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Abstract
Let V be a vector bundle over a smooth curve C. In this paper, we study twisted Brill–
Noether loci parametrising stable bundles E of rank n and degree e with the property that 
h0(C,V ⊗ E) ≥ k . We prove that, under conditions similar to those of Teixidor i Bigas 
and of Mercat, the Brill–Noether loci are nonempty and in many cases have a component 
which is generically smooth and of the expected dimension. Along the way, we prove the 
irreducibility of certain components of both twisted and “nontwisted” Brill–Noether loci. 
We describe the tangent cones to the twisted Brill–Noether loci. We end with an example 
of a general bundle over a general curve having positive-dimensional twisted Brill–Noether 
loci with negative expected dimension.

Keywords  Brill–Noether loci · Petri trace map · Vector bundles

Mathematics Subject Classification  14H60 · 14H51

1  Introduction

Let C be a smooth projective curve over an algebraically closed field � of characteristic 
zero. A fundamental feature of the geometry of C and Picd(C) is the Brill–Noether locus

These objects have been much studied. The expected dimension of Wr
d
(C) is the 

Brill–Noether number �(g, d, r) = g − (r + 1)(g − d + r) where g is the genus of C; every 

(1.1)Wr
d
(C) =

{
L ∈ Picd(C) ∶ h0(C, L) ≥ r + 1

}
.
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irreducible component has dimension ≥ �(g, d, r) , and a great deal is known about these 
loci (for details, see Sect. 2).

A natural generalisation of (1.1) to vector bundles of higher rank is given as follows. 
We denote by Us(n, e) the moduli space of stable bundles of rank n and degree e over C. 
This is an irreducible quasiprojective variety of dimension n2(g − 1) + 1 . The generalised 
Brill–Noether locus Bk

n,e
 is defined set-theoretically by

(In this notation, Wr
d
(C) is written Br+1

1,d
 .) These loci have also been studied in much detail, 

although the results for the case n = 1 do not necessarily generalise. Brill–Noether loci are 
also closely related to moduli of coherent systems, that is, pairs (V ,Λ) where V is a vector 
bundle and Λ a subspace of H0(C,V) of a fixed dimension.

In the present work we study another generalisation of Bk
n,e

 , which to our knowledge 
was first defined in [36, Sect. 2]. Fix a vector bundle V over C of rank r and degree d (not 
necessarily semistable). Then the twisted Brill–Noether locus Bk

n,e
(V) is defined set-theoret-

ically by

The space Us(n, e) is an open subset of the moduli space U(n, e) of S-equivalence classes 
of semistable bundles of rank n and degree e. We write [E] for the S-equivalence class of a 
semistable E and grE for the graded bundle associated to E; grE depends only on [E]. The 
definition of Bk

n,e
(V) is extended to include semistable bundles by setting

As outlined in [35, Sect. 1], the construction of Bk
n,e

 in [13, Sect. 2] is easily generalised 
to Bk

n,e
(V) , substituting a vector bundle V for OC in the appropriate places. (In Sect. 2 we 

will give a slightly more general version of this construction.) In particular, Bk
n,e
(V) is a 

determinantal locus. Thus, if h0(C,V ⊗ E) = k , then the expected dimension of Bk
n,e
(V) at 

E is given by the twisted Brill–Noether number

Provided that this number is less than dimUs(n, e) , every irreducible component of Bk
n,e
(V) 

has dimension at least equal to �k
n,e
(V) . If �k

n,e
(V) ≥ dimUs(n, e) then Bk

n,e
(V) = Us(n, e).

In the case k = 1 with V of integral slope h = d∕r , we have �1
1,g−1−h

(V) = g − 1 and 
B1
1,g−1−h

(V) is expected to be a divisor ΘV in the Picard variety Picg−1−h(C) . When ΘV is 
a divisor, it is called a generalised theta divisor. These have been much studied; see [2] 
for an overview. See also [8] for results on the singular loci of ΘV . It can also happen for 
special V that B1

1,g−1−h
(V) fails to be a divisor; see [28, 29, 31] for some examples. If V 

does not have integral slope, then the theta divisor of V, if it exists, belongs to Us(n, e) 
for some n ≥ 2 . See [30] for a survey of results on this type of generalised theta divisor.

Note also the connection with varieties of subbundles of a vector bundle V. If we 
denote by Mn,e(V) the variety of stable subbundles of V of rank n and degree e, there is a 
natural morphism Mn,e(V) → B1

n,−e
(V) given by E ↦ E∗ . In particular, when n = 1 and e 

is maximal, this is a question of maximal line subbundles. In the case r = 2 , these have 

Bk
n,e

=
{
E ∈ Us(n, e) ∶ h0(C,E) ≥ k

}
.

Bk
n,e
(V) ∶=

{
E ∈ Us(n, e) ∶ h0(C,V ⊗ E) ≥ k

}
.

�Bk
n,e
(V) ∶= {[E] ∈ U(n, e) ∶ h0(C,V ⊗ grE) ≥ k}.

𝜌k
n,e
(V) ∶= dimUs(n, e) − k(k − 𝜒(C,V ⊗ E))

= n2(g − 1) + 1 − k(k − re − nd + rn(g − 1)).
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been studied for a long time, dating back to [19]; for more recent work and all r, see 
[27]. For n > 1 , see [16, 20, 32, Theorem 0.3] and [7].

When n = 1 , it turns out that the basic results of classical Brill–Noether theory gen-
eralise, at least when V is a general stable bundle; for details, see Theorem  2.1. This 
study was initiated in [14]. Our purpose in this article is to study the case n > 1.

In Sect. 2, we give more details on some of the background material mentioned in 
the introduction. In Sect. 3, we construct the twisted Brill–Noether locus Bk(V, E) asso-
ciated to a pair of families of bundles over C, with Bk

n,e
(V) as a special case. After list-

ing some elementary properties, we develop some more tools. We construct parameter 
spaces for certain “twisted coherent systems”, generalising the loci Gr

d
(C) in [1] and 

the moduli spaces of �-stable coherent systems, although we do not discuss stability or 
moduli.

In Sect.  4 we give two applications of the machinery set  up in Sect.  3. In Theo-
rem 4.1, we generalise Theorem 2.1(5) to families of vector bundles which are general 
in the sense of [35]. We also find that, for a certain range of values of k, the 
Brill–Noether locus Bk

r,d
 possesses a uniquely determined irreducible component (

Bk
r,d

)

PTI
 (Theorem 4.3); this is interesting because very little is known in general about 

irreducibility of Bk
r,d

 for k ≥ 2 and r > 1.
In Sect. 5, we turn to twisted Brill–Noether loci Bk

n,e
(V) for n > 1 and k ≥ 2 , which to 

our knowledge remain relatively little studied. We will answer some of the basic ques-
tions on nonemptiness and smoothness in this case. Our first result is:

Theorem 1.1  Let C be a smooth curve of genus g ≥ 2 and V any vector bundle of rank r 
and degree d over C. Let e0 and k0 be integers satisfying �k0

1,e0
(V) ≥ 1 . Then for all n ≥ 2 , for 

all e ≥ ne0 + 1 (resp., e ≥ ne0 ) and for 1 ≤ k ≤ nk0 , the twisted Brill–Noether locus Bk
n,e
(V) 

(resp., B̃k
n,e
(V) ) is nonempty.

This directly generalises both the main result and the construction of [24].
We are also interested in generically smooth components of the loci Bk

n,e
(V) . Our 

approach turns out to require the existence of certain bundles with well-behaved rank-1 
twisted Brill–Noether loci and which are generically generated. In Sect. 6 we construct 
such bundles for some values of r, g and d. We then prove in Sect. 7 our main result:

Theorem 1.2  Let C be a general curve of genus g ≥ 2 and r, l, m integers with l ∶=
⌊
g

r

⌋
 

and 0 ≤ m ≤ l − 1 . If m = 0 , suppose that g ≢ 0 mod r . Write k0 = l − m and let d, e0 be 
integers with d + re0 = r(g − 2) + k0 . Suppose that e and k are integers satisfying

Then, for general V ∈ Us(r, d) , the twisted Brill–Noether locus Bk
n,e
(V) has a component 

Bk
n,e
(V)0 which is generically smooth and of the expected dimension.

Recall here that for V ∈ Us(r, d) and E ∈ Us(n, e) , the Euler characteristic 
𝜒(V ⊗ E) = re + nd − rn(g − 1) and moreover, if k ≤ 𝜒(V ⊗ E) , then Bk

n,e
(V) = Us(n, e) . 

The hypotheses of Theorem 1.2 may look rather restrictive. In fact, (1.2) is analogous to 
the conditions of [24, 33] for the case r = 1 . However, the restriction on d + re0 is strong 
and can probably be relaxed.

(1.2)ne0 + 1 ≤ e ≤ n(e0 + 1) and re + nd − rn(g − 1) ≤ k ≤ nk0.
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To prove that Bk
n,e
(V) is generically smooth and of the expected dimension at a point E, 

we have to show that the generalised trace map

is injective (details in Sect. 3). For this type of question, Teixidor i Bigas’s generalisation 
of limit linear series to vector bundles of higher rank has been applied in many situations; 
for example [10, 33–35]. Although we do not use limit linear series directly, several of our 
proofs rely on the main result of [35].

In Sect.  8, we consider the tangent cones of Bk
n,e
(V) , which can be studied using the 

same techniques as in [1, 9]. Using Theorem 1.2, we describe the tangent cones as deter-
minantal varieties and compute their degrees. We also give a geometric description of the 
tangent cones for large values of h0(C,V ⊗ E) , generalising [1, VI, Theorem 1.6  (i)] on 
secant varieties of canonical curves.

Finally, in Sect. 9, we describe some twisted Brill–Noether loci which are nonempty but 
have negative expected dimension. These are closely connected with varieties of maximal 
subbundles, and we exploit results of [27] in discussing them. This gives another motiva-
tion for studying twisted Brill–Noether loci: as these examples arise for general C and V 
(with prescribed numerical properties), twisted Brill–Noether loci give a way of system-
atically obtaining determinantal varieties of larger than expected dimension. This line of 
research will be further pursued in the future.

Notation  We work over an algebraically closed field � of characteristic zero. We denote 
a locally free sheaf and the corresponding vector bundle by the same letter. If F is an OC- 
module, we abbreviate Hi(C,F) , hi(C,F) and �(C,F) , respectively, to Hi(F) , hi(F) and 
�(F) . If D is a divisor on C, we denote F ⊗OC(D) by F(D). The fibre of a bundle V at 
p ∈ C will be denoted V|p . If V → S × C is a family of bundles parametrised by S, we 
denote the restriction V|{s}×C by Vs . We suppose throughout that g ≥ 2 and k ≥ 1.

2 � Background

In this section, we expand on the background to our paper already referred to in the intro-
duction. The fundamental results on Wr

d
(C) are as follows (see [1, Chapter V]): 

(i)	 Existence theorem: For any curve, Wr
d
(C) is nonempty if �(g, d, r) ≥ 0.

(ii)	 Connectedness theorem: For any curve, Wr
d
(C) is connected if �(g, d, r) ≥ 1.

(iii)	 Dimension theorem: For a general curve, Wr
d
(C) = � if 𝜌(g, d, r) < 0 ; if 

0 ≤ �(g, d, r) ≤ g , then Wr
d
(C) has pure dimension �(g, d, r).

(iv)	 Smoothness theorem: For a general curve and 𝜌(g, d, r) < g , Sing(Wr
d
(C)) = Wr+1

d
(C).

(v)	 For a general curve, Wr
d
(C) is irreducible if �(g, d, r) ≥ 1.

Note that if �(g, d, r) ≥ g , then Wr
d
(C) = Picd(C).

Many of the basic questions on nonemptiness of Bk
n,e

 were answered in [24, 33], and 
more detailed results have been obtained in several cases. However, analogues of state-
ments (i)–(v) may be false in higher rank. See [13] for an overview of the theory and a sur-
vey of results and techniques. For the links between Brill–Noether theory and the moduli 
of coherent systems, see [4, 5]. See also [26] for a survey of results and open problems on 
coherent systems; note however that there are many more recent results in this area.

H0(C,V ⊗ E)⊗ H0(C,KC ⊗ E∗ ⊗ V∗) → H0(C,KC ⊗ EndE)
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When Bk
n,e
(V) has the expected dimension, one has

This containment may, however, be strict. See [9] for a detailed discussion of singular 
points E ∈ ΘV satisfying multE

(
ΘV

)
> h0(V ⊗ E).

As already remarked, for n = 1 , analogues of several of the fundamental results for 
Wr

d
(C) are also valid for sufficiently general bundles of higher rank (by “general”, we mean 

stable and general in the moduli space):

Theorem 2.1  Let C be any curve of genus g ≥ 2 . Let V be a vector bundle of rank r and 
degree d. Let k ≥ 1 and e be integers. 

(1)	 If �k
1,e
(V) ≥ 0 , then Bk

1,e
(V) is nonempty.

(2)	 If �k
1,e
(V) ≥ 1 , then Bk

1,e
(V) is connected.

(3)	 Suppose C is a general curve and V a general bundle. If 𝜌k
1,e
(V) < 0 , then Bk

1,e
(V) is 

empty. If 0 ≤ �k
1,e
(V) ≤ g , then Bk

1,e
(V) has pure dimension �k

1,e
(V).

(4)	 Suppose C is a general curve and V a general bundle. If 𝜌k
1,e
(V) < g , then 

Sing
(
Bk
1,e
(V)

)
= Bk+1

1,e
(V).

(5)	 Suppose C is a Petri curve and V a general bundle. If �k
1,e
(V) ≥ 1 , then Bk

1,e
(V) is irre-

ducible.

Proof  Statement (1) was proven in [12] for general V, and for all V in [22, (2.6)]. Part (2) is 
[22, (2.7)]. Parts (3) and (4) follow from [35]. Lastly, (5) is [14, Théorème 1.2]. 	�  ◻

The infinitesimal study of the Brill–Noether loci is the key to the proofs of (3) and (4). 
We do not include this here because we will describe it in detail for Bk

n,e
(V) (and indeed for 

families of bundles) in the next section.

3 � Preliminaries on twisted Brill–Noether loci

Although generalised Brill–Noether loci are by now very familiar objects, there are fewer 
sources focusing primarily on twisted Brill–Noether loci. We will therefore give a detailed 
introduction to the subject with emphasis on functorial aspects.

3.1 � The twisted Brill–Noether locus of a pair of families

Let V → S × C be a family of bundles of rank r and degree d, and E → T × C a family of 
bundles of rank n and degree e. Set-theoretically, we define

Scheme-theoretically, this is a determinantal locus, as we will now show using a 
standard construction. Let D be an effective divisor of large degree on C satisfying 
h1(Vs ⊗ Et(D)) = 0 for all (s, t) ∈ S × T  . We have a diagram of projections

Bk+1
n,e

(V) ⊆ Sing
(
Bk
n,e
(V)

)
.

Bk(V, E) ∶= {(s, t) ∈ S × T ∶ h0(Vs ⊗ Et) ≥ k}.
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Then over S × T × C , we have the short exact sequence

Pushing down to S × T  , we obtain a complex � ∶ K0
→ K1 of locally free sheaves satisfying

for each (s, t) ∈ S × T  . Then Bk(V, E) is the locus defined by the (rkK0 − k) × (rkK0 − k)- 
minors of � . In particular (see [1, Chapter  2]), the locus Bk(V, E) has a natural scheme 
structure and every component of it has dimension at least

From the determinantal description it also follows that Bk+1(V, E) ⊆ Sing
(
Bk(V, E)

)
 , and 

moreover that the loci Bk(V, E) define a rank stratification on S × T  . We will return to this 
aspect in Sect. 3.5.

Remark 3.1  This construction is symmetric in V and E . It is functorial in the sense that if 
� ∶ S� → S and � ∶ T �

→ T  are morphisms, then

is defined by the (rkK0 − k) × (rkK0 − k)-minors of (� × �)∗�.

Definition 3.2  Let V be a vector bundle of rank r and degree d, considered as a family 
over Spec� × C . By [25, Proposition 2.4], there exists an étale cover Ũs(n, e) → Us(n, e) 
(which can be taken to be the identity if gcd(n, e) = 1 ) which carries a Poincaré family 
E → Ũs(n, e) × C . Then the twisted Brill–Noether locus Bk

n,e
(V) is defined as the image 

of the moduli map Bk(V , E) → Us(n, e) . Writing � = re + nd − rn(g − 1) , the expected 
dimension of Bk

n,e
(V) is the Brill–Noether number

The following is straightforward to check:

Proposition 3.3  Let V be any bundle of rank r and degree d over C. 

(1)	 Bk
n,e
(V) is a proper sublocus of Us(n, e) only if k > 𝜒.

(2)	 If V is stable, then Bk
n,e
(V) is nonempty only if re + nd > 0 or (n, e) = (r,−d) . In the 

latter case, B1
r,−d

(V) = {V∗} and Bk
r,−d

 is empty for k ≥ 2.
(3)	 If V is semistable, then Bk

n,e
(V) is nonempty only if re + nd > 0 or re + nd = 0 and r ≥ n.

(4)	 For any line bundle L of degree � , there is a canonical isomorphism

S × T × C
p13

p12
p23

p3
C

S × C S × T T × C.

0 → p∗
13
V⊗ p∗

23
E → p∗

13
V⊗ p∗

23
E⊗ p∗

3
OC(D) →

p∗
13
V⊗ p∗

23
E⊗ p∗

3
OC(D)

p∗
13
V⊗ p∗

23
E

→ 0.

Ker
(
𝛾(s,t)

)
≅ H0(Vs ⊗ Et) and Coker

(
𝛾(s,t)

)
≅ H1(Vs ⊗ Et)

(3.1)dim S + dimT − k(k − re − nd + rn(g − 1)).

Bk
(
(� × IdC)

∗V, (� × IdC)
∗E
)

�k
n,e
(V) = �k

n,e,r,d
∶= dimUs(n, e) − k(k − �).



691Nonemptiness and smoothness of twisted Brill–Noether loci﻿	

1 3

given by E ↦ L−1 ⊗ E.
(5)	 Via Serre duality, the association E ↦ E∗ gives an isomorphism

Remark 3.4  If r = 1 , there are many examples of Brill–Noether loci which are empty 
although �k

n,e,r,d
≥ 0 (see, for example, [6, 23]). It seems to be much harder to find examples 

for r > 1 , but Proposition 3.3 does provide some. Suppose that re + nd = 0 and r < n ; then 
B1
n,e
(V) = � by Proposition 3.3(2). On the other hand, in this case,

Furthermore, it was noted in [6] that, for r ≥ 2 , the locus Bk
r,0

 is empty, but B̃k
r,0

≠ ∅ for 
k ≤ r . We can generalise this example to twisted Brill–Noether loci. Suppose V ∈ Us(r, d) 
is a stable bundle, n > r and re + nd = 0 . Then, by Proposition  3.3(2), Bk

n,e
(V) = � for 

all k. However, taking E = V∗ ⊕ F , where F is semistable and �(F) = �(E) , we see that 
[E] ∈ B̃1

n,e
(V).

3.2 � The tangent spaces of Bk(V, E)

We now recall some standard facts on deformations of bundles and sections. Suppose W is 
a vector bundle with h0(W) ≥ 1 . Let v ∈ H1(EndW) be a first-order infinitesimal deforma-
tion of W. By the argument in [13, Sect. 2], a section s ∈ H0(W) is preserved by v if and 
only if s ∪ v = 0 in H1(W) . Thus the space of deformations preserving all sections of W is 
exactly

We are interested in the case where W is of the form V ⊗ E and v is the class of a product 
of deformations b ∈ H1(EndV) and h ∈ H1(EndE) of V and E, respectively. By for exam-
ple inspecting Čech cocycles, we see that v = c(b, h) , where

More generally, let us consider again the families V → S × C and E → T × C . Suppose 
(s, t) ∈ S × T  is such that h0(Vs ⊗ Et) = k . We have a composed map

where � is the Kodaira–Spencer map.

Proposition 3.5  Suppose that h0(Vs ⊗ Et) = k . 

Bk
n,e(V ) ∼

Bk
n, e− (V ⊗ L)

Bk
n,e
(V)

∼
�������→ Bk−𝜒

n,−e
(KC ⊗ V∗).

𝜌1
n,e,r,d

= n2(g − 1) + 1 − (1 + rn(g − 1)) = n(n − r)(g − 1) > 0.

Ker
(
∪ ∶ H1(EndW) → Hom

(
H0(W),H1(W)

))
.

(3.2)c(b, h) ∶= b⊗ IdE + IdV ⊗ h ∈ H1(End (V ⊗ E)).

(3.3)
T
s
S⊕ T

t
T

𝜅
������→ H

1(EndV
s
)⊕ H

1(End E
t
)

c

�����→ H
1
(
End

(
V
s
⊗ E

t

))

∪
������→ Hom

(
H

0(V
s
⊗ E

t
),H1(V

s
⊗ E

t
)
)
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(1)	 The Zariski tangent space to Bk(V, E) at (s, t) is given by

(2)	 In particular, suppose that S × T  is smooth at (s, t). Then Bk(V, E) is smooth and of 
expected dimension (3.1) at (s, t) if and only if ∪◦c◦� is surjective.

Proof  Since T(s,t)Bk(V, E) consists of those deformations preserving all sections of Vs ⊗ Et , 
we obtain (1). By (3.1) and (1), we see that Bk(V, E) is smooth of the expected dimension at 
(s, t) if and only if

By (3.3), this is equivalent to the surjectivity of ∪◦c◦� . 	�  ◻

3.3 � The Petri trace map

For any vector bundle W, it is well known that, via Serre duality, 
∪ ∶ H1(End (W)) → Hom

(
H0(W),H1(W)

)
 is dual to the Petri multiplication map

Let us use this map to reformulate (3.4).
Firstly, some notation: for bundles V and E, there is a vector bundle map

inducing the cohomology map (3.2) considered above. We write cV and cE for the restric-
tions to the first and second factors, respectively. Recall also that for any bundle W, the 
transpose gives a canonical identification of EndW and EndW∗ , which we will use freely.

Fix a vector bundle V. If we identify EndV  with (EndV)∗ by the trace pairing, a dia-
gram chase shows that the trace map tr ∶ EndV → OC is dual to the map OC → EndV  
given by � ↦ � ⋅ IdV.

Thus for any bundle E, tensoring tr ∶ EndV → OC by EndE , we obtain a linear map

which is dual to cE , and an induced map

By Serre duality and the above discussion, trE is dual to

Then, by linear algebra, c ∶ H1(EndV)⊕ H1(EndE) → H1(End (V ⊗ E)) is dual to

We can now formulate a dual version of Proposition 3.5.

(3.4)T(s,t)B
k(V, E) = Ker(∪◦c◦�).

dim S + dimT − dimKer(∪◦c◦�) = k(k − re − nd + rn(g − 1)).

𝜇 ∶ H0(W)⊗ H0(KC ⊗W∗) → H0(KC ⊗ EndW).

c ∶ (EndV)⊕ (EndE) → End (V ⊗ E)

End (V ⊗ E) ≅ EndV ⊗ EndE → EndE

trE ∶ H0(KC ⊗ End (V ⊗ E)) → H0(KC ⊗ EndE).

cE ∶ H1(EndE) → H1(End (V ⊗ E)).

(trV , trE) ∶ H0(KC ⊗ End (V ⊗ E)) → H0(KC ⊗ EndV)⊕ H0(KC ⊗ EndE).
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Proposition 3.6  Suppose h0(Vs ⊗ Et) = k . The Zariski tangent space T(s,t)Bk(V, E) is the 
annihilator of the image of

In particular, if S × T  is smooth at (s, t), then Bk(V, E) is smooth and of the expected dimen-
sion at (s, t) if and only if t�◦(trVs

, trEt ))◦� is injective.

The most important corollary of this proposition is:

Corollary 3.7  Let V be a bundle of rank r and degree d. Suppose E ∈ Us(n, e) satisfies 
h0(V ⊗ E) = k . The twisted Brill–Noether locus Bk

n,e
(V) is smooth and of the expected 

dimension at E if and only if

is injective.

Proof  This follows from Proposition 3.6 applied to the family V consisting of the single 
bundle V and a local universal family E for E, together with the fact that the Kodaira–Spen-
cer map for the family E at E is an isomorphism. 	�  ◻

It will be convenient to make the following definition (see also [15, Definition 2.1]).

Definition 3.8  For fixed V, write �E for the composed map trE◦� in (3.5). We say that V 
is Petri E-trace injective if �E is injective. If the trace map

is injective, we say that V is Petri trace injective.

Next, as it will be central to several proofs, let us state [35, Theorem 1.1] precisely.

Theorem 3.9  Let C be a general curve and V a general vector bundle over C. Then for 
any degree e and L ∈ Pice(C) , the Petri trace map

is injective.

This motivates another definition.

Definition 3.10  A vector bundle V is Petri general if V is Petri L-trace injective for all 
L ∈ Pic(C).

Remark 3.11  A curve C is Petri in the usual sense if and only if OC is a Petri general vec-
tor bundle. It is well known that the general curve C is a Petri curve.

t𝜅◦(trVs
, trEt )◦𝜇 ∶ H0(Vs ⊗ Et)⊗ H0(KC ⊗ E

∗
t
⊗ V

∗
s
) → T∗

s
S⊕ T∗

t
T .

(3.5)
trE◦𝜇 ∶ H0(V ⊗ E)⊗ H0(KC ⊗ E∗ ⊗ V∗) →H0(KC ⊗ End (V ⊗ E))

→H0(KC ⊗ EndE)

𝜇OC
∶ H0(V)⊗ H0(KC ⊗ V∗) → H0(KC)

𝜇L ∶ H0(V ⊗ L)⊗ H0(KC ⊗ L−1 ⊗ V∗) → H0(KC)
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3.4 � A partial desingularisation of Bk(V, E)

Here we generalise the construction Gr
d
(C) of [1, IV.4] to twisted Brill–Noether loci.

For families V and E , let us fix the effective divisor D in Sect. 3.1 and recall the complex 
� ∶ K0

→ K1 . As K0 is locally free, we have a Grassmannian bundle � ∶ Gr(k,K0) → S × T  . 
We define

This is a parameter space for triples (V ,E,Λ) where Λ is a k-dimensional subspace of 
H0(V ⊗ E) . It seems natural to call such a triple a “twisted coherent system”, but we do not 
pursue questions of moduli or stability here. When the family V consists of a single vector 
bundle V, we write also Gk(V , E).

Clearly, �(Gk(V, E)) = Bk(V, E) and 𝜋−1(s, t) = Gr(k,H0(Vs ⊗ Et)) . Let us describe the 
Zariski tangent spaces of Gk(V, E) at (s, t).

Proposition 3.12 

(1)	 Suppose h0(Vs ⊗ Et) ≥ k . There is an exact sequence

where the last map is defined by ∪◦c◦� as in (3.3), followed by restriction to Λ . More-
over, Im (d�) = Im

(
t�◦(trVs

, trEt )◦�
)⟂.

(2)	 The locus Gk(V, E) is smooth and of dimension (3.1) at (s, t,Λ) if and only if the 
restricted map

is injective.
(3)	 In particular, if t�◦(trVs

, trEt )◦� is injective and h0(Vs ⊗ Et) > k , then Gk(V, E) is a 
desingularisation of Bk(V, E) in a neighbourhood of (s, t).

Proof  Statements (1) and (2) are proven in the same way as [1, Proposition  IV.4.1  (ii)–
(iii), p. 187], and clearly (3) follows from (2). 	�  ◻

3.5 � A sufficient condition for the existence of good components

Note that

is a stratification of Bk(V, E) by closed subsets. The following proposition makes use of this 
stratification.

Proposition 3.13  Suppose S × T  is smooth at (s,  t) and for some k′ ≥ � there exists 
(s, t) ∈ Bk� (V, E) such that h0(Vs ⊗ Et) = k� and t�◦(trVs

, trEt )◦� is injective. Then, for 

Gk(V, E) ∶= {Λ ∈ Gr(k,K0) ∶ �|Λ = 0}.

(3.6)
0 → Hom

(
Λ,H0(V

s
⊗ E

t
)∕Λ

)
→T(Λ,s,t)G

k(V, E)
d𝜋
����������→ T

s
S⊕ T

t
T

→Hom
(
Λ,H1(V

s
⊗ E

t
)
)

t𝜅◦(trVs
, trEt )◦𝜇 ∶ Λ⊗ H0(KC ⊗ E

∗
t
⊗ V

∗
s
) → H0(KC ⊗ EndVs)⊕ H0(KC ⊗ End Et)

S × T ⊃ B1(V, E) ⊃ B2(V, E) ⊃ ⋯ ⊃ Bk(V, E)
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� ≤ k ≤ k′ , the locus Bk(V, E) contains a component which is generically smooth and of the 
expected dimension.

Proof  We prove this by descending induction on k. For k = k� , the result follows imme-
diately from Proposition  3.6. Now suppose 𝜒 ≤ k < k′ and that the proposition holds 
for Bk+1(V, E) . Then, there exists (V ,E) ∈ Bk+1(V, E) with h0(V ⊗ E) = k + 1 and 
t�◦(trV , trE)◦� injective. Now let Λ be any k-dimensional linear subspace of H0(V ⊗ E) . 
Then, by Proposition  3.12, Gk(V, E) is smooth of the expected dimension at (V ,E,Λ) . 
Since k ≥ � , it follows from (3.1) that every component of Gk(V, E) has dimension greater 
than the dimension of �−1(Bk+1(V, E)) at (V, E). Hence, there exists a point (V1,E1,Λ1) of 
Gk(V, E) in the neighbourhood of (V ,E,Λ) with h0(V1 ⊗ E1) = k and t�◦(trV1

, trE1
)◦� injec-

tive. Thus Bk(V, E) is smooth of the expected dimension at (V1,E1) . 	�  ◻

This proposition illustrates a general principle that, from the existence of just one pair of 
bundles with good properties, one can obtain a detailed picture of the geometry of several 
of the strata. This will be used on a number of occasions later.

4 � Two irreducibility results

Here we will give some applications of the machinery assembled in the previous section.

4.1 � Rank one twisted Brill–Noether loci

If C is a Petri curve, Bk
1,e

= Wk−1
e

(C) is irreducible whenever �k
1,e

= g − k(k − e + g − 1) ≥ 1.

Let P → Pice(C) × C be a Poincaré bundle.

Theorem 4.1  Let V → S × C be a family of Petri general vector bundles of rank r and 
degree d parametrised by a smooth irreducible base S. Assume that

Then Gk(V,P) is smooth and irreducible, and Bk(V,P) ⊆ S × Pice(C) is an irreducible 
variety of dimension dim S + �k

1,e,r,d
 which is singular precisely along Bk+1(V,P).

Proof  The fibre of Bk(V,P) over each s ∈ S is exactly Bk
1,e
(Vs) . Since �k

1,e,r,d
≥ 1 , by Theo-

rem 2.1(1) and (2) this fibre is nonempty and connected. As S is irreducible, it follows that 
Bk(V,P) is connected. As the fibres of Gk(V,P) → Bk(V,P) are Grassmannians, Gk(V,P) is 
also connected.

Furthermore, as Vs is Petri general for all s, by Proposition 3.12(2) in fact Gk(V,P) is 
smooth. Therefore Gk(V,P) is irreducible. As Bk(V,P) is the image of Gk(V,P) by a mor-
phism, Bk(V,P) is also irreducible.

The last statement follows from Petri generality and Proposition 3.6. 	�  ◻

Remark 4.2  Suppose that C is a general curve. Since, by Theorem 3.9, a general bundle 
V in Us(r, d) is Petri general, in particular Bk

1,e
(V) is irreducible for general V. Thus we 

recover [14, Théorème 1.2].

�k
1,e,r,d

= g − k(k − (d + re) + r(g − 1)) ≥ 1.
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4.2 � Irreducibility of Petri trace injective loci

Here we give an application to “nontwisted” Brill–Noether loci.

Theorem 4.3  Suppose C is general and g ≥ �k
1,0,r,d

= g − k(k − d + r(g − 1)) ≥ 1 . Then 
there is a unique irreducible component 

(
Bk
r,d

)

PTI
 of the Brill–Noether locus Bk

r,d
 contain-

ing the locus

In particular, the locus of Petri trace injective bundles in Bk
r,d

 is irreducible.

Proof  By [25, Proposition 2.6], there exists a smooth irreducible variety M admitting a 
Poincaré family V → M × C such that every stable bundle of rank r and degree d over C 
is represented in M . Throughout, we will write Ṽ  for a point of M lying over V ∈ Us(r, d).

Set e = 0 and let P → Pic0(C) × C be a Poincaré bundle. We consider the locus 
Gk(V,P) → M × Pic0(C) defined in Sect. 3.4. Note that the projection map

is surjective by Theorem 2.1(1). Define

By Theorem 2.1(3), (4) and by hypothesis, this is nonempty. It is also open in Gk(V,P) and 
smooth of pure dimension

by Proposition 3.12(2).
Let t ∶ Gk(V,P) → Us(r, d) be the morphism given by t(�V , L,Λ) = V ⊗ L . By defini-

tion, t(Gk) is locus (4.1). Thus it will suffice to show that Gk is irreducible.
Since the projection p of (4.2) is surjective, there is at least one irreducible component 

of Gk which dominates M . We claim first that this component is unique. Suppose that X1 
and X2 were components of Gk such that p(X1) and p(X2) are both dense in M . Let Ṽ  be a 
general point of p(X1) ∩ p(X2) . The fibre p−1(Ṽ) is identified with

here viewing Ṽ  as a singleton family. By Theorem 3.9, we may assume V is Petri general. 
Since �k

1,0,r,d
≥ 1 by hypothesis, it follows from Theorem 4.1 that Gk(Ṽ ,P) is irreducible. 

Since X1 ∩ Gk(Ṽ ,P) and X2 ∩ Gk(Ṽ ,P) are both components of Gk ∩ Gk(Ṽ ,P) , it follows 
that X1 ∩ Gk(Ṽ ,P) = X2 ∩ Gk(Ṽ ,P) and, in particular, X1 ∩ X2 is nonempty. Since Gk is 
smooth, the only possibility is that X1 = X2.

Therefore, to conclude, it will suffice to show that the restriction of p to any compo-
nent X of Gk is dominant. To see this, let (Ṽ , L,Λ) be a point of X. By Proposition 3.12(2) 
applied to locus (4.4), we have

(4.1)

{
V ∈ Bk

r,d
∶ 𝜇̄ ∶ Λ⊗ H0(KC ⊗ V∗) → H0(KC) is injective for some Λ ∈ Gr(k,H0(V))

}

(4.2)p ∶ Gk(V,P) → M × Pic0(C) → M

G
k ∶=

{
(�V , L,Λ) ∈ Gk(V,P) ∶ 𝜇L ∶ Λ⊗ H0(KC ⊗ L−1 ⊗ V∗) → H0(KC) is injective

}
.

(4.3)dimM + dimPic0(C) − k(k − d + r(g − 1)) = dimM + �k
1,0,r,d

(4.4)Gk(�V ,P) = {(L,Λ) ∶ Λ ∈ Gr(k,H0(�V ⊗ L))},
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On the other hand, by (4.3), we have

Thus dim(p(X)) ≥ dim(M) . As M is irreducible, p(X) is dense in M . This completes the 
proof. 	�  ◻

5 � Nonemptiness of Bk

n,e
(V) and B̃k

n,e
(V)

We now prove Theorem  1.1 using the method of [24]. This is very straightforward; the 
necessary ingredients already exist by Theorem 2.1 and the results in [24] on stability of 
elementary transformations. We note that Mercat’s construction was used in a similar way 
in [3, Sect. 6] to show the nonemptiness of certain moduli spaces of coherent systems.

Proof of  Theorem  1.1  By hypothesis and Theorem  2.1, the locus Bk0
1,e0

(V) is of positive 
dimension. Thus we can find mutually nonisomorphic line bundles L1,… , Ln of degree e0 
such that h0(V ⊗ Li) ≥ k0 for each i. Let

be a general elementary transformation. We have the cohomology sequence

so h0(V ⊗ E) ≥ nk0 . If deg � ≥ 1 , then it follows easily from [24, Théorème A.5] that E is 
a stable vector bundle, and the result follows for e > ne0 . If � = 0 then E = ⊕n

i=1
Li gives an 

element of B̃nk0
n,ne0

 , and the result follows also in the case e = ne0 . 	�  ◻

In the next sections, we will refine this statement in some cases.

6 � Generatedness of Petri general bundles

To prove the existence of components of Bk
n,e
(V) which are generically smooth and of the 

expected dimension, the need will emerge to show the existence of bundles W of rank r ≥ 2 
and degree d satisfying the following conditions: 

(1)	 W is Petri trace injective. Equivalently, KC ⊗W∗ is Petri trace injective.
(2)	 h0(W) = k ≥ 1.
(3)	 KC ⊗W∗ is generically generated.

dim(Ṽ ,L,Λ)(p|X)
−1
(
p(Ṽ , L,Λ)

)
≤ g − k(k − d + r(g − 1)) = �k

1,0,r,d
.

dim(Ṽ ,L,Λ) X = dimM + �k
1,0,r,d

.

0 →

n⨁

i=1

Li → E → � → 0

0 →

n⨁

i=1

H0(V ⊗ Li) → H0(V ⊗ E) → ⋯
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Remark 6.1  Note that the above conditions give strong bounds on d and k. By (1) and (2) 
and Serre duality, we have k(k − d + r(g − 1)) ≤ g , so d ≥ r(g − 1) + k −

g

k
 . Moreover, (3) 

implies that h0(KC ⊗W∗) = h1(W) = k − 𝜒(W) ≥ r , so d ≤ r(g − 2) + k . In summary,

Values of d satisfying (6.1) exist if and only if k ≤ g

r
 , which is in any case a necessary con-

dition for (1) and (3) to hold.

In [15], Hitching and Hoff study the geometry of Br+1
1,g−1

(V) for stable vector bundles of 
rank r and vanishing determinant. Therefore, they also construct vector bundles with prop-
erties (1)–(3) (see [15, Prop. 2.8] and Proposition 6.5 as its generalisation).

6.1 � The construction

Suppose g ≥ r and write g = rl + r0 where l, r0 are integers with 0 ≤ r0 < r . Let D0 be an 
effective divisor of degree r0 such that h0(KC(−D0)) = h0(KC) − r0 = rl . (If r0 = 0 , take 
D0 = 0 .) Set N ∶= KC(−D0) and let D1,… ,Dr be distinct effective divisors of degree l 
such that

For 1 ≤ i ≤ r , set Mi ∶= N
�
−
∑

j≠i Dj

�
 . By (6.2), we have h0(Mi) = h0(N) − (r − 1)l = l 

for each i.

Lemma 6.2   

(1)	 H0(N) ≅
⨁r

i=1
H0(Mi).

(2)	 H1(Mi) ≅ H1(N) = �.
(3)	 The bundles M1,… ,Mr are mutually nonisomorphic.

Proof   

(1)	 We have inclusions H0(Mi) ↪ H0(N) for all i. It is easy to see that 

 So ⊕r
i=1

H0(Mi) ⊆ H0(N) . Since the dimensions agree, we obtain (1).
(2)	 Calculating values for degrees and h0 , this follows from Riemann–Roch.
(3)	 Suppose Mi1

≅ Mi2
 ; that is, 

Tensoring both sides with N−1
�∑r

j=1
Dj

�
 , we obtain OC(Di1

) ≅ OC(Di2
) . As Di1

≠ Di2
 as 

divisors, in particular h0(OC(Di1
)) ≥ 2 . But then h0(KC(−Di1

)) ≥ g − l + 1 and 
h0(Mi2

) ≥ g − l + 1 − r0 − (r − 2)l = l + 1 , a contradiction. This proves (3). 	�  ◻

(6.1)r(g − 1) + k −
g

k
≤ d ≤ r(g − 2) + k.

(6.2)h0
(
N
(
−
∑

Dj

))
= h0(N) − rl = 0.

H0(Mi) ∩
(
H0(M1) +⋯ + H0(Mi−1) + H0(Mi+1) +⋯ + H0(Mr)

)
= 0.

N

(
−
∑

j≠i1

Dj

)
≅ N

(
−
∑

j≠i2

Dj

)
.
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Now write G ∶=
⨁r

i=1
Mi . Consider elementary transformations

where T is a torsion sheaf of degree (r − 1)l + m with 0 ≤ m ≤ l − 1 . To ease notation, we 
write t ∶= (r − 1)l + m . The set of such W is parametrised by the Quot scheme Quot0,t(G) . 
By for example the proof of [11, Lemma 4.2], this is an irreducible variety of dimension rt.

Lemma 6.3  For general W ∈ Quot0,t(G) , the map H0(G) → H0(T) is surjective. In par-
ticular, h0(W) = l − m and H0(KC ⊗W∗) ≅ H0(KC ⊗ G∗).

Proof  Since the surjectivity condition is open, it is sufficient to prove the existence of one 
bundle W with the required property. Suppose first that t = 1 and let T = �p , where p is a 
point at which some section of G is nonzero. Then we can find a surjection G → T  such 
that H0(G) → H0(T) is surjective. Repeating this argument, we obtain the result by induc-
tion on t. 	�  ◻

We want one more generality condition on W. For 1 ≤ i ≤ r , write Ĝi ∶=
⨁

j≠i Mj , 
and consider the sheaf

Lemma 6.4  If W is sufficiently general in Quot0,t(G) , then h0(W ∩ Ĝi) = 0.

Proof  Since the condition h0(W ∩ Ĝi) = 0 is open, it is sufficient to find one example of an 
elementary transformation (6.3) for which this property holds. For this, consider elemen-
tary transformations

where T is as in (6.3). The same argument as for Lemma 6.3 shows that, for general W1 , we 
have h0(W1) = max{0,−m} = 0 . Now take W = W1 ⊕Mi . 	�  ◻

Proposition 6.5  A general elementary transformation W ∈ Quot0,t(G) is stable and Petri 
trace injective and has KC ⊗W∗ generically generated.

Proof  As the Mi are mutually nonisomorphic by Lemma 6.2(3), by [24, Théorème A.5] the 
bundle W is stable for general T. By Lemma 6.3, we have H0(KC ⊗W∗) ≅ H0(KC ⊗ G∗) . 
From Lemma  6.2(2) and since G = ⊕r

i=1
Mi , it then follows that KC ⊗W∗ is generically 

generated.
We describe H0(KC ⊗W∗) more explicitly. For 1 ≤ i ≤ r , let t′

i
 be a genera-

tor of H0(KC ⊗M−1
i
) , and write ti for the image of t′

i
 in H0(KC ⊗W∗) . Thus we obtain 

a splitting H0(KC ⊗W∗) =
⨁r

i=1
� ⋅ ti . Therefore, we can write any element of 

H0(W)⊗ H0(KC ⊗W∗) in the form

(6.3)0 → W → G → T → 0

W ∩ Ĝi = Ker
(
W → G → Mi

)
.

0 → W1 → Ĝi → T → 0,

(6.4)
r∑

i=1

𝜎i ⊗ ti
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where �i = (si,1, si,2,… , si,r) is a section of G belonging to W, that is, lying in the kernel of 
H0(G) → H0(T) . The Petri trace is then given by

To analyse this, note that, by Lemma  6.2(2), the homomorphism Mi → N induces an 
isomorphism H0(KC ⊗ N−1) → H0(KC ⊗M−1) . It follows that there is a commutative 
diagram

where the left-hand vertical map is an isomorphism by Lemma  6.2(1) and (2). Since 
h0(KC ⊗ N−1) = 1 by Lemma 6.2(2), �N is injective. By commutativity, the composed map ⨁r

i=1
H0(Mi)⊗ H0(KC ⊗M−1

i
) → H0(KC) is injective.

This means that a tensor of form (6.4) has trace zero only if si,i = 0 for all i. Thus 
�i belongs to the subsheaf W ∩ Ĝi . But by Lemma  6.4, for general W ∈ Quot0,t(G) , 
h0(W ∩ Ĝi) = 0 and �i = 0 for all i. This completes the proof. 	�  ◻

Corollary 6.6  Let g, r, l =
⌊
g

r

⌋
 and r0 be as above. For 0 ≤ m ≤ l − 1 , there exists a Petri 

trace injective bundle W of rank r and degree r(g − 2) + l − m with h0(W) = l − m and 
such that KC ⊗W∗ is generically generated.

Corollary 6.7  Let C be a general curve of genus g. Suppose l =
⌊
g

r

⌋
 , 0 ≤ m ≤ l − 1 and 

d = r(g − 2) + l − m . If m = 0 , suppose further that g ≢ 0 mod r . Then 
(
Bl−m
r,d

)

PTI
 is irre-

ducible and, if W is a general element of 
(
Bl−m
r,d

)

PTI
 and p is a general point of C,

Proof  The irreducibility of 
(
Bl−m
r,d

)

PTI
 follows from Theorem  4.3. (The hypothesis 

g ≢ 0 mod r is required to ensure that the numerical hypothesis of Theorem 4.3 holds.) 
Property (6.5) is open. It is therefore sufficient to find one example of a bundle W with the 
stated property. For this, take W as in Corollary 6.6. Statement (6.5) is then equivalent to 
the injectivity of the coboundary map in the sequence

By Serre duality, the coboundary map is injective if and only if the evaluation map

is surjective. By Corollary 6.6, this is true for general p. 	� ◻

𝜇W

(
r∑

i=1

𝜎i ⊗ ti

)
=

r∑

i=1

𝜇Mi
(si,i ⊗ t�

i
) ∈ H0(KC).

r
i=1H

0(Mi)⊗H0(KC ⊗M−1
i )

⊕µMi r
i=1 H

0(KC)

sum

H0(N)⊗H0(KC ⊗N−1)
µN

H0(KC),

(6.5)h0(W) = h0(W(p)) = l − m.

0 → H0(W) → H0(W(p)) → W(p)|p → H1(W) → H1(W(p)) → 0.

(6.6)H0(KC ⊗W∗) → KC ⊗W∗|p
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7 � Smoothness of twisted Brill–Noether loci

In this section, we prove our main result Theorem 1.2. The major part of the section is con-
cerned with proving the following technical proposition.

Proposition 7.1  Let C be a general curve of genus g. Suppose e0 and k0 are integers 
satisfying

and furthermore that there exists a bundle W ∈
(
B
k0
r,d+re0

)

PTI
 such that for general p in C 

we have h0(W) = h0(W(p)) = k0 . Write e = ne0 + e1 where 1 ≤ e1 ≤ n . Then for general 
V ∈ Us(r, d) and for re + nd − rn(g − 1) ≤ k ≤ nk0 , the twisted Brill–Noether locus Bk

n,e
(V) 

has a component which is nonempty, generically smooth and of the expected dimension.

Note again that for V ∈ Us(r, d) and E ∈ Us(n, e) , the Euler characteristic 
𝜒(V ⊗ E) = re + nd − rn(g − 1) . We begin with a lemma which has applications to coher-
ent systems (twisted or untwisted) as well as to twisted Brill–Noether loci. For this, let V 
be any bundle of rank r and degree d and consider the space Gk0 (V ,Pe0 ) , where Pe0 is a 
Poincaré family on Pice0 (C) × C , which parametrises pairs (L,Λ0) with L a line bundle of 
degree e0 and Λ0 ⊂ H0(V ⊗ L) a linear subspace of dimension k0 . Suppose further that X is 
an irreducible component of Gk0 (V ,Pe0 ) which is generically smooth of dimension

Let (L1,Λ1),… , (Ln,Λn) be points of X, and write F ∶=
⨁n

i=1
Li and Λ ∶=

⨁n

i=1
Λi . We 

consider elementary transformations

with � a torsion sheaf of length e1.

Lemma 7.2  Under the above conditions, let (L1,Λ1),… , (Ln,Λn) be general points of X. 
Then the restricted Petri E-trace map

is injective.

Proof  Consider first the restricted Petri F-trace map of V, given by

Noting that H0(KC ⊗ EndF) =
⨁

i,j H
0(KC ⊗ L−1

j
⊗ Li) , we see that (7.4) is the direct sum 

of the trace maps

(7.1)�
k0
1,e0,r,d

= g − k0
(
k0 − (d + re0) + r(g − 1)

)
≥ 1

�
k0
1,e0

(V) = g − k0
(
k0 − (d + re0) + r(g − 1)

)
≥ 1.

(7.2)0 → F → E → � → 0

(7.3)𝜇E ∶ Λ⊗ H0(KC ⊗ E∗ ⊗ V∗) → H0(KC ⊗ EndE)

(7.4)𝜇F ∶ Λ⊗ H0(KC ⊗ F∗ ⊗ V∗) → H0(KC ⊗ EndF).

(7.5)𝜇i,j ∶ Λi ⊗ H0
(
KC ⊗ L−1

j
⊗ V∗

)
→ H0

(
KC ⊗ L−1

j
⊗ Li

)
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for 1 ≤ i ≤ n and 1 ≤ j ≤ n . Thus �F is injective if and only if �i,j is injective for all i, j.
Write

which is a nonempty open subset of X by semicontinuity. We can assume that (Li,Λi) ∈ U 
for all i.

Now let p be a point of C. For each (L,Λ0) ∈ U , we have a commutative diagram

where, in the second line, Λ0 is regarded as a subspace of H0(V ⊗ L(p)) and the horizontal 
arrows are trace maps. Since X is smooth at (L,Λ0) , �0 is injective. Hence so is �′

0
.

Next, let A be the direct image sheaf over U × U whose fibre at ((L,Λ0), (N,Λ
�
0
)) is

Since H0(KC ⊗ N−1 ⊗ V∗) is constant on U, this is locally free. Furthermore, let B be the 
direct image sheaf over U whose fibre at ((L,Λ0), (N,Λ

�
0
)) is H0(KC ⊗ N−1 ⊗ L(p)) . This is 

locally free of rank g.
Write 𝜇̃ ∶ A → B for the globalised Petri trace map whose restriction to ((L,Λ0), (N,Λ

�
0
)) 

is the trace map

As 𝜇̃|((L,Λ0),(L,Λ0))
 coincides with �′

0
 above, 𝜇̃ is injective on a nonempty open subset U′ of 

U × U . We can suppose that ((Li,Λi), (Lj,Λj)) ∈ U� for all i, j, so that 𝜇̃|((Li,Λi),(Lj ,Λj))
 is injec-

tive for all i, j. As 𝜇̃|((Li,Λi),(Lj ,Λj))
 factors through the trace map (7.5), the latter is also injec-

tive. This completes the proof that �F is injective.
To see that �E is injective, we note that KC ⊗ E∗ ⊗ V∗ ⊂ KC ⊗ F∗ ⊗ V∗ and consider 

the diagram of cohomology spaces

We have already seen that �F is injective. Hence first b, then c, then �E = d◦c are all injec-
tive. 	�  ◻

U ∶=
{
(L,Λ0) ∈ X ∶ X smooth at (L,Λ0), h

0(V ⊗ L) takes its minimum value
}
,

Λ0 ⊗H0(KC ⊗ L−1 ⊗ V ∗)
µ0

H0(KC)

Λ0 ⊗H0(KC ⊗ L−1 ⊗ V ∗)
µ0

H0(KC(p)),

Λ0 ⊗ H0(KC ⊗ N−1 ⊗ V∗).

Λ0 ⊗ H0(KC ⊗ N−1 ⊗ V∗) → H0(KC ⊗ N−1 ⊗ L(p)).

Λ⊗H0(KC ⊗E∗ ⊗ V ∗)

a
c

Λ⊗H0(KC ⊗ E∗ ⊗ V ∗)
µE

Λ⊗H0(KC ⊗ F ∗ ⊗ V ∗)

µF
b

H0(KC ⊗ E∗ ⊗ F ) d

f

H0(KC ⊗ EndE)

Λ⊗H0(KC ⊗ EndF ) ∼
i,j H

0(KC ⊗ L−1
j ⊗ Li).
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Proof of  Proposition 7.1  Suppose that the hypotheses of Proposition  7.1 hold and 
let V ∈ Us(r, d) be general. By Proposition  3.13, it suffices to exhibit a stable bundle 
E ∈ Us(n, e) with h0(V ⊗ E) = nk0 and such that V is Petri E-trace injective. For this, we 
use the construction of (7.2), where we now assume that this elementary transformation is 
general and the bundles Li are all distinct. It then follows from [24, Théorème A.5] that E 
is stable.

Note next that, since h0(W(p)) = k0 , we must have k0 > d + re0 − r(g − 1) , so 
𝜌
k0
1,e0

(V) < g . By Theorem 2.1, it follows that the locus Bk0
1,e0

(V) is nonempty and irreducible 
of dimension �k0

1,e0
(V) ≥ 1 (by (7.1)), and

By Theorem 3.9, we may assume also that V is Petri general. By Theorem 4.3, V ⊗ L is a 
general point of 

(
B
k0
r,d+re0

)

PTI
 . It now follows from the hypotheses of Proposition 7.1 that 

for general p ∈ C we have

Now let L1,… , Ln be general points of Bk0
1,e0

(V) , and write F ∶=
⨁n

i=1
Li . We can assume 

that h0(V ⊗ Li) = k0 for all i, so that h0(V ⊗ F) = nk0 . Now note that the condition 
h0(V ⊗ E) = nk0 is an open condition, so it is sufficient to exhibit  a single elementary 
transformation (7.2) satisfying this condition. In fact, by (7.7), for general pi ∈ C , we can 
take

Finally, we note that Bk0
1,e0

(V) is irreducible of the expected dimension by Theorem 2.1, and 
moreover Bk0+1

1,e0
(V) is of the expected dimension. It follows that Gk0 (V ,Pe0 ) is also irreduci-

ble of the expected dimension. Now apply Lemma  7.2 with X = Gk0 (V ,Pe0 ) and 
Λi = H0(V ⊗ Li) for all i. It follows that V is Petri E-trace injective. 	�  ◻

Now we can prove our main result on smoothness and dimension of twisted 
Brill–Noether loci.

Proof of Theorem 1.2  A straightforward computation shows that the numerical hypotheses 
and Corollary 6.7 imply that the hypotheses of Proposition 7.1 are satisfied. 	�  ◻

Remark 7.3   

(1)	 According to [32, Theorem 0.3], if 0 ≤ �1
n,e
(V) ≤ n2(g − 1) + 1 , then every component 

of B1
n,e

 has dimension �1
n,e
(V) . The authors do not require the more stringent numerical 

conditions of our Theorem 1.2. Our result can be seen as a partial generalisation of 
[32, Theorem 0.3], although we do not show that every component of Bk

n,e
(V) has the 

expected dimension.
(2)	 It seems reasonable to conjecture that the hypotheses of Proposition 7.1 are satisfied 

in more cases than those covered in Theorem 1.2. The main obstacle to generalising 

(7.6)h0(V ⊗ L) = k0 for general L ∈ B
k0
1,e0

(V).

(7.7)h0(V ⊗ L(p)) = k0.

E0 ∶=

(
e1⨁

i=1

Li(pi)

)
⊕

(
n⨁

i=e1+1

Li

)
.
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the theorem is to show the generic generatedness of a general bundle in 
(
B
k0
r,d+re0

)

PTI
 

in more cases. (Theoretical bounds can be deduced from (6.1).)

Remark 7.4  For general C, the bundle OC is Petri general and Petri trace injective. More-
over, when r = 1 , Corollary  6.7 holds without the restrictive numerical conditions. The 
above proofs are therefore valid, and we recover [10, Theorem 1.1] (see also [33]).

8 � Tangent cones of twisted Brill–Noether loci

Suppose Y ⊂ X are varieties, and let x ∈ Y  be a smooth point of X. Recall that the tangent 
cone �xY  to Y at x, set-theoretically, is

Generalising theorems of Kempf  [18] and Laszlo  [21], in [9] the theory of determinan-
tal varieties is used to describe the tangent cones to Bk

r,d
 at points where the appropriate 

Petri maps are injective. In [9, Remark 2.8], it is noted that the same approach can be used 
to describe �EBk

n,e
(V) , which is a subvariety of TEUs(n, e) = H1(EndE) . In the follow-

ing proposition, we follow up this remark and use Theorem 1.2 to give some situations in 
which it applies.

Proposition 8.1  Let V ∈ Us(r, d) and suppose that E ∈ Bk
n,e
(V) with k ≥ 𝜒 ∶= 𝜒(V ⊗ E) 

and �E injective. 

(1)	 The tangent cone �EBk
n,e
(V) is Cohen–Macaulay, reduced and normal.

(2)	 If s1,… , sh0(V⊗E) and t1,… , th1(V⊗E) are bases for H0(V ⊗ E) and H0(KC ⊗ E∗ ⊗ V∗) 
, respectively, then the ideal of �EBk

n,e
(V) is generated by the minors of size 

(h0(V ⊗ E) − k + 1) × (h0(V ⊗ E) − k + 1) of the matrix whose (i, j)th entry is

an element of H0(KC ⊗ EndE) = H1(EndE)∗.
(3)	 The degree of �EBk

n,e
(V) is

(4)	 As a set, �EBk
n,e
(V) is the union

Proof  If k = � , then �EBk
n,e
(V) = H1(EndE) , and the various parts of the proposition fol-

low easily. (In particular, the formula in (3) yields the required degree 1.) Thus, in what 
follows, we will assume k > 𝜒.

As before, let E → Ũs(n, e) × C be a Poincaré bundle, where Ũs(n, e) → Us(n, e) is 
a suitable étale cover. Fix a point in Ũs(n, e) lying over E, and, abusing notation, denote 

{v ∈ TxX ∶ v is tangent to a smooth arc in Y}.

𝜇E(si ⊗ tj),

k−1∏

h=0

(h1(V ⊗ E) + h)! ⋅ h!

(h0(V ⊗ E) − k + h)! ⋅ (k + h − 𝜒(V ⊗ E))!
.

⋃

Λ∈Gr(k,H0(V⊗E))

𝜇E(Λ⊗ H0(KC ⊗ E∗ ⊗ V∗))⟂ ⊆ H1(EndE).
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it again by E. Recall the map � ∶ Gk(V , E) =∶ Gk
n,e
(V) → Ũs(n, e) . By hypothesis, 

𝜇E|Λ⊗H0(KC⊗E∗⊗V∗) is injective for all Λ ∈ Gr(k,H0(V ⊗ E)) . By Proposition 3.12(2), there-
fore, Gk

n,e
(V) is smooth and of dimension �k

n,e
(V) in a neighbourhood of �−1(E) , and �−1(E) 

is a smooth scheme. Moreover, by Proposition 3.13 the component of Bk
n,e
(V) containing 

E also has dimension �k
n,e
(V) . As the fibres of � are connected, being Grassmannians, � is 

birational in a neighbourhood of �−1(E).
Thus the hypotheses of [1, II, Lemma 1.1 and Corollary, p. 66] are met, with X being a 

suitable neighbourhood of �−1(E) . Hence �EBk
n,e
(V) = d�(N) , where N ∶= N�−1(E)∕Gk

n,e
(V) is 

the normal bundle of the fibre �−1(E) in Gk
n,e
(V).

Next, by Proposition 3.12(1) we have an exact sequence

and

Thus the total space of the normal bundle N can be identified with

Moreover, via this identification, d� is projection to the second factor.
This completes the proof of (4) and shows that the hypotheses of [1, Lemma p. 242] 

apply to N (with I = N , w = k , A = H0(V ⊗ E) and � = �E ). Therefore, statements (1–3) 
are, respectively, (i–iii) of [1, Lemma p. 242]. 	�  ◻

Remark 8.2  If the hypotheses of Theorem  1.2 apply, the conclusions of Proposition  8.1 
hold for general V and general E ∈ Bk

n,e
(V)0 . In particular, we can describe some tangent 

cones of generalised theta divisors at well-behaved singular points. Suppose g ≥ r2 and 
1 ≤ d ≤ r − 1 . Then g

r
≥ r , so we may set k0 = d . We write r� ∶= r

gcd(r,d)
 and d� ∶= d

gcd(r,d)
 , 

and set e0 = g − 2 . Then for any positive integer � , the values

satisfy both the hypotheses of Theorem  1.2 and  the equation re + nd = rn(g − 1) . (Here 
e1 ∶= e − ne0 = � ⋅ (r� − d�) . Note also that necessarily n ≥ 2).

By Theorem 1.2, for 1 ≤ k ≤ nk0 there exists a component Xk of Bk
n,e
(V) ⊂ B1

n,e
(V) upon 

which the Petri maps �E are injective for general E ∈ Xk . By Proposition 8.1(3), for each 
such E we have multEB

1
n,e
(V) = h0(V ⊗ E).

Geometry of the tangent cones  We end this section with an observation generalising [9, 
Theorem 5.2] (see also [1, p. 232]). Firstly, we recall from [17, Sect. 3] that, generalising 
the canonical curve in |KC|∗ , for any vector bundle E there is a map

We write Δ for the closed sublocus ℙE∗ ×C ℙE of rank one maps in ℙEndE . Suppose 
�1,… ,�p are points of Δ supported over distinct points x1,… , xp of C. For 1 ≤ i ≤ p , let �̃i 
be the point corresponding to �i via the identification

0 → TΛGr(k,H
0(V ⊗ E)) → T(E,Λ)G

k
n,e
(V)

d𝜋
����������→ TEU

s(n, e)

Im
(
d𝜋|(Λ,E)

)
= 𝜇E

(
Λ⊗ H0(KC ⊗ E∗ ⊗ V∗)

)⟂
⊆ H1(EndE).

{(Λ, v) ∈ Gr(k,H0(V ⊗ E)) × H1(EndE) ∶ v ∪ 𝜇E

(
Λ⊗ H0(KC ⊗ E∗ ⊗ V∗)

)
= 0}.

n = �r� and e = �r�e0 + �(r� − d�) = � ⋅ (r�(g − 2) + r� − d�)

(8.1)ℙEndE ⤏ |O
ℙ(TC⊗EndE)(1)|∗ ≅ ℙH0(KC ⊗ EndE)∗ = ℙH1(EndE).
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which is canonical up to nonzero scalar. We observe that for any vector bundle W, the ele-
ment �̃i defines a map

This will be used later.
Now write D = x1 +⋯ + xp . Unwinding the definition of map (8.1), we see that the 

secant �1,… ,�p in ℙH1(EndE) is the span of the images of the �̃i by the coboundary map 
in the sequence

The following is valid without any injectivity assumption on �E.

Proposition 8.3  Let m be the rank of the subbundle Vggen of V generated by the evalua-
tion map E∗ ⊗ H0(V ⊗ E) → V  . Suppose h0(V ⊗ E) ≥ pm + k . Then SecpΔ is contained in 
the projectivised tangent cone ℙ𝕋EBk

n,e
(V).

Proof  (Compare with [9, Theorem  5.2]) A tangent vector v ∈ H1(EndE) belongs to 
�EB

k
n,e
(V) if and only if

has dimension at least k. Now clearly it suffices to show that a general point of SecpΔ 
belongs to the tangent cone. So let v = �(�1�̃1,… , �p�̃p) where the �̃i and D are as above, 
and the �i are nonzero scalars. The cup product map by v factorises

where evD is the evaluation map, �̃i is as in (8.2), and �′ is the coboundary map of the coho-
mology sequence of

Now Im (evD) is contained in 
⨁p

i=1
Vggen ⊗ E�xi . In view of (8.2), moreover,

Since by hypothesis dim Im (�̃i) = 1 , the last space has dimension mp. It follows that

The proposition follows. 	�  ◻

The study of Petri-trace injective vector bundles leads naturally to the geometry of 
twisted Brill–Noether loci. We remark that a construction of Petri-trace injective bundles 

EndE|xi
∼
�������→ (EndE)(xi)|xi

∼
�������→ H0

(
(EndE)(xi)|xi

)

(8.2)W ⊗ E|xi → W ⊗ E(xi)|xi .

0 → H0(EndE) → H0((EndE)(D)) → H0((EndE)(D)|D)
�
�����→ H1(EndE).

Ker
(
⋅ ∪ v ∶ H0(V ⊗ E) → H1(V ⊗ E)

)

H0(V ⊗ E)
evD
�������������→

p⨁

i=1

V ⊗ E|xi
(𝜆1 �𝜙1,…,𝜆p �𝜙p)

�������������������������������������������������→

p⨁

i=1

V ⊗ E(xi)|xi
𝜕�

��������→ H1(V ⊗ E),

0 → V ⊗ E → V ⊗ E(D) → V ⊗ E(D)|D → 0.

Im
(
(𝜆1 �𝜙1,… , 𝜆p �𝜙p)◦evD

)
⊆

p⨁

i=1

Vggen ⊗ Im (�𝜙i).

dimKer(⋅ ∪ v) ≥ h0(V ⊗ E) − mp ≥ k.
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which are furthermore globally generated (similar as in Sect. 6) was used in [15] to prove 
the generic injectivity of the theta map.

9 � A nonempty twisted Brill–Noether locus with negative expected 
dimension

It is well known that higher-rank Brill–Noether loci Bk
n,e

 can exhibit more complicated 
behaviour than their rank one counterparts. Here we give an example of a nonempty 
twisted Brill–Noether locus with negative Brill–Noether number, where the curve C and 
the bundle V are general. Firstly, we recall some facts about maximal line subbundles of 
vector bundles (see [27] for more general and detailed information):

Let C be a general curve of genus g ≥ 3 . Suppose r|(g − 1) , and set e0 ∶= (r − 1)
g−1

r
 . 

Let V be a general bundle of rank r and degree zero over C. A computation shows that 
�1
1,e0

(V) = 0 . As V is general, by Theorem 2.1 (3) the locus B1
1,e0

(V) is of dimension zero. 
Furthermore, for e < e0 or k0 > 1 we check that 𝜌k0

1,e0
(V) < 0 . Hence, for all L ∈ B1

1,e0
(V) , 

we have h0(V ⊗ L) = 1 and L−1 is a line subbundle of maximal degree in V. By [27, Propo-
sition 1.4 and Lemma 2.2], B1

1,e0
(V) consists of rg points (of multiplicity 1).

Proposition 9.1  Let C, r, g and e0 be as above, and let V be a general bundle of rank 
r ≥ 2 and degree 0. Let n be an integer satisfying r < n ≤ rg . Then the twisted Brill–
Noether locus Bn

n,ne0+1
(V) has negative expected dimension n(r − n) + 1 but contains a 

component of dimension at least 1.

Remark 9.2  The construction below does not require C and V to be general. The hypoth-
esis of generality is made so that the “expected dimension” makes sense.

Proof  By the previous paragraph we can choose mutually nonisomorphic 
L1,… , Ln ∈ B1

1,e0
(V) . Let

be a general elementary transformation, where �p is the skyscraper sheaf of degree 1 sup-
ported at p ∈ C . Then E is stable by [24, Théorème A.5], and h0(V ⊗ E) ≥ n . The Quot 
scheme parametrising the elementary transformations E has dimension n; after acting by 
Aut

(
⊕n

i=1
Li
)
 , we see that there is precisely one stable E for any given p. Thus 

dimBn
ne0+1

(V) ≥ 1 . On the other hand, we compute easily that

Since by hypothesis n > r ≥ 2 , this is negative. The result follows. 	�  ◻

In exactly the same way, one can prove

Proposition 9.3  Let C be a general curve and V a bundle of rank r ≥ 2 and degree d 
over C. Suppose k0 ≥ 1 and e0 are integers satisfying �k0

1,e0
(V) = 0 . Assume that

0 →

n⨁

i=1

Li → E → �p → 0

�n
n,ne0+1

(V) = 1 − n(n − r).
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Then for rk0 < n ≤ #
(
B
k0
1,e0

(V)
)
 , the twisted Brill–Noether locus Bnk0

n,ne0+1
(V) is nonempty 

and has negative expected dimension 1 − n(n − rk0).

This example shows that even for general C and general stable V, the twisted 
Brill–Noether loci can exhibit pathologies.
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