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Abstract 

Neurons and astrocytes are highly interconnected and form a complex cellular 

network for signal processing in the brain. The electrical activity of neurons and 

astroglial Ca2+ signals are tightly coupled. Parallel recording of electrical activity and 

Ca2+ signals can help to identify the molecular mechanisms of neuron-glia 

communications. In this work, flexible liquid crystal polymer microelectrode arrays for 

electrical recordings and stimulations during two-photon laser-scanning microscopy 

(2P-LSM) were developed. 

The arrays were designed for standard craniotomies used for cortical 2P-LSM in 

vivo imaging. Being of low weight, thin and flexible, they can be easily positioned 

between the dura mater and the glass coverslip. Three different designs were 

constructed: arrays (1) with eight circular electrodes (arranged in a matrix of three by 

three elements, sparing the center), (2) with sixteen circular electrodes (four by four 

matrix) and (3) with eight rectangular electrodes (placed in four groups of 2 single sites). 

The initial contact sites of gold were coated with nanoporous platinum to decrease the 

impedance of the electrode tissue contacts and to increase the charge transfer 

capability. The biocompatibility of the electrodes was confirmed by immuno-

histochemistry.  

Electrical recordings and Ca2+-imaging were performed in mice with neuronal or 

astroglial expression of the genetically encoded Ca2+-sensor GCaMP3. With the sixteen 

channel electrode arrays, an estimation of the spatially resolved electrical activity 

pattern within the cranial window could be described. The eight channel arrays were 

used in studies for simultaneous acquisition of Ca2+ (using 2P-LSM) and electrical 

signals. In addition, Ca2+ signals could be elicited by electrical stimulation. Using 

different stimulation intensities and depth of anesthesia, the change of brain activity 

during transition from anesthetized to awake state was investigated. In addition, the 

LCP technology was transferred from the cortical to a spinal cord application. 
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Zusammenfassung 

Neurone und Astrozyten bilden ein komplexes interagierendes zellulares Netzwerk 

zur Signalverarbeitung im Gehirn. Dabei sind die elektrische Aktivitäten der 

Nervenzellen und die Ca2+ Signale der Astrozyten eng aneinander gekoppelt. Parallele 

Aufzeichnungen der elektrischen Aktivität und der Ca2+ Signale können helfen, die 

molekularen Mechanismen der Neuron-Glia-Kommunikation zu identifizieren. 

Innerhalb dieser Arbeit wurden flexible Flüssigkristall-Polymer-Mikroelektrodenarrays 

für elektrische Aufzeichnungen und Stimulationen für die Zwei-Photonen-Laserscan-

Mikroskopie (2P-LSM) entwickelt. 

Die Elektrodenarrays wurden für Standard-Kraniotomien entwickelt, die für die 

kortikale in vivo 2P-LSM verwendet werden. Sie sind dünn, flexibel und von geringem 

Gewicht und können leicht auf der Dura positioniert werden. Drei verschiedene Designs 

wurden konstruiert: Arrays (1) mit acht runden Elektroden (angeordnet in einer drei mal 

drei Matrix, ohne die mittlere Elektrode), (2) mit sechzehn kreisförmigen Elektroden 

(vier mal vier Matrix) und (3) mit acht rechteckigen Elektroden (angeordnet in vier 

Gruppen von zwei einzelnen Standorten). Die ursprünglichen Elektrodenkontakte aus 

Gold wurden mit nanoporösem Platin beschichtet, um die Gewebekontaktimpedanz zu 

verringern und die Ladungsübertragungsfähigkeit zu erhöhen. Die Biokompatibilität der 

Elektroden immunhistochemisch getestet. 

Elektrische Aktivität und Ca2+ Signale wurden bei Mäusen mit neuronaler oder 

astroglialer Expression des Ca2+-Indikators GCaMP3 aufgezeichnet. Mit den sechzehn 

Kanal-Elektroden-Arrays konnten die elektrische Aktivität entlang der Kortexoberfläche 

innerhalb der Kraniotomie charakterisiert werden. Die achtkanaligen Arrays wurden zur 

gleichzeitigen Erfassung von Ca2+ (mit 2P-LSM) und elektrischen Signalen verwendet. 

Darüber hinaus konnten Ca2+ Signale durch elektrische Stimulation hervorgerufen 

werden. Mit verschiedenen Stimulationsintensitäten und der Tiefe der Anästhesie 

(Isofluran) wurde die Veränderung der Hirnaktivität beim Übergang von anästhesiert zu 

wach beobachtet. Zusätzlich konnte die Flüssigkristall-Polymer -Technologie von der 

kortikalen auf die spinale Anwendung übertragen werden. 
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1 Introduction 

central nervous system (CNS) have a great disabling impact on everyday life and cannot 

be cured, as of today. Injuries (such as traumatic brain injury or stroke) can also very 

often have long-

often only be partially restored. One reason is the complex cellular network in the CNS. 

Neurons and glial cells are highly interconnected and communicating via different 

pathways. By deciphering cell activities and reactions in detail, and also in combination, 

better therapies can be developed. Hence, it is important to develop new methods as 

well as combine and optimize existing methods. 

1.1 The central nervous system of the mouse 

The CNS of mammals consists of the brain and the spinal cord. It transits and 

processes sensory information, and coordinates and regulates organ functions and 

motion. Therefore, many different functional brain regions and complex information and 

modulation pathways exist (Figure 1.1, Table 1.1; Watson et al., 2012; Kandel et al., 

2000; Shepard, 2004; Derdikman und Knierim, 2014). An example is the visual pathway, 

which starts from the retina and goes over the optic nerve, the optic tract, the lateral 

geniculate nucleus (LGN, a structure inside the thalamus), and ends in the primary visual 

part of the cerebral cortex. Some fibres leave the optic tract (before reaching the LGN) 

and go to the midbrain, e.g. to execute the pupillomotor reflex or eye movement. Others 

end in the hypothalamus (influencing the circadian rhythm) (Remington, 2012).  
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Figure 1.1: Simplified overview of the murine central nervous system with illustrations of 
the different brain regions in a sagittal section (A, adapted from GENSAT), a coronal 
section (B, adapted from Allen mouse brain atlas), and of the spinal cord with efferent 
and afferent fibres (C, adapted from Shepard, 2004). For numbers see Table 1.1. 

 

Afferent fibres from the peripheral nervous system (PNS) transfer somatosensory 

information via the dorsal root ganglia (DRGs) through the spinal cord to the 

somatosensory cortex. Within the spine, DRGs are coupled with dorsal column nuclei, 

which have a long axon projecting to the thalamus for a first processing. Similar to the 

visual system, the information ends in the primary somatosensory part of the cerebral 

cortex (Shepard, 2004). Motor tasks involve several brain regions as well, including the 

cerebral (motor) cortex, striatum (part of the basal ganglia), and cerebellum. These areas 

have a strong interaction and interconnections with other regions like the hippocampus 

and thalamus. The motor outputs are fed forward via efferent fibres in the spinal cord to 

the ventral horns (spine output regions with motor- and interneurons), which are the relay 

stations to the peripheral nervous system. The DRGs are also connected to the ventral 

horns, so that there is a direct path between somatosensory and motor system (Kandel 

et al., 2000; Shepard, 2004). 
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Table 1.1: Selection of CNS regions (according to Figure 1.1) 

No CNS region Functions 

1 
Brain stem (Medulla 
oblongata; Pons) 

The brain stem includes several functional centres 
for vital autonomic functions (e.g. digestion, 
breathing, heart rate), and conveys neuronal 
signals. 

2 Midbrain 
Processing of sensory information and control of 
motor functions (for example eye movements and 
auditory and visual reflexes). 

3 Cerebellum Modulation of movements (force, range, learning). 

4 Thalamus 
Acting as relay station, first processing of the 
majority of the information for the cerebral cortex 
(from the rest of the CNS). 

5 Hypothalamus 
Regulation of autonomic, endocrine, and visceral 
functions (e.g. stomach, intestine). 

6 Septum Connection zone to the cerebral cortex. 

7 Cerebral Cortex 
High-level information processing (sensory, 
motor, associative and analytical region, 
sophisticated control of behaviour). 

8 Hippocampus 
Involved in learning, memory, and spatial 
navigation. 

9 Corpus Callosum 
Axonal fibres connecting the hemispheres of the 
cerebral cortex. 

10 Olfactory Bulb Olfaction.  

11 
Optic Nerve and Optic 
Tract 

Axonal fibre bundle that transmits visual 
information. 

12 Striatum Involved in motor tasks (part of basal ganglia) 

13 Amygdala Processing fear, emotion. 

14 Dorsal Root Ganglion Transmission of sensory information to the CNS. 

15 Ventral Horn 
Transmission of motor information to the 
peripheral nervous system. 

 

1.1.1 Neuronal organization of the cortex 

The cerebral cortex of the mouse is responsible for a high-level motor and sensory 

information processing. In accordance with the different tasks, the cortex displays 

clustered areas (Figure 1.2A, Mohajerani et al., 2013). In mammals, the cortex is 

organized in six layers, whereas in mice, layers 2 and 3 cannot be separated (DeFelipe, 

2011; Douglas and Martin, 2004). Approximately 80% of the neurons within the cortical 
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tissue are glutamatergic (excitatory) neurons. Pyramidal-shaped neurons are located in 

layer 2/3, layer 5, and layer 6, whereas star-shaped glutamatergic neurons are mostly 

present in layer 4 (Figure 1.2B). Pyramidal neurons are mainly interconnected within 

cortical areas, between different cortical areas (both hemispheres), and with the 

thalamus and striatum. The remaining 20% of neurons are GABAergic (inhibitory) 

interneurons balancing the activity of glutamatergic neurons. They are located in layers 

2 to 6 and are highly interconnected within the cortex, but also receiving strong inputs 

from the thalamus as well. In layer 1, there is a high-density of neuronal synaptic 

interaction (Harris and Shepherd, 2015; Harris and Mrsic-Flogel, 2013; Thomson and 

Lamy, 2007). 

 

Figure 1.2: Cellular organisation and interconnection of the mouse brain. A) Areas of the 
cortex associated with distinct sensory of motor functions (adapted from Mohajerani et 
al., 2013). Cortical area: 1) secondary motor, 2) retrospenial, 3) primary motor, 
4) primary hindlimb sensory, 5) primary upper lip sensory, 6) area with secondary 
forelimb sensory and secondary barrel sensory, 7) primary barrel sensory, 8) primary 
trunk and primary shoulder / neck sensory, 9) parietal association, 10) mediomedial 
secondary visual, 11) primary visual, 12) lateral secondary visual sensory, 13) primary 
auditory, 14) temporal association layer. B) Cortical layers and the complex neuronal 
interconnections of excitatory neurons in the somatosensory cortex (adapted from Harris 
and Mrsic-Flogel, 2013).  from/to primary thalamus,  to high-order cortex and 
contralateral cortex,  to bilateral striatum,  to subcerebral targets, higher order 
thalamus, ipsilateral striatum,  from higher order cortex and thalamus,  
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1.1.2 Glial cells of the CNS 

Another class of cells within the CNS are glial cells. These can be found throughout 

the complete CNS, interacting with adjacent neurons. Different types are classified in 

accordance with their functionality (Figure 1.3). Related to this work are astrocytes, 

oligodendrocytes, and microglia. 

Astrocytes:  

Astrocytes are star-shaped cells interacting with blood vessels, different cells of the 

CNS, and neuronal synapses. Astrocytes control the blood flow through the vessels, 

provide energy for cell metabolism, maintain brain homeostasis, sense, and modulate 

neuronal synaptic transmission (Volterra and Meldolesi, 2005). Each astrocyte controls 

a distinct region, and they have only a small overlap (Volterra and Meldolesi, 2005). 

Astrocytes can communicate together over gap junctions and purinergic transmitters, 

prominently ATP (adenosine triphosphate) and adenosine (Volterra and Meldolesi, 

2005; Fields and Burnstock, 2006; Guerra-Gomes et al., 2018). Thereby, astrocytes can 

spread neuronal information sensed at synapses to other astrocytes, which modulate 

synapses in different regions. Glial cells have not only numerous receptors for purinergic 

transmitters, but also for all major neurotransmitters, which make the interaction between 

all cells even more complex (Fields and Burnstock, 2006). For neuro-synaptic 

modulation, astrocytes can uptake and release neurotransmitters  

(Volterra and Meldolesi, 2005; Guerra-Gomes et al., 2018). They can increase both the 

excitability and the inhibition of synapses (Volterra and Meldolesi, 2005). In addition, 

transmission at the neuronal synapses can be modulated by the way how astrocyte 

processes enwrap synaptic elements of neurons (Volterra and Meldolesi, 2005). This 

regulates the isolation of the synaptic cleft and controls the adjacent release of 

neurotransmitters during neuronal communication (Volterra and Meldolesi, 2005; Fields 

and Burnstock, 2006). 

Oligodendrocytes:  

Oligodendrocytes form the myelin sheets wrapped around the axons in the CNS, which 

is important for fast saltatory action potential propagation (Tomassy et al., 2015; Simons 

and Nave, 2015; Saab et al., 2016). They have between 20 and 60 myelinating 

processes, which are connected to different axons (Simons and Nave, 2015). The 

myelinated length of axon internodes can vary in the range of approximately 20 µm and 

200 µm, with up to 100 turns from the oligodendrocyte process (Simons and Nave, 

2015). Apart from this very important function in bioelectrical information transmission, 

oligodendrocytes provide axons with lactate, which is important for the neuronal ATP 
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production (Simons and Nave, 2015; Saab et al., 2016). Oligodendrocytes are 

connected via gap junctions with other oligodendrocytes and astrocytes (Simons and 

Nave, 2015), and are involved in purinergic signal communication and can, for example, 

react to ATP released during action potential propagation with activity-dependent 

myelination (Fields and Burnstock, 2006; Tomassy et al., 2015). 

Microglia:  

Microglia are the immune cells of the CNS, which continuously survey the brain 

homeostasis with their fine processes (Nimmerjahn et al., 2005; Szepesi et al., 2018). 

Upon any insult, they become active, and rapidly change their morphological 

appearance. The soma gets larger and the processes shorter. In a state of high 

activation, they evolve into phagocytic or amoeboid microglia that have largely lost their 

processes (Nimmerjahn et al., 2005; Kettenmann et al., 2013). They migrate to the 

source of change, which could be dead cells or foreign substances. Apart from the 

functionality of the tripartite synapse (Volterra and Meldolesi, 2005) formed by neurons 

(pre- and post-synapse) and astrocytes, microglia can also modulate synaptic plasticity, 

and are involved in learning-related synapse formation (Jebelli et al., 2015; Kettenmann 

et al., 2013). They respond to synaptic activity-dependent crosstalk (released 

neurotransmitters in the surroundings) (Fields and Burnstock, 2006; Jebelli et al., 2015; 

Szepesi et al., 2018). 

 

Figure 1.3: Overview of glial cells and their contact sites and positions within the CNS 
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1.2 Recording of electrical brain activity 

1.2.1 Recordings from the surface cover mainly post-synaptic 

potentials 

The acquisition of the electrical activity of brain tissue is performed at different levels 

of invasiveness, ranging from recordings at the head surface (electroencephalography, 

EEG) to intracellular recordings within the brain. Depending on the application, different 

signal amplitudes and frequency bands (Table 1.2) have to be taken into consideration 

for signal processing and signal evaluation (Buszáki et al., 2012; Mollazadeh et al., 

2008). With electrocorticograms (ECoGs), extracellular local field potentials (LFPs) are 

acquired from the cortical brain surface. These extracellular fields are the superposition 

of the single electrical cell activity. Therefore, the LFP can contain fast action potentials 

as well as slow ionic processes in glial cells. 

 

Table 1.2: Commonly used frequency bands of bioelectrical signals (Yazdan-
Shahmorad et al., 2013; Martin, 1991) 

Name Frequency range 

Delta 0.5 Hz  4 Hz 

Theta 4 Hz  8 Hz 

Alpha 8 Hz  13 Hz 

Beta 13 Hz  30 Hz 

Gamma 30 Hz  200 Hz 

Low Gamma 30 Hz  60 Hz 

High Gamma 60 Hz  200 Hz 

 

From an extracellular perspective at an excitatory synapse, the positive charges are 

reduced in the area of the synaptic membrane. Temporarily, this makes this area - in 

relation to the extracellular area of the remaining cellular membrane segments - more 

negative, and forms a minus pole. Since the synapse is considerably smaller than the 

postsynaptic region, a positive pole is formed along the postsynaptic membrane with 

decreasing strength. This results in an asymmetric field structure for individual neuronal 

dipoles. In general, LFP frequency bands are less than 100 Hz on due to non-
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synchronized neuronal activities at physiological conditions. Synchronized neuronal 

activity can lead to higher signal frequencies in LFP recordings (Buszáki et al., 2012). 

 

1.2.2 Anaesthetics alter neuronal activity 

The administration of different anaesthetics leads to a more synchronized neural 

activity (Lissek et al., 2016; Land et al., 2012). 

molecular targets (Solt and Forman, 2007; Nau, 2008; Sanders et al., 2008; Urban, 

2008; Zeller et al., 2008), which in turn alter neuronal network activity. It is thought that 

isoflurane operat -aminobutyricacid type A receptors 

(GABAAR) and potassium channels (Franks and Lieb, 1988; Rudolph and Antkowiak, 

2004; Hemmings et al., 2005; Eikermann et al., 2011). Ketamine appears to inhibit N-

methyl- D-aspartic acid (NMDA) receptor activity (Rudolph and Antkowiak, 2004; 

Hemmings et al., 2-adrenoreceptor agonist, to 

ketamine enhances its sedative effects (Green et al., 1981; Lu et al., 2008) and exerts 

anticonvulsive properties (Green et al., 1981). Finally, urethane (ethyl carbamate) 

appears to act on both inhibitory and excitatory molecular targets (Hara and Harris, 

 (Lissek et al., 2016). 

 

1.2.3 Visually evoked potentials in mice 

Mice have different photo-receptors in the retina and can see in two different 

wavelength (light) bands. In cones, they have s-opsin and m-opsin, enabling vision in 

the ultraviolet light range and in the green light range, respectively (Figure 1.4A). 

Rhodopsin in rods enables bright-dark vision in the same light range (Tan et al., 2015). 

Visually evoked potentials (VEPs) recorded from the mouse cortex are different for 

various stimulation light and surrounding light intensities. When the mouse is dark-

adapted, already lower light amplitudes are sufficient to provoke VEPs, and the delay in 

the first negative wave is shorter (Figure 1.4B). With increasing stimulation amplitude, 

the delay of the first wave gets shorter, and the amplitude of the negative wave becomes 

higher and goes into saturation (Ridder and Nusinowitz, 2006). 
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Figure 1.4: VEP response is different for various light conditions. A) Relative sensitivity 
in mouse vision. Purple line indicates sensitivity range of s-opsin; green line of m-opsin 
and black line of rhodopsin (modified from Tan et al., 2015). B) VEPs recorded from the 
bone over the visual cortex with a stainless steel electrode show the light dependency 
of the evoked potential (modified from Ridder and Nusinowitz, 2006). 

 

 

1.3 Electrical stimulation of the CNS 

Electrical stimulation of the CNS is used e.g. in clinical routine to treat diseases like 

stimulation or depression by transcranial electric 

stimulation (Beudel et al., 2016; Kirsch and Nichols, 2013). In addition, first outcomes 

show that in case of stroke or traumatic brain injury, electrical stimulation of the brain 

can aid rehabilitation (Adkins, 2015). When artificially triggering neuronal action 

potentials with electrical stimulation, the voltage-dependent conductivity of the cell 

membrane for sodium ions (Na+) is exploited. With an electric field, the extracellular ion 

concentration at the membrane are changed and the membrane potential is reduced. If 

the stimulus threshold is reached, with the opening of the Na+ channels, an action 

potential is created. The interaction of the electric field and the excitable tissue is the 

base for artificial stimulation. It depends on the applied field and on cell orientation, cell 
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type, cellular structure, and the resulting field distribution generated by this anisotropic 

tissue (Rattay, 1998; Basser and Roth, 2000; Radman et al., 2009; Ye and Steiger, 

2015). 

 

1.3.1 Estimation of stimulation threshold for cortical neurons 

It has been pointed out that for pyramidal tract neurons of the cat motor cortex, an 

average excitability constant of about 1290 µA/mm2 (range about 1000 to 1550 µA/mm2) 

was estimated with a stimulation pulse width of 0.2 ms (Tehovnik et al., 2006). The term 

average excitability constant is the ratio of stimulation current to activate 50% of the cells 

to the squared distance between cell and stimulation electrode (Figure 1.5A). For axons, 

the constant can vary between 300 µA/mm2 (large myelinated fibres) and 27000 µA/mm2 

(small unmyelinated fibres). Stimulations in the visual cortex (V1) of monkeys were 

possible, with a current distance relationship of 675 µA/mm2 (Tehovnik et al., 2006). 

Because these values were achieved with needle microelectrodes, a spherical current 

distribution around the electrode can be assumed in the first approximation, which is 

mainly valid in the range of approximately 100 µm to 450 µm. In closer distances, a linear 

relationship, and, in wider ranges, a cubic relationship between current strength and 

electrode distance is given for cortical neurons (Rattay and Wenger, 2010; Rattay, 

2013). However, it gives an estimate which currents have to be applied for electrical 

stimulation. Taking a sphere surface in consideration, from the average excitability 

constant a current density value can be calculated using the factor 4 . The necessary 

current densities for stimulations can be estimated to approx. 100 µA/mm2 for the large 

pyramidal neurons of the motor cortex, and 25 µA/mm2 to 2150 µA/mm2 for axons. 

 

1.3.2 Time and charge dependency of electrical stimulation 

In addition to the stimulation amplitude, the duration of the stimulation pulse is also 

important, since the artificial activation of the neurons depends on the ion shift at the 

membrane. The shorter the stimulation time, the higher the stimulation amplitude that 

has to be chosen (Figure 1.5B). Two terms exist: rheobase current, which describes the 

minimum current needed to evoke an action potential, and chronaxie, which describes 

the duration of the stimulation pulse at which twice of the minimum stimulation current is 

needed (Cogan, 2006). Apart from the activation of neuronal tissue, the stimulation 
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needs to be safe to avoid tissue and/or electrode damage. Applying a monophasic 

negative current/voltage will have the best outcome in stimulation efficiency, but will also 

corrode the electrode, which leads to tissue damage when implanted electrodes are 

used. To prevent this, the stimulation signal should be charge-compensated, meaning 

that a negative and a positive current transfer the same amount of electrical charge 

during stimulation (Merrill et al., 2005) 

 

Figure 1.5: Some factors influencing electrical stimulation. A) Current to squared 
distance relationship of motor neurons in cats described with the average excitability 
constant (K). B) Relationship of stimulation pulse width and normalized stimulation 
threshold amplitude for six pyramidal neurons (represented by different lines). (IR0: 
rheobase current; S: Stimulation electrode; R: recording electrode) (Tehovnik et al., 
2006)  
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1.4 Electrodes for recording and stimulation of CNS cells 

Various electrodes have been developed that can record or stimulate neuronal tissue 

in different applications. With scalp or epicranial electrodes over the brain, the 

electroencephalogram is recorded (Figure 1.6). Epidural or subdural electrodes are used 

to acquire the electrocorticogram (ECoG) and with intracortical electrodes LFPs and 

single spike activities are captured. Usually, the electrodes become smaller with 

increasing invasiveness because of the tissue damage. In addition, the resolution 

depends on the size of the electrode sites and the electrode distance to the neuronal 

structure. For stimulation, the situation is the same. Using small electrodes close to the 

neuronal structure, a lower stimulation current can be used to achieve the current density 

threshold for electrical tissue activation compared to large or distal electrodes. 

 

Figure 1.6: Electrode types in accordance with the position after application or 
implantation (Lee et al., 2016). Typically, the signal resolution can increase with the 
invasiveness of the electrodes.  

 

1.4.1 Tissue response to implanted electrodes 

By using implantable microelectrodes, the electrical recording and stimulation can 

be performed at high spatial resolution. Needle-shaped microelectrodes are used as a 

single device to acquire LFPs and action potentials from a single point or arranged in an 

array horizontal to the cortical surface. Multipolar needle electrodes enable the 

bioelectrical recording across through the cortex. With their implantation, however, the 

tissue will be damaged, and cell reactions will occur. An inflammatory process will be 

initiated, which will activate the reaction of microglia and astrocytes, and an astrocytic 
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scar will be formed around the electrodes (Minnikanti et al., 2010; Potter et al., 2012; 

Salatino et al., 2017). The cellular response, for example, can be reduced by using soft 

and flexible materials (Du et al., 2017) or by using anti-inflammatory glucocorticoid drugs 

such as dexamethasone to attenuate inflammatory processes (Spataro et al., 2005; 

Groothuis et al., 2014; Kozai et al., 2016). 

 

1.4.2 Characterization of electrochemical properties of electrodes 

When an electrode is inserted into a solution, electrochemical reactions take place 

at the electrode-electrolyte interface, forming a phase boundary and an electrochemical 

half-cell. Helmholtz described as early as in 1879 (Geddes, 1997) that under the 

influence of a polarizing current, an electric double layer forms between a metallic 

electrode and an electrolyte, with the excess ions of the electrolyte being arranged at a 

certain distance from the electrode. With this process, an electrode potential - the so-

called open circuit potential - is formed. It can be described by the Nernst equation 

(Ciobanu et al., 2007). 

Common techniques to characterize the electrochemical properties of the electrode 

are cyclic voltammetry and impedance spectroscopy (Cogan, 2008). Both techniques 

use a three-electrode setup consisting of a working electrode (WE), reference electrode 

(RE), and a counter electrode (CE) (Figure 1.7A). WE is the electrode to characterize, 

CE acts as a current sink, and RE is usually a high stable electrode to generate a 

reference point for the voltage measurements. RE is required to measure and regulate 

the voltage over the WE (potentiostatic approach). Cyclic voltammetry is a method to 

characterize the electrochemical reactions at the electrode surface and can be used to 

compare electrodes to their ability to drive currents. The potential at the WE is swept 

within the water electrolysis window and the current flow through WE is measured. 

Integrating the current flow over sweep time is a measure about the charge transfer 

capability and is called charge storage capacity (CSC) (Cogan, 2008; Kumsa et al., 

2016). Hence, the cathodal part of the CSC (CSCC) has become common practice to 

characterize and compare electrodes used for stimulation (Figure 1.7B).  

The results of the electrochemical impedance spectroscopy describe the small signal 

frequency behaviour of an electrode. During the measurement, a sinusoidal voltage is 

applied to WE and CE, which is regulated in accordance to the measured voltage from 

WE to RE. The current flow through WE is measured and the impedance of WE is 
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calculated. The impedance of the electrode is very often presented in a diagram split in 

magnitude and phase (Figure 1.7C). Because of the electrochemical double layer at the 

electrode surface, the electrode magnitude of the impedance is lower for higher 

frequencies. 

 

Figure 1.7: Electrochemical characterization and characteristics of electrodes. A) Three-
electrode setup for potentiostatic measurements (WE: working electrode, RE: reference 

-
cell voltage]). B) Example of a voltammogram to estimate the cathodic charge storage 
capacity (CSCC: grey area; J: Current density). C) Typical impedance curve of a metal 

 D) Electrode model 
with a constant phase element (CPE), diffusion resistor (RF), and solution spreading 
resistor (RS). 
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1.4.3 Electrode model 

It started with Helmholtz, who described the phase boundary at the electrode 

electrolyte interface, followed by the development of various electrode models (Geddes, 

1997). An appropriate model for metal electrodes describes the electrode impedance by 

using three elements. Two resistors and a mathematical construction, a so-called 

constant phase element (CPE), are used (Figure 1.7D). The CPE describes the phase 

boundary with respect to surface inhomogeneities. The resultant impedance (ZCPE) is 

given by the empirical relationship of Eq. 3 (Franks et al., 2005). When the angle factor 

resistor (RF) in parallel with CPE describes the possibility to drive direct currents, 

provoking Faradaic reactions. A resistor in series (RS) describes the electrical spreading 

resistance from the electrode into the solution (and in some cases, added with the 

resistance of interconnection leads). RS depends on the geometry of the electrode 

(Eqs. 1 2, Franks et al., 2005). The complete electrode impedance (ZEl) can be 

calculated with Eq. 4. 

 

  for square-shaped electrodes   Eq. 1 

   for round-shaped electrodes    Eq. 2 

        Eq. 3 

       Eq. 4 

RS solution resistivity (72  (Franks et 

al., 2005); l: length of electrode side (square-shaped electrode); r: radius of electrode 

site (round-shaped electrode); ZCPE: Impedance of the Constant Phase Element; Y0: 

Admittance magnitude of ZCPE -1); CPE; ZEL: 

Impedance of Electrode; RF: diffusion resistor. 
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1.4.4 Platinum electroplating 

With the ongoing miniaturization of the electrodes to achieve greater selectivity, it is 

difficult to use simple metal electrodes. The electrochemical properties of traditional 

materials forming smooth electrode tissue connection (like thin metal foils) are not 

sufficient to achieve good signal recordings because of a high noise. In stimulations, 

electrode damage and electrolysis at the electrode-tissue interface may occur because 

of high current density at small electrodes (Suner et al., 2005; Szostak et al., 2017, 

Cogan, 2008; Merrill, 2005). To improve the effective surface area and thereby, the 

chemical properties, nanoporous gold or platinum on the top of the 

electrode is quite often used. For electrical stimulation, platinum is preferred on account 

of the higher ability (approximately 3.5 times; Stieglitz, 2004) to drive charges over the 

electrode-tissue contact. 

Different methods to produce highly porous platinum coatings (called platinum black) 

based on platinum reduction are already known and widely used (Kloke et al., 2011; Xu 

and Zhang, 2014; Chen and Holt-Hindle, 2010). For (electro)chemical deposition, a 

common approach is to use a salt of hexachlorplatinum acid dissolved in distilled water 

(Kloke et al., 2011; Boehler et al., 2015; Schüttler, 2007), partial completed with non-

biocompatible additives to achieve higher porous surfaces (e.g. lead nitrate (Tsuei et al., 

1991; Schüttler et al., 2005), copper (Boretius et al., 2011)). These additives could not 

be detected on the final coating, however, if they are still present and migrate to the 

outside, large cell responses could arise. Also, without such additives, an increase in the 

effective surface area in the range of factor 20 500 is still possible. In Schüttler, 2007, 

different manufacturing processes for the production of porous platinum layers in 

microelectrodes were compared. Electroplated platinum black on sputtered platinum and 

platinum foil were tested with the best results, using laser roughening prior to the 

electroplating process for both base materials because of the higher surface area.  
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1.5 Two-photon laser scanning microscopy in living mice 

1.5.1 Two-photon laser scanning microscope 

In vivo two-photon laser scanning microscopy (2P-LSM) is a common technique to 

observe cells or cell activity in the mouse CNS. High quality cellular signals are achieved 

by using high photon density at fluorescent molecules. Two photons have to arrive 

 fs) at the molecules to shift outer electrons in 

an excited state. Falling back in the ground state generates a light emission (Helmchen 

and Denk, 2005). Usually, a pulsed laser system and an objective are used to focus the 

infrared (IR) laser beam, which scans the plane or volume to observe (Figure 1.8A). 

Focusing the laser beam also has the advantage of a high spatial resolution. Owing to 

the two-photon excitation, the wavelength of the excitation light is higher (approximately 

twice) than the emission wavelength. Optical filters can be used to separate the emitted 

light, which are detected with high-sensitive photomultiplier tubes (PMTs) from the 

optical path (Helmchen and Denk, 2005; So et al., 2000). 

 

Figure 1.8: Visualizing cells and cell activity with 2P-LSM. A) Basic principle of a typical 
2P-LSM device showing the paths of IR laser beam and visible light. The tissue is 
scanned line by line by using moving mirrors to control the laser beam. With a 
synchronized digitization (A/D conversion) of the photomultiplier tube (PMT) output 
signals the images are generated. B) Top: 3D-reconstructed image of axons in layer 1 
of the somatosensory cortex showing the high interconnection of neurons. A mouse with 
neurons expressing a yellow fluorescent protein under the control of the neuronal Thy1-
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promoter (Winter et al., 2007); (image from the Department of Molecular Physiology, 
CIPMM). At the bottom: maximum intensity projection of an activity-dependent time 
series of astrocytes in the somatosensory cortex of a mouse with astrocytes expressing 
the genetically encoded Ca2+ indicator GCaMP3 (GLAST-CreERT2 x R26-CAG-lsl-
GCaMP3). The cell bodies and processes can be clearly identified and indicate the 
spatial coverage of each astrocyte (scale bars indicate 50 µm). 

 

1.5.2 Ca2+ signalling in neurons and astrocytes 

Calcium ions (Ca2+) are an important cellular messenger in excitable cells (Nowycky 

and Thomas, 2002). Intracellular Ca2+ transients may occur due to the release of internal 

stored ions or due to influx by activation of various ionotropic receptors or Ca2+ channels 

(Nowycky and Thomas, 2002; Guerra-Gomes et al., 2018). Free Ca2+ ions will be stored 

within the cell in the endoplasmic reticulum or transported to the extracellular space with 

the help of active Ca2+ pumps and transporters (Nowycky and Thomas, 2002; Shigetomi 

et al., 2016). Ca2+ triggers or changes different cellular functions, like the release 

neurotransmitters at neuronal synapses (Citri and Malenka, 2008) or of gliotransmitters 

(for example, ATP, glutamate) from astrocytes sensing neurotransmitters (Figure 1.9) 

(Volterra and Medolesi, 2005; Shigetomi et al., 2016, Guerra-Gomes et al. 2018).  

 

Figure 1.9: Astrocytic Ca2+ transients are connected with a variety of extracellular signals 
and can trigger gliotransmitter release (adapted from Guerra-Gomes et al., 2018 and 
Volterra and Medolesi, 2005). 
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1.5.3 Genetically encoded Ca2+ indicator GCaMP3 

A wide range of fluorescent molecules for in vivo experiments are available, which 

can be incorporated into living cells in different ways (Richard et al., 2018). One 

possibility is the use of transgenic mouse lines. Morphology and/or activity of neurons 

and glial cells can be visualized by expressing fluorescent molecules in a tissue- and 

cell-specific fashion. Intracellular Ca2+, as indicator of cell activity, can be investigated 

with genetically encoded Ca2+ indicators in neurons (Tian et al., 2009; Ankerboom et al., 

2012) as well as in astrocytes (Shigetomi et al., 2016). They consist of a Ca2+-binding 

domain and at least one fluorescent protein (Tian et al., 2009). A state-of-the art 

genetically encoded Ca2+ indicator is GCaMP3, which is widely used in neurons and glial 

cells. When Ca2+ is bound, it can be excited in a broad IR wavelength range 

(approximately 900 nm to 1000 nm) using 2P-LSM and it will emit light in the wavelength 

range around 510 nm (Ankerboom et al., 2012). 
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2 Aim 

New research tools are required to gain deeper insights into the complex 

functionality of the mouse central nervous system (CNS). This can be achieved by 

developing new or improved methods or by combining known methods. For this thesis 

1. electrical recording and stimulation using novel surface electrodes was 

combined with 2-photon laser scanning microscopy (2P-LSM) of mice in vivo, and 

2. the overall performance of the combined system was assessed in various 

experimental setups. 

It is a challenging to combine the different approaches in the living animal. 2P-LSM 

has a very high spatial resolution and allows contactless access to brain or spinal cord 

tissue wherever an optical path is possible. This means that a relatively large tissue 

volume (almost at the size of a µl) can be observed with 2P-LSM with sub-µm spatial 

resolution. The electrical recordings or stimulations via electrodes require direct contact 

with the tissue and cannot support such spatial selectivity over a large tissue volume. 

Therefore, a compromise must be found that allows the analysis or control of electrical 

cell activity within the window for 2P-LSM. 

 

2.1 Development of novel microelectrodes 

Considering the possible volume range of 2P-LSM, many multichannel 

microelectrodes have to be implanted into the cortical tissue or spinal cord to detect 

single neuronal activities within this volume. However, it is known that implantable 

electrodes cause inflammatory processes and gliosis around the electrodes (Minnikanti 
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et al., 2010; Potter et al., 2012; Salatino et al., 2017), which affect in vivo studies at the 

cellular and subcellular levels. Hypothesizing that no cell activation will occur by using 

surface electrodes, electrodes that can be placed on the dura will be developed 

(Figure 2.1). Owing to the different anatomical conditions and surgical methods to 

receive optical access to the brain (via craniotomy) or to the spinal cord (via 

laminectomy) (Cupido et al., 2014; Fenrich et al., 2012), the primary focus is on the 

brain. In a second step, the results will be transferred to the spinal cord. 

 

Figure 2.1: Illustration of the aim of this work. Combination of electrophysiology, using 
surface electrodes, and 2P-LSM to investigate molecular pathways and cellular 
communications in the CNS of mice under physiological and pathophysiological 
conditions. 

 

2.2 Probing the biocompatibility and long-term stability 

The hypothesis that surface electrodes will have no significant influence on the 

cellular network has to be tested. Therefore, the short-term and long-term influences of 

the surface electrode array on the cortical tissue of the CNS will be investigated. 

Inflammatory processes can be identified by analysing the responses of microglia and 

astrocytes. In addition, the bone regeneration of a craniotomy will be observed to 

determine the long-term stability of the optical window with an applied electrode array. 
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2.3 Linking electrical network activity and Ca2+ transients 

In combined experiments, the parallel use of microelectrode arrays and 2P-LSM 

will be investigated. The cellular activity of neurons and astrocytes in genetically 

modified mice will be recorded by visualizing the binding of Ca2+ to the green 

fluorescent indicator protein GCaMP3. At the same time, the electrical activity of the 

cells resulting mainly from the ion flow of sodium ions (Na+) and potassium ions (K+) 

across the cell membrane will be recorded, or initiated with electrical stimulation. In 

addition, network activity will be changed by varying the depth of anaesthesia or by 

kainate injection into the cortex, which leads to epileptic seizures (modified after Bedner 

et al., 2015). 
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3 Materials and Methods 

3.1 Surface electrode arrays 

The commercially available liquid crystal polymer (LCP) technology (Dyconex AG, 

Switzerland; Bihler et al., 2017) was selected for the surface electrodes (Figure 3.1). It 

is a novel technology in the field of microelectrodes and thus under ongoing industrial 

development. However, the LCP technology promises a good compromise between 

miniaturization, costs, and availability. In addition, the industrial LCP structures are 

flexible, but thicker compared to electrodes made of polyimide or parylene C, making 

them more robust and easier to handle. The LCP technology consisted of three polymer 

layers, each 25 µm thick. The outer layers served as base and top insulation, which 

were connected with the inner adhesive layer. The electrical structure was formed with 

two layers of gold. An inner gold layer served as the interconnection plane and, with 

the outer layer, the electrode sides and solder pads were formed. Both gold layers were 

connected by gold vias, which were produced by a galvanic process. This means that 

the gold electrode sites (and solder pads) were already coated with galvanized gold. 

technology and manufacturing processes were available. A special electrode 

assembling process was established to produce reliable microelectrode arrays for in 

vivo experiments. A miniaturized 18-pole plug (NPD-18-18-AA-GS, Omnetics) was 

soldered with a low temperature solder paste (CR11, EDSYN GmbH Europe) on the 

terminal pads. To improve the mechanical stability and to preclude short circuits during 

the animal studies, epoxy resin (TC-EP05-24, TOOLCRAFT) was used to cover the 

connector and pads. At the end, the electrode sites were covered with nanoporous 

platinum during an electroplating process (Chapter 3.2). 
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Figure 3.1: Overview of the electrode technology. 

 

3.1.1 Numerical Simulation 

To estimate how a stimulation electrode could be designed, numerical simulations 

with COMSOL Multiphysics V5.1 were performed. A block model ( 

Figure 3.2) was created to assess the electrical current distribution in the cortical 

tissue for different sizes of electrodes (electrode geometry in Chapter 4.1.1). The focus 

was on the current distribution under the electrode sites, avoiding electrode defects 

because of material limitations, and on the current distribution within the optical window 

(for 2P-LSM) enabling a direct stimulation of neurons. The model consisted of two-

layers mimicking white matter and grey matter. Both were assumed as frequency-

independent isotropic materials with electrical conductivities of 0.126 S/m (white 

matter) and 0.276 S/m (grey matter) (Datta et al. 2011). This simplification enabled the 

use of the model in stationary condition. A high conductive material (gold) was selected 

from the COMSOL database to model the electrode sites, which leads to a uniform 

potential distribution at each site. Due to low electrode impedances at short stimulation 

pulses the simulations were performed without an electrode-tissue impedance. 

 

Figure 3.2: Simplified block model of the murine brain with applied electrode. The LCP 
base material is for illustration only and was not used in the simulation.  
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3.2 Platinum electroplating 

3.2.1 Electroplating set-up 

In order to improve the electrochemical properties of the LCP electrodes, an 

electroplating system was set up to apply a coating of nanoporous platinum 

(Figure 3.3). This included a LabView control software, a digital-to-analogue converter 

(NI USB-6003, National Instruments) and a voltage-controlled stimulator (ISO-

STIM01D, NPI electronic GmbH). Although the ISO-STIM01D has more functions, it 

has always been used in voltage-controlled current mode. A large mesh electrode 

(platinized titanium, Jentner Plating Technology GmbH) acted as a counter electrode 

in the set-up for uniform current distribution. The probe and the counter electrode were 

introduced into the electroplating solution of 5 g hexachloroplatinic acid (H2PtCl6, 

Sigma-Aldrich Co. LLC) dissolved in 375 ml distilled water without additives. Enabling 

ultrasound application during the electroplating process, the solution with the 

electrodes was placed in a basin filled with tap water and equipped with an ultrasound 

module (Emmi®-12HC, EMAG AG). For a precise current-controlled process, each 

individual electrode site was separately galvanized. 

 

Figure 3.3: Top) Image of the electroplating set-up. Bottom) Schematic of the 
arrangement for electroplating (US: ultrasound, CE: counter electrode). 
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3.2.2 Probe preparation 

To prepare the electroplating probes, individual small wires (108.301.12.36/PFA, Ø 

0,0123 mm2, Rotronik-Kabel) were soldered on the terminal pads with a low-

temperature solder paste (CR11, EDSYN GmbH Europe). The connections were 

covered with epoxy resin (TC-EP05-24, TOOLCRAFT) for mechanical fixation and 

electrical insulation. A standard 2.5 mm row connector was soldered to the wires to 

provide an electrical connection to the electroplating and measuring system. The 

electrodes were electrochemically characterized by determining the electrode 

impedance and the cathodic charge storage capacity (CSCC). A system was 

constructed with the measuring system Interface 1000 (Gamry Instruments). The 

microelectrode arrays were placed in the small measuring cell and connected to a 

multiplexer to switch manually between the single electrode sites (Figure 3.4). 

 

Figure 3.4: Overview of the measuring system for electrochemical characterization. 

 

A sequence of cyclic voltammetry, observation of the open circuit potential and 

impedance spectroscopy, performed before and after electroplating, was used 

(Table 3.1). Measurements were made in 0.9% saline solution with a large stainless 

steel counter electrode (220 mm2) and a silver/silver chloride reference electrode (RE-

1B, ALS Co. Ltd.). The determination of the CSCC, the electrode model parameters, 

and the magnitude of the electrode impedance at 10 Hz was done with the analysis 

software Gamry Echem Analyst V 6.20 (Gamry Instruments). The value at a frequency 

of 10 Hz was selected because this value was in contrast to the frequently used 

impedance value at a frequency of 1 kHz within the typical frequency range of  
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ECoG recordings. In addition to the platinum-plated electrode sites, only the solution 

resistance would be visible at 1 kHz. Thus, different electroplating results would not be 

comparable at 1 kHz, since the solution resistance depends only on the size and 

geometry of the electrode. 

 

Table 3.1: Sequence and parameters for electrochemical characterization 

Measurement Settings 

Cyclic 
voltammetry 

Voltage limits 
- 0.7 V to 0.5 V against potential at 

reference electrode 
Scan speed 1 V/s 

Step size 2 mV 
Open Circuit 

Potential 
Observation time 300 s 

Impedance 
Spectroscopy 

Frequency range 
1 Hz to 100 kHz 

10 points per decade 
5 measurements per frequency 

Measuring voltage 50 mV against open circuit potential 

 

 

3.2.3 Electroplating parameters 

Different conditions and parameters were tested to identify the impact of current 

density, current type, and electroplating duration on the LCP electrodes (Table 3.2 to 

Table 3.4). The round-shaped electrodes were treated with constant and with pulsed 

currents and the rectangular electrodes with pulsed currents. The technical parameters 

of the pulsed currents were chosen with respect to the current amplitudes and total 

electroplating charge of the constant current processes. In addition, the pulse and 

pause times were selected to achieve stable electrode potentials during current pulse 

application. The impact of ultrasound was investigated by variation of the intensity for 

electroplating with pulsed current of the round-shaped electrodes. For the electroplating 

with constant current and for the rectangular-shaped electrodes, the ultrasound module 

was set to 50%. 
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Table 3.2: Overview of electroplating parameters  

Parameter Range Impact on 

Current density 
0.1 kA/m2 to 

0.4 kA/m2 

nucleation 
electroplating rate 

(mass transfer) 

Current type constant or pulsed 
constant against  

alternating nucleation rate 
Electroplating time  
(constant current) 

30 s to 90 s mass transfer 

Pulse width (pulsed current) 0.5 s to 1 s mass transfer 

Pause (pulsed current) 1 s diffusion time 

Pulse number 60 to 120 mass transfer 

Ultrasound 0%, 50%, 100% quality, stability 

 

 

Table 3.3: Electroplating conditions (EPC) for the round-shaped electrodes using 
constant current (ICC) or pulsed current (IPC). J: current density, t: constant current 
electroplating time, Q: calculated charge transferred during electroplating process for 
both methods (electrode site area: 0.018mm2), US: ultrasound setting of the device, N: 
number of applied pulses during pulsed electroplating, t1: pulse time of pulsed current, 
t2: pause between two current pulses.  

Constant current Pulsed current 

EPC 
J 

(kA/m2) 
t 

(s) 
Q 

(µC) 
US 
(%) 

EPC 
J 

(kA/m2) 
N 

t1 

(s) 
t2 
(s) 

Q 
(µC) 

US 
(%) 

ICC1 
0.1 

60 105.0 
50 

IPC1 
0.2 

60 
1 1 

210.0 
50 

ICC2 75 131.3 IPC2 90 315.0 

ICC3 

0.2 

30 105.0 

50 

IPC3 

0.3 

60 

0.667 1 

210.1 

100 ICC4 45 157.5 IPC4 90 315.0 

ICC5 60 210.0 IPC5 120 424.2 

ICC6 75 262.5 IPC6 60 212.1 

50 ICC7 90 315.0 IPC7 90 315.0 

ICC8 

0.3 

30 157.5 

50 

IPC8 120 424.2 

ICC9 60 315.0 IPC9 

0.4 

60 

0.5 1 

210.0 

100 
ICC10 90 472.5 IPC10 90 315.0 

ICC11 
0.4 

30 210.0 IPC11 60 210.0 

ICC12 60 420.0 IPC12 90 315.0 
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Table 3.4: Electroplating conditions (EPC) for rectangular-shaped electrodes with 
pulsed current (IPC). J: current density, N: number of applied pulses during pulsed 
electroplating, t1: pulse width, t2: pause between two current pulses, Q: calculated 
charge transferred during electroplating process for both methods (electrode site area: 
0.08mm2), US: ultrasound setting of the device. 

EPC 
J 

(kA/m2) 
N 

t1 
(s) 

t2 
(s) 

Q 
(µC) 

US 
(%) 

IPC1 

0.2 

60 

1 1 

960.0 

50 IPC2 90 1,440.0 

IPC3 120 1,920.0 

IPC4 

0.3 

60 

0.667 1 

960.5 

50 IPC5 90 1,440.8 

IPC6 120 1,921,0 

IPC7 

0.4 

60 

0.5 1 

960.0 

50 IPC8 90 1,440.0 

IPC9 120 1,920.0 

 

 

3.2.4 Modelling 

The evaluation of the electrode impedance with a measured magnitude value at 

one frequency is widely used and accepted to enable a quick comparison. A more 

detailed evaluation of the frequency-dependent electrode impedance was additionally 

performed by comparing the values of an electrode model. Therefore, the common 

model for metal electrodes with a constant phase element (CPE) parallel to a diffusion 

resistance (RF) and a solution resistance in series (RS) was used (see Chapter 1.4.3). 

The model parameters were extracted with the built-in fitting tool of the Gamry Echem 

Analyst V 6.20 software (Gamry Instruments). 
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3.3 Animal maintenance 

3.3.1 Animal handling and care 

All animal studies were carried out at the University of Saarland and were approved 

Saarbrücken (Germany). For all surgeries and experiments under anaesthesia, 

isoflurane was used to sedate the animals supported by a gas flow of Oxygen (02) with 

0.6 l/min and Nitrous Oxide (N2O, laughing gas) with 0.4 l/min. The animals were 

placed on a heating plate to preserve the body temperature at normal level 

(approximately 35.5°C 37.5°C) and fixed with ear bars (craniotomy) or head holders 

(experiments). The eyes were protected from drying out by applying Bepanthen 

(Bayer). The animals were treated with painkillers (buprenorphin hydro-

chloride  0.1 µl / 10 g body weight) and anti-inflammatory drugs (dexamethasone 

hydrochloride  0.2 mg / 1 kg body weight). The health of the mouse was observed by 

body weight and mouse grimace scale. 

 

3.3.2 Laboratory mice 

Three different genetically encoded mouse lines, all with C57Bl/6N background at 

minimum age of 12 weeks, were used (Table 3.5). The mice expressed the Ca2+ 

dependent fluorophore (GCaMP3) in primary neurons or in astrocytes. 

 

Table 3.5: List of genetically encoded mouse lines 

Mouse line Short description Reference 

Nex-Cre x  

R26-CAG-lsl-GCaMP3 

Activity-dependent calcium 

indicator in neurons. 

Goebbels et al. 2006 

Paukert et al. 2014 

GLAST-CreERT2 x  

R26-CAG-lsl-GCaMP3 

Activity-dependent calcium 

indicator in astrocytes (brain). 

Mori et al. 2006 

Paukert et al. 2014 

GFAP-CreERT2 x 

Rosa26-CAG-lsl-

GCaMP3 

Activity-dependent calcium 

indicator in astrocytes (spine). 

Hirrlinger et al. 2006 

Paukert et al. 2014 
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3.4 Evaluation of biocompatibility and long-term stability 

3.4.1 Identification of cellular reactions  

With immunohistochemistry, the cellular reactions of the tissue to the surface 

electrode arrays were analysed. Therefore, electrode arrays with eight round-shaped 

electrode sites (Chapter 4.1.1) were applied on the dura of the murine brain (GLAST-

CreERT2 x R26-CAG-lsl-GCaMP3 mouse). On day 3 and day 28 after the surgery, the 

brain of the mice were collected, sliced, and further treated for automated microscopy 

(AxioScan Z.1; Zeiss Jena, Germany) of fluorescent cell staining. The standard 

procedure for mouse perfusion and sample preparation is given in the Appendix 

(Chapter 8.1) and was done by Laura Caudal (Department of Molecular Physiology, 

CIPMM). With the antibodies for the staining (Table 3.6 and Table 3.7), astroglial Ca2+-

indicator GCaMP3 (GFP), reactive astrocytes (GFAP), and microglia (IBA1) could be 

labelled. In addition, -Diamidin-2-phenylindol (DAPI) was used to label the cell 

nuclei. 

 

Table 3.6: Primary antibodies (bind to cell specific antigens) 

Antibody Species Dilution Manufacturer 

GFP Goat 1:1000 Rockland 

GFAP Mouse 1:500 Novocastra 

IBA1 Rabbit 1:500 Wako 

 

 

Table 3.7: Secondary antibodies (are fluorophores and bind to the first antibody) 

Antibody Species Dilution Manufacturer 

Alexa 488 conjugated anti goat IgG Donkey 1:1000 Invitrogen 

Alexa 546 conjugated anti mouse IgG Donkey 1:1000 Invitrogen 

Alexa 647 conjugated anti rabbit IgG Donkey 1:1000 Invitrogen 
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The slice images were loaded into Matlab (Matlab 2018a, MathWorks) and 

analysed with a customized semi-automatic script. For each hemisphere a standard 

eight-point polygon was manually fitted to the image covering an area of 

1.5 mm2 ± 0.1 mm2. For quantification of the fluorescent cell images the mean values 

were calculated from these areas. The same polygons were used for the four staining 

images of one slice. 

 

Figure 3.5: Analysed cortical regions for quantification of the fluorescent cell images in 
Matlab (at an example with DAPI staining). 

 

3.4.2 Observing window transparency and angiogenesis 

The quality of 2P-LSM strongly depends on the optical access to the tissue. For this 

reason, the transparency of the cortical window was visually observed. In addition, the 

angiogenesis on the electrode within the craniotomy was analysed. For this purpose, a 

camera (AxioCam ERc 5s, Carl Zeiss; resolution: 2560 pixel x 1920 pixel, pixel size 

2.2  ) mounted on a stereomicroscope (Stemi 2000-C, Carl Zeiss) was 

used. With the ZEN-Software (ZEN 2.3 (blue edition), Carl Zeiss) single images were 

captured and saved without any image processing. With a customized Matlab tool 

(Matlab 2018a, MathWorks), the angiogenesis was automatically analysed. The 

influence of dexamethasone was investigated, because former experiments within the 

department indicated that dexamethasone hydrochloride could have a positive 

influence on window transparency. For this study, three different dexamethasone 

protocols were used (Table 3.8).  

With a custom-made tool to analyse the angiogenesis (Figure 3.6) on the electrode 

surface, the original images (A) were loaded into Matlab, split into the three different 

colour channels (red, green, blue), and converted to grey-scale images (B). Because 

no structural information were visible, with the red channel, image masks were 



Materials and Methods 

 
 

35 

generated by detection of the round electrode head and brightness thresholding (C). 

The other two channels were averaged and used for vessel detection. A median filter 

(45 pixel x 45 pixel; Appendix Chapter 8.3) was applied to increase the intensity of the 

electrode interconnection tracks, which were also visible on the images, in contrast to 

the vessels (D). Median filtering is a typical processing method to reduce small 

foreground  information e.g. noise (Najarian and Splinter, 2012). These background 

images were used to calculate the difference images from the averaged channels (E). 

After masking and binarization (F), the number of bright pixels was counted and the 

area covered by the vessels were calculated (G). 

 

Table 3.8: Dexamethasone groups to study the angiogenesis on electrodes 

Dexamethasone 
group 

Administration of dexamethasone 

1 No dexamethsone 

2 Dexamethasone in the first 3 days after surgery 

3 
Dexamethasone in the first 3 days after surgery 

and every 7th day 
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Figure 3.6: Processing steps of the Matlab tool to analyse the angiogenesis on the 
electrode surface. A) Original images with reddish vessels on the electrode surface. B) 
RGB images of A converted in grey scale images. C) Generated masks from the image 
of the red channel. D) Images after median filtering of the mean images from green and 
blue channel. E) Substraction image of B (mean image if green and blue channel) and 
C. F) Final image after binarization and masking. G) Determination of the area covered 
by blood vessels.  
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3.5 Two-photon laser-scanning microscopy 

In vivo 2P-LSM was performed with a four-channel custom-made device 

(Figure 3.7; block diagrams of device and filter settings is given in Appendix 

Chapter 8.2) controlled by the software ScanImage (SI 2017b). The excitation 

wavelength of the IR-Laser was 910 nm (generated of a tuneable Chameleon Ultra II 

Laser, Coherent) and focused with a 20x water-immersion objective (W Plan-

Apochromat, Carl Zeiss). For Ca2+-imaging, the photomultiplier tube H10770PB-40 

(Hamamatsu) was used. The sizes of the images and the scanning speeds were 

changing in accordance with the field of view (FOV), but the resolution was always set 

to 0.5 µm x 0.5 µm pixel edge length. Independently of the number of recorded 

channels, the 2P microscope was equipped with all optical filters. 

 

Figure 3.7: Custom-made two-photon microscope. A) Overview of main components 
inside the microscope cabinet. 1) Laser; 2) Pockels cell for laser power control; 3) 
shutter to enable tissue excitation during imaging; 4) photodiode for calibration; 5) scan 
head providing the interface for in vivo 2P-LSM. B) Optical recording unit of the scan 
head. 1) Objective; 2) filter and photomultiplier tube unit (four channels); 3) mouse table 
base. 
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Image processing was done with Matlab 2018a. In the first step movement artefacts 

of the acquired time series were reduced with a pixel-based correlation algorithm to 

align the single images (Evangelidis and Psarakis, 2008). In the second step, for 

astrocytic Ca2+ related signal the custom-made software MSparkles (developed by G. 

Stopper, Department of Molecular Physiology, CIPMM) was used to automatically 

identify and to classify single Ca2+ transients. For neuronal Ca2+ related signals a 

customized script was used to select the pixels inside single cells or along a line and 

to calculate the mean image brightness. In additional steps, Matlab was used for 

parameter extraction and visualization. 

 

3.6 Technical equipment for electrophysiology 

3.6.1 Set-up for recording of the electrical activity 

Two recording set-ups were used. The first was a 16-channel recording system 

while the second was a commercial four-channel recording system with integrated 

stimulation module (PowerLab 26T, ADInstruments, amplitude resolution: 16 Bit). 

The first recording system (Appendix Chapter 8.4) was built with a 16-channel 

biosignal amplifier (g.USBamp, g.tec medcial engineering) and a self-developed 

recording software (Matlab / Simulink, MathWorks), which was running on a 

commercial personal computer (CPU: i7-4770HQ 3.4 GHz, main memory 8 GB RAM, 

hard drive: SSD SATA 6 Gb/s, Windows 7). The recording device was connected via a 

USB 2.0 link and the signals were acquired with 1.2 kS/s. For each input user-

selectable input filters were assigned, which were chosen with a band pass filter of 

0.5 Hz to 250 Hz and a notch filter of 50 Hz. An additional preamplifier (g.HEADstage, 

gTec) t

circuit potential was used. The recording software collected and stored the signals. The 

electrical brain activity could be visualized in the time domain as well as in the frequency 

domain. In combined experiments with 2P-LSM or stimulations (electrical, visual), one 

or two input channels were used to acquire synchronization signals. No filters were 

applied to the synchronization signals. Matlab 2018a was used to visualize and analyse 

the signals after recording. 
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3.6.2 Set up for electrical stimulation 

The stimulation system was constructed with a commercial available stimulator 

(ISO-STIM 01D, NPI electronic) connected via a digital-to-analogue output card (NI 

PCI-6723, National Instruments) and a self-developed control software (LabView, 

National Instruments) running on the same personal computer as the software for the 

recording device. For synchronization purposes with the recording system or with the 

two-photon microscope, a second output channel of the analogue output card was 

used. The output sampling rate was always set to 100 kHz. 

 

3.6.3 Set up for visually evoked potentials 

Visually evoked potentials (VEP) were generated by using a round green light 

emitting diode (LED) with a peak wavelength of 505 nm (bluish green colour) and 

spectral half wavelength of 40 nm (MCL053BGC, multicomp). The LED was covered 

with a black tube, which was used to hold the same distance (2 cm) to the mouse eye 

and to minimize light artefacts using the LED during 2P-LSM. The electrical recordings 

were performed with the multichannel recording system (Chapter 3.6.1), and in 

recording-only studies, the mice were placed in a Faraday cage. With this, the electrical 

noise of the surroundings could be minimized. After initial experiments, the minimal 

light conditions could be estimated (see Appendix Chapter 8.5). The stimulation device 

described earlier was used to drive the LED currents. Matlab was used to analyse the 

evoked potentials by calculation of the energy equivalent of the VEP in total (Eq. 5) and 

separated in the different frequency bands after a fast Fourier transformation was done 

(Figure 3.8). 

         Eq. 5 

E: Equivalent of signal energy; fs: sampling rate of the acquisition; xi: one ECoG 
sampling point; n: total number of sampling points 
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3.6.4 Visually evoked potentials in mice after cuprizone-induced 

demyelination 

Cuprizone is a copper-chelating toxin that selectively affects oligodendrocytes and 

induces demyelination in mice when administered with food. It influences the cell 

metabolism with a continuous, but not completely understood, process, and leads to 

the death of oligodendrocytes as long as the food is administered. Remyelination starts 

within a few days after the re-administration of normal food and goes on for 

approximately two weeks (Linder et al. 2007). For food preparation, a mixture of 1.5 g 

(0.3 %) or 1 g (0.2%) cuprizone powder, 500 g high nutrient power food, and 350 ml 

water was mixed, pressed, dried, and stored at 4°C. The mice had unrestricted access 

to food. To check whether the VEP could be used to identify an ongoing demyelination, 

ECoG were compared in mice fed with cuprizone and with normal food. Cuprizone 

feeding started with the 0.3% mixture one week after surgery and was maintained for 

one week, followed by the 0.2% mixture for two weeks. VEPs were recorded twice per 

week per mouse. 

 

Figure 3.8: Calculation of the energy equivalent of the visually evoked potentials. 
A) Recorded ECoG (blue) and the stimulation synchronization signal (red).  
B) Calculated VEP by signal averaging in accordance to the stimulations single 
stimulations. C) Identification of peak value, calculation of the energy (area under 
squared VEP) and calculation of the signal energies per frequency band after fast 
Fourier transform. 



Results 

 
 

41 

4 Results 

4.1 Cortical surface electrode arrays 

4.1.1 Electrode design  

Three different electrodes were designed for the stimulation and recording of the 

 (Figure 4.1A, B). Arrays with (1) 16 circular electrodes (four-

by-four matrix), with (2) eight circular electrodes (arranged in a matrix of three-by-three 

elements, sparing the centre), or with (3) eight rectangular electrodes (placed in two 

groups of four single sites) providing different main properties. Electrodes (2) and (3) 

had large optical windows to enable 2P-LSM in large tissue regions. The round 

electrode heads were 3 mm in diameter for the eight channel electrodes and 4 mm in 

diameter for the 16-channel electrode. These values were selected with respect to the 

size of the standard craniotomies and the necessary space for the electrode sites. The 

catwalk of each electrode array had a length of 3 mm and a width of 1.1 mm. The same 

nanoconnector was used for all electrode arrays, therefore the size of the connector 

pad area was 8.2 mm x 7.4 mm for each one. The distance between the electrode sites 

and the optical window as well as the round-shaped electrode site sizes were chosen 

as per the manufacturer minimum recommendations. For the 16-channel array, the 

arrangement of the round-shaped sites was chosen uniformly spaced (centre centre 

distance: 750 µm). The electrode size and the electrode gap were adapted to the eight-

channel electrode array. The size and arrangement of the rectangular-shaped 

electrode sites (two groups of four 400 µm x 200 µm electrode sites) were chosen in 

accordance to the simulation results. The electrode sites can be used in single 

electrode configuration for a higher selectivity, or connected together generating a 
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broader and more uniform current distribution. A good compromise in terms of 

selectivity and current transfer capability was found. 

One or two additional wires could be soldered to the 18-pin connector (Figure 4.1C) 

when using additional ground or reference electrodes. With the epoxy resin, the 

connector and the additional wires were well secured. A scanning electrode microscope 

was used to visualize the surface structure of the electrode sites (Figure 4.1D). The site 

surface indicates a stable rough surface with a ball-like structure. After the experiments, 

no gold or platinum remnants were observed on the brain of a mouse. The white LCP 

base structure of the electrode, which reflects most of the IR laser beam of the two-

photon microscope, enabled an easy access to the window for imaging. But due to the 

laser focusing for high-resolution two-photon excitation (So et al., 2000; Helmchen and 

Denk, 2005), a shadowing effect decreased the accessible area with increasing 

imaging depth (Figure 4.1E). The strength of this effect depended strongly on the 

physical properties and settings of the microscope. With a window edge length of 1 mm, 

an imaging depth of 400 µm was estimated for a FOV edge length of 512 µm. When 

the FOV size was chosen smaller, the imaging depth could be increased. 

 

Figure 4.1: LCP electrodes for cortical application. A) General design of the surface 
electrode array consisting of the round-shaped electrode head, the connector area and 
a small catwalk enabling the application of the electrode head inside a craniotomy.  
B) Designs of the three different electrode heads. (1) sixteen-channel electrode with 
focus on recording, (2) eight-channel electrode with focus on combined 2P-LSM and 
electrical recording and (3) eight-channel electrode with focus combined 2P-LSM and 
electrical stimulation. C) Image of an assembled electrode array with one additional 
wire to connect a separate ground-electrode. D) Eight-channel electrode head and 
scanning electrode microscope image of one electrode site, showing the surface 
structure. (E) Example of shadow effect due to the laser focusing. The surface of the 
electrode around the window reflects the laser beam whereby the detectable tissue 
area decreases with the imaging depth. The IR reflection is visible as bright border. 
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4.1.2 Current density reduction by enlargement of electrode sites 

varies within the cortical tissue 

Numerical simulation with COMSOL Multiphysics was used to estimate the current 

distribution under the electrode and within the cortical tissue supporting the electrode 

design process (Figure 4.2). 

In a first simulation a configuration with two electrode sites, varied in size, was used 

in combination with a constant current of 200 µA. After current application to the 

electrode sites, the current did not enter the tissue homogeneously (Figure 4.2A). This 

effect was already described as edge effect (Wang et al., 2016). At the electrode edges, 

the current density and the material stress were highest at these locations. With an 

increase in the distance to the electrode (direction into the tissue), the edge effect in 

the current distribution decreased. The stress to the electrode sites could be reduced 

by selecting larger electrode sites. However, this resulted in a general decrease in the 

current density under the electrode, and a higher current would have been necessary 

enabling electrical stimulation.  

In order to obtain information about the relationship between the residual current 

density and the electrode geometry, the current density was calculated for different 

electrode sizes (Figure 4.2A, B). The analysis was performed by increasing the 

electrode width from 50 µm to 400 µm or 600 µm (electrode site length 400 µm) and by 

increasing the electrode site length from 100 µm to 400 µm or 600 µm (electrode site 

width 400 µm). The results showed that the residual current density under the electrode 

was much lower than in the FOV, and that the reduction decreased with increasing 

distance. The effect of the increasing electrode site length on the current distribution in 

the field of view was less than the influence of the electrode site width. The difference 

between the current density in the tissue under the electrode and the tissue below the 

electrode window decreased with larger electrode sites. This could be important for a 

safe stimulation considering electrode stability and tissue damaging (Merrill, 2005). 

Based on these results and to create a more flexible electrode design, the size of a 

single electrode was determined to be 200 µm x 400 µm. These were arranged in two 

groups of four electrodes each to the left and right of the electrode window. Thus, it 

was also possible to generate larger electrodes by using two or four electrodes together 

(Figure 4.2C). Additionally, it was possible to use the electrode sites with different 

currents to influence the area of direct electrical activation. 
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Figure 4.2: Current density distribution in numerical simulations. A) Current density 
distribution with used current of 200 µA along two straight lines (1 µm and 100 µm 
below the surface) across the electrode sites and FOV in a two electrode site 
configuration. B) Analysis of the residual current density in the middle of FOV and of 
electrode sites for different distances from the surface into the cortical tissue. Left: 
change of the electrode width from 50 µm to 400 µm or 600 µm (electrode length 
400 µm). Right: change of length of electrode from 100 µm to 400 µm or 600 µm 
(electrode width 400 µm). C) Examples of current distribution using different electrode 
stimulation currents. Blue surface represents the area where a current density of 
100 µA/mm2 was calculated, green surface represents 500 µA/mm2. I1: current 
between the inner electrodes, I2: current between the outer electrodes. Left: the outer 
and the inner electrodes drive the same current (I1=I2=30 µA). Middle: the inner 
electrodes drive the inverse current of the outer electrodes (I1=I2=30 µA). Right: inner 
electrodes drive a current with lower amplitude than the outer electrodes, which flows 
in the opposite direction (I1=10µA, I2=50 µA). 
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4.2 Platinum electroplating improves the electrochemical 

characteristics of the LCP electrodes 

4.2.1 Application of ultrasound prevents coating defects 

During the electroplating processes with current densities above or equal to 

0.3 kA/m2, gas bubbles were clearly visible on the surface of the electrode sites 

(Figure 4.3A). The bubbles generated by water electrolysis isolated the surface. This 

led to an inhomogeneous and incomplete platinum coating of the electrode surface. 

Holes of different sizes were created in the platinum layer, reducing the stability of the 

coating. In addition to the defects visible immediately after the electroplating process, 

the electrochemical characterization also blasted off parts of the coatings and 

increased the size and number of the defects (Figure 4.3C, D). With the use of 

ultrasound, the bubbles could be immediately removed from the surface and the 

platinum electroplating could be performed over the entire electrode surface 

(Figure 4.3B). 

 

Figure 4.3: Gas bubble formation during electroplating process. A) Rectangular-shaped 
electrode during an electroplating process with a high current density of 0.5 kA/m2 
provoking a large hydrogen bubble on the electrode contact (white arrowhead).  
B - D) Differences in platinum electroplating with and without US at a current density of 
0.3 kA/m2 applied to round-shaped electrodes. B) Electrode sites after electrochemical 
characterization if US was used. C) Electrode sites prior electrochemical 
characterization if no US was used. D) Electrode sites of C) after electrochemical 
characterization. 
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4.2.2 Electroplating with constant current is highly parameter-

dependent 

Electroplating of the electrode sites from the round shaped electrode with constant 

current was done with four different current densities ranging from 0.1 kA/m2 to 

0.4 kA/m2 (see Chapter 3.2.3). The electroplating time was between 30 s and 90 s, in 

steps of 15 s or 30 s.  

The impedance magnitude at a frequency of 10 Hz ranged (over all values) from 

approximately 30  Figure 4.4A), showing a high dependence on the 

electroplating parameters. The impedances were highest (mean values around 

300 due to the use of a current density of 0.1 kA/m2. About 50% of this electrode 

impedance could be achieved with 0.3 kA/m2 and 0.4 kA/m2 for the selected plating 

times. In addition, the results for the two highest current densities showed no significant 

difference (mean values between 130 and 180 

0.2 kA/m2, the lowest impedance with a mean value of approximately 40 

achieved. The impedance magnitude decreased gradually with increasing 

electroplating time until a plating time of 75 s was reached. Thereafter, an increase in 

the impedance magnitude was visible, indicating that the highest surface roughness 

had already been achieved. With a plating time of 90 s the value of the impedance was 

in the same range as with a plating time of 60 s. Compared to the gold electrodes, the 

impedance reduction was always over 90% (Figure 4.4B). In the best case, the 

impedance was reduced to a value of around 1% from the original value. 

With the electroplating processes, cathodic charge storage capacities in the range 

of approx. 1,500 µC /cm2 to 10,000 µC/cm2 could be achieved (Figure 4.4C). The trend 

of all measurements was in line with the electrode impedance magnitude, showing the 

best result at a current density of 0.2 kA/m2 and an electroplating time of 75 s. The 

lowest CSCC were achieved with a current density of 0.1 kA/m2. The CSCC for 

0.3 kA/m2 and 0.4 kA/m2 were in between and showed a low dependence on the plating 

time.  

The open circuit potential (OCP) measured against an Ag/AgCl reference electrode 

was measured after a waiting time of 300 s following the cyclic voltammetry. The mean 

values were almost in the range of 0.41 V to 0.48 V with a variation of approximately 

50 mV within one electroplating condition (Figure 4.4D). Only the OCP values of the 
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third process (0.2 kA/m2, 30 s) were around 0.1 V. This large difference indicated 

incomplete coating of the electrode sites with platinum. 

 

Figure 4.4: Electroplating with constant current (ICC) for round-shaped electrodes. The 
best results (lowest magnitude of impedance and highest cathodic charge storage 
capacity (CSCC)) were achieved for a current density of 0.2 kA/m2 and an electroplating 
time of 75 s (EPC ICC6). A) Impedance magnitudes at f = 10Hz (|Z10|). B) Relative 
change in impedance magnitudes compared to the gold electrodes at f = 10 Hz. C) 
CSCC of platinized electrodes. D) Open circuit potentials (OCP) after 300 s in saline 
against an Ag/AgCl-reference electrode. (Statistical analysis: two-tailed t-test; 
* p < 0.05; ** p < 0.01; *** p < 0.001, ****p < 0.0001) 
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4.2.3 Pulsed current electroplating generates similar results for 

round-shaped and rectangular-shaped electrodes 

Round-shaped electrodes 

The round-shaped electrode contacts were electroplated with pulsed currents of 

three different current densities ranging from 0.2 kA/m2 to 0.4 kA/m2 (see 

Chapter 3.2.3). 60 pulses, 90 pulses, or 120 pulses were applied. In addition, the 

results of different ultrasound (US) power settings (50% or 100%) were tested for the 

current densities of 0.3 kA/m2 and 0.4 kA/m2. 

The magnitude of the impedances of the electrode impedance at the frequency of 

10 Hz were lower than 100 

(Figure 4.5A). Compared to the impedance magnitudes of the gold electrode, these 

values were approximately in the range of 1% to 4% from the original measurements 

(Figure 4.5B). Across the different electroplating current densities, the electroplating 

processes with 0.2 kA/m2 resulted in the same impedance range than the electroplating 

processes with 0.4 kA/m2. The impedance magnitudes generated with a plating current 

of 0.3 kA/m2 were approximately 20% lower than in the other conditions. The number 

of applied pulses had only an effect at , when low currents 

or small number of electroplating pulses were used. With one exception (electroplating 

condition 3 to 4), no significant difference between the settings of 50% or 100% US 

power. Both indicated that a certain amount of electrical charges was needed to 

decrease the variability in the impedance of the electrodes. Compared to the 

electroplating with constant currents, the impedances after both electroplating methods 

were in the best cases very similar. 

In line with the results of the impedance magnitudes, the achieved CSCC were best 

for the electroplating with a current density of 0.3 kA/m2 ranging from 9,200 µC/cm2 to 

12,700 µC/cm2 (Figure 4.5C). Thereby, the CSCC was also in the same range as in the 

best case with constant current. As with the impedance, there was no indication that 

the ultrasound power had a directed impact on the result. Over all electroplating 

conditions, there were no significances, once an improvement at 100 % (condition 4 to 

7), and once at 50 % (condition 9 to 11) US power visible. The OCP mean values were 

within 0.42 V to 0.49 V (Figure 4.5D). With the exception of PC5 (138 mV) and PC11 

(244 mV), the OCPs of the electrodes were within a range of 100 mV. This range was 
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almost twice as high as the values from the electroplating with constant current. The 

low OCPs in PC11 indicated that the electrode sites could have defects in the coatings. 

 

Figure 4.5: Electroplating with pulsed current for round-shaped electrodes. The best 
results (lowest magnitude of impedance and highest cathodic charge storage capacity 
(CSCC)) were found for current densities of 0.3 kA/m2. A) Impedance magnitudes at 
f = 10Hz (|Z10|). B) Relative change in impedance magnitudes compared to the gold 
electrodes at f = 10 Hz. C) CSCC of platinized electrodes. D) Open circuit potentials 
(OCP) after 300 s in saline against an Ag/AgCl-reference electrode. (Statistical 
analysis: two-tailed t-test; * p < 0.05; ** p < 0.01; *** p < 0.001, ****p < 0.0001) 
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Rectangular-shaped electrodes 

The rectangular-shaped electrodes were coated with platinum driven by pulsed 

currents. Current densities of 0.2 kA/m2, 0.3 kA/m2, and 0.4 kA/m2 and ultrasound in 

50% power setting were applied. For each current density, 60 pulses, 90 pulses, or 

120 pulses were used. 

The measured impedance magnitudes at 10 Hz were in the range from 6 

28 Figure 4.6A). The best results were achieved at 0.2 kA/m2 with 120 pulses and 

0.3 kA/m2 with 90 pulses (Figure 4.6A, B). very poor 

using current densities of 0.4 kA/m2. The reduced impedances were within 1-5% 

compared to the impedance of the gold sites (Figure 4.6B). Taking the geometric 

surface area into consideration, an area impedance  could be calculated by impedance 

magnitude multiplied with geometric surface area. Based on all measurements, for the 

rectangular electrodes, values of 0.48 2 (6 to 2.24 2 (20 , and for 

the round-shaped electrodes coated with pulsed currents values of 0.54 2 

(30 1.8 2 (100 With a current density of 0.3 kA/m2 and 

90 current pulses the values were 0.54 m2 to 0.9 m2 for the round-shaped 

electrodes and 0.48 k m2 to 0.68 kAmm2 for the rectangular-shaped electrodes. This 

indicated that the electroplating process produced comparable surface porosities for 

both types of electrodes.  

The CSCC were highest for 0.3 kA/m2 and 60 pulses with values around 

12.000 µC/mm2 (Figure 4.6C). Considering the higher variation of the CSCC of the 

round-shaped electrodes, the values of the rectangular-shaped electrodes were also 

similar to the previous one. The mean OCP ranged from 0.39 V to 0.49 V (Figure 4.6D) 

and was mostly within a range of 100 mV. This was also in line with the measurements 

of the round-shaped electrodes. 
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Figure 4.6: Electroplating with pulsed current for rectangular-shaped electrodes. The 
results were similar compared to the round-shaped electrodes electroplated with pulsed 
currents. A) Impedance magnitudes at f = 10Hz (|Z10|). B) Relative change in 
impedance magnitudes compared to the gold electrodes. C) Cathodic Charge Storage 
Capacities (CSCC) of platinized electrodes. D) Measured open circuit potentials after 
300 s in saline against an Ag/AgCl-reference electrode. (Statistical analysis: two-tailed 
t-test; * p < 0.05; ** p < 0.01; *** p < 0.001, ****p < 0.0001) 

 



Results 

 
 

52 

4.2.4 Electrode model parameters reflect the increase in surface 

porosity 

The extraction of the model parameters (for constant phase element (CPE), solution 

resistor (RS), diffusion resistor (RF); Chapter 1.4.3) was done for all measurements of 

platinum electrodes. Due to the size of the electrode sites and the measurement 

frequency range, RF could not be reliably determined (values from 1  ). For 

analysis of the model parameters, RS were set in 

relation to the admittance value (Y0) of the CPE (Figure 4.7). 

RS for the round-shaped electrodes after both electroplating methods was in the 

range of 2  ± 300 . This indicated a measurement variance due to room 

temperature change as well as some manufacturing tolerances of the electrode sites 

(Figure 4.7A, C). For the rectangular-shaped electrodes, RS was within 

0.95  ± 100 Figure 4.7E), which was approximately the half of the round-shaped 

electrode value due to the larger electrode. Over all measures, no relation between RS 

and Y0 was visible indicating that the geometric areas were not differently affected by 

the electroplating process (Figure 4.7A, C and E). However, the impedance variations 

from the previous chapters were also visible in the value distribution of Y0. The angle 

factor  ranged from 0.85 to 0.94 over all electroplating processes and had no 

dependence on Y0 (Figure 4.7B, D and F). 

In the results of the pulsed current plating process, some higher derivations were 

visible. For these points, there were also higher Y0 and lower RS values. For the 

electroplating processes IPC 5 and IPC 11 (strongest derivation) also, the OCP had a high 

variability compared to the other processes, indicating inhomogeneous coatings. Y0 of 

the rectangular electrodes was within 1.5 Ss  to 4 Ss  (Figure 4.7E) and therewith four 

times higher than Y0 of the round-shaped electrodes with the same electroplating 

process. This matched the ratio of geometric surface areas and demonstrated the 

reliability of the electroplating process. The angle factor  (Figure 4.7F) was also in the 

same range as for the other plating processes with the highest variation for the highest 

current strength.  
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Figure 4.7: Electrode model parameters of the platinized electrodes. A, B) Solution 
resistor (RS) and angle factor of constant phase element (CPE) for electroplating 
with constant current of the round-shaped electrodes. C, D) RS 
with pulsed current of the round-shaped electrodes. E, F) RS 
with pulsed current of the rectangular-shaped electrodes 
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4.3 Electrode design supports an fast and reliable 

application in standard surgeries 

4.3.1 Electrodes applied during craniotomy 

Electrodes could be placed on the dura during a standard craniotomy, which was 

adapted from Cupido and colleagues (Cupido et al., 2014). Using a scalpel, scissors, 

and a forceps, the skin and hairs at the head were removed (Figure 4.8A). A driller 

(GG 12, PROXXON) and a drill bit with a diameter of 0.9 mm (FST 19008-09, Fine 

Science Tools) were used to make a small hole in the bone over the somatosensory 

cortex of the left hemisphere or the cerebellum. A short platinum wire (Ø350 µm, 

TM11S0351N, CONATEX) acting as ground and reference electrode was placed into 

the hole and fixed with dental cement (RelyX®, 3M ESPE) on the skull. With a second 

drilling, the craniotomy was made over the somatosensory cortex (lateral = 1.5 mm and 

longitudinal = 2 mm from the bregma) of the right hemisphere with diameters between 

3 mm and 5 mm. During the drilling processes, a cortex buffer was used to clean the 

scull and to keep the bone slightly wet.  

 

Figure 4.8: Electrode application during a craniotomy. A) Stepwise implantation of an 
electrode array with eight round-shaped electrode sites and one platinum wire. B) The 
sixteen-channel electrode was applied in the same way as the eight-channel electrode. 
C) 3D-printed head holder to cover the surgery site, to secure the electrode connector 
and to fasten the mouse under the 2P-LSM. D) Mouse after surgery and first recovery 
of approximately one hour. 
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After removing the bone, the sterilized (70% Ethanol) and cleaned (cortex buffer) 

electrode array was placed. A round-shaped coverslip was put on the electrode head 

and fixed to the bone with dental cement. The wire from the electrode was tightly 

wrapped around the platinum wire and also fixed with dental cement. A custom-made 

3D-printed head holder (Figure 4.8B, technical drawing in Appendix Chapter 8.7) was 

glued (dental cement) on top. The mouse became used to the electrode and head-

holder within approximately 1h after surgery and had no difficulty wearing the system. 

The weights of a head-holder and of an electrode were 0.66 g or 0.08 g, respectively.  

 

4.3.2 Electrodes applied during a laminectomy 

After the first successful implantation of the surface electrodes onto the cortex, two 

electrodes with three electrode sites were designed for the spine application 

(Figure 4.9). The assembling process was the same as for the cortex electrodes 

(soldering connector, fixation with epoxy resin, and electroplating). A standard 3-pin 

connector with 1 mm pitch was used, and the size of the electrodes  sites was 

400 µm x 200 µm. 

The electrodes were applied during a modified laminectomy process (Fenrich et al. 

2012) directly on the dorsal surface of the lumbar spinal cord after resection of the 

dorsal laminae of the vertebrae T13 and L1 to expose the lumbar spinal segments L1 

and L2 for chronic 2P-LSM imaging. Therefore, the animals` spinal column was fixed 

with modified paper clips and clamps to stabilize the spinal cord and to lift up the body 

while imaging sessions to prevent breathing artefacts. After removal of the laminae and 

cleaning the meninges from debris with ACSF, a separate platinum (Ø350 µm, 

TM11S0351N, CONATEX) wire was put into the surgery site and a thin sheet of cured 

silicone (approximately 0.5 mm, Fresh® clear, Dreve Dentamid GmbH) was placed on 

the electrodes. An additional thin layer of liquid silicone was put on the first silicone 

layer. After that, a cover slip was placed on the silicone and fixed with dental cement. 

The catwalk and connector pad were glued to the skin. The mirrored electrodes enabled 

the connection of the stimulation and recording system. The platinum wire was used as 

ground electrode. 
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Figure 4.9: Spinal surface electrodes. A) Electrode design of two mirrored arrays with 
three electrode sites. B) Assembled and platinized electrode. C) Overview of the 
surgery procedure (a-c). a) Surgery site after removal of the vertebras and artificial 
stabilization. b) Surgery site with applied electrodes and ground wire. c) Surgery site 
after application of silicone, cover slip, and fixation with dental cement. d) Mouse under 
the 2P-LSM with connected electrodes for stimulation and recording. 

 

 

4.4 Electrode arrays do not cause inflammation  

at cellular level 

The cellular reaction after craniotomy and electrode application was investigated in 

short-term (three days after electrode application (3 pdE) and long-term (28 dpE) 

conditions. For this, four different immunostainings were used in brain slices to visualize 

the cell nuclei (DAPI), GCaMP3 in astrocytes, GFAP in astrocytes and microclia. The 

checkerboard pattern in the GFAP-based image (Figure 4.10) indicated that the signal 

gain of the image acquisition device was at the upper limit. Hence, only few reactive 
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astrocytes were visible in the entire brain slices and especially in the cortex. In addition, 

the following details could be obtained from the various images. 

 No difference in signal intensity of the DAPI signal on both hemispheres for 

the short-term and long-term conditions, indicating that no cell death 

occurred after electrode implantation.  

 No impact to the Ca2+ indicator GCaMP3 (GFP staining) in astrocytes by the 

electrode or its application. 

 On the ipsilateral hemisphere, a small increase in the number of reactive 

astrocytes (GFAP staining) could be observed after three and 28 days 

following the electrode surgery. Considering the high signal amplification, 

however, only a small immune response was visible. 

 Compared to the contralateral hemisphere, after three days, a very weak 

tendency towards higher microglia activity was observed, which was no 

longer visible after 28 days after the electrode application. Thus, the result 

showed no continuous inflammation caused by the LCP surface electrode. 

This also suggests that the small increase of reactive astrocytes could be 

due to the craniotomy. 

Overall, the comparison of the two cortical hemispheres showed that the surface 

LCP electrodes including the application method were biocompatible. 
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Figure 4.10: Cellular reaction to surface electrode. A) Example of the different stainings 
for one brain slice at 3 dpE (DAPI: cell nuclei; GFP: Ca2+ indicator GCaMP3 in 
astrocytes; GFAP: reactive astrocytes; IBA1: microglia. B, C) Comparison of mean 
image intensity for the short-term condition (3 dpE) and the long-term condition 
(28 dpE). (Statistical analysis: Wilcoxon matched-pairs signed-ranks test; * p < 0.05; 
** p < 0.01; *** p < 0.001, ****p < 0.0001) 
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4.5 Craniotomies with electrodes are stable over long-term 

implantation periods 

The electrodes were placed on the dura after a craniotomy, meaning that part of 

the skull had to be removed. This implies that with the surgery a repair process would 

be triggered having a potential impact on 2P-LSM and electrophysiology. For this 

reason, the tissue response was visually investigated. 

 

4.5.1 Bone regrowth limits visual access to the cortical tissue 

Bone regrowth was observed with a bright field microscope, and a CCD camera 

was used to take images from the craniotomies. The optical window became more and 

more blurred after the surgery (Figure 4.11A, B). This was due to the regeneration of 

the bone which started with angiogenesis and the generation of a thin tissue layer. The 

tissue layer (Figure 4.11C) started growing under the electrode. With time, the bone 

grew inside the complete craniotomy and the electrode grew in (Figure 4.11B).  

 

Figure 4.11: Transparency of the craniotomy. A) Top: Images of an eight-channel 
electrode after surgery with low angiogenesis level. Bottom: Cortical tissue within the 
electrode window. The bone regrowth was visible from week four. B) Images from an 
eight-channel rectangular-shaped electrode with a strong angiogenesis on the surface. 
At week 12, the electrode array was almost completely overgrown. C) Thin tissue layer 
under the electrode after four weeks (black circle indicates the position of the 
craniotomy) and explanted electrode without any defects. 
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With a thin bone layer, 2P-LSM was still possible (Yang et al., 2010), but the image 

quality became worse and a higher laser power was needed. The angiogenesis could 

be easily observed on the surface of the electrode. After explantation, the electrodes 

were visually checked for defects (e.g. removal of platinum coating), but no defects 

were visible. 

 

4.5.2 Dexamethasone has no influence on angiogenesis  

Angiogenesis is generally a positive sign of healing effects and, in case of implants, 

it indicates that the implanted materials are well accepted (Laschke et al., 2006). 

However, as an indicator for tissue and bone regrowth, it was also associated with the 

limitation of the optical access of the cortical tissue. Three different dexamethasone 

injection protocols were used to investigate whether dexamethasone might be a good 

candidate for reducing the growth rate of blood vessels. Therefore, the area of the 

electrode head surface covered by vessels was automatically estimated (Figure 4.12). 

The results showed a very fast growth within the first two weeks after the surgeries, 

which continued with an ongoing reformation of the vessels. The vessels covered a 

maximum of approximately 12% of area of the LCP electrode head (6.1 mm2). For a 

better comparison, the data points were evaluated on a weekly basis. If there was no 

data point available for a mouse, a linear interpolation from the previous and 

subsequent data point was used. The resulting diagram showed no effect on 

angiogenesis related to the dexamethasone protocol. This could be confirmed with the 

subjective visual inspection. It was more likely that small bleedings that occur during 

surgery will have a major impact on angiogenesis in the first two weeks. 
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Figure 4.12: Angiogenesis on the electrode arrays for different dexamethasone 
injection protocols. A) Example of an electrode surface partly covered with blood 
vessels. B) Result of the vessel detection for the example of A). C) Time traces of 
coverage by the vessels for the single mice within the dexamethasone groups.  
D) Grouped data points at full weeks. 

 

 

4.6 Electrode arrays can be used for recordings of 

spontaneous and evoked ECoGs 

4.6.1 ECoG of awake and anaesthetized mice 

The sixteen-channel electrodes were used in recording studies to test the recording 

quality and to gain knowledge about the spatial distribution of signal events. The depth 

of anaesthesia was changed (isoflurane from 1.5% to 0%) to vary the pattern of the 

bioelectrical activity. The recordings showed a typical synchronous burst activation of 

neurons when the mice were anaesthetized (Figure 4.13A). With decreasing 

anaesthesia, the mice woke up and the time between the bursts became shorter and 

the signal amplitude lower, indicating a loss of synchrony. When the mouse was 



Results 

 
 

62 

completely awake, the burst pattern was no longer visible. The difference in neuronal 

activity was also visible in the spectrograms (Figure 4.13B) of the signals. In the 

anaesthetized mouse, the highest signal intensities were at frequencies below 10 Hz, 

and frequencies higher than 30 Hz were temporarily visible when the neurons fired 

synchronously. Since there was no evidence of signal components with a broad 

frequency range during the burst suppression phases, it could be estimated that there 

was no detectable noise affecting the signal quality. In the awake state, the highest 

signal intensity was also below 10 Hz, but the higher frequencies were always present 

due to the continuous spiking activity. 

The individual signal traces show a high similarity as well as some differences 

between the individual channels (Figure 4.13A). To characterize the channel similarity, 

the correlation between the recorded signals were calculated. A stepwise calculation 

(sliding window of 2 s, step time 1 s) demonstrated the dependence of the synchrony 

along the cortical electrical activity (Figure 4.14A). The channel similarity was lower if 

there was high spike activity (bursts and neuronal activity in the awake state). In 

addition, the correlation decreased with channel distance. Correlations were calculated 

for 30 s traces in relation to the distance of the electrode sites (Figure 4.14B). The 

distances of the electrode sites were normalized geometric distances (value of 1 means 

750 µm, 1.41 means 1057.5  µm). This diagram confirms the 

results from the stepwise calculation. The correlation coefficient was high for electrode 

sites nearby and decreased with increasing distance. For awake mice, the results were 

lower as for mice under anaesthesia. The variation within one electrode distance came 

from the different signals in the single sections and from the various channel pairs. 
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Figure 4.13: ECoG recorded with a 16-channel electrode array at a slightly 
anaesthetized mouse with decreasing anaesthesia (sampling rate: 1.2 kHz, bandpass 
filtering: 0.5 Hz  250 Hz, notch filter: 50 Hz). A) Time traces of all sixteen channels. 
Subsets from channel one present a single signal trace for anaesthetized (left) and 
awake (right) mouse. B) Spectrograms of channel two (after short-time Fourier 
transform with a sliding window of 2 s shifted in steps of 1 s). The horizontal dark lines 
were caused by the 50 Hz notch filter of the recording device. 
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Figure 4.14: Channel correlation shows high similarity of neighboring channels.  
A, B) Sections of 30 s ECOG signal (sampling rate: 1.2 kHz, bandpass filtering: 
0.5 Hz  250 Hz, notch filter: 50 Hz) and stepwise correlation (window size: 2 s, step 
time: 1 s) for neighboring channels (channels 16 and 15) and for the channels along 
the diagonal axis (channels 16 and 11; 16 and 5; 16 and 1). For control, the 
autocorrelation of channel 16 is also included. A) Anaesthetized mouse. B) Awake 
mouse. C) Correlation results of 30 s time traces sorted along the normalized geometric 
electrode distance of all possible channel combinations. (Anesthetized: 23 signal 
sections of four recordings; awake: 21 signal section of 4 recordings; bars: mean value, 
whiskers: standard deviation) D) Sixteen channel electrode head with three examples 
of normalized distances. 

 

 

4.6.2 Demyelination process induced by cuprizone is visible in 

visually evoked potentials 

To prove the hypothesis that cuprizone-induced demyelination should be visible in 

visually evoked potentials (VEP), a series (128 pulses) of short green flashes (50 ms) 

was applied to the left eye of the mouse. The mice were placed into a dimmed Faradaic 

cage. The VEP was recorded at different time points after the electrode surgery and 

appeared slightly different for each mouse and recording session (Figure 4.15, 

Appendix Chapter 8.6). The quality of the recording was always high and the VEP could 
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be clearly identified. The VEPs were analysed by identifying the maximum value that 

appeared approximately 75 ms from stimulation onset and by the calculation of the 

signal energy.  

All values were set in relation to the values on the 14th day after the electrode 

surgery to minimize the influence of the differences between individual mice. 

Nevertheless, the results showed a high variation between the single recordings. But 

in contrast to normally fed mice, the signal energy (Chapter 3.6.3) of cuprizone-fed 

mice decreased continuously over time. No clear tendency was visible for the peak 

value of VEP. The frequency analysis showed that the delta, theta, and alpha bands 

were prominent about the complete observation period for both groups of mice. The 

decrease in the signal energy was related to these bands for the cuprizone-fed mice. 



Results 

 
 

66 

 

Figure 4.15: VEP analysis of normal-fed mice and cuprizone-fed mice. A) Study set-up. 
Awake GLAST-CreERT2 x R26-CAG-lsl-GCaMP3 mice (three CPZ-feed and six 
normal-fed mice) with applied eight-channel electrode were used for VEP recording 
(sampling rate: 1.2 kHz). Mice were positioned in dimmed environment and green light 
flashes (50 ms) were applied. Measured data points were grouped together into half 
weeks. B) Comparison of the peak value (left) and of the signal energy (right) for the 
two different groups. The values are normalized to day 14. C) Normalized signal 
energies in the different frequency bands for the normal-fed mice (left) and cuprizone-
fed mice (right). D) Distribution of the signal energy within the frequency bands. 
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4.7 Electrodes can be used as a local coordinate system 

The white surface of the LCP electrodes was visible in the two-photon images due 

to the reflection of the IR laser beam and non-ideal optical filtering to separate the 

different light wavelength. This offered the possibility to determine the position of the 

field of view in relation to a corner of the observation window (Figure 4.16). In addition, 

three corners of the observation window could be used to generate a local coordinate 

system and thus calculate the orientation of the electrode to the two-photon microscope 

and thus to the captured images. Owing to the very good visibility of the electrode in 

2P-LSM, a better combination of the two different methods was possible besides a fast 

detection of the field of view. This enabled, for example, the use of the weighted 

average value of the ECoG at the FOV or the use of differential voltages from the 

individual electrode locations around the FOV. In addition, the local coordinate system 

could be used to check the positioning of the mouse in repeated imaging sessions. 

To find the global coordinates of the window corners, the following process was 

established. The scan head of the microscope was sequentially moved to three corners 

of the window until each corner was inside a target cross to find the x- and y-coordinate. 

The target cross was printed on a transparency and fixed on the monitor. The z-

coordinate (distance to the objective) was determined by the image brightness. The z-

values could be identified by the focused laser beam as soon as the maximum image 

intensity was reached at the corner. These coordinates were used to calculate two 

vectors ( ) between the three corners and the normal vector  of the electrode 

plane (with the vector product of the two vectors). The upper-left corner was used as 

the origin (point p0) for the local and global coordinate system so that the position of 

the FOV could be determined with respect to a common reference point 

(Figure 4.16B, C, calculation of rotation angles are in Appendix Chapter 8.8). In 

addition, the relation of the FOV to the cortical surface could be estimated more easily 

(Figure 4.16D). Since the top-left corner was selected as the origin, the FOV was in the 

negative x-axis, negative y-axis, and positive z-axis areas with respect to the global 

coordinate system. The accuracy of this method depended strongly on the identification 

of the corners of the observation window. To be able to estimate the detection error, 

the coordinates of point 3 (p3) were calculated from the measured coordinates of p1 

and p2 and compared with the measured coordinates of p3. (Figure 4.16E). Despite 

this manual and subjective procedure (position to the target cross and image 
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brightness), all coordinate deviations were in the lower µm range, with the error in the 

z-direction being slightly higher than in the x- and y-directions. 

 

Figure 4.16: Using electrode geometry to specify location and orientation of FOV.  
A) Example of translation and orientation shift between the electrode and two-photon 
image. B) Graphical representation of local and global coordinate systems in the 3D 
room, including rotation angles. C) Example of the orientation of one square electrode 
window and FOV position. Left: top view. Right: 3D view. D) Distance difference in the 
z-direction between the electrode window (cortical surface) and the FOV. The red plan 
represents the FOV. The multi-coloured plan is orientated to the electrode window 
(surface). The FOV were nearest to the surface at coordinate (x = 0, y = -256) and most 
distant at coordinate (x = -256, y = 0). E) Measurement error. Derivation of the 
coordinates from the calculated point 3 (p3 = p1+p2) to the measured p3. 



Results 

 
 

69 

4.8 Linking Ca2+ signals and electrical recordings 

4.8.1 Depth of anaesthesia affects ECoG and Ca2+ signals 

To demonstrate the functionality of the combination of ECoG recording and Ca2+ 

signals by 2P-LSM, the depth of anaesthesia was varied to change the physiological 

condition and thus the activity of neurons and astrocytes. The electrical signals were 

recorded with the multichannel g.USBamp system at a sampling rate of 1.2 kS/s and 

bandpass filtering of 0.5 Hz to 250 Hz. In addition, a notch filter (50 Hz) was applied. In 

each study, an eight-channel electrode array with round-shaped electrode sites was 

applied to a GLAST-CreERT2 x R26-CAG-lsl-GCaMP3 mouse (Ca2+ signals in 

astrocytes). The synchronization of 2P-LSM and recording was achieved by acquiring 

a mirror control signal with one channel of the recording system. In this way, a high 

synchronization accuracy within a single 2P image could be realized. Still, thirty-five 

days after electrode application, high-quality 2P-LSM and ECoG recording over a long 

period of time (>30 minutes) was possible without any limitations (Figure 4.17). 

An increase in the overall number of Ca2+ events occurred when the anaesthesia 

was decreased (Figure 4.17D) which was in line with reports of others (Thrane et al, 

2012). The event classification also showed that the numbers per time of large, 

medium, and small signals in a mouse within the same condition were different (for 

example see awake situations Figure 4.17D). This means that an exact determination 

of the actual depth of anaesthesia only from the Ca2+ related signals was not possible. 

The mean image brightness reflects the strength of the Ca2+ signals and becomes high 

with low anaesthesia. The recorded ECoG could be used to differentiate various 

conditions ranging from deeply anaesthetized to awake. 
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Figure 4.17: Ca2+ signals in astrocytes and ECoG change with anaesthesia. A) Study 
set-up. Long-term 2P-LSM of Ca2+ signals in a GLAST-CreERT2 x R26-CAG-lsl-
GCaMP3 mouse (laser power: 17%; frame rate: 1.5 Hz; FOV size 180 µm x 180 µm; 
resolution: 360 pixel x 360 pixel). ECoG recording with an eight-channel electrode 
array (sampling rate: 1.2 kHz; notch filter: 50 Hz; bandpass filtering: 0.5 Hz  250 Hz). 
Study was performed at 35 days post electrode surgery. Isoflurane was changed in the 
range of 0% and 2%. B) Two-photon image of the FOV with few astrocytes covering 
distinct regions. C) Automated detection of regions of interest (software MSparkles). D) 
Time trace of Ca2+ event classification. Black stars indicate time points of isoflurane 
concentration change. E) Normalized mean image brightness of the complete images. 
F): Average ECoG trace of all channels with two subsets. Left: awake mouse; right: 
anesthetized mouse.  
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4.8.2 Cortical injection of kainate increases synchronized 

neuronal spiking activity followed by astroglial Ca2+ signals 

With the injection of kainate into the contralateral cortex after three days post 

electrode application, the activity of the cellular network activity in the cortex was 

changed. A GLAST-CreERT2 x R26-CAG-lsl-GCaMP3 mouse was used to observe 

the Ca2+ related responses in astrocytes. After kainate injection, large neuronal spiking 

activity was visible in each channel of the recording (Figure 4.21), showing the global 

spread of pathological neuronal firing. The correlation between the individual channels 

resulted in the typical value ranges corresponding to the inter-electrode distance for 

awake mice in the phases of normal activity. In the high spiking phases, the channel 

correlation increased dramatically independently of the amplitude of the ECoG. For the 

analysis of the Ca2+ related signals, the mean image brightness was calculated and a 

classification of single signal events was performed with the software MSparkles. 

A small increase in the mean image brightness and in the Ca2+ signal events over 

time was visible (Figure 4.21D) independently to the ECoG. The signal energy (Chapter 

3.6.3, Eq. 5) of the averaged ECoG represents the neuronal activity, which changed 

more than the astrocytic signals. Only if the neuronal activity was strongly increased 

over a longer period of time, a strong Ca2+ signal change was achieved. Mouse 

movements, which could lead to Ca2+ events, could be identified with the calculation of 

the correlation of two subsequent images. The soft brain tissue was shaken by the 

mouse movements, leading to different image contents and a rapid and strong 

decrease in correlation. However, the result showed that no astrocytic signal change 

could be observed in relation to the movement. Additionally, it became visible that the 

periods of high spiking neuronal activity ended mostly with a movement of the mouse. 
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Figure 4.18: Example of kainate-induced neuronal activity and astrocytic Ca2+ related 
signals. A) Study set-up. 2P-LSM of Ca2+ related signals in a GLAST-CreERT2 x  
R26-CAG-lsl-GCaMP3 mouse (laser power: 15%; frame rate: 2 Hz; FOV size: 
256 µm x 256 µm; resolution: 512 pixel x 512 pixel). ECoG recording with an eight-
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channel electrode array (sampling rate: 1.2 kHz; notch filter: 50 Hz; bandpass filtering: 
0.5 Hz  250 Hz). Study was performed at three days post electrode surgery. Awake 
mouse approximately two hours post kainate injection. B) Three single two-photon 
images with a Ca2+ related signal in a neuronal non-spiking phase, the Ca2+ related 
signal in the last neuronal high-spiking phase and one image during a movement (scale 
bar: 50 µm). The last image in the column shows the detected regions of interest 
(software MSparkles). C) The ECoG of all eight channels show the kainate-induced 
neuronal spiking activity. The channel correlations of channel three (black star) to 
channel two (red star, red line) and of channel three to channel six (blue star, blue line) 
were stepwise calculated (1 s window size, 50% overlap). The spectrogram shows the 
frequency over time of the ECoG average. D) Line graphs with the normalized traces 
for the image brightness (black), the signal energy of the averaged ECoG (green) and 
the result of the image-to-image correlation (blue). The counts of Ca2+ event 
classification are divided by one hundred.  

 

 

4.9 Surface electrodes can be used for electrical activation 

of the cortical tissue 

The cortical tissue could be electrically activated using the surface electrodes with 

the eight rectangular-shaped electrode sites. For the stimulation studies, the two inner 

electrode sites left and right of the observation window were used together to apply an 

electrical current. This was selected in order to ensure a broad current distribution over 

the electrode window and thus to allow greater flexibility in the selection of the field of 

view. The minimum amplitude of the biphasic charge compensated stimulation current 

had to be estimated prior to each stimulation study. The threshold to activate the cell 

structure changed over time after electrode application and was therefore associated 

with the regrowth of the bone. The applied current ranged from 150 µA to 600 µA. Two 

of the outer electrode sites were used for electrical recording (Figure 4.19). As 

recording device, the PowerLab system was used, as it was more tolerant of stimulation 

artefacts compared to the g.tec system. However, during the stimulations, the 

amplitude exceeded the input range of the amplifier and no signals could be observed. 

But the electrical network activity was visible before and after the stimulation, with no 

indication of a direct signal change related to the stimulation. 
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Figure 4.19: Example of ECoG recorded during a stimulation experiment with the 
PowerLab system (sampling rate: 2 kS/s; notch filter: 50 Hz; bandpass filtering: 
0.5 Hz  200 Hz; biphasic stimulation; 50 Hz; 300 µA, 0.5 ms pulse width; 100 pulses). 
Red bars indicate stimulation periods. The three insets show zoom-views of the ECoG 
before and after the electrical stimulation. 

 

 

4.9.1 Response of the neuronal network changed with 

stimulation frequency 

Train stimulations with two different frequencies and various amplitudes were used 

to investigate the response of the neuronal tissue (Figure 4.20, Figure 4.21). With a 

frequency of 50 Hz, increasing Ca2+ transients in neurons could be observed with 

increasing stimulation amplitude. In addition, a stable cell response was visible by 

applying repetitive train stimulations with 50 Hz train frequency at the same amplitude. 

This was different using a stimulation frequency of 10 Hz. The Ca2+ signals became 

smaller using the same train stimulation amplitude repetitively. This effect could be 

overcome by increasing the stimulation current. The peak value of the neuronal 

response was visible after applying about 100 stimulation pulses. When using more 

pulses in the train stimulation, a decrease in the Ca2+ related signals were visible 

(Figure 4.21B). 
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Figure 4.20: Response of the neuronal network to two different stimulation frequencies. 
A) Study set-up. 2P-LSM of Ca2+ related signals in a Nex-Cre x R26-CAG-lsl-GCaMP3 
mouse (laser power: 17%; frame rate: 3.2 Hz; FOV size: 256 µm x 256 µm; resolution: 
512 pixel x 512 pixel; about 160µm beneath the dura). Biphasic charge compensated 
stimulation pulses were applied, varied in amplitude (150 µA  300 µA; 0.5 ms pulse 
width; 100 pulses, train stimulation every 93 s) and frequency (10 Hz and 50 Hz). The 
mouse was anaesthetized with 1% isoflurane. B) Two single 2P-LSM images 
representing the Ca2+ signals prior to and during one stimulation (scale bar: 50 µm).  
C) Relative Ca2+ signal change of the mean image intensity during two sequences of 
electrical stimulation wit current amplitudes of 150 µA, twice 200 µA three times 250 µA 
and 300 µA and once with 250 µA. Upper trace shows the response to 10 Hz 
stimulation. Lower trace for 50 Hz. The graph below shows the relation of the peak 
values ((F-F0)/F0). With 50 Hz stimulation, a Ca2+ change was visible at 150 µA and 
increased with increasing current amplitude and remained stable for the same current 
amplitude. For electrical stimulation with 10 Hz, the first response was visible at 200 µA 
and was reduced using the same stimulation amplitude in sequence. A significant 
decrease was also visible for the last stimulation, where the current amplitude was 
lower than in the previous one. 
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Figure 4.21: Response of the neuronal network to stimulations of 10 s length at two 
different frequencies. A) Study set-up. 2P-LSM of Ca2+ related signals in a  
Nex-Cre x R26-CAG-lsl-GCaMP3 mouse (laser power: 22%; frame rate: 3.4 Hz; FOV 
size: 256 µm x 256 µm; resolution: 512 pixel x 512 pixel; about 165 µm beneath the 
dura). Biphasic charge compensated stimulation pulses were applied, varied in 
amplitude (200 µA  400 µA; 0.5 ms pulse width, stimulation time 10 s) and frequency 
(10 Hz and 50 Hz). The mouse was anaesthetized with 1% isoflurane. B) Response of 
five neuronal cell bodies within the FOV to train stimulations with 50 Hz and 10 Hz. 
Each stimulation train was applied twice. C) Statistical graphs representing the 
normalized peak values (F-F0)/F0) of the mean image intensity value of somas and the 
delay time between stimulation onset and the peak amplitudes. 

 

 

4.9.2 Anaesthesia decreased the response of the neuronal 

network to the electrical activation 

Electrical stimulations were performed in mice at different levels of isoflurane 

concentrations to investigate how anaesthesia affects the response of neuronal 

networks. A sequence of stimulations with a frequency of 50 Hz was applied for four 

different isoflurane concentrations (1.5%, 1%, 0.5%, and 0%). Three different current 
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amplitudes were used, and for each current amplitude, the stimulation was performed 

twice. The mean image intensity of the two-photon images was analysed.  

The neuronal network could be activated across all levels of anaesthesia 

(Figure 4.22). After each stimulation, the Ca2+ signals were reduced in comparison to 

the previous base level. But, they recovered within a time range of approximately 35 s 

to 70 s depending on the isoflurane level, but not on the stimulation strength 

(Figure 4.22B, C). From the presentation of the Ca2+ transients, it can be seen that the 

activation of the neuronal network changes with the depth of anaesthesia 

(Figure 4.22C). Under lower anaesthesia, two peaks become clearly visible. The 

sources of these peaks can be estimated from the short image series of every second 

image from the original recording (frame rate 3.42 Hz, Figure 4.22E). The image at time 

0 s is the image directly at the stimulation onset. Two frames later, the activation of the 

neuropil was clearly visible (first peak in the Ca2+ transients in Figure 4.22C ), which 

disappears before the cell bodies become activated (second peak, ).  

The graphs (Figure 4.22D) represent the mean values of the signal changes in the 

neuropil ( ) and somata ( ) sorted along the stimulation amplitude and isoflurane. 

The activation of the neuropil seems to be more affected by the stimulation strength 

than by the isoflurane concentration. The Ca2+ related signals increased with increasing 

stimulation amplitude and with decreasing anaesthesia from 1% to 0%. With an 

isoflurane level of 1.5% the response to electrical stimulation was higher than for 1%. 

This might be an effect of biological variation within one experiment. Over all 

stimulations, the onset of Ca2+ signal was always within the first frame (0.29 s for 

isoflurane level of 1.5% and 1%; 0 s or 0.29 s for isoflurane level of 0.5% and 0%). The 

first peak appeared at 0.88 s ± 0.29 s (3 frames ± 1 frame), the second peak at 

2.63 s ± 0.29 s and the signal ended at 3.51 s ± 0.29 s for isoflurane levels of 1.5% and 

1% or 3.51 s ± 0.58 s for isoflurane levels of 0.5% and 0%. A Ca2+ signal undershoot 

became visible after the activation of the somas. The undershoot length (time from end 

of falling edge until the previous signal intensities were reached; ) changed along the 

anaesthesia level. It was independent from the stimulation strength. Thus, the time 

mean values of all stimulations at one isoflurane level is presented. 
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Figure 4.22: Response of the neuronal network to different depths of anaesthesia.  
A) Study set-up. 2P-LSM of Ca2+ related signals in a Nex-Cre x R26-CAG-lsl-GCaMP3 
mouse (laser power: 15%; frame rate: 3.4 Hz; FOV size: 256 µm x 256 µm; resolution: 
512 pixel x 512 pixel; about 165 µm beneath the dura). Biphasic charge compensated 
stimulation pulses with 50 Hz with different amplitudes (100 pulses with 350 µA, 
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400 µA, and 450 µA; 0.5 ms pulse width, every 100 s) were applied. The anaesthesia 
was changed ranging from1.5% to 0%. B) Fluorescent mean intensity traces of the two-
photon images for the stimulation sequence under 1% and 0% isoflurane concentration. 
Red dots indicate stimulation periods. C) Overlay of the single responses of each 
stimulation sequence in two different scales. D) Statistics showing the maximum values 
of first (left graph) and second (middle graph) peak sorted by stimulation amplitude and 
isoflurane concentration. The right graph shows the times until the Ca2+ signal intensity 
comes back to the base level after stimulation. E) Selected image series of every 
second image from the original recording. Time index is given from stimulation onset. 
Scale bar: 40 µm 

 

 

4.9.3 Estimation of the neuronal Ca2+ spreading direction 

indicates direct electrical activation in layer 1 

In the time series of Ca2+ images, a direction of cell activation was visible. However, 

the visual impression was strongly influenced by the spatial variable base brightness, 

so that bright areas of the images appeared to be activated first. Because of the limited 

frame rate for a specific image size, it was not possible to accurately detect a time 

difference in neuronal cell-body activation. To overcome this limitation, the image 

intensity of every pixel along a line was considered (example given in Figure 4.23A-a, 

white arrow). With the time series of the values (Figure 4.23A-b) the two steps in 

activation (  and , see previous chapter) were visible, more clearly with 50 Hz 

stimulation than with 10 Hz stimulation. But, on the 10 Hz stimulation, the time shift of 

the spatially distributed neuronal activation was better visible due to the higher number 

of single images per stimulation period. In order to obtain a value in relation to these 

time shifts, the position of the maximum values per pixel column within selected time 

points were determined. Thereafter, a linear approximation of these values was 

calculated using Matlab and the gradient of the linear function was chosen to 

characterize the time shift along the line. 

This method was applied around a centre point for all image directions 

(Figure 4.23A-a, white circle) and polar plots representing the gradients and thus the 

spreading directions were created (Figure 4.23A-d). This could be compared with the 

geometric information found with the electrode corners (orientation and location of the 

FOV given in Figure 4.23A-c and the difference in the z-direction from the FOV to the 

cortical surface given in Figure 4.23A-d). As result, a strong direction of activation goes 

from the cortical surface down to deeper structures. This indicated, that in the field of 
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view the electrical stimulation activated the axons in layer 1 of the cortex. The change 

of the stimulation polarity did not largely change the direction of activation 

(Figure 4.23B). This additionally indicated that the spread of Ca2+ signals was along the 

neuronal structures coming from layer 1. 

 

Figure 4.23: Spatial spread of Ca2+ signals in neuronal networks. A-a) Image of 
activated neurons including the single line (black arrow) which was analysed for the 
activity plots in A-b) for two different frequencies (10 Hz and 50 Hz).  indicates the 
first activation, the second activation. The two lines (red and black) inside the 10 Hz 
activity plot represent the linear approximation of the time points of the maximum 
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values. The red lines right to the activity plots represent the time periods of stimulation. 
A-c) top view of FOV orientation and position in relation to the electrode window. A-d) 
heat maps representing the difference in the z-direction over the FOV overlaid with the 
polar plots of activation. Red: first activation  neuropil. Black: second 
activation - somas B) Two examples for 50 Hz biphasic stimulation with different 
stimulation polarities. Viewing from the electrodes left from the window the colours in 
the polar plots representing the different polarities. Red: cathodic first; black: anodic 
first. The images in the middle show three subsequent time points of cell activation.  

 

4.9.4 Ca2+-signals of cortical astrocytes follow neuronal 

activation 

Ca2+ transients in cortical astrocytes could be provoked by electrical stimulation 

(Figure 4.24). Owing to the results from the activation of the neurons, trains of 

stimulation with 100 pulses were used. The cell bodies as well as the processes could 

be activated. The peak of the astrocytic Ca2+
 related signals was found after the end of 

the stimulation and the signals appeared for several seconds. 

 

Figure 4.24: Image series of astrocytic Ca2+ related signals. Time index is given from 
stimulation onset. Red bar indicates active stimulation with 50 Hz and stimulation 
amplitude of 450 µA (GLAST-CreERT2 x R26-CAG-lsl-GCaMP3 mouse, 11 dpE, laser 
power: 20%; frame rate: 2.3 Hz; FOV size: 256 µm x 256 µm; resolution: 
512 pixel x 512 pixel; 90µm beneath the dura). Scale bar: 50 µm 

 

In contrast to the neuronal activation, the raise of Ca2+ related signals followed more 

an all-or-nothing behaviour than a gradual increase in the response with the stimulation 

amplitude (Figure 4.25). The delay of the activation peak to the stimulation onset 

indicates that the astrocytic response followed neuronal activation. For 20 Hz 

stimulation, the activation threshold was higher than for 30 Hz and 50 Hz stimulation. 

With a current amplitude of 400 µA, no astrocytic reaction was visible, with 450 µA not 
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every 20 Hz but every 30 Hz and 50 Hz stimulation provoking an astrocytic response. 

With the exception of 10 Hz stimulation, every stimulation with a stimulation amplitude 

of 500 µA was effective. Moreover, no significant difference in the electrically activated 

Ca2+ related signals with the variation of the isoflurane concentration were visible at a 

stimulation amplitude of 500 µA (Figure 4.26). 

 

Figure 4.25: Astrocytic Ca2+ response to different stimulation amplitudes and 
frequencies. A) Study set-up. 2P-LSM of Ca2 related signals in a GLAST-
CreERT2 x R26-CAG-lsl-GCaMP3 mouse (laser power: 20%; frame rate: 2.3 Hz; FOV 
size: 256 µm x 256 µm; resolution: 512 pixel x 512 pixel; about 90 µm beneath the 
dura). Biphasic charge compensated stimulation pulses with different frequencies 
(10 Hz, 20 Hz, 30 Hz, and 50 Hz) and with different amplitudes (100 pulses with 
400 µA, 450 µA, and 500 µA; 0.5 ms pulse width) were applied. The anaesthesia was 
set to 1%. B) Mean image intensity of a stimulation series with a train frequency of 
50 Hz (sequence: 400 µA, 3 x 450 µA, 3 x 500 µA). C) Ca2+ related signals of an 
astrocytic cell body for different stimulations. D) Statistical graphs to signal peaks of 
cell bodies and delay times between stimulation onset and signal peak (at 450 µA and 
20 Hz stimulations, only the successful stimulations were included). 
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Figure 4.26: Astrocytic Ca2+ response to a train stimulation under different anaesthesia 
conditions. A) Study set-up. 2P-LSM of Ca2+-related signals in a GLAST-
CreERT2 x R26-CAG-lsl-GCaMP3 mouse (laser power: 23%; frame rate: 2.3 Hz; FOV 
size: 256 µm x 256 µm; resolution: 512 pixel x 512 pixel; 85 µm beneath the dura). 
Biphasic charge compensated stimulation pulses (100 pulses; 0.5 ms pulse width) with 
a frequency of 30 Hz and an amplitude of 500 µA were applied. The anaesthesia 
ranged from 1.5% to 0%. B) Mean image intensity of a stimulation series with a train 
frequency of 30 Hz for an anesthetized and awake mouse. C) Ca2+ related signals of 
an astrocytic cell body for train stimulations during different depths of anaesthesia 
(1.5%, 1%, 0.5% and 0% isoflurane). D) Statistical graphs to signal peaks of cell bodies 
and delay times between stimulation onset and signal peak. 

 

4.10 LCP surface electrodes to stimulate and record neural 

activity of the spinal cord 

To investigate the neuronal fibres in spinal cord in vivo, two surface electrodes were 

applied to the spinal cord of GFAP-CreERT2 xRosa26-CAG-lsl-GCaMP3 mice 

expressing GCaMP3 in spinal astrocytes. The caudal electrode was used for electrical 

stimulation and the cranial electrode for recording of the electrical activity (PowerLab 

system; sampling rate: 40 kS/s; 50Hz notch filter). The mice were anaesthetised with 

an isoflurane level of 1.5%. 
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4.10.1 Activation of afferent and efferent fibres in spinal cord 

In addition to LCP surface electrodes, two needle electrodes (28mm x 0,45mm, 

SCHULER GmbH Medizintechnik) were applied to the femoral muscle of the left hind 

leg acquiring the muscle activity (Figure 4.27). The recording capability was proven by 

recording of the electrical baseline as well as the response of a tactile stimulation by 

pinching the left hind paw (Figure 4.27B). Paw pinching could be clearly identified and 

resulted in a signal change of 20 µV to 30 µV. The visible spiking activity in both traces 

had a repetition rate of 6.3 Hz. Thus, this was most likely related with the heartbeat 

(378 beats per minute) of the anaesthetized mouse. 

Unipolar stimulation pulses in the range of -50 µA to -500 µA (20 pulses per 

amplitude for signal averaging) with a pulse width of 50 µs were applied to stimulate 

the spinal cord (Figure 4.27D,E). The stimulation artefact ( ) was continuously 

present. Beginning with a stimulation amplitude of 100 µA, a first neuronal response 

appeared ( , ). The fastest response of the afferents ( ) was visible approximately 

300 µs after stimulation onset. With an interelectrode distance of 5 mm a nerve 

conduction velocity of about 20 m/s (250 µs) could be estimated. A second response 

of the sensory fibres ( ) appeared within 0.9 ms to 1.7 ms after stimulation onset. 

Because of the signal shape this response might had been the result of the 

superposition of several fibres with different nerve conduction velocities in the range of 

5.5 m/s to 3 m/s. The electrical evoked response was at least five-fold higher than the 

tactile evoked neural signals. A leg movement could be visually observed and a signal 

became visible in the electromyogram ( ) if the amplitude was at least -400 µA. An 

additional response appeared in the electroneurogram. 
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Figure 4.27: Recording of evoked potentials in spinal cord. A) Study set-up. Two spinal 
surface electrodes were applied. The caudal electrode was used for electrical 
stimulation, the cranial electrode for recording of the electroneurogram. Two needle 
electrodes were placed into the left hind femoral muscle to record the electromyogram. 
A forceps was used to pinch the left hind foot for tactile stimulation. Recording device: 
PowerLab system; sampling rate: 40 kS/s; 50 Hz notch filter activated. The mouse was 
anaesthetized using 1.5 % isoflurane. B) 15 s recording of the spontaneous spinal 
electrical activity. C) 15 s recording of the spinal signal with three tactile stimulations. 
Traces in B) and C) were filtered with a moving median filter (10 ms window length). D) 
Electromyogram and E) electroneurogram in two scales after unipolar single pulse 
electrical stimulation (average of 20 stimulation pulses). Stimulation amplitudes: -50 µA 
to -500 µA in -50 µA steps; pulse width: 50 µs. F) Electromyogram (left) and 
electroneurogram (right) to bipolar single pulse stimulation (average of 20 stimulation 
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pulses). Stimulation amplitudes: ±50 µA to ±500 µA in 50 µA steps; pulse width: 100 µs. 
: stimulation artefact. : Electroneurogram related to fastest somatosensory fibres. 
: Electroneurogram of additional somatosensory fibres. : Electroneurogram and 

electromyogram related to muscle activity. Leg movement was visually observed; 
movement was stronger in the bipolar stimulation than in the unipolar stimulation. 

 

The study had been supplemented by using biphasic stimulation currents 

(Figure 4.27D). The pulse width of the stimulation currents was set to 100 µs being able 

to stimulate in a similar current amplitude range, and to avoid an additional enlargement 

of the stimulation artefact due to the properties of the input amplifier. The 

electroneurogram contained the same (as above described) signal parts with 

stimulation artefact ( ), two visible responses from the afferent fibres ( , ), and a 

response related to the leg movement ( ). A stimulation amplitude of ±350 µA was 

sufficient to induce the movement. With amplitudes of ±400 µA or higher the movement 

was stronger than before, which was additionally reflected in the electrical recordings. 

 

 

4.10.2 Astroglial Ca2+ events after electrical stimulation of the 

spinal cord 

The combination of electrical stimulation, recording and 2P-LSM was tested with 

biphasic stimulations with amplitudes of 0.5 mA and 2.5 mA (Figure 4.28). The high 

stimulation current to induce leg movement was necessary due to an imperfect 

placement of the electrodes onto the spinal cord. A train of 50 stimulation pulses was 

applied. Single pulse stimulation did not provoke Ca2+ signals. During the electrical 

stimulation a movement artefact became visible, which was represented by a sharp 

negative peak in the mean image intensity as well as in the result of image correlation 

(Figure 4.28D, E). In addition, a change in the electrical recording was visible when the 

movement was initiated. The raise of the astrocytic Ca2+ signals started 1 s to 1.5 s and 

the peak value was visible at 4.5 s to 6 s after end of stimulation. With ongoing 

stimulations the base mean fluorescent intensity and the amplitude of Ca2+ events 

decreased. With a stimulation pause or with a stimulation amplitude which did not 

activate afferent or efferent fibres a slow increase in the Ca2+ signals was visible. 
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Figure 4.28: Spinal astrocytic Ca2+ events after electrical stimulation. A) Study set-up. 
Two spinal surface electrodes were applied to a GFAP-CreERT2 xRosa26-CAG-lsl-
GCaMP3 mouse. The caudal electrode was used for electrical stimulation, the cranial 
electrode for recording of the electroneurogram. Recording device: PowerLab system; 
sampling rate: 40 kS/s; 50 Hz notch filter was activated. The mouse was anaesthetized 
using 1.5 % isoflurane. Biphasic stimulation trains with 0.5 mA and 2.5 mA; pulse width 
500 µs, 50 pulses. 2P-LSM with 2 Hz frame rate. B) left: two-photon image prior a 
stimulation; right: two-photon image with peak Ca2+ signal after stimulation. C) ROI-
detection of MSparkles. Stimulations with 2.5 mA (D) and subsequent stimulation with 
0.5 mA (E). Red dots: stimulation periods; black line: mean image fluorescence 
intensity; blue line: image correlation result; heat maps: mean fluorescence intensity of 
150 region of interests (ROI). F) Electroneurogram of first (top) and fifth (bottom) 
stimulation for both stimulation amplitudes. 
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5 Discussion 

In this work, electrical stimulation and electrical recordings were combined with in 

vivo two-photon laser scanning microscopy (2P-LSM) in the murine central nervous 

system (CNS). A set of multichannel electrode arrays including the final assembly and 

application procedures for use in standard craniotomies and laminectomies were 

developed. Several pilot studies demonstrated the electrode biocompatibility at the 

cellular level and in vivo experiments showed their usability to investigate brain 

functions. 

 

5.1 Electrochemical improvement of the surface 

electrodes 

In order to improve the electrochemical properties of the liquid crystal polymer 

(LCP) electrodes, an electroplating system for platinum electroplating was built and 

various electroplating parameters were tested (Chapter 3.2). The use of ultrasound 

was essential during the electroplating process to apply a complete platinum layer to 

the electrodes. In the literature, an improvement of the coatings by ultrasound has 

been described, e.g. to remove loose particles (Boretius et al., 2011) or to avoid 

cracking due to internal material stress (Ohsaka et al., 2008). For the LCP electrodes, 

gas bubble formation by electrolysis on the electrode surface was the reason for 

incomplete coatings. 

Constant current electroplating was performed with current densities of 

0.1 kA/cm2  0.4 kA/cm2. The best result was found at a current density of 0.2 kA/m2 
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and an electroplating time of 75 s. At this time, the highest porosity for the electrodes 

seemed to be found due to the best crystal nucleation, which generally resulted in the 

lowest electrode impedance and the highest CSCC. On the one hand, the time factor 

was apparently decisive for whether the electrode was completely coated, which was 

not necessarily the case with very short times. On the other hand, the rough structures 

of the gold electrode were probably smoothed by the platinum layer if the plating times 

were too long. 

A similar result was achieved with pulse electroplating. For one current density 

(0.3 kA/m2), the optimization was best and the values were lower to those of constant 

current electroplating (round-shaped electrode sites: |Z(f=10 Hz)| =32  - 52 

best for constant current; |Z(f=10 Hz)| =29  - 50  

(mean value ± standard deviation)). For the tested parameters, however, no time 

dependence and a lower dependence on the current density were recognizable. This 

could be due to the fact that pulse electroplating produces different nucleation and 

plating rates within one pulse and thus inhomogeneous surfaces. The electroplating 

parameter with pulsed current could generated similar results for the round-shaped 

electrode sites to the rectangular-shaped sites (magnitude of impedance multiplied 

with site area for current density of 0.3 kA/m2 and 90 current pulses: 0.54 2 to 

0.9 2 for the round-shaped electrode sites and 0.48 2 to 0.68 kAmm2 for 

the rectangular-shaped electrode sites. Thus, the method showed a good robustness 

for the different electrode site sizes.  

The variations in electroplating results per condition have most likely two reasons. 

On the one hand, the impedance values of the gold electrode sides have 

manufacturing variations (round shaped electrodes: |Z(f=10 Hz)| =3.3   7.2 ; 

rectangular-shaped electrodes: |Z(f=10 Hz)| =0.5   1.1 . On the other hand, 

the temperature of the plating solution changed over time due to the internal ultrasonic 

module (see Appendix, Chapter 8.9). To minimize the influence, the basin and the 

plating solution were exchanged after four or eight plating processes, but a small 

temperature influence could not be prevented. An external ultrasound module could 

solve this problem and could allow further studies with an accurate temperature 

control. 
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5.2 LCP surface electrodes are biocompatible 

Minimizing the effects of the electrode on the tissue was a crucial point for the 

investigation of cell functions or the complex network interaction. Therefore, the 

concept with surface electrodes was selected and the biocompatibility could be 

successful demonstrated. 

 

5.2.1 No detection of cellular reactions or morphological 

changes after electrode implantation 

In contrast to the reported tissue response in rodents to intracortical electrodes 

(Minnikanti et al., 2010; Potter et al., 2012; Salatino et al., 2017), no information was 

obtained about the tissue response to epidural electrodes (Chapter 4.4). 

Consequently, in this work the biocompatibility on the cellular level was tested in a 

short-term (three days post electrode surgery) as well as in a long-term (28 days post 

electrode surgery) experiment. The three-day condition was selected because this 

was the minimum recovery time for mice in chronic experiments. In contrast to 

intracortical electrodes, no continuous inflammation process or scar tissue generation 

were caused by the LCP surface electrodes. This makes it possible to examine 

physiological or pathological tissue. 

In general, the prevention of tissue damage began with the surgery. During 

cortical application, the skull had to be carefully opened and the tissue was protected 

from desiccation. The design of the electrode arrays with a separated connection wire 

for a ground or reference electrode supported a simple and fast application. The 

standard craniotomy procedure could be used, and only had to be completed with an 

intermediate step from opening the skull to closing it with a cover glass. The electrode 

was safely placed within two minutes so that no tissue damage was observed during 

this step. The platinum wire (ground electrode) was placed beforehand and the 

connection to the electrode was done after making the craniotomy (Chapter 4.3.1). 

The thickness of approximately 75 µm of the LCP electrodes, which were 

considerably thicker than other electrodes made from polyimide or Parylene C (overall 

thickness less than 10 µm possible; Donahue et al., 2018; Ledochowitsch et al., 

2011), had no consequences in application. However, the LCP electrodes were still 

thinner than the skull of the mouse and thus had enough space between the cortical 
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tissue and the cover slip. The electrodes did not push the cortical tissue down in a 

non-anatomical way. 

A laminectomy itself was more complicated than a craniotomy, as more single 

steps were required. The opening was larger, the spine has to be intensively cleaned, 

and the vertebra has to be stabilized. For electrode application, silicone was used to 

fill the space between the applied electrodes, spine, and the cover slip. But also in 

this case the electrodes could be applied without any problems due to the robust 

technology. A future improvement might be the use of a special holder to support the 

fixation of the electrode connector, which was glued to the skin. 

 

5.2.2 Angiogenesis detection indicated no inflammation-

affected bone regrowth 

A limiting factor of long-term studies has been bone regrowth (Chapter 4.5). And 

indeed, bone regrowth was observed via the angiogenesis as the first essential 

responder in healing processes in tissue or bone (Laschke et al., 2006; Claes et al., 

2012). Since the mice of this study received dexamethasone in addition to the 

painkiller after the operation, the influence of this anti-inflammatory drug was 

analysed. No dependence between angiogenesis and dexamethasone was found. 

This supported the outcome from the immunohistochemistry, which showed no 

inflammation process. The differences in the growing speed and reorganisation of 

vessel formation, especially in the first week (vessels coverage on electrode head 

was about 0.7% - 10%), underlined individual variations and were mainly influenced 

by the quality of the surgery. A small bleeding could dramatically speed up the 

complex mechanism of angiogenesis, because with the blood angioblasts to start 

vessel formation could be transported (Lampri and Ioachim, 2013). Small bleedings 

could also occur after a craniotomy was made and the mouse was moving in the cage. 

It could hit the head holder against the cage, moving the brain tissue toward the bone 

edge created by the craniotomy. 

A MATLAB script was created to analyse the angiogenesis (Chapter 3.4.2). The 

detection of the reddish vessels was based on a different grey-colour value to the 

white background. Because of the visibility of the interconnection lines and electrode 

sites, in an intermediate processing step a background image was calculated and 

subtracted from the original image. The median filtering in this step led to an error in 
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detection. The vessels looked slightly blurred, but this error seemed to be tolerable 

and should be similar across all images. An additional positive effect of this algorithm 

was to minimize the influence of blood spots during vessel formation, which were 

detected as background. Additional filter steps or a more intelligent recognition 

algorithm (self-learning neural networks) could probably improve the result and should 

be considered in the future. 

 

 

5.3 Surface electrodes enabled electrical recordings of 

spontaneous und evoked potentials in the CNS 

5.3.1 Physiological conditions and cuprizone induced-changes 

in VEPs could be identified 

One reason for the recording of the neuronal activity from the cortex was to 

determine the physiological condition of the mouse during the experiments, because 

the stress level of the mouse was an unmeasurable but important factor. With both 

LCP surface electrode arrays (round-shaped and rectangular-shaped electrode sites), 

electrocorticograms (ECoGs) low-noise recordings were achieved by appropriate 

bandpass (0.5 Hz to 250 Hz) and notch filtering (50 Hz). Thus, it was possible to 

differentiate whether and how deep the mouse was under anaesthesia (Land et al., 

2012) in acute and in chronic animal studies. However, more studies with ongoing 

data analysis are required to identify small ECoG changes, for example in case of 

inducing synaptic plasticity with electrical stimulation. 

Visually evoked potentials (VEPs) were applied to cuprizone-fed and normal-fed 

mice. The signal form of the recorded VEP was similar to that from the literature for 

VEP recordings over the visual cortex or in layer 1 of the visual cortex (Ridder and 

Nusinowitz, 2006; Porciatti et al., 1999). A reduction in the signal energy of the VEPs 

might be observed for the cuprizone-fed mice. No difference in the amplitude of the 

first response was visible. The reason therefore could be that the signal transmission 

speed of the optic nerve and a first brain information processing was not noticeably 

changed. However, further processing within the complex neuronal network (Harris 

and Mrsic-Flogel, 2013; Thomson and Lamy, 2007) of the visual input might be 
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affected, which could lead to a change in the electrical response. For further 

clarification, the degree of demyelination of the optic nerve and cortical tissue has to 

be investigated by immunohistochemistry. Probably the myelin was not sufficiently 

reduced, either by the model itself or due to a regeneration effect resulting from the 

repeated visual stimulation.  

 

 

5.3.2 Multichannel surface electrodes enabled the recording of 

cortical electrical network information 

To design the electrode arrays, special attention was given to the size and the 

separation distance of the contact points. Only little information was available from 

previous studies. On one hand, the electrode sites are selected as small as possible 

down to the 10 µm range in order to be able to detect the firing of individual neurons 

(Khodagholy et al., 2015). On the other, the electrode arrays with larger electrode 

sites were used to acquire more global activities and to analyse which cortical areas 

were active, for example using the current density analysis (Buzsáki et al., 2012). 

Thus, a channel similarity study (Chapter 4.6.1) was performed for the LCP electrodes 

by calculating the correlation of the individual channels. The result indicated that there 

was a high similarity between the channels in the awake as well as in the 

anaesthetized mouse. This should allow the determination of regional global activity 

within the observation window for further analysis. However, some signal differences 

were also found owing to the decreasing correlation results for more distant electrode 

sites. This indicated that very specific local signals were present and recordable with 

the electrode arrays. So far, there were no valuable starting points to combine the 

difference voltages of the channels for spontaneous signals with 2P-LSM. This might 

be different for sensory evoked potentials. For example, the propagation along the 

cortex (Mohajerani et al., 2013) could be followed and compared with functional 2P-

LSM to gain deeper insights in the role of microcircuits across the different cell 

populations. 
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5.3.3 Spinal surface electrodes recorded somatosensory and 

electrically evoked potentials 

The electrical recording of neural signals from the surface of the spinal cord was 

possible for somatosensory (hind paw pinch) and for electrically evoked potentials 

(Chapter 4.10). Electrical stimulation was performed with a second spinal surface 

electrode located closer to the tail. The signal difference of the electrically evoked 

potential (>150 µV) was at least five-fold higher than of the somatosensory evoked 

potential (20 µV to 30 µV). Thus, the electrical stimulation activated a higher number 

of fibres generating large combined action potentials.  

During the activation of neuronal fibres iin vivo fibre, two different observations 

were made. With lower current amplitudes, the afferent fibres were activated, due to 

their closer position to the stimulation electrode. By increasing the stimulation 

amplitude, the signal of the electromyogram changed together with the appearance 

of a leg movement. The fastest nerve conduction velocity of the afferents was found 

at approximately 20 m/s. However, we cannot exclude that, due to the stimulation 

artefact, a fast component of the neural signal might have been obscured. Thus, it 

remained unclear if this was the response of the fastest fibres. In previous studies, 

fastest nerve conduction velocities have been reported in the range of 17 m/s to 

28 m/s for anaesthetized mice depending on temperature of the spinal cord (Dibaj 

and Schomburg, 2017). In addition, the complex response of slower fibres with a 

conduction velocity in the range of 5.5 m/s to 3 m/s could be recorded. Unlikely as for 

the peripheral nerves (different fibre groups with conduction speeds ranging from 

approximately 1 m/s to 45 m/s; Steffens et al., 2012; Walsh et al., 2015), no detailed 

information were found for nerve conduction velocities of murine spinal fibres in vivo 

for comparison.  

Measuring the electromyogram with needle electrodes has to be improved for 

future studies. The insertion of two needles in the small femoral muscle required a 

strong fixation, which impeded a physiological leg movement. In addition, long-term 

or repetitive experiments could lead to strong muscle damage. A non-invasive 

approach that allows physiological leg movements is preferable. 
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5.4 Successful combination of electrophysiology and 

2P-LSM 

With the new electrodes and head-holder, combined studies could be carried out. 

Owing to the higher border of the holder, sufficient amount of water could be filled in 

for laser coupling for long-lasting imaging studies. 2P-LSM was performed within the 

cortex at a depth of 50 µm - 200 µm to observe Ca2+ changes in neurons and 

astrocytes. Together with a maximum FOV size of 256 µm x 256 µm, the shadow 

effect of the electrode was not interfering. In addition to the use of MSparkles, 

semiautomatic MATLAB scripts for image and signal processing were developed, 

enabling a step-by-step analysis and verification of the acquired data. 

 

5.4.1 LCP electrodes supported data analysis with spatial 

information 

The high reflective surface of the LCP electrode was visible in the two-photon 

images (Chapter 4.1.1), even when the laser power was set to the lowest possible 

value (around 1%). This enabled a fast navigation to the optical window of the 

electrode. In addition, the identification of a prominent marker (the upper-left corner) 

made it possible to locate the FOV. With three corners of the electrode window, a 

complete coordination system could be generated to gain more knowledge about the 

orientation of the FOV to the electrode (Chapter 4.7). However, the verification of this 

method showed that the detection of the corners was affected by a certain error in the 

µm range. In relation to the edge length of the electrode window of at least 1 mm, the 

error seemed acceptable to determine the position and orientation of the FOV. The 

error in z-direction was much greater than in x- and y-direction because the image 

brightness was evaluated instead of aligning the electrode corner to a target cross. In 

addition to the individual subjective evaluation, the alignment was also influenced by 

the electrode orientation and thus by the different direction of the electrode reflection 

in combination with the corner (for example, the reflective surface for the upper left 

corner was on the left and top side and for lower right corner on the right bottom side). 
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5.4.2 Isoflurane and kainate could be used to alter cellular 

responses 

To combine ECoG and 2P-LSM, a mirror control signal from the microscope was 

captured with the recording system. This made it possible to synchronize the different 

data frame by frame. Mice with the genetically encoded Ca2+ indicator GCaMP3 

expressed in astrocytes were used in the combined imaging studies. Anaesthesia 

(isoflurane concentration) was altered or an injection of kainate into the contralateral 

hemisphere of the cortex was used to alter neuronal and astrocytic activity. Isoflurane 

increases the activity of GABAA receptors and potassium channels (Lissek at al., 

2016), thereby reducing neuronal excitability. Kainate activates respective ion 

channels (AMPA as well as kainate-type glutamate receptors) located on presynaptic 

and postsynaptic terminals, dendrites, and axons (Lerma, 2003; Lerma and Marques, 

2013) and thus has a considerable influence on the neuronal activity. It can induce 

seizures, change astrocytic signalling and acts as a model of temporal lope epilepsy 

(Bedner et al., 2015). 

Using the electrode array, highly synchronized neuronal spiking activity could be 

detected in the contralateral hemisphere after kainate injection into the ipsilateral 

hemisphere. Under anaesthesia and after kainate injection, the ECoGs appeared to 

be similar for both synchronized spiking activities, but the correlation results reflected 

a higher synchronization for the kainate-changed neuronal activity. A variation in the 

number of Ca2+ events per time could be observed when the anaesthesia was altered. 

Approximately 0.05 Ca2+ events / s to 0.7 Ca2+ events / s in the anaesthetized and 

2.5 Ca2+ events / s to 4 Ca2+ events / s in the awake mouse were detected. Previously 

a ten-fold reduction of spontaneous somatic signals were described for astrocytes 

when the mouse was anaesthetized (Thrane et al., 2012). The anaesthesia level was 

a crucial factor and could be monitored with the combined ECoG recordings. With a 

more comprehensive database the Ca2+-events per time should be intensively 

compared with the depth of anaesthesia estimated via the ECoG (Land et al., 2012, 

Lissek et al., 2016). Together with a differentiation of astroglial Ca2+-events in somata 

and processes our knowledge on the role of astrocytes for brain function will increase.  

From a more general perspective, the astroglial Ca2+ signals were reduced when 

the neurons fire more synchronously. This effect could be observed after kainate 

injection, where less than 0.3 Ca2+ events / s were observed while the mouse was not 

under anaesthesia. When the ECoG indicated an epileptic seizure the astrocytic 
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activity raised at seizure end within few seconds to about 4 Ca2+ events / s and 

dropped back afterwards. So far, it is not clear if the astrocytes only following the 

general synaptic transmission and thereby the release of neurotransmitters (Volterra 

and Medolesi, 2005; Guerra-Gomes et al. 2018) or if they actively damp the neuronal 

activity. Thus, the multichannel recordings along the cortex and the knowledge about 

the neuronal synchrony might be a promising approach in different physiological and 

pathophysiological in vivo studies. 

 

 

5.4.3 Axons rather than neuronal cell bodies were directly 

activated by electrical stimulation 

The electrode arrays with the rectangular-shaped electrode sites were used for 

electrical stimulation of the cortical tissue. Stimulation experiments were performed 

with mice expressing the genetically encoded Ca2+ indicator GCaMP3 in neurons or 

in astrocytes. A direct stimulation response was visible from Ca2+ related signals in 

neurons, which changed with stimulation amplitude, stimulation frequency, and 

anaesthesia. However, the threshold of network activation changed with the time 

between electrode application and stimulation study. The reason was the bone 

regrowth under the electrode, resulting in a different current distribution between the 

electrode sites. For this reason, the threshold value was determined before each 

experiment. By using two interconnected electrodes, the minimum stimulation current 

was about 150 µA for studies performed three days after electrode surgery. This 

resulted in a calculated current density of about 950 µA/mm2 at the electrode surface, 

which should enable the stimulation of the axonal structure (Tehovnik et al., 2006). 

With the geometric information about the FOV, calculated by the electrode edges, the 

Ca2+ spreading direction of neuronal transmission could be aligned to the 3D cellular 

structure. Prominent was the direction from the cortical surface down to deeper 

cortical layers. Thus, the electrical stimulation activated directly the axons in cortical 

layer 1.  

The response of the neuronal network increased with increasing stimulation 

amplitude and decreasing anaesthesia because of a wider range of axonal excitation 

and a higher neurotransmitter release at the synapses. Using a frequency of 50 Hz, 

a stable neuronal activation could be observed in repeated electrical stimulation. 
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Changing the frequency to 10 Hz, the stimulation did not provoke stable responses. 

The Ca2+ related signal decreased in case of stimulations with the same amplitude. 

This might be an effect of short-term depression, a form of synaptic plasticity, due to 

the low density of long-lasting train stimulations (Citri and Malenka, 2008). 

 

 

5.4.4 Cortical stimulation activated frequency-dependent local 

and global network activity 

The observation of the spreading direction of the neuronal Ca2+ related signals 

was more advantageous with a 10 Hz stimulation, but to avoid the change of the 

neuronal network response, 50 Hz stimulation had to be used. In addition, with 

stimulations at 50 Hz two Ca2+ transients became clearly visible. The first came 

mainly from the activation of the neuropil and the second mainly from the activation 

of the somas (Figure 4.21). After the raise of the somatic Ca2+ signals a drop (within 

the imaging speed) was observed while the stimulation was still active. This might be 

an effect of activated Ca2+ pumps restoring the intracellular Ca2+ homeostasis.  

In addition, a fast (within imaging speed) and a slow decrease (about 5 s) was 

visible in somatic Ca2+ related signals for 50 Hz stimulation when the stimulation was 

about 10 s. The fast reduction might be induced by Ca2+ pumps as it was probably 

seen in the neuropil. However, the slow signal change could be an effect of the global 

network activity, because a similar effect was described in a recent published study 

(Michelson et al., 2018). A 16-channel silicon single-shank electrode was used to 

activate small populations of neurons and to investigate the response of in vivo 

Ca2+ signals (GCaMP6) in cortical layer 2/3 with two-photon imaging to different 

stimulation frequencies from 10 Hz to 250 Hz. The stimulation amplitude was set to 

50 µA and a pulse width of 50 µs was used (Michelson et al., 2018). In these 

experiments, the stimulation time was 30 s, followed by a pause of 90 s. The highest 

activation and the largest activity spread were found for stimulation frequencies of 

30 Hz and 50 Hz (Michelson et al., 2018). In this study, also a decrease in 

Ca2+  signals could be observed after a few seconds of stimulation for neurons with a 

distance of 115 µm. This effect was not visible in the neurons next to the stimulation 

electrode. It was pointed out that an explanation can only be found if the functionality 

of the complex neuronal and non-neuronal (glial) network will be investigated 
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(Michelson et al., 2018). Incidentally, this study has also indirectly addressed the 

problems with implantable electrodes. The tissue responded directly to electrode 

implantation, resulting in mechanical stress-related Ca2+ signals.  

Unlike this work, the study (Michelson et al., 2018) provided no visual information 

or description of a signal undershoot within a period of about 35 s to 70 s after 

stimulation. However, the pause of 90 s between the single stimulation could be an 

indication that some time was required restoring a base situation. The dependence to 

the level of anaesthesia might be an indication that this was a combined effect 

resulting from active Ca2+ pumps and synaptic transmission opening Ca2+  channels 

(Nowycky and Thomas, 2002). Thus, the interaction of reducing Ca2+ and increasing 

Ca2+ could be a combined effect of the activity of single neurons, neuronal network 

and astrocytes.  

In another combined in vivo stimulation study (Histed et al., 2009), using needle 

electrodes made of tungsten or platinum-iridium or a glass pipette, no of these effects 

were described. Short train stimulations at a frequency of 250 Hz were performed with 

a selected stimulation amplitude close to the identified stimulation thresholds (up to 

25 µA). In the acute in vivo experiments, a Ca2+ increase in few neurons around the 

electrode tip and the neuropil within a radius of approximately 40 µm was observed 

(Histed et al., 2009). Both studies (Michelson et al., 2018; Histed et al., 2009) in 

combination indicate, that by observing neurons more distantly from the stimulation 

site and using - mulations might an additional approach to investigate 

the complex cortical network. 

 

 

5.4.5 Astroglial Ca2+ events could be induced by electrical 

stimulation of neurons 

To study astroglial Ca2+ responses after electrical stimulation, mice with GCaMP3 

expression in astrocytes were used. The stimulation amplitude, stimulation frequency, 

and anaesthesia were changed. No astrocytic responses were visible for 10 Hz 

stimulation, even the stimulation amplitude was selected in the range which was 

known to safely activate the neuronal network. With higher frequencies of 30 Hz and 

50 Hz, a measurable activation was possible. According to the timing of the astrocytic 
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response, the astroglial activation (50 Hz stimulation: peak value after 4 s to 5 s) was 

followed the neuronal activation (50 Hz stimulation: peak value after approximately 

2 s). Thereby, they responded to the release of neurotransmitters (Volterra and 

Meldolesi, 2005; Shigetomi et al., 2016; Guerra-Gomes et al., 2018).  

In contrast to the electrically evoked Ca2+ signals in neurons, the stimulated 

Ca2+ signals in astrocytes did not clearly change gradually with the change in 

anaesthesia or stimulation amplitude. One reason for this could be that the astrocytes 

were more restricted in their regional extent (Volterra and Meldolesi, 2005) than 

neurons and that astrocytes react to the integrated synaptic activity (Guerra-Gomes 

et al., 2018). Thus, the stimulation frequency might have a greater influence on 

astrocyte activity than the stimulation amplitude, which could be an explanation for 

the missing Ca2+ transients in 10 Hz and partly in 50 Hz stimulations. The astrocytes 

appeared to react at a threshold value as it might have been detected after kainate 

injection. However, the Ca2+ signals in astrocytes and in neurons after electrical 

stimulation have to be further investigated for a comprehensive understanding. 

In addition to the cortical application, electrical stimulation and 2P-LSM was 

performed in the spinal cord in vivo. However, it had been more difficult to induce 

astroglial Ca2+ signals in the spinal cord than in the cortex by electrical stimulation of 

the neurons. In one of five studies an activation of the astrocytes, which was clearly 

related to the electrical stimulation, was possible. The Ca2+ signal decreased with the 

stimulation series and did not recover to a normal activity level within several minutes, 

which made it more difficult to identify Ca2+ events. In this individual experiment a 

higher stimulation current to stimulate the spinal cord was necessary due to an 

imperfect placement of the electrodes. However, this could lead to an increased spinal 

area of neuronal stimulation. In literature, in vivo astroglial Ca2+ related signals in the 

dorsal horn of the anaesthetized mouse were only found after noxious stimulation of 

the hind foot by intraplantar formalin injection (Yoshihara et al., 2018). Paw pinching 

or brushing did not provoke Ca2+ events (Yoshihara et al., 2018). In addition, tail 

pinching did not increase astroglial Ca2+ related signals if the mouse was 

anaesthetized (Sekiguchi et. al., 2016). However, strong tail pinching could induce 

astrocytic activity when the mouse was awake (Sekiguchi et. al., 2016). In 

combination with our findings, astrocytic Ca2+ waves only arouse if intensive neuronal 

stimulation were performed. In future studies, mice with expressing Ca2+ fluorophore 

in neurons might be used. Identification of the volume of active electrical stimulation 

could help to generate and understand Ca2+ transients in astrocytes. 
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5.4.6 Boundaries for cortical surface electrodes 

With the development of the LCP electrodes, different technical limitation had to 

be considered, resulting in some restrictions for use. These included the active 

integration of a window for the 2P-LSM and technical limitations in the miniaturization 

of the electrode. 

The technology of a thin, flexible, and transparent surface electrode with 

16 channels - based on parylene C with graphene electrode sides and 

interconnections - was introduced for recording and stimulation application (Park et 

al., 2014; Park et al., 2018). Fluorescent imaging was done at the cortical surface with 

one-photon excitation (UV light) over a cortex area of 4.6 x 3.4 mm2 so that the entire 

electrode was visible. It was pointed out that the transparency was over 90% (Park et 

al., 2014). This made it possible to acquire Ca2+ signals directly at the electrode sites 

(Park et al., 2018). A comparison to a parylene C electrode with platinum electrode 

sites was shown. The metal structure blocked the visual access, but the electrode 

impedance (|Z(f=10Hz)|  8  µm in diameter) was at least one-order smaller 

than the impedance of the graphene electrodes (|Z(f=10Hz)|  100  µm in 

diameter; Park et al., 2018). The platinum electrode sites of this work showed an 

impedance in the range of |Z10Hz|  30   40 

diameter of 150 µm. 

For stimulation with graphene electrodes (electrode site diameter of 150 µm), 

stimulation currents of 50 µA to 150 µA in train stimulation with a frequency of 150 Hz 

applied for 650 ms (around 100 pulses, pulse width: 205 µs) were used. However, 

stimulation currents of 150 µA resulted in total electrode failures (Park et al., 2018). 

The peak in Ca2+ signals and the widest, almost concentric, lateral spread of 

activation, which was approximately 600 µm, were found after a time of approximately 

200 ms (Park et al., 2018). However, considering bone regrowth, higher currents 

would be required as it is currently possible to drive with this type of electrode. 

Another recent study (Donahue et al., 2018) pointed out the result of the 

combination of an electrode array made from Parylene C (thickness approximately 

4 µm) and gold interconnections (thickness approximately 100 nm) with two-photon 

imaging. The square electrode sites had a size of 25 µm x 25 µm, and the width of 

the interconnection lines was around 20 µm at the electrode head (Donahue et al., 

2018). The routing of the interconnection line was selected in a way that the visual 

access through inner area of the electrode head was maximized. With that design, 
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heating and photoelectric effects were minimized (Donahue et al., 2018). However, 

this reflects the problem that metal structures within the optical field generate heat as 

a result of laser light adsorption. This might also be the reason why the imaging was 

mainly performed between the electrode sites (electrode spacing 400 µm; Donahue 

et al., 2018) and not around an electrode site. 

Currently, there does not seem to be any electrode technology that can be used 

without restrictions. With the high-level microsystem-produced electrodes, a high 

degree of miniaturization and improved flexibility would be possible. However, a 

global transparency could be only generated if the electrode contacts were also 

realized with transparent conductive materials. But, these materials still seem to have 

deficits in electrode impedance and current transfer capability. 
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6 Conclusion and outlook 

Within this work reliable and cost-effective liquid crystal polymer surface electrodes 

have been developed, allowing the combination of two-photon imaging and 

electrophysiology in the murine CNS in vivo. Various helpful set-ups and tools were 

created to prepare the individual studies and data analysis. The pilot studies highlighted 

the biocompatibility and the new opportunities provided by the technology. It has been 

shown that the complexity of the cortical and spinal cellular network needs to be 

investigated with the combination of different methods. This is important to understand 

diseases of the CNS and to develop suitable treatments. Therefore, the novel 

technology is one important step in this direction. 

Astroglial signalling in the cortex after kainate injection has to be further investigated 

and supplemented with Ca2+-imaging in neurons within this model. The multichannel 

recording of the electrical activity might be helpful in identification of global network 

synchrony, which probably was an important factor affecting the number of astroglial 

Ca2+ events. The results of the cortical electrical stimulation by observing the different 

network activities of neurons and astrocytes displayed complex interactions. Induced 

synaptic plasticity as a local regulation mechanism, or the Ca2+ signal suppression in 

neurons as potential part of a global regulations strategy complemented with astroglial 

Ca2+ events are of considerable interest. So far, the complex underlying mechanism of 

Ca2+ signals in spinal astrocytes have not been identified. Electrical stimulation and 

recording with the LCP electrodes was possible and thus could help to generate a better 

understanding. The combination of cortical and spinal electrodes in one mouse could 

gain additional information about the information transfer and processing of the entire 

CNS. Depending on the placement of the cortical electrode, sensory information could 

be recorded or movement could be electrically induced. 
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8 Appendix 

8.1  Standard procedure of immunohistochemistry  

8.1.1 Whole body fixation with formaldehyde (FA)  

Mice were anaesthetized with Ketamine/Xylazine 0.9% NaCl. The skin was incised 

in the caudal rostral axis until the sternum. Subsequently, the abdomen and 

peritoneum was cut from medial to lateral and the diaphragm was severed 

longitudinally.  

Through lateral severing of the thorax until the sternum, the pericardium can 

carefully be released from the peritoneum. By inserting a butterfly needle into the left 

ventricle the perfusion with 1x PBS was started by a peristaltic pump. Simultaneously, 

an incision of the superior vena cava allows the blood to drain off.  

The colour change in the liver from red to pale yellow indicates the change of blood 

to the perfusion buffer. After perfusion with 15-20 ml PBS, the animals were perfused 

with 4 % FA in PBS. Fixation was considered complete after perfusion of 20-25 ml FA 

and when the liver and heart hardened. Subsequently, perfusion was stopped, the brain 

dissected and stored in a glass recipient filled with 4 % FA for post fixation overnight 

(4°C). The next day, FA was exchanged for PBS and the fixed brain was used for 

vibratome slicing. 
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8.1.2 Preparation of vibratome slices  

Leica VT1000S vibratome. These sections were collected in 48-well culture plates 

containing 1x PBS and were used for immunohistochemistry. 

 

8.1.3 Antibody staining  

Vibratome sections were incubated for 1 hour in blocking buffer (5 % HS, 0.3 % 

Triton X in 1 x PBS) at room temperature. Triton X-100 is employed for permeabilization 

of the sections for proper antibody diffusion. Horse serum (HS) minimizes unspecific 

antibody binding by occupying all available binding sites, only becoming available to 

bind for antibodies with high affinity which thereby displace the HS. Sections were first 

incubated with GFAP-anti-mouse primary antibody, diluted in the blocking solution for 

48 h at 4 °C. Afterwards the sections were incubated overnight with the complete 

primary antibody mix at 4°C. In the following, slices were washed 3 times for 10 min 

each in 1x PBS in order to remove any excess or non-specifically bound (low affinity) 

antibodies. Secondary antibodies were diluted in blocking buffer and incubated for 2 h 

at room temperature in the dark. Optionally, DAPI was added to the secondary antibody 

solution. Afterwards, the sections were washed 3 times with 1x PBS for 10 min to 

remove any non-specifically bound antibody. Finally, sections were placed in a water 

bath and mounted in Aqua poly mount (Polysciences). The analysis was performed at 

the AxioScanZ.1 slide scanner (Zeiss Jena, Germany).   
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8.2 Block diagram 2P-LSM 

 

 

Figure 8.1: Block diagram of the 2P-LSM (top) and filter settings to split the four 
channels (below). 
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8.3 Estimation of median filter size 

 

Figure 8.2: Median Filtering. A) Median filter array (left) is used to select pixel values 
around and including a centre pixel. These values are sorted and the value and the 
median is taken as new pixel value for the filtered image. B). Overview of different 
background images in dependence of median filter size. The median filter with size 
close to the double of the interconnection line width (45 pixel x 2.2 µm/pixel) provided 
the best ratio (subjective) of blood vessel suppression and interconnection visibility. 
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8.4 Recording device 

 

Figure 8.3: 16 channel recording system consisting of the recording device g.USBamp, 
Fa. g.tec and a self-developed software showing sixteen time traces, six time-frequency 
plots and one spectrum plot. 
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8.5 Estimation of VEP parameters 

8.5.1 Minimum light intensity 

 

Figure 8.4: Estimation of the minimum LED current to evoke VEPs for a mouse under 
anaesthesia. If the VEP was evoked, the mouse reacted with a large neuronal 
response. The number of responses was counted (box Results). 

 

8.5.2 Minimum pulse width 

 

Figure 8.5: Estimation of the minimum length of light flash to evoke VEPs for a mouse 
under anaesthesia. The LED current was set to 50 µA.  
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8.6 Examples of VEPs 

   

Figure 8.6: Examples of VEPs for different time points of two mice which were fed with 
normal food (left) and two mice which were fed with cuprizone food (right). 

 

8.7 Head Holder 

    

Figure 8.7: Technical drawing of the head holder for covering the electrode and fixation 
of the mouse under the 2P-LSM. 
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8.8 Rotation angles between the local and global 

coordinate system 

The rotation angles between the electrodes related (local) coordination system and 

the microscope (global) coordinate system can be calculated using the following 

sequence: 

 calculation of the normal vector  (see eq. 6) 

 -plane 

(global coordinate system) (see eq. 7) 

 rotation of , , and  around the X-axis, resulting in vectors , , and 

 (see eq. 8) 

  and the XZ-plane 

(see eq. 9) 

 rotation of , , and  around the Y-axis, resulting in vectors , , 

and  (see eq. 10) 

  and the X-axis 

using the unit vector  (see eq. 11) 

 

        eq. 6 

         eq. 7 

      eq. 8 

        eq. 9 

                eq. 10 

                eq. 11 

 

 in the XY-plane because the definition range of  

 top of 

the mouse brain. Rotations around the X-, Y and Z-axes can be performed using the 

common three-dimensional rotation matrices , and . 
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            eq. 12 

           eq. 13 

            eq. 14 

 

 

 

8.9 Change in electroplating temperature  

 

Figure 8.8: Temperature of the electroplating solution over time with ultrasound (US) 
power of 50% and 100% respectively. 
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