
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

CREATING SMART TEST CASES FROM BRITTLE RECORDED CREATING SMART TEST CASES FROM BRITTLE RECORDED

TESTS TESTS

Santo Carino

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Carino, Santo, "CREATING SMART TEST CASES FROM BRITTLE RECORDED TESTS" (2011). Digitized
Theses. 3295.
https://ir.lib.uwo.ca/digitizedtheses/3295

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3295?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

CREATING SMART TEST CASES FROM
BRITTLE RECORDED TESTS

(Spine Title: Creating Smart Test Cases from Brittle Recorded Tests)

(Thesis Format: Monograph)

by

Santo Carino

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

School of Graduate and Postdoctoral Studies
The University: of Western Ontario

London, Ontario
December, 2011

© Santo Carino 2011

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

James H. Andrews Luiz Fernando Capretz

Supervisory Committee

Hanan Lutfiyya

Mike Katchabaw

The thesis by
Santo Carino

entitled

CREATING SMART TEST CASES FROM BRITTLE RECORDED
TESTS

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date Chair of Thesis Examining Board

n

Abstract

Software testing is a large and important part'of the software development life-cycle.
There exist many methods to test software, such as writing unit tests or manually
testing the software. One other such method is called record and playback. Record
and playback allow a tester to record their interactions with a piece of software and
then play back those actions against the same software at a later time. The major
fault with record and playback tools is that the tests that are created are often
brittle. A test is considered brittle when it no longer works when small changes are
made to the software or when the test produces false-positive results. This thesis
focuses on the record and playback software we designed and built for the BlackBerry
smartphone. The system was designed to create smart tests from brittle, recorded
tests. We discuss how we created our software and why it. works. Following that, we
look at the system’s output to determine its accuracy. Finally, we discuss how our
methods can be incorporated into general software development.

Keywords: Software Testing, Unit Testing, Record and Playback

in

Acknowledgments

I would like to thank Dr. Jamie Andrews for giving me the opportunity to work with
him and for giving me the chance to advance my education. I have learned a great
deal while working with Jamie and appreciate all of the time and effort he has put
into aiding me in my journey. None of this would have been possible without him,
and for this I am extremely grateful.

A big thank you to Research In Motion and the team that gave so much time to our
research. Thank you to Sheldon Goulding, Tony Florio, Pradeepan Arunthavarajah,
and Jakub Hertyk.

Thank you to Dr. Hanan Lutfiyya for taking the time to read my thesis proposal.

A special thank you to Sonia Dhaliwal. Her continuous encouragement over the
past years has been sincerely appreciated. She has provided the motivation I greatly
needed to achieve my goals. I would not be where I am today if not for her.

Finally, I would like to thank my family, Grace Job, Dave Job, Joe Carino, Scott Job,
Maria Frocione, and Mario Frocione. They have provided endless support and have
always encouraged me to better my education, and for this I will always be indebted
to them. ,

I dedicate my work to my late grandfather, Mario Frocione.

Table of Contents

Certificate of Examination ii

Abstract iii

Acknowledgement iv

Table of Contents v

List of Figures ix

1 Introduction 1

1.1 Introduction 1

1.2 Software Testing .. 2

1.2.1 Smart Tests Versus Brittle T ests.................. 3

1.2.2 Record and P layback........................ 4

1.2.3 Java Unit T e s ts 5

1.2.4 Record and Playback Combined with Java Unit Tests 6

1.3 Thesis Focus ... 6

1.4 Thesis Organization 8

2 Background and Related Work 10

2.1 Definitions 10

2.2 A Real World Package .. 11

2.3 Related Work 15

2.3.1 Capturing User-Subsystem Interaction 16

2.3.2 Capturing Unit Tests from System Tests 17

2.3.3 Automatic Test Factoring 19

2.3.4 GUI Testing Using Automated Planning 20

3 Information Gathering 22

3.1 RIM System Information.. 22

3.1.1 System Setup 24

3.2 PuppetMaster and Utilities ... 26

3.3 System Requirements.. 28

4 Design 30

4.1 Recording Design .. 30

4.1.1 Initial Thoughts on Recording........................... 31

vi

4.1.2 Refinements 32

4.2 Mapping Design 33

4.3 System O verview ... 36

5 The System 38

5.1 The R eco rd e r............... 38

5.2 UtilityPropSeqGenerator... 41

5.3 UtilityTraceCollector ... 46

5.4 TestGenerator............................... 48

5.4.1 Noise Removal 50

5.4.2 Mapping Recordings to Utility Traces............... ... 53

5.4.3 Parameter D iscovery........................ 55

5.4.4 Creating the Java Unit File 57

6 Results 58

6.1 The Utility Traces 58

6.2 Java Unit T e s ts 64

6.2.1 Browser Bookmark T e s t ... 61

6.2.2 Create New Contact Test .. 63

6.2.3 Create and Edit A Memo T e s t......................... 65

6.2.4 Limitations 67

vii
(

7 Conclusion 69

7.1 Implementations of Our System .. 69

7.2 Future W ork.................. 72

7.3 Summary , . . 73

References 74

Vita 76

List of Figures

2.1 Example Abbot test from the Abbot and Costello website. The exam­
ple shows the pressing of a button for 5 seconds. 13

2.2 Example Abbot test script from the Abbot and Costello website. . . . 14

3.1 Example test case using utility calls ... 27

4.1 Listener A rchitecture............ 32

4.2 Recording and Utility Trace Matching 35

4.3 System Overview 36

5.1 Example recording for menu selection 41

5.2 Example utilList file ... 42

5.3 Example property file for Browser U ti l i t ie s 43

5.4 Example sequence file for BrowserUtilities 44

5.5 UtilityPropSeqGenerator A lgorithm 45

5.6 Example utilListToCollect f i l e 46

5.7 UtilityTraceCollector A lgorithm 47

ix

(

5.8 TestGenerator Algorithm Part 1 49

5.9 TestGenerator Algorithm Part 2 .. 50

5.10 Parameter M a tc h in g .. 56

6.1 Browser Bookmark T e s t .. 62

6.2 Create Contact Test 64

6.3 Create and Edit Memo Test .. 66

i

/

X

Chapter 1

Introduction

1.1 Introduction

Software development is a long and difficult process. It involves such activities as

requirements gathering, designing, architecting, development, testing, and mainte­

nance. We are going to focus on just one of the steps in the process, software testing.

Software testing is a large and important paid, of the software development life-cycle.

Software testing is a costly exercise and can take up as much as 60% of the de­

velopment costs [10]. Software testing ensures that the software under test (SUT)

works properly and contains as few bugs as possible. Without proper software test­

ing methodologies, software that is released could potentially contain many bugs that

hinder the work of the users or contain security flaws. These bugs could even be

life-threatening, depending on the use of the software. Therefore, it is imperative

that the SUT be tested thoroughly. ;

This thesis was completed as a collaborative project between The University of West­

ern Ontario and Research in Motion (RIM), the maker of the BlackBerry, and funded

in part by the Natural Sciences and Engineering Research Council in Canada.

2

1.2 Software Testing

There exist various ways to test software [9], such as white-box and black-box testing.

White-box testing is testing in which a tester can see the source code and writes

test cases to try to achieve statement coverage (try to reach every source code line),

branch coverage (attempt to make IF statements execute as both true and false),

and various other criteria. White-box testing is used to check the correctness of the

software code. White-box testing is conducted by a tester who writes code to test the

functionality of a method, class, etc. The tester’s goals can vary depending on their

assigned work, but generally, they are attempting to feed the code under test various

values of data in order to produce specific results. If the result returned from the code

under test is incorrect, the tester can assume a bug exists. Tests can be written this

way to ensure that bugs do not exist; as well, tests can be used to ensure that, bugs

in the future do not appear. For instance, if a piece of code currently passes a test,

but fails to pass the same test in the future, the tester and developer will know that

some new revision in the code has produced a bug. This is called regression testing,

and is an important step of the software development life-cycle.

On the other hand, black-box testing is where the tester interacts with the SUT’s

interface, which may be a command line or a graphical user interface (GUI). Black­

box testing is used to test the functionality of the SUT. This type of testing allows the

tester to interact with the program as a user would. If the tester is able to find bugs

3

by interacting with the interface, then it is possible for a user to do the same. Black­

box testing is an important part of the process as it can test parts of the software

that are more difficult to test using the white-box method. For instance, it is easier

to test the functionality of GUI components such as buttons and menus. As well, it

allows for the testing of returned values from the program. It may be possible that

the values being calculated from the software are correct, but a bug exists that causes

incorrect values to be displayed. Black-box testing can also help with concepts like

usability testing, which white-box testing would be of little use with. '

1.2.1 Smart Tests Versus Brittle Tests

As the title of this thesis suggests, we want to create smart, tests rather than brittle

tests. We consider smart tests those that do not break easily when a change has been

made to a GUI component or to the output of a specific method in the program. A

test is considered broken when its results are false positives - that is to say, when

a test returns false but is in fact true, and vice-versa. As well, a test is considered

broken when it fails to run to completion because it has determined that some required

information is not available when it in fact is available. For instance, if a button is

moved to different locations on the screen, between different versions of the software,

the tests should not break. The tests should be adaptive to the changes in the program

to a certain extent. Of course, there will be instances when it is near impossible to

have a test not break, but for the most part the test should not be so brittle as to

fail for minor changes. Another example would be when looking at the results of a

method call. The results of a method call between versions may not be the same. It

is possible that both results are correct, but a brittle test may look to compare the

new result to the old result and deduce an error has occurred, and in this instance

the test will be considered broken. Creating smart tests cases by hand is a common

practice, but creating smart tests cases automatically using a record and playback

tool is not, as it is rather difficult.

4

1.2.2 Record and Playback

To aid in black-box testing, there exist tools to help the testers test the correctness of

the SUT’s functionality. One such tool is record and playback. Record and playback

tools are used to make the testing of GUIs easier. Often times a tester is required

to test a GUI by running the SUT and following a script which contains a list of

components to test. For instance, a tester may be required to test the buttons,

drop-down menus, etc. of the SUT in order to make sure the functionality works as

intended. This testing process can be tedious and time-consuming for the tester and

therefore costly to the development company. To help combat this time-consuming

process, people have developed various record and playback tools. The record and

playback tools work by recording the actions of the tester on the GUI and allowing

the recordings to be played back against the software at later times. This allows the

test to be done once by a human tester and repeated multiple times by the computer

when needed.

Record and playback tools have drawbacks. The main drawback is that test recordings

will tend to break if any part of the GUI changes. If on the initial recording the tester

selects button A but on later versions of the software button A no longer exists, or

has been moved to a different screen location, the test will most likely break. This

is because many record and playback tools work by storing the location of screen

components and so if the component is removed or moved the test will fail. Another

5

drawback to record and playback tools is that it may be difficult to determine if the

test, has passed or failed. It. is common for these types of tools to use screenshot

comparisons of the initial test to the recorded tests to determine if the test passes

or fails. This can lead to problems as the output in the newer versions may look

different than the initial version but may still be correct.

1.2.3 Java Unit Tests

Java unit tests are written by a tester in a programming language to test a piece

of software. The tests are usually written as a part of a framework such as the

popular JUnit framework [8]. A unit, test works by calling a specific method within

the SUT and waiting for a return value. The returned value is then compared to a

predetermined benchmark to check whether or not. the test, passes. For instance, a

test could be written to test a method that multiplies two integers together. The

test would be written to call the method with specific values and store the returned

value. The tester would know7 ahead of time the expected result of the method, and

therefore, if the returned value does not match the expected value, the test has failed.

To test a large software system, many hundreds or thousands of unit tests must be

written to test, all components of the system. There may even need to be multiple

tests to verify a single component of the system. The process of waiting tests is long

as there are many tests to write, and furthermore, the tests themselves are prone

to bugs and human error. If the tests themselves are incorrect, or the tester has

miscalculated the expected resulting value, the test may fail when it. should pass. As

there are various ways for problems to arise when writing unit tests, automating the

creation of the tests would be ideal. By automating the creation of unit tests, there

6

is less of a chance of human error occurring, and as well, it will speed-up the entire

testing phase of the software life-cycle. This is the goal of this thesis.

1.2.4 Record and Playback Combined with Java Unit Tests

The aim of our system is to create smart test cases. We plan on creating smart test

cases by allowing the record and playback package to transform recordings into Java

unit tests. The unit tests should allow for more robustness and make the tests less

brittle. The programs will be less brittle because they will be used in combination

with a special type of utility software, which makes the tests more stable as it allows

for another layer of abstraction. The utility software takes away most of the difficult

work of finding GUI components programmatically and allows for a more simple way

to create unit tests. If we are able to transform our recordings into these unit tests

that take advantage of these special utilities, we will be creating smart tests from

brittle tests.

1.3 Thesis Focus

The goal of this thesis is to create a record and playback tool that allows for the

generation of smart test cases. To meet this goal, we must gather requirements,

design a system, and implement our design via a program or multiple programs.

Furthermore, we must, deliver our system within the allotted time frame, receive

feedback, and make changes to the system where appropriate. Finally, we will analyze

the results of the system and see its implications. As this thesis was conducted in

partnership with RIM, an industry giant, it can also be viewed as a study of applied

software engineering.

Before we can begin writing our first line of code, we must have a full understanding of

the system we are dealing with. We must have a complete picture of how the testing

package interacts with the BlackBerry device and how we can implement our system

to work with RIM’s system. Therefore, we will discuss the requirements gathering

phase and how we came to make specific design decisions. This phase of the project

was time-consuming; therefore, its details should be discussed and understood before

we move on to the finer details of the system.

7

Once we have discussed the information gathering phase of the system, we will need

to discuss the design phase. Many choices had to be made during the design phase,

such as the structure of recording files, and the inputs and outputs of each program,

and the flow of data. In this section we will discuss, in detail, the design of the various

components of the system and how each of the components works with one another.

This will give us an overview of the system and allow us to understand the flow of

data through it. We will get an overview of the four main programs that are part of

the system and we will have a look at their required inputs.

When we have a good understanding of how the overall system works, we will look

more closely at the details of the four programs that encompass our record and play­

back package. We will first look at the recorder itself. The recorder is an application

that runs on the BlackBerry device and can capture events when they occur. We will

look at how the recorder is able to do this, as well as the log file format that it saves the

events to. Next, we will discuss the two setup programs, U tilityPropSeqG enerator

and U tility T raceC o llec to r. These two programs allow the Java unit test files to

be generated. Their purpose is to create utility traces which we can match recorded

tests against. Finally, we will look at. TestGenerator, which is the program that

actually generates the Java unit files based on recorded tests. For all of the above

programs, we will look at their required inputs and outputs, and their algorithms.

After discussing the details of how the system works, we will look at the resulting

Java unit, files it is able to generate. We will analyze the results of the system and see

how accurate the system is. We will look at the recording files and compare them to

the resulting Java unit files. We will discuss the system’s strengths and weaknesses

to see where it could be improved.

Finally, we will look at the implications of our system. As the system was created for

the BlackBerry device, the scope of its real world application is small. However, the

ideas behind the project could be implemented in other systems in a more generic

way. We will discuss how this could be done and give plausible examples.

■ 8

1.4 Thesis Organization

We have discussed the introduction and basic concepts in chapter 1. In chapter 2 we

will we look at related work that has been done in relation to record and playback

tools. We will look at a well known tool and see how it differs from our own. In chapter

3 we will discuss the information gathering phase and how we set up our systems to

work with the RIM software. In chapter 4 we will discuss the design phase and go into

detail about the choices we made regarding our system. In chapter 5 we will look at

the two setup programs, U tilityPropSeqG enerator and U tility T raceC o llec to r,

and see how they work in detail. As well, will look at the TestG enerator program

and go over its algorithm and see how it is able to generate smart test cases. In

chapter 6 we will look at the results of our system and compare the recorded tests

to the generated tests. We will look at the accuracy of our system and discuss the

results. Finally, in chapter 7 we will look at the implications of our system and how

its design can be applied to generic pieces of software.

1/

10

Chapter 2

In this chapter we will give some definitions and follow that by looking at work that

relates to this thesis. The concept of testing software using record and playback tools

has been around for many years [12], [5], and there have been many programs created

to implement the various methods [1], [2], [7]. We will first discuss a system named

Abbot and its associated tool Costello [1], which contains a record and playback

function. Following that, we will look at the work of other researchers who have

studied record and playback tools and see how their work compares to our own.

2.1 Definitions

Here we define some terms that are required to be understood for this thesis.

A failing te s t case is a test that causes the SUT to produce the incorrect value.

A test has failed when the SUT does not return the expected value or behave as

expected.

A passing te s t case is one that causes the SUT to return the correct values. The

SUT returns a value that is expected or behaves as expected.

A record ing is a a log of events that occurs as the tester interacts with the SUT’s

interface. The log can be stored in various ways, such as XML, and plain text, and

can contain any information that the developer of the recorder deems pertinent.

A p layback is the act of a program reading in the log of a recording and replaying

the events that occurred against the SUT.

2.2 A Real World Package

In this section we will be looking at a real world package named Abbot and Costello.

The package derives its name from the creator’s description, “A Better ’Bot” . As we

are creating our own record and playback testing package, it is a good idea to see

how others have attempted to solve this problem.

The goal of Abbot is to give the testers a framework in which to test the GUI com­

ponents of the program. Abbot works in conjunction with JUnit. to create unit tests.

It is able to allow GUI testing by giving the tester references to the various GUI

components being used in the SUT. The tester can write unit tests to retrieve a GUI

component and perform some action on it, such as clicking a button or selecting a

menu item. Abbot works by implementing a “robot class”. The robot class is able to

11

control GUI components and mimic user events such as mouse clicks and keyboard

events. As well, Abbot takes advantage of the reflection feature of Java so that it

may find GUI components programmatically.

Abbot also allows for a special type of scripting that can be edited and run to test a

GUI. The script editor, Costello, reads in the script and runs it against the SUT. The

scripts are stored as XML files. Storing script files as XML files is a common pratice,

as well as creating custom scripting languages [3], [12]. The point of the script files

is to allow for a higher level of usability. The scripts are considered “higher level”

as they do not require the tediousness of writing an entire program. As well, scripts

allow for more accessibility for testers as they may not be strong programmers, but

they may be able to design simple script files.

The package also contains various types of component recorders. The recorders allow

the testers to capture mouse and keyboard events that occur while running the SUT.

The recorders allow for easier script-editing as they can fill in most of the work for

the testers. The scripts can then be read back by Costello and run against the SUT.

12

In figure 2.1 we can see an example unit test written using the Abbot system. The test

works by getting access to a GUI component, the left arrow button, and proceeding

to press and hold it down for 5 seconds. The test asserts true if the number of mouse

events received is greater than 1. This is a fairly simple test with little complexity,

but as one could imagine, if we wanted to test multiple GUI components at once the

complexity would increase. The more complex these tests are, the greater the chance

is for bugs to occur within the unit tests themselves. Even with the complexity

in mind, the Abbot tool is powerful and gives freedom to the testers as they can

automatically run these tests once they have been written. The goal of this thesis is

F igure 2.1 Example Abbot test from the Abbot and Costello website. The example
shows the pressing of a button for 5 seconds.

private int count = 0;
public void testRepeatedFireO ■[

ArrowButton arrow = new ArrowButton(ArrowButton.LEFT);
ActionListener al = new ActionListenerO {

public void actionPerformed(ActionEvent ev) {
++count;

>; ■
arrow.addActionListener(al);
showFrame(arrow);

Dimension size = arrow.getSize();
// Hold the button down for 5 seconds
tester.mousePress(arrow);
tester.actionDelay(5000);
tester.mouseReleaseO;
assertTrue("Didn’t get any repeated events", count > 1);

>

to have unit tests such as in our example be automatically written, therefore cutting

down on potential bugs and the need to write tests by hand. The style of unit tests

created using Abbot was a big influence on. this thesis.

In figure 2.2 we can see an example Abbot XML script file. The script file describes

a test to be run. We can see the that there are various GUI components described in

the component class lines, and there are actions described in the action lines. Mixed

in with the action lines are assert lines, which check that the GUI components are

correct. These are the type of script files that will be generated from the recording

tools provided by Abbot and read in and run by Costello. Trying to edit one of

these XML files is challenging as the tester would have to know, the different types

of XML tags and attributes available and what their values should be. Furthermore,

a downside to storing tests as script files is that the Abbot and Costello software is

■>

14

F igure 2.2 Example Abbot test script from the Abbot and Costello website.

<?xml version="i.0" encoding="UTF-8"?>
<AWTTestScript> , .

«component class="java.awt.Button" id="?" index="3" tag="?"
window="Applet Viewer 0" />

«component class="sun.applet.AppletViewer" hdrder="0"
id="Applet Viewer 0" tag-”Applet Viewer: example.SimpleApplet" />

«component class="java.awt.Dialog" id="Dialog" title="Dialog" />
«component class="java.awt.Button" id="High Button" tag="High"

window="Applet Viewer 0" /> ^

«appletviewer archive="lib/example.jar" code=s"example.SimpleApplet"
height="250" width="250" />

«action args="textField" class="java.awt.TextComponent"
method="actionFocus" />

«action args="textField,some text" class="abbot.tester.ComponentTester"
method=="actionKeyString" />

«action args31"?" method="actionClick" />
«wait args="Dialog" class="abbot.tester.ComponentTester"

method="assertFrameShowing" />
«assert component="This is a dialog" method="getText"

value="This is a dialog" />
«action args="Dialog" class="java,awt.Dialog" method="actionClose" />
«wait args="Dialog" class="abbot.tester.ComponentTester"

invert="true" method="assertFrameShowing" />
«action args="5000" method="actionDelay" /> ^
«terminate />

</AWTTestScript>

always required to run the tests. The project described in this thesis attempts to

generate test cases from recordings that can be run independently of the software

that created it. The log files generated from our project are simple and require no

human editing; a tester is able to record a test, convert it to a unit test, and run it

without ever having to program a test or edit a script.

The Abbot and Costello package was a big influence on the work done in this thesis.

We are creating a similar tool that we hope will be able to create smarter test cases,

while requiring less technical knowledge for our users. The users of Abbot and Costello

must either know how to create unit tests in Java or know how to edit XML script

files. The users of our system should only have to know about recording tests and

converting them to Java unit tests automatically via a provided program. The tests

created from our package should also be less brittle as they have a layer of abstraction

to take away complexities such as locating GUI components; if the component exists,

we simply interact with it.

2.3 Related Work

In this section we will be looking at other researchers who have done work with record

and playback. It is important for us to see how others have approached the problem

of capturing interactions between a user and a system as we may be able to borrow

ideas to make our own systems better. As well, we will be able to see how other

researchers were able to store the recordings and play them back against the SUT.

We will be looking at papers by Orso and Kennedy [13], Elbaum et al. [4], Saff et al.

[14], and Memon. et al [11]. Each of these papers approaches a very specific problem,

so the details are not always directly relatable to our own work, but many of the ideas

are applicable.

2.3.1 Capturing User-Subsystem Interaction

16

Orso and Kennedy [13] created a technique to allow for capture and replay of a. user

interacting with a system or subsystem. Since there is a large amount of data flowing

through the system, some of it even being confidential, Orso and Kennedy decided

to only capture a small subset of the information between the user and whichever

subsystem the user was interacting with. . This would allow them to generate unit

tests and analyze the system offline. They were working with a large system and

so capturing all relevant information was challenging; they would have to know the

states of various databases and users. Therefore, they decided to capture only a select

portion of the interaction based on the user’s preferences. Orso and Kennedy were

able to perform capture by instrumenting the code; that is to say, they inserted probes

to log the events of the system. They created a technique that would create proxy

methods that would stand in between the calling method and the called method.

It works by adding some code before and after the method is called. The proxy

method logs the parameter values sent to the method being called and also logs the

value returned from the called method. To replay the recorded event, the system

determines which subsystem is being interacted with and generates the objects based

on the recording. It uses stubs to mimic the behavior of external systems that the

subsystem needs to interact with.

Joshi and Orso [7] did further work in the area of capture and playback of tests. They

created a tool called SCARPE that, allows for the capture and replay of subsystems;

The paper describes the use of instrumentation to capture the events, just as in

the Orso and Kennedy paper. The recorded tests have their events logged to a

text file; as well, the output of the system is also stored. To replay the recorded

events, SCARPE builds a scaffolding system around the subsystem. The scaffolding

17

mimics the behaviour of .the external system that the subsystem interacts with. The

scaffolding then supplies the values from the log and checks the return values from

the subsystem. If the return values do not match the log file, the system queries the

user on how to proceed. SCARPE is able to record and replay the events well, but

at the cost of some overheard. For some cases, the overhead is too large to make

the test creation feasible, but Joshi and Orso claimed to be working on making the

system more efficient.

Orso and Kennedy’s work was very influential at the beginning of our own project as

we had initially believed that we would have to instrument code as they had done.

Before we had a complete understanding of the RIM software we would be working

with, we explored the idea of instrumenting the system code and inserting probes so

that we could view the interactions between various subsystems. After we had met

with the RIM team it was discovered that there was a much easier way for us to record

the events of the system, by use of listeners. Listeners are are type of observer pattern

that allow programmers to probe software and log the events occurring within. It

turns out that RIM’s software has a listener class in place in which we could essentially

plug our own code into to begin recording events.

2.3.2 Capturing Unit Tests from System Tests

Elbauin et al. [4] recognize the efficiency of unit tests and the importance of system

tests and therefore want to'merge the two into what they call differential unit tests

(DUT). System tests involve testing the functionality of the system, but the tests can

be slow to complete (days or weeks at a time) and that is why they want to create

these hybrid DUTs.

Their general method to create DUTs is to carve the system components, during a

system test’s execution, that- influence the target unit’s behavior. The carving can

then be re-assembled so that the target unit can be tested as it was by the system

test. These carved tests would be closer to unit tests and therefore retain some of

the advantages of unit tests. The carving of unit tests from the system is essentially

a recording, and replaying the tests against the target unit is analogous to playing

back a recording. The method ’works by recording pre and post states of the system.

Before a unit is executed, the pre state is recorded and after the unit executes, the

post- state is recorded. These two states can then be used as the baseline tests for

future versions. New versions of the software also have their pre and post states

recorded and then compared to the original pre and post- states. If the post states

are different, then it is known that the unit is not acting as it should.

The work done by Elbaum varies greatly from our own. Our system records and

replays unit tests in a much different way then the system above, though originally

we did consider using a state-based method for recording and replaying tests. Our

system, as we will see in the coming chapters, only deals with recording unit tests

and does not deal with system tests. Since we are not dealing with system tests, we

have no need to worry about the complexities of carving tests. During our system’s

development, we considered using states to help generate unit tests. In a similar

way that Elbaum’s system uses pre and post states to determine unit correction,

we were going to use pre and post states to determine which method to call. Once

we discovered the limitations of the RIM software we were dealing with, we had to

discard the idea of using states. However, the idea of states could potentially be used

in our methodology if it were to be implemented with generic software. As we had

no control over how the RIM software worked, we could not modify it to work in a

state-based manner.

18

19

2.3.3 Automatic Test Factoring

Saff et al. [14] conducted research on automatic test factoring for Java. Test factoring

is the method of creating unit tests from system tests. The unit tests only test a

subset of the functionality that the system tests test. However, the unit tests can be

run more quickly and help isolate bugs.

The method uses the idea of mock objects to factor tests. Mock objects are sim­

ulations of another object and mimic the same behavior of the original object in a

controlled way. If a component of the system, T, interacts with an environment ob­

ject, E, a mock object can be used in place of E when running the test. By using

mock objects, the running time of tests can be reduced. The mock object checks the

input and output values from the test and compares them to the initial system test.

While capturing the test, a mock object is wrapped via instrumentation around the

real object and a transcript of the actions is created. When the tests are replayed,

the mock objects read the transcripts and check that the test’s inputs match against

the transcript. This means that the actual system objects do not have to be run in

order for the tests to be conducted. Saif et al. found that test factoring using mock

objects can cut down on running times by up to an order of magnitude.

The research done in the above paper does not directly correspond to the work we

did in our own project, aside from the idea of record and playback. The research

done by Saff highlights a possible method that we may have used if it was decided

that, w'e needed to instrument the code at all. The use of mock objects to record and

play back tests is intelligent; however, the goal of their research was to create unit

tests from system tests and the goal of our research was to simply create unit tests

from user actions. If we had decided to use instrumentation to record events, it is

20

more likely that we would have used probes in the way that Orso and Kennedy did

in their paper.

2.3.4 GUI Testing Using Automated Planning

The research done by Memon et al. [11] discusses their automated test generation

program, PATHS, that generates test cases from a hierarchical stand point using the

AI technique of planning. The input to the system is a set of initial states, goal

states, and operators. The operators tell the system how to navigate the GUI. The

planning technique utilizes these operators to create a path from the-initial state to

the goal state. It is possible for multiple paths to exist from one initial state to one

goal state. The system uses a hierarchical methodology to encapsulate the GUI into

more abstract concepts. This encapsulation allows for tests to be generated at a much

quicker speed than if only one layer of GUI operators were to be used. The user of

the system must define the GUI operators and state the preconditions required for

the operator to be invoked. For instance, in order to close a file, you must first open a

file. The system uses a mapping mechanism to break down the higher, more abstract-

operators into their lower-level, simple operators.

The work done by Memon et al. has some relation to the work done in this thesis.

For instance, we also use a mapping mechanism to go from low-level events to higher,

more abstract method calls. This allows us to encapsulate the work of finding GUI

components and interacting with them. Another concept that relates to our own

thesis is the idea of ordering. Some of the operators in the above paper require

preconditions to be true in order for the operator to be able to be invoked. In our

system, we require that the methods be placed in order as well, as some of them

require the system to be in a specific state, and this can only be accomplished if some

other method is called before.

21

Informât ion G at her ing

In this chapter we will look at the information we gathered from our meetings with

RIM, such as how their system works, the testing package they use, and the require­

ments for the record and playback tool we created. We needed to have a picture of

how everything worked so that we could properly design our software. Furthermore,

we needed to understand RIM’s requirements. We also needed to understand how

their system works and how their test package works so that we could integrate our

system with theirs. ,

3.1 RIM System Information

Since we worked with RIM, we designed software to work in conjunction with the

BlackBerry smartphone. The BlackBerry uses a Java-based operating system and all

of the applications written for the BlackBerry are also written in Java. It follows that

our own software is written in Java as well. Technically, we only had to write the

recorder in Java; we could have potentially written the test generation software in

some other language, but as it is my most proficient language and the language used

by RIM, we stuck to Java. The BlackBerry contains many different layers of software,

as one would expect, but we are only interested in the operating system layer as that

is where the events are sent out and available for recording. The testing software

used by RIM is created in-house and named PuppetMaster. PuppetMaster has the

ability to inject events into the Java Virtual Machine running on the BlackBerry; it

also has the ability to listen to the events being produced. We will look more closely

a t PuppetMaster in section 3.2.

When developers create software for the BlackBerry, they need to test it on a Black­

Berry to see if it actually works. Since not all developers own a BlackBerry or want

to use their expensive phones as testing devices, RIM has created a virtual device,

called a simulator, on which developers can test their programs. The simulators are

Windows applications that look and act, like a real BlackBerry. There exist simulators

for all of the different types of phones that RIM releases. This allows the developers

to test their applications on multiple devices to ensure compatibility. RIM also uses

these simulators to test out their own software.' Instead of providing every tester with

their own testing device, the testers can simply install the necessary simulator and

test that the software works correctly. Of course, simulators do not always act the

same as real phones and so RIM uses a mix of both real devices and simulators when

testing their software. For our own purposes in this thesis, we tested our software

against a simulator. Since we developed the software in our lab rather than at RIM,

we had to set up the environment in our lab so that we could create and test our

software properly.

23

24

3.1.1 System Setup

Setting up the RIM environment on our own systems proved to be a greater challenge

than originally thought. We had to do the following things.

• Install a development environment.

• Install a BlackBerry simulator.

• Install the BlackBerry USB drivers.

• Install the PuppetMaster Software.

• Connect a test program to the simulator and run events.

We first had to decide on the development environment we would be using to create

our software. The choices were narrowed down to two possibilities: Eclipse with

the BlackBerry plug-in and the BlackBerry Integrated Development Environment

(IDE). The BlackBerry IDE was created by RIM to allow developers to easily write

applications for the BlackBerry as it came installed with a device simulator. We

decided to try both Eclipse and the BlackBerry IDE to determine which one best

fit our needs. It turned out that the BlackBerry IDE was a little primitive for our

needs and harder to work with, so we decided to use Eclipse. The BlackBerry plug-in

for Eclipse comes packaged with a simulator, but the simulator it came with is not

the device we wanted to test on. Therefore, we downloaded the latest version of

the BlackBerry 9700 simulator and used that instead. Installing the simulator and

getting it to work was fairly painless.

Next we had to install the BlackBerry USB drivers. The purpose of the drivers is

to allow a. device to connect to a computer so that information can be passed back

and forth between the two. For instance, it allows for a user to back up their data or

install new applications on their phone. The simulator we would be using simulates a

connection via the USB port and tricks the desktop software into thinking an actual

device is attached to the computer. This allows us to treat the simulator like a real

device and connect to it as such. We were able to easily install the USB drivers from

the BlackBerry website.

Following that, we needed to install the PuppetMaster software. The PuppetMaster

software is what allows us to create a link between our program and the simula­

tor. The software comes packaged with Java classes that can create connections to a

simulator or device connected to the USB port. One problem with installing Puppet­

Master was that there were very specific version requirements. The software could

only work with one specific version of the BlackBerry operating system. It took us

some time to communicate with RIM and get matching simulators and PuppetMaster

software. Once we wore finally able to install PuppetMaster on our desktops and on

the simulators, we had to create a test program to verify the communications link

between a program and the device.

Getting a test program to work properly is where all of our problems occurred during

the process. We developed a simple program to make simple method calls such as

opening a menu or pressing a key on the device. The program wo created wras rarely

able to connect to the simulator wo had running on the desktop. The software kept

reporting errors stating that there was no device connected to the computer. When

the software was able to connect to the simulator, it would not always work and

would fail halfway through completion. After much investigation and trial and error,

26

it. was determined that the PuppetMaster software could not work properly on a 64

bit operating system. As we were running the software on Windows Vista 64, this

posed a problem. To remedy this situation, we installed VirtualBox that was running

a copy of Windows XP 32 bit. We then had to install all of the software again. When

we ran our test program on the new environment, everything went as planned and the

test program was able to connect to the simulator and run methods as we had hoped.

Now that we had our environment set up, we could begin working on designing the

system we would be creating. We will talk about the design phase in the next chapter.

3.2 PuppetMaster and Utilities

PuppetMaster is a software: package developed by RIM and is used to create unit

tests. PuppetMaster is similar to the Jemmy testing library [6], which allows testers to

interact with AWT/Swing GUP components programmatically. PuppetMaster works

by giving unit test programmers an easy way to manipulate the applications running

on the BlackBerry. It provides an interface to programmers that allow the tests to

access GUI components without having to worry about the low level details, such as

finding a specific button or clicking the trackball. PuppetMaster provides a set of

static utility methods that can be called from a unit test. The software consists of

a set of utility classes, each of which contains a set of utility methods. Some of the

classes provided are application-specific; for example, some of the utilities can only

be used to interact with the Browser application or the Email application. There

are also other utilities that allow general GUI component access. These utilities

allow a test programmer to access any button, menu, etc. that is on the interface.

Some of the many utility classes provided are B row serU tilities , E m a ilU tilitie s ,

A p p lic a tio n U tili t ie s , and B u tto n U tilit ie s . All of these classes contain methods

that can be called, such as B row serU tilities.openB row serQ , which opens the

Browser application, or M enuUtilities.selectM enuItem(itemName), which selects

a menu item. By using these utilities, a test programmer can quickly create unit tests

without worrying about how to find the GUI components using reflection. Instead,

the programmer can create a unit test that simply contains a list of method calls that

flow in a logical order. An example test is shown in figure 3.1.

F igu re 3.1 Example test case using utility calls

27

/♦Test that opens the browser, goes to example.com and then
♦closes the browser
*/

\\Code to set up method here
BrowserUtilities.openBrowserO; -
BrowserUtilities. goToURLCwww.example.com");
BrowserUtilities.close();
\\Code to end method here

PuppetMaster contains two major components, the desktop side and the device side.

The device side of the software runs on an actual phone or on a simulator. The device

side of the software allows for communication between the tests and the device. The

desktop software is where one would create and compile unit tests. The desktop

software has classes that can be called to create a connection to the device and send

and receive information. A properly set up environment contains a simulator or

device running the PuppetMaster software and a development environment set up

to create and compile PuppetMaster test cases. The tests can then be run from the

desktop against the device or simulator that is connected to the computer. The tests

are determined to have passed or failed by checking to see if an exception has been

thrown from the unit under test. If an exception is thrown a test is said to have

failed.

http://www.example.com

Now that we have a good understanding of how Puppet-Master works, we need to

understand how our own project ties in to it. Our project works in conjunction with

PuppetMaster to create unit tests that call PuppetMaster utilities. Our software

allows a tester to record tests from a device or simulator and then have that recorded

test be transformed into a unit test that contains utility calls. We will see the major

details of how this is done in the coming chapters.

3.3

Before we began the design and development of our system, we first had to figure out

the requirements of the system. As we worked with RIM and developed the software

for their needs, we had to figure out what exactly they were looking for in our testing

package. The following is a list of functional requirements 1 for the system.

1. The system must implement recording via listeners.

2. The system must plug its listener class into the PuppetMaster listener hub.

3. The system must take in a recorded test and produce a Java unit test.

4. The system must produce PuppetMaster type unit tests.

5. The system must use a BlackBerry application to record events.

The following is a list of non-functional requirements for the system.

*By convention, functional requirements use the word “must” in tlieir description, whereas non­
functional requirements use the word “shall”.

29

1. The system shall work with the current BlackBerry architecture.

2. The system shall be documented; both in the source and externally.

3. The system shall be written in Java.

4. The system shall be completed within a 6 month time frame.

As we can see, there were not too many constraints on how the system should have

been developed. Since we were trying to solve the problem for RIM, we had the

freedom to create any method we desired to transform a recorded test into a unit

test. As we developed our system, we created different formats for .storing data and

different methods for transforming recordings, but since these were not part of the

requirements from RIM, we do not have them listed above. Now that we have a good

understanding of the system requirements and what our end goals were, we can look

at the design of our system.

Chapter 4

In this chapter we will look at the design of our system and how we came to decide

on its current form. Before we could begin programming the system, we needed to

figure out how we could potentially transform a recorded log file into a unit test. To

transform a recording into a test, we needed to understand the flow of information

through our system. We will see the overall design we settled on and discuss why we

think it is a good for our needs.

4.1 Recording Design

In the following two subsections we will look at our initial thoughts on howT to design

a recorder and how we refined them. We will see the evolution of our design as we

gained more information about the RIM system.

31

4.1.1 Initial Thoughts on Recording

When we initially began to design our system, we decided that instrumentation w'ould

probably be required. As we had previous experience using instrumentation on Java

classes, we knew that our idea was possible to a certain extent . As we had not learned

much about the RIM system at this time, this would have been the best method for

recording tests on a live system. Our goal was to instrument the Java class files and

insert probes into key locations. These locations would be the beginning of methods,

at the end of methods before the return value (if there was one), and before and after

method calls. The idea was to record the values passed into methods and the values

passed back by methods. By knowing which values were being inpuf'to the system

and which values were being returned, we would know how to replay the test because

we would have the values stored; we would also know if a test passed or failed because

we would know what, to expect as return values.

The problem with instrumentation is that we would need access to the underlying

software running on the BlackBerry platform. It is easy enough to instrument desk­

top software as one tends to have direct access to the Java class files. However, the

software running on the BlackBerry that we would need to instrument is much differ­

ent than that which is on a desktop computer. The BlackBerry is well known for its

security, so it would have been difficult to insert probes into running applications on

the BlackBerry and record events. As we had little knowledge of the system so far,

this still seemed liked the best option, even if it seemed extremely difficult.

Figure 4.1 Listener Architecture

thoughts on a recording method. We learned that PuppetMaster comes with a listener

class and a listener hub class that allow for a program to catch and look at the events

produced by the system. By extending the provided listener class, we could create1

33

our own custom listener in tlie form of a BlackBerry application and plug it, into

the listener hub running on the device. This would allow us to easily log the events

occurring on the device. This made the design of our recorder much easier and more

in line with the architecture already in place.

In figure 4.1 we can see the overview of the listener architecture. The operating system

simply outputs events based on the user’s actions and allows for other applications

to observe these events. Our recorder was designed as a BlackBerry application and

loaded onto a device simulator. The recorder can be activated or deactivated by

pressing the ALT key twice. When the recorder is deactivated, a log file containing all

of the events is written to a specified location. We will see more details about this in

the next chapter. Now that we have seen the design of the recorder, we will look at

how we designed our method for how the recordings are transformed into unit tests.

4.2 Mapping Design

In order to transform recordings into unit tests, we needed to teach our system what

to look for. Since the end goal of our system is to generate unit tests that contain

utility calls to PuppetMaster (B row serU tilities, M enuU tilities, etc.), we needed

to show our system what utility calls look like. The log files that are output from the

recorder contain two types of events: keypress and d isp lay . Keypress events are

the events generated whenever a user presses a key on the phone. A d isp lay event is

generated whenever the screen is updated with new information. Since these are fairly

low-level events, it would be hard for a program to determine if the user is sending an

email or typing in the calculator by just observing the events. In order to determine

34

exactly what the user is doing on the phone based on the events, we need a baseline

for comparison. The baseline we created is a type of mapping mechanism. Our

mapping mechanism works by mapping new recordings against previously recorded

utility traces. The utility traces we use are recordings of the utility methods within

PuppetMaster, along with some metadata. Utility traces are created as follows.

1. An administrator selects a list of utility methods to record for the baseline.

2. The utility methods are placed in a logical order (e.g. you must open a browser

before you can close it).

3. The methods are run against the simulator or a device.

4. Recordings are made for each method being called.

5. The recordings are saved and placed in a special location to be used later for

mapping.

Now that the system contains a baseline of utility traces, the testers can begin record­

ing tests and comparing them against the utility traces. By creating these utility

traces, we are telling our system what to look for in the recordings. The system will

now be able to tell if the user is sending an email or working within some other appli­

cation. Since the system now knows what the user is doing, the system can generate

the proper method calls in the Java unit files it will generate. The basic steps of how

the utility traces are used are as follows. '

1. A tester records a test case.

2. The tester runs the test case through the TestGenerator program.

3. The TestGenerator program compares the contents of the recording to all of the

utility traces. :

4. For each block of events in the recording that matches a utility trace, a method

call is generated.

5. When the mapping is complete, all of the method calls generated are output to

a Java unit file.

35

F igu re 4.2 Recording and Utility Trace Matching

Figure 4.2 is a diagram of how the overall system works with the utility traces. We

can see event, blocks from the recordings being matched to utility traces. For every

matched utility trace, a method call is generated that corresponds to that method. For

example, if Trace 2 corresponds to the method B row serU tilities.openB row serO ,

36

a call to that method is generated in the Java unit file. We will look at how

TestGenerator actually matches the recordings to the utility traces in the next chap­

ter as that is the most complex part. Furthermore, we will look at more details of how

and UtilityTraceCollector.
or

4.3 System Overview

F ig u re 4.3 System Overview

Figure 4.3 shows our complete system design. We can see the three main pro­

grams: UtilityPropSeqGenerator, UtilityTraceCollector, and TestGenerator.

The two former programs are what create the utility traces, while the latter program

generates the Java unit tests. The recording software is located on the BlaekBerry

simulator. The cylindrical objects are the inputs and outputs of their respective

programs and the Java unit, file is our final generated test case.

By looking at the overview we can see the flow of data through the system. The system

works in two parts, the setup part and the testing part. The setup p a rt,consists of

the two programs, U tilityPropSeqG enerator and U tility T raceC o llec to r, that

ultimately output the utility traces, and the second part consists of a tester recording

a test and running the TestG enerator program.

For the first part, the U ti lL is t and U tilL istT oC ollec t data objects tell our system

which utility classes we would like to trace. The PROP and SEQ files are our custom

data files that allow the administrator or tester to select which methods they want

to trace. All of this information is required to create the utility traces that will later

be used by TestG enerator. For the second part of the system, a tester records a

test, on a simulator. The output is a manual recording which is then fed into the

TestG enerator, alongside the utility traces, to generate the Java file. We will look

at details of each of the components.in the next chapter.

37

Chapter 5

The System

In this chapter we will be looking at the programs that make up our system. First,

we will be looking at the recorder and how it saves the system events. Following that,

we will look at how we create the utility traces. The, utility traces are created in two

steps using the programs U tilityPropSeqG enerator and U tility T raceC o llec to r.

We will see how these two programs work, what their inputs and outputs are, and

how they work together to create the utility traces. Finally, we will look at how we

generate the Java unit files from the TestG enerator program.

5.1 The Recorder

The recorder was created as a BlackBerry application. It is loaded onto a device or

simulator and activated/deactivated by pressing the ALT key twice. The application

is set to automatically run when the simulator is started so that the tester can begin

recording test cases immediately. The recorder implements a listener class that is part

of the PuppetMaster system. The listener class contains various methods to allow

for the capture of events. The listener class attaches to a' listener hub that outputs

the system events that can then be captured by any attached listener. All of the

events captured by the recorder are output to a log file. The methods that we are

interested in implementing are onUserKey and onUpdatedisplay. The onUserKey

method captures all of the keypress events. Keypress events are generated when­

ever a user presses a key on the device. The onUpdateDisplay method captures

all of the d isp lay events., Whenever the display is updated with new information,

onUpdateDisplay is notified. The method headers are as follows.

p u b lic void onUserKey(UiEnginelnstance u ie , Screen screen , in t event,

i n t key, in t keycode, in t time)

p u b lic void onUpdateDisplay(UiEnginelnstance u ie)

The important parameters for onUserKey are the screen, key, and keycode. We are

interested in these three parameters as they tell us which key is being pressed and

on which screen the key is being pressed. We need to be able to distinguish which

application is currently running, if any. We need to know which application is running

because we need to store that information in the log file so that the TestG enerator

program will be able to match the recordings to the utility traces more accurately.

All of the events passed in to the onUserKey method are saved in the log file as

keypress events. Keypress events are stored in a log file in the following format.

keypress:key v a lu e ¡ap p lica tio n c la ss name¡focused f i e ld type:

39

40

focused f i e l d 's te x t

The keypress line is colon-separated into five segments. The first segment is simply

the word “keypress” ; this tells us that this is a keypress line and not a d isp lay line.

The second segment stores the key value of the key that was pressed. For example,

the Enter key is represented by the value 27. The third segment is the c la s s name

of the currently running application; this tells us which program is currently running.

The fourth segment is the current f i e ld type in focus such as a text box or a radio

button. The fifth and final segment contains the text contained within the currently

focused field, such as the text contained within a text box. With all of this data, we

are able to know which key has been pressed, which application is running, and in

which GUI component the key value was inserted into.

The d isp lay lines are stored in the log file as follows:

d isp lay ¡ap p lica tio n c la s s name.'focused f i e l d ’s te x t

The d isp lay line, like the keypress line, is colon-separated. The d isp lay line is

split into three segments. The first segment simply contains; the word “display” . This

tells us that the line is a d isp lay line and not a keypress line. The second segment is

the a p p lic a tio n c la ss name, which tells us the class name of the currently running

application. Finally, the third segment tells us that text contained in the currently

focused field. There are two special cases regarding naming conventions for our sys­

tem. The first case is when the user is selecting a menu item and the second case is

when the user is pressing an on-screen button. These actions required multiple lines

' of logging and so we want to make sure the lines are grouped together. Therefore,

for all actions dealing with the menu, the a p p lica tio n c la ss name segment of the

d isp lay line is named “menu”. Similarity, for all actions dealing with buttons, the

a p p lic a tio n c la ss name segment is named “button”. These special cases end up

being pivotal in the generation of test cases as they allow us to property determine

which menu item or which button is being selected.

F igu re 5.1 Example recording for menu selection __________ _______ _

d isp lay :n e t .rim.device.apps.in te rn a l. ribbon.RibbonLauncherApp:none
keypress:268566528:n e t .rim.device.apps. in te rn a l. ribbon.RibbonLauncherApp:
n e t .rim .device.apps. in te rn a l.ribbon. launcher.ApplicationAreaGridField:
Browser

display:menu:Open Tray
d isp lay :n e t .rim.device.apps.in te rn a l.ribbon.RibbonLauncherApp:none

41

In figure 5.1 we can see an example log file. The log file contains both the keypress

and d isp lay lines. The figure depicts a user pressing the menu key and selecting the

Open Tray menu item. Now that we know how log files are created, we need to see

how the utility traces are created so that Java unit tests can be generated properly.

5.2 UtilityPropSeqGenerator

The U tilityPropSeqG enerator program is the first step in creating the utility traces.

The input to the program is a text file called u t i lL i s t and the output of the pro­

gram is the property and sequence files. The u t i lL i s t text file contains a list of

PuppetMaster utility classes that we want to trace.

Figure 5.2 shows the contents of a u t i lL i s t file, which can be edited by the user. As

we can see, there is a list of the various utility classes, such as A p p lic a tio n U tilit ie s ,

Figure 5.2 Example utilList file

#utilList
net .rim.puppetmaster.utilities.application.ApplicationUtilities:nostrict
net. rim.puppetmaster.utilities.browser.BrowserUtilities:strict
net.rim.puppetmaster.utilities.contacts.ContactsUtilities:strict
net.rim.puppetmaster.utilities.email.EmailUtilities:strict
net.rim.puppetmaster.utilities.menu.MenuUtilities:nostrict
net.rim.puppetmaster.utilities.ribbon.RibbonUtilities:strict
net.rim.puppetmaster.utilities.tasks.TasksUtilities:strict
net.rim.puppetmaster.utilities.notes.NotesUtilities:strict

and B row serU tilities . Each line also contains the keyword s t r i c t or n o s tr ic t .

These keywords indicate whether or not the classes pertain to a specific applica­

tion. For example, the B row serU tilities class is s t r i c t as the methods within the

class can only be used with the Browser application, whereas the M enuU tilities

methods are n o s t r ic t because they can be used with any application. This dis­

tinction helps make the Java unit test generation smarter as the s t r i c t classes

always get precedence over the n o s t r ic t classes when it comes to mapping. The

U tilityPropSeqG enerator reads in the u t i lL i s t file and extracts all of the method

data from the classes, using reflection, and saves the output to the property and

sequence files.

A property file contains data for all of the methods of a specific class listed within

the u t i l L i s t file. For instance, the class B row serU tilities has a property file that

contains its method details. The purpose of the property file is to allow a tester

to define the parameters of the methods to be traced. To create utility tracts, we

need to call the methods wye want to trace. In order to call the methods, we need to

supply parameter values. Therefore, a tester must define the parameter values within

the properties file. The properties file will be used by the U tility T raceC o llec to r

program to create utility traces.

Figure 5.3 Example property file for BrowserUtilities

#net.rim.puppetmaster.utilities.browser.BrowserUtilities
#Wed, 22 Jun 2011 12:00:58

strict=true

#openBrowser:0:params=0
net.rim.puppetmaster.utilities.browser.BrowserUtilities.
openBrowser.0=callableMethod

#openBrowser:1:params=l
net.rim.puppetmaster.utilities.browser.BrowserUtilities.
openBrowser.l=callableMethod
net.rim.puppetmaster.utilities.browser.BrowserUtilities.
openBrowser.param.type.0=j ava.lang.String
net.rim.puppetmaster.utilities.browser.BrowserUtilities.
openBrowser.param.value.0=default

Figure 5.3 shows a snippet from the B row serU tilities property file. We can see the

header comments telling us the name of the utility class and the time when the file was

generated. Following that, we can see the s t r i c t value is set to tru e since this class

only pertains to the Browser application. After that, we have a list of methods. Each

block in the property file corresponds to a public method in the B ro w serU tilities

class file. In this example we can see the method openBrowser listed. The method is

polymorphic and that is why we see two versions of it in the example. The first line

of each block, which ends with callableM ethod, tells us that this is a new method

being defined. The lines following that are the parameter types and values. For

example, the line ending with par am. type. 0= java.lang . S trin g tells us that this

is the first parameter (we start counting from 0) and its type is jav a .la n g .S tr in g .

The following line, ending with param .value.0=default..indicates the value of this

parameter; in this case it is still d e fau lt. It is up to the tester to replace all of

the default values with proper values for each method they wish to trace. This

is required since it is not possible for the program-to automatically determine the

parameter values for each of the methods. ,

44

F igu re 5.4 Example sequence file for BrowserUtilities

#net.rim.puppetmaster.utilities.browser.BrowserUtilities
#Wed, 22 Jun 2011 12:00:58

1 :openBrowser: 0 :params=0
0 :openBrowser: 1 :params=l
0 :openBrowser: 2 :params=2
0 :openBrowser:3:params=l
0 :goToURL:4 :params=2

Figure 5.4 shows us a piece of the sequence file for B row serU tilities . The sequence

files are used to place the methods in the order in which they are to be called. We

need to open the browser before we can work with it, therefore the openBrowser

method should be called first; that is one example of the need for a sequence file. The

program cannot determine the order in which to call the methods, therefore, a tester

needs to select the order.

The sequence file begins with header comments, just as the property file does. Fol­

lowing that is the list of methods. The lines are split into four segments. The first

segment is the sequence number. Methods with a sequence number of 0 are not run.

The sequence order begins at 1 and counts upwards. The second segment contains

the name of the method to be called. We can see there are four methods with the

name openBrowser, so in this case we choose one of them to call. The third segment

is the method’s ID. Since we have polymorphic methods, we need a way to distin­

guish them. The IDs in the sequence file correspond to the IDs in the property file

so that the tester can match up the proper methods. The fourth segment contains

the number of parameters that the method contains. This is there to help the tester

To use the sequence file, a tester places the methods they want to trace in order

by giving the methods a sequence number greater than 0 and in the order they

should be called in. The methods must also have their parameters defined in their

property file. Once the sequence is defined and the parameters are defined, the

U tility T ra ce C o lle c to r program can be run and the utility traces can be created.

5.3 UtilityTraceCollector

46

Tlie U tility T ra ce C o lle c to r program is the second step in the process for creating

utility traces. Its goal is to read in the property and sequence fdes, build the utility

method calls using reflection, and run the methods against the simulator to create

log files (which are the utility traces). The simulator will output one log file for each

of the methods being called against it. The program also reads in a text file named

u tilL is tT o C o lle c t that tells it which utility classes the tester wants to trace.

F ig u re 5.6 Example utilListToCollect file

#utilListToCollect
net.rim.puppetmaster.utilities.application.ApplicationUtilities
net.rim.puppetmaster.utilities.browser.BrowserUtilities
net.rim.puppetmaster.utilities.contacts.ContactsUtilities
net.rim.puppetmaster.utilities.email.EmailUtilities
net. rim.puppetmaster.utilities.menu.MenuUtilities
net.rim.puppetmaster.utilities.ribbon.RibbonUtilities
net.rim.puppetmaster.utilities.tasks.TasksUtilities
net.rim.puppetmaster.utilities.notes.NotesUtilities

Figure 5.6 shows an example of the u tilL is tT o C o llec t text file. It looks almost

exactly the same as the file input, into the U tilitySeqPropG enerator program, ex­

cept that this file does not, contain the s t r i c t / n o s t r i c t keywords. It does not

contain the keywords because the property files already have the line s t r ic t= t ru e

or s t r i c t= f a ls e and therefore, the program will know when reading the property

file if that class is strict or not.

Figure 5.7 shows the algorithm for the program. We can see that, each individual

method for each class is run and recorded separately. One run of the algorithm

consists of a sequence of method calls, but the trace for each method is stored in

47

F igure 5.7 UtilityTraceCollector Algorithm

separate file. This means that each utility trace corresponds to only one utility

method. As we will see in the next section, when a block of events within a recording

are successfully matched against a utility trace, a single method call can be generated

to represent that block of events. When all of the event blocks of a recording are

matched to method calls, the translation is complete and the Java, unit file can be

generated. When the utility traces are generated, they are re-named so that their

meta-data is stored within the name itself. An example of the naming convention is

as follows.

J

48

net. rim.puppetmaster.utilities.browser.BrowserUtilities.openBrowser.

0. strict.ree

The name of the file tells us, and the Test Generator program, details about the

method. First, it tells us the name of the class and the name of the method represented

by the utility trace. Second, it tells us the ID of the method, in this case the ID is

0. Finally, it tells us if the method is s t r i c t or not; in this case it is s t r i c t .

-The file extension is “.rec” ; this tells us that this file is a utility trace and not a

manual recording. All of the utility traces follow the same naming convention. After

the utility traces are generated, they are all placed within the same directory. The

TestG enerator program will read in all of the utility traces contained in the directory

and use them for mapping against manual recordings. Now that we know how the

utility traces are generated, we need to see how the Java unit files are created by

o using the utility traces.

5.4 TestGenerator

The TestG enerator program is what generates the Java unit tests. The program

works by reading in all of the utility traces from a specified directory, as well as reading

in a manual recording, then.mapping the manual recording to the utility traces, and

finally outputting a Java unit file. The program takes in two parameters, the directory

containing the utility traces and the manual recording file. The algorithm is shown

in figure 5.8 and figure 5.9.

We will now go through the algorithm in detail to understand how it works. We

49

0 •-

Figure 5.8 TestGenerator Algorithm Part 1

In: utility trace directory UTD, manual recording MR
Out: Java unit file

MappingObject M = []
MatchedMethod methods = []

For each file F in UTD do
/ Create mapping object m

Read data D from F
Clear noise in D and store in m
Store F*s meta-data in m
Store m in M

end for

Clear noise from MR
MatchedMethod currentMatch = null
currentLine = 0

while(currentLine < MR.length) do
matches[] = matchMRtoMappingObjects(MR, M, currentLine)

if(matches.length == 0) then
currentMatch = getDefaultMethodO

else
currentMatch = matches[0]
for each match i in matches do

if matches[i] matches more lines than
currentMatch then

if currentMatch is strict then
if matches[i] is strict then

currentMatch = matches[i]
end if

else
currentMatch = matches[i]

end if
end if

, , end for “
end if

50

F igure 5.9 TestGenerator Algorithm Part 2

Find parameters for the currentMatch method
Store parameters in the currentMatch object
Store currentMatch in methods .
currentLine = currentLine + currentMatch.length

end while

Create header text for Java unit file
For each method in methods do

Create method call text with parameters
end for
Create footer text for Java unit file

Output Java unit file text to a .java file
Return

will look at how we clean the noise from the utility traces and manual recordings to

make them match, better. We will see how we map the utility traces to a manual

recording. We .will look at how. we discover the parameter values for the mapped

methods. Finally, we look at how we create the Java unit file.

5.4.1 Noise Removal

The algorithm begins by creating objects to represent the utility traces.' The data

for each utility trace, along with the meta-data, is stored within its own object.

Therefore, each utility trace object corresponds to one utility method. Next, we need

to clear the noise from the utility traces. The PuppetMaster utility methods execute

in a peculiar way and this causes noise in the recordings. For example, noise would

be considered extra keypress lines at the beginning of the log file. We consider it

noise because the actions taken within these methods are not actions a real tester

would be likely to make. Therefore, we need to remove the noise from the recordings

51

to allow the utility traces to align properly with the manual recordings.

After the noise is stripped from the utility trace objects, we need to repair the record­

ing data for both the utility traces and the manual recording. We need to repair three

things for utility traces and the recording: text input lines, menu lines, and button

lines. The first thing we need to repair is the text input lines. For instance, when a

user types a string on the device, each character typed generates its own event and

takes up a line of text in the recording, such as the following.

keypress:S :email app:Name:

keypress:a:email app:Name:S

keypress:n:email app:Name:Sa

keypress:t:email app:Name:San

keypress:o :email app:Name:Sant

This is a problem for a couple of reasons. First, we want, to differentiate between

when a user is typing a value into a text field and when a user is simply pressing a

key to navigate. Second, we want to use the value typed in by the user as a parameter

later on, and so we will have to extract that value from the recording. It is difficult

to extract the proper value from the recording when it is spread across multiple lines.

To address the first problem, we have to define navigation keys and alphanumeric

keys so that we can tell when the user is navigating the screen or typing in a value.

We defined the navigation keys as the SEND, MENU, END, ENTER and ESCAPE keys, and

we defined all alphanumeric and punctuation keys as simple input keys. To deal with

the input values being spread across multiple lines, we decided it would be best to

compress the lines into a single line, which we call an alpha line. The alpha lines

represent input, from the user. The alpha lines are created by compressing lines from

the same input into a single line. The result looks as follows.

keypress¡alpha:em ail app:Name¡Santo

To create such a line, we take the last line in the sequence and the character that

was typed in last, in this case the “o”, and append it to the end of the string. Next,

we change the second segment of the line, which is the keyvalue, to the word alpha.

This tells us that this line is an alpha line and represents input into a field. We do

this for every block of input for both the utility traces and the manual recording.

The remaining two things we need to rejmir are how the menu and button lines are

stored. They are originally stored as in the following example.

keypress¡m enu:em ail app¡email f ie ld ¡em a il value

display¡m enu:send

d is p la y :menu:save

display¡m enu¡close

keypress¡bu tton :em ail app:em ail f ie ld :e m a il value

d is p la y :b u tto n :cancel

d is p la y :b u tto n :ok

In the first example, the user scrolled through the menu and selected the c lose

option. However, the user scrolled passed the send and save menu options. The last

d isp lay line containing the “menu” keyword is the value that was selected by the

52

53

user. Therefore, the other options shown are not required. We only need to know the

menu option selected by the user and so we remove the non-required lines. The same

d is p la y :b u tto n :ok

5.4.2 Mapping Recordings to Utility Traces

Now that we have fixed the format of our recordings, we can begin mapping the man­

ual recording to the utility traces. The mapping algorithm works slightly differently
•s . . . '

for s t r i c t and n o s t r ic t methods. When mapping s t r i c t methods to the record­

ings, the values for the selected components (display fields, application class names,

etc.) must match exactly those in the manual recording. For n o s t r ic t methods, this

is not required. It is not required for n o s t r ic t methods because the methods can be

applied to multiple applications and therefore it is not likely that the names of the

GUI components would match. Therefore, we can say that the s t r i c t methods have

a textual strictness while the n o s t r ic t methods do not. Since the s t r i c t meth­

ods have a textual strictness, we allow them to match the manual recordings with a

weak shape strictness. This means that not every line in the utility trace must match

every line of the event, block in the manual recording. The opposite is true for the

n o s t r i c t methods. Since they have no textual strictness, we make them have strong

goes for the button lines. The result of clearing the lines in the above example is as

follows.

keypress:m enu¡em ail app:em ail f ie ld ¡e m a il value

d is p la y :menu:close

keypress¡bu tton¡em ail app:em ail f ie ld :e m a il value

54

shape strictness, which means that every line in the utility trace must match every

line in the manual recording. This allows us to bring some balance to the mapping

algorithm for the two different types of methods.

The mapping algorithm starts at the first line of the manual recording. It attempts

to match the first line to any line in the s t r i c t utility trace and the first line in the

n o s t r i c t utility trace. If it matches a line in a s t r i c t file, then all subsequent lines

must, match until either the end of the utility trace or until the end of the manual

recording. If, for the s t r i c t files, all lines match from the first matched line, the

matching is successful and the utility trace is a potential candidate. The n o s t r ic t

utility traces must match all of their lines to the manual recording. If all of the lines

are matched, it is considered a successful mapping and is a potential candidate. Once

all potential candidates have been matched, they are compared to each other to see

which one matches the best. The criteria to determine which utility trace matches

the best are as follows.

1. Strict utility traces are better than nostrict traces.

2. The utility trace that covers more lines is best.

We compare the potential candidates and see which is the best based on the above

criteria. We give precedence to s t r i c t utility traces as they pertain to a specific

application and are therefore better to use. If more than one s t r i c t trace matches

or if no s t r i c t traces match, but more than one n o s t r ic t trace matches, we check

to see which candidate covers more lines and use the one that covers the most. We

consider this better as it tells us that the method does more work than the other

candidates. Once we have matched a utility trace to the block of events in the manual

55

recording, we match again starting from the next unmatched line and continue until

all lines have been matched.

It is possible that a line in the manual recording does not match any utility trace.

Ill this case we generate a default method call. If the line that was unmatched is an

a lpha line, we generate a method call that types a phrase, as all alpha lines represent

a user typing a phrase. If the unmatched line is not an alpha line, we generate a

method call that simulates pressing a single key. We take the value of the key being

pressed from the data in the line. We then continue the matching algorithm from the

next unmatched line in the manual recording.

5.4.3 Parameter Discovery
' ' ' r 1

Each matched utility trace represents a utility method in PuppetMaster. It is possible

that the methods contain parameters. Therefore, we must attempt to discover the

parameters that the user entered so that we can supply them to the methods in the

Java unit file when it is generated. In order to determine where the right parameters

are for each method, we need to make connections all the way back to the property

files. The property files contain the parameters used in the creation of the utility

traces. The idea is to look up the parameter value in the property file, locate that

value in the utility trace, and then find the corresponding line in the manual recording.

We then take the value from the line found in the manual recording as the parameter.

Figure 5.10 shows how the parameter matching works. In the example shown, the

property file contains the string value “Santo” . The line containing this string is

located and matched against the lines in the manual recording. Since there is a sue-

56

F igure 5.10 Parameter Matching

cessful match, we can then take the value from the manual recording as our parameter;

in this case the value would be “Joe” . The string Joe is what, the user entered when

they were recording the test case and so it should be the value supplied to the method

when it is called.

When the parameter algorithm is attempting to match the utility trace line to the

manual recording line, it only attempts to match the utility trace line to a line within

the block of events of the manual recording that correspond to the utility trace. This

stops the algorithm from taking a parameter value used in another method as its own

as it is possible that the line in the utility trace will match more than one line.

It is possible that a parameter will not be found in the utility trace or that it is not

found in the manual recording. In this instance the parameter is set to the default

value “FILL_MEJN”. After the Java unit' test, is generated, the tester will have to

supply the parameter themselves. This happens because not all parameters defined

iii the property files can be located within the utility traces. Some of the parameters

defined are used privately within the method call and are not used as input into a GUI

component, and therefore, are never recorded. This makes the parameters impossible

to locate within a recording file.

57

5.4.4 Creating the Java Unit File

Once the parameter values have been filled in, we need to generate the Java unit file.

Generating the unit file is relatively easy as we already have all of the information we

need. We start by creating the header text for the Java file. We create the import

lines (as in importing Java libraries) by extracting the data from the utility trace

objects, fo r each utility trace class that, is to be used, we create an import line.

Next, we generate the method calls to the utility methods. We know which methods

to call as we just ran the mapping algorithm. We create the method calls and supply

the parameter values that we discovered.

Finally, we generate the footer information for the Java file. The footer information

is simply the line to disconnect from the simulator or device, and some closing braces.

We output the generated text to a Java file and the entire algorithm is complete.

58

Chapter 6

Results

In this chapter we will look at the Java unit files generated by our system. First, we

will look at the utility traces that we generate. Next, we will look at some example

Java unit files that were generated and we will analyze them to determine if they

are doing what they are supposed to do. We will determine the accuracy of the unit

tests by comparing the generated method calls against the initial recording. If, for

example, in the initial recording, the tester recorded an email being sent, but in the

unit file, the email methods are not called, we will know the generated test was not

successful. Following that, we will look at the limitations of our system.

6.1 The Utility Traces

Before we could begin recording tests and generating unit tests, we had to create the

various utility traces. We decided to pick the main utility classes and generate utility

59

traces for their methods. The classes we chose are as follows.

Utility Class Purpose

BrowserUtilities Methods for the browser application (open, close, book-

marks, etc.)

ContactsUtilities Methods for phone contacts (names, numbers, etc.)

EmailUtilities Methods for the email application (send, open, etc.)

MenuUtilities Methods to interact with any menu (open, close, etc.)

TasksUtilities Methods for the task application (create, delete, etc.)

NotesUtilities Methods for the memo application (create, edit, delete,

etc.) ;. .

This set of utility classes would allow us to generate tests for the various appli­

cations, such as Browser, Contacts, Memo and so on. As well, there are generic

utilities such as the menu utilities that can be applied to any application running

on the BlackBerry. The program already incorporates the generic key utilities for

when it generates method calls when no utility trace can be matched to the man­

ual recording, and so that class is not included here. We ran these classes through

U tilityPropSeqG enerator to create the property and sequence files. We then filled

in the necessary parameter values for the methods we wanted to map. After that was

done, we ran the U tility T raceC o llec to r program to generate the utility traces.

The utility traces that were generated are listed here. ,

B ro w se rU tilitie s . createBookmark.1 6 .s t r i c t .rec

B ro w se rU tilitie s .e x itB ro w s e r .i l .s t r i c t . r e c

B ro w se rU tilitie s .goToURL.5 .s t r i c t .rec

60

B ro w se rU tilitie s .openBrowser.0 . s t r i c t . rec

B ro w se rU tilitie s . re freshC on ten t.5 7 .s t r i c t . rec

C o n ta c ts U ti l i t ie s . createNewContact.4 . s t r i c t .rec

C o n ta c ts U ti l i t ie s .d e le teC o n tac t.3 6 .s t r i c t .rec

C o n ta c ts U ti l i t ie s . openContacts.0 . s t r i c t . rec

E m a ilU ti l i t ie s . closeEm ail.4 9 .s t r i c t .rec

E m a ilU tilit ie s .d e le te E m a il.3 5 .s t r i c t . rec

E m a ilU ti l i t ie s .openA pplication.0 .s t r i c t . rec

E m a ilU ti l i t ie s .openEmail.4 2 .s t r i c t . rec

E m a ilU ti l i t ie s . sendEmail.1 3 .s t r i c t . rec

M en u U tilitie s .se lec tM en u Item .3 .n o s tric t.rec

N o te s U ti l i t ie s . createN ote .4 .s t r i c t . rec

N o te sU tili t ie s .d e le te N o te .6 .s t r i c t . rec

N o te s U ti l i t ie s . ed itN o te .7 .s t r i c t . rec

N o te s U ti l i t ie s .openNotesApp.2 .s t r i c t .rec

T a s k s U ti l i t ie s . c rea teT ask .2 .s t r i c t . rec

T a s k sU tili t ie s .d e le te T a s k .12.s t r i c t . r e c

T a s k s U ti l i t ie s . openTasksApp.0 .s t r i c t .rec

The file names all contain a prefix of net.rim.puppetmaster. utilities.* where * is the

name of the specific utility, but these were left out for ease of reading. Now that we

had our utility traces, we began recording and generating test cases that correspond

to the above methods.

61

6.2 Java Unit Tests

In this section we will look at three example test cases that we recorded and trans­

formed into Java unit files. Instead of showing the actual recording, which consists of

the keypress and display lines, we will look at the steps taken during the recording.

We will then look at the unit file that was generated and see how well it matched

with our recording steps.

6.2.1 Browser Bookmark Test

In this test we conducted the following steps.

1. Open the Browser application.

2. Press the menu button.

3. Select the Create Bookmark option.

4. Type “home” as the bookmark name.

5. Type “www.home.com” as the bookmark URL.

6. Press the add button.

7. Press the menu button.

8. Select the Delete option.

9. Confirm deletion.

The test consists of a tester creating a bookmark through the Browser application

and then deleting it. After we ran the recording through TestGenerator we got the

Java unit file in figure 6.1.

F ig u re 6.1 Browser Bookmark Test

62

//import lines snipped

public class BookmarkTest {
public static void main(String□ args) {

try {
System.setPropertyC'PuppetMasterHome",

"C:/PuppetMaster/");
DeviceController.getlnstanceO .setupO;
BrowserUtilities.openBrowserO; ~~
BrowserUtilities.createBookmarkC'home", "www.home.com");
MenuUtilities.selectMenuItem("Delete", "FILL_ME_IN");
FieldUtilities.focusByName("Delete");
KeyUtilities.pressKey(Key.ENTER);
DeviceController.getlnstanceO .shutdownO;

}
catch(Exception e){

e.printStackTrace();
>

>
> ■ ■ ' ' - !

We can see that the unit test generated reflects accurately the steps previously listed.

The lines up to and including the D eviceC ontroller line are the standard header for

a test, which is discussed in section 5.4.4. The D eviceC ontroller is what makes the

connection to the simulator. The unit test starts by calling the openBrowser method

to start the Browser application. Following that, it calls the createBookmark method

and supplies the correct parameters. The test then selects the D elete option from the

menu item list and finally it presses the Delete button to confirm the deletion. The

focusByName and pressKey method calls are both examples of the generic method

http://www.home.com

generation. There was no utility trace that corresponded to the pressing of a button,

and so generic method calls were created to deal with pressing the button. The

only thing required by the tester at this point is to fill in the parameter that says

FILLJv'lEJN. This parameter could not be discovered in the recording file. The

reason this parameter could not be discovered is because the parameter required is

the device PIN. The device PIN is not logged in the recording and therefore it is

impossible for the parameter to be discovered.

63

6.2.2 Create New Contact Test

In this test we conducted the following steps.

1. Open the Applications sub-folder.

2. Open the Contacts application.

3. Select New Contact from the menu list.

4. Enter the name “Santo” as the first name.

5. Select Save from the menu list.

6. Select Delete from the menu list.

7. Close the Contacts application.

This test consists of a tester opening the Contacts application from the A pplications

folder. The tester selects the New Contacts button from the menu and enters the

first name Santo. The tester then saves the contact and then selects the D elete

option from the menu. The contact is deleted and the tester closes the application.

The results are in figure 6.2.

F ig u re 6.2 Create Contact Test

64

//import lines snipped

public class ContactTest {
public static void main(String[] args) {

try {
System.setProperty("PuppetMasterHome",

"C:/PuppetMaster/");
DeviceController.getlnstanceO .setupO;
ContactsUtilities.openContacts();
ContactsUtilities.createNewContact("FILL_ME_IN", "Santo");
ContactsUtilities.deleteContactC"Santo"); —
MenuUtilities.selectMenuItem("Close", "FILL_ME_IN") •

DeviceController.getlnstanceO .shutdownO;
>
catch(Exception e){

e.printStackTraceO;
>

>
}

We can see that the unit test reflects accurately the steps listed previously. The

unit test calls the openContacts method, which will open the Contacts application.

The createNewContact method is called with the parameter Santo, which matches

what was typed in during the recording. The method also contains a FILLJVIEJN

parameter. The reason for this is that the parameter required is a constant that

tells the method which field to place the name in. This constant is not output to

the recording and so it cannot be discovered. After the contact is created, it is

deleted. This is done using the deleteC ontact method. The name of the contact is

correctly supplied to the method as a parameter. Finally, the application is closed

via the selectM enuItem method. Once again, the FILLJVIEJN parameter requires

the device PIN. The conversion was near perfect in this case and only requires a small

adjustment from the tester. ' , .

65

6.2.3 Create and Edit A Memo Test

The Memo application allows a user to create basic text files. The user can create a

memo that consists of a memo title and a memo body. The user can edit the memo,

both the title and the body, and re-save it. The utility methods that access the Memo

application use the word “note” instead of memo, but it means the same thing for

our purposes. The test consists of the following steps.

1. Open the Applications sub-folder.

2. Open the Memo application.

3. Select the New Memo option from the menu.

4. Give the memo the title “memo title” . ■

5. Give the memo body the value “memo body”.

6. Save the memo.

7. Select the Edit option from the menu.

8. Change the title to “new title” .

9. Change the body to “new body”.

10. Save the memo.

66

11. Select the Delete option from the menu.

12. Close the application.

This test tests the process of creating, editing and deleting a memo. It creates the

initial memo, changes the values of the title and body and saves the changes. The

memo is then deleted and the application is closed. The unit test generated is in

figure 6.3.

F igure 6.3 Create and Edit Memo Test

//import lines snipped

public class MemoTest { ^
public static void main(String[] args) {

try {
System.setProperty("PuppetMasterHome",

"C:/PuppetMaster/");
DeviceController.getlnstanceO • setup() ;
MenuUtilities.selectMenuItem("Open Tray”, "FILL_ME_IN");
FieldUtilities.focusByName("Applications"); .
KeyUtilities.pressKey(Key.ENTER);
NotesUtilities.openNotesAppO;
NotesUtilities.createNote("memo title", "memo body");
NotesUtilities.editNote("Memo title", "new title",

"new body");
NotesUtilities.deleteNote("New title");
MenuUtilities.selectMenuItem("Close", "FILL_ME_IN");
DeviceController.getlnstanceO .shutdownO;

>
catch(Exception e){

e.printStackTrace();
> ' ' '

}

Once again the unit test reflects to the recording accurately. The unit test calls the

openNotes method, which opens the Memo application. It then calls the createN ote

method with the correct parameters, which will create our memo. Following that,

it opens the memo we just created and edits, the title and body. Finally, it deletes

the memo using the newly-edited memo title arid closes the application. The only

FILL_ME_IN spots required are the device PIN values we have seen in the previous

67

tests.

6.2.4 Limitations

The three results shown above show the accuracy of the unit files generated. However,

there are instances when the accuracy is not always so great. These, instances occur

when something unexpected interferes with the recorder, such as a pop-up text box.

If something appears on the screen when a user is typing a value into a field, the

recorder will insert a display line between the keypress lines, thus not allowing the

program to properly match the manual recording to the utility traces. Furthermore,

this makes it not possible to locate the proper parameters for the method calls. If

this occurs, the Test Generator program will simply generate the generic methods to

locate the fields on the screen and input text. Since the parameters are not able to

be properly discovered, the incorrect values will also be used as parameters.

Fortunately, this does not happen often and only occurs in a few applications. The

problem is that the PuppetMaster software was not designed with a recorder in mind

and so no considerations were made to deal with these scenarios when they occur.

However, if one were to design their own utility classes with a recorder in mind, these

problems could be dealt with accordingly.

Regarding the FILL_ME_IN parameters, we have tried to use the data from the prop­

erty files to replace them and it does work to some extent. This method works well

for finding PIN values and other values that are used privately in the utility methods.

However, this can cause problems for parameters that are output to the recording file

but are interrupted by a display message. The parameter used in this instance will

be from the property file and not. what the user entered when they recorded the test.

Since this occurs, we decided to not use this method.

68

69

Chapter 7

Conclusion

In this chapter we will conclude the thesis. We will first look at the implementations

of our software and how our methodologies can be applied to software in general.

After that, we will look at the future work to be done with our own software to see

where things can be improved and how to make our software more robust. Finally,

we will summarize the work done in this thesis. \

7.1 Implementations of Our System

The methodologies described in this thesis for a record and playback system can

be applied to any system that uses a GUI and allows for GUI components to be

discovered programmatically. In order to apply the methods we have described, one

would need to create a utility system of their own that is capable of interacting with

GUI components. The system we described was created to work with the BlackBerry

architecture and worked within their PuppetMaster test system. The Puppet Master

system came with very specific utility classes that allowed us to interact with specific

applications such as the Browser application or the Email application. However, if

one were to create a system of their own following our methods, they would only need

to create general utilities that allow for interaction with the GUI components and not

with any specific application.

An example system that could be created is as follows. We want to create a record

and playback tool for all Java software that uses Swing. Swing is the main Java

GUI toolkit and contains the various components to create a GUI, such as frames,

textboxes, and buttons. In order to create this record and playback tool, we first need

to create utility classes. We could create these classes in the following manner. For

each GUI component that a user can interact with, we create a utility class (For exam­

ple, JB u tto n U tilit ie s , JCheckBoxU tilities, and JT e x tF ie ld U tilitie s) . Each of

these classes contains methods that can be called to interact with a GUI component.

The JB u tto n U tiltie s class could contain methods to press a button, hold a button,

and so on. These utility classes would also need to implement a method to discover

the GUI components programmatically using reflection. As there is a limited number

of ways in which a user can interact with a GUI component, the utility classes would

not contain an excessive number of methods. With the utility classes created, a user

should be able to write unit tests that allow them to call the utility methods and

interact with the GUI.

The utilities listed above are fairly generic and low-level, as they deal directly with the

Swing components. If we remember the utilities provided in PuppetMaster, we know

that there are application-specific utilities, such as B row serU tilities, that are smart

enough to locate the Browser application and run it. The above utilities regarding

70

Swing would not be this smart. Therefore, to create these smart utilities, the system

creator would have write application-specific; code. These application utilities could

use these low-level Swing utilities with some extra logic involved. For instance, if

there was an application utility called M enuU til.selectltem (item) that selects a

menu item based on the parameter, then this utility would contain an algorithm to

find the appropriate menu item and select it using one of the generic Swing utilities.

Creating the low-level utilities, and discovering the GUI components, would likely

be the most difficult part. The application-specific; utilities would consist of calls to

these low-level utilities and so they would be easier to create.

Following that, the system creator would need to create a method to record the

user’s interactions; this is where the method may differ from our own. The method

may differ for the recorder because our recorder received events generated from the

operating system, where this will not be possible for desktop Java applications. In

Java, every GUT component that a user can interact with must implement action

listeners. Action listeners receive the event notifications when a user interacts with

the GUI component that the action listener is connected to. Therefore, to record the

events of the system, the programmer of the system could add lines to the action

listeners that output data to a text file. The data would contain the name or type

of GUI component, and the details of the event that occurred. The programmer

could then run the utility methods on the system to record the baseline utility traces.

Once the baseline has been created, tests could be recorded and transformed using

an algorithm based on our own as described in this thesis. The resulting Java file

would contain method calls to the utilities described earlier.

One downside to this method is that the recording lines for the action listeners would

need to be added in every time a component wras created and for every new applica­

tion. Furthermore, depending on how the event details are recorded, the algorithm

may have to be changed as the string matching might break. A smarter way to go

about it would be to write an instrumentation tool that inserts probes into the action

listeners automatically. This would allow for consistency across systems and remove

the problem of the string matching algorithm breaking. An instrumentation tool

could insert probes wherever an action listener is defined so that the event details

are logged properly. The inserted probes could be customized to match the type of

GUI component being logged so that each type of component can save their necessary

information such as the user’s input text.

It would be ideal for the creators of the GUI systems to create and release these

record and playback tools themselves so that their users can use them immediately.

Of course, this is unlikely. However, it is possible for any user to create their own

record and playback tool in light of our system and any company designing their own

system could also implement our methods.

72

7.2 Future Work

The future work for our system involves generating more utility traces so that more

kinds of tests can be recorded and generated. As well, we want to figure out ways to

deal with interruptions when recording test cases such as when the system updates

the display when a user is inputting text. We would also like to figure out a way to

deal with parameters that cannot be located or that do not show up in the recording

file. Our current thought is to stop or ignore display updates that occur when a user

is inputting data into a field; this wra,y the input is not divided and should allow the

matching algorithm to work properly. We would also like to allow our system to

work with RIM’s new operating system. They are updating their systems to a new

architecture and so our record and playback system may no longer work. We would

like to aid RIM in upgrading our system to work with their new architecture.

73

7.3 Summitry

The system created for, and described in this thesis is a record and playback system

for the BlackBerry smartphone. The system works in conjunction with RIM’s testing

framework, PuppetMaster. PuppetMaster contains a set of utility classes that allow

programmers to easily interact with the GUI components of the system, such as a

button or menu. Our system consists of a recorder, which records events that occur

on the BlackBerry and outputs the events to a log, and a test generating system,

which translates recordings to Java unit tests. The tests are generated by using a

mapping algorithm that matches a manual recording against a set of pre-recorded

utility traces. For each match that occurs within the algorithm, a method call to a

utility method is generated and output to a Java unit file. Once all the lines of the

manual recording have been matched to a method, the algorithm is complete. The

resulting test case will consist of calls to PuppetMaster utility methods.

I'

74

References

[1] Abbot framework for automated testing of Java GUI components and pro­
grams. h ttp ://ab b o t.so u rce fo rg e .n e t/d o c /o v e rv iew .sh tm l/. [Online. Ac­

cessed August 2011].

[2] Mohamed A Abdel Salam, Arabi E Keshk, Nabil A Ismail, and Hamed M Nassar.
Automated testing of Java menu-based GUIs using XML visual*editor. 2007 In­
ternational Conference on Computer Engineering Systems, pages 313-318, 2007.

[3] M. Assem, A. Keshk, N. Ismail, and H. Nassar. Specification-driven automated
testing of Java swing GUIs using XML. 5th International Conference on Infor­
mation and Communications Technology, 2007., pages 84-88, 2007.

[4] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil.
Carving differential unit test cases from system test cases. In Proc. Foundations
of Software Engineering, pages 253-264, 2006.

[5] Monty L. Hammontree, Jeffrey J. Hendrickson, and Billy W. Hensley. Integrated
data capture and analysis tools for research and testing on graphical user inter­
faces. In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’92, pages 431-432, New York, NY, USA, 1992. ACM.

[6] Jemmy: Java UI testing tool, h ttp :/ /ja v a .n e t/p ro je c ts /je m m y /. [Online.
Accessed December 2011].

[7] Shrinivas Joshi and Alessandro Orso. SCARPE: A technique and tool for selec­
tive capture and replay of program executions. In International Conference on
Software Maintenance, pages 234-243, 2007.

[8] JUnit.org resources for test driven development, h ttp ://w w w .ju n it.o rg /. [On­
line. Accessed October 2011].

[9] Edward Kit. Software Testing in the Real World: improving the process. Addison-
^ Wesley Publishing Company, Inc., 1995.

http://abbot.sourceforge.net/doc/overview.shtml/
http://java.net/projects/jemmy/
http://www.junit.org/

75

[10] Atif M. Memon. GUI testing: Pitfalls and process. Computer, 35:87-88, August
2002.

[11] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Hierarchical GUI
test case generation using automated planning. IEEE Transactions on Software
Engineering, 27:144-155, 2001. ■

[12] J. D. Newmarch. Testing Java Swing-based applications. In Proceedings of
the 31st International Conference on Technology of Object-Oriented Language
and Systems, TOOLS ’99,' pages 156-165, Washington, DC, USA, 1999. IEEE
Computer Society.

[13] Alessandro Orso and Bryan Kennedy. Selective capture and replay of program
executions. In Proceedings of the third international workshop on Dynamic anal­
ysis, WODA ’05, pages 1-7, New York, NY, USA, 2005. ACM.

[14] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D.Ernst. Automatic test
factoring for Java. In ASE 2005: Proceedings of the 20th Annual International
Conference on Automated Software Engineering, pages 114-123, Long Beach,
CA, USA, November 9-11, 2005.

	CREATING SMART TEST CASES FROM BRITTLE RECORDED TESTS
	Recommended Citation

	tmp.1619807444.pdf.8yPZp

