a particular area; for example, the genome refers to 

the complete genetic material of an organism whereas genomics is the study of genomes. There is 

a broad range of ‘omics’; genomics, transcriptomics, proteomics, metabolomics and lipidomics. 

These are, respectively, the complete study of genes, transcription, proteins, metabolites, and lipids 

within a living system. When used collectively, these omics platforms are termed as systems biology 

(Hasin, Seldin & Lusis, 2017). At the time of writing, there have been 3941 eukaryotic species 

genomes sequenced and made publicly available via the National Centre for Biotechnology 

Information (NCBI) genome database. This revolutionised the field of biology, where instead of 
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studying one gene, protein or metabolite at a time it is now possible to study the effects of any 

physiological or pathological changes on the expression of all genes, proteins or metabolites.   

  To give metabolomics context it is worth considering its benefits and drawbacks in 

comparison to the other ‘omics’ and where it sits in the central dogma (CD) of molecular biology. 

This dogma states that the flow of genetic information begins with DNA passing through RNA into 

proteins and was first proposed by Francis Crick in 1958 (Crick, 1958). Simply put the theory suggests 

that each level had its own alphabet and that information was transferred residue-by-residue. For 

DNA, this alphabet consists of four base pairs adenine with thymine and cytosine with guanine, RNA 

shares three of the same letters as DNA but substituting thymine for uracil and proteins with their 

20 naturally occurring amino acids. The CD states that there are three types of transfer; general, 

special and unknown transfers. General being the well-established transfer between DNA->DNA, 

DNA->RNA and RNA->Protein. Special transfers only occur in certain circumstances which are the 

transfer between RNA->DNA, RNA->RNA and DNA->Protein (Figure 24) (Crick, 1970). Crick realised 

that reverse transcription was essentially the interconversion of nucleic acids which relies on the 

universal rules of base complementarity therefore the conversion is relatively easy. The conversion 

of nucleic acids to amino acids is more complex than breaking down amino acids into nucleic acids 

but this conversion has been biologically beneficial and therefore has been selected for by 

evolutionary processes. The reverse, which in principle is theoretically possible, is hampered by the 

design of the translation system. Reverse translation would require an elaborate sequence of 

reactions that are not known to exist. Two fundamental steps being; i) recognition of nucleotide 

triplets (tRNA anticodons) by amino acid residues within a polypeptide chain, ii) joining of these 

triplets into an RNA molecule. Furthermore, given the degeneracy of genetic code, reverse 

translation would result in major loss of information (Koonin, 2012).   

  The CD where DNA drives all living systems appears comprehensive but fails to consider the 

impact of metabolism. This is surprising, as so many proteins are enzymes whose specific role is to 
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transform chemicals into metabolites some of which are the building blocks of living systems. The 

catalytic abilities of these metabolically important proteins are encoded in their amino acid 

sequence, therefore derived from the RNA sequence and ultimately from the DNA which rules living 

systems according to the CD. However, the residue-by-residue transfer of information does not 

apply in the metabolic context because chemical structures of metabolites or their fluxes cannot be 

predicted from the genetic code (de Lorenzo, 2014). Therefore, DNA is not driving the living system 

but reacting to its current metabolic environment. 

 

Figure 24: Growing expansion of the central dogma. i) All possible interaction between DNA RNA 
and protein ii) exclusions made by the development of the central dogma iii) CD considering the 

role of metabolism (adapted from de Lorenzo, 2014)  

  Metabolism is discounted from the CD because it does not have a direct impact on the 

sequences of DNA, RNA and proteins. But metabolism does have a massive effect on the regulation 

of genes therefore effecting RNA and proteins. There are many regulatory mechanisms which are 

genetically controlled in response to metabolites, usually mediated through regulatory proteins 

(Struhl, 1999), but interacting directly with mRNA (Nahvi et al., 2002). Therefore, it could be said 

that metabolism both drives and responds to genetics in terms of regulation if not in terms of 

sequence (Figure 24).    
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3.1.3 – Genomics   

  Genomics is the study of the entire DNA sequence of organisms and can focus on its 

function, structure or evolution. DNA sequencing technologies took off in the 1970s with two major 

publications describing different approaches to improve the speed at which sequencing can be 

carried out (Sanger and Coulson, 1975; Maxam and Gilbert, 1977). In particular, the development 

of the Sanger chain-termination method yielded the most used DNA sequencing technique to date 

(Sanger, Nicklen and Coulson, 1977). This method was used to sequence the human genome, which 

deepened our understanding of human evolution, causation of disease and the interplay between 

environment and heredity (Venter et al., 2001). Further, comparative genomics is a versatile tool 

able to highlight large scale similarities and differences between entire organisms (Rubin et al., 

2000) and the small differ between genomes of the same species (Fournier et al., 2006; Feng et al., 

2007; Rasko et al., 2008). Genomics can also be used for understanding the molecular mechanism 

of bacterial pathogenicity (Schoolnik, 2002; Zhang et al., 2012).   

 The emergence of “next-generation” (NGS) technologies has dramatically increased 

sequence throughput albeit at the expense of read length. NGS has also allowed targeted 

resequencing, discovery of transcription factor binding sites, and noncoding RNA expression 

profiling (Morozova and Marra, 2008). It is routinely being used on human genomes to understand 

genetic mutations associated with disabilities and diseases (Link et al., 2011; Sanders et al., 2012; 

Kan et al., 2013) and can be utilised in a similar way, by inducing genetic mutations which result in  

resistance to investigate the MoA of a drug against a particular bacteria: 
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Figure 25:  Genomic approach to MoA studies – Genes of interest can be identified by inducing 
resistance to the drug and comparing to the DNA sequence of a resistant and non-resistant 

bacteria. The genes which have changed convey a protective characteristic against the drug and 
can be used to infer the MoA. 

3.1.4 – Proteomics  

  Proteomics is the large-scale analysis of proteins within organisms to gain important insights 

into many biological processes. Investigation of living systems at the protein level opened new 

horizons in many areas of life science. DNA microarrays and transcriptomics can provide data about 

gene function however proteins are the real mediators of physiological function. Changes in 

biological events such as disease, drug effects, or physiological activity will be reflected in the 

abundancy or processing of proteins. 
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 Proteomics usually involves several processes; the extraction of the proteins followed by 

purification, fractionation, digestion into peptides which are separated and analysed by liquid 

chromatography mass spectrometry (LC-MS) to identify the proteins. Polyacrylamide gel 

electrophoresis (PAGE) is a technique commonly used to separate protein extracts. This provides a 

visual representation of all proteins present within samples and their relative quantities allowing 

the selection interesting proteins for further analysis (Ünlü, Morgan and Minden, 1997). Gel based 

proteomics can be challenging; 2D-PAGE typically visualising 30-50% of proteins tending to neglect 

membrane-associated proteins, or proteins whose isoelectric point, hydrophobicity, and/or 

molecular weight fall beyond the parameters of the separation method employed (Baggerman et 

al., 2005). LC-MS fundamentally changed the way in which proteins are identified and measured, 

due to its ability to measure thousands of proteins in parallel allowing the investigation of 

increasingly complex biological matrices. MS is now the de facto standard for quantitative 

measurements in proteomics (Bantscheff et al., 2012). With the advances in LC-MS and the inherent 

issues with gel-based proteomics gel-free methodologies were improved by using multidimensional 

capillary LC-MS/MS.   

 Even though MS has become the de facto method for proteomic analysis there are a range 

of different technologies available; metabolic labelling, chemical labelling or label free. The most 

popular metabolic labelling method is stable isotopic labelling with amino acids in cell culture 

(SILAC). Unlabelled and labelled protein populations can be mixed directly after harvesting and mass 

spectrometric identification is straight forward due to the isotopically amino acids in the treatments. 

This method requires limited sample manipulation, and with virtually 100% incorporation of the 

label and quantification is relatively easy (Ong et al., 2002).  An alternative approach involves 

chemical labelling of peptides and proteins. For example, isobaric tags for absolute and relative 

quantification (iTRAQ) is a popular method which targets primary amines for the attachment of tags, 

which have identical masses but can be distinguished and accurately quantified according to MS/MS 

spectra (Wiese et al., 2007). Other techniques do not require labels (Bantscheff et al., 2012). 
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Shotgun proteome digestion approaches yield a complex mixture of peptide which have been 

digested using specific enzymes, so fragmentation can be predicted, and original protein structure 

elucidated from MS/MS data. This technique requires separation and nanoscale ion paring reversed 

phase LC-ESI-MS/MS is commonly used but there have recently been new technologies in this area, 

most notably the use of microfluidic chip-based technology has been emerging. These chips can aid 

in sample clean up, digestion separation, and throughput due to their ability to handle small 

quantities (Lee, Soper and Murray, 2009).    

3.1.5 – Metabolomics  

  Metabolites are small molecules that are chemically transformed during metabolism which 

can be used to interpret the cellular state of an organism. Unlike genes and proteins discussed 

previously, whose functions are subject to epigenetic regulation and post translational modification, 

metabolites serve as direct signatures of biochemical activity. The study of the metabolome, defined 

as the collection of all small metabolites produced by cells, has become widely adopted in clinical 

diagnosis of cancer (Spratlin, Serkova and Eckhardt, 2009), diabetes (Griffin and Nicholls, 2006), 

cardiovascular diseases (Lewis, Asnani and Gerszten, 2008), asthma (Carraro et al., 2007), 

neurological diseases (Dunckley, Coon and Stephan, 2005), and many other diseases (Madsen, 

Lundstedt and Trygg, 2010). Metabolomics is not only an invaluable diagnostic tool it can also 

provide insight into the mechanism by which drugs act on a biological system, for example the effect 

of an antibiotic on bacteria. Metabolomics is an imperfect method due to the fact that databases 

used to identify metabolites are incomplete (Kind, Scholz and Fiehn, 2009), however metabolomics 

has made remarkable progress and has become the apogee of the omics trilogy (Patti, Yanes and 

Siuzdak, 2012).  
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Figure 26: Proteomic and metabolomic approaches: the proteomic and metabolomic profile of a 
bacterium require treatment with the compound of interest along with known antibiotics for 

comparison. This is followed by the extraction of proteins and metabolites and then analysis using 
MS. The proteomic and metabolomic profiles are compared with known MoA, potentially leading 
to target identification. Further information can be obtained by looking at specific regulation of 

certain proteins/metabolites to ascertain MoA.  

3.1.6 – ‘Omics’ for Antimicrobial Mechanism of Action Studies  

  Each of the three ‘omics’ discussed can be used to investigate the Mechanism of action 

(MoA) of antimicrobial compounds. Unlike genomics, proteomics and metabolomics can provide 

real-time information of the MoA of MNQ. By their nature proteins and metabolites are more 

reactive to changes in environment, such as the presence of a drug, therefore resistance will not 

need to be induced. The mere presence of the drug will have significant effects on protein 

expression and metabolite regulation. (Santos et al., 2016) 
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3.1.7 – Antibiotic modes of action  

3.1.7.1 – DNA targeting antibiotics  

 4-quinolones such as nalidixic acid, ciprofloxacin and levofloxacin (Figure 27) are agents 

which target two essential bacterial enzymes, topoisomerase II (DNA gyrase) and IV. Nalidixic acid 

is a first generation naphthyridone quinolone predominantly used for urinary tract infections (Drlica 

& Zhao, 1997). Whereas ciprofloxacin and levofloxacin are second generation fluoroquinolone 

which have enhanced activity, broader spectrum, and able to treat a wide range of bacterial 

infections (Wolfson & Hooper, 1989). 

  

Figure 27: Chemical structure of nalidixic acid (A), ciprofloxacin (B), and levofloxacin (C). 

  These enzymes alter the topological state of DNA which determines the function of DNA in 

cells. Generally, type I topoisomerases cleave one strand of double helical DNA to relax supercoiled 

DNA, whereas type II use energy from the hydrolysis of ATP to cleave both strands and pass an intact 

DNA strand through this “gate” to introduce supercoils. DNA gyrase and topoisomerase IV are both 

type II involved in the supercoiling of DNA. In prokaryotes supercoiling of DNA results in torsion 

strain, and the DNA can be considered in an energetically active state which is crucial for DNA 

replication, transcription and genetic recombination (Gellert, 1981). DNA gyrase binds directly to 

DNA as a tetramer with two gyrA and two gyrB subunits. The B proteins have ATPase activity to 

obtain energy for the A subunits to cleave both DNA strand and increasing or decreasing the linking 

number by two, either increasing torsion leading to positive super coiling or decreasing torsion 

leading to negative supercoiling (Reece and Maxwell, 1991). Gyrase can also relax negative 

A   B   C   
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supercoiling in the absence of ATP therefore the balance between the levels of ATP versus ADP is a 

key aspect of the supercoiling relaxation relationship, making  gyrase and supercoiling sensitive to 

intracellular energetics, and many aspects of the extracellular environment (Drlica and Zhao, 1997). 

DNA gyrase interacts with DNA in multiple ways and there are many ways quinolones can interrupt 

this activity, summarised in Table 23.  

Table 23: Summary of reactions DNA gyrase is capable which subunits are involved, 
whether ATP is required, and which reactions quinolones can interrupt (Reece and 

Maxwell, 1991)  

The Reactions of DNA Gyrase  Subunits 
required  

 ATP 
required  

Inhibited by 
quinolones  

Supercoiling  A, B  Yes  Yes  

Relaxation  
Negative supercoils  A, B  No  Yes  

Positive supercoils  A, B  Yes  Yes  

Catenation  A, B  Yes  Yes  

Decatenation  A, B  Yes  Yes  

Unknotting  A, B  Yes  Yes  

DNA cleavage  A, B  No  No  

ATPase  B  Yes  No  

 

   For example, quinolones can prevent 6 of the 8 functions of DNA gyrase by forming a 

quinolone-enzyme-DNA complex at the point where the double strand break occurs. There are two 

quinolone binding pockets between GyrA and GyrB (Heddle and Maxwell, 2002), when filled with a 

quinolone the complex is trapped in this open gate position, if gyrase is trapped in this form ahead 

of the fork blocking any further movement along the replication fork along the DNA inhibiting DNA 

synthesis (Kreuzer and Cozzarelli, 1979). The formation and dissociation of this complex leads to cell 

death through double strand breakage of the DNA which is lethal to cells (Krasin and Hutchinson, 

1977).  
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3.1.7.2 – RNA/protein targeting antibiotics  

  Aminoglycosides, such as gentamycin and streptomycin (Figure 28) target the bacterial 

ribosome disrupting protein synthesis. Streptomycin was the first aminoglycoside discovered, 

isolated from Streptomyces griseus. Gentamycin is a 4, 6-disubstituted 2-deoxystreptamine class of 

aminoglycoside, there’s also a 4,5-distrubyted 2-deoxystreptamines class although streptomycin is 

not classified in the same way (Ristuccia and Cunha, 1982). Aminoglycosides have a polycationic 

structure which have an affinity for negatively charged residues such as those in the outer 

membrane of gram-negative bacteria. This affinity allows the drug to electrostatically bind to the 

membrane of bacteria and access the periplasmic space through porin channels (Hancock et al., 

1991). The antibiotic is then transported across the cytoplasmic membrane utilising the electron 

transport chain in an energy and oxygen dependant process. This is the rate limiting step and means 

that these antibiotics are less effecting in anaerobic conditions. Once in the cytosol the antibiotics 

bind 30S subunit, not preventing the formation of the of the initiation complex but perturbing the 

elongation of the nascent chain by impairing the proofreading processes controlling translation 

accuracy. These proteins may be inserted into the membrane leading to altered permeability and 

further stimulate uptake of aminoglycosides (Melancon, Tapprich and Brakier-Gingras, 1992).    



128 
 

 

Figure 28: Aminoglycoside antibiotics streptomycin (A) and gentamycin (B). Chloramphenicol (C), 
Mupirocin (D) and Rifampicin (E)  

  Chloramphenicol (Figure 28c) was first isolated from Streptomyces venezuelae in 1947 and 

was later synthesised in 1949, making it the first antibiotics to be synthesised rather than extracted 

from microorganism. Unlike most antibiotics’ chloramphenicol does not belong to a family of other 

similar drugs and is classed as “other”. Chloramphenicol, like aminoglycosides, inhibit protein 

synthesis but in a different way, it is bacteriostatic, binding the L16 subunit of the 50S ribosomal 

protein. This protein binds directly to the 23S ribosomal RNA located at the peptidyl transferase 

centre which plays an essential role in subunit assembly (Murray et al., 1995). It directly interferes 

with substrate binding, whereas macrolides, a family of antibiotics which work in a similar way 

prevent the growth of the peptide chain (Hahn, Wisseman Jr and Hopps, 1955).  

 



129 
 

 Mupirocin does not belong to a class of antibiotics with a unique mechanism of action. It 

was discovered in 1971 when it was isolated from Pseudomonas florescens (Fuller et al., 1971). 

Mupirocin binds to isoleucine-tRNA ligase, which catalyses the attachment of isoleucine to tRNA, 

although this is a unique MoA this in effect inhibits protein synthesis (Hurdle, O’neill and Chopra, 

2004). Although this mainly effects protein synthesis this also negatively impacts DNA activity and 

cell wall formation (Hughes and Mellows, 1978).   

 Rifampicin is a polyketide with a naphthalene at the core (Figure 28e) belonging to a class 

of chemicals called ansamycins, it is a semisynthetic antibiotic derived from rifamycin antibiotics 

which are naturally produced by Nocardia mediterranei. Rifampicin was discovered in 1965 (Sensi, 

1983). Rifampicin’s bactericidal activity is due to its strong binding affinity to and the inhibition of 

bacterial DNA-dependant RNA polymerase, which catalyses the transcription of DNA into RNA using 

the four ribonucleoside triphosphate as substrates (Hartmann, 1967).  

3.1.7.3 – Cell wall targeting antibiotics  

  Vancomycin (Figure 29) is a branched tricyclic glycosylated nonribosomal peptide first 

isolated from Amycolatopsis orientalis in 1953 (Griffith, 1981). Due to the large hydrophilic structure 

of vancomycin it prevents proper cell wall synthesis in gram positive bacteria it forms hydrogens 

bond interactions with D-Ala-D-Ala moiety of N-acetylmuramic acid (NAM) and N-acetylglucosamine 

(NAG) peptide subunits of peptidoglycan. Without these bonds the peptidoglycan layer cannot 

remain intact and fall away leaving the bacteria without a protective barrier eventually causing the 

death of the bacteria (Barna and Williams, 1984).   
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Figure 29: Chemical structure of Vancomycin  

 

3.2 – Methods – Mode of action  

3.2.1 – Bacterial strains and growth conditions   

 All experiments carried out in a biosafety containment level 2 using ST8:USA300 MRSA 

grown in Brain heart infusion (BHI) media incubated over night at 37 °C while shaking at 250 rpm 

(Vitko and Richardson, 2013). Optical density (OD) at 600 nm was used to determine bacteria 

concentrations as described in 1.2.5 – Antimicrobial susceptibility testing – 24-hour growth curve. 

This strain was chosen due to the clinical relevance of MRSA and MNQ has been shown to be 

particularly effective against S. aureus. The required inhibitory concentrations of all antibiotics used 

in this section was determined using this strain at these growth conditions.  

3.2.2 – Standardisation of antibiotic treatment   

  All antimicrobial agents; chloramphenicol (CHL), ciprofloxacin (CIP), gentamycin (GEN), 

levofloxacin (LEV), mupirocin (MUP), nalidixic acid (NAL), rifampicin (RIF), streptomycin (STR), 
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vancomycin (VAN), and 2-methoxy-1,4-naphthoquinone (MNQ) were obtained from Sigma-Aldrich, 

Gillingham, UK. For both proteomics and metabolomics antibiotic treatments need to be 

standardised so each antibiotic is having an equal effect on the bacteria over 6 hours. In order to 

obtain enough material to accurately detect and quantify proteins and metabolites a higher 

concentration of bacteria was required. MIC susceptibility testing is standardised to 5 × 105 cfu/mL 

but for metabolomics it was found that 1x108 cfu/mL was required. Therefore, susceptibility tests 

were carried out against the higher concentration and over 6 hours. To investigate the MoA of these 

antibiotics the bacteria cannot be killed outright, this would not reveal how the drugs work 

therefore the amount of antibiotic required to reduce growth by half over 6 hours was used in the 

proteomic and metabolomic experiments (Table 24). This would allow the bacteria to react to the 

challenge of the antibiotics without dying. This also standardises the effect of each antibiotic so they 

should all have the same proteomic and metabolic impact on the bacteria. 

Table 24: Concentration of antibiotic required to inhibit growth of USA300 MRSA by 50% over 6 
hours at a bacterial concentration of 1x108 cfu/mL and their mode of action.  

Antibiotic  Concentration 
(mg/L)  

Mode of action   

CHL  250  RNA - Binds 50S subunit (L16) or rRNA inhibiting protein synthesis.  

CIP  15.625  DNA – 4-quinolone - Inhibition of the enzyme topoisomerase II 
(DNA gyrase) & IV preventing DNA replication and transcription 
(Drlica and Zhao, 1997).  

GEN  250  RNA – aminoglycoside - Binds 30S subunit (S12) of rRNA misreading 
mRNA and incorrect amino acid insertion.  

LEV  10.625  DNA - 4-quinolone - Inhibition of the enzyme topoisomerase II (DNA 
gyrase) & IV preventing DNA replication and transcription (Drlica 
and Zhao, 1997).  

MNQ  250  Unknown  

MUP  5.313  RNA - Binds isoleucyl-tRNA synthetase inhibiting bacterial protein 
and RNA synthesis.   

NAL  250  DNA - 4-quinolone - Inhibition of the enzyme topoisomerase II (DNA 
gyrase) & IV preventing DNA replication and transcription (Drlica 
and Zhao, 1997).  

RIF  0.122  RNA - Inhibit DNA-dependent RNA polymerase supressing RNA 
synthesis.  

STR  250  RNA - Binds 30S subunit (S12) of rRNA misreading mRNA and 
incorrect amino acid insertion.  
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VAN  10.625  Cell Wall - Prevents incorporation of N-acetylmuramic acid (NAM) 
and N-acetylglucosamine (NAG) peptide subunits from being 
incorporated into the peptidoglycan matrix. In addition, altering 
bacterial-cell membrane permeability and RNA synthesis.  

 

3.2.3 – Proteomics – Bacteria treatment and standardisation  

  A 1 L culture of MRSA was grown overnight (section 3.2.1) and bacterial concentration 

standardised to 1x108 cfu/mL using a spectrophotometer OD600 (Hidex Sense Plate Reader 

LabLogic, Sheffield UK) by adding sterile growth media. This culture was aliquoted into twelve 50 

mL sterile centrifuge tubes. Three antibiotic treatments were chosen; MNQ, Vancomycin (current 

treatment for MRSA), Levofloxacin (Table 24), and a no treatment control with three biological 

replicates. Following addition of antibiotics, the 50 mL cultures were mixed and incubated at 37°C 

shaking at 250 rpm. Two time points were sampled for proteomics, 0 hours (which is roughly 1 min 

after adding the antibiotic) and 6 hours after the addition. Upon sampling 14 mL was transferred 

into a new centrifuge tube, frozen in liquid nitrogen and stored in a -80°C freezer overnight. Samples 

were thawed and centrifuged (4°C, 4500 rpm) with the resulting pellet washed in 10 mL of cold 

saline solution (0.85% NaCl) and centrifuged again (4°C, 4500 rpm). All samples were adjusted to an 

OD600 of 1 in 200 µL of water (18.2 Ω) prior to protein extraction.   

3.2.4 – Proteomics – Protein extraction and quantification   

  To the 200 µL samples was added 200 µL of 20% trichloroacetic acid in acetone and 

subjected to 50 cycles of sonication (1 minute), rapid freezing liquid nitrogen, thawing and vortex (1 

minute). A 1 hour incubation at -20°C to precipitate proteins followed. Sample were centrifuged 

(4°C, 13,000 rpm), washed twice in acetone followed by further centrifugation, supernatant was 

removed, and samples left to dry at -20°C for 15-20 minutes. Protein concentration of all samples 

were calculated using the Braford method for protein quantification (Kruger, 2002). The lowest 

concentration of protein yielded in any sample was 514.844 µg, therefore all samples were made to 
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a concentration of 500 µg in 100 µL of 6 M urea buffer (2.0 g of urea, 1.25mLof 0.4 M Tris solution 

and 5mLwith Milli-Q H20).   

3.2.5 – Proteomics – Protein Trypsin Digestion   

  To the 100 µL extracted and standardised protein solution in urea buffer (Supelco), was 

added 5 µL of the reducing agent dithiothreitol (DTT) (Sigma-Aldrich) (0.031 g of DTT in 750 µL of 

MilliQ-H2O, and 250 µL 0.4 M Tris solution(Millipore)), followed by vortex and 60 minutes 

incubation at room temperature. 20 µL of alkylating agent (0.037 g iodoacetamide (Sigma-Aldrich) 

in 750 µL of MilliQ-H2O, and 250 µL 0.4 M Tris solution (Millipore)) was added followed by vortex 

and 60 minutes incubation at room temperature. A further 20 µL of the reducing agent was again 

added then vortexed and incubated for 60 minutes at room temperature. Samples were diluted 

using 775 µL MilliQ-H2O and vortexed. Trypsin (Promega, Gold Mass Spectrometry Grade) was 

added at 1:50 ratio to the amount of protein, mixed and the digestion was carried out at 37°C 

overnight.  

3.2.6 – Proteomics –Data analysis   

  Proteomics data was analysed using Spectrum Mill (Agilent, Santa Clara) and Swissprot 

(Swiss Institute of Bioinformatics, Lausanne). 261 proteins were identified using the proteome data 

available from Swissprot (STAPHUSA300TCH1516). Univariate and multivariate analyses were 

performed with MetaboAnalyst 3.0 (Xia Lab, McGill University). Differences in the proteomic profiles 

of samples were analysed with unsupervised principal component analysis (PCA) and supervised 

partial least-squares discriminant analysis (sPLS-DA). The significance of the cross-validated P-

values, based on volcano plot comparisons between control and treatment at individual time points 

(P<0.1).    

3.2.7 – Metabolomics – Bacterial treatment and standardisation  

  A 2 L culture of MRSA was grown overnight (section 3.2.1) and bacterial concentration 

standardised to 1x108 cfu/mL using a spectrophotometer OD600 using sterile growth media. This 
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was roughly a ½ dilution which provided around 4 litres of bacterial culture and 2.75 L were required 

in total. This culture was aliquoted into 55, 50 mL sterile centrifuge tubes. All antibiotic treatments 

were used at concentrations stated in Table 24, and a no treatment control using 5 biological 

replicates. Antibiotics were added to 50 mL cultures and mixed. Throughout the experiment the 

bacteria were incubated at 37°C shaking at 250 rpm. As the antibiotic was added (0 hour), after 2, 

4, and 6 hours; 10 mL was transferred into a new 15 mL centrifuge tube and frozen in liquid nitrogen 

and stored in a -80°C freezer overnight. Samples were thawed and centrifuged (4°C, 4500 rpm) with 

the resulting pellet washed in 10 mL of cold saline solution (0.85% NaCl) followed by further 

centrifugation (4°C, 4500 rpm). All samples were adjusted to an OD600 of 1 in 200 µL of water prior 

to metabolite extraction.   

3.2.8 – Metabolomics – Metabolite extraction and quantification   

  Aliquots of 200 µL of chloroform/methanol/water (1:3:1) solution were added to 200 µL 

samples. All samples were subjected to 5 freeze thaw cycles with periodic vortexing to extract all 

metabolites. Samples were then centrifuged at 4500 rpm to remove any particulate matter and 200 

µL of supernatant was transferred to a new microcentrifuge tube. A second extraction was carried 

out by adding a further 100 µL of chloroform/methanol/water (1:3:1) to the pellet with further 

vortexing. After centrifugation, 150 µL of the supernatant was combined with supernatant from the 

first extraction. From these 350 µL metabolite extracts 50 µL was transferred to glass vials containing 

0.2 mL flat bottomed micro insert for flow injection electrospray high-resolution mass spectrometry 

(FIE-HRMS) analysis. Master mixture samples were made up of all 5 biological replicates at all time 

points creating a total of 264 samples. These samples were randomised with methanol blanks 

equally distributed throughout the run.   
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3.2.9 – Metabolomics – Metabolite fingerprinting by flow injection electrospray high-

resolution mass spectrometry   

 A high-throughput, non-targeting metabolite fingerprinting method which does not 

incorporate chromatography was used to analyse the metabolomes of MRSA treated with MNQ and 

other antibiotics (Beckmann et al., 2008). Flow injection electrospray high-resolution mass 

spectrometry (FIE-HRMS) was performed using an Exactive HCD mass analyser equipped with an 

Accela UHPLC system (Thermo Scientific) generating metabolite fingerprints in both positive and 

negative ionisation modes in a single run.  Of the 50 µL samples, 20 µL was injected into a flow of 

100 µL/min methanol/water (70:30, v/v). Ion intensities were acquired between m/z 50 and 1000 

for 3.5 minutes at a resolution setting of 100,000 (at m/z 200) resulting in 3 (± 1) ppm mass accuracy. 

ESI source parameters were set according to Thermo Scientific recommendations. Raw files were 

exported to CDF-files, mass aligned and centroided in MATLAB (V8.2.0, The MathWorks) 

maintaining highest mass accuracy. Mass spectra around the apex of the infusion peak were 

combined in a single intensity matrix (runs x m/z) for each ion mode. Data from intensity matrix was 

log-transformed before further statistical analysis.  

3.2.10 – Metabolomics –Data Analysis   

  Univariate and multivariate analyses were performed with MetaboAnalyst 3.0. Differences 

in the metabolomics profiles of samples were analysed with unsupervised principal component 

analysis (PCA) and supervised partial least-squares discriminant analysis (sPLS-DA). The significance 

of the cross-validated P-values, based on one-way analysis of variance (ANOVA), was set to P < 0.05. 

Multiple comparison and post hoc analysis used Tukey’s Honestly Significant Difference (Tukey’s 

HSD). Both ANOVA and Tukey’s HSD allowed the identification of significant metabolite changes 

between groups (control or antibiotics). Metabolites that did not show significant differences 

between treatment and control were not further analysed. For each mass-ion (m/z) the annotation 

was made using a 3 ppm tolerance on their accurate mass. Metabolomic annotation was made using 
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MZedDB (Draper et al., 2009) (http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html), the E. coli 

Metabolome Database (ECMDB, http://ecmdb.ca/) and LipidMaps (http://www.lipidmaps.org/) 

databases, considering the following possible adducts: [M + H]+ , [2M + H]+ , [M + 2H]2+ , [M + 3H]+ 

, [M + Na]+ , [M + Na + 2H]+ , [2M + Na]+ , [M + 2Na−H]+ , [M + 2Na + H]+ , [M + Na + H]2+ , [M + 

2Na]+ , [M + 3Na]3+ , [M + K]+ , [M + K + H]2+ , [M + 2K + H]+ , [M−FA + H]+ , [M−H2O + H]+ , [2M + 

3H2O + 2 H]2+ , [M + NH4]+ , [M + NH4 + H]+ , [M + NH4 + H]2+ , [2 M + NH4]+ , [M + ACN + H]+ , 

[M + ACN + Na]+ , [2M + ACN + H]+ , [M + ACN + 2H]+ , [M + 2ACN]2+ , [M + 2ACN + H]+ , [M + 2ACN 

+ 2H]+ , [M + 3ACN + 2H]+ , [M + ACN + Na]+ , [M + CH3OH + H]+ ; [M−H]−, [2M−H]−, [3M−H]−, 

[M−2H]−, [M−3H]−, [M−H2O−H]−, [M + Cl]−, [M + FA−H]−, [2M + FA−H]−, [M + Hac−H]−, [M + 

Na−2H]−, [2M + Na−2H]−, [M + K−2H]−, [M + TFA−H]−. This was carried out using R statistical 

software package (R-project, version 3.6.1). A script was written to feed a csv file into the selected 

databases to output the most likely metabolite identification for each m/z value which was found 

to be significant (Appendix 5 – R-statistical package script). The targeted metabolites were mapped 

on to Kyoto Encyclopaedia of Genes and Genomes (KEGG) for pathway analysis 

(http://www.genome.jp/KEGG/pathway.html).  

3.2.11 – Transmission Electron Microscopy  

  Overnight cultures of MRSA USA300 were adjusted to 1x108 cfu/mL and treated with 

standardised concentration of MNQ for 6 hours. 1 mL samples were taken at 0, 2, 4 and 6 hours, 

then centrifuged at 10,000 rpm for 5 minutes. The supernatant was removed, 1 mL of fixative (2.5% 

glutaraldehyde in 0.1M sodium cacodylate at pH 7.2) was added to the bacterial pellet, resuspended 

and stored at 2-8 °C. After 30 minutes fixation, the samples were centrifuged, and the supernatant 

discarded. The pellets were re-suspended in another 1 mL of fresh fixative and a further 30 minutes, 

samples were centrifuged, supernatant discarded and re-suspended in 1 mL 0.1 M sodium 

cacodylate wash buffer pH at 7.2. The samples were centrifuged, and the supernatant discarded. 

They were resuspended in 1 mL of a secondary fixative consisting of 1% osmium tetroxide (Agar 
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Scientific Ltd) made up in 0.1M sodium cacodylate buffer pH at 7.2 and after 30 minutes fixation, 

the samples were centrifuged, the supernatant carefully discarded and it was replaced with a quick 

rinse in 1 mL of wash buffer. After 5 minutes rinse, the samples were centrifuged, and the 

supernatant discarded. The pellets were re-suspended in another 1mL of wash buffer. The samples 

were centrifuged, and the supernatant discarded. The samples were re-suspended in 100 µl agarose 

solution at 25⁰C and placed in a refrigerator to gel at 4⁰C. After gelling overnight, the agarose 

containing the bacteria was cut from the Eppendorf tubes and transferred into 1 mL wash buffer in 

a capped 5 mL glass vials at 4⁰C. After 30 minutes the gelled agarose pellets were placed in fresh 

wash buffer. Samples were then progressed through an alcohol series of 30%, 50%, 70%, 95% and 

three changes of 100% for at least an hour. The samples were transferred to a 1:2 mixture of ethanol 

to LR White hard grade resin (London Resin Company) then a 2:1 mixture of ethanol to resin and 

finally 100% resin overnight at 4⁰C. The next morning, the resin was removed and replaced with 

fresh resin and later that day the samples were then placed in size 4 gelatine moulds (Agar 

Scientific), filled up with fresh resin and polymerised overnight in an oven at 60⁰C. 2 µm thick 

sections containing the bacteria were cut and dried down on drops of 10% ethanol on glass 

microscope slides. They were stained with AMB stain (Merck, Darmstadt) and photographed using 

a Leica DM6000B microscope (Leica Biosystems, Wetzlar). Ultrathin 60–80 nm sections were then 

cut on a Reichert-Jung Ultracut E Ultramicrotome with a Diatome Ultra 45 diamond knife and 

collected on Gilder GS2X0.5 3.05 mm diameter nickel slot grids (Gilder Grids, Grantham, UK) float-

coated with Butvar B98 polymer (Agar Scientific) films. All sections were double stained with uranyl 

acetate (Agar Scientific) and Reynold's lead citrate (TAAB Laboratories Equipment Ltd, Aldermaston, 

UK) and observed using a JEOL JEM1010 transmission electron microscope (TEM) (JEOL Ltd, Tokyo, 

Japan) at 80 kV. The resulting images were photographed using Carestream 4489 electron 

microscope film (Agar Scientific, UK) developed in Kodak D-19 developer for 4 minutes at 20 °C, 

fixed, washed and dried according to the manufacturer's instructions.  
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 To visualise the presence of hydrogen peroxide (H2O2) produced by MRSA bacterial samples 

untreated and treated with MNQ and HNQ were placed in cerium chloride prior to fixation. Cerium 

chloride reacts with H2O2 resulting in the presence of cerium perhydroxide which shows up as black 

needle-like crystals under TEM (Bestwick et al., 1997).   

3.2.12 – Antimicrobial Assay with antioxidants  

  This assay was repeated as discussed in 1.2.6 – Antimicrobial susceptibility testing – 

Minimum inhibitory concentration, MNQ was combined with catalase and ascorbate (100 mg/L).   

3.3 – Results – Mode of action  

3.3.1 – Proteomics  

  Label free proteomic methodologies were used to further understand how MNQ effects the 

growth of MRSA after immediate exposure and 6 hours. In addition, two antibiotics were also used 

for comparative purposes; vancomycin and levofloxacin.   



139 
 

  

Figure 30: A – Principle component analysis showing the separation of all proteomic antibiotic 
treatments and time points based on the different quantities of proteins identified. B - Dendrogram 

of all proteomic antibiotic treatments and time points  

A   

B   
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 When analysing all proteome data at once Vancomycin has had the most significant effect 

on the proteome of MRSA over 6 hours, showing clear separation in a principle component analysis 

and the dendrogram (Figure 30).  

 

 

Table 25: Statistical analysis of all treatments and the total number of significantly affected proteins 
(n=3).  

Treatment   MNQ  LEV  VAN  

Time Point (hours)  0  6  0  6  0  6  

Volcano Plot (p<0.1)  3  4  16  52  3  128  

Fold change (threshold 2)  94  51  134  111  71  228  

ANOVA (p<0.05)  4 4 17 17 91 91 
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Figure 31: Box plots showing significantly (p<0.1) changed proteins when MRSA in exposed to MNQ 
at 0 and 6 hours. 

 Of the three antibiotics tested vancomycin had the largest number of significantly different 

proteins in all statistical tests, followed by Levofloxacin and MNQ had by far the fewest protein 

differences (Table 25). This indicates that vancomycin had the largest impact on the proteome of 

MRSA which is unsurprising given that it is the drug of choice for treating MRSA. MNQ however, had 

so few significantly perturbed proteins that it is difficult to suggest any MoA based on the proteomic 

data. The small number of proteins affected could indicate that the MoA of MNQ does not involve 

protein synthesis. The proteins identified using the volcano plot are shown in a box plot format in 

Figure 31.   

3.3.2 – Metabolomics  

3.3.2.1 – Metabolomics – Overview of the data  

  High throughput streamlined metabolomic methodologies were employed to compare the 

response of MRSA to MNQ and a wide range of antibiotics at four time points; 0, 2, 4, and 6 hours.   
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Figure 32: Bar chart representing the total number of negatively ionised detected which were 
found to be significantly different from the control across all time points.   

 

 

Figure 33: Bar chart representing the total number of positively ionised detected which were found 
to be significantly different from the control across all time points.   

  Figure 32 and Figure 33result from an ANOVA (P<0.05) carried out between the antibiotic 

and the control. Each bar represents the total number of metabolites which have been significantly 

perturbed from normal growing conditions. This allows the identification of the most crucial time 

point for each antibiotic suggestion how quickly each antibiotic is acting upon the bacteria. I would 

be expected that as time progresses the number of significantly altered metabolites would increase. 

This is true for gentamycin (-), rifampicin (+/-), vancomycin (+/-) and streptomycin (+/-), however in 

most cases the antibiotics are not having this effect. MNQ has the same time profile in both positive 

and negative ionisation, this highest number of perturbed metabolites at 0h, followed by 4h, then 

2h and finally 6h. This could indicate that MNQ works very quickly. 

 These figures could also suggest how much impact each antibiotic has upon the 

metabolome of MRSA over time. Both rifampicin and gentamycin which are both protein targeting 

antibiotics seem to be having the largest impact on the metabolome. MNQ is having the 6th largest 

impact on metabolome of MRSA form the 10 antibiotics tested.  
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3.3.2.2 – Metabolomics – Statistical analysis   

 Figure 35, Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41 and Figure 42 show 

principal component analyses (PCA) of the metabolite profiles obtained with each antibiotic 

treatment at each time point. MNQ datapoints were significantly separated from the control at all 

time points along with many of the other antibiotics. However, each antibiotic seems to show a 

specific clustering pattern showing that each has had different effects on the metabolome of MRSA. 

As MNQ has not clustered closely to any other antibiotic at any time or in either charged form. This 

suggests that MNQ has a novel MoA.  

 The antibiotics used fall into three general targeting categories; DNA (ciprofloxacin, 

levofloxacin and nalidixic acid), RNA/Protein (chloramphenicol, gentamycin, mupirocin, rifampicin 

and streptomycin) and Cell wall (vancomycin). These were combined into groups and analysed again 

along with MNQ and the control (Figure 43). By combining all the antibiotics into their broad groups, 

it was hoped that MNQ would fall into one of the three categories. MNQ distinctly clusters away 

from these three groups as it did when all antibiotics were separate both in positive and negative 

mode. This clearly indicates that MNQ does not target DNA, RNA, proteins or the cell wall in the 

same way as any of the antibiotics tested.  
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Figure 34: PCA combination of the three principal components of all antibiotics at 0 hours. A - PC1 
vs 2 (neg). B – PC1 vs 3 (neg). C – PC2 vs 3 (neg). D - Three dimensional PCA with PC1, 2 and 3 

(neg).  

    



145 
 

  

 

Figure 35: PCA combination of the three principal components of all antibiotics at 0 hours. A - PC1 
vs 2 (pos). B – PC1 vs 3 (pos). C – PC2 vs 3 (pos). D - Three dimensional PCA with PC1, 2 and 3 (pos).   

A   
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B   



146 
 

  

 

Figure 36: PCA combination of the three principal components of all antibiotics at 2 hours. A - PC1 
vs 2 (neg). B – PC1 vs 3 (neg). C – PC2 vs 3 (neg). D - Three dimensional PCA with PC1, 2 and 3 

(neg).  

A   B   
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Figure 37: PCA combination of the three principal components of all antibiotics at 2 hours. A - PC1 
vs 2 (pos). B – PC1 vs 3 (pos). C – PC2 vs 3 (pos). D - Three dimensional PCA with PC1, 2 and 3 (pos).  
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Figure 38: PCA combination of the three principal components of all antibiotics at 4 hours. A - PC1 
vs 2 (neg). B – PC1 vs 3 (neg). C – PC2 vs 3 (neg). D - Three dimensional PCA with PC1, 2 and 3 

(neg).  
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Figure 39: PCA combination of the three principal components of all antibiotics at 4 hours. A - PC1 
vs 2 (pos). B – PC1 vs 3 (pos). C – PC2 vs 3 (pos). D - Three dimensional PCA with PC1, 2 and 3 (pos).  
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Figure 40: PCA combination of the three principal components of all antibiotics at 6 hours. A - PC1 
vs 2 (neg). B – PC1 vs 3 (neg). C – PC2 vs 3 (neg). D - Three dimensional PCA with PC1, 2 and 3 

(neg).  
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Figure 41: PCA combination of the three principal components of all antibiotics at 6 hours. A - PC1 
vs 2 (pos). B – PC1 vs 3 (pos). C – PC2 vs 3 (pos). D - Three dimensional PCA with PC1, 2 and 3 (pos).  

A   B   

C   D   
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Figure 42: PCA combining all antibiotics into their general MoA; DNA (ciprofloxacin, levofloxacin 
and nalidixic acid) RNA/Protein (chloramphenicol, gentamycin, mupirocin, rifampicin and 

streptomycin) and Cell wall (vancomycin) and 2-methoxy-1,4-naphthoquinone (MNQ). A - Negative 
ionisation. B - Positive ionisation.   
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3.3.2.3 – Metabolomics – Pathway mapping   
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  Table 26 shows the number of metabolites whose regulation has been perturbed 

significantly by each antibiotic and matched a KEGG metabolic pathway of S. aureus subsp. aureus 

USA300_TCH1516.  

  In terms of structural similarity and proportional effect on metabolic pathways of MRSA 

MNQ is most like that of DNA targeting antibiotics; with high numbers of disturbed carbohydrate 

metabolites and relatively low proportion of amino acids affected. Therefore, MNQ and the DNA 

gyrase targeting antibiotics were docked to the using mcule 1-click docking 

(https://mcule.com/apps/1-click-docking/). This online platform calculates how well MNQ fits into 

the active site of S. aureus DNA gyrase subunit B (UniProt: GYRB_STAAU) compared to the other 

antibiotics (Table 27 and Figure 43). Based on the structural similarities MNQ has similar docking 

cores to all the DNA targeting antibiotics, possibly revealing the MoA of MNQ.  

Table 27: Top 4 docking scores of MNQ and quinolone 
antibiotics when bound to DNA gyrase subunit B    

 Docking position  MNQ  NAL  CIP  LEV  

1  -6  -6.4  -7.3  -7  

2  -6  -5.9  -7.1  -6.1  

3  -5.7  -5.4  -7  -5.9  

4  -5.5  -5.3  -6.3  -5.7  
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Figure 43: mcule 1-click docking. #1 docking orientation of 2-methoxy-1,4-naphthoquinone (A), 
nalidixic acid (B), ciprofloxacin (C), and levofloxacin (D)  

 

3.3.2.4 – Metabolomics – Specific Pathway mapping – TCA Cycle 

 Using the significantly perturbed metabolite identities which are linked to KEGG pathway it 

is possible to see in detail how certain pathways are being affected by MNQ. Several highly 

significant metabolites were identified which were involved in the TCA cycle. Not only were they 

significantly different from the control but also the other antibiotics in most cases, indicating this a 

specific to the MoA of MNQ.  

A   

C   D   

B   
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Figure 44: Left: Box plots indicating the regulation of specific metabolites involved in the TCA cycle 
across all time points between MNQ and no treatment control. Right: Box plots indicating the 
regulation of specific metabolites involved in the TCA cycle across all antibiotics at 0h time point 
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Figure 45: Left: Box plots indicatingthe regulation of nicotinamide adenine dinucleotide (NADH) 
across all time points between MNQ and no treatment control. Right: Box plots indicating the 

regulation of NADH across all antibiotics at 0h time point. 

 

Figure 44 and Figure 45 show the unique effect which MNQ has upon the TCA cycle of MRSA. MNQ 

causes MRSA to upregulate all TCA cycle metabolites when compared to the control and most other 

antibiotics. NADH, a metabolite which is closely related to the TCA cycle, was also included as it 

shows a significantly decreased regulation. Multiple m/z have matched with adducts of the same 

metabolite which increases the confidence in these results.  

3.3.2.5 – Metabolomics – Specific Pathway mapping – Sugar metabolism 

 As well as the TCA cycle sugar metabolism stood out as another metabolic pathway which 

was specifically and significantly affected by MNQ.   

NADH – 331.5538 
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Figure 46: Left: Box plots indicating the regulation of specific metabolites involved in the sugar 
metabolism across all time points between MNQ and no treatment control. Right: Box plots 
indicating the regulation of specific metabolites involved in the sugar metabolism across all 

antibiotics at 0h time point 
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Figure 47: Left: Box plots indicating the regulation of specific metabolites involved in further sugar 
metabolism across all time points between MNQ and no treatment control. Right: Box plots 

indicating the regulation of specific metabolites involved in further sugar metabolism across all 
antibiotics at 0h time point. 

 The ability to metabolise sugars is crucial for the survival of organisms (Figure 46 and Figure 

47), MNQ was found to have a significant effect on many metabolites which were found to be either 
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sugars or linked to sugar metabolism. These were also found to be unique to MNQ treatment and 

their differential regulation was not seen in any of the other antibiotics tested.   

3.3.2.6 – Metabolomics – Specific pathway mapping – Lipid metabolism  

 In addition to the TCA cycle and sugar metabolism, MNQ also had a significant effect on lipid 

metabolism. MNQ was shown to influence most lipid types, especially the fatty acids (Table 28). 

Table 28: The regulation of all lipid families identified as significantly different from the control 

Lipid family LipidMaps 
classification 

Up Down Total 

Fatty acid conjugates FA01 84 21 105 

Octadecanoids FA02 1 0 1 

Eicosanoids FA03 3 0 3 

Fatty aldehydes FA06 2 0 2 

Fatty esters FA07 2 2 4 

Fatty amides FA08 5 0 5 

Monoradylglycerols GL01 2 0 2 

Diradylglycerols GL02 19 3 22 

Triradylglycerols GL03 2 0 2 

Glycerophosphocholines GP01 2 2 4 

Glycerophosphoethanolamines GP02 1 2 3 

Glycerophosphoserines GP03 2 0 2 

Glycerophosphoglycerols GP04 0 2 2 

Glycerophosphates GP10 2 1 3 

Glyceropyrophosphates GP11 0 1 1 

Macrolides and lactone polyketides PK04 1 0 1 

Aflatoxins and related substances PK10 1 0 1 

Flavonoids PK12 2 0 2 

Aromatic polyketides PK13 5 1 6 

Acylaminosugars SL01 2 0 2 

Sphingoid bases SP01 1 0 1 

Phosphosphingolipids SP03 1 0 1 

Neutral glycosphingolipids SP05 2 0 2 

Sterols ST01 2 0 2 

Steroids ST02 4 0 4 

Secosteroids ST03 11 5 16 

Bile acids and derivatives ST04 1 0 1 



161 
 

3.3.3 – Transmission Electron Microscopy   

 To visually inspect the impact MNQ is having upon MRSA transmission electron microscopy 

(TEM) was carried out. Figure 48 shows TEM of MRSA treated at a standardised concentration of 

MNQ at 2, 4, 6 and 24 hours. Although MNQ has been shown to impact the metabolome of MRSA, 

these changes are not visible when using TEM alone. However, at 24 hours (D) cell debris can be 

seen, cells are lighter grey and are not actively dividing, this is a clear sign of cell death. Although 

the metabolomics suggested that MNQ works quickly, this is not supported by the TEM images.  

 

Figure 48: Transmission electron microscopy of MRSA; treated with a standardised concentration 
of MNQ at 2 (A), 4 (B), 6 (C), and 24 hours (D).   

 Figure 49¬show MRSA with cerium chloride untreated and treated with MNQ and HNQ. 

Cerium chloride reacts with H2O2 to form cerium perhydroxide which shows up as black needle-like 

crystals under TEM, this indicates that there could be generation of reactive oxygen species (ROS). 

These formations can only be seen in the presence of MNQ, it is absent when untreated and treated 

with HNQ. 

   

Figure 49: Transmission electron microscopy of MRSA with cerium chloride; untreated (A) 
and treated with a standardised concentration of MNQ (B), and HNQ (C).   

A   B   C   D   

A   B   C   
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3.3.4 – Antimicrobial Assay with Antioxidants  

 Catalase and Ascorbate are both antioxidants which are able react with H2O2 to reduce 

their negative effects. This assay was carried out to see if the antioxidant activity of catalase and 

ascorbate were able to reduce the efficacy of MNQ as an antimicrobial compound. The presence of 

these antioxidants reduced the activity of MNQ two-fold (Table 29). For example, at 12.5 mg/L of 

MNQ the OD600 increased by 12.31% over 24 hours, when catalase and ascorbate is combined with 

MNQ the OD600 increased by 23.11% and 56.54%, respectively. A negative OD600 result was 

obtained for MNQ treatment at 100 mg/L, this is not uncommon as MNQ is green in colour which 

absorbs light at a lower wavelength than the straw yellow media. At very high concentration the 

green pigment is mixed thoroughly over 24 hours and will reduce the maxima of the absorbance, 

therefore slightly decreasing the OD600 value obtained at 24 hours compared to the initial time 

point. This value can be considered as 0% growth and lower concentrations of MNQ do not have 

this issue.  

Table 29: Minimum inhibitory concentration (MIC) of 2-methoxy-1,4-naphthoquinone 
(MNQ) and in the presence of catalase and ascorbate (n=3).    

MNQ Concentration 
(mg/L) 

MNQ  MNQ with Catalase 
(100 mg/L) 

MNQ with Ascorbate 
(100 mg/L) 

100  -1.30  0.03  0.30  

50  8.52  2.07  0.58  

25  13.03  3.59  13.03  

12.5  12.31  23.11  56.54  

6.25  50.61  95.29  100.46  

3.125  103.95  88.89  109.35  

1.5625  103.03  95.34  101.35  

 



163 
 

3.4 – Discussion  

3.4.1 – Proteomics   

  The large-scale analysis of proteins has been used to further understand antibiotics mode 

of action (Bandow et al., 2003) as well as understanding the molecular roles of many active 

compounds including natural products (Lao et al., 2014). Proteomics approaches were employed to 

understand the effects on MNQ on MRSA, however, the regulation of very few proteins were 

affected by MNQ after 6 hours of exposure (Table 25). The low number of proteins changed by MNQ 

could indicate that MoA of MNQ does not impact on protein synthesis and regulation. 

 “Uncharacterised protein 7” was significantly down regulated under MNQ treatment at 6 

hours. It is a helical and transmembrane protein and belongs to a family of cell wall-active antibiotic 

response proteins. These transmembrane proteins are involved in the LiaRS two-component system 

(TCS) which regulates cell envelope stress response especially following the exposure to antibiotics 

such as vancomycin which interfere with the lipid II and undecaprenol cycle (Jordan et al., 2006, 

2007). Both vancomycin and levofloxacin also showed a downregulation of this protein therefore 

this is likely a generic stress response and not useful to decern the MoA of MNQ. 

 The expression of MRSA ribosome was significantly reduced by the presence of MNQ. The 

ribosome is made up of two subunits small (S1-31) and large (L1-44) and one protein of each subunit 

has been affected; S5 at 6 hours and L19 at 0 hours. L19 is known to be located at the interface 

between the small and large subunit and may play a role in the structure and function of 

aminoacyltRNA binding site (Brosius and Arfsten, 1978). Levofloxacin also significantly decreased 

the expression of both S5 and L19 whereas vancomycin significantly increased S5 with no effect of 

L19. Interestingly, the DNA targeting antibiotic, levofloxacin, shows a downregulation of ribosomal 

proteins. This would be expected as ribosomes are produced from DNA in the same way as all other 

proteins within bacteria (Crick, 1958). The upregulation of ribosomal in response to vancomycin is 
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likely a response to the cell wall breaking down. Peptidoglycan fragments are recovered and 

recycled as a part of cell wall biosynthesis; this also serves as a detection mechanism for cell-wall-

targeting antibiotics leading to an upregulation of protective genes (Johnson, Fisher & Mobashery, 

2013), which requires significant ribosomal activity.  

 Cold shock protein CspA was affected both at 0 and 6 hours. and was also significantly 

affected in vancomycin and levofloxacin. As the bacteria were flash frozen in liquid nitrogen and 

stored at -80˚C to halt protein activity, it was thought this process would have been fast enough to 

avoid any protein alterations due to this stress. The significant perturbation of cold shock proteins 

suggests otherwise.  

 DNA-binding protein HU is a part of the histone-like DNA-binding protein family which are 

a set of basic proteins that wrap around DNA stabilising it from denaturation under extreme 

conditions (Tanaka et al., 1984). MNQ decreased the expression of DNA-binding protein HU but 

vancomycin had the opposite effect; significantly increasing the amount of this protein. This 

indicates that MNQ does not inhibit bacterial growth in the same way as vancomycin.  

  Probable malate:quinone-oxidoreductase belongs to the family of proteins called 

malate:quinone-oxidoreductases (MQO). These membrane-associated enzymes are an alternative 

to the NAD-dependant malate dehydrogenase as part of the tricarboxylic acid (TCA) cycle. They play 

a critical role in bacterial survival during oxidative stress. Nitric oxide stress is an important immune 

response utilised by the host to clear a bacterial infection therefore these proteins also play a key 

role in virulence (Spahich et al., 2016.). Both MNQ and levofloxacin negatively affected this protein 

whereas vancomycin increased the amount of this protein. This suggests that MNQ seems to disrupt 

the TCA cycle and similar metabolic pathways likely acting through the generation ROS.  

 Given the low number of proteins and relatively low significance (P<0.1) of the disruption it 

is difficult to draw definite conclusions regarding the MoA of MNQ. This experiment would require 

repetition with different concentrations of MNQ over different periods of time to see a truly 
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significant proteomic impact. The fact that both vancomycin and levofloxacin were shown to effect 

large number of proteins is an indication that this experiment worked well. In addition, the few 

proteins which were affected by MNQ did match with the hypothesis that MNQ bactericidal action 

is brought about via the generation of ROS.   

3.4.2 – Metabolomics  

3.4.2.1 –Metabolomics – Overview of the data  

  When the metabolomics data are considered holistically, which is often done in literature 

(Maifiah et al., 2017; Schelli, Zhong and Zhu, 2017; Zampieri et al., 2017; Baptista et al., 2018), this 

provides broad differences and similarities between treatment groups. Figure 33 to Figure 43 show 

a combination of approaches which provide general information about all antibiotics used and how 

they compare to each other. Figure 32 and Figure 33 show the total number of metabolites affected 

by each antibiotic over 6 hours. The number of metabolites affected by each antibiotic in total and 

at each time point varies greatly. The antibiotics gentamycin, rifampicin, streptomycin and 

vancomycin affect an increasing number of metabolites over time, however MNQ along with 

chloramphenicol, ciprofloxacin, levofloxacin, and nalidixic acid have the largest effect on the 

metabolome of MRSA at the initial time point. This suggest that these antibiotics not only work in 

different ways but at different speeds. As eluded to in the introduction (Figure 24) metabolites are 

the front line in terms of response to a challenge. Metabolites are the first to respond to a change 

in environment, for example the presence of an antibiotic. Whereas proteins and especially DNA 

takes time to react to changes. The 0-hour time was originally to be used as a control time-point 

used for comparisons with later sampling points. However, the 0-hour point it is technically around 

1 minute for each sample as it takes time to add, mix, aliquot and freeze samples, therefore 

significant metabolic effects can take place within this time. This first time point can reveal the true 

metabolic effect of a drug as it shows the primary metabolic effect, whereas later time points would 

show secondary and tertiary reactions as a result of the drugs action. A publication by Zampieri et 
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al., 2018 used methodologies like ours to predict MoA of uncharacterised antimicrobial compounds. 

The research measured the total number of metabolites associated with 7 antibiotic categories; folic 

acid biosynthesis, mycolic acid biosynthesis, cell wall, RNA synthesis, protein synthesis, quinolones, 

and DNA cleavage. The first four of which had the largest number of affected metabolites effected 

at the first time point measured and even protein synthesis could also be argued to have a very 

significant initial response. 

3.4.2.2 –Metabolomics - Statistical analysis   

  PCA is an exploratory statistical procedure often used in metabolomics to draw meaningful 

conclusions between treatment groups (Xia et al., 2015). Figure 34 to Figure 42 show the PCA of all 

antibiotic treatments at each time point. At 0h MNQ has a distinct clustering pattern based on the 

top three principal components (PC) in both positive and negative ionisation. In addition to MNQ, 

chloramphenicol and nalidixic acid both cluster away from the control whereas the other treatments 

do not significantly separate from the control. This result correlates with the total number of 

disturbed metabolites because these three antibiotics have the largest effect at 0h. This indicates 

these antibiotics are having a rapid metabolic effect on the bacteria, these are likely the fastest 

acting antibiotics.  

 As time progresses other antibiotics begin to separate out from the control. MNQ is 

consistently separated from the control at every time point. At 2, 4, and 6-hours vancomycin has 

the most distinct clustering pattern in negative ionisation mode whereas nalidixic acid formed the 

most distinct cluster for positively ionised metabolites across all time points. Of all the antibiotics 

used there are three general targets, DNA, RNA and CW. The hypothesis of this experiment is that 

antibiotics which have similar MoA would show similar metabolic fingerprints, therefore forming 

distinct clusters within a PCA. All time points and treatment groups were combined into these 

groups and a PCA was carried out resulting in Figure 42. There are 3 clear clusters for each MoA and 

MNQ does not cluster with any of these suggesting that MNQ does not target DNA, RNA or the cell 
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wall in the same way these antibiotics do. This is also true for nalidixic acid, which was considered 

to have a DNA targeting MoA, however nalidixic acid points on the PCA are separate from all other 

DNA MoA treatments. Of the three DNA MoA antibiotics; nalidixic acid, ciprofloxacin, and 

levofloxacin, the latter two both second generation fluoroquinolone, whereas nalidixic acid is a first 

generation naphthyridone quinolone. In addition, a much higher dose of nalidixic acid was required 

compared to the more effective fluoroquinolone. As the antibiotic’s concentrations were 

standardised to show the same level of growth inhibition over 6 hours, this higher concentration is 

unlikely to be the cause of this differential clustering. The fact that these small differences were 

clearly shown the PCAs adds confidence to the fact that we are inferring that MNQ works differently 

to all antibiotics tested in this metabolomic data set. 

 By looking at the data collectively we have established MNQ does not affect the 

metabolome of MRSA in the way other antibiotics do, leading us to conclude MNQ has a novel MoA. 

Confidence in this result is backed up by the fact that all other antibiotics cluster together when 

grouped by their MoA, apart from nalidixic acid which seems to be working differently.  

3.4.2.3 –Metabolomics – Pathway mapping  

  To provide further detail to this metabolomic dataset the high-resolution m/z values which 

were identified as significant by the statistical analysis were matched to known metabolite identities 

using R-statistical package. Using R-statistical software, the m/z values were annotated with the 

most likely metabolite ID based on how likely certain adducts are to form and the ppm error. These 

metabolites can then be mapped onto MRSA metabolic pathways to elucidate the true metabolic 

effect of MNQ. The total number of m/z values matched to metabolites which are involved in MRSA 

metabolic pathway are shown in Table 26 separated into distinct metabolic pathways.  

 Amino acid metabolism had the highest number of perturbed metabolites, with at least a 

quarter of all metabolites affected being involved in amino acid metabolism. Carbohydrate 

metabolism was the second with the total number of affected metabolites ranging from 14.6 to 
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27.7%. The two exceptions to this general trend are ciprofloxacin and levofloxacin; which have a 

proportionally larger impact on carbohydrate metabolism. These two antibiotics are 4-quinolones 

which interfere with DNA replication and causing DNA breakage so understandably these antibiotics 

had a lesser effect on amino acid when compared to other antibiotics which target RNA polymerase 

which is directly involved in amino acid utilisation and protein synthesis. However, as we have seen 

previously nalidixic acid does not share the same metabolic fingerprint as the other DNA targeting 

antibiotics. Of all the metabolites perturbed by nalidixic acid 32.4% are involved in amino acid 

metabolism and 19.6% are involved in carbohydrate metabolism, this is patter is like that of RNA 

targeting antibiotics. The structural difference between the quinolone nalidixic acid and the 

fluorinated quinolones ciprofloxacin and levofloxacin could possibly explain the metabolic 

differences. Ciprofloxacin and nalidixic acid are known to affect E. coli in different ways; 

ciprofloxacin is able to kill non-growing cells whereas nalidixic acid cannot (Howard, Pinney and 

Smith, 1993), a resistance mutation within gyrA completely renders nalidixic acid ineffective 

whereas ciprofloxacin remains active (Lewin, Howard and Smith, 1991), and ciprofloxacin becomes 

less active in the presence of chloramphenicol and rifampicin (Chen et al., 1996).  Although these 

differences cannot directly explain the metabolomic differences seen they do suggest that nalidixic 

acid has a very different activity profile to ciprofloxacin.  

 The metabolomic profile of DNA targeting antibiotics was discussed in detail as the 

metabolic profile of MNQs most closely matches that of ciprofloxacin and levofloxacin. MNQ has a 

relatively large effect on carbohydrate metabolism and a lesser effect on amino acids. MNQ also 

shares a similar chemical structure with 4-quinolone antibiotics (Figure 27) as they both possess a 

naphthalene core. This similarity in structure and profile was probed using mcule 1-click docking 

(mcule, Palo Alto) to see how well MNQ fits into the active site of S. aureus DNA gyrase subunit B 

(UniProt: GYRB_STAAU) shown in Table 27 and Figure 43. When docked ciprofloxacin showed the 

highest binding affinity with a docking score of -7.3, followed by levofloxacin with -7. As these are 

second generation quinolone antibiotics it is unsurprising that they have higher binding affinity than 
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that of nalidixic acid which is -6.4. MNQ has similar binding affinity of -6. This is a strong binding 

affinity considering this is compared to drugs which are known to target this protein.   

  This binding affinity combined with the similar metabolomic interference profiles could hint 

that MNQ interferes with DNA synthesis in some way. However, to understand exactly how MNQ 

inhibits the growth of MRSA individual pathway analysis needs to be carried out.   

3.4.2.4 –Metabolomics - Specific Pathway Mapping – TCA cycle  

  MNQ had the third highest proportional impact on carbohydrate metabolism of the 

antibiotics with 24.7% and the second most individual metabolites with 194 significantly influenced 

metabolites within this pathway, this was only surpassed by rifampicin with 195. Therefore, 

carbohydrate metabolism was severely affected by MNQ. The TCA cycle (citrate cycle or Krebs cycle) 

is the primary metabolic pathway for all aerobic processes, it is essential for the complete 

catabolism of non-preferred carbon sources and the subsequent generation of reducing potential 

and biosynthetic intermediates (Vuong et al., 2005). It also plays an important role in 

glycolysis/gluconeogenesis, transamination, deamination and lipogenesis. It’s an important aerobic 

pathway for the final step of oxidation of carbohydrates and fatty acids. The cycle begins with acetyl-

CoA derived from glycolysis; the acetyl group is transferred to oxaloacetate to form citrate. A series 

of reactions causes the oxidation of two carbons from citrate supplying NADH for the use in 

oxidative phosphorylation (Akram, 2014). 

 Figure 44 and Figure 45 shows the regulation of all significantly perturbed TCA cycle 

metabolites over time in comparison to other treatments; MNQ showed a significant upregulation 

of citrate, isocitrate, oxoglutarate, malate, and succinate. We are assured in the identification of 

these TCA cycle metabolites as the same metabolite has been identified more than once due to 

adduct formation. For different m/z values to result in the same metabolite ID increases confidence 

in the identification process. This effect on the TCA cycle is specific to MNQ, no other antibiotics 

tested have the same activity profile a clear indication of the unique action of MNQ. Figure 50 
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depicts the TCA cycle with the 5 metabolites significantly affected by MNQ highlighted. These are 

the central metabolites within this pathway, and they are all upregulated in response to MNQ. NADH 

is a product of the TCA cycle therefore it would be expected also increase, however the opposite is 

true, there is a considerable down regulation of this metabolite.  

 

Figure 50: TCA cycle - metabolites which have been significantly affected by MNQ have been circled 
in red.  

 The literature states that clinical MRSA strains which are exposed to β-lactam antibiotics 

have been found to alter their metabolism to optimise energy production through the TCA cycle. An 

upregulation of TCA related activity was found using transcriptomics and metabolomics which 

suggests the bacteria is increasing its capability to produce more energy and increasing biosynthetic 

capability. These benefits allowed the bacteria to respond to the inhibition of cell wall synthesis by 
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β-lactams (Keaton et al., 2013). MNQ was shown to be the only antibiotic to upregulate all these 

metabolites so this is not generic stress response to an antibiotic, this is a specific response to MNQ. 

The upregulation of the TCA cycle metabolites could be an attempt to compensate for reducing 

compounds such as NADH being depleted. Fenton-mediated hydroxyl radicals which have been 

shown to be produced by many antibiotics irrespective of the molecular target. These radicals result 

in the depletion of NADH (Kohanski et al., 2007), which is demonstrated in the metabolic fingerprint 

of MNQ and the formation of H2O2 was observed using TEM (3.3.3 – Transmission Electron 

Microscopy) 

3.4.2.5 –Metabolomics - Specific Pathway Mapping – Sugar metabolism  

  MNQ also severely affects sugar metabolism (Figure 46 and  

Figure 47). Sugar metabolism is linked to energy metabolism and feed directly into the TCA cycle. 

There’s a significant upregulation of hexose and ribose sugars and their phosphates, as well as deoxy 

ribose and amino sugar phosphates and a down regulation of glucoronate. These changes in sugar 

metabolism are specific to MNQ treatment.  Redox balance is known to be closely involved in sugar 

metabolism (van Dijken and Scheffers, 1986), this supports the hypothesis that the toxic effects of 

MNQ are due to the production of ROS.   

3.4.2.6 –Metabolomics - Specific Pathway Mapping – Lipid metabolism  

  The metabolomics results to this point indicate the antibacterial activity of MNQ is due to 

toxic effect of redox cycling. The production of superoxide radicals required the use of reducing 

agents such as NADH by the bacteria to detoxify the ROS, which were found to be depleted by MNQ. 

This redox cycling is known to be caused by a range of compounds such as catechols, quinones, iron 

chelates, and aromatic nitro compounds causing membrane damage by peroxidative reactions of 

polyunsaturated fatty acids (Kappus and Sies, 1981). Metabolomic data of MRSA in the presence of 

MNQ has shown that there is redox cycling occurring and significant perturbation of lipid 

metabolism (Table 28).  
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3.4.3 – Transmission Electron Microscopy  

  Metabolomic data revealed that MNQ significantly upregulates TCA cycle metabolites whilst 

downregulating NADH. This would suggest that the redox state of MRSA has been disrupted. This 

oxidative stress caused by MNQ was supported with transmission electron microscopy using cerium 

chloride, which produces black crystals in the presence of hydrogen peroxide (H2O2) (Figure 49) 

(Bestwick et al., 1997). H2O2 is produced by bacteria due to oxidative stress, this can be seen in 

presence of MNQ.  The same experiment was carried out with HNQ yet there was no H2O2 produced 

by the bacteria. This also means that the methoxy group present is crucial to the activity of MNQ.   

3.4.4 – Antimicrobial Assay with Antioxidants  

  Metabolomics and TEM revealed that MNQ affects the growth of MRSA by forming hydroxyl 

radicals and changing with the redox state. This has resulted in the production of H2O2, which can 

be seen in the TEM, however, we do not know for certain if this production is lethal to the bacteria. 

This production could be a relatively harmless by-product of MNQ treatment, and the death of 

bacteria occurs by another mechanism. Therefore, MNQ was combined with the antioxidants 

catalase and ascorbate for a bacterial susceptibility assay. Antioxidants reduce the toxic effects of 

H2O2. If the addition of these compounds reduces the potency of MNQ, this proves the bactericidal 

effect of MNQ is due to the production of ROS. Table 29 shows that MNQ inhibits the growth on 

MNQ to just 12.3% at 12.5 mg/L, in the presence of catalase this increases to 23.1% and 56.54% in 

the presence of ascorbate. This indicates that the production of H2O2 does contribute to the 

inhibitory effect of MNQ.    
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Chapter 4 – General Conclusion   

 Of all the invasive weeds explored to discover new antimicrobial agents, one compound was 

found to be far more active than all others. This compound was identified as 2-methoxy-1,4-

naphthoquinone (MNQ) using mass spectrometry and nuclear magnetic resonance spectroscopy. A 

broad range of biological assays were carried out, finding that MNQ had a broad range of activity 

especially against gram-positive bacteria and the parasite Schistosoma mansoni. As the focus of this 

project was originally targeted at MRSA, many strains with a range of resistance mechanisms were 

assayed, all of which were susceptible to MNQ. 2-hydroxy-1,4-naphthoquinone, which is a structural 

derivative of MNQ lacking a methoxy group was found to be 10x less effective against MRSA 

indicating the importance of the methoxy group.  

 Metabolomic methodologies were developed to discover the mechanism by which MNQ 

inhibits the growth of MRSA. MNQ was found to work differently to other antibiotics and there were 

three major effects on the metabolome of MRSA: i) TCA cycle metabolites were significantly 

upregulated while NADH was down regulated. ii) Sugar metabolism was also significantly affected 

which is closely related to both the TCA cycle and the regulation of NADH. iii) Lipids across all families 

were perturbed by MNQ, which is known to be a side effect of oxidative stress. These all indicate 

that MNQ is interfering with the redox state of MRSA. These results were backed up by TEM showing 

production of hydrogen peroxide and reduction of MNQ potency by the presence of antioxidants. 

These effects are exactly what would be expected by a quinone or other compounds which cause 

superoxide radicals. Although the metabolomic results indicate that MNQ inhibits MRSA by the 

production of superoxide radicals, this does not specifically address the improved potency of the 

methoxy groups. 

  This shows the accuracy and value of metabolomics which has been the least utilised “omic” 

technique (Figure 51). The applications of metabolomics are endless, and this research has shown 

how it can be successfully applied to mode of action studies. With further development, high-
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throughput metabolomics could be used to streamline drug discovery and development leading to 

the approval of more antibiotics and other drugs.  

 

 

Figure 51: Total number of “omics” publications over time using the Google scholar search 
function.  

  As for the development of MNQ into an approved antimicrobial drug the issue with its 

cytotoxicity needs to be addressed. The cytotoxicity results obtained are worrying, however rather 

promisingly MNQ does share many structural similarities to current drugs. Synthetic alterations to 

this structure could yield a potent antimicrobial without the cytotoxicity. The significance of the 

methoxy group in terms of the specific effect of MNQ would also need to be investigated further.  
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Appendix 1 -HPLC-PDA-ESI-MS data for I. glandulifera  

 

Figure 52: HPLC-PDA-ESI-MS chromatograms of IG1. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are two peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum.  

 

Figure 53: HPLC-PDA-ESI-MS chromatograms of IG2. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 6 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 
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Figure 54: HPLC-PDA-ESI-MS chromatograms of IG3. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 5 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 

 

Figure 55: HPLC-PDA-ESI-MS chromatograms of IG4. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 3 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 
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Figure 56: HPLC-PDA-ESI-MS chromatograms of IG5. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 
negatively charged ions detected after eluting from the column. There is 1 peak of interest (green 

arrow) which shows significant UV absorption and consistent molecular ions within the mass 
spectrum. 
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Appendix 2 - HPLC-PDA-ESI-MS data for F. japonica 

 

Figure 57: HPLC-PDA-ESI-MS chromatograms of FJ1. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 5 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 

 

Figure 58: HPLC-PDA-ESI-MS chromatograms of FJ2. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 3 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 
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Figure 59: HPLC-PDA-ESI-MS chromatograms of FJ3. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 
negatively charged ions detected after eluting from the column. There is 1 peak of interest (green 

arrow) which shows significant UV absorption and consistent molecular ions within the mass 
spectrum. 

 

Figure 60: HPLC-PDA-ESI-MS chromatograms of FJ4. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 
negatively charged ions detected after eluting from the column. There is 1 peak of interest (green 

arrow) which shows significant UV absorption and consistent molecular ions within the mass 
spectrum. 
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Figure 61: HPLC-PDA-ESI-MS chromatograms of FJ5. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 3 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 
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Appendix 3 - HPLC-PDA-ESI-MS data for R. ponticum  

 

Figure 62HPLC-PDA-ESI-MS chromatograms of RP1. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 4 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 

 

Figure 63: HPLC-PDA-ESI-MS chromatograms of RP2. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 11 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 
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Figure 64: HPLC-PDA-ESI-MS chromatograms of RP3. The top graph represents the total UV 
absorption of the eluting analytes. The bottom graph represents the mass chromatogram of all the 

negatively charged ions detected after eluting from the column. There are 6 peaks of interest 
(green arrow) which show significant UV absorption and consistent molecular ions within the mass 

spectrum. 
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Appendix 4 – All bacterial strains 

Table 30: List of all aerobic bacterial strains used for susceptibility testing and their mechanism of 
resistance to certain antibiotics  

Strain no. Organism Resistances Mechanism of resistance 

572 Acinetobacter baumannii - - 

NCTC 10661 Burkholderia cepacia - - 

NCTC 12201 Enterococcus faecalis Vancomycin vanA 

ATCC 51299 Enterococcus faecalis Vancomycin vanB 

ATCC 29212 Enterococcus faecalis - - 

ATCC 25922 Escherichia coli - - 

ATCC 35218 Escherichia coli Ampicillin β-lactamase 

NCTC 13353 Escherichia coli 3rd gen cephalosporins CTX-M 

353 Escherichia coli Nitro / Trim - 

Controls Klebsiella pneumoniae Carbapenems NDM 

NCTC 13442 Klebsiella pneumoniae Carbapenems OXA-48 

21856 Klebsiella pneumoniae - - 

ATCC 700603 Klebsiella pneumoniae 4th gen cephalosporins SHV-18 

NCTC 10975 Proteus mirabilis - - 

ATCC 27853 Pseudomonas aeruginosa - - 

8204 Salmonella enteritidis - - 

11051 Staphylococcus aureus Tetracycline - 

ATCC 29213 Staphylococcus aureus - - 

ATCC 33591 Staphylococcus aureus Methicillin mecA (III) 

ATCC 700698 Staphylococcus aureus Vancomycin hVISA 

ATCC BAA-977 Staphylococcus aureus ERY/CLIND MLSB 

H-EMRSA-15 Staphylococcus aureus Methicillin mecA (IV) 

NCTC 12493 Staphylococcus aureus Flucloxacillin mecA 

ST8-USA300 Staphylococcus aureus Methicillin mecA (IV) 

25760 Staphylococcus epidermidis - - 

25495 Staphylococcus epidermidis - - 

NCTC 11047 Staphylococcus epidermidis - - 

19473 Staphylococcus saprophyticus -  - 

Wild strain Staphylococcus saprophyticus - - 

20456 Streptococcus bovis   

21816 Streptococcus bovis - - 

21818 Streptococcus bovis - - 

22358 Streptococcus Group A - - 

22362 Streptococcus Group G - - 

ATCC 49619 Streptococcus pneumoniae - - 

18778 Streptococcus pneumoniae ERY, TET - 

21394 Streptococcus pneumoniae Penicillin PBP 

21395 Streptococcus pneumoniae ERY, CLIND MLSB 
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13121 Streptococcus pneumoniae - - 

13122 Streptococcus pneumoniae - - 

 

Table 31: List of all anaerobic bacterial strains used for susceptibility testing and their mechanism of 
resistance to certain antibiotics 

Strain No. Organism name Ribotype/Resistance mechanism Meropenem susceptibility 

1579 Bacteroides fragilis - Sensitive 

1580 Bacteroides fragilis - Sensitive 

1581 Bacteroides fragilis - Sensitive 

1582 Bacteroides fragilis - Sensitive 

1583 Bacteroides fragilis - Sensitive 

1584 Bacteroides fragilis - Sensitive 

1585 Bacteroides fragilis - Sensitive 

1591 Bacteroides fragilis - Resistant 

1592 Bacteroides fragilis - Sensitive 

1593 Bacteroides fragilis - Sensitive 

1594 Bacteroides fragilis - Sensitive 

1595 Bacteroides fragilis - Resistant 

1596 Bacteroides fragilis - Sensitive 

1597 Bacteroides fragilis - Sensitive 

1598 Bacteroides fragilis - Sensitive 

1599 Bacteroides fragilis - Sensitive 

1600 Bacteroides fragilis - Sensitive 

1601 Bacteroides fragilis - Sensitive 

1602 Bacteroides fragilis - Sensitive 

13350 Bacteroides fragilis Met R Sensitive 

ATCC 25285 Bacteroides fragilis - Sensitive 

R43812 Clostridium difficile Ribotype 001 Sensitive 

R43874 Clostridium difficile Ribotype 027 Sensitive 

R43875 Clostridium difficile Ribotype 001 Sensitive 

R43883 Clostridium difficile Ribotype 014 Sensitive 

R43935 Clostridium difficile Ribotype 001 Sensitive 

R43942 Clostridium difficile Ribotype 078 Sensitive 

R43943 Clostridium difficile Ribotype 001 Sensitive 

R43968 Clostridium difficile Ribotype 001 Sensitive 

R43997 Clostridium difficile Ribotype 078 Sensitive 

R43998 Clostridium difficile Ribotype 078 Sensitive 

R44000 Clostridium difficile Ribotype 014 Sensitive 

R44002 Clostridium difficile Ribotype 014 Sensitive 

R44003 Clostridium difficile Ribotype 014 Sensitive 

R44004 Clostridium difficile Ribotype 078 Sensitive 

R44007 Clostridium difficile Ribotype 078 Sensitive 

R44015 Clostridium difficile Ribotype 014 Sensitive 
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Appendix 5 – R-statistical package script 

# PIPsearches of ecmdb metabolite database Jasen Finch 12/10/2017 
# Database downloaded in JSON format and converted to csv 
##### Functions ##### 
 
ecmdbQueryPIP <- function(add, mz, ppm = 5, adducts = adducts, DB = DB){ 
   
  rule <- adducts$Rule[adducts$Name == add] 
  mass <- ppmRange(mz, ppm) 
  mass <- map(mass, calcM, adduct = add) 
  DB <- DB %>% filter(moldb_mono_mass > mass$lower & moldb_mono_mass < mass$upper) %>% 
    rename(Nch = moldb_formal_charge, 
           Nacc = moldb_acceptor_count, 
           Ndon = moldb_donor_count 
           ) %>% 
    mutate(Ionisation = eval(parse(text = rule))) %>% 
    filter(Ionisation == T) %>% 
    mutate(Adduct = add,`Measured m/z` = mz) 
   
  return(DB) 
} 
 
 
ecmdbPIPsearch <- function(mz, ppm = 5, mode = 'n', adducts = adducts, DB = DB){ 
  if (mode == "p") { 
    adductList <- adducts$Name[adducts$Nelec < 0] 
  } 
  if (mode == "n") { 
    adductList <- adducts$Name[adducts$Nelec > 0] 
  } 
  if (mode == "ne") { 
    adductList <- c("M") 
  } 
   
  res <- map(adductList,ecmdbQueryPIP,mz = mz, ppm = ppm, adducts = adducts, DB = DB) %>% 
    bind_rows() %>% 
    select(id:moldb_mono_mass,Adduct:`Measured m/z`) %>% 
    rename(`Accurate Mass` = moldb_mono_mass) 
     
  if (nrow(res) > 0) { 
    res <- res %>% 
      rowwise() %>% 
      mutate(`Theoretical m/z` = calcMZ(`Accurate Mass`,Adduct), PPMerror = ppmError(`Measured 
m/z`,`Theoretical m/z`)) 
  } else { 
    res <- res %>% 
      bind_cols(tibble(`Theoretical m/z` = numeric(), PPMerror = numeric())) 
  } 
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  return(res) 
} 
 
########## Script starts here ############# 
 
## library load 
packages <- c('magrittr', 
              'purrr', 
              'dplyr', 
              'mzAnnotation', 
              'parallel' 
) 
lapply(packages,library,character.only = T) 
 
## Database and adduct preperation 
# Set DBpath to the location of ecmdb.csv 
DBpath <- 'C:/Users/dmf/Documents/ecmdb.csv' 
 
DB <- DBpath %>% 
  read_csv() %>% 
  
select(id,name,description,kegg_id,moldb_formula,moldb_inchikey,moldb_mono_mass,moldb_acceptor_
count,moldb_donor_count,moldb_formal_charge) 
 
adducts <- Adducts %>% 
  filter(!grepl('Nnhh',Rule,fixed = T),!grepl('Noh',Rule,fixed = T),!grepl('Ncooh',Rule,fixed = T)) 
 
## PIPsearch 
 
# Change mode and ppm threshold for searches accordingly 
Mode <- 'n' 
PPM <- 3 
 
# set mzPath to the location of mz.csv 
# mz.csv should contain a single column of masses with the heading "mz"  
mzPath <- 'C:/Users/dmf/Documents/mz.csv' 
MZ <- read_csv(mzPath) 
 
clus <- makeCluster(detectCores())  
clusterExport(clus,varlist = c(ls('package:magrittr'), 
                               ls('package:purrr'), 
                               'ecmdbQueryPIP', 
                               ls('package:mzAnnotation'), 
                               ls('package:dplyr') 
                               )) 
PIPhits <- parLapply(clus,MZ$mz,ecmdbPIPsearch,ppm = PPM,mode = Mode,adducts = adducts,DB = DB) 
%>% 
  bind_rows() 
stopCluster(clus) 



188 
 

Bibliography  

Abbo, A. et al. (2005) ‘Multidrug-resistant Acinetobacter baumannii’, Emerging infectious diseases. 

Centres for Disease Control and Prevention, 11(1), p. 22.  

Achan, J. et al. (2011) ‘Quinine, an old anti-malarial drug in a modern world: role in the treatment 

of malaria’, Malaria journal. BioMed Central, 10(1), p. 144.  

Adhikari, R. P. et al. (2004) ‘Vancomycin-induced deletion of the methicillin resistance gene mecA in 

Staphylococcus aureus’, Journal of Antimicrobial Chemotherapy. Oxford University Press, 54(2), pp. 

360–363.  

Ahn, J. H. et al. (2002) ‘Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent 

anti-diabetic agents’, Bioorganic & Medicinal Chemistry Letters. Pergamon, 12(15), pp. 1941–1946. 

doi: 10.1016/S0960-894X(02)00331-1.  

Akram, M. (2014) ‘Citric acid cycle and role of its intermediates in metabolism’, Cell biochemistry 

and biophysics. Springer, 68(3), pp. 475–478.  

Altaf, M. et al. (2010) ‘Evaluation of the Mycobacterium smegmatis and BCG models for the 

discovery of Mycobacterium tuberculosis inhibitors’, Tuberculosis. Elsevier, 90(6), pp. 333–337.  

Andersson, D. I. and Levin, B. R. (1999) ‘The biological cost of antibiotic resistance’, Current opinion 

in microbiology. Elsevier, 2(5), pp. 489–493.  

Andrews, R.S., Nelson Research and Development Co, 1986. Flash chromatography. U.S. Patent 

4,591,442. 

Annesley, T.M., 2003. Ion suppression in mass spectrometry. Clinical chemistry, 49(7), pp.1041-

1044. 



189 
 

Årdal, C., Baraldi, E., Theuretzbacher, U., Outterson, K., Plahte, J., Ciabuschi, F. and Røttingen, J.A., 

2018. Insights into early stage of antibiotic development in small-and medium-sized enterprises: a 

survey of targets, costs, and durations. Journal of pharmaceutical policy and practice, 11(1), p.8. 

Artsimovitch, I., Seddon, J. and Sears, P. (2012) ‘Fidaxomicin Is an Inhibitor of the Initiation of 

Bacterial RNA Synthesis’, Clinical Infectious Diseases: An Official Publication of the Infectious 

Diseases Society of America. Oxford University Press, 55(Suppl 2), pp. S127–S131. doi: 

10.1093/cid/cis358.  

Azab, A. (2017) ‘Alcea: Traditional Medicine, Current Research and Future Opportunities’, European 

Chemical Bulletin, 5(12), pp. 505–514.  

Baggerman, G. et al. (2005) ‘Gel-based versus gel-free proteomics: a review’, Combinatorial 

chemistry & high throughput screening. Bentham Science Publishers, 8(8), pp. 669–677.  

Balunas, M. J. and Kinghorn, D. A. (2005) ‘Drug discovery from medicinal plants.’, Life sciences, 78(5), 

pp. 431–41. doi: 10.1016/j.lfs.2005.09.012.  

Bandow, J. E. et al. (2003) ‘Proteomic approach to understanding antibiotic action’, Antimicrobial 

agents and chemotherapy. Am Soc Microbiol, 47(3), pp. 948–955.  

Bantscheff, M. et al. (2012) ‘Quantitative mass spectrometry in proteomics: critical review update 

from 2007 to the present’, Analytical and bioanalytical chemistry. Springer, 404(4), pp. 939–965.  

Baptista, R. et al. (2018) ‘Untargeted metabolomics reveals a new mode of action of pretomanid 

(PA824)’, Scientific Reports 2018 8:1. Nature Publishing Group, 8(1), p. 5084. doi: 10.1038/s41598-

01823110-1.  

Barber, M., Bordoli, R.S., Sedgwick, R.D. and Tyler, A.N., 1981. Fast atom bombardment of solids 

(FAB): A new ion source for mass spectrometry. Journal of the Chemical Society, Chemical 

Communications, (7), pp.325-327. 



190 
 

Barna, J. C. J. and Williams, D. H. (1984) ‘The structure and mode of action of glycopeptide antibiotics 

of the vancomycin group’, Annual Reviews in Microbiology. Annual Reviews 4139 El Camino Way, 

PO Box 10139, Palo Alto, CA 94303-0139, USA, 38(1), pp. 339–357.  

Barrer, R.M., 1944. General and Physical Chemistry. III. Zeolites as adsorbents and molecular sieves. 

Annu. Rep. Prog. Chem, 41, pp.31-46. 

Von Baum, H. and Marre, R. (2005) ‘Antimicrobial resistance of Escherichia coli and therapeutic 

implications’, International Journal of Medical Microbiology. Elsevier, 295(6–7), pp. 503–511.  

Beckey, H.D., Hey, H., Levsen, K. and Tenschert, G., 1969. Study of the kinetics of fast unimolecular 

decomposition processes and of organic rearrangement reactions by field ionization mass 

spectrometry. International Journal of Mass Spectrometry and Ion Physics, 2(2), pp.101-123. 

Beckey, H.D., 1977. Principles of Field Ionization and Field Desorption Mass Spectrometry, 

Pergamon Press, Oxford. 

Beckmann, M., Parker, D., Enot, D.P., Duval, E. and Draper, J., 2008. High-throughput, nontargeted 

metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. 

Nature protocols, 3(3), p.486. 

Beerling, D. J. and Perrins, J. M. (1993) ‘Impatiens glandulifera Royle (Impatiens roylei Walp.)’, 

Journal of Ecology. JSTOR, 81(2), pp. 367–382.  

Bentley, T.W. and Johnstone, R.A.W., 1970. Mechanism and structure in mass spectrometry: A 

comparison with other chemical processes. In Advances in Physical Organic Chemistry (Vol. 8, pp. 

151-269). Academic Press. 

Berg, T., Lundanes, E., Christophersen, A.S. and Strand, D.H., 2009. Determination of opiates and 

cocaine in urine by high pH mobile phase reversed phase UPLC–MS/MS. Journal of Chromatography 

B, 877(4), pp.421-432.    



191 
 

Bestwick, C. S. et al. (1997) ‘Localization of hydrogen peroxide accumulation during the 

hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola.’, The Plant Cell. 

Am Soc Plant Biol, 9(2), pp. 209–221.  

Binder, R. G., Benson, M. E. and Flath, R. A. (1989) ‘Eight 1,4-naphthoquinones from Juglans’, 

Phytochemistry, 28(10), pp. 2799–2801. doi: https://doi.org/10.1016/S0031-9422(00)98092-0.  

Bjørkeng, E. et al. (2011) ‘Clustering of polyclonal VanB‐type vancomycin‐resistant Enterococcus 

faecium in a low‐endemic area was associated with CC17‐genogroup strains harbouring transferable 

vanB2‐Tn5382 and pRUM‐like repA containing plasmids with axe‐txe plasmid addiction system’, 

Apmis. Wiley Online Library, 119(4‐5), pp. 247–258.  

Blazyk, J., Wiegand, R., Klein, J., Hammer, J., Epand, R.M., Epand, R.F., Maloy, W.L. and Kari, U.P., 

2001. A novel linear amphipathic β-sheet cationic antimicrobial peptide with enhanced selectivity 

for bacterial lipids. Journal of Biological Chemistry, 276(30), pp.27899-27906. 

Bodey, G. P. et al. (1983) ‘Infections caused by Pseudomonas aeruginosa’, Reviews of infectious 

diseases. The University of Chicago Press, 5(2), pp. 279–313.  

Bolkart KH, and Zenk MH. (1969). The homogentisate pathway in the biosynthesis of 2,7-dimethyl-

1,4-naphthoquinone (chimaphilin). Z Pflanzenphysiol; 61: 356–359. 

Bolton, J. L. et al. (2000) ‘Role of Quinones in Toxicology’, Chemical Research in Toxicology. American 

Chemical Society, 13(3), pp. 135–160. doi: 10.1021/tx9902082.  

Bonfiglio, R., King, R.C., Olah, T.V. and Merkle, K., 1999. The effects of sample preparation methods 

on the variability of the electrospray ionization response for model drug compounds. Rapid 

Communications in Mass Spectrometry, 13(12), pp.1175-1185. 

Borgmann, S. et al. (2008) ‘Increased number of Clostridium difficile infections and prevalence of 

Clostridium difficile PCR ribotype 001 in southern Germany’, Eurosurveillance. European Centre for 

Disease Prevention and Control, 13(49), p. 19057.  



192 
 

Brennan, P.J. and Nikaido, H., 1995. The envelope of mycobacteria. Annual review of biochemistry, 

64(1), pp.29-63. 

Brosius, J. and Arfsten, U. (1978) ‘Primary structure of protein L19 from the large subunit of 

Escherichia coli ribosomes’, Biochemistry. ACS Publications, 17(3), pp. 508–516.  

Bugg, T. D. H. et al. (1991) ‘Molecular basis for vancomycin resistance in Enterococcus faecium 

BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins 

VanH and VanA’, Biochemistry. ACS Publications, 30(43), pp. 10408–10415.  

Burke, M. L. et al. (2009) ‘Immunopathogenesis of human schistosomiasis’, Parasite immunology. 

Wiley Online Library, 31(4), pp. 163–176.  

Butler, M. S. (2004) ‘The role of natural product chemistry in drug discovery’, Journal of natural 

products. ACS Publications, 67(12), pp. 2141–2153.  

Calabi, E., Ward, S., Wren, B., Paxton, T., Panico, M., Morris, H., Dell, A., Dougan, G. and Fairweather, 

N., 2001. Molecular characterization of the surface layer proteins from Clostridium difficile. 

Molecular microbiology, 40(5), pp.1187-1199. 

Callaway, R. M. and Ridenour, W. M. (2004) ‘Novel weapons: invasive success and the evolution of 

increased competitive ability’, Frontiers in Ecology and the Environment. Wiley Online Library, 2(8), 

pp. 436–443.  

Campbell, E. A. et al. (2001) ‘Structural mechanism for rifampicin inhibition of bacterial RNA 

polymerase’, Cell. Elsevier, 104(6), pp. 901–912.  

Cappuccino, N. and Arnason, J. T. (2006) ‘Novel chemistry of invasive exotic plants’, Biology Letters. 

The Royal Society, 2(2), pp. 189–193.  



193 
 

Carlier, J.-P. et al. (1997) ‘Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic 

strains of Bacteroides fragilis.’, Antimicrobial agents and chemotherapy. Am Soc Microbiol, 41(7), 

pp. 1495–1499.  

Carmeli, Y., Troillet, N., Eliopoulos, G.M. and Samore, M.H., 1999. Emergence of antibiotic-resistant 

Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. 

Antimicrobial agents and chemotherapy, 43(6), pp.1379-1382. 

Carraro, S. et al. (2007) ‘Metabolomics applied to exhaled breath condensate in childhood asthma’, 

American Journal of Respiratory and Critical Care Medicine. American Thoracic Society, 175(10), pp. 

986–990.  

Cavalleri, B. et al. (1988) ‘Structure and biological activity of lipiarmycin B.’, The Journal of 

Antibiotics, 41(3), pp. 308–315. doi: 10.7164/antibiotics.41.308.  

CDC, C. for D. C. and P. (2001) ‘Methicillin-resistant Staphylococcus aureus skin or soft tissue 

infections in a state prison--Mississippi, 2000.’, MMWR. Morbidity and mortality weekly report, 

50(42), p. 919.  

CDC, C. for D. C. and P. (2003) ‘Methicillin-resistant Staphylococcus aureus infections among 

competitive sports participants--Colorado, Indiana, Pennsylvania, and Los Angeles County, 

20002003.’, MMWR. Morbidity and mortality weekly report, 52(33), p. 793.  

CDC, C. for D. C. and P. (2012) ‘Vital signs: preventing Clostridium difficile infections.’, MMWR. 

Morbidity and mortality weekly report, 61(9), p. 157.  

Chai, J.Y., 2013. Praziquantel treatment in trematode and cestode infections: an update. Infection 

& chemotherapy, 45(1), pp.32-43. 

Chaisson, R.E., 2003. Treatment of chronic infections with rifamycins: is resistance likely to follow? 

Antimicrobial agents and chemotherapy, 47(10), pp.3037-3039. 



194 
 

Chen, C.-R. et al. (1996) ‘DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone 

induced DNA cleavage’, Journal of molecular biology. Elsevier, 258(4), pp. 627–637.  

Chen, D. and Bohm, B. A. (1966) ‘NAPHTHOQUINONE BIOSYNTHESIS IN HIGHER PLANTS: I. STUDIES 

ON 2-HYDROXY-l, 4-NAPHTHOQUINONE IN IMPATIENS BALSAMINA L.’, Canadian journal of 

biochemistry. NRC Research Press, 44(10), pp. 1389–1395.  

Chen, H. et al. (2013) ‘Quality assessment of Japanese knotweed (Fallopia japonica) grown on Prince  

Edward Island as a source of resveratrol’, Journal of agricultural and food chemistry. ACS 

Publications, 61(26), pp. 6383–6392.  

Chen, J. et al. (2004) ‘The cytotoxicity and mechanisms of 1, 2-naphthoquinone thiosemicarbazone 

and its metal derivatives against MCF-7 human breast cancer cells’, Toxicology and applied 

pharmacology. Elsevier, 197(1), pp. 40–48.  

Chen, X. et al. (2003) ‘Shikonin, a component of Chinese herbal medicine, inhibits chemokine 

receptor function and suppresses human immunodeficiency virus type 1’, Antimicrobial agents and 

chemotherapy. Am Soc Microbiol, 47(9), pp. 2810–2816.  

Christian, G. D.  2003, Analytical Chemistry, John Wiley & Sons Inc., University of Washington. 

Coenye, T. et al. (2001) ‘Taxonomy and identification of the Burkholderia cepacia complex’, Journal 

of clinical microbiology. Am Soc Microbiol, 39(10), pp. 3427–3436.  

Cohen, M. L. (1992) ‘Epidemiology of Drug Resistance: Implications for a Post—Antimicrobial Era’, 

Science, 257(5073), p. 1050 LP-1055. Available at: 

http://science.sciencemag.org/content/257/5073/1050.abstract.  

Colley, D. G. et al. (2014) ‘Human schistosomiasis’, The Lancet. Elsevier, 383(9936), pp. 2253–2264.  

Colley, D. G. and Wikel, S. K. (1974) ‘Schistosoma mansoni: simplified method for the production of 

schistosomules’, Experimental Parasitology. Elsevier, 35(1), pp. 44–51.  



195 
 

Cooper, B. S. et al. (2004) ‘Isolation measures in the hospital management of methicillin resistant 

Staphylococcus aureus (MRSA): systematic review of the literature’, BMJ. BMJ Publishing Group Ltd, 

329(7465), p. 533. doi: 10.1136/bmj.329.7465.533.  

Costerton, J. W., Stewart, P. S. and Greenberg, E. P. (1999) ‘Bacterial biofilms: a common cause of 

persistent infections’, Science. American Association for the Advancement of Science, 284(5418), 

pp. 1318–1322.  

Couppie, P. et al. (1994) ‘Leukocidin from Staphylococcus aureus and cutaneous infections: an 

epidemiologic study’, Archives of Dermatology. American Medical Association, 130(9), pp. 1208– 

1209.  

Cowan, S. W. et al. (1992) ‘Crystal structures explain functional properties of two E. coli porins’, 

Nature. Nature Publishing Group, 358(6389), p. 727.  

Cox, G.B. and Gibson, F., 1964. Biosynthesis of vitamin K and ubiquinone relation to the shikimic acid 

pathway in Escherichia coli. Biochimica et Biophysica Acta (BBA)-General Subjects, 93(1), pp.204-

206. 

Cribier, B. et al. (1992) ‘Staphylococcus aureus leukocidin: a new virulence factor in cutaneous 

infections?’, Dermatology. Karger Publishers, 185(3), pp. 175–180.  

Crick, F.H., 1958, January. On protein synthesis. In Symp Soc Exp Biol (Vol. 12, No. 138-63, p. 8). 

Crick, F. (1970) ‘Central Dogma of Molecular Biology’, Nature. Nature Publishing Group, 227, p. 561.  

Available at: http://dx.doi.org/10.1038/227561a0.  

Cross, J. R. (1975) ‘Rhododendron Ponticum L.’, Journal of Ecology. JSTOR, 63(1), pp. 345–364.  

Cross, J. R. (1981) ‘The establishment of Rhododendron ponticum in the Killarney oakwoods, SW 

Ireland’, The Journal of Ecology. JSTOR, pp. 807–824.  



196 
 

Cvm, F. (2017) ‘2016 Summary Report on Antimicrobials Sold or Distributed for Use in Food-

Producing Animals’. Available at: 

https://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM5880

85. pdf (Accessed: 23 March 2018).  

Darvill, A.G. and Albersheim, P., 1984. Phytoalexins and their elicitors-a defense against microbial 

infection in plants. Annual Review of Plant Physiology, 35(1), pp.243-275. 

Dayeh, V. R. et al. (2004) ‘Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian 

cells using fluorescent dyes as indicators of cell viability’, Ecotoxicology and environmental safety.  

Elsevier, 57(3), pp. 375–382.  

Dehnen-Schmutz, K., Perrings, C. and Williamson, M. (2004) ‘Controlling Rhododendron ponticum in 

the British Isles: an economic analysis’, Journal of Environmental Management. Elsevier, 70(4), pp. 

323–332.  

Dempster, A.J., 1918. A new method of positive ray analysis. Physical Review, 11(4), p.316. 

Desbois, A. P. and Coote, P. J. (2011) ‘Wax moth larva (Galleria mellonella): an in vivo model for 

assessing the efficacy of anti-staphylococcal agents’, Journal of Antimicrobial Chemotherapy, 66(8), 

pp. 1785–1790. Available at: http://dx.doi.org/10.1093/jac/dkr198.  

Diep, B. A. et al. (2008) ‘The arginine catabolic mobile element and staphylococcal chromosomal 

cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-

resistant Staphylococcus aureus’, The Journal of infectious diseases. The University of Chicago Press, 

197(11), pp. 1523–1530.  

van Dijken, J. P. and Scheffers, W. A. (1986) ‘Redox balances in the metabolism of sugars by yeasts’, 

FEMS microbiology letters. Wiley Online Library, 32(3‐4), pp. 199–224.  



197 
 

Doenhoff, M. J., Cioli, D. and Utzinger, J. (2008) ‘Praziquantel: mechanisms of action, resistance and 

new derivatives for schistosomiasis’, Current opinion in infectious diseases. LWW, 21(6), pp. 659–

667.  

Douglas, D.J., Frank, A.J. and Mao, D., 2005. Linear ion traps in mass spectrometry. Mass 

spectrometry reviews, 24(1), pp.1-29. 

Dramsi, S. et al. (2008) ‘Covalent attachment of proteins to peptidoglycan’, FEMS microbiology 

reviews. Federation of European Microbiological Societies, 32(2), pp. 307–320.  

Draper, J. et al. (2009) ‘Metabolite signal identification in accurate mass metabolomics data with 

MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour “rules”.’, BMC 

bioinformatics. England, 10, p. 227. doi: 10.1186/1471-2105-10-227.  

Drlica, K. and Zhao, X. (1997) ‘DNA gyrase, topoisomerase IV, and the 4-quinolones.’, Microbiology 

and molecular biology reviews. Am Soc Microbiol, 61(3), pp. 377–392.  

Dunckley, T., Coon, K. D. and Stephan, D. A. (2005) ‘Discovery and development of biomarkers of 

neurological disease’, Drug discovery today. Elsevier, 10(5), pp. 326–334.  

Dye, C., Scheele, S., Pathania, V. and Raviglione, M.C., 1999. Global burden of tuberculosis: 

estimated incidence, prevalence, and mortality by country. Jama, 282(7), pp.677-686. 

Ehrlich, P. and Hata, S. (1910) ‘Die experimentelle Chemotherapie der Spirillosen:(Syphilis, 

Rückfallfieber, Hühnerspirillose, Frambösie)’. Springer.  

Ehrmann, D. M. (2007) The periplasm. ASM press.  

Eichinger, D., Bacher, A., Zenk, M.H. and Eisenreich, W., 1999. Quantitative assessment of metabolic 

flux by 13C NMR analysis. Biosynthesis of anthraquinones in Rubia tinctorum. Journal of the 

American Chemical Society, 121(33), pp.7469-7475. 



198 
 

Erdemoglu, N. et al. (2008) ‘Bioassay-guided isolation of anti-inflammatory and antinociceptive 

principles from a folk remedy, Rhododendron ponticum L. leaves’, Journal of Ethnopharmacology.  

Elsevier, 119(1), pp. 172–178.  

Ertürk, Ö. et al. (2009) ‘The antibacterial and antifungal effects of Rhododendron derived mad honey 

and extracts of four Rhododendron species’, Turkish Journal of Biology. The Scientific and  

Technological Research Council of Turkey, 33(2), pp. 151–158.  

Eswaran, J. et al. (2004) ‘Three’s company: component structures bring a closer view of tripartite 

drug efflux pumps’, Current opinion in structural biology. Elsevier, 14(6), pp. 741–747.  

Farrow, K.A., Lyras, D. and Rood, J.I., 2000. The macrolide-lincosamide-streptogramin B resistance 

determinant from Clostridium difficile 630 contains two erm (B) genes. Antimicrobial agents and 

chemotherapy, 44(2), pp.411-413. 

Farrow, S. C. and Facchini, P. J. (2014) ‘Functional diversity of 2-oxoglutarate/Fe(II)-dependent 

dioxygenases in plant metabolism’, Frontiers in Plant Science, p. 524. Available at: 

https://www.frontiersin.org/article/10.3389/fpls.2014.00524.  

Fekete, S., Kohler, I., Rudaz, S. and Guillarme, D., 2014. Importance of instrumentation for fast liquid 

chromatography in pharmaceutical analysis. Journal of pharmaceutical and biomedical analysis, 87, 

pp.105-119. 

Feng, Y. et al. (2007) ‘Evolution and pathogenesis of Staphylococcus aureus: lessons learned from 

genotyping and comparative genomics’, FEMS microbiology reviews. Blackwell Publishing Ltd 

Oxford, UK, 32(1), pp. 23–37.  

Fleming, A., Chain, E. B. and Florey, H. (1945) ‘Sir Alexander Fleming-Nobel Lecture: Penicillin’, URL 

http://www. nobelprize. org/nobel_prizes/medicine/laureates/1945/fleming-lecture. html.  



199 
 

Foucault, M.-L., Courvalin, P. and Grillot-Courvalin, C. (2009) ‘Fitness cost of VanA-type vancomycin 

resistance in methicillin-resistant Staphylococcus aureus’, Antimicrobial agents and chemotherapy.  

Am Soc Microbiol, 53(6), pp. 2354–2359.  

Fournier, P.-E. et al. (2006) ‘Comparative genomics of multidrug resistance in Acinetobacter 

baumannii’, PLoS genetics. Public Library of Science, 2(1), p. e7.  

Fowler Jr, V.G., Boucher, H.W., Corey, G.R., Abrutyn, E., Karchmer, A.W., Rupp, M.E., Levine, D.P., 

Chambers, H.F., Tally, F.P., Vigliani, G.A. and Cabell, C.H., 2006. Daptomycin versus standard therapy 

for bacteremia and endocarditis caused by Staphylococcus aureus. New England Journal of 

Medicine, 355(7), pp.653-665. 

Frémont, L. (2000) ‘Biological effects of resveratrol’, Life sciences. Elsevier, 66(8), pp. 663–673.  

Fuller, A. T. et al. (1971) ‘Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens’, 

Nature. Nature Publishing Group, 234(5329), p. 416.  

Garcion, C. et al. (2008) ‘Characterization and Biological Function of the ISOCHORISMATE 

SYNTHASE2 Gene of Arabidopsis’, Plant Physiology, 147(3), p. 1279 LP-1287. Available at: 

http://www.plantphysiol.org/content/147/3/1279.abstract.  

Gellert, M. (1981) ‘DNA topoisomerases’, Annual review of biochemistry. Annual Reviews 4139 El 

Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA, 50(1), pp. 879–910.  

Ghasemi, M. and Atakishiyeva, Y. (2016) ‘Investigation of the Antibacterial Effect of Native Peganum 

harmala, Mentha pulegium and Alcea rosea Hydro-alcoholic Extracts on Antibiotic Resistant 

Streptococcus pneumoniae and Klebsiella pneumonia Isolated from Baku, Azerbaijan’, Infection, 

Epidemiology and Microbiology. Tarbiat Modares University, 2(2), pp. 12–14.  



200 
 

Godlewska, R., Wiśniewska, K., Pietras, Z. and Jagusztyn-Krynicka, E.K., 2009. Peptidoglycan-

associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and 

potential application in immunoprophylaxis. FEMS microbiology letters, 298(1), pp.1-11. 

Golbeck, J. H. (2003) ‘The Binding of Cofactors to Photosystem I Analysed by Spectroscopic and 

Mutagenic Methods’, Annual Review of Biophysics and Biomolecular Structure. Annual Reviews, 

32(1), pp. 237–256. doi: 10.1146/annurev.biophys.32.110601.142356.  

Goorhuis, A., Debast, S. B., et al. (2008) ‘Clostridium difficile PCR ribotype 078: an emerging strain in 

humans and in pigs?’, Journal of clinical microbiology. Am Soc Microbiol, 46(3), pp. 1157–1158.  

Goorhuis, A., Bakker, D., et al. (2008) ‘Emergence of Clostridium difficile infection due to a new 

hypervirulent strain, polymerase chain reaction ribotype 078’, Clinical Infectious Diseases. The 

University of Chicago Press, 47(9), pp. 1162–1170.  

Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M. and ESAC Project Group, 2005. 

Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. 

The Lancet, 365(9459), pp.579-587) 

Goswami, M., Mangoli, S.H. and Jawali, N., 2006. Involvement of reactive oxygen species in the 

action of ciprofloxacin against Escherichia coli. Antimicrobial agents and chemotherapy, 50(3), 

pp.949-954. 

Gould, I. M. and Bal, A. M. (2013) ‘New antibiotic agents in the pipeline and how they can help 

overcome microbial resistance’, Virulence. Taylor & Francis, 4(2), pp. 185–191.  

Griffin, J. L. and Nicholls, A. W. (2006) ‘Metabolomics as a functional genomic tool for understanding 

lipid dysfunction in diabetes, obesity and related disorders’. Future Medicine.  

Griffith, R. S. (1981) ‘Introduction to vancomycin’, Reviews of infectious diseases. The University of 

Chicago Press, 3(Supplement), pp. S200–S204.  



201 
 

Gross, J., Cho, W.K., Lezhneva, L., Falk, J., Krupinska, K., Shinozaki, K., Seki, M., Herrmann, R.G. and 

Meurer, J., 2006. A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from 

a fusion of four eubacterial genes. Journal of Biological Chemistry, 281(25), pp.17189-17196. 

Grotzinger, E. and Campbell, I.M., 1972. Intermediate symmetry in lawsone biosynthesis. 

Phytochemistry, 11(2), pp.675-679. 

Guo, Y. and Gaiki, S., 2005. Retention behavior of small polar compounds on polar stationary phases 

in hydrophilic interaction chromatography. Journal of Chromatography A, 1074(1-2), pp.71-80. 

Gupta, N. et al. (2011) ‘Carbapenem-Resistant Enterobacteriaceae: Epidemiology and Prevention’, 

Clinical Infectious Diseases, 53(1), pp. 60–67. Available at: http://dx.doi.org/10.1093/cid/cir202.  

Hahn, F. E., Wisseman Jr, C. L. and Hopps, H. E. (1955) ‘Mode of action of chloramphenicol iii.: Action 

of chloramphenicol on bacterial energy metabolism’, Journal of bacteriology. American Society for  

Microbiology (ASM), 69(2), p. 215.  

Hancock, R. E. et al. (1991) ‘Interaction of aminoglycosides with the outer membranes and purified 

lipopolysaccharide and OmpF porin of Escherichia coli.’, Antimicrobial agents and chemotherapy. 

Am Soc Microbiol, 35(7), pp. 1309–1314.  

Hardalo, C. and Edberg, S. C. (1997) ‘Pseudomonas aeruginosa: assessment of risk from drinking 

water’, Critical reviews in microbiology. Taylor & Francis, 23(1), pp. 47–75.  

Hartmann, G. (1967) ‘The specific inhibition of DNA-directed RNA synthesis by rifamycin’, Biochem.  

Biophys. Acta, 145, pp. 843–844.  

Harvey, A. L. (2008) ‘Natural products in drug discovery’, Drug Discovery Today. Elsevier Current 

Trends, pp. 894–901. doi: 10.1016/j.drudis.2008.07.004.  

Harvey, A. L., Edrada-Ebel, R. and Quinn, R. J. (2015) ‘The re-emergence of natural products for drug 

discovery in the genomics era’, Nature Reviews Drug Discovery. Nature Publishing Group, a division 



202 
 

of Macmillan Publishers Limited. All Rights Reserved., 14, p. 111. Available at: 

http://dx.doi.org/10.1038/nrd4510.  

Hasin, Y., Seldin, M. and Lusis, A., 2017. Multi-omics approaches to disease. Genome biology, 18(1), 

p.83. 

Hawker, J. I. et al. (2014) ‘Trends in antibiotic prescribing in primary care for clinical syndromes 

subject to national recommendations to reduce antibiotic resistance, UK 1995–2011: analysis of a 

large database of primary care consultations’, Journal of Antimicrobial Chemotherapy, 69(12), pp.  

3423–3430. Available at: http://dx.doi.org/10.1093/jac/dku291.  

Hayati, I., Bailey, A.I. and Tadros, T.F., 1986. Mechanism of stable jet formation in 

electrohydrodynamic atomization. Nature, 319(6048), p.4 Hoffmann E.D & Stroobant, V. 2007, Mass 

Spectrometry: principles and applications – 3rd ed., John Wiley & Sons Inc., Ludwig Institute of 

Cancer Research, Brussels, Belgium. 

Hecht, D. W. et al. (2012) Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 

8th Edition. Available at: https://clsi.org/standards/products/microbiology/documents/m11/.  

Hecht, D.W., Citron, D.M., Cox, M., Jacobus, N., Jenkins, S.G., Onderdonk, A., Roe-Carpenter, D., 

Rosenblatt, J.E. and Wexler, H.M., 2007. Methods for Antimicrobial Susceptibiluty Testing of 

Anaerobic Bacteria: Approved Standard (pp. 1-47). Wayne, PA: Clinical and Laboratory Standards 

Institute. 

Heddle, J. and Maxwell, A. (2002) ‘Quinolone-binding pocket of DNA gyrase: role of GyrB’, 

Antimicrobial agents and chemotherapy. Am Soc Microbiol, 46(6), pp. 1805–1815.  

Hentzer, M. and Givskov, M. (2003) ‘Pharmacological inhibition of quorum sensing for the treatment 

of chronic bacterial infections’, The Journal of clinical investigation. Am Soc Clin Investig, 112(9), pp.  

1300–1307.  



203 
 

Hedman, P. and Ringertz, O., 1991. Urinary tract infections caused by Staphylococcus saprophyticus. 

A matched case control study. Journal of Infection, 23(2), pp.145-153. 

Herrmann, K.M. and Weaver, L.M., 1999. The shikimate pathway. Annual review of plant biology, 

50(1), pp.473-503. 

Hert, J. et al. (2009) ‘Quantifying biogenic bias in screening libraries’, Nature Chemical Biology. 

Nature Publishing Group, 5, p. 479. Available at: http://dx.doi.org/10.1038/nchembio.180.  

Hiramatsu, K. et al. (1997) ‘Dissemination in Japanese hospitals of strains of Staphylococcus aureus 

heterogeneously resistant to vancomycin’, The Lancet. Elsevier, 350(9092), pp. 1670–1673.  

Hoffmann, C. et al. (2008) ‘Disclosure of the mycobacterial outer membrane: cryo-electron 

tomography and vitreous sections reveal the lipid bilayer structure’, Proceedings of the National 

Academy of Sciences. National Acad Sciences, 105(10), pp. 3963–3967.  

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., 

Aoshima, K. and Oda, Y., 2010. MassBank: a public repository for sharing mass spectral data for life 

sciences. Journal of mass spectrometry, 45(7), pp.703-714. 

Howard, B. M., Pinney, R. J. and Smith, J. T. (1993) ‘4-Quinolone bactericidal mechanisms.’, 

Arzneimittel-Forschung, 43(10), pp. 1125–1129.  

Hsu, J. et al. (2010) ‘Prevention of endemic healthcare-associated Clostridium difficile infection: 

reviewing the evidence’, The American journal of gastroenterology. Nature Publishing Group, 

105(11), p. 2327.  

Hughes, J. and Mellows, G. (1978) ‘On the mode of action of pseudomonic acid: inhibition of protein 

synthesis in Staphylococcus aureus’, The Journal of antibiotics. Japan Antibiotics Research 

Association, 31(4), pp. 330–335.  



204 
 

Hulme, P. E. and Bremner, E. T. (2006) ‘Assessing the impact of Impatiens glandulifera on riparian 

habitats: partitioning diversity components following species removal’, Journal of Applied Ecology. 

Wiley Online Library, 43(1), pp. 43–50.  

Hurdle, J. G., O’neill, A. J. and Chopra, I. (2004) ‘The isoleucyl-tRNA synthetase mutation V588F 

conferring mupirocin resistance in glycopeptide-intermediate Staphylococcus aureus is not 

associated with a significant fitness burden’, Journal of Antimicrobial Chemotherapy. Oxford 

University Press, 53(1), pp. 102–104.  

Husain, F. et al. (2013) ‘Two Multidrug resistant clinical isolates of Bacteroides fragilis carry a novel 

metronidazole resistance nim gene (nimJ)’, Antimicrobial agents and chemotherapy. Am Soc 

Microbiol, p. AAC-00386.  

IWG-SCC, I. W. G. on the C. of S. C. C. E. (2009) ‘Classification of staphylococcal cassette chromosome 

mec (SCCmec): guidelines for reporting novel SCCmec elements’, Antimicrobial Agents and 

Chemotherapy. Am Soc Microbiol, 53(12), pp. 4961–4967.  

Jacobsen, S. áM et al. (2008) ‘Complicated catheter-associated urinary tract infections due to 

Escherichia coli and Proteus mirabilis’, Clinical microbiology reviews. Am Soc Microbiol, 21(1), pp.  

26–59.  

Jander, G., Rahme, L. G. and Ausubel, F. M. (2000) ‘Positive correlation between virulence of 

Pseudomonas aeruginosa mutants in mice and insects’, Journal of bacteriology. Am Soc Microbiol, 

182(13), pp. 3843–3845.  

Jandera, P., 2011. Stationary and mobile phases in hydrophilic interaction chromatography: a 

review. Analytica chimica acta, 692(1-2), pp.1-25. 

Jenssen, W. D. et al. (1987) ‘Prevalence of macrolides-lincosamides-streptogramin B resistance and 

erm gene classes among clinical strains of staphylococci and streptococci.’, Antimicrobial agents and 

chemotherapy. Am Soc Microbiol, 31(6), pp. 883–888.  



205 
 

Jerkovic, V. et al. (2007) ‘Combinatorial synthesis, reversed‐phase and normal‐phase high 

performance liquid chromatography elution data and liquid chromatography/positive atmospheric 

pressure chemical ionization tandem mass spectra of methoxylated and glycosylated resveratrol 

analogues, Rapid Communications in Mass Spectrometry: An International Journal Devoted to the 

Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry. Wiley Online Library, 

21(15), pp. 2456–2466.  

Jiang, M., Chen, X., Guo, Z.F., Cao, Y., Chen, M. and Guo, Z., 2008. Identification and characterization 

of (1 R, 6 R)-2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase in the menaquinone 

biosynthesis of Escherichia coli. Biochemistry, 47(11), pp.3426-3434. 

Joe, A. K. et al. (2002) ‘Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes 

in biomarker expression in several human cancer cell lines’, Clinical Cancer Research. AACR, 8(3), 

pp. 893–903.  

Johnson, J.W., Fisher, J.F. and Mobashery, S., 2013. Bacterial cell-wall recycling. Annals of the New 

York Academy of Sciences, 1277(1), p.54. 

Jordan, S. et al. (2006) ‘Regulation of LiaRS-dependent gene expression in Bacillus subtilis:  

identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell 

envelope stress-sensing two-component system’, Journal of bacteriology. Am Soc Microbiol, 

188(14), pp. 5153–5166.  

Jordan, S. et al. (2007) ‘LiaRS-dependent gene expression is embedded in transition state regulation 

in Bacillus subtilis’, Microbiology. Microbiology Society, 153(8), pp. 2530–2540.  

Judd, S. and Rotherham, I. D. (1992) ‘The phytophagous insect fauna of Rhododendron ponticum L. 

in Britain.’, Entomologist, 111(3), pp. 134–150.  



206 
 

Kalil, A.C., Van Schooneveld, T.C., Fey, P.D. and Rupp, M.E., 2014. Association between vancomycin 

minimum inhibitory concentration and mortality among patients with Staphylococcus aureus 

bloodstream infections: a systematic review and meta-analysis. Jama, 312(15), pp.1552-1564. 

Kamio, Y. and Nikaido, H. (1976) ‘Outer membrane of Salmonella typhimurium: accessibility of 

phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the 

external medium’, Biochemistry. ACS Publications, 15(12), pp. 2561–2570.  

Kan, Z. et al. (2013) ‘Whole genome sequencing identifies recurrent mutations in hepatocellular 

carcinoma’, Genome research. Cold Spring Harbor Lab, p. gr-154492.  

Kaneko, J. and Kamio, Y. (2004) ‘Bacterial two-component and hetero-heptameric pore-forming 

cytolytic toxins: structures, pore-forming mechanism, and organization of the genes’, Bioscience, 

biotechnology, and biochemistry. Japan Society for Bioscience, Biotechnology, and Agrochemistry, 

68(5), pp. 981–1003.  

Kaper, J.B., Nataro, J.P. and Mobley, H.L., 2004. Pathogenic Escherichia coli. Nature reviews 

microbiology, 2(2), pp.123-140. 

Kappus, H. and Sies, H. (1981) ‘Toxic drug effects associated with oxygen metabolism: redox cycling 

and lipid peroxidation’, Experientia. Springer, 37(12), pp. 1233–1241.  

Keane, R. M. and Crawley, M. J. (2002) ‘Exotic plant invasions and the enemy release hypothesis’, 

Trends in ecology & evolution. Elsevier, 17(4), pp. 164–170.  

Keaton, M. A. et al. (2013) ‘Exposure of clinical MRSA heterogeneous strains to β-lactams redirects 

metabolism to optimize energy production through the TCA cycle’, PloS one. Public Library of 

Science, 8(8), p. e71025.  

Kennedy, B. P. and Ramachandran, C. (2000) ‘Protein tyrosine phosphatase-1B in diabetes’, 

Biochemical Pharmacology. Elsevier, 60(7), pp. 877–883. doi: 10.1016/S0006-2952(00)00305-1.  



207 
 

Kind, T., Scholz, M. and Fiehn, O. (2009) ‘How large is the metabolome? A critical analysis of data 

exchange practices in chemistry’, PloS one. Public Library of Science, 4(5), p. e5440.  

King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C. and Olah, T., 2000. Mechanistic 

investigation of ionization suppression in electrospray ionization. Journal of the American Society 

for Mass Spectrometry, 11(11), pp.942-950. 

Knight, D. R. et al. (2017) ‘Genome analysis of Clostridium difficile PCR ribotype 014 lineage in 

Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range 

interspecies transmission’, Frontiers in microbiology. Frontiers, 7, p. 2138.  

Kohanski, M. A. et al. (2007) ‘A common mechanism of cellular death induced by bactericidal 

antibiotics’, Cell. Elsevier, 130(5), pp. 797–810.  

Koonin, E. V (2012) ‘Does the central dogma still stand?’, Biology Direct. BioMed Central, 7, p. 27. 

doi: 10.1186/1745-6150-7-27.  

Kopaciewicz, W., Rounds, M.A., Fausnaugh, J. and Regnier, F.E., 1983. Retention model for high-

performance ion-exchange chromatography. Journal of Chromatography A, 266, pp.3-21. 

Kourtev, P. S., Ehrenfeld, J. G. and Häggblom, M. (2002) ‘Exotic plant species alter the microbial 

community structure and function in the soil’, Ecology. Wiley Online Library, 83(11), pp. 3152–3166.  

Krasin, F. and Hutchinson, F. (1977) ‘Repair of DNA double-strand breaks in Escherichia coli, which 

requires recA function and the presence of a duplicate genome’, Journal of molecular biology.  

Elsevier, 116(1), pp. 81–98.  

Kreuzer, K. N. and Cozzarelli, N. R. (1979) ‘Escherichia coli mutants thermosensitive for 

deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, 

and bacteriophage growth’, Journal of Bacteriology. Am Soc Microbiol, 140(2), pp. 424–435.  



208 
 

Kruger, N. J. (2002) ‘The Bradford method for protein quantitation’, in The protein protocols 

handbook. Springer, pp. 15–21.  

Krzyściak, W., Pluskwa, K.K., Jurczak, A. and Kościelniak, D., 2013. The pathogenicity of the 

Streptococcus genus. European Journal of Clinical Microbiology & Infectious Diseases, 32(11), 

pp.1361-1376. 

Kummerfeldt, C. E. (2014) ‘Raxibacumab: potential role in the treatment of inhalational anthrax’, 

Infection and Drug Resistance. Dove Medical Press, 7, pp. 101–109. doi: 10.2147/IDR.S47305.  

Kwon, O., Bhattacharyya, D.K. and Meganathan, R., 1996. Menaquinone (vitamin K2) biosynthesis: 

overexpression, purification, and properties of o-succinylbenzoyl-coenzyme A synthetase from 

Escherichia coli. Journal of bacteriology, 178(23), pp.6778-6781. 

Lambert, P. A. (2002) ‘Cellular impermeability and uptake of biocides and antibiotics in Gram-

positive bacteria and mycobacteria’, Journal of applied microbiology. Wiley Online Library, 92(s1).  

Lamuela-Raventos, R. M. et al. (1995) ‘Direct HPLC analysis of cis-and trans-resveratrol and piceid 

isomers in Spanish red Vitis vinifera wines’, Journal of Agricultural and Food Chemistry. ACS 

Publications, 43(2), pp. 281–283.  

Lao, Y. et al. (2014) ‘Application of proteomics to determine the mechanism of action of traditional 

Chinese medicine remedies’, Journal of ethnopharmacology. Elsevier, 155(1), pp. 1–8.  

Laxminarayan, R. et al. (2013) ‘Antibiotic resistance—the need for global solutions’, The Lancet 

infectious diseases. Elsevier, 13(12), pp. 1057–1098.  

Lee, J., Soper, S. A. and Murray, K. K. (2009) ‘Microfluidic chips for mass spectrometry‐based 

proteomics’, Journal of mass spectrometry. Wiley Online Library, 44(5), pp. 579–593.  

Leistner, E. and Zenk, M.H., 1968. Zur Biogenese von 5-Hydroxy-1.4-naphthochinon (Juglon) in 

Juglans regia L. Zeitschrift für Naturforschung B, 23(2), pp.259-268. 



209 
 

Lester, C. H. et al. (2006) ‘In vivo transfer of the vanA resistance gene from an Enterococcus faecium 

isolate of animal origin to an E. faecium isolate of human origin in the intestines of human 

volunteers’, Antimicrobial agents and chemotherapy. Am Soc Microbiol, 50(2), pp. 596–599.  

Lewin, C. S., Howard, B. M. A. and Smith, J. T. (1991) ‘Protein-and RNA-synthesis independent 

bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase’, Journal of medical 

microbiology. Microbiology Society, 34(1), pp. 19–22.  

Lewis, G. D., Asnani, A. and Gerszten, R. E. (2008) ‘Application of metabolomics to cardiovascular 

biomarker and pathway discovery’, Journal of the American College of Cardiology. Journal of the 

American College of Cardiology, 52(2), pp. 117–123.  

Lewis, K. (2013) ‘Platforms for antibiotic discovery’, Nature reviews Drug discovery. Nature 

Publishing Group, 12(5), p. 371.  

Liew, K. et al. (2014) ‘2-Methoxy-1, 4-Naphthoquinone (MNQ) suppresses the invasion and 

migration of a human metastatic breast cancer cell line (MDA-MB-231)’, Toxicology in Vitro. Elsevier, 

28(3), pp. 335–339.  

Link, D. C. et al. (2011) ‘Identification of a novel TP53 cancer susceptibility mutation through whole 

genome sequencing of a patient with therapy-related AML’, Jama. American Medical Association, 

305(15), pp. 1568–1576.  

Liscombe, D. K., Louie, G. V and Noel, J. P. (2012) ‘Architectures, mechanisms and molecular 

evolution of natural product methyltransferases’, Natural Product Reports. The Royal Society of 

Chemistry, 29(10), pp. 1238–1250. doi: 10.1039/C2NP20029E.  

Lister, P.D. and Wolter, D.J., 2005. Levofloxacin-imipenem combination prevents the emergence of 

resistance among clinical isolates of Pseudomonas aeruginosa. Clinical infectious diseases, 

40(Supplement_2), pp.S105-S114. 



210 
 

Little, P. et al. (2013) ‘Clinical score and rapid antigen detection test to guide antibiotic use for sore 

throats: randomised controlled trial of PRISM (primary care streptococcal management)’, BMJ:  

British Medical Journal, 347. Available at: http://www.bmj.com/content/347/bmj.f5806.abstract.  

Liu, C. and Chambers, H. F. (2003) ‘Staphylococcus aureus with heterogeneous resistance to 

vancomycin: epidemiology, clinical significance, and critical assessment of diagnostic methods’, 

Antimicrobial agents and chemotherapy. Am Soc Microbiol, 47(10), pp. 3040–3045.  

Löffler, B. et al. (2010) ‘Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic 

factor for human neutrophils’, PLoS pathogens. Public Library of Science, 6(1), p. e1000715. 

Lohmann, A., Schöttler, M.A., Bréhélin, C., Kessler, F., Bock, R., Cahoon, E.B. and Dörmann, P., 2006. 

Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, 

photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. 

Journal of Biological Chemistry, 281(52), pp.40461-40472.  

de Lorenzo, V. (2014) ‘From the selfish gene to selfish metabolism: revisiting the central dogma’, 

Bioessays. Wiley Online Library, 36(3), pp. 226–235.  

Losada, L., Ajayi, O., Frisvad, J.C., Yu, J. and Nierman, W.C., 2009. Effect of competition on the 

production and activity of secondary metabolites in Aspergillus species. Medical mycology, 

47(Supplement_1), pp. S88-S96. 

Macarron, R. et al. (2011) ‘Impact of high-throughput screening in biomedical research’, Nature 

Reviews Drug Discovery. Nature Publishing Group, a division of Macmillan Publishers Limited. All 

Rights Reserved., 10, p. 188. Available at: http://dx.doi.org/10.1038/nrd3368.  

Madsen, R., Lundstedt, T. and Trygg, J. (2010) ‘Chemometrics in metabolomics—a review in human 

disease diagnosis’, Analytica chimica acta. Elsevier, 659(1–2), pp. 23–33.  



211 
 

Mahdi, J. G., Mahdi, A. J. and Bowen, I. D. (2006) ‘The historical analysis of aspirin discovery, its 

relation to the willow tree and antiproliferative and anticancer potential’, Cell proliferation. Wiley 

Online Library, 39(2), pp. 147–155.  

Maifiah, M. H. M. et al. (2017) ‘Untargeted metabolomics analysis reveals key pathways responsible 

for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii’, 

Scientific Reports. doi: 10.1038/srep45527.  

Malhotra-Kumar, S. et al. (2007) ‘Effect of azithromycin and clarithromycin therapy on pharyngeal 

carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, 

placebo-controlled study’, Lancet, 369(9560), pp. 482–490. doi: 10.1016/S0140-6736(07)60235-9.  

Marquis, R. E., Mayzel, K. and Carstensen, E. L. (1976) ‘Cation exchange in cell walls of gram-positive 

bacteria’, Canadian journal of microbiology. NRC Research Press, 22(7), pp. 975–982.  

Marr, J. C. et al. (1993) ‘Characterization of novel type C staphylococcal enterotoxins: biological and 

evolutionary implications.’, Infection and immunity. Am Soc Microbiol, 61(10), pp. 4254–4262.  

Martin, M. J., Thottathil, S. E. and Newman, T. B. (2015) ‘Antibiotics Overuse in Animal Agriculture: 

A Call to Action for Health Care Providers.’, American journal of public health. United States, pp. 

2409– 2410. doi: 10.2105/AJPH.2015.302870.  

Matteelli, A. et al. (2010) ‘TMC207: the first compound of a new class of potent anti-tuberculosis 

drugs’, Future microbiology. Future Medicine, 5(6), pp. 849–858.  

Maxam, A. M. and Gilbert, W. (1977) ‘A new method for sequencing DNA’, Proceedings of the 

National Academy of Sciences. National Acad Sciences, 74(2), pp. 560–564.  

McDermott, W. and Rogers, D. E. (1982) ‘Social ramifications of control of microbial disease’, The 

Johns Hopkins medical journal, 151(6), p. 302—312. Available at: 

http://europepmc.org/abstract/MED/6757513.  



212 
 

McDougal, L. K. et al. (2003) ‘Pulsed-field gel electrophoresis typing of oxacillin-resistant 

Staphylococcus aureus isolates from the United States: establishing a national database’, Journal of 

clinical microbiology. Am Soc Microbiol, 41(11), pp. 5113–5120.  

Medentsev, A.G. and Akimenko, V.K., 1998. Naphthoquinone metabolites of the fungi. 

Meganathan, R. and Bentley, R.O.N.A.L.D., 1983. Thiamine pyrophosphate requirement for o-

succinylbenzoic acid synthesis in Escherichia coli and evidence for an intermediate. Journal of 

bacteriology, 153(2), pp.739-746. 

Melancon, P., Tapprich, W. E. and Brakier-Gingras, L. (1992) ‘Single-base mutations at position 2661 

of Escherichia coli 23S rRNA increase efficiency of translational proofreading.’, Journal of 

bacteriology. Am Soc Microbiol, 174(24), pp. 7896–7901.  

Mitchell, M.J., Brescia, A.I., Smith, S.L. and Morgan, E.D., 2007. Effects of the compounds 2‐

methoxynaphthoquinone, 2‐propoxynaphthoquinone, and 2‐isopropoxynaphthoquinone on 

ecdysone 20‐monooxygenase activity. Archives of Insect Biochemistry and Physiology: Published in 

Collaboration with the Entomological Society of America, 66(1), pp.45-52. 

Miyadai, H. et al. (2004) ‘Effects of lipoprotein overproduction on the induction of DegP (HtrA) 

involved in quality control in the Escherichia coli periplasm’, Journal of Biological Chemistry. ASBMB, 

279(38), pp. 39807–39813.  

Mizutani, M. and Ohta, D. (2010) ‘Diversification of P450 Genes During Land Plant Evolution’, Annual 

Review of Plant Biology. Annual Reviews, 61(1), pp. 291–315. doi: 10.1146/annurev-arplant-

042809112305.  

Moniatte, M., Van der Goot, F.G., Buckley, J.T., Pattus, F. and Van Dorsselaer, A., 1996. 

Characterisation of the heptameric pore‐forming complex of the Aeromonas toxin aerolysin using 

MALDI‐TOF mass spectrometry. FEBS letters, 384(3), pp.269-272. 



213 
 

Moore, B.S. and Hopke, J.N., 2001. Discovery of a new bacterial polyketide biosynthetic pathway. 

Chembiochem, 2(1), pp.35-38. 

Moore, P. C. L. and Lindsay, J. A. (2002) ‘Molecular characterisation of the dominant UK methicillin-

resistant Staphylococcus aureus strains, EMRSA-15 and EMRSA-16’, Journal of medical microbiology. 

Microbiology Society, 51(6), pp. 516–521.  

Morath, S., von Aulock, S. and Hartung, T. (2005) ‘Structure/function relationships of lipoteichoic 

acids’, Journal of endotoxin research. Sage Publications Sage UK: London, England, 11(6), pp. 348– 

356.  

Morgan, D. J. et al. (2011) ‘Non-prescription antimicrobial use worldwide: a systematic review.’, The 

Lancet. Infectious diseases. United States, 11(9), pp. 692–701. doi: 10.1016/S1473-3099(11)70054-

8.  

Mori, N. et al. (2011) ‘2-Methoxy-1, 4-naphthoquinone isolated from Impatiens balsamina in a 

screening program for activity to inhibit Wnt signalling’, Journal of natural medicines. Springer, 

65(1), pp. 234–236.  

Morozova, O. and Marra, M. A. (2008) ‘Applications of next-generation sequencing technologies in 

functional genomics’, Genomics. Elsevier, 92(5), pp. 255–264.  

Mouton, J.W., 1999. Combination therapy as a tool to prevent emergence of bacterial resistance. 

Infection, 27(2), pp. S24-S28. 

Müller, M. (1983) ‘Mode of action of metronidazole on anaerobic bacteria and protozoa’, Surgery. 

Elsevier, 93(1), pp. 165–171. doi: 10.5555/uri:pii:0039606083902957.  

Mullineaux, C. W. et al. (2006) ‘Diffusion of green fluorescent protein in three cell environments in 

Escherichia coli’, Journal of bacteriology. Am Soc Microbiol, 188(10), pp. 3442–3448.  



214 
 

Munson, M.S. and Field, F.H., 1966. Chemical ionization mass spectrometry. I. General introduction. 

Journal of the American Chemical Society, 88(12), pp.2621-2630. 

Murray, B.E., 1990. The life and times of the Enterococcus. Clinical microbiology reviews, 3(1), pp.46-

65. 

Murray, B.E., 2000. Vancomycin-resistant enterococcal infections. New England Journal of 

Medicine, 342(10), pp.710-721. 

Murray, I. A. et al. (1995) ‘Steroid recognition by chloramphenicol acetyltransferase: engineering 

and structural analysis of a high affinity fusidic acid binding site’, Journal of molecular biology. 

Elsevier, 254(5), pp. 993–1005.  

Nahvi, A. et al. (2002) ‘Genetic control by a metabolite binding mRNA’, Chemistry & biology. Elsevier, 

9(9), pp. 1043–1049.  

Neuhaus, F. C. and Baddiley, J. (2003) ‘A continuum of anionic charge: structures and functions of 

Dalanyl-teichoic acids in gram-positive bacteria’, Microbiology and Molecular Biology Reviews. Am 

Soc Microbiol, 67(4), pp. 686–723.  

Newman, D. J. and Cragg, G. M. (2007) ‘Natural Products as Sources of New Drugs over the Last 25 

Years’, Journal of Natural Products. American Chemical Society, 70(3), pp. 461–477. doi: 

10.1021/np068054v.  

Newman, D. J. and Cragg, G. M. (2012) ‘Natural Products as Sources of New Drugs over the 30 Years 

from 1981 to 2010’, Journal of Natural Products. American Chemical Society, 75(3), pp. 311–335. 

doi:  

10.1021/np200906s.  



215 
 

Newman, D. J. and Cragg, G. M. (2016) ‘Natural Products as Sources of New Drugs from 1981 to 

2014’, Journal of Natural Products. American Chemical Society, 79(3), pp. 629–661. doi: 

10.1021/acs.jnatprod.5b01055.  

Newman, D. J., Cragg, G. M. and Snader, K. M. (2003) ‘Natural Products as Sources of New Drugs 

over the Period 1981−2002’, Journal of Natural Products. American Chemical Society, 66(7), pp.  

1022–1037. doi: 10.1021/np030096l.  

NNSS (2018) ‘GB-Non-native species secteriat’, Webiste. Available at: 

http://www.nonnativespecies.org/index.cfm?sectionid=46.  

Noble, W.C., Virani, Z. and Cree, R.G., 1992. Co-transfer of vancomycin and other resistance genes 

from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS microbiology letters, 93(2), 

pp.195-198. 

Noto, M. J., Fox, P. M. and Archer, G. L. (2008) ‘Spontaneous deletion of the methicillin resistance 

determinant, mecA, partially compensates for the fitness cost associated with high-level 

vancomycin resistance in Staphylococcus aureus’, Antimicrobial agents and chemotherapy. Am Soc 

Microbiol, 52(4), pp. 1221–1229.  

Nur-E-Alam, M. et al. (2017) ‘Neoclerodane Diterpenoids from Reehal Fatima, Teucrium yemense’, 

Journal of Natural Products, 80(6). doi: 10.1021/acs.jnatprod.7b00188.  

O’neill, G. L. et al. (2001) ‘Identification and characterization of phage variants of a strain of epidemic 

methicillin-resistant Staphylococcus aureus (EMRSA-15)’, Journal of clinical microbiology. Am Soc 

Microbiol, 39(4), pp. 1540–1548.  

Odds, F. C. (2003) ‘Synergy, antagonism, and what the chequerboard puts between them’, Journal 

of Antimicrobial Chemotherapy. Oxford University Press, 52(1), p. 1.  



216 
 

Ollinger, K. and Brunmark, A. (1991) ‘Effect of hydroxy substituent position on 1, 4-naphthoquinone 

toxicity to rat hepatocytes.’, Journal of Biological Chemistry. ASBMB, 266(32), pp. 21496–21503.  

Ong, S.-E. et al. (2002) ‘Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and 

accurate approach to expression proteomics’, Molecular & cellular proteomics. ASBMB, 1(5), pp.  

376–386.  

Orhan, G. et al. (2005) ‘Synergy tests by E test and checkerboard methods of antimicrobial 

combinations against Brucella melitensis’, Journal of clinical microbiology. Am Soc Microbiol, 43(1), 

pp. 140–143.  

Otani, T. et al. (2000) ‘New Cdc25B tyrosine phosphatase inhibitors, nocardiones A and B, produced 

by Nocardia sp. TP-A0248: taxonomy, fermentation, isolation, structural elucidation and biological 

properties’, J Antibiot (Tokyo), 53(4), pp. 337–344. doi: 10.7164/antibiotics.53.337.  

Otto, M. (2009) ‘Staphylococcus epidermidis—the accidental pathogen, Nature Reviews 

Microbiology. Nature Publishing Group, 7(8), p. 555.  

Oyama, L.B., Crochet, J.A., Edwards, J.E., Girdwood, S.E., Cookson, A.R., Fernandez-Fuentes, N., 

Hilpert, K., Golyshin, P.N., Golyshina, O.V., Privé, F. and Hess, M., 2017. Buwchitin: A Ruminal 

Peptide with antimicrobial potential against Enterococcus faecalis. Frontiers in chemistry, 5, p.51. 

Parenti, F., Pagani, H. and Beretta, G. (1976) ‘Gardimycin, a new antibiotic from Actinoplanes. I. 

Description of the producer strain and fermentation studies’, J Antibiot (Tokyo), 29(5), pp. 501–506. 

doi: 10.1007/s13398-014-0173-7.2.  

Patti, G. J., Yanes, O. and Siuzdak, G. (2012) ‘Innovation: Metabolomics: the apogee of the omics 

trilogy.’, Nature reviews. Molecular cell biology. England, 13(4), pp. 263–269. doi: 

10.1038/nrm3314.  



217 
 

Paveley, R. A. et al. (2012) ‘Whole organism high-content screening by label-free, image-based 

Bayesian classification for parasitic diseases’, PLoS neglected tropical diseases. Public Library of 

Science, 6(7), p. e1762.  

Peleg, A. Y., Seifert, H. and Paterson, D. L. (2008) ‘Acinetobacter baumannii: emergence of a 

successful pathogen’, Clinical microbiology reviews. Am Soc Microbiol, 21(3), pp. 538–582.  

Pervaiz, S. (2003) ‘Resveratrol: from grapevines to mammalian biology’, The FASEB journal. 

Federation of American Societies for Experimental Biology, 17(14), pp. 1975–1985.  

Peschel, A. et al. (2000) ‘The d-Alanine Residues of Staphylococcus aureus Teichoic Acids Alter the 

Susceptibility to Vancomycin and the Activity of Autolytic Enzymes’, Antimicrobial agents and 

chemotherapy. Am Soc Microbiol, 44(10), pp. 2845–2847.  

Petersen, I. et al. (2007) ‘Protective effect of antibiotics against serious complications of common 

respiratory tract infections: retrospective cohort study with the UK General Practice Research  

Database’, BMJ, 335(7627), p. 982. Available at: 

http://www.bmj.com/content/335/7627/982.abstract.  

Pica-Mattoccia, L. and Cioli, D. (2004) ‘Sex-and stage-related sensitivity of Schistosoma mansoni to 

in vivo and in vitro praziquantel treatment’, International journal for parasitology. Elsevier, 34(4), 

pp. 527–533.  

Pinchuk, I. V, Beswick, E. J. and Reyes, V. E. (2010) ‘Staphylococcal enterotoxins’, Toxins. Molecular 

Diversity Preservation International, 2(8), pp. 2177–2197.  

Plachouras, D. et al. (2010) ‘Dispensing of antibiotics without prescription in Greece, 2008: another 

link in the antibiotic resistance chain.’, Euro surveillance: bulletin Europeen sur les maladies 

transmissibles = European  communicable disease bulletin. Sweden, 15(7).  



218 
 

Plucker, J., 1858. XXVII. On the magnetic induction of crystals. Philosophical Transactions of the 

Royal Society of London, (148), pp.543-587. 

Podschun, R. and Ullmann, U. (1998) ‘Klebsiella spp. as nosocomial pathogens: epidemiology, 

taxonomy, typing methods, and pathogenicity factors’, Clinical microbiology reviews. Am Soc 

Microbiol, 11(4), pp. 589–603.  

Privitera, G., Dublanchet, A. and Sebald, M., 1979. Transfer of multiple antibiotic resistance between 

subspecies of Bacteroides fragilis. Journal of Infectious Diseases, 139(1), pp.97-101. 

Rabsch, W., Tschäpe, H. and Bäumler, A. J. (2001) ‘Non-typhoidal salmonellosis: emerging 

problems’, Microbes and infection. Elsevier, 3(3), pp. 237–247.  

Ramirez, B. et al. (2007) ‘Schistosomes: challenges in compound screening’, Expert opinion on drug 

discovery. Taylor & Francis, 2(sup1), pp. S53–S61.  

Rasko, D. A. et al. (2008) ‘The pangenome structure of Escherichia coli: comparative genomic 

analysis of E. coli commensal and pathogenic isolates’, Journal of bacteriology. Am Soc Microbiol, 

190(20), pp. 6881–6893.  

Rasmussen, T. B. and Givskov, M. (2006) ‘Quorum-sensing inhibitors as anti-pathogenic drugs’, 

International Journal of Medical Microbiology. Elsevier, 296(2–3), pp. 149–161.  

Reece, R. J. and Maxwell, A. (1991) ‘DNA gyrase: structure and function’, Critical reviews in 

biochemistry and molecular biology. Taylor & Francis, 26(3–4), pp. 335–375.  

Reynolds, P. E. (1989) ‘Structure, biochemistry and mechanism of action of glycopeptide antibiotics. 

’European journal of clinical microbiology & infectious diseases: official publication of the European 

Society of Clinical Microbiology. Germany, 8(11), pp. 943–950.  



219 
 

Ridker, P.M., Cushman, M., Stampfer, M.J., Tracy, R.P. and Hennekens, C.H., 1997. Inflammation, 

aspirin, and the risk of cardiovascular disease in apparently healthy men. New England journal of 

medicine, 336(14), pp.973-979.     

Ristuccia, A. M. and Cunha, B. A. (1982) ‘The aminoglycosides.’, The Medical clinics of North America, 

66(1), pp. 303–312.  

Rogers, K.L., Fey, P.D. and Rupp, M.E., 2009. Coagulase-negative staphylococcal infections. 

Infectious disease clinics of North America, 23(1), pp.73-98. 

Rohrer, S. and Berger-Bächi, B. (2003) ‘FemABX peptidyl transferases: a link between branched-

chain cell wall peptide formation and β-lactam resistance in gram-positive cocci’, Antimicrobial 

agents and chemotherapy. Am Soc Microbiol, 47(3), pp. 837–846.  

Rohner, T.C., Lion, N. and Girault, H.H., 2004. Electrochemical and theoretical aspects of 

electrospray ionisation. Physical chemistry chemical physics, 6(12), pp.3056-3068. 

Rosell-Llompart, J. and De La Mora, J.F., 1994. Generation of monodisperse droplets 0.3 to 4 μm in 

diameter from electrified cone-jets of highly conducting and viscous liquids. Journal of Aerosol 

Science, 25(6), pp.1093-1119. 

Rubin, G. M. et al. (2000) ‘Comparative genomics of the eukaryotes’, Science. American Association 

for the Advancement of Science, 287(5461), pp. 2204–2215.  

Ruckli, R., Hesse, K., Glauser, G., Rusterholz, H.P. and Baur, B., 2014. Inhibitory potential of 

naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens 

glandulifera. Journal of chemical ecology, 40(4), pp.371-378. 

Sabirova, J. S. et al. (2014) ‘Complete genome sequences of two prolific biofilm-forming 

Staphylococcus aureus isolates belonging to USA300 and EMRSA-15 clonal lineages’, Genome 

announcements. Am Soc Microbiol, 2(3), pp. e00610-14.  



220 
 

Saeed, S.M.G., Sayeed, S.A., Ashraf, S., Naz, S., Siddiqi, R., Ali, R. and Mesaik, M.A., 2013. A new 

method for the isolation and purification of lawsone from Lawsonia inermis and its ROS inhibitory 

activity. Pak. J. Bot, 45(4), pp.1431-1436. 

Saito, M., Katayama, Y., Hishinuma, T., Iwamoto, A., Aiba, Y., Kuwahara-Arai, K., Cui, L., Matsuo, M., 

Aritaka, N. and Hiramatsu, K., 2014. “Slow VISA,” a novel phenotype of vancomycin resistance, found 

in vitro in heterogeneous vancomycin-intermediate Staphylococcus aureus strain Mu3. 

Antimicrobial agents and chemotherapy, 58(9), pp.5024-5035. 

Sanctucci, K. and Shah, B. (2000) ‘Association of naphthalene with acute hemolytic anemia’, 

Academic Emergency Medicine. Wiley Online Library, 7(1), pp. 42–47.  

Sanders, S. J. et al. (2012) ‘De novo mutations revealed by whole-exome sequencing are strongly 

associated with autism’, Nature. Nature Publishing Group, 485(7397), p. 237 

Sanders Jr, W.E. and Sanders, C.C., 1988. Inducible β-lactamases: clinical and epidemiologic 

implications for use of newer cephalosporins. Clinical Infectious Diseases, 10(4), pp.830-838.  

Sanger, F. and Coulson, A. R. (1975) ‘A rapid method for determining sequences in DNA by primed 

synthesis with DNA polymerase’, Journal of molecular biology. Elsevier, 94(3), pp. 441–448.  

Sanger, F., Nicklen, S. and Coulson, A. R. (1977) ‘DNA sequencing with chain-terminating inhibitors’, 

Proceedings of the national academy of sciences. National Acad Sciences, 74(12), pp. 5463–5467.  

Santos, B. S. dos et al. (2016) ‘Application of omics technologies for evaluation of antibacterial 

mechanisms of action of plant-derived products’, Frontiers in microbiology. Frontiers, 7, p. 1466.  

Sasaki, K., Abe, H. and Yoshizaki, F. (2002) ‘In vitro antifungal activity of naphthoquinone 

derivatives’, Biological and Pharmaceutical Bulletin. The Pharmaceutical Society of Japan, 25(5), pp. 

669–670.  



221 
 

Schelli, K., Zhong, F. and Zhu, J. (2017) ‘Comparative metabolomics revealing Staphylococcus aureus 

metabolic response to different antibiotics’, Microbial biotechnology. Wiley Online Library, 10(6), 

pp. 1764–1774.  

Schmid, H.V. and Zenk, M.H., 1971. p-hydroxybenzoic acid and mevalonic acid as precursors of the 

plant naphthoquinone alkannin. Tetrahedron Letters, 12(44), pp.4151-4155. 

Schmitz, R. (1885) ‘Friedrich Wilhelm Sertürner and the Discovery of Morphi’, Pharmacy in History, 

27(2), pp. 61–74. doi: 10.2307/41109546.  

Schoolnik, G. K. (2002) ‘Functional and comparative genomics of pathogenic bacteria’, Current 

opinion in microbiology. Elsevier, 5(1), pp. 20–26.  

Sears, C. L. (2009) ‘Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes’, Clinical 

microbiology reviews. Am Soc Microbiol, 22(2), pp. 349–369.  

Sensi, P. (1983) ‘History of the development of rifampin’, Reviews of infectious diseases. The 

University of Chicago Press, 5(Supplement_3), pp. S402–S406.  

Severin, A. et al. (2004) ‘Penicillin-binding protein 2 is essential for expression of high-level 

vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus 

carrying the enterococcal vanA gene complex’, Antimicrobial agents and chemotherapy. Am Soc 

Microbiol, 48(12), pp. 4566–4573.  

Seyyednejad, S. M. et al. (2010) ‘A survey on Hibiscus rosa—sinensis, Alcea rosea L. and Malva 

neglecta Wallr as antibacterial agents’, Asian Pacific Journal of Tropical Medicine. Elsevier, 3(5), pp.  

351–355.  

Shallcross, L. J. and Davies, D. S. C. (2014) ‘Antibiotic overuse: a key driver of antimicrobial 

resistance’, British Journal of General Practice. Royal College of General Practitioners, 64(629), pp.  

604–605. doi: 10.3399/bjgp14X682561.  



222 
 

Sherif, E. M. and Park, S.-M. (2006) ‘Effects of 1, 4-naphthoquinone on aluminum corrosion in 0.50 

M sodium chloride solutions’, Electrochimica Acta. Elsevier, 51(7), pp. 1313–1321.  

Shore, A. C. et al. (2011) ‘Characterization of a novel arginine catabolic mobile element (ACME) and 

staphylococcal chromosomal cassette mec composite island with significant homology to 

Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ’, 

Antimicrobial agents and chemotherapy. Am Soc Microbiol.  

Silhavy, T. J., Kahne, D. and Walker, S. (2010) ‘The bacterial cell envelope’, Cold Spring Harbor 

perspectives in biology. Cold Spring Harbor Lab, 2(5), p. a000414.  

Singer, M. C., Thomas, C. D. and Parmesan, C. (1993) ‘Rapid human-induced evolution of insect–host 

associations’, Nature. Nature Publishing Group, 366(6456), p. 681.  

Smithers, Sr. and Terry, R. J. (1965) ‘The infection of laboratory hosts with cercariae of Schistosoma 

mansoni and the recovery of the adult worms’, Parasitology. Cambridge University Press, 55(4), pp.  

695–700.  

Sneader, W. (2005) Drug discovery: a history. John Wiley & Sons.  

Soderquist, C.J., 1973. Juglone and allelopathy. Journal of chemical education, 50(11), p.782. 

Spahich, N.A., Vitko, N.P., Thurlow, L.R., Temple, B. and Richardson, A.R., 2016. Staphylococcus 

aureus lactate‐and malate‐quinone oxidoreductases contribute to nitric oxide resistance and 

virulence. Molecular microbiology, 100(5), pp.759-773. 

Spengler, B. and Cotter, R.J., 1990. Ultraviolet laser desorption/ionization mass spectrometry of 

proteins above 100,000 Daltons by pulsed ion extraction time-of-flight analysis. Analytical 

chemistry, 62(8), pp.793-796. 

Spratlin, J. L., Serkova, N. J. and Eckhardt, S. G. (2009) ‘Clinical applications of metabolomics in 

oncology: a review’, Clinical cancer research. AACR, 15(2), pp. 431–440.  



223 
 

Stafford Jr, G.C., Kelley, P.E., Syka, J.E.P., Reynolds, W.E. and Todd, J.F.J., 1984. Recent improvements 

in and analytical applications of advanced ion trap technology. International Journal of Mass 

Spectrometry and Ion Processes, 60(1), pp.85-98. 

Steinmann, P. et al. (2006) ‘Schistosomiasis and water resources development: systematic review, 

meta-analysis, and estimates of people at risk’, The Lancet infectious diseases. Elsevier, 6(7), pp.  

411–425.  

Sterner, J.L., Johnston, M.V., Nicol, G.R. and Ridge, D.P., 2000. Signal suppression in electrospray 

ionization Fourier transform mass spectrometry of multi‐component samples. Journal of Mass 

Spectrometry, 35(3), pp.385-391. 

Stockwell, C. (1988) Nature’s Pharmacy: A history of plants and healing. Random House (UK).  

Strong, D. R., Lawton, J. H. and Southwood, S. R. (1984) Insects on plants. Community patterns and 

mechanisms. Blackwell Scientific Publications.  

Struhl, K. (1999) ‘Fundamentally different logic of gene regulation in eukaryotes and prokaryotes’, 

Cell. Elsevier, 98(1), pp. 1–4.  

Sukuru, S. C. K. et al. (2009) ‘Plate-Based Diversity Selection Based on Empirical HTS Data to Enhance 

the Number of Hits and Their Chemical Diversity’, Journal of Biomolecular Screening. SAGE 

Publications Inc STM, 14(6), pp. 690–699. doi: 10.1177/1087057109335678.  

Tanaka, I. et al. (1984) ‘3-Å resolution structure of a protein with histone-like properties in 

prokaryotes’, Nature. Nature Publishing Group, 310(5976), p. 376.  

Tandon, V. K. et al. (2004) ‘Design, synthesis and evaluation of novel 1, 4-naphthoquinone 

derivatives as antifungal and anticancer agents’, Bioorganic & medicinal chemistry letters. Elsevier, 

14(5), pp. 1079–1083.  



224 
 

Tandon, V. K., Singh, R. V and Yadav, D. B. (2004) ‘Synthesis and evaluation of novel 1, 

4naphthoquinone derivatives as antiviral, antifungal and anticancer agents’, Bioorganic & medicinal 

chemistry letters. Elsevier, 14(11), pp. 2901–2904.  

Tanner, R.A., Jin, L., Shaw, R., Murphy, S.T. and Gange, A.C., 2014. An ecological comparison of 

Impatiens glandulifera Royle in the native and introduced range. Plant ecology, 215(8), pp.833-843. 

Taylor, G.I., 1964. Disintegration of water drops in an electric field. Proceedings of the Royal Society 

of London. Series A. Mathematical and Physical Sciences, 280(1382), pp.383-397. 

Tenover, F. C. and Goering, R. V (2009) ‘Methicillin-resistant Staphylococcus aureus strain USA300: 

origin and epidemiology’, Journal of Antimicrobial Chemotherapy. Oxford University Press, 64(3), 

pp. 441–446.  

Thomson, J.J., 1921. Rays of positive electricity and their application to chemical analyses (Vol. 1). 

Longmans, Green and Company. 

Thurman, E.M. and Mills, M.S., 1998. Solid-phase extraction. New York: John Wiley & Sons, 29, 

pp.35-73. 

Tu, Y. (2011) ‘The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine’, Nature 

medicine. Nature Publishing Group, 17(10), p. 1217.  

Ünlü, M., Morgan, M. E. and Minden, J. S. (1997) ‘Difference gel electrophoresis. A single gel method 

for detecting changes in protein extracts’, Electrophoresis. Wiley Online Library, 18(11), pp. 2071– 

2077.  

Urbanek, R. A. et al. (2001) ‘Potent Reversible Inhibitors of the Protein Tyrosine Phosphatase CD45’,  

Journal of Medicinal Chemistry. American Chemical Society, 44(11), pp. 1777–1793. doi: 

10.1021/jm000447i.  



225 
 

Väänänen, M. H., Pietilä, K. and Airaksinen, M. (2006) ‘Self-medication with antibiotics-Does it really 

happen in Europe?’, Health Policy. Elsevier, 77(2), pp. 166–171. doi: 

10.1016/j.healthpol.2005.07.001.   

Van Deemter, J.J., Zuiderweg, F.J. and Klinkenberg, A.V., 1956. Longitudinal diffusion and resistance 

to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science, 5(6), 

pp.271-289. 

Venter, J. C. et al. (2001) ‘The sequence of the human genome’, science. American Association for 

the Advancement of Science, 291(5507), pp. 1304–1351.  

Ventola, C. L. (2015) ‘The antibiotic resistance crisis: part 1: causes and threats’, Pharmacy and 

Therapeutics. MediMedia, USA, 40(4), p. 277.  

Vitko, N. P. and Richardson, A. R. (2013) ‘Laboratory Maintenance of Methicillin‐Resistant 

Staphylococcus aureus (MRSA)’, Current protocols in microbiology. Wiley Online Library, 28(1), p. 

9C–2.  

Vollmer, W. (2008) ‘Structural variation in the glycan strands of bacterial peptidoglycan’, FEMS 

microbiology reviews. Federation of European Microbiological Societies, 32(2), pp. 287–306.  

Vukics, V. and Guttman, A. (2010) ‘Structural characterization of flavonoid glycosides by multi‐stage 

mass spectrometry’, Mass Spectrometry Reviews. Wiley Online Library, 29(1), pp. 1–16.  

Vuong, C. et al. (2005) ‘Staphylococcus epidermidis polysaccharide intercellular adhesin production 

significantly increases during tricarboxylic acid cycle stress’, Journal of bacteriology. Am Soc 

Microbiol, 187(9), pp. 2967–2973.  

Waidyanatha, S. et al. (2002) ‘Measurement of haemoglobin and albumin adducts of naphthalene-

1, 2-oxide, 1, 2-naphthoquinone and 1, 4-naphthoquinone after administration of naphthalene to 

F344 rats’, Chemico-biological interactions. Elsevier, 141(3), pp. 189–210.  



226 
 

Walk, S. T. et al. (2012) ‘Clostridium difficile ribotype does not predict severe infection’, Clinical 

infectious diseases. Oxford University Press, 55(12), pp. 1661–1668.  

Walker, M. J. et al. (2014) ‘Disease manifestations and pathogenic mechanisms of group A 

Streptococcus’, Clinical microbiology reviews. Am Soc Microbiol, 27(2), pp. 264–301.  

Wang, Y.-C. et al. (2011) ‘In Vitro Activity of 2-methoxy-1, 4-naphthoquinone and Stigmasta-7, 

22diene-3β-ol from Impatiens balsamina L. against Multiple Antibiotic-Resistant Helicobacter 

pylori’, Evidence-Based Complementary and Alternative Medicine. Hindawi, 2011.  

Wang, Y.-C. and Lin, Y.-H. (2012) ‘Anti-gastric adenocarcinoma activity of 2-Methoxy-1, 

4naphthoquinone, an anti-Helicobacter pylori compound from Impatiens balsamina L.’, Fitoterapia.  

Elsevier, 83(8), pp. 1336–1344.  

Wexler, H. M. (2007) ‘Bacteroides: the good, the bad, and the nitty-gritty’, Clinical microbiology 

reviews. Am Soc Microbiol, 20(4), pp. 593–621.  

Whistance, G. R., Threlfall, D. R. and Goodwin, T. W. (1966) ‘Incorporation of [G-14C] shikimate and  

[U-14C] para-hydroxybenzoate into phytoquinones and chromanols’, Biochemical and Biophysical 

Research Communications, 23(6), pp. 849–853. doi: https://doi.org/10.1016/0006-291X(66)90565-

1.  

WHO, W. H. O. (2016) ‘Global tuberculosis report 2016’. World Health Organization.  

Widhalm, J. R. and Rhodes, D. (2016) ‘Biosynthesis and molecular actions of specialized 

1,4naphthoquinone natural products produced by horticultural plants’, Horticulture Research. The 

Author(s), 3, p. 16046. Available at: http://dx.doi.org/10.1038/hortres.2016.46.  

Wiegand, I., Hilpert, K. and Hancock, R. E. W. (2008) ‘Agar and broth dilution methods to determine 

the minimal inhibitory concentration (MIC) of antimicrobial substances’, Nature protocols. Nature 

Publishing Group, 3(2), p. 163.  



227 
 

Wiese, S. et al. (2007) ‘Protein labelling by iTRAQ: a new tool for quantitative mass spectrometry in 

proteome research’, Proteomics. Wiley Online Library, 7(3), pp. 340–350.  

Williams, F. et al. (2010) ‘The economic cost of invasive non-native species on Great Britain’, CABI 

Proj No VM10066, pp. 1–99.  

Williams, K. J. (2009) ‘The introduction of “chemotherapy” using arsphenamine – the first magic 

bullet’, Journal of the Royal Society of Medicine. The Royal Society of Medicine, 102(8), pp. 343–

348. doi: 10.1258/jrsm.2009.09k036.  

Williamson, M. (2002) ‘Alien plants in the British Isles’, Biological invasions: economic and 

environmental costs of alien plant, animal, and microbe species. CRC Press, pp. 91–112.  

Wilson, A. S. et al. (1996) ‘Characterisation of the toxic metabolite (s) of naphthalene’, Toxicology.  

Elsevier, 114(3), pp. 233–242.  

Wilson, P., Andrews, J.A., Charlesworth, R., Walesby, R., Singer, M., Farrell, D.J. and Robbins, M., 

2003. Linezolid resistance in clinical isolates of Staphylococcus aureus. Journal of Antimicrobial 

Chemotherapy, 51(1), pp.186-188. 

Wolfson, J.S. and Hooper, D.C., 1989. Fluoroquinolone antimicrobial agents. Clinical microbiology 

reviews, 2(4), pp.378-424. 

Wu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S.S., Silhavy, T.J. and Kahne, D., 2006. Identification 

of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. 

Proceedings of the National Academy of Sciences, 103(31), pp.11754-11759. 

Xia, J. et al. (2015) ‘MetaboAnalyst 3.0—making metabolomics more meaningful’, Nucleic acids 

research. Oxford University Press, 43(W1), pp. W251–W257.  

Yang, X. et al. (2001) ‘Isolation of an antimicrobial compound from Impatiens balsamina L. using 

bioassay‐guided fractionation’, Phytotherapy Research. Wiley Online Library, 15(8), pp. 676–680.  



228 
 

Yen, G.-C., Duh, P.-D. and Chuang, D.-Y. (2000) ‘Antioxidant activity of anthraquinones and 

anthrone’, Food chemistry. Elsevier, 70(4), pp. 437–441.  

Yoong, P. and Torres, V. J. (2013) ‘The effects of Staphylococcus aureus leukotoxins on the host: cell 

lysis and beyond’, Current opinion in microbiology. Elsevier, 16(1), pp. 63–69.  

Zampieri, M. et al. (2017) ‘Nontargeted Metabolomics Reveals the Multilevel Response to Antibiotic  

Perturbations.’, Cell reports. United States, 19(6), pp. 1214–1228. doi: 

10.1016/j.celrep.2017.04.002.  

Zampieri, M. et al. (2018) ‘High-throughput metabolomic analysis predicts mode of action of 

uncharacterized antimicrobial compounds’, Science Translational Medicine, 10(429).  

Zenobi, R. and Knochenmuss, R., 1998. Ion formation in MALDI mass spectrometry. Mass 

spectrometry reviews, 17(5), pp.337-366. 

Zhang, D. et al. (2012) ‘Polymorphic toxin systems: Comprehensive characterization of trafficking 

modes, processing, mechanisms of action, immunity and ecology using comparative genomics’, 

Biology direct. BioMed Central, 7(1), p. 18.  

Zhang, X.-N. et al. (2010) ‘Anti-apoptotic effects of hyperoside via inhibition of NR2B-containing 

NMDA receptors’, Pharmacological reports. Elsevier, 62(5), pp. 949–955. 

 


