
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-6-2021 2:00 PM 

Ischemic Stroke Thrombus Characterization through Quantitative Ischemic Stroke Thrombus Characterization through Quantitative 

Magnetic Resonance Imaging Magnetic Resonance Imaging 

Spencer D. Christiansen, The University of Western Ontario 

Supervisor: Drangova, Maria, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Medical Biophysics 

© Spencer D. Christiansen 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biophysics Commons 

Recommended Citation Recommended Citation 
Christiansen, Spencer D., "Ischemic Stroke Thrombus Characterization through Quantitative Magnetic 
Resonance Imaging" (2021). Electronic Thesis and Dissertation Repository. 7737. 
https://ir.lib.uwo.ca/etd/7737 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7737&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=ir.lib.uwo.ca%2Fetd%2F7737&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7737?utm_source=ir.lib.uwo.ca%2Fetd%2F7737&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

 

i 

Abstract 

Stroke is a pervasive, devastating disease and remains one of the most 

challenging conditions to treat. In particular, risk of recurrence is 

dramatically heightened after a primary stroke and requires urgent 

preventative therapy to effectively mitigate. However, the appropriate 

preventative therapy depends on the underlying source of the stroke, known 

as etiology, which is challenging to determine promptly. Current diagnostic 

tests for determining etiology underwhelm in both sensitivity and specificity, 

and in as much as 35% of cases etiology is never determined. In ischemic 

stroke, the composition of the occluding thrombus, specifically its red blood 

cell (RBC) content, has been shown to be indicative of etiology but remains 

largely ignored within clinical practice. Currently, composition can only be 

quantified through histological analysis, an involved process that can be 

completed in only the minority of cases where a thrombus has been physically 

retrieved from the patient during treatment. 

The goal of this thesis is to develop a quantitative MR imaging method which 

is capable of non-invasive prediction of ischemic stroke etiology through 

assessment of thrombus RBC content. To achieve this goal, we employed 

quantitative MR parameters that are sensitive to both RBC content and 

oxygenation, R2
* and quantitative susceptibility mapping (QSM), as well as 

fat fraction (FF) mapping, and evaluated the ability of modern artificial 

intelligence techniques to form predictions of RBC content and etiology based 

on these quantitative MR parameters alone and in combination with patient 

clinical data. 

First, we performed an in vitro blood clot imaging experiment, which sought 

to explicitly define the relationship between clot RBC content, oxygenation 

and our quantitative MR parameters. We show that both R2
* and QSM are 
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sensitive to RBC content and oxygenation, as expected, and that the 

relationship between R2
* and QSM can be used to predict clot RBC content 

independent of oxygenation status, a necessary step for stroke thrombus 

characterization where oxygenation is an unknown quantity. 

Second, we trained a deep convolutional neural network to predict 

histological RBC content from ex vivo MR images of ischemic stroke thrombi. 

We demonstrate that a convolutional neural network is capable of RBC 

content prediction with 66% accuracy and 8% mean absolute error when 

trained on a limited thrombus dataset, and that prediction accuracy can be 

improved to up to 74% through data augmentation. 

Finally, we used a random forest classifier to predict clinical stroke etiology 

using the same ex vivo thrombus MR image dataset. Here, quantitative 

thrombus R2
*, QSM and FF image texture features were used to train the 

classifier, and we demonstrate that this method is capable of accurate 

etiology prediction from thrombus texture information alone (accuracy = 67%, 

area under the curve (AUC) = 0.68), but that when combined with patient 

clinical data the performance of the classifier improves dramatically to an 

accuracy and AUC of 93% and 0.89, respectively. 

Together, the works presented in this thesis offer extensive ex vivo evidence 

that quantitative MR imaging is capable of effective stroke thrombus etiology 

characterization. Such a technique could enable clinical consideration of 

thrombus composition and bolster stroke etiology determination, thereby 

improving the management and care of acute ischemic stroke patients. 

Keywords 

Magnetic Resonance Imaging, Stroke, Thrombus, Quantitative Imaging, 

Machine Learning, Deep Learning 
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Lay Summary 

Stroke is a devastating and prevalent disease. One of the largest challenges 

in stroke treatment is rapidly determining the cause, or etiology, of the stroke 

so that the risk recurrence can be mitigated. Currently, diagnostic tests for 

etiology determination are slow and unreliable, and in about one third of 

patients etiology is never determined. In ischemic stroke, thrombus 

composition, specifically red blood cell (RBC) content, has been shown 

through histological analysis to be predictive of stroke etiology. However, 

histological analysis is too slow to be performed in an acute clinical setting; 

non-invasive imaging techniques capable of rapid stroke etiology prediction 

hold immediate value in stroke care. Currently existing techniques use 

qualitative metrics and have produced underwhelming performance; the goal 

of this thesis was to develop a quantitative MR imaging method capable of 

accurate acute ischemic stroke etiology prediction. 

In this thesis, I use the quantitative MR parameters R2
*, quantitative 

susceptibility mapping (QSM) and fat fraction (FF) to characterize stroke 

thrombi. First, I showed that R2
* and QSM can be used to derive a 

relationship with RBC content in blood clots in vitro. Following this, I applied 

deep learning to quantitative ex vivo thrombus MR images to predict 

histological thrombus RBC content. Finally, I used machine learning applied 

to texture features extracted from thrombus R2
*, QSM and FF maps to 

predict stroke etiology using a random forest classifier. Separate models were 

built using patient clinical data and the combined set of thrombus texture 

and clinical data features. I found that the model built from imaging 

information alone was able to predict stroke etiology with comparable 

accuracy to previous qualitative models, but that when combined with 

patient clinical data the model’s performance far exceeded that of previously 

derived predictors and generated highly accurate predictions of stroke 



 

 

iv 

etiology in an independent test set. The works presented in this thesis offer 

extensive ex vivo evidence that quantitative MR imaging is capable of 

effective stroke thrombus etiology characterization. If implemented clinically, 

such a technique could enable consideration of thrombus composition and 

bolster stroke etiology determination, thereby improving management and 

care of acute ischemic stroke patients.  
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CHAPTER 1 

General Introduction 

 

1.1 Motivation and overview 

Stroke represents one of the most prevalent and devastating diseases across 

the world. In 2013, stroke was the second most common cause of death and 

third most common cause of disability worldwide.1 In Canada, one stroke is 

said to occur every 10 minutes, and collectively stroke is responsible for an 

economic burden of over $3.6 billion in direct costs annually.2 While recent 

years have seen the incidence, mortality and disability burden of stroke 

decline,3 the number of people who are affected by stroke in any form (deaths, 

survivors, and those who remain disabled) is increasing.1 

Patients who have survived their first stroke are over 10 times more likely to 

have a second within 12 months compared to those with no stroke history,4,5 

and these secondary strokes are more likely to be fatal or disabling than the 

first.6 With the number of stroke survivors in Canada expected to increase by 

1.5 to 2 times between 2013 and 2038,7 there is a growing population of 

individuals with heightened stroke risk who require prophylactic therapy to 

minimize their risk of stroke recurrence. The optimal therapy for limiting 

recurrence is specific to the underlying etiology (cause) of the primary stroke, 

however etiology may takes weeks to determine, and even following extensive 

clinical testing remains unknown in as much as 35% of cases.8 

Medical imaging, through x-ray, ultrasound, computed tomography (CT) and 

magnetic resonance (MR) imaging, serves a vital role within acute stroke 

care. CT and MR imaging are currently the only techniques available to 
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identify whether a stroke is ischemic or hemorrhagic in nature, a critical 

disease characteristic which determines the course of stroke treatment.9 

However, no attempt is currently made to use imaging techniques to deduce 

stroke etiology beyond the use of x-ray angiography and echocardiography to 

search for signs of atherosclerotic stenosis and arrhythmia, respectively; 

these have proven to be inconsistent and unreliable indicators. This approach 

fails to take advantage of all the information available from acute imaging, 

and in ischemic stroke in particular, ignores the information available from 

within the thrombus (blood clot) itself. Evidence is mounting to suggest that 

thrombus composition may be indicative of underlying stroke etiology.8,10,11 

Presently, the only method to assess thrombus composition is histological 

analysis, but this can only be completed in cases where a thrombus has been 

physically retrieved from the patient during treatment. The benefit of an 

imaging method capable of non-invasively identifying thrombus composition 

is immeasurable, and there remains ample room for improvement amongst 

current experimental imaging techniques. 

Admittedly, because stroke care is extremely time-sensitive, access to 

advanced imaging scanners, particularly for MR imaging, is a challenge for 

many centres and limits the ability to add new imaging techniques to stroke 

protocols. However, the increasing accessibility of MR and CT scanners, 

combined with recent recommendations from the American Heart Association 

that stroke patients presenting within 6 – 24 hours of symptom onset receive 

advanced imaging (MR or CT) to guide therapy,12 means that the number of 

patients for which advanced imaging can be completed is only increasing. 

This thesis describes the development and validation of novel MR imaging 

analysis techniques aimed at quantitatively predicting the composition and 

etiology of acute ischemic stroke thrombi. The work presented herein first 

demonstrates the sensitivity of the relevant quantitative MR imaging 

parameters to RBC content in a set of blood clots prepared in vitro (Chapter 
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2), followed by an evaluation of composition inference (Chapter 3) and 

etiology prediction (Chapter 4) using deep learning and machine learning, 

respectively, applied to quantitative MR images of retrieved acute stroke 

thrombi ex vivo. This introductory chapter provides a comprehensive 

overview to motivate the work presented in the following chapters, beginning 

with a description of the pathophysiologic mechanisms of stroke (1.2), 

followed by the evolution of acute stroke care (1.3), current stroke etiology 

determination techniques and their associated limitations (1.4), histological 

relationships between thrombus composition and etiology (1.5), previously 

developed imaging techniques for thrombus composition and etiology 

prediction (1.6), modern machine and deep learning image analysis 

techniques and their potential for improved thrombus characterization (1.7), 

and finally the hypothesis and objectives of this thesis (1.8). 

 

1.2 Stroke mechanisms and treatment 

A stroke occurs when brain cells are damaged due to improper blood flow, 

and may occur due to lack of blood from vessel blockage (ischemic) or 

compression from an internal bleed (hemorrhagic). For the former, treatment 

consists of restoration of blood flow to the affected tissue. The derived benefit 

from reperfusion depends strongly on the length of time the brain has faced 

oxygen deprivation. Assessment of the affected tissue’s viability and 

prediction of the brain’s response to reperfusion is the most important task 

faced by stroke interventionalists treating ischemic stroke. 

A stroke occurs when brain tissue is injured by either a deprivation of 

oxygenated blood supply or hydrostatic pressure from an internal bleed, to an 

extent and duration upon which neurological symptoms of impairment begin 

to appear. Lack of oxygen results in neuronal cell energy metabolism 
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disruption leading to ion channel failure, sodium, chloride and then water 

influx, while internal bleeding results in the mechanical disruption and 

deformation of cells, mitochondrial dysfunction and membrane 

depolarisation.13,14 Both mechanisms result in cell swelling (cytotoxic edema) 

and, eventually, to irreversible cell death. Symptoms of stroke vary widely 

depending on the region facing injury, but most commonly manifest as acute 

one-sided weakness (hemiparesis), facial droop, difficulty understanding and 

formulating speech (aphasia), unclear speech (dysarthria), visual field 

deficits, headaches and/or lack of muscle coordination (ataxia).15 Strokes 

occurring as a result of hypoxia are referred to as ischemic while those due to 

internal bleeding are referred to as hemorrhagic. Ischemic strokes, the focus 

of this thesis, represent approximately 80% of all strokes,16 and are most 

commonly caused by thrombi which have embolized from a downstream 

artery and were halted within the narrowing cerebral vessels, disrupting 

blood flow. A photograph of a retrieved ischemic stroke thrombus is shown in 

Figure 1-1. Less commonly, thrombi may form in situ directly within cerebral 

arteries (lacunar stroke),17 or, less commonly still, stroke may be caused be 

the embolization of materials other than thrombus, including fat, calcium, 

air, infected (septic) tissue or tumour (usually myxoma).18 

In all cases, the treatment for ischemic stroke is reperfusion therapy; 

restoration of blood flow to the ischemic areas. In principle, complete 

reperfusion of affected tissue can lead to the eradication of symptoms and 

near-instant recovery, if all affected tissue is still viable. In practice, complete 

reperfusion is rarely achieved, may serve no benefit to tissue which has 

already been irreversibly infarcted, and may actually cause damage to 

surrounding viable tissue through hemorrhage of areas reperfused with a 

blood brain barrier disrupted by ischemia.19 Failure to achieve reperfusion in 

viable tissue however can lead to permanent disability or death, and while 

the human brain is capable of recovery through the rewiring of neurons to a 
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phenomenal degree, a process known as neuroplasticity, a return to pre-

stroke capability rarely occurs.20 Determination of the amount of salvageable 

tissue, and the risks associated with treatment, is therefore the critical task 

for stroke interventionalists treating ischemic stroke. Methods for achieving 

reperfusion have thus developed in tandem with strategies to identify the 

patients most likely to derive benefit. 

 

Figure 1-1: Gross photograph of a thrombus retrieved from an acute ischemic 

stroke patient. Shown below it is the stent retriever used to remove the 

thrombus from the cerebral vessels as a part of endovascular therapy, which 

is discussed in section 1.3. 

 

1.3 Evolution of acute ischemic stroke care and the role of 

imaging 

Our understanding of stroke and its optimal care continues to evolve. 

Reperfusion is currently the only treatment and two clinically approved 

techniques to achieve this exist today: thrombus lysis by recombinant tissue 

plasminogen activator and extraction by endovascular therapy. Each has 

seen its usefulness and impact expand since it was first approved, and in 

particular, the recently widened treatment time window for endovascular 
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therapy opens the door for increased involvement of advanced imaging 

techniques within acute stroke care. 

The first recorded description of stroke came in the 4th century BCE from 

Hippocrates, who termed a set of symptoms that included sudden onset 

paralysis, loss of consciousness and death as “apoplexy,” meaning “struck 

down violently.”21 Since then, our understanding of the causes and 

mechanisms of stroke have grown enormously, and yet only recently has 

modern medicine been capable of direct treatment. Up until the 1990’s, 

stroke treatment consisted largely of supportive care and the prevention of 

complications.21 Following the results of a 1995 National Institute of 

Neurological Disorders and Stroke recombinant tissue plasminogen activator 

(rtPA) study,22 the Food and Drug Administration approved the use of 

intravenous rtPA for ischemic stroke patients within 3 hours of symptom 

onset in 1996.23 rtPA is a synthetic version of the naturally occurring human 

clot-dissolving protein, tissue plasminogen activator, and was initially 

indicated for all ischemic stroke patients under 3 hours post-onset lacking 

contraindications to the drug. Further studies and clinical trials 

demonstrated that rtPA could be beneficial for patients up to 4.5 hours after 

onset if those presenting with severe infarction, and therefore low tissue 

viability, as determined by non-contrast CT were excluded.24,25 
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Figure 1-2: Non-contrast CT of an acute ischemic stroke patient showing 

signs of infarction by hypoattenuation of the right lentiform nucleus (arrows). 

Subtle hypoattenuation present in the acute stroke image (left) acquired 22 

minutes after stroke onset progresses to more distinct hypoattenuation at 1 

(middle) and 7 (right) days after stroke onset. Figure from Von Kummer et 

al., reproduced with permission.26 

CT is capable of detecting severe edema associated with infarction through 

hypoattenuation within brain parenchyma, as shown in Figure 1-2. The 

number and extent of hypointense lesions is associated with risk of 

hemorrhagic transform following rtPA administration.27 However, non-

contrast CT possesses a relatively poor sensitivity (~65%) for detecting acute 

stroke lesions,26 and lacks the ability to identify tissue at risk of infarction 

but not yet beyond the threshold of irreversible damage. Hypoperfused tissue 

that is salvageable but will proceed to infarction if left untreated is referred 

to as the stroke “penumbra,” while ischemic tissue that has already past the 

point of irreversible damage and will infarct is deemed the “core.”28 In 

conjunction with the rising prominence of rtPA treatment came MR studies 

demonstrating the potential for diffusion-weighted imaging (DWI) to 

visualize the infarct core along with perfusion-weighted imaging (PWI) to 

show the penumbra.29,30 A mismatch between DWI and PWI lesions indicates 

the presence of vulnerable penumbral tissue that will proceed to infarction if 

reperfusion is not achieved (Figure 1-3). A non-placebo-controlled study 
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(DEFUSE) demonstrated promise that DWI and PWI could be used to 

identify patients who would respond positively to rtPA for up to 6 hours after 

onset, showing that patients with mismatched DWI/PWI lesions responded 

better than those with similar lesion sizes at presentation.31 However, a later 

randomized controlled trial (EPITHET) into the use of DWI/PWI failed to 

show a difference in benefit between patients given rtPA with and without a 

mismatch.32 As a consequence, advanced imaging selection for rtPA 

administration was never widely adopted into the clinic and the 2018 

Canadian stroke guidelines recommend no input from imaging for the 

decision beyond examining for hemorrhage and infarction severity on CT.33 

 

Figure 1-3: Diffusion-perfusion MR images of an acute ischemic stroke 

patient showing mismatch in size between hyperintense lesions in the right 

caudate nucleus on DWI (left) and PWI (middle) images acquired 4.5 hours 

after stroke onset. A T2-weighted image (right) acquired 7 days after onset 

shows a final ischemic lesion that has expanded beyond the DWI lesion 

within the region of the perfusion abnormality. Figure from Baird et al., 

reproduced with permission.30 

However, in recent years the use of imaging to illuminate penumbral and 

core tissue has seen a resurgence with the advent of endovascular therapy, 

the use of an inserted stent retriever (mechanical thrombectomy) or aspirator 

to physically remove the occluding thrombus. A 2012 prospective study 

showed benefit in the use of DWI/PWI for selection of patients receiving 
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endovascular therapy within 12 hours of onset.34 Contemporaneously, CT 

perfusion (CTP) imaging was gaining prominence as a tool for penumbral 

stroke imaging, and was shown to provide a comparable assessment of 

ischemic core and penumbra as DWI and PWI.35 A 2014 randomized clinical 

trial (EXTEND-IA) demonstrated benefit for endovascular therapy in 

patients stratified by CTP-based perfusion mismatch assessments within 8 

hours of symptom onset.36 By the mid-2010’s, the utility of advanced (MR or 

CT) imaging for selecting patients suitable for endovascular therapy was well 

documented, but given the relatively short accepted time window for which 

patients could be treated (6 – 8 hours in most centres), only a fraction of 

stroke patients were eligible and in Canada advanced imaging selection was 

not formally recommended unless it could be done without any delay of 

treatment administration.37 Recently, two randomized, controlled trials 

(DAWN, DEFUSE 3) demonstrated clear evidence in favour of using 

advanced, perfusion-based imaging (MR or CTP) to identify patients most 

likely to benefit from endovascular therapy, and notably this was 

demonstrated in patients at up to 24 hours after stroke onset.38,39 Following 

the release of these trials, stroke guidelines were updated and today 

advanced imaging is recommended for ischemic stroke patients arriving 

between 6 – 24 hours after symptom onset to select patients likely to benefit 

from therapy; stroke centres are expected to see a significant increase in the 

number of patients eligible for advanced imaging and endovascular therapy 

subsequent to the implementation of these guidelines.9 Such an increase also 

creates opportunity for adoption of novel imaging acquisitions, which expand 

the information available to clinicians during acute stroke treatment. Beyond 

selecting patients appropriate for acute treatment, imaging also offers 

potential for improving patient care during their recovery; namely in 

identifying the underlying cause of the primary stroke so that the risk of 

recurrence can be mitigated. 
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1.4 Stroke etiology and clinical diagnosis 

A number of potential mechanisms can be responsible for ischemic stroke. 

The need to identify the underlying cause, or etiology, of a stroke is critical 

given the elevated risk of recurrence after primary stroke as the most 

effective risk-mitigating therapy differs between etiologies. In particular, 

cardioembolic and large artery atherosclerotic stroke are the most common 

etiologies and require different antithrombotic drugs to optimally limit their 

chance of recurrence; cardioembolic strokes are most often caused by 

arrhythmias, which can be challenging to detect within the post-stroke 

window of elevated secondary stroke risk. 

Stroke is a unique disease in that the risk of recurrence is vastly increased 

after an initial stroke has occurred; within one year the risk of recurrence is 

approximately 13%, over 10 times the risk in the general population.40 

Compounding this is the unfortunate fact that secondary strokes are typically 

more devastating than the first. Accordingly, identifying the underlying 

cause, or etiology, of a stroke so that the patient may be treated to optimally 

mitigate the risk of recurrence is a critical component of stroke care. There 

are myriad different causes, known as subtypes, of ischemic stroke and these 

will be detailed in the following section before current strategies for etiology 

determination, and their associated weaknesses, are discussed. 

  1.4.1 Subtypes of acute ischemic stroke 

The Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification 

system,41 developed in the 1990’s, remains the most widely used system to 

categorize stroke subtype in clinics today, largely due to its simplicity relative 

to later proposed schemes.42 TOAST stratifies ischemic stroke into one of 5 

subtypes: large-artery atherosclerosis (LAA), cardioembolism (CE), small-
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vessel occlusion (SVO), stroke of other determined etiology and stroke of 

undetermined etiology. 

LAA is diagnosed in approximately 25% of all ischemic strokes,43 and occurs 

subsequent to an immunoinflammatory reaction to circulating blood 

cholesterol resulting in atherosclerotic plaque formation within the vessel 

wall of a major feeding artery to the brain (typically the internal carotid 

artery).44 The growing plaque expands into the vessel lumen and often, but 

not always, ruptures prior to inducing thrombosis on its surface; the nascent 

thrombus eventually embolizes to the intracranial arteries.45 Almost 

everyone develops detectable atherosclerosis within intracranial vessels as 

they age,46 and the risk of LAA stroke has been correlated to its severity.47 

CE is diagnosed in between 20 to 40% of ischemic strokes and is resultant 

from a vast number of potential mechanisms, the original TOAST paper lists 

over 20 possible sources,41 but most commonly occurs from complications of 

atrial fibrillation. Atrial fibrillation is a sporadic, often asymptomatic 

arrhythmia of the heart that causes blood to flow poorly and stagnate within 

its chambers, eventually leading to thrombus formation. When no 

concomitant valvular disease is present (70-96% of AF cases),48 90% of AF-

induced thrombi form within the left atrial appendage,49 where they can sit 

for weeks or perhaps months at a time prior to embolization.50 AF is present 

in only 1% of adults (9% of those 80 and older), but entails a 5-fold overall 

increase in stroke risk compared to those in normal sinus rhythm.51 

SVO, also known as lacunar stroke, is diagnosed in approximately 15% of 

ischemic strokes and is defined as a stroke that occurs within the subcortical 

vessels of the brain. SVO occurs either through lipohyalinosis, a fibrotic 

vessel wall thickening, or intracranial atherosclerosis through a process 

originally thought to be distinct from the cervicocranial atherosclerosis 

responsible for LAA,52 being associated specifically with vascular conditions 
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including diabetes and hypertension.41 However, more recent work has 

demonstrated no difference in the risk factor profiles between SVO stroke 

patients and those of other types.53 SVO strokes are comparably less severe 

than those from LAA and CE,54 as they necessarily involve smaller vessels 

with less overall impact on cerebral perfusion, and will not be discussed 

further in this thesis. 

Strokes of other determined etiology represent approximately 5% of ischemic 

stroke cases and consist of the miscellaneous, uncommon causes of stroke 

including dissection, other nonatheroslerotic vasculopathies, hypercoagulable 

states and hematologic disorders.41 

Strokes of undetermined etiology account for approximately 35% of ischemic 

strokes, though this number varies widely between stroke sites due to 

differences in clinical practice and resources. This subtype includes both 

strokes whose cause could not be identified following clinical evaluation, and 

those in which two or more potential, conflicting causes were identified. 

There is evidence to suggest that the majority of undetermined strokes are 

CE in origin, following the missed diagnosis of arrythmia.8 

1.4.2 Clinical determination of etiology 

The current clinical approach for identifying stroke etiology follows from that 

prescribed by the original TOAST criteria; LAA is considered if significant 

stenosis (>50%) can be found in any major ipsilateral carotid artery, in 

absence of the 20+ risk factors that indicate CE, and vice versa.41 Stenosis is 

typically evaluated through an x-ray angiogram, while AF, if not previously 

diagnosed, is searched for through echocardiographic and 

electrocardiographic (ECG) monitoring during a patient’s hospital stay prior 

to long-term observation at home with an external ECG monitor for at least 2 

weeks if necessary.55 Additional causes of embolic stroke are identified 
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through a wide variety of means, including ultrasound imaging, laboratory 

blood tests and examining clinical history. These etiologies vary in their 

difficulty to identify, but are uncommon and their clinical impact is relatively 

minor compared to that of the LAA and CE subtypes. 

1.4.3 Weaknesses of the current paradigm 

Following an ischemic stroke, antiplatelet drugs are routinely given to reduce 

the risk of stroke recurrence. However, for CE strokes caused by AF, 

antiplatelets are only moderately effective compared to anticoagulant 

drugs56,57 but these can only be given after a diagnosis of AF is made.55 

Because AF can be paroxysmal, it is often not detected during a patients 

short term hospital stay and patients are sent home to complete long-term 

cardiac monitoring with an ineffective therapy, thereby unnecessarily 

heightening their risk of stroke recurrence. Beyond this, in as many as 1 in 3 

patients with AF the arrhythmia is not detected even after 30 days of at-

home monitoring.58 

For LAA strokes, the arbitrary cutoff of >50% stenosis for diagnosis has been 

criticized as it incorrectly classifies those with less than 50% as a stroke of 

undetermined etiology, and may confound other classifications such as CE if 

a stenosis is found but is asymptomatic and unrelated to the stroke.59 One 

study has found significant (>50%) stenosis in nearly 25% of ischemic stroke 

patients with AF; in these cases the stroke would also be classified stroke of 

undetermined etiology, due to multiple identified causes.60 

Overall, the methods used by clinicians today to deduce etiology are 

insensitive and unspecific; decisive criteria are neither definitive nor 

mutually exclusive and the origin of many strokes is never determined. As 

such, there is ample room for clinicians to consider additional information 

that may help inform their etiological diagnosis. A vast amount of 
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information contained within stroke thrombi, the underlying cause of 

ischemic stroke itself, is available to be leveraged but currently remains 

ignored within clinical practice. 

 

1.5 Thrombus composition and its relationship to stroke 

etiology 

There remains significant room for improvement in the determination of 

ischemic stroke etiology, and an area that has thus far being inadequately 

explored is the information present within the thrombus itself; its 

composition. An accumulation of histological studies have demonstrated a 

link between thrombus RBC content and stroke subtype. Knowledge of 

thrombus RBC content has the potential to guide and improve acute stroke 

care, but histological analysis is not possible to perform in the many cases 

where a thrombus is not retrieved. Rapid, non-invasive assessment through 

medical imaging is required for thrombus composition to be considered within 

acute stroke care. 

Four major components constitute the vast majority of all thrombi: red blood 

cells (RBCs), fibrin, platelets, and white blood cells (WBCs). A schematic 

diagram depicting these components within stroke thrombi is shown in 

Figure 1-4. Thrombus formation is initiated by thrombin generation through 

either the collagen- (intrinsic) or tissue factor- (extrinsic) dependent 

pathways, which cause the development of fibrin strands from circulating 

fibrinogen segments as well as the activation of platelets that bind to and 

connect fibrin strands together to form a mesh-like structure.61 Platelet 

activation causes the recruitment of WBCs into the nascent thrombus, 

initiating an immunoinflammatory response which accompanies and 

regulates thrombus formation and dissolution.62 RBCs are incorporated into 
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thrombi via passive entrapment in the fibrin mesh, and the scope of their 

influence over thrombosis is still not fully understood.63 Occasionally, 

additional components present at the site of thrombus formation, such as 

lipid in the form of cholesterol crystals and calcium hydroxyapatite from 

intravascular calcifications, may be incorporated into a thrombus as well. 

 

Figure 1-4: Schematic drawing of the typical components constituting stroke 

thrombi. Activated platelets connect fibrin strands to form a webbing which 

encapsulates RBCs, WBCs, and holds the thrombus together. Isolated 

pockets of RBCs tend to form within platelet/fibrin-rich regions with WBCs 

on the border between them.64 

The relative proportion of each of these components varies widely between 

thrombi, as they are influenced by the specific conditions under which 

thrombosis occurred. Variability in blood flow within stenotic vessels has 

been linked to heterogeneous deposition of platelets, for example.65 

Consequently, the composition of an embolic thrombus may be indicative of 

its source. Numerous studies have attempted to derive relationships between 

thrombus composition and stroke etiology; to do so histological analysis is 

used. 
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Histological examination involves the dehydration, embedding, slicing and 

staining of tissue samples for examination under a microscope. It provides 

the gold-standard assessment of tissue composition through microscopic 

resolution images of slides, which are stained to illuminate a wide array of 

cellular and non-cellular components. Hematoxylin and eosin (H&E) is the 

most common stain used for thrombus histological analysis; it uniquely 

identifies RBC and WBC components but cannot distinguish between fibrin 

and platelets. These stain images can be segmented to quantitatively assess 

the proportion of all components within a thrombus section. An example 

thrombus H&E stain image and segmentation is shown in Figure 1-5. 

 

Figure 1-5: Example thrombus H&E section at low (A) and high (B) 

magnification with RBCs in red, fibrin/platelets in pink and WBCs in dark 

blue. An example segmentation output used to quantify thrombus 

composition is shown in (C). The typical thrombus has a composition of 

approximately 30, 60 and 10% RBCs, fibrin/platelets and WBCs, 

respectively.10 Note the heterogeneous distribution of components, with 

distinct deposits of RBCs and fibrin/platelets arranged throughout the 

thrombus. 

With the advent of endovascular therapy greatly expanding the number of 

thrombi available for histological analysis, recent years have seen a dramatic 

increase in the number of studies examining the clinical implications of 

thrombus composition. A summary of the results of all current histological 



 

 

17 

studies examining the relationship between thrombus composition and stroke 

etiology are shown in the table below: 

Table 1-1: Studies assessing the relationship between ischemic stroke 

etiology and histological composition of thrombi retrieved by endovascular 

therapy 

Primary 

author 

Year No of 

patients 

Analysis 

method 

Differences between   

CE – LAA thrombi* 

Marder66 2006 25 Qualitative 

categorization 

None 

Liebeskind67 2011 50 Semiautomated 

quantification 

None 

Sato68 2012 17† Semiautomated 

quantification 

CE: ↑RBC; LAA: ↑fibrin 

Boekh-

Behrens69 

2014 34 Semiautomated 

quantification 

CE: ↑WBC 

 

Niesten70 2014 22 Visual 

quantification 

LAA: ↑RBC 

Sallustio71 2014 28 Qualitative 

categorization 

None 

Kim72 2015 37 Semiautomated 

quantification 

CE: ↑RBC; LAA: ↑fibrin 

Simons73 2015 40 Qualitative 

categorization 

None 

Ahn11 2016 36 Semiautomated 

quantification 

CE: ↑fibrin; LAA: ↑RBC 

Boeckh-

Behrens8 

2016 137 Semiautomated 

quantification  

CE: ↑fibrin/platelet,‡ 

↑WBC; LAA: ↑RBC 

Sporns10 2017 187 Semiautomated 

quantification 

CE: ↑fibrin/platelet,‡ 

↑WBC; LAA: ↑RBC 

Maekawa74 2018 43 Semiautomated 

quantification 

CE: ↑fibrin; LAA: ↑RBC 

Fitzgerald75 2019 105 Semiautomated 

quantification 

LAA: ↑platelet 

*Significant difference in thrombus area (%) between CE and LAA subtypes 

(p < 0.05); †Thrombi collected at autopsy; ‡Fibrin and platelets not 

differentiated in examination. CE, cardioembolism; LAA, large artery 

atherosclerosis; RBC, red blood cells; WBC, white blood cells. 
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Despite the lack of consensus, methodological differences in the approach of 

these histological studies are instructive. Of note is that the majority (3/4) of 

studies finding no difference in thrombus composition between subtypes 

performed only qualitative classification of thrombi (categorized into “fibrin 

enriched,” “serpentine,” “erythrocytic”,  “layered” etc.), rather than employing 

some form of automated quantification of each component’s proportion. 

Among those that did perform quantitative assessment, the trends of early 

studies indicating CE thrombi having a higher proportion of RBCs directly 

oppose those of more recent studies indicating a higher proportion of fibrin, 

and less RBCs, in that same subtype. This shift could be explained by 

improvement in endovascular therapy devices and general operator 

experience increasing the proportion of thrombi retrieved as the therapy 

became more widespread. Early studies also tended to have smaller sample 

sizes than more recent ones. The consensus within recent studies suggests 

that a lower RBC and higher fibrin proportion is expected in thrombi caused 

by CE compared to those caused by LAA. It is worth noting that all studies in 

general found a trend of higher RBC levels in thrombi with low fibrin 

content, and vice-verse, indicating that these components are inversely 

related and are the principle sources of variation within stroke thrombus 

composition. 

Beyond the primary thrombus components, a few studies have identified the 

presence of lipid45,76 or calcium77,78 within thrombi and drawn relations to 

etiology. Lipid was found only in thrombi derived from LAA, while calcium 

was found only in thrombi derived from LAA or following an invasive cardiac 

procedure (suggesting disruption of a calcified cardiac valve), indicating that 

the presence of either of these components may be directly predictive of LAA 

stroke etiology in the absence of a preceding surgical procedure. 

There is strong evidence to support that thrombus composition may be a 

useful property for determining stroke etiology. However, histological 
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analysis is an involved process and can only be completed for patients in 

which a thrombus is retrieved, making it inappropriate for wide use within 

clinical care. Only 30-40% of ischemic stroke patients present with an 

occlusion large enough for endovascular therapy to be feasible, and just 25% 

of these patients are ultimately eligible for the therapy.79,80 Within these 

eligible patients 80% will have thrombi retrieved, meaning only 7% of 

ischemic stroke patients overall have thrombi available for histological 

study.81 Medical imaging offers the potential to noninvasively infer thrombus 

properties regardless of retrievability including but not limited to thrombus 

composition, however it presents its own unique set of challenges. The 

following section examines past attempts to leverage medical imaging to 

predict ischemic stroke thrombus composition and etiology, as well as the 

limitations associated with each technique. 

 

1.6 Imaging inference of thrombus composition and 

etiology 

Both MR and CT imaging are capable of assessing thrombus RBC content via 

their sensitivity to iron within the hemoglobin molecule. A number of 

previous studies have used qualitative MR or CT imaging signs to 

characterize thrombi and have demonstrated an association with RBC 

content. However, these signs have collectively proven unable to predict 

stroke etiology. With MR imaging, sensitivity to RBC oxygenation may 

confound qualitative predictions; quantitative MR approaches including R2* 

and quantitative susceptibility mapping may provide a basis to assess RBC 

content independent of oxygenation. However, typical statistical measures 

derived from quantitative thrombus images may not be sufficient for etiology 
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prediction, and more advanced techniques that account for intra-thrombus 

heterogeneity may be required. 

Coincident with stroke thrombus histological studies, medical imaging 

studies have been performed examining the relationship between thrombus 

imaging properties, composition and etiology. Both MR and CT imaging are 

sensitive to the iron atoms inside RBC hemoglobin, allowing non-invasive 

interrogation of RBC content.82,83 Qualitative and quantitative imaging 

characterization techniques have been developed and are described in the 

following subsections. 

1.6.1 Qualitative thrombus MR characterization 

In MR imaging, the hemoglobin iron atom possesses a high magnetic 

susceptibility which causes local field inhomogeneity, spin dephasing and 

ultimately signal loss. Importantly, this effect occurs only when hemoglobin 

is not bound to oxygen; this increases MR sensitivity to stroke thrombi 

relative to circulating blood, as tissue ischemia leads to reduced oxygen 

content in thrombi relative to oxygenated arterial blood.82 The presentation of 

a dark signal void resultant from deoxyhemoglobin within a stroke thrombus 

on gradient echo (GRE) imaging is referred to as a susceptibility vessel sign 

(SVS) (Figure 1-6).84 

In non-contrast CT imaging, iron’s high electron density leads to elevated 

photon attenuation relative to tissue, resulting in higher signal. CT signal 

intensity is measured in Hounsfield units (HU), and RBC content has been 

correlated to CT HU values in blood clots in vitro.85 However, unlike MR 

imaging, CT’s sensitivity to hemoglobin is independent of RBC oxygenation 

state, and it is therefore equally sensitive to iron inside thrombi as in 

circulating blood, resulting in a lower relative sensitivity to stroke thrombi 

than that of MR.86 The presence of bright signal inside a stroke thrombus on 
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non-contrast CT imaging is referred to as a hyperdense artery sign (HDAS) 

(Figure 1-6).87 Numerous studies have demonstrated a relationship between 

the presence of both the SVS and HDAS and stroke thrombus RBC 

content.67,88,89 

     

Figure 1-6: Neurological MR (left) and CT (right) images of stroke patients 

demonstrating qualitative thrombus imaging signs; SVS and HDAS, 

respectively. Figures from Liebeskind et al., reproduced with permission.67 

A number of studies have employed these qualitative imaging signs to search 

for a relationship with stroke etiology.90-92 While certain studies have derived 

significant associations, with most linking positive imaging signs to CE 

stroke, a recent meta-analysis of these studies found no statistically 

significant relationship overall between either SVS or HDAS and stroke 

etiology.93 These qualitative imaging assessments are limited by their ability 

to provide only binary information, and have demonstrated issues with intra-

observer and intra-scanner variability.94 Quantitative MR imaging methods 

have been investigated as a means to provide more advanced imaging 

characterization of stroke thrombi, while reducing reliance on individual 

interpretation. The quantitative MR metrics employed for thrombus 

characterization in this thesis include effective transverse relaxation time 

(R2
*) and quantitative susceptibility mapping (QSM). 
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1.6.2 Effective transverse relaxation time (R2
*) 

Disruption of the main MR magnetic field (B0) homogeneity by RBC 

deoxyhemoglobin leads to transverse signal dephasing and signal loss. This 

effect is quantifiable by measurement of the rate of signal loss in a signal 

decay curve, a plot of voxel magnitude values obtained across multiple echo 

times. In GRE imaging the signal decay rate corresponds inversely to the 

effective transverse relaxation time, known as R2
* (=1/T2

*), and is commonly 

derived through an exponential fit of the signal decay curve (Figure 1-7). 

 

Figure 1-7: Example signal decay curve with an exponential curve fit. Higher 

R2
* values correspond to more rapidly decaying signal. 

While straightforward to perform, the exponential fit technique can lead to 

erroneous R2
* values in voxels with very rapid signal decay, and the observed 

signal evolution can be influenced by several other factors including 

underlying B0 inhomogeneity and the presence of fat tissue. Because of this, 

more advanced signal processing methods have been developed which model 

R2
*, B0 inhomogeneity and fat fraction (FF) simultaneously, though accurate 

FF mapping was the primary focus of these techniques rather than R2
*.95,96 

The B0-NICE method, developed in the Drangova lab, also models R2
*, B0 

field and FF and was designed to output accurate measurements of all 
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three.97 B0-NICE uses a non-iterative lookup table approach to R2
* mapping 

which is less susceptible to underestimation of R2
* values in voxels with rapid 

signal loss, and is the algorithm used to quantify thrombus R2
* in this thesis. 

The B0-NICE FF maps were additionally used to assess thrombus lipid 

content. 

1.6.3 Quantitative susceptibility mapping 

The mechanism through which the deoxyhemoglobin iron atom disrupts the 

B0 field is through a bending of its magnetic field force lines, changing the 

strength of the field inside and around it (Figure 1-8). All materials interact 

with and alter magnetic field lines to some extent; the parameter that 

quantifies the degree of this alteration is known as magnetic susceptibility. 

Materials which increase the strength of the local field are known as 

paramagnetic while those that decrease it are known as diamagnetic. Water, 

the main component of human tissue, has a diamagnetic susceptibility 

of -9.04 ppm, while RBC deoxyhemoglobin is paramagnetic relative to water 

with a magnetic susceptibility of -5.61 ppm, commonly written as a 

+3.43 ppm relative shift.98 Oxyhemoglobin has a comparatively negligible -0.1 

ppm diamagnetic shift relative to water. 

 

Figure 1-8: A uniform magnetic field in the presence and absence of magnetic 

material. Paramagnetic materials have a positive magnetic susceptibility and 

attract magnetic lines of force, while diamagnetic materials have a negative 

susceptibility and repel them. 
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A material’s magnetic susceptibility directly influences the strength of the 

magnetic field it observes in addition to those of the atoms surrounding it. 

While high intravoxel susceptibility variation leads to the signal loss 

quantifiable by R2
* mapping, direct estimation of a material’s magnetic 

susceptibility is also possible through a technique known as quantitative 

susceptibility mapping. Background field contributions to local phase are first 

removed to produce a local frequency shift map which is converted to a QSM 

map through an inversion process involving deconvolution of the dipole 

kernel. This inversion process is ill-posed however in that certain regions of 

the dipole kernel are undefined, meaning there are an infinite number of 

potential inversion solutions. QSM algorithms overcome this by incorporating 

prior information into the inversion; strategies differ across the multitude of 

QSM algorithms that have been developed though enforcing spatial 

smoothness in the estimated QSM map through regularization is the typical 

added condition.99,100 One of the most widely used QSM algorithms, known as 

morphology enabled dipole inversion (MEDI), explicitly matches spatial 

gradients within input magnitude images to gradients in the estimated QSM 

map, penalizing the formation of streaking artifact edges that plague many 

QSM reconstructions.101 MEDI is the QSM algorithm used to analyze 

thrombus magnetic susceptibility in this thesis. 

1.6.4 Quantitative thrombus MR characterization 

Direct assessment of R2
* and QSM from multi-echo GRE acquisitions has 

been previously performed on prepared blood clots in vitro and demonstrated 

sensitivity to both blood clot RBC content and oxygenation, as expected 

(example shown in Figure 1-9).102,103 However, no study has quantified these 

MR values on blood clots of simultaneously varied composition and 

oxygenation, meaning that any translation of the derived relationships to 

stroke thrombi will be confounded by the codependence of R2
* and QSM on 

both factors. The second chapter of this thesis describes an in vitro study 
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designed to bridge this gap by deriving a quantitative relationship between 

blood clot R2
* and QSM that can be used to predict clot RBC content 

independent of oxygenation. 

 

Figure 1-9: MR R2* (A) and QSM (B) maps of a phantom containing pairs of 

deoxygenated blood clots prepared in vitro of 10-60% RBC content (yellow 

label) with the remainder being composed of fibrin and platelets. 

Assessment of the relationship between thrombus R2* and QSM and stroke 

etiology remains limited. A single study has been completed that found no 

significant difference in mean thrombus R2* between stroke etiologies.104 

These inconclusive findings may be the result of small sample size (only 4 

LAA thrombi studied), but may also be indicative of a more fundamental 

weakness. Traditionally, quantitative imaging studies have used a single 

imaging value or metric to represent an entire sample, while histological 

studies of stroke thrombi have consistently shown that they are 

heterogeneously composed, with varied concentrations of their components 

throughout their structure. Intrathrombus compositional heterogeneity is 

observable with quantitative MR maps (Figure 1-10), at the scale of the 

acquired image resolution, and as such more complex image analysis 

methods sensitive to thrombus texture and morphology may allow more 

effective characterization of stroke thrombi. The following section describes 

artificial intelligence techniques, specifically machine and deep learning, and 
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their potential to extract detailed intra-thrombus information from 

quantitative MR images for improved prediction of stroke thrombus 

composition and etiology. 

 

Figure 1-10: Example thrombus (A) H&E histology slide (RBCs stain red; 

fibrin/platelets stain pink) along with a corresponding slice of its (B) GRE 

magnitude (TE = 31 ms), (C) R2* and (D) QSM maps. MR images are shown 

in a coronal view, with the vertical scanning vial walls indicated with ► and 

the thrombus outlined in cyan. Agar fills the space below the thrombus and 

outside the vials. * indicates the RBC-rich body of the thrombus which has a 

noticeably lower magnitude signal and higher R2
* and QSM values than its 

fibrin-rich tail. 
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1.7 Artificial intelligence and potential for advanced 

thrombus analysis 

Artificial intelligence is a powerful tool that may be able to retrieve a greater 

level of information from images of thrombi than traditional imaging metrics 

can provide, specifically by interpreting intra-thrombus texture and 

morphological information. Machine learning and deep learning are two 

fields within artificial intelligence that have seen rapid growth in recent 

years due to improved computing resources, as well as mounting proof of 

utility within the medical imaging field. Machine learning makes explicit use 

of imaging-derived texture features, while deep convolutional neural 

networks are capable of deriving their own abstract features from raw images 

as input. These complimentary techniques have each demonstrated capability 

for providing valuable information related to stroke, but have seen very little, 

if any, application towards the study of stroke thrombi. Evidence suggests 

that they are powerful tools which may allow for more accurate 

characterization of thrombi than that possible using traditional techniques. 

Artificial intelligence describes the use of machines to perform tasks 

normally considered to require human intelligence, such as visual perception, 

decision-making, or problem solving. In the context of medical imaging, 

artificial intelligence allows the extraction of rich sets of information from 

quantitative imaging data beyond simple statistical measures such as mean, 

variance, inter-quartile ratio etc., such as measures related to object texture 

and morphology. As mentioned in the previous section, there is histological 

justification for consideration of thrombus texture, given the heterogeneous 

composition of most stroke thrombi. As thrombus composition is known to be 

influenced by the environmental conditions under which they are formed, 

interpretation of intra-thrombus information may yield deeper insight into 

their history. Lines of Zahn, alternating wave-like laminations of platelets 
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and fibrin interspersed between waves of RBCs, and outer shells of condensed 

fibrin and aggregated platelets, have each been hypothesized to relate to 

changes in blood flow and pressure as a thrombus forms.65,105 Subject to the 

resolution limits of the input, artificial intelligence algorithms may be able to 

interpret subtle thrombus texture or shape features which are informative of 

its formation, and in doing so may allow both a finer characterization of 

thrombus RBC content and better prediction of etiology. The following 

sections describe in more detail two important forms of artificial intelligence, 

machine and deep learning, and their respective properties suited for 

thrombus analysis. 

1.7.1 Machine learning 

A subset of artificial intelligence, know as machine learning, refers to the use 

of computer algorithms, which automatically improve through experience. 

Typically, machine learning is applied in the context of supervised learning 

for classification or regression problems, wherein a computer is trained on 

labelled data with the aim of deriving a model, which can accurately predict a 

desired class or value from new, unseen data. A vast array of machine 

learning algorithms have been developed; a recent, exhaustive review 

evaluated 179 algorithms within 17 different families (discriminant analysis, 

Bayesian, neural networks, support vector machines, decision trees, rule-

based classifiers, boosting, bagging, stacking, random forests, generalized 

linear models, nearest neighbours, partial least squares and principal 

component regression, logistic and multinomial regression, multiple adaptive 

regression splines and other methods) for performing classification on 121 

datasets.106 The review found the random forest classifier provided the best 

general performance and this algorithm will be described in further detail in 

this section, while neural networks will be described in the following section 

as a segue into deep learning. 
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Random forests consist of an ensemble of decision trees, which are tree-like 

chains of ordered binary decision nodes designed to learn to deduce a desired 

output value from input features derived from the dataset (e.g. age, colour, 

price). Decision trees generate criteria at each node using the input features 

to create a binary logic model; the computer derives the tree that most 

accurately categorizes the training dataset to align with its desired outcome 

variable. A random forest is created from multiple decision trees each trained 

on a randomly sampled subset of the dataset. In doing so, random forests 

overcome the tendency for single decision trees to overfit to its training 

data.107 When forming predictions on unseen testing data, the result of each 

decision tree is utilized to ‘vote’ on the predicted class or value; the random 

forest outputs the most voted for class or average value for each observation 

within the dataset (Figure 1-11). 

 

Figure 1-11: Schematic diagram of the random forest classifier. 

Regardless of the algorithm used, machine learning is dependent on the 

quality of the input features for deriving a useful model capable of generating 

accurate predictions. The ideal input dataset contains a rich feature set of 
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multiple independent predictors of the desired outcome variable; in practice, 

the independence and predictivity of each input feature is almost always 

unknown and consequently large initial feature sets are desirable. From this 

initial, unrefined feature set a process termed feature selection is performed 

to identify the subset of features most predictive of the outcome variable. 

Typically, some form of linear regression, wherein features are correlated to 

each other and to the outcome variable to identify the features which are 

most independent and predictive, is used. 

Within the field of medical imaging, the extraction of quantitative features 

from images is known as radiomics.108 Radiomics features can consist of 

relatively simple, first-order statistical descriptors such intensity, size or 

shape measurements, but these features don’t tend to provide information 

that isn’t already perceivable by a trained observer. In contrast, texture 

features, second-order descriptors, which quantify the statistical 

interrelationships between voxels, can identify trends and relationships 

imperceptible to the human eye. Texture features are calculated from 

statistical matrices, most typically those tabulating the co-occurrence of pairs 

of pixel values (gray level co-occurrence; example in Figure 1-12), or 

commonality of runs of a particular pixel value (gray level run length). A near 

endless amount of texture features may be generated from these matrices but 

the typical starting point are the Haralick texture features, the first set of 

texture features applied for image analysis and described by Haralick in 

1973.109 
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Figure 1-12 Diagram showing an example of texture feature value calculation 

from a second-order statistical matrix. The total number of co-occurring pairs 

of pixels across one direction in an image is used to create a gray level co-

occurrence matrix (GLCM), whose normalized values are used for the 

calculation of texture feature values. Figure from Brynolfsson et al., 

reproduced with permission.110 

Machine learning algorithms applied to radiomics texture features extracted 

from medical images have shown utility in a wide array of pathologies, but 

have shown particular usefulness in the field of oncology. Texture features 

have been used to predict tumour phenotype, histological grade, metastasis, 

and patient outcome, using random forest classifiers and multivariate Cox 

regression models.111-114 Texture features have also demonstrated utility in 

stroke, where they have been used as input for machine learning algorithms 

to predict post-stroke impairment and detect lesions using support vector 

machine classifiers.115,116 Though currently limited in scope, research has 

been produced showing promise for texture features in thrombus analysis; 

two studies applied them to predict blood clot RBC content in vitro, with one 

study using decision trees and another directly correlating features to RBC 

content.117,118 Two studies have applied this technique to acute stroke 

thrombi, and showed ability to predict response to rtPA and endovascular 

therapies, respectively, from patient CT images in vivo using support vector 

machine classifiers.119,120 
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Texture features quantify image heterogeneity, and despite promising results 

from algorithms applied to thrombus CT data, machine learning algorithms 

have not been previously applied to stroke thrombi for the prediction of 

etiology, a task where measures of intra-thrombus heterogeneity seem 

particularly suited. A study utilizing a random forest classifier on texture 

features derived from ex vivo MR images of acute ischemic stroke thrombi for 

etiology prediction is described in the 4th chapter of this thesis. The following 

section describes a subset of machine learning which has seen an explosion of 

interest in recent years following advancements in computing technology, 

deep learning, and the unique properties it possesses that make it a 

complementary tool to machine learning for thrombus characterization. To 

introduce the topic a description of the machine-learning algorithm that 

forms the nexus of deep learning, the neural network, is first given. 

1.7.2 Neural networks and deep learning 

Originally described by Frank Rosenblott in the 1950’s, the single layer 

perceptron was the earliest form of neural network; a modelling system 

designed to mimic the structure of neurons within the human brain.121 

Beginning with an input layer built of separate neurons for each input 

feature, the perceptron’s input neurons are fully connected to a hidden layer 

of neurons themselves connected to a binary output layer (Figure 1-13). 

Associated with each connection is a weight parameter that quantifies the 

level of influence each neuron has on the output of those it is connected to. In 

iteratively updating these weight parameters based on the difference 

between the desired and predicted output, a process known as network 

tuning, the perceptron learns to separate between two classes of data. A 

single layer perceptron is a binary linear predictor function, and is therefore 

capable of differentiating only between linearly separable data classes. 
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Figure 1-13: Schematic diagram of the simple perceptron. Each connection 

between the input layers and the hidden layer nodes is associated with a 

tuneable weight parameter (wi). Each hidden layer node performs a weighted 

sum of all input features (Σi), which themselves are summed (Σj) by the 

output layer. The output is determined to be true or false based on a binary 

output function. 

From this relatively simple starting point, more complicated neural networks 

capable of performing drastically more complex operations have evolved, 

becoming known as deep neural networks. While there this is no formal 

definition specifying precisely when a neural network becomes complex 

enough to be considered ‘deep’, certain advancements made in neural 

network design since the perceptron was first described have today become 

their essential properties. The inclusion of more than one hidden layer has 

become the de facto defining property of deep networks, as it is necessary to 

allow non-linear separation of data classes and enables more complex feature 

extraction, while backpropagation allows for drastically more efficient 

network tuning by allowing information from the gradient of the error 

function at deeper levels to be reused by more superficial ones. Increasingly 

deeper networks are capable of learning more abstract features from input 



 

 

34 

data, to the point that handpicked, predictive input features sets are no 

longer required and networks are capable of deriving their own predictive 

features from comparatively raw data. Modern improvements to computing 

resources and greater access to large datasets for training have, in recent 

years, enabled deep neural networks to become drastically more practical and 

powerful. 

Within the rapid expansion of the deep learning field over the past decade, 

deep learning networks designed to handle images in particular have risen in 

prominence. These networks are called deep convolutional neural networks 

(CNNs), as they use learnable convolutional filters, which extract 

increasingly more complex patterns and features from image data. In doing 

so, they learn to perform a mapping of high dimensional input data (image) to 

a desired output. Over the past few years, a number of tools were developed 

to improve CNN performance that have since become standard in modern 

implementations. Non-linear activation functions (typically rectified linear 

units (ReLu)) allow CNNs to learn features complex enough to effectively 

interpret high dimensional input. Pooling and padding allow a reduction or 

increase, respectively, in the dimensionality of the feature maps allowing 

greater network flexibility. Batch normalization is the process of normalizing 

the output of each activation layer and allows the network to learn more 

quickly and avoid divergence. Dropout is the random removal of certain 

output nodes, which regularizes the network, increasing generalizability and 

preventing overfitting. The structure of a typical modern CNN is depicted in 

Figure 1-14. Improvements in CNN design have greatly increased their 

capability, and spurred translation of the technique from traditional 

computer vision tasks such as character recognition,122 object detection123 and 

image classification124 into the field of medical imaging. 
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Figure 1-14: Architecture of a modern CNN. Three convolutional layers are 

separated by ReLu’s and max pooling and/or batch normalization functions, 

followed by a fully connected layer with dropout before the final output layer. 

CNNs have been used for a diverse array of medical imaging applications, 

ranging from detecting metastases in the brain to classifying ulcers in the 

feet.125,126 In the field of stroke imaging, interest has piqued in the use of 

CNNs for analysis of neurological stroke images, for the detection and 

segmentation of stroke lesions and identification of penumbral tissue, for 

example.127,128 The singular strength of deep neural networks comes from 

their ability to derive their own abstract features, making them particularly 

suited for problems where relevant imaging features are difficult to define. To 

this end, CNNs have been used to abstrusely predict stroke patient prognosis, 

ischemic tissue outcome, and stroke onset time.129-131 

Characterization of stroke thrombi is another area where relevant imaging 

features are challenging to define, and hence is suited to analysis by deep 

learning networks. The interaction between RBC content and oxygenation on 

quantitative MR imaging values is complex and may be difficult to capture 

with traditional machine learning texture features in the context of thrombus 

composition inference. Deep learning has not been previously applied towards 

the analysis of human stroke thrombi, and the application of a deep CNN for 

the prediction of acute stroke thrombus RBC content using ex vivo MR 

images is presented in the 3rd chapter of this thesis. 

 



 

 

36 

1.8 Thesis hypotheses and objectives 

Despite marked improvement in stroke diagnosis and treatment in recent 

years, acute ischemic stroke remains a major source of disability and 

mortality across the world. Improvement in any facet of stroke care is always 

desirable, but a particularly significant gap exists in the determination of 

stroke etiology, a critical characteristic necessary for optimal post-stroke 

management. Medical imaging is today a cornerstone of stroke care, but is 

underutilized relative to its potential to compensate for weaknesses in the 

current paradigm. Histological studies have identified compositional patterns 

that link stroke thrombi to its underlying etiology, and while medical 

imaging techniques have demonstrated a qualitative sensitivity to RBC 

content, they have been thus far unable to provide accurate, quantitative 

prediction of thrombus RBC content or etiology. The hypothesis of this thesis 

is that quantitative MR imaging, specifically that focused on R2* and QSM 

mapping, is capable of accurately characterizing ischemic stroke thrombus 

RBC content and etiology through the application of machine and deep 

learning image analysis algorithms. This thesis consists of 5 Chapters 

designed to explore and support this hypothesis, the 1st consisting of this 

introductory description of the field. 

In the 2nd chapter, an in vitro study is presented which consists of a cohort of 

blood clots prepared with varied RBC content and scanned serially over 6 

days as their oxygenation status evolves. The objective of this work was to 

demonstrate that MR R2* and QSM parameters are each sensitive to RBC 

content and may be used in conjunction to allow prediction of RBC content 

independent of oxygenation state. The second objective of this work was to 

show that QSM and fat fraction (FF) mapping are capable of detecting 

calcified and lipidic components inside thrombi. 



 

 

37 

In the 3rd chapter, a deep learning study is presented which involves the use 

of a deep CNN trained to predict RBC content using ex vivo MR images of 

retrieved acute ischemic stroke thrombi. The objective of this work was to 

demonstrate that CNNs are capable of learning to accurately predict RBC 

content in human thrombi from R2
* and QSM thrombus maps, and support 

the notion that further improvements in prediction accuracy are achievable 

with sufficient sample size and data augmentation. 

In the 4th chapter, a machine learning study is presented which utilizes 

radiomics texture features extracted from ex vivo MR images of retrieved 

acute ischemic stroke thrombi to predict stroke etiology using a random 

forest classifier. The objective of this work was to demonstrate that accurate 

prediction of stroke etiology is possible through machine learning analysis of 

texture features extracted from thrombus R2
*, QSM and FF maps, and 

investigate whether predictions can be improved through the incorporation of 

clinical patient data. 

The thesis concludes with a brief summary and suggestions for future work. 
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CHAPTER 2 

Simultaneous R2
* and QSM measurement 

enables differentiation of thrombus 

hematocrit and age: an in vitro study at 3T 

 

2.1 Introduction 

Recanalization has been established as the definitive treatment for acute 

ischemic stroke,1 however the efficacy of common fibrinolytic and 

endovascular thrombectomy therapies is influenced by underlying thrombus 

composition.2,3 Stroke thrombi consist principally of red blood cells, fibrin and 

platelets, though relative proportions vary widely.4 In certain cases, calcium 

or cholesterol crystals may be incorporated within, or even form the majority 

of, an embolic thrombus;5,6 calcium interferes with fibrinolytic therapy,7 and 

both calcium and cholesterol affect thrombus mechanical properties.6 

Thrombus age may also affect lysis rate and indicate underlying etiology.8,9 

Magnetic resonance imaging (MRI) has demonstrated utility in the detection 

and staging of ischemic stroke,10 but an evolving understanding of the 

implications of thrombus composition motivates the development of imaging-

based thrombus characterization methods, which offer to non-invasively aid 

decision-making in acute stroke treatment and support determination of the 

embolic source. 

 

Imaging-based characterization of thrombi in vivo has largely been achieved 

through qualitative metrics such as the appearance of a susceptibility-based 
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blooming artifact on MRI or a hyperdense sign on computed tomography 

(CT).11,12 Though shown to be correlated to red blood cell proportion, such 

signs have proven inconsistent when applied towards association with 

underlying thrombus etiology,13 may be mimicked by the appearance of 

calcium14 and are insensitive to lipidic components. Quantitative MRI 

characterization methods utilizing diffusion or relaxation parameters have 

been successfully applied in preclinical models, but require lengthy scan 

times that are prohibitive in the clinic.15,16 Relaxation and quantitative 

susceptibility mapping (QSM) parameters have been measured for 

experimental blood clots in vitro,17,18 but did not include calcified or lipidic 

components and either compared multiple clots of different composition at 

one time or measured changes in a single clot over time. Because clinical 

thrombi vary in both composition and age, and each affects MR 

characteristics, both aspects must be considered if knowledge gained from in 

vitro characterization is to be extended to clinical application. 

 

Three-dimensional (3D) multi-echo gradient echo (GRE) acquisitions offer an 

opportunity to derive multiple quantitative imaging parameters in the form 

of quantitative maps from a single scan. The acquisition of multiple early 

echoes at various fat-water phase shifts allows for simultaneous proton-

density fat fraction (FF), R2
* and B0 mapping through Dixon MRI post-

processing,19 while the acquisition of multiple echoes at late echo times is 

required for sufficient susceptibility weighting to perform QSM mapping.20 

Recently, a novel multi-echo GRE acquisition and analysis approach has 

combined an early, short-echo-spacing echo train (to enable Dixon MRI) with 

a large-echo-spacing echo train (to capture susceptibility variation and 

additional R2
* information).21 Together, the post-processing algorithms and 

dual-echo-train GRE acquisition have the potential to provide multiple 

quantitative imaging parameters (FF, R2
*, B0, QSM) suitable for 

characterization of thrombus from a single 3D scan. In this study, we 
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examine the ability of R2
*, QSM and FF values to characterize blood clot of 

varying hematocrit formed in vitro, some containing calcified and lipidic 

components, across an age range relevant to thrombi causing stroke. 

Specifically, we quantified R2
* and QSM values of in vitro clot throughout 

ageing up to 6 days, examined the ability of the derived values to 

discriminate between various clot hematocrit and age, and finally assessed 

the ability to predict clot hematocrit and age from measured R2
* and QSM 

values. Additionally, we compared the ability of standard clinical MRI 

thrombus assessment techniques (i.e. late-echo GRE magnitude) to R2
*, QSM 

and FF maps for detecting calcified and lipidic components within clots of 

various hematocrit and age. 

 

2.2 Materials and methods 

2.2.1 Phantom preparation  

Thrombus phantoms were constructed using arterial porcine blood collected 

from a local abattoir and anti-coagulated with 0.109 M buffered sodium 

citrate (Medicago AB; Danmark, Sweden) in a 1:9 ratio. The anti-coagulated 

blood was centrifuged at 300 g for 10 minutes, the supernatant plasma was 

extracted and spun again at 300 g for 10 minutes to derive platelet-rich and 

platelet-poor plasma (PRP and PPP, respectively). Separate whole blood 

samples were spun at 775 g for 15 minutes to isolate red blood cells (RBCs). 

Blood samples of controlled hematocrit (10, 20, 30, 50, 40 and 60%) were 

prepared by mixing RBCs and PRP; two 5 mL samples of each hematocrit 

were placed inside 1 cm diameter polystyrene vials (chosen to have a minimal 

effect on QSM, <0.005 ppm shifts observed in water samples). Antibiotic 

(100X stock, Gibco Antibiotic-Antimycotic; Thermo Fisher Scientific; 

Waltham, MA) and 500 mmol/L calcium chloride (Caledon Laboratory 
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Chemicals; Georgetown, Canada) solutions were added to each sample 

achieving final dilutions of 1/100 and 1/45, respectively. Finally, clotting was 

induced by thromboplastin (Thermo Fisher Scientific; Waltham, MA) at a 

1/3000 final dilution. To mitigate clot retraction, clots were left undisturbed 

in the vials throughout the experiment. The time at which thromboplastin 

was added was considered to be the time of clot formation (t = 0). All clot vials 

were placed vertically into a preformed agar-filled container (3.5% agar, 8% 

glycerol, 2% formalin solution (neutral buffered, 10%)); samples were 

arranged concentrically within the phantom, and a vial containing peanut oil 

was placed in its centre to act as a control sample during FF mapping. The 

phantom was kept in a 37 °C water bath between scans to replicate biological 

conditions for clot ageing and will be referred to as the ‘blood-only’ thrombus 

phantom. 

To emulate clinical thrombi containing lipid, a separate thrombus phantom 

was prepared using identical methodology (hematocrit of 0, 20, 40 and 60%) 

but a piece of lard (~2.5 mm cube; local abattoir) was added to each of the 

blood samples (2 mL) immediately following the injection of thromboplastin. 

In this case the samples were left to coagulate at room temperature for one 

hour following thromboplastin injection, at which point 3 mL of PPP was 

added to fill the remaining air space above the formed multi-component clots 

within each vial. A sample containing a whole-blood clot (approximately 30% 

hematocrit) with an added piece of agar containing 5M calcium carbonate to 

simulate the presence of calcified tissue14 was also prepared. 

2.2.2 Image acquisition 

All imaging experiments were performed on a 3.0 T whole-body MRI scanner 

(GE 750, GE Medical Systems, Milwaukee, WI) using a 32-channel receive 

head coil. B0 and B1 shimming were performed prior to each imaging session. 

Scans were acquired using a 3D multi-echo bipolar GRE sequence designed 
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for clinical imaging in vivo; the sequence includes two 5-echo trains: the first 

train was optimized for chemical shift imaging (first echo time (TE) = 3.20 

ms, echo spacing = 1.46 ms); the second train was optimized to highlight 

susceptibility-related contrast at the level commonly observed within human 

brain in vivo (first TE = 16.75 ms, echo spacing = 7.15 ms). The remaining 

scan parameters were repetition time = 47.6 ms, bandwidth = 142.86 kHz, 

flip angle = 10°; field of view = 18 cm; matrix size = 192 × 192 × 42, for a final 

voxel dimension of 0.94 × 0.94 × 1.0 mm3. Bipolar readout enabled the in-and-

out of phase fat/water acquisition during the first echo train. No acceleration 

or averaging was used; the total acquisition time was 6 minutes 28 seconds. 

All phantoms were scanned in the coronal plane, with the vials aligned 

perpendicular to B0; clots were thus kept vertical throughout the experiment, 

limiting retraction and the introduction of air bubbles. The blood-only 

thrombus phantom was initially scanned every 15 minutes without 

repositioning from 30 minutes to 6 hours to investigate the MRI properties of 

acute thrombi; scans were then acquired at 22 and 26 hours and 2, 3 and 6 

days post clotting to represent chronic thrombus. The thrombus phantom 

containing lard was scanned at 3, 7 and 18 hours, then daily for one week; 

the calcium-containing clot was scanned at 2 hours and at 2 days post 

clotting. 

2.2.3 Image reconstruction and multi-parameter mapping 

Image reconstruction and multi-parameter map generation were performed 

in Matlab (Matlab 8 R2015a; Mathworks, Natick, MA). Raw image data were 

reconstructed off-line using the Orchestra Software Development Kit (GE 

Healthcare; Milwaukee, WI). Complex channel combination was performed 

using singular value decomposition and phase errors resulting from the 

bipolar acquisition were removed.21 Fat fraction, B0 and R2
* maps were 

generated using the B0-NICE algorithm.19 Briefly, the B0-NICE algorithm 
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utilizes magnitude data processed independently to generate FF and R2
* 

estimate maps, unwrapped phase data to generate initial phase-based B0 and 

FF maps, and then uses the derived magnitude-based FF map to correct for 

phase errors existing in phase-based B0 and FF maps to generate the final B0 

and FF maps. The algorithm was used with the first 5 acquired echoes to 

produce FF and B0 maps, and all 10 echoes for the generation of R2
* maps. 

QSM maps were generated using the MEDI QSM algorithm20 implemented 

on all 10 echoes of the channel-combined complex data, with the λ 

regularization parameter set to 1000 and maximum iterations set to 10. The 

Laplacian boundary value method was used for background field removal, 

with tolerance, depth and peel set to 0.005, -1 and 0, respectively. 

The performance of the reconstruction and mapping algorithms described 

above was evaluated using a calibration phantom with known FF, QSM and 

R2
*. Details pertaining to calibration phantom fabrication, analysis, and 

associated results are presented in Supplementary Material. 

2.2.4 Image analysis 

Segmentation of the blood-only clots and blood-only regions of clots 

containing lard or calcium was completed by using cylindrical regions of 

interest (ROIs) (~7-mm diameter and ~10-mm tall) to derive sample mean 

and standard deviation values for all measured parameters; care was taken 

to position ROIs to contain only clotted blood and exclude added lard or 

calcium when present, as well as slices showing clot retraction. The calcium 

and lard were segmented via thresholding applied within the clot on QSM 

and FF maps, respectively; the threshold for FF was 0.5 and that for QSM 

maps was -0.1 ppm. Image analysis was performed using Matlab. 
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2.2.5 Data analysis 

The ability of simultaneously measured R2
* and QSM values to estimate the 

age and hematocrit of the clots was evaluated. Clots aged 6 hours were 

considered acute and those aged >6 hours were considered chronic. Receiver 

operator characteristic (ROC) analysis was performed to derive the R2
* and 

QSM thresholds that optimally differentiate acute from chronic clots. To 

estimate hematocrit in acute clots, linear regression was applied to determine 

the relationship between hematocrit and QSM values, while for chronic clots 

hematocrit was fitted as a decaying exponential function of the R2
*/QSM 

ratio; all fitting was performed using data from six of the twelve clots (one 

from each pair, of each hematocrit). The remaining six clots were used to 

evaluate the performance of the derived relationships to predict hematocrit in 

both acute and chronic states. All data analysis was performed using 

GraphPad Prism (v7.0; GraphPad Software, La Jolla, CA).  

 

2.3 Results 

2.3.1 Acute clot (6 hours) 

Figure 2-1 illustrates representative R2
* and QSM maps and values derived 

from the blood-only thrombus phantom in the acute phase (i.e. first 6 hours 

post clotting). R2
* increased with hematocrit but was nearly identical for the 

40-60% hematocrit clots (Figure 2-1C). A small, consistent increase in R2
* was 

observed over time, with the slope increasing markedly between the 10% and 

20% clots (0.04 s-1hr-1 and 0.31 s-1hr-1, respectively); the slope plateaued at 

approximately 0.5 s-1hr-1 for the 40-60% hematocrit clots. Over the six-hour 

period clot QSM values remained constant (Figure 2-1D) and were linearly 

proportional to hematocrit. The consistency of R2
* and QS values between 
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clots of the same composition at the six-hour time point is shown in Figures 

2-1E and F; similar consistency was observed at all acute time points, as 

expected. 

 

Figure 2-1: Acute blood clot relaxation and magnetic susceptibility 

quantification; shown are the central coronal slices of the (A) R2
* [0 s-1, 80 s-1] 

and (B) QSM [-0.5 ppm, 0.5 ppm] maps for the blood-only thrombus phantom 

at 6 hours post clotting. The mean (C) R2
* and (D) QSM values of an 

individual clot from each pair (10 to 60% hematocrit) are shown over the first 

6 hours post clotting; error bars were omitted for clarity. The mean and 

standard deviation of each clot pair with the same nominal hematocrit at the 

six hour time point are shown for (E) R2
* and (F) QSM, demonstrating 

reproducibility. 

2.3.2 Chronic clot (>6 hours) 

The effects of chronic ageing (up to six days) on mean R2
* and QSM values are 

shown in Figure 2-2. R2
* increased rapidly over the first 40 hours (up to 4.0 s-
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1hr-1 for 40-60% hematocrit), before reaching a plateau after the 44 hour scan 

(Figure 2-2A). High hematocrit clots (over 40%) were indistinguishable from 

each other on the basis of R2
*. Measured QSM increased in proportion to clot 

hematocrit over the first 44 hours and remained constant for the remainder 

of the experiment (Figure 2-2B). Unlike R2
*, QSM was linearly related to clot 

hematocrit at all time points. Because both R2
* and QSM changed over time, 

neither could be used alone to infer hematocrit in a thrombus of unknown 

age. A plot of R2
* against QSM (Figure 2-2C), demonstrates a linear 

relationship with a unique slope at all hematocrits – decreasing from 325 to 

173 s-1ppm-1 as hematocrit increased from 10 to 60%, suggesting that 

hematocrit may be estimated from the R2
*/QSM ratio. 

2.3.3 Acute and chronic clot differentiation 

The receiver-operating-characteristic analysis used to derive R2
* and QSM 

thresholds that differentiate between acute and chronic clots yielded a QSM 

threshold of 0.165 ppm with a corresponding sensitivity and specificity of 85 

and 92%, respectively; the area under the curve (AUC) was 0.932 (95% CI 

0.892 to 0.972; p<0.0001). All acute clots had mean R2
* below 22 s-1, while 

chronic clots had an R2
* greater than 24 s-1 (i.e. 100% sensitivity and 

specificity; AUC =1). 

2.3.4 Clot hematocrit prediction 

The ability to use measured R2
* and QSM to predict clot hematocrit at any 

age is demonstrated in Figure 2-3. For acute clots, Figure 2-3A shows that 

hematocrit can be estimated from QSM (HCT = 260*QSM + 9%; where HCT 

is the hematocrit percentage; R2 = 0.97). For chronic clots, Figure 2-3B shows 

that hematocrit can be estimated from the R2
*/QSM ratio (HCT = 125.3*exp(-

0.007*R2
*/QSM) + 4.2%; R2 = 0.77). Evaluation of the ability to predict clot 

hematocrit, calculated for the remaining six clots in the phantom, yielded a 
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mean absolute error of 4.9 ± 3.1% for the acute clots and 8.3 ± 5.4% for the 

chronic clots. 

 

Figure 2-2: Blood clot R2
* and QSM of chronic clots throughout ageing; (A) R2

* 

and (B) QSM values of blood-only clots from 6 up to 144 hours post clotting 

(the 6-hr time point is included in order to relate these results to those of the 

acute clots of Figure 2-1). Plotted are mean values of individual clots; 

standard deviation error bars of only the 60% hematocrit clots are shown for 

clarity, error bars for QSM were smaller than the symbols. (C) Scatter plot 

and linear regression of R2
* versus QSM values at all time points for clots of 

each hematocrit. 
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Figure 2-3: Relationship between hematocrit and measured quantitative 

imaging values in acute (≤6 hours) and chronic (>6 hours) clot. (A) Acute clot 

hematocrit can be estimated linearly from measured QSM values, while (B) 

chronic clot hematocrit can be estimated from an exponential relation of the 

ratio of R2
* / QSM. Shown are data points from the same 6 clots (one from 

each pair of 10 to 60% hematocrit) plotted in Figures 2-1 and 2-2. 
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2.3.5 Identification of lipid and calcifications within clot 

Representative images from the lard clot phantom are displayed in Figure 2-

4. Results from two time points are shown – the 7-hour time point 

representing acute (Figures 2-4A, C) and the 4-day time point representing 

chronic clot (Figures 2-4B, D). The magnitude images (Figures 2-4A, B) are 

representative of GRE acquisitions commonly used for thrombus 

characterization. As expected, the TE=4.2 ms magnitude images show no 

ability to differentiate hematocrit, while the TE=31 ms magnitude images 

demonstrate a decrease in signal intensity with increasing hematocrit in the 

chronic clot (Figure 2-4B). However, this signal loss eliminates contrast 

between the clot and lard. The quantitative R2
*, QSM and FF maps (Figures 

2-4C, D) demonstrate that differentiation between clot and lipid components 

is possible independent of the clot age or hematocrit; the lard is clearly 

distinguishable based on its high FF (mean: 0.78 ± 0.02). Similar results are 

observed in the clot containing agar with 5M calcium carbonate (Figure 2-5), 

where the calcium is readily distinguishable from clot due to its diamagnetic 

QSM value (mean: -0.34 ± 0.08 ppm) at both two hours and two days post 

clotting (Figures 2-5A, B). 
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Figure 2-4: Regions (1.2 × 1.4 mm) from representative sagittal slices through 

select clots (0, 20, 40% hematocrit) in the lard clot phantom demonstrating 

discriminability of the added component; shown are early and late echo 

magnitude images of clots within the phantom at (A) 7 hours and (B) 4 days 

post clotting. These images represent the current standard technique for 

thrombus characterization; lard is either visible within clot as a nondescript 

area of low signal (red arrows) or is undetectable because of signal void 

produced by chronic clot (B; 20 and 40% clots at 31 ms). R2
*, QSM and fat 

fraction (FF) maps of the phantom are shown at (C) 7 hours and (D) 4 days 

post clotting. Lipid is readily distinguishable from clot by its elevated FF 

value in clots of all hematocrits whether acute or chronic. Noticeable 

differences in R2
* and QSM values between clots of different hematocrit can 

also be observed in the chronic clots in (D). 

 

Figure 2-5: Regions (1.2 × 1.4 mm) from representative sagittal slices through 

a single whole-blood clot with an added piece of agar containing 5M calcium 

carbonate (red arrows); shown are early and late echo magnitude images at 

(A) 2 hours and (B) 2 days post clotting. Similar to the appearance of the lard 
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added to clot, calcium carbonate shows low signal on early and late 

magnitude images, but differs with high R2
*, low QSM and low FF values. 

The calcium carbonate is definitively identified within both acute and chronic 

clot by its negative QSM values (black in the QSM maps of (B)). 

 

2.4 Discussion 

This study demonstrates the use of R2
*, QSM and FF maps to characterize 

and differentiate blood clot based on hematocrit and age, as well as to 

identify calcified and lipidic components when present. Such quantitative 

information provides a non-invasive tool to characterize thrombus 

composition, and to potentially inform decisions in the management and 

treatment of acute ischemic stroke. The hematocrit of acute clot (≤6 hours) 

could be determined directly from QSM, but as the clots aged beyond the 6-

hour time point, knowledge of the relationship between R2
* and QSM was 

required to estimate hematocrit. Calcified and lipidic components were easily 

identifiable in clot of any hematocrit and age through QSM and FF mapping, 

respectively. 

 

A blood-only thrombus phantom was scanned serially every 15 minutes over 

the initial 6 hours post clot formation, and then intermittently thereafter for 

up to 6 days. The 6-hour timeframe for more rigorous examination was 

chosen because it is the commonly accepted treatment window for 

thrombolytic and endovascular therapies for acute ischemic stroke;22 clots 

examined over this period therefore give insight into the parameter values 

expected in spontaneously formed, immediately occluding thrombi, as well as 

how these values may evolve over the treatment window. R2
* and QSM 

values showed clear differences between the acute clots of different 

hematocrit, indicating that even newly formed (and thus well-oxygenated) 

clots may be differentiated by quantitative measurements of relaxation and 
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susceptibility. In terms of the change in values over the 6-hour time period, 

only a small increasing trend was observed in R2
* while no trend was 

observed in QSM values, implying little change in hemoglobin oxygenation 

status. This is significant because it suggests that 6 hours may not be enough 

time for thrombi to deoxygenate under ischemic conditions in vivo, and 

therefore that thrombi that are deoxygenated upon clinical presentation 

(indicated by the presence of a blooming artifact) have become so only after 

considerable ageing at the site of thrombus formation, prior to embolization. 

 

Observation of these same clots over the next 6 days of ageing, in contrast, 

demonstrated considerable changes over the course of the experiment. Both 

R2
* and QSM values of clots increased in proportion to hematocrit over time, 

reaching a plateau after 44 hours. Increasing R2
* and QSM values within the 

first few days of in vitro clot formation have been observed previously.17,18 

RBC homeostasis is maintained through the metabolism of glucose;23 the 

limited supply of naturally present glucose in vitro inevitably results in the 

oxidative denaturation of oxyhemoglobin to paramagnetic deoxy- and 

methemoglobin forms,24 increasing QSM values, and consequently 

heightening local field inhomogeneity and thereby increasing R2
*. The delay 

from clotting to when the rapid increase in R2
* and QSM values was observed 

is likely linked to the time taken for RBCs to exhaust the local glucose 

supply. Because the clot R2
* increase is driven primarily by a change in 

magnetic susceptibility inhomogeneity, we would additionally expect the clots 

with a similar heterogeneity of components (hematocrit between 40 to 60% in 

this study) to demonstrate similar R2
* values. Indeed, R2

* values of the 40, 50 

and 60% clots were comparable throughout the experiment, matching 

previous measurements of deoxygenated blood.25 The observed decrease in 

R2
* observed at the 140 hour time point is likely due to a drop in R2 that 

occurs in excessively aged blood following lysis of the RBC membrane.25 
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The quantitative imaging values derived in this in vitro study strongly 

suggest that simultaneous measurement of R2
* and QSM could be used to 

infer hematocrit and age in clinical thrombi. Our results suggest that a 

thrombus presenting with R2
* and QSM values below 22 s-1 and 0.165 ppm, 

respectively, can be considered to be acutely formed, and for these thrombi 

hematocrit can be inferred directly from QSM. When R2
* or QSM values are 

above these thresholds, the thrombus can be assumed to be chronic and R2
* or 

QSM values alone will not be able to discriminate between a moderately aged 

thrombus of high hematocrit and one of advanced aged with low hematocrit. 

This study suggests that once a thrombus is identified as chronic, the 

R2
*/QSM ratio can be used to estimate hematocrit regardless of age. We 

tested a number of parametric fitting methods to derive an equation relating 

imaging values to hematocrit, including fitting to exponential and power 

functions, as well as multiple linear regression; exponential fitting was 

chosen because it provided the best performance, however no underlying 

model was considered to justify this choice and it may not represent the best 

possible method. Our hematocrit prediction accuracy of better than 10% 

suggests that even clots of hematocrit between 40-60%, which showed similar 

R2
*, varied enough in their QS values to be differentiable by the R2

*/QSM 

ratio. 

 

Of course, the derived values and relationships in this study of in vitro clots 

may not be directly applicable to the clinic and must be validated in excised 

human thrombi. Validation of the R2
* and QSM thresholds for differentiating 

between acute and chronic thrombus also needs to be performed in vivo, 

however this is difficult to achieve as thrombus age is rarely known. It must 

be further stressed that the age threshold of 6 hours defined here to 

differentiate acute and chronic clot is unlikely to directly correspond to the 

time period in which similar changes occur within thrombus imaging values 

in vivo, as the rate of thrombus degradation is likely to differ and vary 
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between subjects. Nonetheless, the evidence provided here strongly suggests 

that R2
* and QSM, measured simultaneously, are able to act as imaging 

biomarkers that can identify thrombus age and hematocrit. 

 

Additional clot phantoms were constructed to investigate the ability of the 

quantitative maps to distinguish calcified and lipidic components within clots 

of varied hematocrit and age, and to compare that to the ability of current 

thrombus characterization methods. For acute clot, GRE magnitude images 

have the ability to detect the calcified or lipidic components, but both give an 

identical, low signal appearance; the GRE images are also unable to 

discriminate between clots of different hematocrit. In contrast, lard shows 

elevated FF compared to all clots and to calcium, while calcium shows unique 

negative QSM values. In chronic clots, late-echo-magnitude images can 

roughly tell apart clots of low vs. high hematocrit by the extent and degree of 

signal loss, but this signal loss removes contrast between the clot and 

additional components, eliminating the possibility of their detection. Applied 

together, the quantitative R2
*, QSM and FF maps distinguish between clots 

of different hematocrit, as expected, while also providing the ability to 

identify calcium and lipid components from the QSM and FF maps, 

respectively. 

 

Unavoidable imperfections of an in vitro clot phantom for representing 

thrombi should be considered as limitations for transferring our findings to 

future in vivo studies. Clots were formed statically through the addition of 

thromboplastin, which has been shown to yield clots that are more 

homogeneous than clinical thrombi,26 were assessed in a phantom that did 

not incorporate the effects of blood flow, and were larger (10 mm diameter) 

than those typically observed in vivo. During the first six hours, clots were 

kept at room temperature within the MRI bore, which may have affected 

parameter values. Chosen scan parameters and acquisition hardware were 



 

 

67 

selected to be directly translatable to in vivo head imaging, and hence were 

not optimized for in vitro samples. No histology was performed to confirm 

that initial sample hematocrit was maintained throughout the experiment; 

some retraction was observed in the 20 and 30% hematocrit clots and this 

could have affected their true hematocrit, and measured imaging values, as 

the experiment progressed. The lipid and calcium components do not 

perfectly mimic in vivo thrombus cholesterol and calcifications. Cholesterol 

within thromboemboli have been reported to consist of numerous small 

crystals rather than a singular mass.27 Similarly, thrombus calcifications, 

often derived from embolized calcifications within atherosclerotic plaque, are 

composed primarily of calcium apatite,28 which is slightly less diamagnetic 

than calcium carbonate and will therefore yield reduced QSM contrast.29 

Blood-related flow artifacts and signal contamination from the venous system 

may affect the quantitative maps in vivo, particularly for QSM processing,30 

but can be minimized through flow compensation and increasing spatial 

resolution.31 Variable flip angle turbo spin echo sequences have also been 

proposed as method for rapid, single-scan thrombus characterization,32 and 

while they possess advantages of inherent black blood properties and variable 

T1-weighting, these techniques provide only qualitative information and often 

require contrast administration.33 

 

2.5 Conclusion 

The 10-echo GRE sequence and post-processing algorithms used in this study 

generated accurate R2
*, QSM and FF maps, which enabled quantitative 

characterization of blood clot including the ability to estimate hematocrit and 

age, while also distinguishing lipidic and calcified components. The protocol 

is readily translatable to the emergency clinic as all quantitative maps were 

generated from a single, contrast-free six-minute scan. 
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2.7 Supplementary material 

2.7.1 Methods 

A calibration phantom was constructed to validate derived fat fraction (FF), 

quantitative susceptibility mapping (QSM) and R2
* maps, and included a 

range of fat-water emulsions stabilized with agar, and aqueous gadolinium 

(Gd) solutions. Samples with fat fractions of 0.1, 0.2 and 0.5 were prepared by 

dispersing appropriate amounts of peanut oil into water with 43 mmol/L 

sodium dodecyl sulfate (Sigma-Aldrich; St. Louis, MO). Samples were 

emulsified using a sonifier (Branson S-450; Branson Ultrasonics; Danbury, 

CT) for 2 minutes while heat was applied using a heat gun. Separately, a 4% 

agar solution (Sigma-Aldrich; St. Louis, MO) was prepared and kept at 70°C 

using a hot plate. The emulsified oil solution was added dropwise to the agar 

solution with the mixture being heated and under sonication. An equivalent 

volume of emulsified oil solution was added to the agar solution such that the 

final concentration of agar was 2% in all cases. Separately, aqueous 

Gadolinium solutions (Magnevist; Berlex Laboratories; Wayne, NJ) were 

prepared at 0.125, 0.25, 0.5, 1, 1.5, 2 and 2.5% of the raw (0.5 mmol/mL Gd) 

contrast agent, yielding magnetic susceptibility shifts of 0.20, 0.40, 0.81, 1.63, 

2.45, 3.26 and 4.08 ppm at room temperature.1 Control samples of water (FF 

= 0) and pure peanut oil (FF = 1) were also prepared. All samples were 

transferred into 1 cm diameter, 5 mL polystyrene vials and placed vertically 

inside an agar-filled container. 

The calibration phantom was scanned with the same 10-echo GRE sequence 

used for the thrombus phantoms. An additional scan was also performed 

using the spoiled gradient-echo version of the IDEAL sequence to provide an 

accepted-standard assessment of the fat fraction of the prepared samples.2 

IDEAL FF maps were reconstructed on the scanner. Parameters for this scan 

were as follows: TE1 = 1.60 ms, echo spacing = 0.86 ms, number of echoes = 9, 
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repetition time = 13.6 ms, bandwidth = 142.86 kHz, flip angle = 5°, field of 

view = 18 cm, matrix size = 160 x 160 x 20, slice thickness = 4 mm. No 

averaging was performed. 

Following reconstruction and multi-parametric map generation, 

segmentation of the FF calibration samples was accomplished by placing a 7-

mm diameter, 12-mm length cylinder across the middle slices of both the 10-

echo maps and the IDEAL FF maps. A 7-mm diameter circular cylindrical 

region of interest (ROI) drawn across the central slice of the QSM map was 

used for segmentation of the susceptibility calibration samples. Mean and 

standard deviation values of the segmented pixels were recorded. 

2.7.2 Results 

Representative slices from FF, QSM and R2
* maps and sample values derived 

from the calibration phantoms are displayed in supplementary Figure 2-1. 

Agreement was observed between the mean fat fraction values of the FF 

calibration samples as determined by B0-NICE and IDEAL (supplementary 

Figure 2-1D), though a slight overestimation of the B0-NICE FF is present 

(max overestimation = 0.05) for the mixed fat-water emulsions as compared 

to the IDEAL FF. This discrepancy is likely due to the flip-angle-dependent 

T1 effect that biases scans with higher flip angles towards yielding larger FF 

estimates (FA: 5 and 10º for IDEAL and B0-NICE, respectively).3 A linear 

trend with a slope approaching unity (slope = 1.03, R2 = 0.99) was observed 

between the expected and measured susceptibility values for the QSM 

calibration samples (supplementary Figure 2-1E), indicating the QSM 

method can perform accurate quantification of susceptibility across a broad 

range of susceptibility shifts (up to 4.08 ppm). Lastly, a linear relationship 

was observed between B0-NICE R2
* and Gd concentration up to 12.5 mmol/L 

(R2 = 0.99) within the QSM samples (supplementary Figure 2-1F). 
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Supplementary Figure 2-1: Central coronal slices of the (A) B0-NICE fat 

fraction (FF) [0, 1], (B) MEDI quantitative susceptibility mapping (QSM) [-

1.25 ppm, 3.25 ppm] and (c) B0-NICE R2
* [0 s-1, 350 s-1] maps. For the FF 

phantom (A) the nominal fat fraction of each vial is identified; unlabeled vials 

contain both fat and Gadolinium (Gd) and were not analyzed. For the 

susceptibility phantom (B, C), labels show Gd concentration (mM); unlabeled 

vials contain oil/water emulsions. (D) B0-NICE FF plotted against FF 

measured using the IDEAL sequence; (E) measured QSM against expected 

sample susceptibility; (F) B0-NICE-derived R2
* is plotted against Gd 

concentration. Error bars represent the standard deviation of all pixels 

within each region of interest. Note that the oil vial displays an artifactual 

diamagnetic susceptibility on the QSM map because of the varying fat-water 

phase shifts in the processed echoes. 
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CHAPTER 3 

Quantitative prediction of stroke thrombus 

erythrocyte content from ex vivo 

multiparametric MRI using deep learning 

 

3.1 Introduction 

The desired outcome of acute ischemic stroke (AIS) treatment is to achieve 

rapid recanalization, and yet despite improvements in thrombolytic agents 

and reperfusion devices, successful recanalization is not achieved in 

approximately 25% of patients.1 Thrombus composition has emerged as a 

significant factor influencing the success of AIS treatment.2 Particularly, the 

proportion of thrombus erythrocyte (red blood cell (RBC)) content has been 

linked to the efficacy of both recombinant tissue plasminogen activator (rtPA) 

and endovascular thrombectomy (EVT) therapies.3,4 Non-invasive prediction 

of thrombus RBC content prior to acute treatment would provide a valuable 

tool for stroke interventionalists, and has been sought through medical 

imaging. 

The presence of qualitative susceptibility vessel and hyperdense artery signs 

in MR and CT imaging, respectively, have each demonstrated capability for 

characterizing RBC content categorically, distinguishing between groups 

such as RBC vs. fibrin-dominant.4,5 However, such signs have proven 

inconsistent in their predictions of thrombus amenability to rtPA and EVT 

therapies6 and have noted issues with inter-scanner variability.7 

Quantitative imaging techniques utilizing MR R2
*, quantitative susceptibility 
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mapping (QSM) values, or CT Hounsfield units have shown promise for more 

robust, quantitative prediction of RBC content,3,8,9 as well as for predicting 

efficacy of rtPA and EVT therapies.10,11 However, these techniques remain 

limited by their use of a single imaging value or metric to represent entire 

thrombi. Histological studies have consistently demonstrated that thrombi 

are heterogeneous and complex in structure,12 and that complexities such as 

the distribution of fibrin and RBC components have a material impact on 

treatment efficacy.13 

To account for these structural complexities, machine learning techniques 

have recently started being applied towards thrombus analysis. Past 

techniques generated models from MR or CT imaging texture features, and 

have demonstrated sensitivity to clot RBC content in vitro 14,15 as well as an 

ability to predict clinical features such as response to rtPA.16 Concerns linger 

however about the reproducibility of calculated texture futures and the 

generalizability of these techniques.17 Further still, machine learning 

techniques are limited by the need to initially handpick extractable features 

for study; the histomorphological basis underlying the distinguishing ability 

of imaging texture features is an ongoing area of research.18 

Deep learning neural networks provide a complimentary tool to machine 

learning techniques with the primary advantage being that featurization, the 

process of turning raw signal into a modellable predictor, is fully automated. 

Convolutional neural networks (CNNs) have been successfully applied 

towards medical imaging problems where relevant imaging features are 

difficult to define, such as for predicting brain age and aneurysm 

stability.19,20 CNNs have also demonstrated utility in AIS, in areas such as 

predicting ischemic tissue fate and thrombus detection.21,22 However, CNNs 

have not yet been applied towards analysis of the thrombus itself. In this 

study, we assess the capability of CNNs for prediction of stroke thrombus 

RBC content using MR images. Specifically, we trained a CNN on 
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quantitative MR R2
*, QSM maps as well as T2

*-weighted gradient echo (GRE) 

images of ex vivo AIS thrombi retrieved by EVT, investigated the use of data 

augmentation techniques to improve network performance, and 

quantitatively assessed the accuracy of the trained CNN for numerical 

prediction of RBC content. 

The methods for prediction of RBC content directly from mean clot R2
* and 

QSM, described in Chapter 2, were tested on the human thrombi included in 

this study but ultimately failed to produce accurate predictions. Thrombus 

RBC content was consistently underestimated and a Bland-Altman plot of 

these predictions is shown in this chapter’s supplementary material 

(supplementary Figure 3-1). More advanced image analysis techniques were 

necessitated, and deep learning was chosen because of its ability to interpret 

multiple image types simultaneously, a feature found to be important in 

Chapter 2 wherein the relationship between clot R2
* and QSM was used to 

derive RBC predictions. 

 

3.2 Materials and methods 

3.2.1 Thrombus collection and storage  

Institutional research ethics board approval was obtained for this study. AIS 

patients who were treated with EVT at the local stroke centre were 

consecutively enrolled between the periods of February 2016 to November 

2017. Retrieved thrombi were stored and transferred to an attached 

institution for ex vivo MR imaging and histological analysis. Patients were 

excluded if insufficient thrombus material was retrieved for study (>2 mm in 

all dimensions) or if younger than 18 years old. Informed consent was 

obtained following the EVT procedure and samples were discarded if consent 

was refused. 
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A total of 109 thrombi were collected from 65 AIS patients. Thrombi were 

stored inside a 150 mL plastic jar containing a non-adherent pad (Telfa; 

Covidien, Mansfield, MA) wetted with heparinized saline to retain moisture. 

Those retrieved during the daytime were kept at room temperature and 

scanned within 6 hours of retrieval, otherwise thrombi were kept inside a 

refrigerator overnight until the following workday. It was observed that 

thrombi which had been placed in a fridge and stored overnight had 

significantly lower R2
* and QSM values than those kept at room temperature 

(supplementary Figure 3-2). Due to this effect, only those stored at room 

temperature were histologically analyzed and included in the study; final 

sample size was 48 thrombi. Clinical details associated with each group of 

stored thrombi are listed in Table 3-1. 

 

 

Table 3-1: Clinical details of the patient cohort for each thrombus storage 

group 

Storage type Room temperature (n = 31) Refrigerator (n = 32)  

Age (mean ± SD) 67 ± 17 70 ± 12* 

Sex, female 14 (45%) 13 (43%)* 

Number of thrombi 48 61 

Etiology   

   Large artery atherosclerosis 6 (20%) 3 (9%) 

   Cardioembolism 21 (68%) 22 (69%) 

   Dissection 2 (6%) 1 (3%) 

   Undetermined 2 (6%) 6 (19%) 

Occlusion site   

   MCA 25 (81%) 27 (85%) 

   ICA 1 (3%) 3 (9%) 

   Vertebrobasilar 5 (16%) 2 (6%) 

EVT technique   

   Stent 26 (84%) 29 (91%) 

   Aspiration 5 (16%) 3 (9%) 

IV rtPA 15 (48%) 11 (34%) 

*n=2 missing data 

MCA, middle cerebral artery; ICA, internal carotid artery; IV rtPA, 

intravenous recombinant tissue plasminogen activator. 
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3.2.2 Ex vivo thrombus imaging 

Following storage, the retrieved thrombi were scanned inside 1 cm diameter 

polystyrene vials containing porcine plasma and vertically inserted into a 15-

cm diameter agar-filled container.8 A small agar plug was added to the 

bottom of the vials so that the thrombi sat flat on their surface. When more 

than one specimen was obtained from a single participant, thrombus pieces 

were scanned in individual tubes and analyzed separately. Scanning was 

performed at 3.0 T using a whole-body MRI scanner (GE 750; GE Medical 

Systems, Milwaukee, WI) with a 32-channel receive head coil. Scans were 

acquired using a 3D multi-echo bipolar GRE sequence designed for clinical 

imaging in vivo;23 the sequence includes two 5-echo trains: the first train was 

optimized for chemical shift imaging (first echo time (TE) = 3.20 ms, echo 

spacing = 1.46 ms); the second train was optimized to highlight susceptibility-

related contrast (first TE = 16.75 ms, echo spacing = 7.15 ms). The remaining 

scan parameters were repetition time = 47.6 ms, bandwidth = 142.86 kHz, 

flip angle = 10°; field of view = 18 cm; matrix size = 192 × 192 × 36, for a final 

voxel dimension of 0.94 × 0.94 × 1.0 mm3. Total acquisition time was 5 

minutes 33 seconds. Balanced steady-state gradient echo (FIESTA-C) images 

with identical resolution and bandwidth were also acquired to facilitate 

thrombus segmentation (TE = 3 ms, TR: 6.1 ms, flip angle: 40°, phase cycles = 

4, scan time = 2 min 47 sec). All scans were acquired in the coronal plane, 

with the phantom laying flat along the MR table and vials aligned 

perpendicular to B0. Thrombi sat horizontal relative to the long axis of the 

vials, and were also aligned perpendicular to B0. 

3.2.3 Image processing 

Image reconstruction was performed in Matlab (Matlab R2019a; Mathworks, 

Natick, MA) using the Orchestra Software Development Kit (GE Healthcare; 

Milwaukee, WI). Complex channel combination was performed using singular 
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value decomposition from which GRE magnitude images were derived. R2
* 

and QSM maps were generated using the B0-NICE and MEDI QSM 

algorithms.24,25 Thrombi were segmented from the FIESTA-C images, which 

were inherently co-registered with the GRE sequence. Thrombus R2
*, QSM 

and GRE magnitude pixel values were each separately z-score normalized 

according to distributions derived from all segmented thrombi. 

3.2.4 Histological analysis 

Immediately following imaging, thrombi were formalin fixed, embedded in 

paraffin and arranged for sectioning along the MR slice-encoding direction. 

Thrombi were sectioned at 5 μm thickness and stained with hematoxylin & 

eosin. The first 14 were sectioned in 4 evenly spaced regions throughout the 

thrombi (3 – 4 mm thick on average); it was observed that RBC content 

varied minimally between thrombus slices, concurring with the findings of 

Staessens et al.,26 so remaining thrombi were sectioned only once through the 

middle of each sample (supplementary Figure 3-3). Stained slides were 

scanned at ×40 magnification. The color segmentation plugin (EPFL, 

Lausanne, Switzerland) in ImageJ (National Institutes of Health, Bethesda, 

MD) with post-processing correction for outlying pixels in Matlab was used to 

quantify thrombus RBC percentage by area. 

3.2.5 Deep learning network 

3.2.5.1 Network architecture 

Using the acquired thrombus MR images, a convolutional neural network 

(CNN) was trained in Matlab to predict histological RBC content. Two-

dimensional slices of the segmented, normalized R2
*, QSM and late echo GRE 

magnitude images (TE = 31 ms) were fed into the network as 3-channel RGB 

images; each image was 49 × 56 pixels in size. 188 segmented 3-channel slices 

were available from the 48 analyzed thrombi for training and testing. It was 
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assumed that all slices from a single thrombus had the same RBC content 

derived from histology. The network architecture – shown in the schematic 

illustration in Figure 3-1 – consisted of 2 repeated blocks of a convolutional 

layer (3×3, stride of 1, zero-padded), a rectified linear unit (ReLU) and an 

average-pooling layer (2×2, stride of 1), followed by a final convolutional layer 

and ReLU layer, a dropout layer and a fully connected layer with a single 

output connected to the regression layer. The number of feature channels for 

each of the convolutional layers was set to 16, 16, and 32, respectively. The 

Adam optimizer was used with an initial learning rate of 0.001; L2 

regularization was implemented with a λ of 0.01. Network parameter weights 

were trained by minimizing the half mean squared error using stochastic 

gradient decent. 

 

Figure 3-1: Schematic diagram of the CNN. Three-dimensional RGB images 

consisting of segmented, normalized thrombus R2
*, QSM and GRE magnitude 

images are fed into a network consisting of 3 convolutions layers with 

average pooling layers in between and a dropout layer at the end, before a 

final fully-connected layer. Padding is employed to retain image size in the 

convolutional layers. 

3.2.5.2 Data augmentation 

Given the relatively small thrombus MR slice dataset available for network 

evaluation, overfitting of the training data was a concern. In light of this, 
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image data augmentation was employed and implemented to various degrees 

in order to observe its effect on network performance. Augmentation 

consisted of three distinct components: input sampling equalization, image 

transformation, and dataset duplication. 

For input sampling equalization, oversampling of training data was 

performed to equalize the distribution of thrombus RBC content. Thrombus 

MR slices randomly selected to be in the training set were first binned based 

on RBC content in 5% intervals, and underrepresented bins had all slices 

repeatedly sampled until their count equaled the nearest integer multiple of 

the bins original slice count less than or equal to the most represented bin. 

This resampling strategy is similar to the class-aware sampling strategy that 

has previously been employed on categorical data.27 A representative training 

set RBC distribution before and after input sampling equalization is shown in 

Figure 3-2. 

 

Figure 3-2: Representative training set thrombus RBC content distribution 

(A) before and (B) after input sampling equalization. 

For image transformation, a group of geometric transformations were 

randomly applied to both the training and testing datasets. Random 

transformations were performed within predefined ranges: rotations between 

-90 to 90°, integer vertical and horizontal translations up to 5 pixels, 



 

 

84 

reflections across the X and Y axis, scaling between 0.7 to 1.3 and shearing 

between -30 to 50°. An example 3-channel thrombus input slice before and 

after transformation, with its base images, is shown in Figure 3-3. 

Finally, for dataset duplication the entire training set was copied at up to a 

×5 multiple prior to network training. When employed, it was implemented 

after input sampling equalization and before image transformation, so that 

all slices inputted into the network were unique. 

 

Figure 3-3: An example thrombus (A) R2*, (B) QSM, (C) GRE magnitude 

image slice, shown inside its scanning vial, along with the (D) FIESTA-C 

image used for segmentation. The resulting normalized, segmented thrombus 

RGB image slice used as CNN input is shown (E) before and (F) after random 

image transformation. R2
*, QSM and GRE magnitude pixel values represent 

the red, green and blue image color channels, respectively. 

3.2.5.3 Network evaluation 

The network was evaluated using 8-fold cross validation, where the mean 

accuracy (proportion of predictions within 10% of histology), absolute error 
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and root mean square error (RMSE) across all folds were used for network 

assessment. Care was taken to ensure no slices associated with the same 

thrombus were mixed between the training and testing subsets within each 

cross-validation fold. The network was separately trained and evaluated with 

8 different data augmentation strategies: no augmentation, input sampling 

equalization or image transformation only, input sampling equalization and 

image transformation, and input sampling equalization and image 

transformation with dataset duplication of ×2 – ×5 multiples. Across each of 

these network implementations hyperparameters sensitive to the size of the 

input dataset were iteratively tested: training epochs were varied between 4 

to 9 in steps of 1, batch size was varied between 6, 8 and 12, and dropout was 

varied between 0 to 0.4 in steps of 0.1. Results from the best network 

iteration associated with each data augmentation strategy were recorded. 

The training time for a single 8-fold cross validation experiment was as fast 

as 86 seconds for the unaugmented dataset to as long as 32 minutes for the 

×5 duplicated, equalized, transformed dataset on a dual-core CPU (Intel Core 

i5) with 16 Gb of RAM. 

 3.2.6 Statistical analysis 

In addition to accuracy, absolute error and RMSE, network performance was 

also evaluated as the correlation between histological and predicted RBC 

content, using Pearson’s r and slope. Statistical analysis was performed using 

GraphPad Prism (v8.2.1; GraphPad Software, La Jolla, CA). 

 

3.3 Results 

The mean thrombus RBC content determined from histological analysis was 

39 ± 13% (median: 38%; interquartile range: 30 – 49%; min: 12%, max: 61%). 

Results from the best-performing network iterations for predicting 
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histological RBC content at each level of data augmentation are shown in 

Table 3-2. 

In general, the networks correctly predicted thrombus RBC content, with an 

accuracy and error that improved as more extensive augmentation was 

performed, as expected. In particular, a large improvement in network 

accuracy was seen after both input sampling equalization and image 

transformation were applied, increasing it from 66% to approximately 72%. 

With both equalization and transformation applied, increased training set 

duplication did not further increase accuracy but minorly improved RMSE 

from 10.3% to approximately 9.8%. For reference, a naive prediction 

(prediction of the overall mean histological RBC percentage for all thrombi) 

would produce an accuracy, absolute error and RMSE of 54.2, 10.5 and 

12.4%, respectively. 

 

Regression curves plotting the median predicted thrombus RBC content 

against that determined through histology were used to determine 

correlation coefficients and linear regression slopes, and are listed for each 

best-performing network iteration in Table 3-2. Here, input equalization and 

image transformation applied individually decreased correlation and 

regression slopes compared to the unmodified dataset, but with both applied 

Table 3-2: Performance of the CNN for thrombus histological RBC content prediction 

(T/F: true/false; ×n: training set duplication by a factor of n) 

Input 

equalization 

Image 

transformation 

Training set 

duplication 

Accuracy 

(%) 

Absolute 

error (%) 

RMSE 

(%) 

r Slope 

F F ×1 66.1 8.26 9.83 0.51 0.25 

T F ×1 66.5 8.22 10.06 0.40 0.22 

F T ×1 67.5 8.06 10.03 0.27 0.08 

T T ×1 73.9 7.99 10.33 0.46 0.24 

T T ×2 72.1 8.07 9.85 0.53 0.29 

T T ×3 71.0 7.85 9.91 0.53 0.33 

T T ×4 72.2 8.01 9.83 0.55 0.32 

T T ×5 72.2 8.15 9.82 0.57 0.34 
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training set duplication improved correlation and slope up to 0.57 and 0.34, 

respectively, in the ×5 duplicated dataset. 

Regression plots from the network iterations with the best accuracy, absolute 

error and RMSE (bold in Table 3-2) are shown in Figures 3-4A – C. Despite 

the highest accuracy achieved being the network iteration trained on 

augmented data at only ×1 duplication, its distribution of RBC content 

predictions is noticeably flatter than those trained on larger datasets, 

implying the network learned to make predictions only within a narrow 

range of RBC content. This yields poor prediction accuracy in thrombi with 

very high or low RBC content, resulting in a high RMSE value of 10.33%, the 

largest in Table 3-2. RMSE weighs large individual residuals more heavily 

than absolute error; the discrepancy between this network iteration’s high 

accuracy and poor RMSE underscores the need to consider multiple 

descriptive statistics when evaluating network ability. 

In general, all networks predicted RBC content more accurately in thrombi 

whose histological values were closer to the mean than in those further 

outside it. When the thrombi included in the regression plots are limited to a 

narrower range of RBC content closer to the mean (20 – 45%), slopes of the 

prediction curves increase substantially, reaching up to 0.89 in the network 

trained on the ×5 duplicated dataset (Figures 3-4D – F). Network 

performance results corresponding to this trimmed subset of predictions are 

listed in Table 3-3. In this subset network performance is greatly improved 

compared to that achieved on the entire dataset, suggesting that this network 

may be capable of producing more accurate RBC content predictions when 

trained on larger data sets, but is hindered here by the limited data available 

for thrombi with less common RBC content. 
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Figure 3-4: Linear regression plots of the CNN predicted thrombus RBC 

content against the histological value for best-performing network iterations 

on the equalized, transformed dataset with (A) ×1, (B) ×3, and (C) ×5 

duplication, respectively. Plotted are the median predictions from all MR 

slices available for each thrombus. These same predictions replotted with 

only thrombi with histological RBC content between 20 – 45% are shown in 

(D), (E) and (F), respectively. 

 

Table 3-3: Performance of the CNN for thrombus histological RBC content prediction 

when limited to thrombi between 20 – 45% RBC content (T/F: true/false; ×n: training 

set duplication by a factor of n) 

Input 

equalization 

Image 

transformation 

Training set 

duplication 

Accuracy 

(%) 

Absolute  

error (%) 

RMSE 

(%) 

r Slope 

F F ×1 77.8 5.51 7.38 0.48 0.44 

T F ×1 77.8 6.82 7.87 0.52 0.59 

F T ×1 59.3 8.42 10.69 0.08 0.03 

T T ×1 92.6 4.07 5.64 0.73 0.76 

T T ×2 88.9 4.48 5.49 0.73 0.8 

T T ×3 88.9 4.31 5.87 0.71 0.84 

T T ×4 92.6 4.77 6.01 0.68 0.76 

T T ×5 96.3 4.65 5.58 0.76 0.89 
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3.4 Discussion 

In order to evaluate the ability of CNNs to predict AIS thrombus RBC 

content, we trained a 3-layer CNN on segmented thrombus MR images 

acquired ex vivo. Even with a modest dataset of 48 thrombi (188 slices) for 

training, this study demonstrates that a CNN is capable of predicting RBC 

content in AIS thrombi solely from MR images with an average accuracy 

above 70%. This was achieved by using data augmentation strategies 

designed to increase the effective size of the dataset and reduce overfitting. In 

spite of augmentation, predictions of RBC content in thrombi with 

histological values closer to the mean were more accurate than those outside 

of it, suggesting the CNN did not have sufficient training data available to 

learn to accurately predict across the full range of thrombus RBC content. 

Our CNN was trained on ex vivo images of retrieved AIS thrombi. We chose 

to perform this study ex vivo to allow easier patient recruitment while 

minimizing patient burden. Our ex vivo imaging protocol is similar to that of 

previous in vitro blood clot imaging experiments,8,9 and ex vivo thrombus MR 

microscopy studies.28 However, unlike previous ex vivo thrombus imaging 

studies, we noted a significant storage effect on the MR values of retrieved 

thrombi. Stroke thrombi retrieved at night were stored in a refrigerator until 

they could be scanned the next available workday, and these thrombi had 

significantly lower R2
* and QSM values than those scanned within the same 

day and kept at room temperature. Cold temperatures increase hemoglobin’s 

oxygen affinity, which may have led to thrombus reoxygenation resulting in 

reduced MR R2
* and QSM values.29 An explicit examination into the effect of 

various storage conditions on the MR imaging values of stroke thrombi is 

outside the scope of this report and warrants closer study. 

Due to the abovementioned storage effect limiting our dataset to just 188 

segmented thrombus slices available for training and testing, we investigated 
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the use of data augmentation techniques for improving CNN performance. 

Data augmentation is a widely used method for increasing the diversity and 

depth of input data to improve deep learning network performance, largely by 

reducing network overfitting of training data.30 Here, we oversampled our 

dataset such that thrombi of all RBC contents were equally represented in 

the training dataset. Input sampling equalization through oversampling is 

one of the most common methods for dealing with class imbalance in deep 

learning, and forces the network to learn features relevant to the entire 

dataset rather than just the most common entries.31 Additionally, we applied 

a multitude of random image transformations to our dataset, which has 

shown to outperform single transformations applied on their own.32,33 We 

used geometric transformations specifically to avoid the network focusing on 

irrelevant characteristics of the thrombi such as orientation and shape, the 

latter of which can be altered during thrombectomy. Finally, we increased the 

size of the training dataset directly by duplicating the entire set prior to 

image transformation, which has proven to improve the performance of CNNs 

trained on small datasets.33 We applied these data augmentation techniques 

sequentially, and it is notable that the largest improvements in network 

performance relative to the original, unaugmented dataset were observed 

only after input equalization and image transformation were applied 

together. This highlights the benefit of having both balanced and varied 

datasets when training a CNN for thrombus RBC content prediction. 

With the use of data augmentation techniques, the CNN was able to learn to 

predict RBC content in thrombi with approximately 72% accuracy and 8% 

mean absolute error. It is difficult to precisely define what level of accuracy 

would be required for a thrombus RBC content predictor to be clinically 

useful. Studies examining the relationship between histological thrombus 

RBC content and successful recanalization following EVT have found an 

average RBC content difference of approximately 17%,3,34 while in one study 
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the difference between rtPA-resistant thrombi and those untreated was 

approximately 10%.35 A mean absolute error less than the average difference 

between these clinical groups suggests that even a CNN trained on a small 

dataset has the potential to be clinically useful, particularly considering that 

an improvement in the network’s performance would reasonably be expected 

if trained directly for these tasks. 

Despite the respectable overall accuracy, weaknesses were apparent in that 

the predictive ability of the CNN was noticeably poorer for thrombi with RBC 

content outside the mean histological value. We showed regressive plots of 

the most accurate portion of the thrombus predictions to demonstrate the 

CNNs potential capability when given a richer dataset, but the cut-offs to 

where CNN accuracy decreased are instructive. RBC content prediction 

accuracy was poor in thrombi with a less than 20% or greater than 45% RBC 

percentage. Just 4 thrombi had RBC content less than 20%, so it is 

reasonable that the CNN would perform poorly in this subset due to a lack of 

representative data, even after input sampling equalization. In contrast 

however, 17 of the 48 thrombi had an RBC content greater than 45%. This 

bound could instead be reflective of the fact that blood clots with 40-60% RBC 

content have similar R2
* rates due to their similarly heterogeneous 

composition; this may have reduced their distinguishability within the CNN.8 

While it is expected that the CNN performance would improve with 

additional thrombi available for study, this suggests that predicting RBC 

content of thrombi in the range of 40-60% in particular may be more 

challenging. Studies have not demonstrated a benefit, however, for finely 

differentiating between RBC-rich thrombi; current research suggests that all 

thrombi in this RBC content range would likely yield successful 

recanalization when treated with EVT, for example.3,34 

This study has a number of limitations. We made the assumption that all 2D 

imaging slices from same thrombus had an RBC content equal to the single 
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value derived from histology. While there is evidence suggesting that 

composition varies little throughout thrombi,26 slight variations in RBC 

content across each MR slice would limit the CNN accuracy. We used an 8-

fold cross validation to evaluate our network instead of defining a distinct 

testing set. Doing so means the generalizability of the network maybe be 

overestimated, but cross-validation has been recommended for datasets that 

are too small to include a test set of meaningful size.36 Finally, we performed 

our imaging ex vivo after thrombi had been retrieved through EVT. This 

allowed us to perform our imaging study without impacting the course of 

patient treatment, but introduces potential confounding factors which could 

affect imaging results such as the effect of thrombus storage outside the body, 

potential alterations in the thrombus structure during the EVT procedure, 

and differences in temperature and field inhomogeneity relative to in vivo 

imaging. Chosen scan parameters and acquisition hardware were selected to 

be directly translatable to in vivo head imaging, and hence were not 

optimized for ex vivo samples. Performing the study ex vivo also meant that 

the samples were limited to stroke thrombi that were retrievable by EVT and 

that did not resolve following rtPA administration. While evaluation of this 

technique in vivo with a larger sample size is ultimately required to 

demonstrate utility in AIS patients, the results presented here suggest CNNs 

are capable of predicting stroke thrombus RBC content using MR images. 

 

3.5 Conclusion 

In this study, we demonstrated that a 3-layer CNN is capable of RBC content 

prediction in AIS thrombi using ex vivo R2
*, QSM and late-echo GRE 

magnitude MR images. We improved CNN performance by employing data 

augmentation involving equalized input sampling, geometric transformation 

and duplication of the dataset. Our trained network predicted thrombus RBC 
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content with an overall accuracy of approximately 72% and an absolute error 

of approximately 8%. The rapid imaging protocol and straightforward 

network design used in this study enables ready translation towards in vivo 

imaging for prediction of thrombus RBC content in AIS patients. 
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3.7 Supplementary material 

 

Supplementary Figure 3-1: Bland-Altman plot showing the difference 

between thrombus histological RBC content and that predicted through mean 

R2
* and QSM values using the methods described in Chapter 2. Predicted 

RBC content consistently underestimated the histological values, yielding a 

mean error of 20 ± 22% and a mean absolute error of 25 ± 16%. 

 

Supplementary Figure 3-2: Effect of storage method and time between 

thrombus retrieval and MR imaging on mean thrombus (A) R2
* and (B) QSM 

values. Thrombi were either stored at room temperature and scanned within 

the same workday, or stored in a fridge until the next available workday. 

Two-tailed T-tests between the two groups R2
* and QSM values yielded 

significant differences with p = 0.0005 and p = 0.02, respectively. 
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Supplementary Figure 3-3: Thrombus multi-section histological results. 

Mean RBC content is shown at 3 or 4 evenly spaced intervals through the 

retrieved stroke thrombi. Red dots indicate the average RBC content values 

at each slice for all thrombi. 
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CHAPTER 4 

Ex vivo thrombus MR imaging features and 

patient clinical data enable prediction of acute 

ischemic stroke etiology 

 

4.1 Introduction 

Determination of acute ischemic stroke etiology is a critical component of 

reducing stroke recurrence risk, but in current clinical practice etiology 

remains undetermined in approximately one third of cases.1 Histological 

analysis of retrieved thrombi has demonstrated that thrombus composition, 

particularly red blood cell (RBC) content, can be used to differentiate between 

etiologies, but histological analysis is impractical as a rapid diagnostic tool.2-4 

Medical imaging offers the potential to non-invasively infer information, 

including but not limited to thrombus composition, supporting the prompt 

determination of stroke etiology. 

Magnetic resonance (MR) imaging and computed tomography (CT) have each 

demonstrated sensitivity to thrombus RBC content, through the qualitative 

susceptibility vessel and hyperdense artery signs, respectively.5-7 However, a 

recent meta-analysis found no significant association between these signs 

and stroke etiology, and an analysis of the THRACE randomized controlled 

trial found the diagnostic accuracy of the susceptibility vessel sign for 

etiology determination to be just 49%.8,9 Quantitative MR and CT techniques, 

in particular those measuring R2
* and quantitative susceptibility mapping 

(QSM) or Hounsfield units, respectively, have demonstrated ability to 
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quantitatively assess the RBC content of prepared blood clots in vitro,10-13 but 

these values too have failed to produce significant associations with stroke 

etiology in vivo.14,15 Past imaging approaches for stroke thrombus 

characterization may be limited by their use of a single imaging value or 

metric to represent entire thrombi, which is discordant with histological 

studies demonstrating that the structure of stroke thrombi is complex and 

heterogeneous.16 

Radiomics is the conversion of medical images to mineable high-dimensional 

data, from which quantitative imaging features can be derived.17 Such 

imaging features may be used as input into machine learning algorithms, 

enabling analysis of information within contexts beyond that perceptible to 

the human eye. Imaging features related to object texture, in particular, have 

demonstrated aptitude for characterization of tissues with heterogeneous 

structure, such as tumours.18-21 In the field of stroke imaging, texture 

features have been used to predict post-stroke impairment and in lesion 

detection.22,23 They have also been applied towards the characterization of 

thrombi, showing sensitivity to RBC content in vitro on R2
* maps as well as 

for predicting response to intravenous recombinant tissue plasminogen 

activator (rtPA) and endovascular therapies (EVT) in stroke thrombi in vivo 

on non-contrast CT.24-26 However, texture features have not been previously 

applied in stroke thrombi towards the determination of etiology. 

In this study, we evaluate the ability of radiomics features applied to 

quantitative MR images of retrieved ischemic stroke thrombi, in combination 

with patient clinical data, for the prediction of stroke etiology using machine 

learning. Specifically, we extract image size, shape and texture features from 

ex vivo thrombus R2
*, QSM and fat fraction (FF) maps, and mine clinical 

characteristics of the stroke patients, to train random forest classifiers which 

discriminate between cardioembolic (CE) and large artery atherosclerotic 

(LAA) stroke.  
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In contrast to the deep learning methods described in Chapter 3, machine 

learning was used in this study because it more readily allows the derivation 

of models that incorporate thrombus MR imaging and patient clinical data 

together. 

 

4.2 Materials and methods 

4.2.1 Study design and inclusion criteria  

Institutional research ethics board approval was obtained for this study. 

Acute ischemic stroke patients treated with EVT at London Health Sciences 

Centre University Campus were consecutively enrolled between the periods 

of February 2016 to November 2017 and October 2019 to March 2020. Data 

from the earlier (training) cohort were used to select relevant imaging and 

clinical features and train the machine learning models, while data from the 

later (validation) cohort were used to evaluate their performance against an 

independent dataset. Patients or their substitute decision makers were made 

aware of the study at the time consent was given for EVT, and gave informed 

consent after the procedure was completed and a thrombus was retrieved. 

EVT was performed using a stentriever or Penumbra System® at the 

interventionalist’s discretion. Inclusion criteria for the study were age greater 

than 18 years old, CE or LAA stroke etiology, no recent prior stroke and 

sufficient thrombus material retrieved for study (>2 mm in all dimensions). 

Thrombi were saved upon retrieval for subsequent MR imaging. 

Patient clinical data was collected and used as additional input in the 

machine learning models. Clinical history parameters obtained for the study 

included: age, gender, prior stroke history, hypertension, diabetes, 

hyperlipidemia, coronary artery disease, cardiac valve disease, peripheral 

artery disease, smoking history, prior deep vein thrombosis, chronic kidney 
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disease, obesity, prior infections, active cancer, antiplatelet usage, 

anticoagulant usage, and stroke etiology as determined by the Trial of ORG 

10172 in Acute Stroke Treatment (TOAST) criteria.27 Procedural parameters 

included: rtPA administration, intracerebral hemorrhage, stroke recurrence, 

final TICI score, arrival NIHSS, occlusion side, occlusion location, number of 

EVT passes, and EVT duration. Blood work parameters included: 

triglycerides, cholesterol, high-density lipoprotein, low-density lipoprotein, 

glucose, leukocytes, and troponin. 

With the exception of stroke etiology, all clinical parameters included in this 

study are obtainable within a few days of acute stroke; this was to ensure 

that derived models are applicable within the acute to subacute stage of 

stroke treatment. A summary of basic clinical data for both the training and 

validation cohorts is given in Table 4-1. 

4.2.2 Thrombus storage and imaging 

Thrombi retrieved in the training cohort were stored inside a 150 mL plastic 

jar containing a gauze pad (TELFA™) wetted with heparinized saline to 

retain moisture. Those retrieved during the daytime were kept at room 

temperature and scanned within 6 hours of retrieval; otherwise thrombi were 

kept in a refrigerator until the following workday. All thrombi retrieved in 

the validation cohort were kept at room temperature and scanned within 6 

hours of retrieval. 
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Thrombi were scanned inside 1 cm diameter polystyrene vials containing 

porcine plasma, inserted vertically into an agar-filled container. A small agar 

plug was placed at the bottom of the vials so that the thrombi sat flat on their 

surface. When more than one thrombus specimen was obtained from a 

patient, each piece was scanned in a separate vial and analyzed individually. 

Scanning was performed at 3.0 T using a whole-body MRI scanner (GE 750, 

GE Medical Systems, Milwaukee, WI) with a 32-channel receive head coil. 

Scans were acquired using a 3D multi-echo bipolar GRE sequence designed 

for clinical imaging in vivo;28 the sequence includes two 5-echo trains: the 

Table 4-1: Summary of clinical details for each patient cohort 

Patient cohort Training (n = 49) Validation (n = 9) 

Age (mean ± SD) 72 ± 15 74 ± 17 

Sex, female 20 (41%) 4 (44%) 

Etiology 

   Large artery atherosclerosis 

   Cardioembolism 

Number of thrombi 

   Large artery atherosclerosis 

   Cardioembolism 

IV tPA 

 

8 (16%) 

41 (84%) 

76 

15 (20%) 

61 (80%) 

18 (37%) 

 

4 (44%) 

5 (56%) 

15 

7 (47%) 

8 (53%) 

4 (44%) 

Occlusion site 

   ICA 

   ICA + MCA M1 

   MCA M1 

   MCA M1 + M2 

   MCA M2 

   Vertebrobasilar 

EVT technique 

   Stent 

   Aspiration 

 

3 (7%) 

9 (18%) 

20 (41%) 

3 (6%) 

9 (18%) 

5 (10%) 

 

43 (88%) 

6 (12%) 

 

0 (0%) 

3 (33%) 

4 (44%) 

1 (11%) 

1 (11%) 

0 (0%) 

 

9 (100%) 

0 (0%) 

Prior stroke 10 (20%) 2 (22%) 

Hypertension 34 (69%) 7 (78%) 

Diabetes 6 (12%) 3 (33%) 

Obesity 

Smoking, past 5 years 

2 (4%) 

5 (10%) 

0 (0%) 

4 (44%) 

Hyperlipidemia 23 (47%) 7 (78%) 

Coronary artery disease 10 (20%) 4 (44%) 

Cardiac valve disease 4 (8%) 1 (11%) 

Chronic kidney disease 0 (0%) 2 (2%) 

Abbreviations: IV tPA, intravenous recombinant tissue plasminogen 

activator; MCA, middle cerebral artery; ICA, internal carotid artery. 
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first train was optimized for chemical shift imaging (first echo time (TE) = 

3.20 ms, echo spacing = 1.46 ms); the second train was optimized to highlight 

susceptibility-related contrast (first TE = 16.75 ms, echo spacing = 7.15 ms). 

The remaining scan parameters were repetition time = 47.6 ms, bandwidth = 

142.86 kHz, flip angle = 10°; field of view = 18 cm; matrix size = 192 × 192 × 

36, for a final voxel size of 0.94 × 0.94 × 1.0 mm3. Total acquisition time was 5 

minutes 33 seconds. A FIESTA-C sequence with identical resolution and 

bandwidth was also acquired to facilitate thrombus segmentation (TE = 3 ms, 

TR: 6.1 ms, flip angle: 40°, phase cycles = 4, scan time = 2 min 47 sec). All 

scans were acquired in the coronal plane, with the phantom lying flat along 

the MR table and vials aligned perpendicular to B0. Thrombi sat horizontal 

relative to the long axis of the vials, and were also aligned perpendicular to 

B0. 

4.2.3 Image post processing 

Raw image data were reconstructed in Matlab (Matlab 8 R2015a; 

Mathworks, Natick, MA) using the Orchestra Software Development Kit (GE 

Healthcare; Milwaukee, WI). Complex channel combination was performed 

using singular value decomposition and phase errors resulting from the 

bipolar acquisition were removed.29 R2
*, FF and QSM maps were generated 

using the B0-NICE and MEDI QSM algorithms.29,30 Thrombi were segmented 

semi-automatically on the FIESTA-C images, which are naturally co-

registered with the quantitative maps. 

4.2.4 Radiomics analysis and machine learning models 

A radiomics and machine learning Matlab method previously developed by 

Vallières et al. was adapted for use in this study.20 The code includes a 

feature selection portion and a random forest model derivation portion using 

the selected features. Three random forest classifier models were prepared; 
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one each using thrombus imaging and patient clinical data only, and one 

derived from the combined set of imaging and clinical features. For the 

imaging model, multivariate logistic regression (MLR) as provided in the code 

was used to select features, while for the clinical model statistical analysis 

was performed to select features individually based on statistical significance. 

4.2.4.1 Feature extraction and selection 

To select imaging features, a total of 4 shape (size, volume, solidity, 

eccentricity) and 43 texture features (supplementary Table 4-1) were 

extracted from each segmented thrombus’ R2
*, QSM and FF maps. Feature 

extraction was performed under the possible 8 combinations of the following 

extraction parameters: 8, 16, 32 or 64 total gray levels, with uniform or 

equal-probability quantization. Images of a representative thrombus before 

and after quantization are shown in Figure 4-1. Imaging features were 

selected using imbalanced-adjusted MLR, where models were derived of 1 to 

10 variables (model order) by maximizing the receiver-operating 

characteristic (ROC) curve using the 0.632+ bootstrap method (AUC632+)31 to 

differentiate between CE and LAA stroke.20 Features included in the model 

with highest AUC632+
 of the lowest model order were selected to build the 

imaging random forest model. 

For clinical variables, individual clinical parameters found to differ between 

CE and LAA patients within the training cohort to a level of P < .1 were 

selected as the features for the clinical random forest model. The combined 

random forest model utilized the selected features from both models. 
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Figure 4-1: Representative segmented thrombus R2
* (top), QSM (middle) and 

FF (bottom) images shown in (A) original form, (B) after equal-probability 

quantization with 64 bins and (C) after uniform quantization with 8 bins. 

These extraction parameters control the pixel distribution and coarseness 

under which features are extracted, respectively. 

4.2.4.2 Random forest analysis 

The random forest classifier was used as it is capable of incorporating 

numerical and categorical data and has been shown to create highly 

generalizable models.32 Random forest classifiers were built using 500 trees 

trained on bootstrapped samples from the training cohort, and were tested on 

the “out-of-bag” measurements from the training cohort and using all trees on 

the validation cohort. Overall AUC, sensitivity, specificity and accuracy of the 

predicted, compared to clinically determined, stroke etiology were recorded 

for each classifier model. 
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 4.2.5 Statistical analysis 

Clinical data are displayed as mean ± standard deviation and count 

(percentage) for numerical and categorical variables, respectively. One-way 

analysis of variance and chi-squared tests were used to assess differences in 

numerical and categorical clinical variables, respectively, between CE and 

LAA strokes in the training cohort. Statistical analysis was performed using 

SPSS (version 23; IBM, Armonk, NY); P < .05 was considered statistically 

significant. 

 

4.3 Results 

In this study 128 thrombi were collected from 78 patients, however after 

excluding patients based on refused consent (n=1), recent prior stroke (n=3) 

or non-CE or LAA etiology (embolic stroke of undetermined source: n=12; 

dissection:  n=2; unknown: n=2), a total of 91 thrombi from 58 patients were 

available. 76 thrombi from 49 patients were included in the training cohort 

while 15 thrombi from 9 patients were included in the validation cohort. 

Differences in clinical characteristics between CE and LAA stroke within the 

training cohort are shown in Table 4-2. Patients with CE stroke were 

significantly older, and had significantly lower incidence of smoking, 

triglyceride levels and trended towards lower incidence of hemorrhagic 

transformation; these four variables were selected as features for the clinical 

random forest model. 

Multivariate logistic regression performed on the image features extracted 

from thrombus R2
*, QSM and FF maps in the training cohort yielded an 

optimal model order of 4. The identified features selected for the imaging 

random forest model and are listed in Table 4-3. Notably, only features from 

thrombus QSM and FF maps were selected. A CE stroke etiology was 
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associated with higher skewness in overall QSM values, lower variance in 

overall FF values, higher variance in QSM gray-level run lengths, and more 

outliers in QSM size zone matrices. Hence, CE stroke was associated with 

lower variability in thrombus FF values and higher variability and 

inconsistency in QSM values. 

The performance of the imaging, clinical and combined models for stroke 

etiology prediction in both cohorts is listed in Table 4-4; respective ROC 

curves are shown in Figure 4-2. AUC values of each model were always 

higher when forming predictions on the training cohort than the validation 

cohort, as expected. Within each cohort, the combined model produced the 

highest AUC value, followed by the clinical and then image-texture model. 

The combined classifier achieved an AUC and accuracy of 0.893 and 93%, 

respectively, for predicting stroke etiology in the validation cohort. 
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Table 4-2: Clinical details of CE and LAA strokes within the training cohort 

Characteristic CE (n = 41) LAA (n = 8) P value 
Age (years) 74 ± 15 61 ± 10 0.028 

Sex, female 18 (44%) 

8 (20%) 

2 (5%) 

30 (73%) 

5 (12%) 

19 (46%) 

10 (24%) 

4 (10%) 

3 (7%) 

2 (5%) 

0 (0%) 

0 (0%) 

1 (2%) 

2 (5%) 

0 (0%) 

15 (37%) 

10 (24%) 

14 (34%) 

12 (29%) 

2 (25%) 

 

1 (2%) 

2 (5%) 

2 (5%) 

10 (24%) 

26 (63%) 

18 (15.5 - 22.5) 

 

21 (51%) 

16 (39%) 

4 (10%) 

 

3 (7%) 

7 (17%) 

18 (44%) 

3 (7%) 

6 (15%) 

4 (10%) 

1.7 ± 1.4 

54 ± 35 

1.3 ± 0.7 

3.6 ± 0.8 

1.0 ± 0.4 

1.9 ± 0.7 

5.7 ± 0.7 

8.8 ± 2.6 

47 ± 71 

2 (25%) 

2 (25%) 

1 (13%) 

4 (50%) 

1 (13%) 

4 (50%) 

0 (0%) 

0 (0%) 

0 (0%) 

3 (38%) 

0 (0%) 

0 (0%) 

1 (13%) 

0 (0%) 

0 (0%) 

4 (50%) 

0 (0%) 

4 (50%) 

5 (63%) 

5 (12%) 

 

0 (0%) 

0 (0%) 

0 (0%) 

3 (38%) 

5 (63%) 

9 (5.25 - 9) 

 

3 (38%) 

4 (50%) 

1 (13%) 

 

0 (0%) 

2 (25%) 

2 (25%) 

0 (0%) 

3 (38%) 

1 (13%) 

1.7 ± 1.9 

95 ± 41 

3.6 ± 3.2 

5.1 ± 1.3 

0.9 ± 0.3 

2.8 ± 1.0 

7.2 ± 2.2 

9.2 ± 2.1 

14 ± 12 

0.320 

Prior stroke 0.725 

Prior TIA 0.411 

Hypertension 0.193 

Diabetes 0.981 

Hyperlipidemia 0.850 

Coronary artery disease 0.117 

Cardiac valve disease 0.357 

Peripheral artery disease 0.430 

Smoking, past 5 years 

Past DVT 

Chronic kidney disease 

Obesity 

Infection, past 30 days 

Active cancer 

Antiplatelets 

Anticoagulants 

IV rtPA 

Hemorrhagic transformation 

Stroke recurrence 

TICI score: 

   0 

   1 

   2A 

   2B 

   3 

Arrival NIHSS (median (IQR)) 

Occlusion side: 

   Right 

   Left 

   Unknown 

Occlusion site: 

   ICA 

   ICA + MCA M1 

   MCA M1 

   MCA M1 + M2 

   MCA M2 

   Vertebrobasilar 

EVT passes 

EVT duration (minutes) 

Triglycerides (mM/L) 

Cholesterol (mM/L) 

HDL (mM/L) 

LDL (mM/L) 

Glucose (hemoglobin A1c; %) 

Leukocytes (109/L) 

Troponin (ng/L) 

0.005 

- 

- 

0.118 

0.524 

- 

0.476 

0.117 

0.395 

0.071 

0.344 

0.842 

 

 

 

 

 

0.361 

0.680 

 

 

 

0.558 

 

 

 

 

 

 

0.813 

0.412 

0.008 

0.325 

0.259 

0.531 

0.276 

0.494 

0.255 

Abbreviations: TIA, transient ischemic attack; DVT, deep vein thrombosis; TICI, 

thrombolysis in cerebral infarction; NIHSS, National Institutes of Health stroke scale; 

MCA, middle cerebral artery; ICA, internal carotid artery; IV rtPA, intravenous 

recombinant tissue plasminogen activator; EVT, endovascular therapy; HDL, high-

density lipoprotein; LDL, low-density lipoprotein. 
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Figure 4-2: ROC curves for the determination of CE vs. LAA stroke etiology 

within the training (A) and validation (B) cohorts using the imaging, clinical 

and combined random forest classifier models. 

 

 

Table 4-3: Thrombus MR imaging texture features selected by MLR for 

differentiating CE and LAA stroke within the training cohort 

Image type 

Quantization 

algorithm 

Number of 

gray levels 

Texture type Texture name 

QSM Equal-probability 16 Global Skewness 

FF 

QSM 

Equal-probability 

Uniform 

16 

32 

Global 

GLRLM 

Variance 

RLV 

QSM Equal-probability 8 GLSZM GLN 

Abbreviations: MLR, multi-variate logistic regression; QSM, quantitative 

susceptibility mapping; FF, fat fraction; GLRLM, gray-level run-length 

matrix; RLV, run-length variance; GLSZM, gray-level size zone matrix; GLN, 

gray-level non-uniformity.  

Table 4-4: Performance of random forest classifiers for stroke etiology prediction 

Patient cohort Features used AUC Sensitivity (%) Specificity (%) Accuracy (%) 

Training Imaging 0.79 66.7 78.7 76.3 

 Clinical 0.85 62.5 90.2 83.7 

 Imaging + clinical 0.96 87 95.1 93.4 

Validation Imaging 

Clinical 

0.68 

0.80 

57.1 

100 

75 

80 

66.7 

88.9 

 Imaging + clinical 0.89 100 87.5 93.3 
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4.4 Discussion 

This study demonstrates the capability of both thrombus MR imaging and 

patient clinical data features for the prediction of ischemic stroke etiology. 

Our imaging texture features were derived from thrombi scanned ex vivo, 

obviating the need to perform in vivo imaging on vulnerable stroke patients, 

while all clinical data included in this study can be accessed through a review 

of patient clinical history, outcome of stroke therapy, and a blood test. 

Features from each of these data types alone were sufficient to predict stroke 

etiology with reasonable accuracy, but when combined yielded a model which 

predicted stroke etiology in an independent test set with a high degree of 

accuracy. 

Thrombus imaging texture models have previously been developed to form 

predictions related to stroke. Thrombus CT texture features were used in two 

studies to predict early recanalization following rtPA and EVT therapies, 

respectively;25,26 neither study involved patient clinical data in their analysis. 

Recently, a study by Chung et al. used features extracted from transverse 

line profiles of thrombus GRE blooming artifact to predict stroke etiology.33 

This study tested multiple machine learning classifiers and also did not 

incorporate clinical data. Their highest AUC of 0.93 was reached using 

random forest and logistic regression models, but achieved accuracies of only 

75 and 77%, respectively. Thrombus GRE blooming artifact appearance has 

been shown to vary between scanners,34 suggesting that measurements 

obtained from these qualitative images may not be widely generalizable. In 

contrast, the current study uses features extracted from quantitative MR 

maps, and incorporates information beyond susceptibility-based information 

(fat fraction). Multiple studies have examined associations between patient 

clinical variables and stroke etiology, and older age and lower incidence of 

smoking have consistently been associated with cardioembolism.35-38 These 
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studies did not assess triglyceride levels or intracerebral hemorrhage 

occurrence, but separate studies examining hemorrhagic transformation 

incidence following ischemic stroke treatment have identified lipid levels and 

etiology as associated risk factors.39,40 

In this study we created random classifier models using four imaging, four 

clinical and eight combined total features. Both the imaging and clinical-only 

models were able to form accurate predictions of stroke etiology, however the 

imaging-only model was outperformed by the clinical-only model in both the 

training and validation cohorts. This suggests that the thrombus texture 

features may not be as predictive or generalizable as clinical features when 

considered independently. Conflicting results have been reported on the 

associations between thrombus composition and etiology,3,5,6 which would 

affect imaging features, while CT texture features have been questioned for 

their inter-scanner variability and sensitivity to acquisition parameters.41 

Nonetheless, the combined model outperformed both isolated models in the 

training and validation cohorts, suggesting that the imaging and clinical 

features provided independent and complimentary information for forming 

etiology predictions. 

Of the thrombus features selected in the imaging model, only features from 

QSM and FF maps were selected, while R2
* went unused. Similar to QSM, R2

* 

is sensitive to hemoglobin-induced susceptibility effects but holds a quadratic 

relationship with RBC content, unlike QSM which is linear.10,42 It is possible 

that information derived from thrombus R2
* pixel distributions is less 

informative of RBC content than those from QSM, due to similarity in R2
* 

values of thrombi in the region between 40-60% RBC content.10 The higher 

variance and presence of outliers within QSM values of CE thrombi suggests 

that their RBCs may be more deoxygenated than those of LAA thrombi. In 

contrast to R2
* and QSM, FF provides a unique assessment of thrombus lipid 

content; the finding of higher variance in FF values of LAA thrombi and 
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higher triglyceride levels in LAA patients suggests that LAA thrombi may be 

composed of higher, more variable amounts of lipid due to high triglyceride 

levels in the blood. The few studies that have identified lipid content within 

histologically analyzed stroke thrombi have done so exclusively with LAA 

thrombi.43-45 

For this study, we used ex vivo imaging features derived from retrieved 

stroke thrombi, and clinical features available as part of standard stroke 

patient assessment. We have therefore demonstrated our models’ utility only 

for ex vivo thrombus examination, but with this method it is easier to recruit 

patients and avoids the challenges associated with scanning acute stroke 

patients prior to treatment. All clinical features utilized in this paper are 

readily accessible through a review of patients’ clinical history, outcome of 

stroke treatment, and the results of blood tests. Taken together, all 

components of the developed models are relatively easily accessible to 

clinicians, do not require in vivo stroke patient scans, and provide accurate 

predictions of etiology which may enable differentiation of CE and LAA 

stroke much sooner than with long term electrocardiographic monitoring. 

This study has a number of limitations. Our sample size was small, 

particularly for the validation cohort. Recruitment for this cohort was cut 

short due to the COVID-19 pandemic, and sample size was further limited by 

including only patients with known CE or LAA etiologies. Thrombus imaging 

was conducted ex vivo, meaning we cannot assess the capability of this 

method for in vivo scans. Chosen scan parameters and acquisition hardware 

were selected to be directly translatable to in vivo head imaging, and hence 

were not optimized for ex vivo samples. It is possible the retrieved stroke 

thrombi could have different imaging feature values if scanned in vivo, due to 

the forces exerted on the thrombus by vessel occlusion which may influence 

texture features, physical alterations to the thrombus during and following 

the EVT procedure, and differences in temperature and field inhomogeneity 
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from performing scans ex vivo. The fact that only successfully retrieved 

thrombi were included in the study introduces bias through excluding 

thrombi which could not be retrieved by EVT or which resolved following 

rtPA administration. Multiple thrombi retrieved from patients were analyzed 

separately and treated as independent, though correlation between their 

imaging values is likely. Assessment of thrombus histological RBC content 

may have improved model performance but was not included. A prospectively 

recruited cohort of patients is required to evaluate the clinical utility of the 

stroke etiology predictions made by the machine learning models. 

 

4.5 Conclusion 

In this study, we demonstrated that features derived from ex vivo thrombus 

MR imaging and patient clinical data can be used independently or in 

combination to differentiate between CE and LAA ischemic stroke. Our 

combined machine learning model generated highly accurate predictions of 

stroke etiology, and outperformed the models derived from imaging and 

clinical data alone. The rapid ex vivo imaging protocol and readily available 

clinical features used in this study makes this method widely applicable for 

aiding acute ischemic stroke etiology diagnosis. 
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4.7 Supplementary material 

 

Supplementary Table 4-1: Texture features used in this study; more detail 

available in Vallières et al. 2015 

Texture type Texture name 

Global 

 

Variance 

Skewness 

Kurtosis 

Gray-level co-occurrence 

matrix (GLCM) 

Energy 

Contrast 

Correlation 

Homogeneity 

Variance 

Sum Average 

Entropy 

Autocorrelation 

Gray-level run-length matrix 

(GLRLM) 

Short Run Emphasis (SRE) 
Long Run Emphasis (LRE) 
Gray-Level Non-uniformity (GLN) 
Run-Length Non-uniformity (RLN) 
Run Percentage (RP) 
Low Gray-Level Run Emphasis (LGRE) 
High Gray-Level Run Emphasis (HGRE) 
Short Run Low Gray-Level Emphasis (SRLGE) 
Short Run High Gray-Level Emphasis (SRHGE) 
Long Run Low Gray-Level Emphasis (LRLGE) 
Long Run High Gray-Level Emphasis (LRHGE) 
Gray-Level Variance (GLV) 
Run-Length Variance (RLV) 

Gray-level size zone matrix 

(GLSZM) 

Small Zone Emphasis (SZE) 

Large Zone Emphasis (LZE) 

Gray-Level Non-uniformity (GLN) 

Zone-Size Non-uniformity (ZSN) 

Zone Percentage (ZP) 

Low Gray-Level Zone Emphasis (LGZE) 

High Gray-Level Zone Emphasis (HGZE) 

Small Zone Low Gray-Level Emphasis (SZLGE) 

Small Zone High Gray-Level Emphasis 

(SZHGE) 

Large Zone Low Gray-Level Emphasis (LZLGE) 

Large Zone High Gray-Level Emphasis 

(LZHGE) 

Gray-Level Variance (GLV) 

Zone-Size Variance (ZSV) 

Neighbourhood gray-tone 

difference matrix (NGTDM) 

Coarseness 

Contrast 

Busyness 

Complexity 

Strength 
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CHAPTER 5 

Conclusions and Future Directions 

 

5.1 Conclusions 

Stroke thrombus MR imaging has been previously examined as means to 

provide additional information to improve the treatment of acute ischemic 

stroke. However, past methods tested in vivo have utilized unreliable 

qualitative metrics, while more advanced, quantitative techniques have thus 

far been limited almost exclusively to in vitro or preclinical experiments. The 

work of this thesis serves to expand the capability of MR in stroke thrombus 

imaging, specifically by exploiting quantitative information and advanced 

artificial intelligence techniques applied to thrombus ex vivo images for the 

prediction of ischemic stroke etiology. 

In Chapter 2, I demonstrate that blood clot R2
* and QSM values are each 

sensitive to RBC content and oxygenation. This accords with the findings of 

previous in vitro clot studies, however this work was the first to examine 

these MR parameters on clots of simultaneously varied composition and 

oxygenation. I show that clot R2
* and QSM values vary drastically as their 

oxygenation evolves throughout ageing, and importantly that these changes 

dominate the inherent differences found between clots of different RBC 

content. Because of this, the examination of either R2
* or QSM alone will not 

be sufficient to determine RBC content in acute stroke thrombi, where 

oxygenation is never known. I devised a metric using the ratio of clot R2
* to 

QSM values and showed that it allowed prediction of RBC content 

independent of oxygenation, suggesting that a multiparametric approach 
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may enable accurate RBC content determination in stroke thrombi. 

Additionally, I demonstrated that FF and QSM mapping are capable of 

detecting lipidic and calcified components within blood clots, respectively, 

regardless of composition or oxygenation; the identification of these 

uncommon components within stroke thrombi would be directly informative 

of etiology. Overall, this work established the potential of our 

multiparametric, quantitative MR imaging method for the characterization of 

ischemic stroke thrombi. 

In Chapter 3, I applied a deep learning CNN to ex vivo stroke thrombus R2
*, 

QSM and GRE images to predict histological RBC content. To my knowledge, 

this is the first study to use deep learning to analyze MR images of stroke 

thrombi. I demonstrate that CNNs are capable of leveraging the information 

available within our multiparametric MR dataset to form accurate 

predictions of thrombus RBC content, specifically with a mean absolute error 

of approximately 8%. The small number of thrombi available for this study 

and the improvements in network accuracy observed when applying data 

augmentation suggest that greater network performance is achievable if 

trained on a larger dataset. 

Finally, in Chapter 4, I present a machine learning approach employing 

radiomics texture features extracted from thrombus R2
*, QSM and FF maps 

along with clinical patient data to predict stroke etiology. Similar methods 

have been employed on thrombus CT images to predict response to rtPA and 

endovascular therapies,1,2 however to my knowledge this was the first 

application of machine learning on thrombus texture features for stroke 

etiology prediction. The models achieved accurate etiology prediction with 

AUC and accuracy values of 0.68 and 67%, respectively, using thrombus 

texture information alone, 0.8 and 89% using clinical information alone, and 

0.89 and 93% when using both sets of features. Relative to previous work 

utilizing qualitative imaging signs for etiology prediction which have 
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achieved accuracies of 49%,3 and clinical models which have achieved AUC 

values of 0.85,4 the combined model outperformed past attempts and has 

yielded a novel, promising method to improve clinical etiology determination 

in acute ischemic stroke. 

 

5.2 Limitations 

5.2.1 Analysis of blood clot RBC, lipid and calcium content  

The limitations of the study presented in Chapter 2 stem largely from its in 

vitro design; each component included in clot construction was mimicking a 

pathological human process. In particular, clots were prepared from porcine 

blood and thus may possess innately different relaxation and susceptibility 

values than that of human thrombi. Additionally, the mechanisms underlying 

human thrombus formation are various and complex, and yield thrombi of 

heterogeneous structure.5,6 The clots prepared for this study were 

comparatively simplistically derived, large and homogeneous in structure.  

Another key facet of this study was allowing the initially fully oxygenated 

arterial clots’ oxygenation to change naturally through in vitro ageing, which 

was meant to traverse the breadth of possible oxygenation values observable 

in human thrombi. While measurement of stroke thrombus oxygenation in 

vivo has not been previously investigated, it is likely to be affected by the 

environment in which thrombosis occurs, the age of the thrombus prior to 

embolization, and the duration and severity of the stroke at the time of 

imaging. It is unlikely that all plausible stroke thrombus oxygenation states 

were represented through our static in vitro clot ageing procedure. 

Finally, I used lab materials to represent the lipid and calcified components 

that can found within stroke thrombi. Despite similar MR properties, these 
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materials do not exactly mimic the components found in stroke thrombi, nor 

is their inclusion as a single large piece of material representative of the all 

possible component distributions, which may also be diffuse or punctate. 

5.2.2 Prediction of stroke thrombus RBC content 

The principle limitation of the 3rd Chapter study is that the thrombi were 

scanned ex vivo, following endovascular retrieval, rather than in stroke 

patients in vivo. While our MR sequence was designed for in vivo imaging 

and may be translated without alteration of any sequence parameters, 

differences in field inhomogeneity, shimming and temperature could all affect 

observed thrombus MR parameters. Scanning in vivo presents additional 

challenges to scan acquisition including flow artifact and patient movement. 

Our study is biased by the ability to only include thrombi retrievable by 

endovascular therapy, and which did not resolve following rtPA 

administration if given. As part of the retrieval thrombus breakage or 

alterations to its size and shape may have occurred which could influence 

observed MR parameters. Additionally, alterations to thrombus oxygenation 

or structure can occur during storage, the time between thrombus retrieval 

and ex vivo scanning. Thrombus segmentation was also not fully automatic 

and additional bias could have been introduced in this step. 

The study was further limited by its small sample size. The inclusion of just 

under 50 thrombi meant that I did not have enough samples to apportion a 

meaningful test set, and instead used cross-validation to evaluate the 

network; this may result in overestimation of the generalizability of the 

model.7 Small sample size is a common limitation for deep learning studies in 

general, which are notorious for using massive datasets to derive 

generalizable models; the improvements observed when using data 
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augmentation to increase effective dataset size suggest that a larger sample 

cohort would be highly beneficial to the performance of the network. 

Our study relied on histological analysis to derive ground-truth values of 

thrombus RBC content. These were derived from a single histology slice and I 

made the assumption that the measured RBC content was representative of 

each thrombus overall, and that the RBC content within every MR slice of 

each thrombus was identical to the histological value. 

5.2.3 Prediction of stroke etiology 

With the exception of an independent test dataset and the use of histology, all 

limitations of the study detailed in Chapter 3 also apply to the study 

described in Chapter 4. This was also an ex vivo imaging study, but here 

radiomics texture features and clinical data were used to form predictions of 

stroke etiology using machine learning. Radiomics texture features can be 

influenced by a number of factors including acquisition parameters and the 

scanner used;8 features extracted from ex vivo thrombus images may vary 

from those acquired in vivo. As with any machine learning study, model 

performance is influenced by the particular texture and clinical features 

chosen a priori for study. Sample size is also a limitation (n = 91 thrombi), 

though more samples were able to be included in this study than that of 

Chapter 3 because histological analysis was not required. 

 

5.3 Future directions 

This thesis presents a quantitative, multiparametric MR technique for 

thrombus analysis to aid in the treatment and management of acute ischemic 

stroke. It is motivated by in vitro work demonstrating capability of our 

sequence for thrombus analysis, and is followed by ex vivo work 
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demonstrating utility in human stroke thrombi. Besides translation of the 

technique to in vivo studies to directly assess clinical utility, there are a 

multitude of additional applications where our quantitative thrombus 

imaging technique may prove useful, as well as areas where the technique 

may be improved. These are detailed in the following sections ordered by the 

types of experiments to be performed. 

5.3.1 In vitro  

Histological studies have reported that CE thrombi have lower RBC content 

than LAA thrombi,9,10 yet MR imaging studies have consistently found a 

higher presence of susceptibility signs in CE compared to LAA stroke.3,11,12 

This suggests that, in spite of lower overall RBC content, RBCs in CE 

thrombi tend to be drastically more deoxygenated than those found in LAA 

thrombi. Measurement of RBC oxygenation state could therefore provide an 

additional means to predict stroke etiology which complements assessment of 

RBC proportion. 

Measurement of the T1 relaxation rate in RBCs can indicate methemoglobin 

content, one of the two forms of deoxygenated hemoglobin found within 

thrombi.13 Because R2
* and QSM are sensitive to deoxygenated hemoglobin 

but insensitive to form (deoxy- or methemoglobin), the addition of the T1 

parameter to the multiparametric analysis may allow explicit determination 

of the proportions of oxy-, deoxy- and methemoglobin content in thrombi. An 

in vitro blood study which related the MR parameters of oxygenated 

(arterial), deoxygenated (venous) and methemoglobin-rich (aged) blood to an 

independent oximetry technique such as blood gas analysis could allow 

mapping of MR parameters to the amount of each hemoglobin form in blood 

clots. Applied to stroke thrombi, such analyses may be indicative of thrombus 

age and provide an additional means to infer etiology. The inclusion of T1 
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measurement would require an additional sequence to be added to the 

protocol however, necessitating increased scan time. 

5.3.2 Ex vivo 

A number of additional parameters related to stroke treatment remain to be 

studied for associations with thrombus MR imaging. Our technique is 

sensitive to thrombus RBC content, which has been directly related to 

response to endovascular therapy (procedure time, number of passes, 

recanalization score).9,14,15 Machine learning applied to CT thrombus texture 

features, as well as mean thrombus R2
* values have each been previously 

used to predict response to endovascular therapy,2,16 however 

multiparametric MRI and more advanced data analysis techniques such as 

deep learning have not been used for this application and may yield superior 

predictions. Though likely correlated to therapy response, associations 

between thrombus properties and long term stroke outcome is an 

understudied area of research where MR machine learning or deep learning 

analysis could also be informative. 

5.3.3 In vivo 

Despite demonstrating potential, our study of etiology prediction from 

thrombus MR features needs to be replicated prospectively in vivo to 

accurately assess its capability to aid in acute ischemic stroke care. MR 

images from a pilot study showing time of flight (TOF) angiography and R2
*, 

QSM and FF maps of an ischemic stroke patient with intracranial thrombus 

in vivo are shown in Figure 5-1. In vivo imaging studies additionally enable 

the study of thrombi which could not be retrieved for ex vivo study, allowing 

associations with complications including secondary embolism or 

intracerebral hemorrhage, or failed retrieval by endovascular therapy or 

successful thrombolysis to be drawn. The latter has been examined in 
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machine learning studies of thrombus CT texture features,1,2 but to my 

knowledge has never been investigated with quantitative MR imaging. 

 

Figure 5-1: Axial time of flight (TOF) angiography, R2
*, QSM and FF maps of 

an ischemic stroke patient with intracranial thrombus (arrow) of 

atherothrombotic origin. High R2
* and QSM indicate a deoxygenated, RBC-

rich thrombus, while a high FF suggests the presence of lipid (from plaque 

core). 

For any in vivo analysis technique to be useful in the acute stroke setting, 

rapid derivation of results is required. To this end, the use of semi-automated 

segmentation is the biggest limitation of the work described in this thesis; 

automated in vivo thrombus segmentation is a necessary step for the 

development of a clinically practical thrombus MR analysis tool. Secondary 

processing steps including the image post-processing required to derive our 

quantitative MR parameters could be hastened by translating our Matlab 

code to more efficient programming languages and using more powerful 

processors for computation. While both machine and deep learning models 

are computationally expensive to derive, once trained they are extremely 

efficient for analyzing new data. 

Even if a rapid, fully automated thrombus analysis tool existed, ischemic 

stroke is a challenging application as, in Canada, acute stroke patients are 
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not typically triaged using MRI. While the utilization of MR imaging in acute 

ischemic stroke care is expected to increase following recent changes to 

clinical guidelines,17 its use is still rare due to its relatively long scan times 

compared to CT and so additional clinical applications lacking rigid time 

restrictions should be considered. Thrombus age in deep vein thrombosis 

influences the success rate of fibrinolysis, but remains challenging to 

determine;18 the use of imaging to predict deep vein thrombosis thrombus age 

is an active area of study that has currently seen little employment of 

quantitative techniques.19 Atherosclerotic plaque imaging and cerebral 

venous thrombosis are other areas where knowledge of associated thrombus 

age and composition may be useful for determining the course of therapy. 
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Appendix A.1: Reprint permission- Chapter 1, Figure 1-2 
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Appendix A.2: Reprint permission- Chapter 1, Figure 1-3 
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Appendix A.3: Reprint permission- Chapter 1, Figure 1-6 
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Appendix A.4: Reprint permission- Chapter 1, Figure 1-12 
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Appendix A.5: Reprint permission- Chapter 2 

Simultaneous R2* and quantitative susceptibility mapping measurement 

enables differentiation of thrombus hematocrit and age: an in vitro study at 3 

T. 
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