Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

2011

CREATING SMART TEST CASES FROM BRITTLE RECORDED
TESTS

Santo Carino

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Carino, Santo, "CREATING SMART TEST CASES FROM BRITTLE RECORDED TESTS" (2011). Digitized
Theses. 3295.

https://ir.lib.uwo.ca/digitizedtheses/3295

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3295?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

CREATING SMART TEST CASES FROM
BRITTLE RECORDED TESTS

(Spine Title: Creating Smart Test Cases from Brittle Recorded Tésts) |

(Thesis Format: Monograph)
by

- Santo Carino =~ ' AR

Graduate Program in ‘Compu‘tér' Science

j‘;’

Submitted in partial fulfillment
of the requirements for the degree of
Master of Science

School of Graduate and Postdoctoral Studies
- The University of Western Ontario
- - -London, Ontario
December, 2011

© Santo Carino 2011

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES |

CERTIFICATE OF EXAMINATION

Supervisor - . Examiners

James H. Andrews , . Luiz Fernando Capretz

Supervisory Committee

Hanan Lutfiyya

- Mike Katchabaw

The thosis by
Santo Carin_o
ent,itled

CREATING SMART TEST CASES FROM BRITTLE RECORDED‘
TESTS
is accepted in partial fulﬁlhﬁent of the

requirements for the degree of
Master of Science

Date Chair of Thesis Examining Board

o

Abstract |

Software testing is a large and important part of the software development life-cycle.
There exist many methods to test software, such as writing unit tests or manually
testing the software. One other such method is called record and playback. Record

and playback allow a tester to record their interactions with a piece of software and

then play back those actions against the same software at a later time. The major
fault with record and playback tools is that the tests that are created are often
brittle. A test is considered brittle when it no longer works when small changes are

made to the software or when the test produces false-positive results. This thesis.

focuses on the record and playback software we designed andbuilt for the BlackBerry
smartphone. The system was designed to create smart tests from brittle, recorded

tests. We discuss how we created our software and why it works. Following that, we

look at the system’s output to determine its accuracy. Finally, we discuss how our
. . 7)
methods can be incorporated into general software development.

Keywords: Software Testing, Unit Testing, Record and Playback

iil

-LAcknOWledgment‘s

I would like to thank Dr. Jamie Andrews for giving me the Qpportunity to work with

 him and for giving me the chance to advance my education. I have learned a great

deal while working with Jamie and appreciate all of the time and effort he has put
into aiding me in my journey. None of this would have been possible without him,
and for this I am extremely grateful

A big thank you to Research In Motion and the team that gave so much time to our
research. Thank you to Sheldon Goulding, Tony Florio, Pradeepan Arunthavarajah,

and Jakub Hertyk.

Thank you to Dr. Hanan Lutfiyya for takiﬁg the time to read my thesis proposal.

A speual thank you to Sonia Dhaliwal. Her continuous encouragement over the |

past years has been smcerely appreciated. She has provided the motivation I greatly
needed to achieve my goals. I would not be where I am today if not for her.

Finally, I would like to t‘_havnk my family, Grace Job, Dave Job, Joe Carino, Sk:ott Job,

Maria Frocione, and Mario Frocione. They have provided endless SUppbrt and have

always encouraged me to bettcr my education, and for this I will always he indebted
to them.

I dedicate my work to my late grandfather, Mario Frocione.

v

Table of Conteknts

Certificate of Examination . o R i
Abstract \ | R i
Acknowledgement = U e e iy
Table of Contents - ' R o v
List of Figurés | _ o ix
1 Introdp.ction N S : - 1
1.1 Introduction . . . s e e e T R .1
1.2 Software Testing S T e L2
1.2.1 Smart Tests Versus Brittle Tests. P 3
1.2.2 Record and Playback . S T e e e
123 JavaUnit Tests I 5
1.24 Record and Playback Combined with Java Unit Tests . . s o 6

v

13 ThesisFocus. . .. v v i i i i i i e e

1.4 Thesis Organization SIS

'Backgrouhd énd Related Work

2.1 Definitions e e RN R IR ,‘ ..

2.2 A Real World Package. . . Ce Gl e -.

2.3 Related Work . ..oooo o000 - R R RO
2.3.1 Capturing User-Subsystem Interaction\
2;3.2 - Capturing Unit Tests from System Tests AT
2.3.3 Automatic Test Factoring ’
234 GUI Testing Using’Autc}mated Planning k. Ce

Information _Geifhel;igxg |

3.1 RIM SystA,em‘I\nformaﬁ(-)h i. e e . \ .

311 SystemSetup....'...‘..'...’....f RO

3.2 PuppetMaster-and Utilities IV .

3.3 System Requirements | EUUUE D | Ve

Desigrrll‘

4.1 Recording Design . . e .
411 | fniﬁal Thmléixts on Iviécording . : e :

vi

10
10
11

15

16 -

17

19
20

22

P
o
.26"

28

30

4.2 Mapping Design; 33
4.3 .Syste.m O_verview 36
5 ;I—‘heSyﬁstem | B SR RE 38
5.1 TheRecorderoouur... Ce e N .. . 38
- 5.2 UtilityPropSeqGenerator . ‘. . R e S e 41
5.3 UtilityTraceCollector e e e e R 46
5.4 TestGenerator e e N . .‘ .- 48‘
54.1 Noise Removal e e ‘50>
5.4.2 Mapping Rec‘ordings' to Ut.ilit;,y Traces . . o oo v v il .. B3
5.4.3 Parameter Discovery . . . R SN .. . “ . _55'
5.4.4 Creating the Java Unit File RN o !
6 Results | | L | 88
6.1 The Utility Traces o e 88
| 6.2 Java Unit Tests . . .’ e e e e R AT ’ - 61
6.2.1 Browser Bookmark Test b. LRI I - 61
6.2.2 Create New Contact”l‘est e 63 | |
6.2.3 Create and Edit A Memo Test L RS . 65)
6.2.4 Limitations . " e ST D .' S ST 67
/

vil

7 Conclusion

7.1 Implementations of Our System

7.2 Fﬁture'Work. e e e

7.3 Summary

References

LN T T R T A S L I Y}

Vita | URRPRRRES P

e e e e e e v

viil

.........

............

L I N e

69

69
72

73

74

76

List of Figures

2.1

2.2

3.1

4.1

4.2

4.3

5.1

5.3

5.4

Gl
ot

D

-5

Example Abbot t‘.est from the Abbot and Costello Websit_.e.‘ The exafn—
ple shows the pressing of a button for 5seconds. | .13
Exaﬁple Abbot test script from thé Abbot and Costellowwébsite. L. 14
Example test case using»utiliﬁy calls i iV 27
Listener Architecture L o 32 '
Recording and Utility Trace Matching e e | e : v35
System Overview . . S R .. 36
Example recording for menu selection L4l
Example utillList file : o . .. 42 |
Example property file for BrowserUtiiities NENRE l. ce e 43
Example sequence file for BrowserUtilities T SR .. 44.

' UtilityPropSqueﬁerator Algorithm R 45
Example utilListToCollect file . . . - - . 46
UtilityTraceCollector Algorithm ’. P e : 47)

ix

5.8 TestGenerator Algorithm Part 1 . SN SR . . ; " o . . "49
5.9 TestGenerator Algorithm Part 2. e . - 50
5.10 Parameter Matching e PP }. - e e e e 56
: 61 fBrbx\}seI' Boékmafk Test P 62 .
6.2 Create Con_ta@ Test . R l. . .’ 64
6.3. ‘Creaqte qnd Edlt _Mc'zmo Test e e /‘66
.

Chapter 1

Introduction |

1.1 Introdiic::tion

Softwaro development is a long and (hfﬁcu}t process I’c mvolve,s such aohvmes as
requnements gathermg, dc&gnmg, alchztectmg, development testing, and mamte— |
nance. W e are gomg to focus on Just one of thc stcpb in the process, software testlng

: Software testmg is a largc and impor tant palt of the software deve]opment hfe»cy cle |
Software tcbtmg is a costlv exermbo and can take up as much as 60% of the de-
velopment (osts [10] Softwale testmg ensures that the software under test (SUT)
WOJ:LS ploperly and contams as few bugs as posublc Without proper software test

_ mg methodologxes, softwale ’tlmt is released could potcntlally contain many bugs that
hinder the work of the users or contain security flaws. These bugs could even be
life-threatening, depending on ﬁhe use of the software. Therefore, it is 'ilnperative |

that the SUT be tested thoroughly. -

This thesis was completed as a collaborative project between The University of West- o

ern Ontario and Research in Motion (RIM), the maker of the BlackBerry, and funded

in part by the Natural Sciences and Engineering Research Council in Canada.”

1.2 Software Testing

There exist various ways to teSt% sdffw'éi'gf [9], such ;'as;wliz?te-bo_a: and black-box fest.ing.
White-box testing is téétiilg in which a tester can see the ‘vsou‘rce code and writes
test cases to try to achieve statement coverage (t.ry to reach every source (:ode line),
branch coverage (attcmpt to make IF statements c‘cocute as both true and false),
and various other criteria. Whltc-bo‘c tcstmg is used to check the correctncss of the

software code. Whlte-box testmg is conducted by 2 tester who wntes codo to test the

functlonahty of a method clabs etc The thtCI‘] goals can vary depending on th01r :

asslgnod work, but g g*uemlly, they are attcmptmg to feed the code under test vauous

~ values of data in order to produce bp@(111(, results. If the lesult returned from the Lode _

under test is 1nc01rect the tester can assume a bug exmts Tests can be written thls

way to ensure that bugs do not emst as V\ell tcsts can be u&ed to ensule that bugs

m the future do not appcax Bor mst;ance 1f a piece of code cuncntly passes a test

but falls to pass the samc tebt in the futuxe, thc tebter and deweloper will know that
so:me - new rovmon in the code has ploduced a bug ThlS is called regrcssmn testmg,

and is an nnportant step of the boftware development hfe—cyde

On the other hand, black-box testing isWhéréthé tester interacts with the SUT’s
interface, which may be a command line or a graphical user interface (GUI). Black- . =~

hox testing is used to test the functionality of the SUT. This type of testing allows the

tester to interact with the program as a user would. If the tester is able to find bugs

by interacting with the interface, then it is po'séible for a user to do the same. Black-
- box testing is an important part of the ptocess as it can test parts of the software
‘that are more difficult to test using the white-box method. For instance, it is easier
to test the functionality of GUI components such as buttons and‘mer;us. As well, it

allows for the testing of returned values from the program. It may be possible that-
t,hé‘vﬁlues bemg calculated from the software are correct, but a bug exists that causes
 incorrect values to be displayed. Black-box te:;tlng can also help with concepts like

usability tt,stmg,, which white-box testlng would be of little use with.

1.2.1 Smart Tests Versus Brittle Te'sts G

As the title of this thésis suggests, we want to create smart tests rather than brittle
tests. vVVe consider smart tests those that do not break easily when a (:hange has been
made to a GUI component or to the output of a specific method in the program. A
test is considered broken when its results are false ﬁositivés | - that is to say, when
‘a test returns false but is in fact true, and vice-versa. As wéll, a test is considered
broken when it fails to run to completion beéause it has determined that some 1'equired‘ ‘
information is not available when it in fact is axrailable* For instance, if a button is
moved to different locations on the screen, between different versions of the software,tv

_ the tests should not break. The tests should be adaptxve to the changes in the progra,m B

to a certain éxtent Of CourSe there will be instances when it is near impossiblé to

have a test not bleak but for the most part the test should not be so brlttle as to :

fail for minor changes Another example would be when looking at the resuits of a
method call. The results of a method call between versions may no‘c be the same. _It
is possible that both results are correct, but a brittle test may look to compare the

new result to the old result and deduce an error has occurred, and in this instance

4 .

the test will be considered broken. Creating smart tests cases by hand is a common
practice, but creating smart tests cases automatically using.a record and playback

tool is not, as it-is rather difficult. =

1.2.2 Recbrd aﬁd Pléyﬁack o

To aid in black-box testing, there exist tools to help the testers test the correctness of

the SUT"s functionality. One such tool is record and playback. Record and playback

- tools are used to make the testing of GUIs easier. Often times a tester is required

to test a GUI by running the SUT and folloWing a script which contains a list of :
components to test. For instance, a tester‘ may be required to test the buttons,
drop-down menus, etc. of the SUT in order to make sure the functionality works a.s
intended. This testing process can be tediéus ‘d}ld time-consuming for the tester and

therefore costly to the development company. To help combat this time-consuming

| process, people have developed varidus record and playback tools. The reco:d and

playback tools work by recording the actions of the tester on the GUI a;;d[allofwing |

the recordings to be played back against the software at later times. This allows the

 test to be done once by a human tester and repeated multiple times by the computer

when needed.

Record and playback tools have drawbacks. The main drawback is that test reéo'rdings :
will tend to break if any part of the Gﬁl changés. Ifon t-he iniﬁial recording the teéter :
selects button A but on later versions of the software button A no longer‘exists, or
has been moved to a different screen location, the test will most likely break. This
is because many record and piayback tools work bSi storing the location of screen |

components and so if the component is removed or moved the test will fail. Another

drawback to record and playback tools is that it may be difficult to determine if the
test has passed or failed. It is common for these types of tools to use screenshot

comparisons of the initial test to the recorded tests to determine if the test passes

or fails. This can lead to problems as the output in the newer versions may look -

different than the initial version but may still be correct.

1.2.3 Java Unit Tests

Java unit tests are written by a tester in a programming language to test a piece
of software. The tests are usually Written as a part of a framework such as the
popular JUnit framework [8]. A unit test works by (,allmg a specific method within -
the SUT and waiting for a return value. The returned value is then compared toa

predetermmed ‘benchmark to check whether or not the test passes. For instance, a -

test could be written to test a mothod that multiplies two 1ntegels together. The

test would be written to call the method w1th specific values and store the returned

value. The tester would know ahead of time the expected result of the method, and _

therefore, if the returned value does not match the expected value, the test has failed.

To test a large software system, many hundreds or thousands of unit t-ests must be -

wrltten to test all componcnts of the svstem There may even need to be multlple

teqts to venfy a sing gle component of the 5ystem The procczss of Wutmg tebtb is Iong

as there are many tests to write, and furthermore, thc tests themsclves are prone ’

to bugb and human error. If the tests themselves are mconect or the tester has

m1scalcula,tcd the expe(ted quultmg value the test may fail when 1t c,hould pas:; As

there are vanous ways for p1oblems to arise when WI 1tmg umt tc,sts automatm" thc

creation of the tests would be ideal. By automatmg the creatlon of unit tests thele

is less of a chance of human error occurring, and as well, it will speed up the entire

testing phase of the software life-cycle. This is the goal of this thesis.

1.2.4 Record and Playback Combined with Java Unit Tests

The aim of our system is to create smart test cases. We plan on creating smart test

cases hy allowing the record and playback package to transform i‘ecordjngs into Java

unit tests. The unit tests should allow for more robustness and make the tests less

brittle. The programs will be less brittle because they will be used in combination

with a special type of utility software, which makes the tests more stable as it allows

for another layer of abstraction. The utility software takes aivay most of the difficult
work of finding GUI component&. protrrammatlcally and allows for a more bll’llplb way -
to create unit tests. If we are able to tranbform om recordmgs mto tthe unit t(‘btb
that take advantaxge of these specml utlhtles, we will kbe creatmg smart testsvfrom

brittle tests.

1.3 Thesis Focus

The goal of this thesis is to create a record and playback tool that allows for the |

generation of smart test cases. To meet this goal, we must gather requirements, -

design a system, and implement our design via a program or multiple programs.

Furthermore, we must deliver our system within the allotted time frame, receive

feedback, and make changes to the system where appropriate. Finally, we will analyze

the results of the system and see its implications. As this thesis was conducted in

-

partnership with RIM, an industry giant, it can also be viewed as a study of applied

software engineering.

Before we can begin writing our first line of code, we must have.q,fullvunderstanding(of
the system we are dealing with. We must have a complete picttlfe of how ’the testing
package interacts with the BlackBerry device and how. we can implement our system
to work with RIM’s system. Therefore, we will discuss the requirements‘ gatheriilg
‘phase and how we came to make specific design dec isions. - This phase of the pro;ect
was time-consuming; therefore, its details should be dlscnssed and understood before

we move on to the finer details of the system.

Once we have discussed the info‘rmatiori gathering phase of the éystem, we will need

to discuss the design phase. Many choices had to be made during the desigﬁ phas'e;

such as the structure of recording files, and the inputé' and outputs of each program,' |

and the flow of data. In this section we will discuss, in detail, the design of the {za.rioué‘

components of the system and how each of the components works with on_é, another.

This will give us an overview of the svstém and allow‘ us to understand the flow of -
..

data through it. We will get an overview of the four main programs that are part of

the system and we will have a look at their requlred mputb

W hen we have a good understaudmg of how the overall system wmks. we will look
vmole closely at the detalls of the foul prOfrrmm that encompa,ss our recmd and play—
back package We w111 first look at thc recorder itself. The 10001dcr is an apphcatlon ‘
that runs on the BlackBelrv dev1cc and can capture eventq wheu they occur. We will
look at how the 1ecorder is able to do thlb, asw eH as thc 1og file format that 1t saves the
events to. Next we wﬂl dleUbS the two setup programs, UtllltyPropSquenerat or

and UtllltyTraceCollector These two programs allow the Java umt test ﬁleb to

8

be generated. Their purpose is to create utility traces which we can match recorded

tests against. Finally, we will look at. TestGenerator, which is the program that

actually generates the Java unit files based on' reéorded tests. For all of the above

programs, we will look at their required inputs and outputs, and their algorithms. .

After discussing the details of hqw.the system lworks, we will look atkth‘e resulting
Java unit files it is able to gehefate. We will analyze the results of the system and see
how accurate the system is. We will look at the recording files and compare them to |
the resulting Java unit files. We will discuss the system'’s strengths ar}d weaknesses

to see where it could be improved.

Finally, we will look at the implications of our system. As the system was created for -
the BlackBerry device, the scope of its real world a,pi)lication is ksma.ll. However, the
ideas behind the project could be implemented in other systems in a more generic

way. We will discuss how this could be done and give plausible examples. -

1.4 Thesis Organization

We have discussed the introduction and basic concepts in chapter 1. In chapter 2 we
will we look at related work that has been done in relation to record and plzi)'l)ack
tools. We will lock at a well known tool and see how it differs from our own. In chapter
3 we will discuss the information gathering phase and how we set up our systems tor » B
work with the RIM software. In chapter 4 we will discuss the design phase and go into -

detail about the choices we made regarding our system. In chapter 5 we will l(v)é‘k»at‘ ‘

the two setup programs, UtilityPi‘opSquenerator and UtilityTraceCollector,

and see how they work in detail. As well, will Jook at the TestGenerator program'

and go over its algorithm and see how it is able to generate smart test cases. In

chapter 6 we will look at the results of our system and compare the recorded tests

to the generated tests. We will look at the accuracy of our system and discuss the

results. Finally, in chapter 7 we will look at the implications of our system and how

its design can be applied to generic pieces of software.

10

Chapter 2

Background and Related Wo'rkk g ‘

pEPTON.

In this chzipter we will give some déﬁnitions and follow that by lookiﬁg at work that‘
relates to this thesis. The concept of testing software ilsing're(:ord and piayback tools
has been around for many years [12], [5], and there have been many programs created
to nnplement the various me‘rhods B!] [2] (7). We will ﬁrst discuss a system namedb
: Abbot and its absouatcd tool Costello [1], Whl(h contamb a record and playback‘

funct10n Followmg that we Wﬂl Iook at the work of othe1 resealchels who ha\e‘ -

studled record and playback tools and see how thelr Work compares to our own.
2.1 Definitions

Here we define some terms that are required to be understood for this thesis.

A failing test case is a test that causes the SUT to produce the incorrect value.

11

A test has failed when the SUT does not return the expected value or behave as

expected.

A passing test case is one that causes the SUT to return the correct values. The

SUT returns a value that is expected or behaves as expected.

A recording is a a log of events that occurs as the tester interacts with the SUT’s
interface. The log can be stored in various ways, such as XML, and plain text, and

' can:contain any information that the developer of the recorder deems pertinent.

A playback is thc act of a program 1eadmg in the log of a lecordmg and rcplaymg ‘

o

the events that occurred ava,mst the SUT

2.2 A Real World‘;;Pac’kage ; |

In this section we will be lookmg at a rea,l world pack&ge named Abbot and Costello
The, packagc derives its name from the cr eatox s description, ‘A Better ’Bot” As we
are (reatmg, our own record md playb(u,k testmg pdckag,e it is, a good zded to see

how others have attempted to solvc thls problt,m L

The ‘goal of Abbot is to give the testers a framework in which to test the GUI com-
I:ionents of the program. Abbot works in conjunction with JUnit to create unit tests.
It is able to allow GUI testing by giving the tester references to the various GUI‘
comboneﬂts being used in the SUT. The tester can write unit 'tv,a‘sts'to’ret-vrievefa GKUIZV
component and perform some action on it, such as clicking a button or se'l‘ecting\ a

menu item. Abbot works by implementing a “robot class”. The robot class is able to-

12

4

control GUI components and mimic user events such as mouse clicks and keyboard
events. - As well, Abbot takes advantage of the reflection feature of Java so that it

may find GUI components programmatically.

Abbot also allows for a spoc1a1 type of scnptmg that can be edited and tun to test. a”
GUL ’lhe ser 1pt cdltor, Costello reads in the scrlpt zmd runs it agambt the SUT The
scripts are stomd as XML files. Storing script files as XML files is a common pratice,
as well as creating custom scripting languaﬂes [3]; [12]. The point of the script files
is to allow for a hlghu level of usablhty Tho scripts are considered “higher level”
as they do not quuzre the tedlousnesq of wr mng an entire program. As well, scmptb
allow for niore acccsmb}hty for tostcrs as they may not be strong programmers, but

they may be able to deSIgn simple scnpt files.

The package also contains various types of component recorders. The recotders allow
the tcstels to capture mouse zmd kcyboal d events that occur whlle 1unmng the SUT.
The recorders al]ow f01 easier script- e(htlng as they can ﬁ]l in most of the WOI‘k for

the testers. The scripts can then be lead back bv C‘ostello and run agfunst the SUT.

\

In hgure 2. l we can see dn e*cample unlt test written usmg the Abbot sybtcm The test
: VOl’lxb by {,ettmg access to a GUL componont the left arrow button, and pmceedmg

to press and hold it down for 5 seconds. The,test. asserts true if the number of mouse -

events received is greater tha,n 1. This is a fa,irly simple test with little complexity,

but as one could 1magme if we wanted to test multiple GUI components at once the 3

complemtv would incr ease. The more complc*c these tests are, the greater the chance -

1s for bugs to oceur w1thm the umt tcsts themselvcs Even w1th the cornple:aty o

in 1nmd the Abbot tool is powerful and glvcs frecdom to thc tesi:els as thev anv '

automatlcally run these tests once they have been Wuttul The goal of thm them is

13

Flgure 2 1 Example Abbot test from the Abbot and Costello website. The example
shows the prcbsmg of a button for 5 seconds. N

private int count = 0;
public void testRepeatedFire() {
ArrowButton arrow = new ArrowButton(ArrowButton.LEFT);
ActionListener al = new ActionListener() {
public void act1onPerformed(ActlonEvent ev) {
, ’ ++count, e
. } . - "
3 . o -
arrow.addActionListener(al);
showFrame(arrow); Can

~Dimension size = arrow.getSize();
// Hold the button down for 5 seconds
tester.mousePress(arrow);- T
tester.actionDelay(5000);

- -tester.mouseRelease();

' assertTrue("Dldn t get any repeated events", count > 1)

to have umt tests such as in our example be automatlcallv written therefore cutting
down on potcntlal bugs and the need to write tebts by hand ~The style of unit tests

created usmg Abbot was a blg mﬁucnce on tlns tll(‘blb : ' A

ili'ﬁguré 22 we can see an example Abbot XML script file. Theb script file describes)
a test to be run. We can see the that thei"é are various GUI components described in
the component class lines, and there are actions described in the action lines. Mixed
- in with the action lines are assert lines, which check that the GUI compénents arevy
correct. These are the type of script files that will be generét_ted from the recordihg‘ '
tools -’provided by Abbot and read in and run by Costello. Trying to edit one of”
these XML files is challenging as the tester would have to know the differént types
of XML tags and attributes available and what their values should be. Furthermore,

a downside to storing tests as script files is that the Abbot and Costello sdftWaLre is

14

Figure 2.2 Example Abbot test script from the Abbot and Costello website.

<?7xml ver31on-“1 o" encodlng-"UTF 8"?>
<AWTTestScript> = oo : .
<component class-"Java awt. Button“ 1d-"7" 1ndex-"3" tag="7"
window="Applet Viewer 0" /> :
<component class="sun.applet.AppletViewer" hOrder="0""
id="Applet Viewer 0" tag="Applet Viewer: example. S1mpleApp1et" />
<component class="java.awt.Dialog" id="Dialog" title="Dialog" />
<component class="java.awt.Button" 1d-"H1gh Button" tag-"ngh“
' w1ndow—"App1et Viewer 0" /> SRR

<appletviewer archivé="lib/example.jar" code="example.SimpleApplet"
height="250" width="250" /> ' :

<action args="textField" class="java.awt. TextComponent"
method="actionFocus" />

<action args="textField,some text" class="abbot.tester. ComponentTester"
method="actionKeyString" /> '

<action args="7" method="actionClick" />
" <wait args="Dialog" class="abbot.tester. ComponentTester"
method-"assertFrameShow1ng" /> R
<assert component="This is a dialog" method-"getText")
value="This is a dialog" /> -
-<action args="Dialog" class="java.awt.Dialog" method~"act10nClose" />
<wait args="Dialog" class="abbot.tester. ComponentTester"
‘ invert="true" method="assertFrameShowing" />
<action args="5000" method=“act10nDelay" /> : o v
<terminate /> o SR B
</AWTTestScript>

always 'fé,q{{ired to run the tests. The pro JLCt described in this thesis attenipfé to
‘gene'raté: test cases from recordings thzxﬁ can be run independently of the software
that created it. The log files generated from 'o:u'r‘project are simple and require no
human editving;‘ a tester is able td record a test, convert it to a unit test, and run it

without ever having to program a test or edit a script.

The Abbot and Costello package was a big influence on the work done in this thesis. ,

15

We are creating a similar tool that we hope will be able to create smarter test cases,

~while requiring less technical knowledge for our users. The users of Abbot and Costello

must either know how to create unit tests in Java or know how to edit XML scribt

files. The users of our system should only have to know about recording tests and
converting them to Java unit tests automatically via a provided program. The tests
created from oﬁr package should also be less brittle,as.ihe'y have a la'yef of ahstraction
to take away complexities such as locating GUI components; if the componént éxists,

we simply interact with it.

2.3 Related Work

In this section we will be looking at other féseafchéi‘é who have done work with record
and playback. It is imp(')rtm‘ltf for us to see how others have apptroaChéd the’ problem
of capturing intera,ctioné between a user and a system aé we may be able to borrow
ideas to make our own systems better. As well, we will be able to see how other
researchers were able to store the recordings and play ﬁheni back against the SUT.
\V(; will be lobkiﬁg/ at papers by Orso and I\Zén'ned.y" [13],AElbaiim et al. [4], Saff et al. :
[14],1an,d_ Memon et al [11]. Each of these pape}s yapproaclie‘s a verﬁr specific pi’dblehl, «
so the details are not always directly relatable to our own work, but many of the idess:

are applicable.

16

2.3.1 Capturing User-Subsystem Interaction

Orso and Kennedy [13] created a technique to allow for capture and replay of a user
interacting with a system or subsystem. Since there is a large amount of data flowing
through the system, some oflt even being confidential, Orso and Kennedy decided
to only capture a small subset of the’information‘ hetween the user and whichever
subsystem the user was interacting with. This would allow theni to generate unit
tests and analyze the system offline. They were working with a lai‘ge systeni and
80 captui‘ing all relevant»infdhﬁation was Chz;llengixxg; the‘jq :WO{xid-lia\ré to know the
states of vafioﬁs c‘i’a."cabés-es and users. 'Thérefore, they decided to ca;itufe only a select
portion of flie interaction based on the uSéf’S ploferomeq Orso azii‘lmKier;nédy were
able to peffotni capture by inSérurheﬁtiné; the '(‘(:)dé;' :ﬂlaf; iq"té qéy, they inéérfed ﬁrobeé
to log the events of the svstem lhey created a techmquc that would create pl()‘(y
methods that would stand in betwcen the calhng method and the called method.
It works bv addlng some code beforc and after the mcthod is called The pro*cv
method logs the patamcter values sent to the method being called and also logb the
value returned from the ccxl_led method. To replay the recorded event, ‘the bybtem _
déterminesivllicll sﬁbSyst-em is béing interacted with and generates the objects based
on the recording. It uses stubs to mimic the behavior of external systems that the

subsystem needs to interact with.

~Joshi zmd Orso [7] did further work in the area of capture and playba,ck of tests ’l’hey
(reatui a tool calkd SCARPE that allows for the capture and ILp]ay of subsystems

The paper describes the use of mstmmentatlon to Captme the evcnts, Just as in
the Orso and I&onm,dy papez Thc, recorded ‘fosts have thelr events Iogged to a
text file; as well, the output of the system is also stored. To repldy ﬂu, lecorded

ei'ents, SCARPE builds a scaffolding system around the subsystem. The scaffolding

17
mimics the behaviour of the external system that the subsystem interacts with. The
scaffolding then suppliés the values from the log and checks the return 'values from
the subsystem. If the return values do not match the log file, the system queries the
user on how to proceed. SCARPE is able to rccérd and ;eplay the events well, but X
at the cost of some overheard. ‘ For some cases, the overhead is too large to m;ike
the test creation feasible, but Jbshi andr Orso claimed to be working on making the

system more efficient.

Orso and Kennedy’s work was very mﬂuentlal at the begmnmg of our own pro3ect as
we had initially boheved that we would have to instr ument ccode as they had done.
Before we had a complete understanding of the RIM software we would be working
with, we explored the idea of instrumenting the systerﬁ code and inserting probes so
that we could view the interactions between various subsystems. Aft01 we had met
with the RIM team it was discovered that thcu, was a much easier way for us to record
the events of the system, by use of listeners. Llstenels are are type of observer pattern
that allow programmers to probe software and log the events occumng w1th1n It
turns out that RIM’s software has a listener class in pia,ce in wlnch we could essentially

plug our own code into to begin recordmg evcnts

2.3.2 Capturing Unit Tests from System Tests

Elbaum et al. [4] recognize the efficiency of unit tests and the importance b'o‘f system |

tests and therefore want to'merge the two into what they call differential unit tests

(DUT). System t-ests.im)olye_ testing the functionality of the system, but the tests can
be slow to complete (days or weeks at a time‘)“ and that is wh'yv they want to create

these hybrid DUTs.

18

Their general method to create DUTS is t6'carve the system components, dl_u‘ing a
system test’s execution, that mﬁuenco the target unit’s bgha,\nm The Calvixlg can
- then be 10—&5&0111131&(1 so that the target unit can be tested as it was by the bystem

test. These carved tests would be closer to unit tests and therefore retain some of |
the advantages of unit tests. The car ving of unit tests from the system is essentially
a recording, and replaying the tests against the target unit is analogous to playing
back a recording. The method works by recording pre an/(_i post states of the systein.
Before a unit is executed, the pre state 13 récorded‘a.n'd‘a,fter the unit executes, the
post state is recorded. These two states can then be used as the baseline tests for
future versions. New versions of the software also have their pre and post states
reéorded and then compared to the original pre and post states. If the post states |

are different, then it is known that the unit is not acting as it should.

The work done by Elbaum varies greatly from our own. Our system records and
replays unit tests in a much different way then the system above, though original]y -
~we did consider usmg a state-based method for rovordmg and replaymg tests. Our
system, as we will see in the coming chapters, only deals with rccordmg unit tcsts
and does not deal with system tests. Since we are not dealing with system tests, we
~have no need to worry about the vcomp].exifies of carving tests. During our system’s
.development, we considered using stateé to heip génefate unit tests. In a similar
way that Elbaum’s system uses pre and post :stéiteé/to determine 111xit'cor1'éction,
w.e' were ébing to use pre and post states to determine which method to call. Once
we discovered the limitations of 'theg RIM software we were dealing with, we had to
discard the idea of using states.: HoWever, th'e idea of states could potentially be used
in our methodology if it were to be implemented with generic Softwa,re As we had .
no control over how the RIM boftwarc w01ked we could not modify it to work in a

state-hased manner.

19

2.3.3 Automatic Test Factoring

Saff et al. [14] conducted research on automatic test factoring for Java. Test factoring
is the method of creating unit tests from system tests. The unit tests only test a -‘
subset of the functi.onality that the system tests test. However, the unit tests can be

run more quickly and help isolate bugs.

The method uses the idea of .mock‘ ijéctS'tc‘)‘ factoi‘ .test}s'. Mock dbject.sm-e sim-
ulations of another object and mimic the same behavior of the (‘)rigiii’al ‘object in a
controlled way. If a component of the system, T, interacts with anenﬁronment ob-
ject, E, a mock object can be used in place of E when running th‘é"test.“By using
mock objects, the running time of tests can be reduced. The mock object checks the
input, and output vélﬁes from the test and compares them to the initial system test.‘ |

While capturing the test, a mock object is wrapped via instrumentétioﬁ around the

real object and a transcript of the actions is created. When the tests are replayed,

the mock ob jects read the trdnsc:ripts and check that t.h‘e_‘teét.v’s inputs match against
the transcript. This means that the actual éystem objects do not have to be kru'n in.
order for the tests to be conducted. Saff et‘ al. found that test factoring using mock ‘

objects can cut down on running times by up to an order of magnitude.

The research done in the above ,p'dper doeé vnot‘_direct.ly' correspond to the work we
did in-our own bl'oject,' aside from the idea of record and playback. Thé reseafch
done by Saff highlights a'possible method that we may have used if it was decided |
~ that we needed to instrument the code at all. The use of mock objeéts to record and
play back tests is intelligent; however, the goal of their research was to create unit
tests from system tests and the goal of our research was to simply create unit tests :

from ‘user actions. If we had decided to use instrumentation to record events, it is

20

more likely that we would have used probes in the way-that Orso and Kennedy did

in their paper.

2.3.4 GUI Testing Using Automated Planning

The research done by Memon et al. [11] discusses their automated test gen.eratio11
program, PATHS, that generétes test cases from a hieraréhicéd stand point using the
Al technique of planning. The input to the system is a set of initial st’ates‘, goal
states, and operators. The operators tell the system how to navigate the GUL The
planning technique utilizes these operators to create a path from thé-initial state to
the goal state. It is possible for multiple paths to exist from one»initial state to one
goal state. The system uses a hierarchical methodology to encapsulate the GUI into
| more abstract concepts. This encapsulation allows for tests to be generated at a much
quicker speed than if only one layer of GUI operators were to be used. The user of
the system must define the GUI operators and state the pI‘QCOﬂdithIlb requned for.
the operator to be invoked. For instance, in order to close a file, you must first open a -
file. The system uses a mapping mechanism to break down the higher, more abéfcract-

operators into their lower-level, simple operators.

The work done by Memon et nal. has some rélziltion to t;h'e'.wldrk‘ done in this thesis.
For inStance, we also use a mapping mechanism tov.go from low-level events to higher,

more abstract method calls. This allows us to encapsulate the work of ﬁnding GUI
components and interacting with them. Another concept that relates toﬂ our own |
thesis is the idea of ordering. Some of the operators in the above paper require
preconditions to be true in order for the operator to be #ble to be invoked. :Ivn our

system, we require that the methods be placed in order as well, as some of them

91

~ require the system to be in a specific state, and this can only be accomplished if some

other method is called before.

22

Information Gathering

In this chapter we will look at the information we gatheréd from our ﬁleetihgs with
RIM, such as how their systexﬂworkfs, .t.he‘te‘sting package they use, and the require-
ments for the record and playback tool we created. We needed to have a picture of

how everything worked so that wé cbuld'i)roperly“deysvién our 'sdftwaré. Fiu'thermore,’
we needed to understand RIM’:; reﬁtiiremehts. We also neededto understand how
their system works and how their test paékagé works so that we could illteg:ate our

/
[

system with theirs.

3.1 RIM System Information

Since we worked with RIM, we designed software to work in conjunction Wlth the
BlackBerry smartphone. The BlackBerry uses a Java-based operating system and all

of the applications written for the BlackBerry are also written in Java. It follows that |

e

23
our own software is written in Java as well. Technically, we only had to write the -
recorder in Java; we could have potentially written the test generation sdftware in
some other language, but as it is my most proficient language and the ‘l‘languaﬁge‘used
by RIM, we stuck to Java. The BlackBerry contains rhany different layers of software,
as one would expect, but we are only interested in the operating system layer as that
is where the events are bcnt out and avallable for recording. The testing softwaro |
used by RIM is creatcd m-house and named Puppct\laster PuppetMaster has the
ability to inject events into the Java Virtual Machine running on the Bla,ckBerry; it
also has the ability to listen to the events being prdduced. We will look more closely

at PuppetMaster in section 3.2.

When developers create bOftW&l‘G f01 the BIacchrry, they need to test it on a Black-
Berry to see if it actually WOI‘](b Smco not all devoloperb own a BlackBerlv or want
to use their e‘cpcnswo ‘phones as testmg devu es, RIM has cmated a vntuai device,
called a sunulatm on which developelq can test their pmgrams The snnulatoxb amo,
Windows a,pphcatxons that look and act hke a real Blac kBex ry Therc exist umulators
for all of the different type'a ‘of phones that RI’\zI leleascs Thls allows the developers _
to tebt their apphcatxons on multlp}c devxces to ensure compatlblhty RIM also uses
these smlulators to test out their own softwale Instcad of providing every tester w1th
thexr own tesbmg dcwce, the testers can blmply mstall the nccessarv simulator and
tebt that the software worl\s cor rectly Of course, SImulators do not always act the
same as 1La1 phones and S0 RIM uses a mix of both real devices and snnulatoxb when :
testmg their software. For our own pmposes in this thesm, we tested our boftware
a,gcunbt a simulator. Smce we developed the software in our lab rdthel than at R.I\i
we had to set up ‘the enwronmcnt in our lab s0 that we could create and ‘rebt our

software properly.

24

3.1.1 System Setup

Setting up the RIM environment on our own syStéms prOvéd tobea greater challenge

than originally thought. We had to do the following things.

Install a development environment.

Install a BlackBerry simulator.

Install the BlackBerry USB driVers.

Install the PuppetMaster Software.

Connect a test program to the simulator and run events.

We first had to decide on the developménbenvironmént we Woﬁld be using to create
our softwéxe. The choicgs were narrowed .(1§\7‘¥'11 to twci_ I)ObSlbllltl(,S _Eclipsé'witli
the BlackBerry plqg-in and the BlackBerry Integrétédl.De\f@lopnleqﬁ Environmeni
(IDE). Thé BlackBerry IDE Was created by RIM to alléw,deyelopers ‘_e‘qyéas\i\ly vw’rli‘te
z{xpplicatigns’for the BlackBerry as it came installed with a device siﬁnﬂa.tof. We
decided to‘t’ry'bot,h‘ Eclipse and the B’lackBerry IDE to determine which one best
fit our needs. It turned out that the BlackBerry IDE was a little primitive for our
needs and harder to work with, so we (iecicled to use Eclipse. The BlackBerry plug-in
for Eclipse comes packaged with a simulator, but the simulator it came ﬁvith is not
the device we wanted to test on. Therefore, we downloaded the latest %ersion of
the BlackBerry 9700 simulator and used that instead. Installing the;simulatd.r and

getting it to work was faiﬂy painless. - -

- 25

Next we had to in'sta,ll the BlackBerry USB drivers; The purpose of the drivers is

to allow a device to connect to a computer so that information can be ‘passéd back
| and forth between the two. For instam:e, it allows fbr_ a user to back up their data or
install new applications on their phone. The simulator we would be using simulates a
connection via the USB port and tricks the desktop softwaré into thiﬁking an actual
device is attached to the computer. This allows us to treat the simulafdf like a 1'eaIv
device and connect to it a.s such. We were able to easily ihstall the USB drivers from

the BlackBerry website.

Following that, we needed to install the PuppeﬁMaster softwére. The PuppetMaster ‘ |
software is what allows us to. create a 1ink between our program-and thé simula-
tor. The software comes packaged with Java claéses that can create connections to a
simulator or device connected to the USB port One problem with ulstalhng Puppet-
Master was that there were very spomh(‘ versxon requuements The boft\n are could
only work WJth one specific versxon of the Bla,ckBerry opel atmg sybtom It took us ‘
some time to (ommunlcate Wlth RIM and get matdnng snnulators and PuppctMasteL
softwale Onc(, we were hnally ab]o to mbtall Puppet\labter on our desktopq and on
the slmulators, we had to croate a test, program to verlfy the commumcatxons lmk_

betwccn a program and the dcvxce

Getting a test program to work properly is where all of our problems occurred during
the proce.és_. We developed a simple program to maké sihiple method calls such as
opening a menuy or pressing a kéy on the kdev.ik:fe. The program we created was rarely
able to connect to the simulator we had runningvon the desktop The software kept
rcportmg errors stating that thexo was no device connected to the computer When
‘the software was able to comlect to the slmulator, it would not always work and

would fail halfway through completlon. After much mvestlgatlon and trial and error,

26

it was determined that thePuppet-Master software could not: work properly on a 64
bit operating system. As we were running the software on Windows Vista 64, this

posed a problem. To remedy this situation, we installed VirtualBox that waé; running :
a copy of Windows XP 32 bit. We then had to install all of the sovftware again: ,\"Vhen

we ran our test program on the hcw env‘iromnent, everything went as planned and the -
test program was able to connect to the Sifnulator and run r'net;hodsas we had hoped.
Now that we had our environment set up, we could begin working on‘désigning the

sYst.eni we would be creating. We will talk alf)b_'u’tv fli_e dé’éigii phase in the next chaipt-exf. '

3.2 PuppetMaster and Utilities -

Plippethflaster is a,softwaféj)ackagé dyéveloped by RIM and is used to create unit.
tests. PuppetMaster is similar to the J enuﬁy testing library (6], ‘which allows testers to
interact with AW T /Swing GUI components ploglammatlcally PuppctMa&ter works B
by gwmg umt test programmers an easy w'\y to mampulate the apphcatlons 1unmng
on the Bla.ckBeI ry. It pxovxdes an 1nt.e1f(u_.e to progr ammers that al}ow the tests to

acCeSs GUI components Withbut héwiﬁg to worry about the low level details, Such as

ﬁndmg a spec1ﬁc button or chckmg the trackball. Puppet\laster prov1des a set of |

static utlhty methods that can be called from a umt test. The software consists of
a set of utlllty cla,sses, each of which c:ontams a set of utlhty ‘methods. Some of t.he
classes provided afe ‘applbiv('yation»-\"péciﬁc; for éjcample‘ some of the utilities can only

be used to interact ‘with the Browser apphcahon or the Emall apphcatlon “There

are also other utilities that allow genoral GUI Lomponent access. Tlxese utilities

allow a t(‘bt programmer to access any button, menu, etc that is on the interface.

Some of the many utlhty classes_provxded are BrowserUtll_zt:Les, EmallUtllltleS, :

P
H
H

27

ApplicationUtilJities, and ButtonUtilities.. All of these classes cont‘xin methods
that can be called, such as BrowserUtilities. openBrowser() whxch opens the
Browser application, or MenuUtilities.selectMenultem(itemName), whxch qelectb
a menu item. By using these utilities, a test programmer can quickly create unit tests
without worrying about how to find the GUI components using reflection. Instead;
the programmer can create a unit test that simbly contains a iist of method calls that

fow in a logical order. An example test is shown in figure 3.1.

Figure 3.1 Example test case using utility calls

/*Test that opens the browser, goes to example.com and then
*closes the browser

*/
\\Code to set upﬂméthod here
BrowserUtilities.openBrowser();
BrowserUtilities.goToURL ("www. example. com")

'BrowserUtilities.close();

\\Code to end method here

PuppetMaster éontaﬁinvs two major compon&ﬁs, the desktop side and the device side.
The device side of the software runs on an actual pilOﬂé orona qimulator The device
side of the software allows for comnunucatlon between the tests and the device. The
desktop softwa,le is whew one would Lreate and compxle umt tests. T he desktop |
bOftWﬂl‘C ha,s cldsst,s that can be, called to CIGat(, a connectlon to the, devu:e and send
and receive 1n.for1‘nat1011.~ A properly set up environment contains a snnulator or
dev1ce runnmg the PuppetMabter softwa.le and a development cnwronmcnt set up
to create and compile PuppctMaster test cases. The tests can then be run from the
desktop against the device or simulator that is connected to the computer. The tests
are detel mined to have passed or failed by checking to see if an excephon has been

thrown from the umt under test. If an exc,epmon is thrown a test is said to have

fmled

http://www.example.com

28

Now that we have a good‘understanding of how PuppetMaster works, we néed to‘
undustand how our own pro ject ties in to 1t Our pr 0 JOCt works in COIl_]uanIOIl with
PuppetMaster to cwate unit tests that call Puppet\l&ster utlhtles Our softwarc
allows a tester to record tests from a device or simulator and then hav_e that recorded
test be tfansformeq ihto a unit, tvest.t‘hatv contains utility calls‘., We will see the 1i1ajor

details of how this is done in the coming chapters.

3.3 System Reqﬁiréméﬁts "

~ Before we began the design ,a‘nd development of our system, we first had to figure out
the requirements of the system. AS we worked with RIM and developed the software
for their needs, we had to figure out what exactly they were looking for in our testing

package. The folldw'in_g is a list of functional requirements ! for the system.

1. The system must implement re901‘ding via listeners.

2. The system must plug its listener class into the PuprtMasterllistener hub.
3. The system must take in a recorded test and produce a Java unit test. |

4. The s;fst.em must produce Plip])ethflastel" type unit tests.

5. The system must use a BlackBerry application to record events.

The following is a list of non-functional requirements for the system.

1By convention, functional requirements use the word “must” in their descuptlon, whereas non-
functional requirements use the word “shall”.

29
1. The system shall work with the current BlackBerry architecture.
2. The system shall be documcpted; both i_n'bthe sour(:ev a.xid exteriaally.
3. The system shall be written in széx.

4. The system shall be completed within a 6 month time frame.

As we can see, there were not too many constraints on how the system should have
been developed. Since we were trying to solve the problem for RIM, we had the
freedom to create any method we desired to transform a recorded test into a unit
test. As we developed our system, we created different formats for storing data and
different methods for transforming recordings, but since these were not part of the
requirements from RIM we do not have them hsted ahove. Now that we have a good '
unduatandmg of the svatcm 1cqu1roments a,nd vxhat our end goals wcxe, we can look ~

at the deblgn of our system

30

Chapter 4
Design

In this chapter we will look at the design of our systerﬁ and how we came to decide

on its current form. Before we could begin programming the system, we needed to .‘
figure out how we could potentially transform a recorded log file int]ob a unit‘te‘st. To
transform a recording into a test, we needed to understand the flow of information

through our system. We will see the overall design we settled on and discuss why we

think it is a good for our needs.

4.1 Recording Design

In the following two subsections we will look at our initial thoughts on how to design
a recorder and how we refined them. We will see the evolution of our design as we

gained more information about the RIM system.

31

4.1.1 Initial Thoughts on Recording -

When we initially began to design our system, we decided that instrumentation would

probably be required. As we had previous experience using instrumentation on Java

classes, we knew that our idea was possible to a certain extent. As we had not learned

much about the RIM system at this time, this would have been the hest method for |

recording tests on a live system. Our goal was to instrument the Java class files and

insert probes into key locations. These locations would be the beginning of methods,

at the end of methods before the return value (if there was one), and before and after-

method calls. The idea was to record the values passed into methods and the values
passed back by methods. By knowing which values were being inpiif’to the system
and which values were being returned, we would know how to replay the test because
we would have the values stb:éd; we would allso’kn.i‘ow ifa te:s__twpéssed or failed because

we would know what to expect as return values.

The problem with instrumentation is that we would need access to the underlying
software running on the BlackBerry platform. It is easy enough to instrument desk-
top software as one tends to have direct access to the Java class files. However, the

software mnniné Q_n th_ei BlackBerry{ that we would need to instrument is much differ-

ent than that which is on a desktop computer. The BlackBerry is well known for its

security, so it would have been difficult to insert probes into running applications on

-

the BlackBerry and record events. As we had little knowledge of the system so far,

this still seemed liked the best optioi\l‘, even if it seemed extréme'ly’ difﬁculf,:

Figure 4.1 Listener Architecture

BlackBerry O3

ListenerHub | R
| qre— A Eanm—Evean———-l
{ ..-,- :
Recorder Class
<Listener Class> Listener Class 2 | Ustener Class N

l
e

4.1.2" Refinements

After meotmg with RI\I and lemnmg about how then system works dlld how we
could go about (reamng a rec ord and playback tool we had to d151egard our prev1ous
thoughts On a recor dmg method We lear ned that Puppet\laster comes thh a hstener‘ |
class and a llstoner hub clabs that allow for a program to catch and look at the events ;

produced by the system Bv extending the provided llstencr class, we could create

33

our own custom listener in the form of a BlackBerry application and plug it into

the listener hub running on the device. This would allow us to easily log the events

occurring on the device. This made the design of our recorder much easier and more

in line with the architecture already in place.

In figure 4.1 we can see the overview of the listener‘ wrchitecturé The operating system
snnpl;, outputs evonts bascd on thc ‘user s actlom and allows for other a,pphcatlonb
to observe these events. Our IOCOIdOI was deslgned as a BlackBerry applxcatxon and
loa(led onto a device simulator. The recorder can be activated or deactivated by
pressing the ALT key twice. When the recorder is deact.ivated. a Iogbﬁle contajnin_g all
of the events is written to a specxﬁed 1ocat10n We wxll see more details about this in
thc next chaptcr Now that we have seen the d(,s1gn of the recorder, we will look at

how we designed our method for how the recordm.gs are transformed into unit tests.

4.2 Mapping Design

In order to transform recordings into unit tests; we needed to teach our system what

to look for. Since the end goal of our system is to generate unit tests that,cqntain'
utility czﬂls to PuppetMaster (BrowserUtilities, MenuUtilities, etc.) ,b we knveeded |
to show our system what utility calls look like. The log files that are output from tho 'b
recorder contain two types of events: keypress and display. Keypress events are -
the events generated whenever a user presses a key on the phone. A display event is
generated whenever the screen is updated with new information. Since these are fairly
1o.w-le'v‘el‘ events, it wouM be hard for a program to determine if the user is sending zm'v :

email or typing in the calculator by just observing the events. In order to determine

34

“exactly what the user is doing on the phone‘ based on the events, we need a,. baseline
for comparison. The basehne we created is a type of mapping mechambm Our -
mappmg mechanu;m works by mappmo nuv recordmgs agamst prcvlously 1ecorded
utlhtv traces. The utlhtv traces we use are recordxngs of the utility methods mthm_

Pltppeﬁ\'laster, along w1th some metadata. 'Utlht-y traces are created as follows.

1. An administrator selects a list of utility methods to record for the baseline.

2. The utility methods ‘are f)[l.‘a.ced in a logical order (e.g. you must open a browser

before you can close it).
3. The methods are run against the simulator or a device. '
4. Recordings are made fo;‘ each method being called.

5. The recordings are saved and placed in a special location to be used later for

mapping.

Now that the system contains a baselinevof utility traces,‘ the tes'tei'sfcan begin record-
1ng tests and comparing them agamst the utility traces. By creating these utility
traccb, we ale telling our sva‘r em what to look fm in the 1ec,ordmgs The systcm will
now be able to tell if the user is sending an email or workmg within some other apph— v
catlon Since the systcm now l\nows what the user is doing, the sy stem can generate
the proper method calls in the]ava unit files 1t will generate. The basic stcpe of how

the utility traces are used are as follows.

BRI

1. A tester records a test case.

2. The tester runs the test case through the TestGenerator program.’

35

3. The TestGenerator program compares the contents of the recording to all of the
utility traces.
" 4. For each block of events in the recording that _matches a utility trace, a method
call is generated. | e | o l
5. When the mapping is complete, all of the method calls generated are output to -

a Java unit file.

Figure 4.2 Recording and Utility Trace Matching

Method 1 Trace \ ' / EventBlock 1
Method 2 Trace T EventBiook2
Mathod 3 Trace L/ Event Block 3

-

Mehod N Trace /

Figure 4.2 is a diagram of how the overall system works with the utility traces. We
can see event blocks from the recordings being matched. to utility traces. For every
matched utility trace, a method call is generated that corresponds to that method. For

example, if Trace 2 corresponds to the method BrowserUtilities.openBrowser(),

36

a call to that method is generé.ted in the J ava unit file. We will look at -h_ow
TestGenerator actually matches the recordings to the utility traces in the next chap-
ter as that is the most complex part. Furtherv‘more, we will look at more details of hbw :
the utility traces are generated exactly by the two pi'ogralhs Ut ilityPropSequnerat or

and UfilithracqulleCto’r.

4.3 System Overview

, PROP and .
SEQ Fifes ’

Figure 4.3 System Overview

" ; UtilityP .

| unisto ;
‘ oL :

\ Wity Trace
Colecior
Utility Traces BlackBarry
{rac fies) Shrwiator
TestGanarator '
BlackBery
Stwdator

i dava Uni ; | Tester

Figure 4.3 shows our complete system design. We can see the three main pro-

grams: UtilityPropSeqGenerator, UtilityTraceCollector, and TestGenerator.

The two former programs are what create the utility traces, while the latter prog'm,m |

37

generates the Java unit tests. Thexrecording software is located on the BlackBerry
simulator. The cylindrical objects are the inputs and outputs of their respective

programs and the Java unit file is our final generated test case.

By looking at the overview we can see the ﬁov;’ of data through the system. The system
works in two parts, the setup part and the testing .pa.rt. The setup part consists of
the two programs, UtilityPropSeqGenerator and UtilityTraceCollector, that
ulfhnately output the utility traces, and the second part c;o_nsists of a tester recording -

a test and running the TestGenerator program.

- For the first part, fhe UtilList and Ut ilListToCoilect data objects teil our System
which utility classes we would like to trace. The PROP and SEQ files are our custom
data files that allow the administrator or tester to select wluuh methods they want
to trace. All of this mformahon is ruqmred to create the utlhty tr a(es that will later
be used by TestGenerator. For tlxe second part of the system, a tester records a,‘
test on a snnulator The output is a mdnual recording which is then fed into the
TestGenerator, aiongslde the utility tr aces, to generate the Java ﬁle We will look |

at detaxis of each of the componentb in the next chaptor

38

Chapter 5
The System

In this chapter we will be 1.00ki’ng. at the programs that make up our Systeln. First,
we will be looking at the recorder and how it saves the system events. Following that,
we will look at how we create the utility traces. The utilitj_} traces are created in two
steps using the programs UtilityPropSquenerator and UtilityTraceCollector.
We will see how these two programs work, .wha,t' their inputs and outputs are, and
how they work together to créate i:he utility traces. Finally, we will look at ho§v we

generate the Java unit files from the TestGenerator program.

5.1 The Recorder

The recorder was created as a BlackBerry application. It is 10&ded onto a device or
simulator and activated/deactivated by pressing the ALT key twice. The applicatioxl

is set to automatically run when the simulator is started so that the tester can begin

39

recording test cases immediately. The recorder implemeﬁts a listener class that is part
of the PuppetMaster system. The listener class contains various methods to allow
for the capture of events. The hstenu class attach(‘b to a'listener hub tha’c outputb
thc system events that can then be captuxcd by any attached hstcner All of the
events kcaptured} by the recorder are output to a log ﬁ].e. The methods that we are
- interested in implementing are onUse‘r_I‘{»ey.arid onUpdatediSplay.' The onUéeleey
xhethod (::a,pturesfail of fhe kéypréss.éf/ents, VKe‘ypres.s_ events are generated whén—
ever a uéer presses a key on t‘he c.levic‘e.. The énﬁpééteDisplay method.captures'
all of thc dlsplay events W immver the d1e.play is upda,ted with new mformatlon :

onUpdateDlsplay is notified. Thc method headers are as follows

public void onUserKey(UiEngineInstance uie, Screen screen, int event,

'int key, int keycode, int time)
public void onUpdateDispl,ay(UiEngineInstance uie)

The important parameters for onUserKey are the screen, key, and keycode. We are
m’rerested in these thlw pal ameters as they tell us which key is bemg pressed and
on whlch su een the key 1s bemg pressed We m,ed to be able to distinguish whmh
apphcatxon is cur rently T unnlng, if any. Wc need to kn(m Wthh apphcatlon is runmng
becaubc we nced to btore that ulformatlon in the Iog file so that the TestGenerator

program w1ll be able to match the recordmgs to the utility traces more accurately.

All of the events passed in to the onUserKey method are saved in the log file as

keypress events. Keypress events are stored in a log file in the following format.

keypress:key value:application class name:focused 'field type:

!

40

focused field’ s text

r‘I“he‘kéypi‘eSs line is éolon—separated into ﬁvc seg'rne'nts\. The first éegment is 'silliply
the word “koyprcss thlb tells us that this is a keypress line and not a dlsplay line.
The second begment stows the key value of the key that was presscd For example,
the Entor key is reprebented by thc valuo 27. Tho thlrd begmult is ‘rhs class name
of the currently running application; this tellb us which program is currently running.
’1ho fourth segmcnt is the culrent field type in focus buch as a text bo‘c or a radio '
button The fifth emd ﬁnal segmcnt contains the text contalned w:thm the cunenﬂy
focused field, such as the text contained within a text box. W lth‘a,ll of this data, we
are able to know which key has been pressed, which apphcatlon is .’runmng, and in

whlch GUI component the key Valuo was mberted mto

The displajr lines are stored 'i(1:1 the log file as follows.
display:application class name:focused field’s text

The displ'ay'lihe, like the keypress line, is colon-separated. The display line is
split into three segments. The first segment simply contains the word “display” . This
tells us that the line is a displaf]- line and not a keypress line. The second segment is
the application class name, which tells us the class name of the currentlybr’unning
application. Finally, the third. segment tells us that text contained in the curréntiy_,
focused field. There are two special cases regarding namihg conventions for our sys-
tem. The first case is when the user is selecting a menu item and the second case is

when the user is pressing an on-screen button. These actions required multiple lines

of logging and so we want to make sure the lines are grouped together. Therefore,

41

for all a@ﬁtibné deafling\ with the menu, the appli'catioh ¢1ass name segn'leﬁtr of the
display line is named “menu”. Similarily, for all actions dealing with buttons, the
appllcatlon class name scgment is name(l button Thesc, special cases end up

bcmg plvotal in the gencratmn of tebt cases as thov allou us to properly determine

whxch rnenu item or uhlch button is bcmg selected

Figure 5.1 Example recording for menu selection

display: net rim. dev1ce apps 1nterna1 rlbbon RlbbonLauncherApp none
keypress:268566528:net.rim.device.apps. internal.ribbon. RlbbonLauncherApp

net.rim. dev1ce apps. 1nternal ribbon. launcher AppllcatlonAreaGrldFleld
Browsexr

display:menu:Open Tray . :
display:net. r1m device. apps 1nternal rlbbon RlbbonLauncherApp none .

In figure 5. 1 we can see an example log ﬁle The log filc contains both the keypress
and display hnes The figure depicts a user prebsmg the menu key and belevt:ng the
Open Tray menu 1tem Now that we know how log ﬁICb are created we need to see

how the utility traces are created so that Ja.va. unit tests can be genera.ted properly._

5.2 UtilityPropSquenerator

l

The UtilityPropSeqGenerator program is the first step in creating the utility traces
The input to the program is a text file called utilList and the output of the pro—k
gram is the property and sequence files. The utilList text file contains a list of

PuppetMaster utility classes that we want to trace.

Figure 5.2 shows the contents‘of;a‘ utilList file, which can be edited by the user. As |

we can see, there is a list of the various utility classes, such as ApplicationUtilities,

42

Figure 5.2 Example utilList file -

#utillist

net.rim.puppetmaster.utilities. appllcatlon AppllcatlonUtllltles nostrict
net.rim.puppetmaster.utilities.browser.BrowserUtilities:strict
net.rim.puppetmaster.utilities.contacts.ContactsUtilities:strict
net.rim.puppetmaster.utilities.email.EmailUtilities;strict
net.rim.puppetmaster.utilities.menu.MenuUtilities:nostrict
net.rim.puppetmaster.utilities.ribbon.RibbonUtilities:strict
net.rim.puppetmaster.utilities.tasks.TasksUtilities:strict
net.rim.puppetmaster.utilities.notes.NotesUtilities:strict

“

and BrowserUtllltles. Each hne also c'ontcunb the keyword strict or nostrict.

’1he:sc keywords mdlcatc whether or not tho classcs portam to a specific apphca—
tion. For examp]c, tho BrowserUtlllt:Les class is strict as the methods within the
class can only be used with the Browser application, whereas the MenuUtilities
methods are nostrict because they can be used with any application. This dis-
tinction helps make the Java unit test generation smarter as the strict classes
always get precedence over the nostrict classes when it 'comes fo m&pping. The
UtllltyPropSquenerator reads in the utilList file and extracts all of the method
data from the classes, using reflection, /a*nd. saves the output to the property andb

sequence files.

A p1operty ﬁie contams data for all of thc methods of a specmc clabs h:;ted within
the ut11L1st ﬁle For mstcmce, the class BrowserUtllltles has a proputy file that
contains its method detalls} The purpase of the pmperty file is to allow a tester
to deﬁne the parameters of thc methods to be tlaced To create ut:hty traces, we
need to Lall thc methods we want to trace. [n ordex to call the methodb, we need to
supplv pammctel values Thereforo a testel must deﬁne the paramcter vmlues w1th1n

thc proper tles file. Thc pI'OpOI‘th.‘; h]c wxll be uscd bv the UtllltyTraceCollectorv

program to create utility traces.

43

Figure 5.3 Example property file for BrowserUtilities

#net;rim.puppétméster.utilities.browser.BrowserUtilities
 #Wed, 22 Jun 2011 12:00:58

strict=true

#openBrowser 0:params=0 :
net.rim.puppetmaster. utilities. browser BrowserUtllltles
openBrowser.0=callableMethod

#openBrowser 1: params-1'
net.rim.puppetmaster.utilities. browser BrowserUtllltles
openBrowser. 1=callableMethod
net.rim.puppetmaster.utilities.browser.BrowserUtilities.
openBrowser.param.type.0=java.lang.String '
net.rim.puppetmaster.utilities.browser. BrowserUtllltles
openBrowser.param.value.0=default

Figure 5.3 shows a snippet froin the BrowserUtilities propérf-y file. We can see the
header comments telling us the name of the utility class ’a.nd the t-imé when the file was
generated. Following that, we can see the strict value is set to true since this_cla,ssv
only pertains to the Browser application. After that, we have a list of methods. Each
block in the property file corresponds to a public method in the BrowserUtilities
‘éléss file. In this example we can see the method op‘enBrdwsérlisted. The method is
i)olymor,phicfand that is why we see two versions of it in the example. The ﬁrst line
of each blf)ck, which ends "with callabléMethod tells us that this is a new méthod |
being defined. The lines foliowmg that are the palametu types and values. For
example, the line endmg with param.t ype.O java.lang. Strlng tells us that this :
is the first parameter (we start counting from 0) and its type is jaLva.lang.String.: ‘
Thé‘f.ollowing 1ine’,"ending with param.value.O=default,. indicates the value of this
parameter; in this case it is still default. It is up to the tester to replace aﬂ of

N

44
the default values with proper values for each method they wish to trace. This

is required since it is not possible for the program-to automatically determine the

parameter values for each of the methods. .

Figure 5.4 Example sequence file for BrowserUtilities

#net.rim.puppetmaster.utilities.browser.BrowserUtilities
#Wed, 22 Jun 2011 12:00:58

:openBrowser:0:params=0
:openBrowser:1:params=1
:openBrowser:2:params=2
:openBrowser:3:params=1
:goToURL:4:params=2

QO O O K

Figure 5.4 shows us a piece of the sequence file for Bfowsertilities. The seqﬁence
files are used to place the methods in the order in which t,hey are to be called. We
need to open the browser before we can work with it, therefore the openBrdwéer
method should be called first; that is one example of the need for a sequence file. The
program cannot determine the ofder in which to call the methods, therefore, a tester

heeds to select the order.

The sequence file begins witli header comfnents, just aslt.he property file does. Fol-
lowing that is the list of methods The lines are spht mto four segments. The first
segment is the sequence number. Mcthodb with a sequence number of 0 are not run.
The sequence order begins at 1 and counts upwards. ‘The second segment contains

the name of the method to be called. We can see there are four methods with the

name openBrowser, so in this case we choose one of them to call. The third segment .

is the method’s ID. Since we have polymmphxc methods, we need a way to distin-
gulsh them. The IDs in the sequence file correspond to the IDs in the property file

SO that thb tester can match up the propcr methods The fourth segment contalns

45

the number of parameters that the method contains. This is there to help the tester

easily identify the method they want to call.

" To use the sequence ﬁle, a tester places the methods‘ they want to trace in order

bv glvmg the methodb a sequence numbu greater than 0 and in tho order they
should be called in. The methodb must also have thexr parameters. defined in their

pxoperty file. Onc'e the quuence is deﬁnod and the parameters are dbfmed the

UtllltyTraceCollector pmgmm can be run and the utlhty tm&cs can be (‘rcatad

Flgure 5.5 UtlhtyPlopchGenorator Algonthm

Read line from
M utist

Write data lo
et PROP and SECQ
files

pa—

46

5.3 UtilityTraceCollector

The UtilityTraceCollector pi'()gram is the second step iynrth‘e process for Crea,t.ing
utility traces. Its goal is to read in the property and sequence files, build the utility
method calls using reflection, and run tiie methods against the simulator to create
log files (which are the utility traces). The simulator will output one log file for each
of the methods being called against it. ‘The: program also reads in a text file named

utilListToCollect that tells it which utility classes the tester wants to trace.

Figure 5.6 Example utiIListToCéllect file

#utilListToCollect : —
net.rim.puppetmaster.utilities.application.ApplicationUtilities
net.rim.puppetmaster.utilities.browser.BrowserUtilities
net.rim.puppetmaster.utilities.contacts.ContactsUtilities
net.rim.puppetmaster.utilities.email.EmailUtilities
net.rim.puppetmaster.utilities.menu.MenuUtilities
net.rim.puppetmaster.utilities.ribbon.RibbonUtilities
net.rim.puppetmaster.utilities.tasks.TasksUtilities .
net.rim.puppetmaster.utilities.notes .NotesUtilities

Figure 5.6 shows an example of the utilListToCollecf:M text file. It lbol;s almost
exactly the same as the file input into the UtilitySeqPropGenerator program, ex-
cept that this file does not contain the strict/nosﬁrict keywords. It does not
contain the keywords because the property files already have the line strict=true
or strict=false and therefore, the program will know when reading the property

file if that class is strict or not. _

Figure 5.7 shows the algorithm for the program. We ca_n see that each individual ‘
method for each class is run and recorded separately. One run of the algorithm

consists of a sequence of method calls, but the trace for each method is stored in

47

Figure 5.7 UtilityTraceCollector AIgoritTnn

Read net lins
from

villistTolCollect

et S SBODAGRE [l

S

: e b

Rend in property : SRR
file for dlass and Yes
croate methuds

Sepaféte file. This means that each utility trace corresponds to only one utility
. method. As we will see in the next section, when a bhlock of events within a i'eéordillg
| are successfully matched against a utility trace, a single 111éth’od call can be generated i
to represent that block of events. When all of the event 'blocks of a recording are
matched to method calls, the translation is complete and the Java unit file canbe ‘
generated. When the utility ti'ac:es are generated, they are ‘i'e-na.med 80 that their
meta-data is stored within the name itseif. An example of the naming convention is

as follows.

~r

48

net.rim .puppetmaéter .utilities.browser.BrowserUtilities.openBrowser.

O.strict.rec

The name of the file tells us; and the TestGenerator program, details about ‘the
method. First, it tells us the name of the class and the name of the method represented
by the utiliﬁy trace. ‘Secdnd; it tells us the ID of the inethod, in this case the ID is
0. Finally,lit tells us 1f f,he.-method is strict or not; in this case it is strict.
~The file extension isv “rec”; this tells us that this file is a utility trace ahd not a
manual recbrding. All of the utility traces follov\f the same nam'ing convention. Aftér
‘the utility traces are generated, t,hey. are all placed within the same directory. | The
Tes;tGenefator program will read in all of the utility traces contained in the directory -
and use them for maipping against ma.nué.l recordings. Now that we know how the
utility traces are generated, we need to see how the Java unit ﬁIés are created by

using the utility traces.

5.4 TestGenerator

The TestGenerator program is what ggne;;z}tes the Java unit tests. Thé prograni L
works by reading in all of the 11tilityf traces fI“OI‘n} a ,spec'iﬁed directory, as bwell as reading
in a manual mcordiﬁg, t.henvl‘nap'p'ing‘the 1ﬁa111ﬁa1 ”recofding to the ﬁtiﬁty tfaces, a,ndﬂ
finally outputting a 'J ava unit file. Thc progra,'mt.‘akes in two parameters, the directory
containing the utility traces and the manual recording file. The algorithn.l is Showﬁ'

in figure 5.8 and figure 5.9.

We will now go through the algorithm in detail to understand how it works. We

49

" Figure 5.8 TestGenerator Algorithm Part 1

In: utility trace directory UTD, manual recording MR
Out: Java unit file

MappingObject M=10]
MatchedMethod methods = []

For each: flle F in UTD do
Create mapping object m
Read data D from F .
Clear noise in D and store in m
Store F’s meta-data in m
Store m in M
end for

Clear noise from MR , ,
MatchedMethod currentMatch = null
currentLine =0 '

whlle(currentLlne < MR. length) do
matches[] = matchMRtoMappingObjects(MR, M, currentLlne)

if (matches.length == 0) then :
currentMatch = getDefaultMethod()
else ’
currentMatch = matches[0]
for each match i in matches do
if matches[i] matches more lines than
currentMatch then . ‘
' if currentMatch is strict then
- if matches[i] is strict then
currentMatch = matches[i]
end if ' '
else
currentMatch = matches[i]
end: if
end if
. end for -
end 1f

50

Figure 5.9 TestGenerator A.lgorithn.l Part 2

Find parameters for the currentMatch method
Store parameters in the currentMatch object
Store currentMatch in methods .

_currentLine = currentline + currentMatch. length
~end while : :

Create header text for Java unit file
For each method in methods do

Create method call text w1th parameters
end for : :
Create footer text for Java unit flle

—

Output Java unit file text to a .java file
Return

will look at how we clean the noise from the utility traces and manual recordings to
make them match bettcr -We wxll see how we map the utility traces to a manual
re(ordlng V\ will look at how we dlscover the parameter values for the mapped

methods. Finally, we look at how we create the Java unit file.

5.4.1 Noise Removal

The algorithm begins by creating objects to represent the utility traces. The data
for each utility trace, élo'ng with the meta-data, is stored within its own object.
Therefbre, each Util.ity' trace object corresponds to one utility method. N ext; we need
to clear the noise from the utility traces. The PuppetMaster utility methods execute |
in a peculiar way and this causes noise in the recordi‘rings Fbr exzimple 110180 would
be consxdu‘ed extra keypress lines at the begmmng of the log file. We consider it
noise because the actions taken within these methods are no’r actions a 1<,a1 tester |

would be likely to make. Therefore, we need to remove the noise from the"recorclings

51

to allow the utilit& traces to align properly with the manual recordings.

After the noise is stripped from the utility trace objects, we need to repair the reéord-
ing data for both the utility tracos and the manual rccordmg We need to repair three
things for utility traces and the lecordmg text input lines, menu lines, and button
lines. The first thing we need to repair is the text input lines. For instance, when a
user types a st.ring on the device, each character typed generates its own event, and

takes up a line of text in the recording, such as the following. =

keypress:S: éméil app : Naxﬁe:
keypress :atemail app :. Néimé :S
keypress:n;email app:Name:Sa .
keypress :t:email app:Name:San

keypress:o:email app:Name:Sant

This is a problem for a couple of reasons. First, we want to diﬁ"erentia.fe between
~when a user is typing a value into é text field and when a user is simply })ressing a
key to na,viga’ge._ Second, we want to use the value typed in by the user as a paramete'r‘
later on, and so we will have to extract that value from the recording. It is difficult
to extract ’the proper value}f‘rom‘ thc _recording when it is spread across multiple lines.
To address the first problem, we have to define navigation keys and alphanumeric ' :
keys so that we can tell when the user is navigating the screen or typing in a v.a.lue.‘ :
We defined the navigation keys as the SEND, MENU, END, ENTER and ESCAPE keys, and. '
we defined all alphanumel ic and pumtuatmn I\eys as simple input keya To dea.l with
the mput values bomg bpread across 1nult1ple lines, we deuded it would be best to

compress the lines mto a smg)o hnc, whlch we call an alpha hue Tho alpha hnes

252

represent input from the user. The alpha lines are created by compressing lines from

the same input into a single line. The result looks as follows.
keypress:alpha:email app:Name:Santo

To ci'eéte Suchd liiie, we take the last 11110 ih the seQuence and the character that
wﬁs typed in lasf, inihis case the “o”, and append it to the end of the String. Next,
we change the second segment of the line, which is the keyvalue, to the word alpha.
This tells us that this line is an alphé line and répresent.s input into a field. We do

this for every block of input for both the utility traces and the manual recording.

The remaining two things we need to repair are how the menu and button lines are

stored. They are originally stored as in the following example.

keypress:menu:email app:email field:email value
display:menu:send
display:menu:save

display:menu:close

keypress:button:email app:email field:email value
display:button:cancel

display:button:ok

In the first example, the user scrolled through the menu and selected the close
option. However, the user scrolled passed the send and save menu options. The last o
display line containing the “menu” keyword is the value that was selected by the

/.

53
user. Therefore, the other options shown are not required. We only need to know the
menu option selected by the user and so we remove the non-required lines. The same
goes for the button lines. The result of clearing the lines in the above example is as

follows.

 keypress:menu:email app:rein'ail field:email value '

display:menu:close

keypress button: emall app ema11 fleld email value

di splay button ok

5.4.2 Mapping Recordings to Utility Traces

Now that we have fixed the fdrmat of our ;‘ecorc_lings, we can begin mapping the mau-’
ual recording to the utility traces. The 'mapi)ing algorithm works slightly differently
for strict and nostrict methods. Whén mapping strict methods to t.h.e‘record-:
ings, the values for the selected conlponents (dlsplay fields, application class names,
etc.) muqt match exa,ctly thos(, in the manual Ieu)rdmg For nostrict ‘methods, this
is not required. It is not required for nostrict methods because the methods can be
applied to multiple applications andvt-heréfore it is not likely that the names of the
GUI components would match. ‘Therefore, 'v§fe c;xn say that the strict methods have
a textual strictness while the nostrict methods do not. Since the strict meth-
ods have a textual striétness,f we allow them to match the manual recordings _wfth a ; |
weak shape strictness. This means that not every line in the utility trace must match |
every line of the event block in the manual re(:orciing; The opposite is true for‘rthev

nostrict methods. Since they have no textual strictness, we make them have strong -

54

- shape strictness, which means that every line in the utility trace must match every
line in the manual recording. This allows us to bring some balance to the mapping

algorithm for the two different types of me_théds.

The mapping algorithm starts at the first line of the manual recording. It attempts

to match the first line to any line in the strict utility trace and the first line in the

nostrict utility trace. If it matches a line in-a strict file, then all subsequent lines

_must match until either t,heen_d of the "utiiity trace or until the end of the manual
recording. If, for the strict ﬁies,‘ all lines match‘ffom_the_ﬁrst matched line, the
matching is successful and the utﬂity t‘rafc'e‘is' a potential candidate. The nostrict
utility traces must match all of their lines to the manual recording. If all éf the lines
are matched, it is considered a successful mapping and is a potential candidate. Once
all potential candidates have been matched, tiwy are compared to each other to see -
which one matches the best. The criteria to determine wlliéh* utility trace matehes

the best are as follows.

1. Strict utility traces are better than nostrict traces.

2. The utility trace that covers more lines is best.

We compare the potential candidates and ’see\'_\&'hich is the best based on the above
criteria. We give precedence to strict utility traces as they pertain to a specific
a,pplicati(‘)nv and are therefore better to usé. If more than one étrict trace matches
or 1f no strict traces match, but more thdn one nostrlct trace matches, we check
to see wluch candldato covers more lmes and use the one that covers the most. We‘
consmler this better as it tells us that the method does more work than the other

andldates 'Once we have matched a utahtv ’m ace to the block of events in the manual

55
recording, we match again starting from the next unmatched line and continue until

all lines have been matched.

It is possible that a line in the manual rocordmg does not match any utlhty trace.
In this case we generate a default mcthod call. If the line that was unmatched is an
alpha line, we generate a method call that types a phrase, as all alpha lines represent
a user typing a phrase. ‘If the unmatched line is not aﬁ alpha Hne, we generate a
method call that sixnulﬁtesv preésixig a sihglé key We take the value of the key being
pressed from the data in the line. We then continue the nxzxtchihg algoﬁthm from the'

next unmatched line in the manual recording.

5.4.3 Parameter Discovery | .

Each matched utility trace represents a utility method in PuppetMaster. It is possible
that the methods contain parameters. :The're‘fore, we must attempt to discover the
parameters that the user entéred so that we 'c:ali supply them to the met-hodé in the
Java unit file when it is generated. In order to determine Wheré the right p\ai‘ameters
are for each method, we need to make conne(tlons all the way back to the property
ﬁles The pmperty fll(‘S <ontam the pdlameter‘s uscd in the (reatlon of the utxhty-
traces. The 1dea is to look up ‘the paramctor value in the property file, locate that
value in the utlhty trace, and then ﬁnd the cor respondmg hne in the manual recordmg.‘

~ We then take the value from the line found in the manual recbrdiné as the parameter.

Flgure 5.10 shows how the pardmotor matc hmg works. In the example bhOWIL the
property file contains the string value “Santo”. The line contammg this stnng is

located and matched against the lines in the manual recording. Since there is a suc-

56

Figure 5.10 Parameter Matching

Msthod 1)) , v , b
- Param 1 type = Stﬂng iy - Display:screenivalue > : . .
Param 1 value = Santo » Keypress:alpha:Santo | ggﬁeﬁiﬁ{m@
‘ . o o1 Displayiscreenvaiue , o o
Mathod 2 L ”

cessful match, we can then take the valuc from the manual recordmg as our parameter
in this case the value would be “Joe”. The btrmg Joe is whdt the user ultered whcn
they were recording the test case and s0 it should be the value supplied to the method

when it is called.

When the pax amctm algorlthm is dttemptmg to match the utxhtv tracc hne to the
manual lecordmg line, it only attempts to match the utlhtv tracc hne toa lme within -
the block of events of the manual recording that correspond to the utility trace. This
| stops the algorithm from taking a parameter value used ih another method as its own

as it is possible that the line in the utility trace will match more than one line.

It is possible that a parameter will not he found in the utility trace or that it is not
found in the manual recording. In this instance the parameter is set to the default '
value “FILL.ME_IN”. After the Java unit test is genuated the tester wﬂl have to '
supply the parameter themselves. This ha(ppens because not all parameters defined
in the property files can be located within the utility traces. Some of the parameters
defined are used privately within the method call and are not used as input into a GUI |
component, and therefore, are never recorded. This makes the parameters ifnpoésiblg

to locate within a recording file.

57

5.4.4 Creating the Java Unit File

Once the parameter values hdye been filled in, we need to generate the Java unit file. -
Generating the unit file is relatively easy as we already have all of the information we
need. We start by creating the header text for the Java file. We create the import
lines (as in importing Java libraries) by extracting the data from the utility trace
objects. For cach utility trace class that is to be used, we create ah import line.
- Next, we generate the method calls to 'the‘utility methods. We know which methods
tb call as we just ran the mapping algorithm. We create the method calls and supply

the parameter values that we discovered.

Finally, we generate the footer information for the Java file. The footer information
1s simply: the line to disconnect from the simulator or device, and some closing braces.

We output the generated text to a Java file and the entire algorithm is complete.

58

Chapter 6
Results

In this chapter we will‘ look at the Java unit ﬁlés generated by our system. First, we
will look at the utility traces that we generate. Next, we will look at some example
Java unit ﬁles that were generated and we will analyze them to detérmine if 'ﬁhey
are doing what they are supposed to do. We will determine the accuracy of the unit
tests by comparing the generated method calls against the initial recording. If, for
example, in the initial recording, the tester recorded an email being sent, but in tﬁe
unit file, the email methods are not called, we will know the generated test was not

successful. Following that, we will look at the limitations of our system.

6.1 The Utility 'Drac‘es

Before we could begin recording tests and generating unit tests, we had to create the

various utility traces. We decided to pick the main utility classes and generate utility

59

traces for their methods. The classes we chose are as follows.

Utility Class Purpose

BrowserUtilities | Methods for the browser a,pplic‘alt.idn (open, close, book-

| marks, etc.)

ContactsUtilities | Methods for phone contacts (names, numbers, etc.)

EmailUtilities | Methods for the email application (send, open, etc.)

MenuUtilities | Methods to interact with any menu (open, close, etc.) |

TasksUtilities' | Methods for the task application (create, delete, etc.)

NotesUtilities | Methods for the memo application (érea.te, edit,'delete,

etc.)

This set of utility classes would allow us to generate tests for the various appli-
cations, such as Browser, Contacts, Memo and so on. As well, there are generic
utilities such as the menu utilities that can be applied to any application running

on the BlackBerry. The program already incorporé,,t.e's the géﬁeric key utilities for

when it generates method calls when no utility trace can be matched to the man-

ual recording, and so that class is not included here. We ran these classes through
UtilityPropSeqGenerator to create the property and sequence files. We then filled

in the necessary parameter values for the rriet-hods we wanted to map. After that was

done, we ran the UtilityTraceCollector program to generate the utility traces. ,‘

- The utility traces that were generated are listed here. .
/ '
BrowserUtilities.createBookmark.16.strict.rec

BrowserUtilities.exitBrowser.11.strict.rec

BrowserUtilities.goToURL.5.strict.rec

60

BrowserUtilitieé.openBrowser.O.strict.rec
BrowserUtilities.refreshContent.57.strict.rec
ContactsUtilities.createNewContact.4.strict.rec
ContactsUtilities.deleteContact.36’strict.rec,,
ContactsUtilities.openCoﬁtaots.O.strict.re¢
EmailUtilities.closeEmail.49. strict.rec
EmailUtilities.deleteEmail.35.strict.rec
EmailUtilities.openApplication.O;étrict.rec
EmailUtilities.openEmail.42.strict.rec
EmailUtilities.sendEmail.13.strict.rec
MenuUtilities.selectMenuItem;3.nostrict.rec
NotesUtilities.createNote.4.strict.rec
NotesUtilities.deleteNote.6.strict.rec
NotesUtilities.editNote??.strict.rec
NotesUtilities.openNotesApp.2.strict.rec
TasksUtilitiés.createTask.Q.strict.rec
TasksUtilities.deleteTask.12.strict.rec

TasksUtilities.openTasksApp.0.strict.rec

The file names all contain a prefix of net.rim.puppetmaster.utilities.* where * is the
name of the specific utility, but these were left out for ease of reading. Now that we
had our utility traces, we began recording and generating test cases that correspond

to the’ above methods.

61

6.2 Java Unit Tests

In this section we will lobk at t‘hree«exa.mple test cases that we recorded and trans-
forrhecl into Java unii; ﬁles.' : Ihsfead of 'shdwin.g't.he actual recording, which consists of
the keypress and display lines, we will look at the steps taken during the'recofding. S
We will then look a,t'the unit file that was generated and see hoﬁ"w'ell it matched

with our recording steps. -

6.2.1 Browser ‘Bvc‘io‘k'mark ,Test
In this test we conducted the following“steps. ‘

1. Open the Browser applic‘a’cion.‘
2. Press the menu bthtdh.'
3. Select the Create Bookmark option. - |
4. Type v“home.” asb 'the boo‘kmaxl‘;’ nax#e.
5. Type “www.home.com” as the bookmark URL.
6. PreS_s the add buttbn.
7. Press the menu button.
8. Select the Delete option.

9. Coﬁﬁhh deletion.

(

62

The test consists of a tester creating a bookmark through the Browser application
and then deleting it. After we ran the recording through TestGenerator we got the

Java unit file in figure 6.1,

Figure 6.1 Browser Bookmark Test

- //import lines snipped“‘

public class BookmarkTest {
public static void main(String[] args) {

try { ,

System.setProperty("PuppetMasterHome",
 "C:/PuppetMaster/"); b

DeviceController.getInstance().setup(); : B
BrowserUtilities.openBrowser(); o
BrowserUtilities.createBookmark("home", "www.home.com");
MenuUtilities.selectMenultem("Delete", "FILL_ME_IN");
FieldUtilities.focusByName("Delete");
KeyUtilities.pressKey(Key.ENTER);
DeviceController.getInstance().shutdown();

3 S -)

catch(Exception e){

'e.printStackTrace() ;.

} .

We can see that the unit test generated reflects accurately the stebs pl'evidusly listed.
The 1inés ﬁp tb“ancl mcludmg the 'Ij'évi céController line are the standard header foi |
a test, which is discussed in section 5.4.4. The DeviceController is what makes the
connection to the simulator. The upit test starts by calling the openBrowser method

to start the Browser application. Following that, it calls the creat eBookmark method
and supplies the correct pammeteré. The test then selects the Delete option from the
menu item lisﬁ and finally it presses the Delete buttdn to confirm the deletion. _‘The :

focusByName and pressKey method calls are both examples of the generic method

http://www.home.com

63

generation. There @as no utility trace that corresponded to the pressing of a button,
and so generic method calls were created to deal with pressing the button. The
“only thing required by the tester at this point is to fill in the parameter that says |
FILLME_IN. This parameter could not be discévéred ili"the recording file. The
reason this parametef could not be discovered is because the parameter required is
the device PIN. The‘deviceiPIN is not logged in the recording and therefore it is

impossible for the parameter to be discovered. -

6.2.2 Create Neﬁ- Contact Tés}t'v |

In this test we conductéd the following steps.

—

. Open the Applications sub-folder.
2. Open the k'Conta‘ctS application.
3. Select New Ccv)nta.ét. ffoin <the menu hst | | | .
4. Enter thqna.me "‘Santo’i as §l1e ﬁISt name.
5. Select Save from the nienu list. |t
6. Select. Delote from thf; menu llbt
7. Close the Contacts application.
This test consists of a tester opening the Contacts application from th'e‘Ap’pvlyica,tions‘

folder. The tester selects the New Contacts button from the menu and enters the

first name Santo. The tester then saves the contact and then selects the Delete

64

option from the menu. The contact is deleted and the tester closes the application.

The results are in figure 6.2.

Figure 6.2 Create Contact Test

//import lines snipped

| public class ContactTest {
public static void main(String[] args) {

try {

Systen. setProperty("PuppetMasterHome"
"C:/PuppetMaster/") ;- ,

DeviceController. getInstance() setup()
ContactsUtilities.openContacts(); . »
ContactsUtilities. createNewContact ("FILL_ME_ IN" "Santo");
ContactsUtilities.deleteContact("Santo"); e
MenuUtilities.selectMenultem("Close", "FILL_ME_ IN")
DeviceController.getInstance() .shutdown();

} .

catch(Exception e){
e.printStackTrace();

}

We can see that the unit test reflects a‘cc:m;ately the steps listed previously. The
unit test calls the openContacts method, which will open the Contacts applicatidn.
The createNewContact method is c:a.lled with the parameter Santo, which matches
what was typed in during the recording. The method also contains a FILL_ ME_IN
parameter. The reason for this is that the parametér required is a constant that}
tells the method which field to place the name in. This constant is not output to |
the recording and so it cannot be discovered. After the contact is created, it is.
deleted. This is done using the deleteContact "met.h’od. The name of the contact is‘

correctly supplied to the method ‘aS a pa)ramete’r. Finally, the a,pplica,tibn is closed

via the selectMenultem method. Once again, the FILL. ME_IN paraineter requires

65

the device PIN. The conversion was near perfect in this case and only requires a small

adjustment from the tester.

6.2.3 Create and Edit A Memo Test

The Memo application allows a user to create basic text files. The user éan create a
memo that conblsts of a memo tltle and a memo body ’1 he user can edit the nieno,
both the txtle and the body, and re-save it. The utility methods that access the Memo

application use the word “note” instead of .menjo, but it means the same thing for

our purposes. The test consists of the following steps.

1. Open the Applicatiénsk sub-folder.
2. Opc%n the Memo a.pplicatioﬁ.“
3. Select the New Memo optioﬁ from t.be menu
4. Give the'men‘lohtlile title ,“ménni‘o title”.
5. Give the #nénp body the x'ral‘uek “mgg;é b()dy’a
6. Save the mcmo |
7. Select’ the Edit o_p.tion from the menu.
8. Change the title to “new tiﬁle”.
9. Change the body to “new body”.

10. Save the memo.

66
11. Select the Delete option from the menu.

' 12. Close the application.

. Thls test tests the process of creatmg, edltlng and deleting a memo. It creates the
initial memo, changes the values of the title and body and saves the cha,nges Thc
memo is then deleted and the apphcatlon is closed. The unit test generated is in

figure 6.3.

Figure 6.3 Create and Edit Memo Test

//import lines snipped

public class'MemoTest { : T e e
public static void main(String[] args) {

try {
System. setProperty(“PuppetMasterHome"

"C: /PuppetMaster/") ; ‘
DeviceController.getInstance().setup();
MenuUtilities.selectMenultem("Open Tray", "FILL_ ME IN"),

" FieldUtilities.focusByName("Applications");- :
KeyUtilities.pressKey(Key.ENTER) ;
NotesUtilities.openNotesApp(); = ,
NotesUtilities.createNote("memo title", "memo body");
NotesUtilities.editNote ("Memo tltle" "new title",
. "new body");
NotesUtilities. deleteNote("New tltle"),
MenuUtllltles.selectMenuItem("Close" “FILL_ME_ IN"),
“- .~ . DeviceController.getInstance().shutdown(); '
¥ }
f o catch(Exception e){ =
e.printStackTrace();

3

Once again the unit test leﬂ(‘(’tb to thc recouhng accurateiy The unit test ca.lls the

openNotes method, whl(h opens the Memo apph(ation. It then calls the createNote

67

method with the correct parameters, which will c:reafe our memo. Following that,
it opens the memo we just created and edits the title Q.nd body. Finally, it deletes |
the memo using the newly-edited memo title and closes the a.pplic‘a.tion. ‘The only
FILL -ME_IN spots lequlrcd are the device PIN wlueb we have seen in the previous |

tests.

6.2.4 Limitations

The three results shown above show the accuracy of the unit files generated. However,
there are instances when the acduracy is not always so great. These instances occur
when something unexpected interferes with the recorder, such as a pop-up text box.
If something appears on the screen when a user is typing a value into a field, the
recorder will insert a display line between the keypress lines, thus not allowixig the
program to pfoperly match the nldlﬁlal recording to the utility traces. Fur’t.hermor“e,l
this makes it not possible to locate the proper ;Sa.ralneters for the method calls. If
this occurs, the TestGenerator program will simply gener ate the gcnerlc methods to
locate the fields on the screen and input text. Since the parameters are not able to

be properly discovered, the incorrect values will also be used as parameters.

Fortunately this doég not happen often and only occurs in a few applications. The
problem is that the PuppetMaster software was not deslgncd with a recorder in mind
and so no considerations were made to deal with these scenarios when they oceur.

However, if one were to design then' own utlhty classes with a recorder in mmd, these -

problems could be dealt with accordingly.

Regarding the FILL_ME_IN parameters, we have tried to use the data from the prop-

68

erty files to replace them and it does work to some extent. This method works well

for finding PIN values and other values that are used privately in the utility methods. -

However, this can cause problems for parameters that are output to the recording file

but are interrupted by a display message.- The parameter used in this instance will

be from the property file and not what thé user entered when they recorded the test.

Since this occurs, we decided to not use this method.

- —3t

69

Chapter 7
Conclusion

In this chapter we will conclude the thesis. We will first look at the implementations -
Of our software and how our methodologies can be é}jplied to software in general.
After that, we will‘ look at the future work to be done vs;'it;h our own ksokft-ware to see
where things éan be iniproved and how to make our software ihoré robust. Finally,

we will summarize the work done in this thesis. R AN

7.1 TImplementations of Our System

The methodologies described in this thesis for a record and playback system can
be applied to any system that uses a GUI and allows for GUI components to be
discovered programmatically. In order to apply the methods we have deséribed,' one
would need to create a utility system of their own that is capable of interacting with

GUI components. The system we described was created to work with the BlackBerry

70

architecture and worked within their PuppetMaster test system. The PuppetMaster
system came with very specific utility classes that allowed lus to interact with specific
applications such as the Browser application or the Email application. However, if
one were to create a system of their own following our methods, they would only need
to create general utilities that allow for interaction with the GUI components and not

with any specific application.

An example system that could be created is as follows. We want to create a record
and playback tool for all Java softwa«re“,that’ uses Swing. Swing is the main Java
GUI toolkit and contains the various coinponents to create a GUI, suéh as frames,
textboxes, and buttons. In order to create this record and playback ,1;_901, we first need
to create utility classes. We.could create these‘ciasses in the following manner. For
each GUI component that a user can intbract with, we‘create a utility class (For exam;
ple, JButtonUtilities, JCheckBoxUtilities, and JTextFieldUtilities). Each of
these classes contains methods fhat can be called to interact with a GUI component.
The JButtonUtilties class could‘conté.in methods to pfess a button, hold a button,
and so on. These utility claéses would also need to implement a method to discover
the GUI components programmatically using reflection. As there is a liinited number
of ways in which a user can interact with a GUI component, the utility classes would
not contain an excessive number of methods. With the utility classes created, a user
should be able to write unit tesﬁs that allow them to call the utility methods and

interact with the GUI.

The utilities listed above are fairly generic and low-level as they deal direétly with the |
Swing components. If we remember the utilities provided in PuppetMaster, we know
~ that there are application-specific utilities, such as BrowserUtilities, that are smart

enough to locate the Browser application anq fun ft_. The above utilities regarding -

71
Swing would not be this smart. Therefore, ’{:o create these smart utilities, the system
creator would have write application-specific code. These al)plicati011-|1tilities could
use these low-level Swing utlhtles with some extra logic involved. For ulsta,ncc, if
there was an apphcatlon utlhtv called MenuUtJ.l selectItem(ltem) that selects a
menu item based on thc parameter ‘then this utility would contain an algorlthm to
find the appropriate menu item and select it using one of the generic Swing utilities.
Creating the low-level utilities, and discovering the GUI components, woul_d-iikely
be the most difficult part. The application-specific utilities would consist of calls to

these low-level utilities and so they would be easier to create.

Following that, the system creator would need to create a method to r;ecord the
user’s interactions; this is where the method may differ ‘from our own. The method
may differ for the recorder because our recorder received events generated from the
operating system, where this will not Be possible for desktop J avé_a.pplications. In
Java, every GUI‘COI’II})OllGﬁt thaf a usér can interact with must implement action
listeners. Action listeners receive the event notifications when a user interacts with
the GUI component that the action listener is connected to. Therefore, to record the
~events of the system, the programmer of the system could add lines tb the action
listeners that output data to a text file. The data. would contain the name or type
of GUI component, a,nd‘ the details of tl;e event that occurred. The progm,mmet
c_ould then run the utility methods on the system to record the baseline utility traces.
Once the’ baseline has been crcat:ed,_ tests co,uld‘ be «jljé’(‘:orczled “euld trans_formed us.in.g '
an algorithm base(l on our own as described in this thgsis. The resulting Java ﬁl{;

would contain method calls to the utilities described earlier.

One downbxde to thlb method is that the recordmg lmes for the actlon hstencrs would,

need to be added in overv time a componcnt was creatcd and for cverv new apphca— ‘

72

tion. Furthermore, depending on how the event details are recorded, the algo_rithm
may have to be changed as the string matching might break. A smarter way to gob
about it would be to write an instrumentation tool that inserts probes into the action
listeners automatically. This would allow for consistency across systems and remove
the problem of the string matching algorithm breaking. An instrumentation tool
could insert probes wherever an action listener is defined so that the event details
are logged properly. The inserted probes céuld be customized to match the type of
GUI component being logged so that each type of component can save their necessary

information such as the user’s input text.

It would be 1deal for the cxeatoxs of thc GQUI svstems to create and release these
lecord and playbacl\ tools thcmqelves S0 that then users can use them 1mmcd1atelv
Of course, thlb is unlikely. Howcvcr 1t is pomble for 2 fmy user to create their own
record and playback tool in light of our S)stem and any company demgnmg their own

system could also nnplement our methods

7.2 Future Work |

The future work for our systém i;lvqlV'es generating more utility_tra’ces: s0 that more
kinds of tests can be recorded and generated. As well, we want to figure out ways to
deal with interruptions when recording test cases such as when the Systemb updates
the display when a user is inputting text. We would also like to figure Qut. a way to
deal with parameﬁers that cannot be located or that do not show up in the recording
file. Our current thought is to stop or ignore display updates that occur when a user

is inputting data into a field; this way the input is not divided and should allow the

73

matching algorithm to work properly. We would also like to allow our system to
work with RIM’s new operating system. They are updating their systems to a new
architecture and so our record and playback system may no longer work. We would

like to aid RIM in upgrading our system to work with their new architecture.

7.3 Summary

The system creatéd{or, and debcnbcd in this' the‘sis‘ is a record and playbaék system
for the BlackBem‘y smartphone. The systein works in conjunction with RIM’s testing
framework, PuppetMaster. PuppetMaster contains a set of utility ;iasses that allow
programmers to cabllv interact wki‘tth the GUI compénents of the system, such as a
button or menu. Qilr system cdxisiéts of a i'(;cordel', whlch records events that occur
on the BlackBerry and outputs the events to a'log, and a fest generating system;
which translates tecorclings to Java unit tests. ‘The tests are généra.ted by using a
mapping a,lgofitilxh flhat nmtcheé a manﬁal kré(::or(:iing 'égéinst a set of ﬁre-recordéd
utility traces. For each match that occurs within the algorithm, a metho& call to a
utility method is génerated and output to a Java unit file. Once al'l' the lines of the
manual recbrdiné havebcen 1ﬂatcl'1ed té a"m‘etlhod, vt‘:he idlgorithn\l is coixlplete; The

resulting test case will consist of calls to PuppetMaster . utility methods. -

74

References

[1]

[2]

Abbot framework for a11f0111atdd testing of Java GUI components and pro-

grams. http://abbot. sourceforge. net/doc/overv1ew shtml/ [Onhne Ac-

, cesqed August 2011].

Mohamed A Abdel Salam, Arabi E Keshk, Nabil A Ismail, and Hamed M Nassar..
Automated testing of Java menu-based GUIs using XML visual editor. 2007 In-
ternational Conference on Co»mputer Engineering Systems, pages 313-318, 2007.

[3] M. Assem, A. Keéhk, N. Ismail, and H. Nassar. Specification-driven automated

testing of Java swing GUIs using XML. 5th International Conference on Infor-

- mation and Communications Technology, 2007., pages 84-88, 2007.

[4] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil.

(6]

[7]

8]

[9]

Carving differential unit test cases from system test cases. In Proc. Foundations
of Software Engineering, pages 253-264, 2006.

Monty L. Hammontree, Jeffrey J. Hendrickson, and Billy W. Hensley. Integrated
data capture and analysis tools for research and testing on graphical user inter-

faces. In Proceedings of the SIGCHI conference on Human factors in computing

systems, CHI '92, pages 431-432, New York, NY, USA, 1992. ACM.

Jemmy: Java Ul testing tool. http //java.net/pro Jects/ Jemmy/ [OnIineL
Accessed December 2011]. :

Shrinivas Joshi and Alessandro Orso. SCARPE: A technique and tool for selec-

tive capture and replay of program executions. In International Conference on
Software Maintenance, pages 234-243, 2007. :

JUnit.org resources for test driven development. http //waw. junit. org/ [On-

line. Accessed October 2011].

Edward Kit. Software Testing in the Real World: improving the process. Addison-

- Wesley Publishing Company, Inc., 1995

http://abbot.sourceforge.net/doc/overview.shtml/
http://java.net/projects/jemmy/
http://www.junit.org/

75

[10] Atif M. Memon. GUI testing: Pitfalls and process. Computer, 35:87-88, August
2002.

[11] Atif l\'I Memon, Martha E. Pollack, and Mary Lou Soffa. Hicrcudiical GUI
test case generation using automated planning. IEEE Transactions on Software
~ Engineering, 27:144-155, 2001. :

[12] J. D. Newmarch. Testing Java Swing-based applications. In Proceedings of
the 31st International Conference on Technology of Object-Oriented Language
and Systems, TOOLS ’99, pages 1o6—160, Washington, DC, USA, 1999. IEEE
Computer Society.

[13] Alessandro Orso and Bryan Kenﬁedy. Selective capture and replay of program
executions. In Proceedings of the third international workshop on Dynamic anal-
ysis, WODA 05, pages 1-7, New York, NY, USA, 2005. ACM.

[14] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D.Ernst. Automatic test
factoring for Java. In ASE 2005: Proceedings of the 20th Annual International
Conference on Automated Software Engineering, pages 114—123 Long Beach,
CA, USA, November 9-11, 2005.

	CREATING SMART TEST CASES FROM BRITTLE RECORDED TESTS
	Recommended Citation

	tmp.1619807444.pdf.8yPZp

