
Western University Western University

Scholarship@Western Scholarship@Western

Electrical and Computer Engineering
Publications

Electrical and Computer Engineering
Department

7-2021

Dynamic Planning Networks Dynamic Planning Networks

Norman Tasfi
Western University, ntasfi@uwo.ca

Miriam A M Capretz
Western University, mcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Citation of this paper: Citation of this paper:
Tasfi, Norman and Capretz, Miriam A M, "Dynamic Planning Networks" (2021). Electrical and Computer
Engineering Publications. 191.
https://ir.lib.uwo.ca/electricalpub/191

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/electricalpub
https://ir.lib.uwo.ca/electricalpub
https://ir.lib.uwo.ca/electrical
https://ir.lib.uwo.ca/electrical
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/191?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages

Dynamic Planning Networks

Norman Tasfi & Miriam Capretz
Department of Electrical And Computer Engineering

Western University
London, Ontario, Canada
{ntasfi, mcapretz}@uwo.ca

Abstract—We introduce Dynamic Planning Networks (DPN), a
novel architecture for deep reinforcement learning, that combines
model-based and model-free aspects for online planning. Our
architecture learns to dynamically construct plans using a learned
state-transition model by selecting and traversing between sim-
ulated states and actions to maximize information before acting.
DPN learns to efficiently form plans by expanding a single action-
conditional state transition at a time instead of exhaustively
evaluating each action, reducing the number of state-transitions
used during planning. We observe emergent planning patterns in
our agent, including classical search methods such as breadth-
first and depth-first search. DPN shows improved performance
over existing baselines across multiple axes.

Index Terms—deep neural networks, reinforcement learning,
planning

I. INTRODUCTION

The central focus of reinforcement learning (RL) is the
selection of optimal actions to maximize the expected reward
in an environment where the agent must rapidly adapt to new
and varied scenarios. Various avenues of research have spent
considerable efforts improving core axes of RL algorithms
such as performance, stability, and sample efficiency. Signif-
icant progress on all fronts has been achieved by developing
agents using deep neural networks with model-free RL [1]–
[4]; showing model-free methods efficiently scale to high-
dimensional state space and complex domains with increased
compute. Unfortunately, model-free policies are often unable
to generalize to variances within an environment as the agent
learns a policy which directly maps environment states to
actions. A favorable approach to improving generalization is to
combine an agent with a learned environment model, enabling
it to reason about its environment. This approach, referred to as
model-based RL learns a model from past experience, where
the model usually captures state-transitions, p(st+1|st, at),
and might also learn reward predictions p(rt+1|st, at). Usage
of learned state-transition models is especially valuable for
planning, where the model predicts the outcome of proposed
actions, avoiding expensive trial-and-error in the actual en-
vironment – improving performance and generalization. This
contrasts with model-free methods which are explicitly trial-
and-error learners [5]. Historically, applications have primarily
focused on domains where a state-transition model can be
easily learned, such as low dimensional observation spaces
[6]–[8], or where a perfect model was provided [9], [10] –
limiting usage.

The planning style, how the state-transition model is ap-
plied, is an important factor to consider as it can affect the

efficiency of the simulated trajectory. Typically, the planning
style is explicitly set per architecture, with various styles used
such as: recursively expanding all available actions per state
for a fixed depth [4], [11], expanding all actions of the initial
state and simulating forward for a fixed number of steps with a
secondary policy [12], or performing many simulated rollouts
with each stopping when a terminal state is encountered [10].
Using a single type of planning style is limiting as various
situations in an environment might call for a dynamic planning
style. For example, when the agent needs to explore the
immediate surrounding area a breadth-first search is optimal
– instead of proceeding depth-first down one trajectory. If the
agent cannot adjust planning styles the resulting plan can be
sub-optimal.

In typical planning architectures, the planner is unable
efficiently reverse trajectories. The planner must undo previous
actions, wasting simulation steps, before continuing down
an alternative path. If the planner does not have enough
remaining simulation steps, to fully or even partially undo a
sub-optimal trajectory, the agent using this plan might perform
poor actions. Additionally, if certain actions cannot be reversed
the planner might try a nonsensical move, which violates
environment dynamics, and produce a plan with an unrealistic
prediction. Again, this would lead the agent using this plan to
incorrectly value a particular path forward. Ideally, in both of
the aforementioned cases, the planner would be able to either
“reset” the planning trajectory in one step or could “undo”
the last action – bypassing the limitations imposed by the
environment and state-transition model.

DPN aims to improve the planning efficiency via various ar-
chitectural choices. By providing DPN’s planner with a triplet
of options to “reset”, “undo”, or “continue” from tracked
states during planning it can avoid sub-optimal trajectories
and dead-ends. Additionally, as DPN’s planner is based on
a recurrent network and has no imposed planning structure
which, together with the tracked triplet of state, allows it to
dynamically adjust planning styles depending on the current
context. The contributions of this work are as follows:
• Dynamic Planning Network: a planning architecture that

create plans with a learned dynamic planning style.
• We show that providing a planner with the option to

choose where to plan from improves performance by
reducing sub-optimal trajectories.

• A loss for the planner policy that balances between
exploration and exploitation during planning.

• DPN outperforms, both in performance and sample ef-

Katarina
Text Box
N. Tasfi, M. A. M. Capretz, Dynamic Planning Networks, Proc. of the IEEE 2021 International Joint Conference on Neural Networks, 2021.

AgentPlanningEncoder

st
zt

h
t
A

h
T

P

vt

at

(a) Architecture Overview

z*τ

a*τ
wτ z +1τ*

hτ
P

hA+1τ
τh
P

hPτ -1

hτ
A
/Tτ

z {p,c,r}τ
State
Model

∼
∼

×
Planner

(b) A Planning Step

Figure 1: a) Network Architecture: Encoder is comprised of several convolutional layers and a fully-connected layer (a box
with 3 dots). Planning occurs for τ = 1, ..., T . The result of planning is sent to the agent which emits an action at and
state-value vt. Planning uses a fully-connected layer within the agent, outlined in green, to generate an updated hidden state.
b) A single planning step τ . The planner performs a step of planning using the state-transition model. Circles containing ×
indicate multiplication and circles with ∼ indicate sampling from the Gumbel Softmax distribution.

ficiency, other planning architectures on commonly used
environments in the domain.

The paper is organized as follows: Section II covers our
architecture and training procedure, Section III covers related
work, Section IV details the experimental design used to
evaluate our architecture, and in Section V we analyze the
experimental results of our architecture.

II. DYNAMIC PLANNING NETWORK

In this section, we describe the design choices of DPN,
each architectural component, and training regime used. Steps
taken in the environment use subscript t and planning steps
use subscript τ .

A. Architectural Choices

DPN is composed of an agent policy πA, multi-step planner
policy πPw,a, a state-value function V , a learned state-transition
model M, and shared state encoder. Figure 1(a) illustrates a
high-level diagram of the DPN architecture.

At its core, DPN extends actor-critic algorithms by adding a
pathway dedicated to planning with a learned state-transition
model, similar to other planning work [11]–[15]. We define a
state-transition model as any model which predicts the next
state given an action and the current state.

Using state-transition models in environments with complex
dynamics and high dimensional observation spaces has proven
difficult as state-transition models must learn from agent
experience and require significant amounts of samples and
compute [16]–[18]. Often, it is much more efficient to instead
learn and make predictions in a lower dimensional space [11].
Therefore, within this work we consider the state-transition
model used by Farquhar et al. [11] which predicts within the
latent embedding space z; where z is produced by an encoder
or the state-transition model itself.

Planning components aim to improve the performance of
a model-free agent by avoiding costly trial and error in the
environment. However the style of planning, the way a state-
transition model is used, differs between architectures each
with its own benefits. The planning style can be a simple
forward rollout [16], [19], enforce a particular structure [11],
[20], or use predesigned patterns [12]. In this regard, DPN’s
architecture is constructed in such a way that it learns the best
planning pattern to employ. Therefore, DPN’s planner is based

upon a recurrent neural network which naturally incorporates
the recent history in a short-term memory, allowing flexible
planning patterns to emerge.

However, an additional issue arises regardless of the plan-
ning strategy used: what should the planner do if the last action
taken cannot be reversed? Even if, in theory a opposing action
exists, there is no guarantee that the state-transition model
will produce a coherent prediction. Assuming, temporarily,
that the planner chooses an opposing action, which cannot
undo the last action but is opposing, and the state-transition
model happily follows through: the resulting predicted state
would either be nonsensical or unreachable. Therefore to
help alleviate this issue, we provide DPN’s planner access
to an “undo” and “reset” option. This requires tracking a
triplet of state embeddings z during planning: the current zcτ ,
previous/undo zpτ , and reset/root zrτ . Where the root state is
the current state of the agent within the environment and the
previous state is the last observed state during planning. Both
options allow the planner to short-circuit the state-transition
model.

Figure 2 illustrates, in a fictional environment during a
round of planning, the utility provided by tracking and allow-
ing the planner to select between the triplet of states. From
the top row of Figure 2, we show how the planner can use
a state-transition model and the triplet of states to construct
plans. Here, we interpret the plans as the dynamic expansion of
a state-action tree. While in the bottom row of Figure 2, show
the corresponding fictional environment where the red agent
must capture the blue goals. The agent can only push the grey
obstacles which means they can become irreversible stuck as
no opposing action exists. The fictional environment illustrates
how the added ability to select the “root” or “previous” states
gives improved efficiency to the planner.

As the planner progresses through the environment, shown
in the bottom row of Figure 2a-d, that it pushed the grey
obstacle to the left, blocking the goal. By using the “root”
state option1, shown in the top row of Figures 2e, the planner
can create an alternative route to the goal, shown in the bottom
row of Figures 2e-f.

If the planner did not have access to the “root” or “previous”
states, the resulting trajectory would be sub-optimal in their

1The “previous” state option would be a valid choice as well.

G
A

A

R

zcτ

G
AA

R

z rτ

G
A
A

R

zcτ

G
A
A

R

zcτ

G
A A

R zcτR

G
AA

a) b) c) d) e) f)

Figure 2: Tree Interpretation. Top Row: A tree interpretation of a created plan by DPN. State selections are shown in light
purple and state-transitions are shown as blue. The source state is shown as a grey circle with a blue outline and the transitioned
state as a fully blue circle. Bottom Row: A fictional environment in which the red agent must visit blue goals and can only
push, and not pull, grey obstacles around. The faded agent is meant to signify the current state of the agent in the environment.

predictive value or might contain incorrect information had
the state-transition model violated the environment dynamics.
Additionally, even if an opposing action did exist, in this case
pull, the planner would waste planning steps to unroll this poor
decision. Planning efficiency becomes especially important
when a limited number of planning steps are budgeted.

In DPN, our planner runs for a fixed number of planning
steps T , interacting with the state-transition model M, before
the agent selects an action at in the environment. Pseudo-code
is provided for one step of acting by DPN in Algorithm 1. The
weight WA belongs to the agent and its output, given some
embedding z, captures the agent’s current view of the state in
an embedding hA. We refer to this as the “hidden state” of
the agent. This is shown Figure 1(a) as the bottom pathway
where WA is the box with a green border.

At each planning timestep τ where τ ∈ {1, . . . , T}, the
planner’s policy, in a two-step manner, picks which state of
the triplet to plan from using a sampled weighting w∗τ and then
selects an appropriate action a∗τ given this selected state and
history. The weighting w∗ and action a∗ are sampled using
the Gumbel-Softmax trick [21] so we can learn in an end-to-
end manner. The planner uses the state-transition model M
to predict the next state z∗τ+1 given the selected state z∗τ and
action a∗τ . The triplet of embeddings are then updated.

Algorithm 1 Pseudo-code for action selection with DPN
// Given StateModel, Encoder, Planner, and Agent policy.
// Given current state xt.
hPt,τ=0 ← init hidden state of Planner
zt = Encoder(xt)
zpt,τ=1, z

c
t,τ=1, z

r
t,τ=1 = zt

for τ ∈ {0, · · · , T − 1} do
hAt,τ = WAzct,τ
hPt,τ = RNN([zpt,τ , z

c
t,τ , z

r
t,τ ,

τ
T
, hAt,τ], hPt,τ−1)

w∗t,τ = πPw (·|hPt,τ) // 1-hot action
z∗t,τ = [zpt,τ , z

c
t,τ , z

r
t,τ]Tw∗t,τ

a∗t,τ = πPa (·|hPt,τ ; z∗t,τ) // 1-hot action
z∗t,τ+1 =M(a∗t,τ , z

∗
t,τ)

zct,τ , z
p
t,τ = z∗t,τ+1, z

c
t,τ

end for
hAt = WAzt
at = πA(a|hAt , hPt,τ=T)

The planner is provided with a context comprised of the

current triplet of embeddings, a float indicating the planning
step, and the “hidden state” of the agent. Inclusion of the
agent’s “hidden state” hA in the planner’s is detailed when
we discuss training, but briefly: the planner is partially trained
to maximize the “surprise” of the agent so providing this
information to the planner is beneficial. As the planner uses
a recurrent network, we found it best if the agent’s policy πA

also consumes the final hidden state hPτ=T produced by the
planner, shown in Figure 1(a). Doing so forces the planner to
keep a running summary of the constructed plan and provides
the agent’s policy πA with additional context.

B. Architecture Components

Model-free Pathway: As seen in Figure 1(a), the com-
ponents along the model-free path, that is the bottom con-
nections, are nearly identical to architectures used by actor-
critic methods. Containing an convolutional encoder, optional
hidden layers, and two outputs each representing the learned
policy and state-value function. In this case the convolutional
encoder processes a 2d input image xt ∈ RC×W×H , with C
channels and dimensions W × H , to produce an embedded
representation zt ∈ RZ . We refer to the parameters of the
actor’s policy with θa and state-value function as θv . As the
encoder is shared, it’s parameters are a subset of all component
parameters in DPN and therefore not explicitly mentioned.

From Figure 1(a), we see an additional two fully-connected
layers along with the planning component. The bottom layer,
outlined in green, is used to represent the agents current
representation of the environment. It is used by the planner
to estimate the “surprise” its plans provide. While the fully-
connected layer, along the top connecting the planner to the
agent, is used to further processes plans such that the agent can
learn to extract pertinent information. We found this helpful
as the produced plans might contain inaccuracies, caused by
repeated application of the state-transition model, or contains
non-actionable information. Weber et al. [12] use a module
in I2A, which they refer to as a rollout encoder, with similar
functional and purpose.

Planner: As shown in Figure 1(b), the planner is comprised
of a recurrent neural network (RNN) and two fully connected
layers. Each layer represents either the sub-policy used to
choose a∗ or w∗. The weight w∗τ ∈ [0, 1]3 only considers

the current hidden state hPτ ∈ RH produced by the RNN.
However, the simulated action a∗τ ∈ A considers both hPτ
and the selected embedded state z∗τ ∈ RZ . We refer to the
collective parameters of the planner as θp.

Figure 1(b) is primarily used to show the flow of in-
formation during one planning step τ . We can clearly see
how tightly coupled the interactions between the planner and
state-transition model are and how the planner is can fully
manipulate the state-transition model based on the selected
state z∗τ and action a∗τ .

State-Transition Model: The state-transition model is com-
posed of two computation steps with a residual connection in
between. The first step is meant to compute an action agnostic
representation of the current state embedding zτ . While the
second computes the expected change to the environment
given an action ai. It is defined as follows:

z′ = zτ + tanh(W envz∗τ)

z∗τ+1 = z′ + tanh(W aiz′)
(1)

both W env ∈ RZ×Z and W ai ∈ RA×Z×Z are learnable
parameters of the state-transition model and are referred
collectively to as θm2. We use the same state-transition model
presented by Farquhar et al. [11] and also perform normaliza-
tion of z∗ after prediction. Doing so keeps the magnitude of
the representation more consistent after several application of
the state-transition model.

C. Training Details

DPN is trained to maximize the expected reward and as
such we train the encoder, value network, and agent’s policy
using the k-step synchronous version of the advantage actor-
critic algorithm (A2C) [2]. We refer to their collective loss,
excluding the entropy regularization term, as LA2C

We treat the planner’s policy as an actor, fitting into the A2C
framework loss as an additive term, but make two adjustments.
First, the planner is trained within planning trajectories only,
such that state-transitions in its “environment” are emulated
by the state-transition model. This means that for a k-step
trajectory, under A2C, the planner will see k × T samples.
Second, the planner’s reward is redefined to be the composition
between the state-value the agent predicts for the next state
zτ+1 and distance between the agent’s hidden representations
from states zτ to zτ+1. We term this pseudo-reward as the
utility the planner provides to the agent and define it as:

Uτ (hAτ+1, h
A
τ , zτ+1) = V (zτ+1; θv) + D[hAτ+1, h

A
τ] (2)

where zτ+1 is the state transitioned to after performing an
action aτ in state zτ , hAτ and hAτ+1 are the hidden states of the
agent after perceiving the current state zτ and state transitioned
to zτ+1 respectively, D is a distance measure, and V (zτ+1)
is the value the agent assigns the next state zτ+1.

The two terms in Equation 2 tease between exploitation
and exploration during planning. If only state-value term V (.),
analogous to the reward, where to be maximized by the planner

2The action matrix is selected by multiplying a 1-hot encoding of the action.

Algorithm 2 Pseudo-code for DPN
Initialize parameters θa, θp, θv , and θm.
repeat

for i ∈ {0, · · · , k} do
Pick ai by calling Algorithm 1 with xt.
Receive reward ri and new state xi+1.

end for

R←
{

0 for terminal xk
V (zk; θv) otherwise

Reset gradients: dθ{a,o,v,m} ← 0.
for i ∈ {k − 1, · · · , 0} do

for τ ∈ {0, · · · , T − 1} do
Ui,τ = V (zi,τ+1; θv) + D[hAi,τ+1, h

A
i,τ]

dθp ← dθp +∇θp logπPw,a(·|zi,τ ; θp)Ui,τ
end for

R←
{

0 for terminal si
ri + γR otherwise

dθa ← dθa + ρ̄i∇θa log π(ai|si; θa)
{
R− V (zi; θv)

}
dθv ← dθv +∇θv

{
R− V (zi; θv)

}2
dθm ← dθm +∇θm

{
zi+1 −M

(
zi, ai; θm

)}2
end for
Perform update of θp using dθp, θa with dθa, θv with dθv , and θm
with dθm.

until Max iteration or time reached.

then the produced plans would aim to maximize the reward –
exploiting what is already known. In the opposite direction, if
the planner focuses only on the distance term D, then it will
chose states producing larger differences in the agent’s hidden
state. More than likely, this would correspond to states which
involve some “surprise” to the agent. A similar formulation
has been proposed, outside of the planning domain, in work on
intrinsic motivation; where the agent sees an external reward
rext and an internal reward rint [22]. This formulation also
balances between the notion of exploration and exploitation,
as the internally generated reward can be tangential to the
reward produced by the environment. We extend this idea to
the planning domain.

A secondary choice in the design of utility in Equation 2
is how to combine between the state-value and distance term.
We found that an additive distance term helps useful reward
signals through, instead of being attenuated, as the reward
and distance can disagree on the usefulness of the next state;
such as subsequent states with a epsilon distance but non-
zero rewards. Here, a multiplicative term can hinder learning
as either quantity can be a near-zero number, such as the
reward, causing the provided utility to register as essentially
zero. Additionally, in the initial stages of our work, we did
indeed consider a variant with a multiplicative distance term D
but found sub-par performance when compared to an additive
distance term. We hypothesize that the aforementioned effects
caused the gradients to vanish, slowing learning along the
planning pathway. Following from this, the planner is trained
as a policy network only, with the loss LP over the planning
sequence T :

Lp = 1
T−1

∑T−1
τ=0 ∇θp logπPw,a(·|zτ ; θp) Uτ (hAτ+1, h

A
τ , zτ+1) (3)

During parameter updates to the planners parameters we

(a) Push Environment Samples.
Model Avg. Reward
A2C 5.62

ATreeC-1 6.68
DPN-T3 6.99

DQN 3.96
TreeQN-3 5.08

(b) Model Performance. (c) Training Curve.

Figure 3: Push Environment. a) Randomly generated samples of the Push environment. Each square’s coloring represents a
different entity: the agent is shown as red, boxes as aqua, obstacles as black, and goals as grey. The outside of the environment,
not visible to the agent, is shown as a black border around the map. b) The performance of each model where Avg. Reward
is the average of the last 1000 episodes of training. c) Training curves with DPN compared to various baselines on Push
environment.

block gradient computations to the parameters belonging to
the agent. In this case the state-value function and the weight
WA used to update the agent’s hidden state. We perform
updates to the planner in this way as to stop the planner from
cheating by modifying the parameters of the agent that define
its reward via the quantities in Equation 2. Various choices
for distance functions exist, such as the cosine or L2 distance
function. In this work we use the L1 distance function, as
after empirical evaluation it was the most performant. Results
of this evaluation are provided in Section IV.

We train the state-transition model by performing state
grounding. As such, it is trained to minimize the L2 distance
between the next embedded state zt+1, produced by the
encoder, and its prediction ẑt+1. The state-transition model
makes its prediction from an embedding of the current state
zt and the action taken by the agent at that resulted in zt+1

[11]:

LM =

{
zt+1 −M

(
zt, at; θm

)}2

(4)

Combining our losses, the architecture is trained using the
following gradient:

∆θ = ∇θA2CLA2C +∇θpLP + λ∇θMLM − β∇θ{a,p}H (5)

where LA2C is the agent’s loss, both its policy and value
function, LP is the planner loss, λ is a hyperparameter con-
trolling the state-grounding loss, H is the entropy regularizer
computed for the agent and planner’s policies, and β is a
hyperparameter tuning entropy maximization of all policies;
we used the same β value for each policy. The losses LA2C
and LZ are computed over all parameters; while LP and its
entropy regularizer losses are computed with respect to only
the planner’s parameters. DPN is fully specified in Algorithm
2.

III. RELATED WORK

Various efforts have been made to combine model-free and
model-based methods, such as the Dyna-Q algorithm [23] that

learns a model of the environment and uses this model to
train a model-free policy. Originally applied in the discrete
setting, Gu et al. [24] extended Dyna-Q to continuous control.
However, none of the aforementioned algorithms use the
learned model to improve the online performance of the policy
and instead use the model for offline training. Therefore, the
learned models are typically trained with a tangential objective
to that of the policy such as a high-dimensional reconstruction.
In contrast, our work learns a model in an end-to-end manner,
such that the model is also optimized for its actual use in
planning instead of just prediction.

Pascanu et al. [14] implemented a model-based architecture
comprised of several individually trained components that
learn to construct and execute plans. In contrast, the planning
policy used by DPN also selects which state to plan from
while Pascanu et al. [14] used a separate specialized policy.
They examine performance on Gridworld tasks with single
and multi-goal variants but on an extremely limited set of
small maps. Vezhnevets et al. [13] proposed a method which
learns to initialize and update a plan; their work does not use
a state-transition model and maps new observations to plan
updates. Guez et al. [25] proposed MCTSnets, an approach
for learning to search where they replicate the process used by
MCTS. MCTSnets replaces the traditional MCTS components
by neural network analogs. The modified procedure evaluates,
expands, and back-ups a vector embedding instead of a scalar
value. The entire architecture is end-to-end differentiable.

Value prediction networks (VPNs) by Oh et al. [19], Pre-
dictron by Silver et al. [26], and ATreeC by Farquhar et al.
[11], an expansion of VPNs, combine learning and planning
by training deep networks to plan through iterative rollouts.
The Predictron predicts values by learning an abstract state-
transition function. Oh et al. [19] and Farquhar et al. [11] both
construct trees to improve value estimates by using forward-
only rollouts by exhaustively expanding each state’s actions.
Farquhar et al. [11] use the tree for both training and acting.
Similarly, Francois-Lavet et al. [27] proposed a model that

(a) Multi-Goal Gridworld Environment Samples.
Model Avg. Reward

DQN-RNN -0.51
DQN -1.26
A2C 0.21
VIN -1.04

DPN-T3 1.3

(b) Model Performance. (c) Training Curve.

Figure 4: Multi-Goal Gridworld Environment. a) Randomly generated samples of a 16×16 Multi-Goal Gridworld environments.
The agent is shown as red, goals in cyan, obstacles as black, and outside of the environment, not visible to the agent, is shown
with a black border. b) The performance of each model where Avg. Reward is the average of the last 1000 episodes of training.
c) Training curves with DPN compared to various baselines on 16× 16 Gridworld with 3 goals.

combined model-free and model-based components to plan on
embedded state representations in a similar fashion to TreeQN
[11]. They propose an additional loss to the objective function,
an approximate entropy maximization penalty, that ensures
the expressiveness of the learned embedding. In contrast
to the aforementioned works, during planning DPN learns
to selectively expand actions at each state, with the ability
to adjust sub-optimal actions, and uses planning results to
improve the policy during both training and acting.

Weber et al. [12] proposed Imagination Augmented Agents
(I2As), an architecture that learns to plan using a separately
trained state-transition model. Planning is accomplished by
expanding all available actions A of the initial state and then
performing A rollouts using a tied-policy for a fixed number
of steps. In contrast, our work learns the state-transition
model end-to-end, uses a separate policy for planning and
acting, and is able to dynamically adjust planning rollouts.
Empirically, we found that using the same policy for planning
and acting caused poor performance. We hypothesize that the
optimal policy for planning is inherently different from the
one required for optimal control in the environment; as during
planning, a bias toward exploration might be optimal.

Tamar et al. [28] trained a model-free agent with an explicit
differentiable planning structure, implemented with convolu-
tions, to perform approximate on-the-fly value iteration. As
their planning structure relies on convolutions, the range of
applicable environments is restricted to those where state-
transitions can be expressed spatially.

Additional connections between learning environment mod-
els, planning and controls, and other methods related to ours
were previously discussed by Schmidhuber [29].

IV. EXPERIMENTS

We evaluated DPN on a Multi-Goal Gridworld environment
and Push [11], a box-pushing puzzle environment. Push is
similar to Sokoban used by Weber et al. [12] with comparable
difficulty. Within our experiments, we evaluated our model
performance against either model-free baselines (A2C, DQN,

and VIN) 3 or planning baselines (TreeQN and ATreeC).
The experiments are designed such that a new scenario is
generated across each episode, which ensures that the solution
of a single variation cannot be memorized. We are interested
in understanding how well our model can adapt to varied
scenarios. Additionally, we investigate how planning length
T affects model performance, how planner branching affects
performance, different distance functions for the planner’s
reward function, and planning patterns that our agent learned
in the Push environment. Full details of the environments,
experimental setup, hyperparameters are provided in the sup-
plemental material. Unless specified otherwise, each model
configuration is averaged over 3 different seeds and is trained
for 40 million steps. As mentioned earlier, we use a version
of A2C algorithm with 16 workers, the RMSprop optimizer
[30] with a learning rate of 5e− 4 and ε = 1e− 5.
Push: The Push environment is a box-pushing domain, where
an agent must push boxes into goals while avoiding obstacles,
with samples shown in Figure 3(a). Since the agent can only
push boxes, with no pull actions, poor actions within the
environment can lead to irreversible configurations. The agent
is randomly placed, along with 12 boxes, 5 goals, and 6
obstacles on the center 6x6 tiles of an 8x8 grid. Boxes cannot
be pushed into each other and obstacles are “soft” such that
they do not block movement, but generate a negative reward
if the agent or a box moves onto an obstacle. Boxes are
removed once pushed onto a goal. We use the open-source
implementation provided by Farquhar et al. [31]. The episode
ends when the agent collects all goals, steps off the map,
or goes over 75 steps. We compare our model performance
against planning baselines, TreeQN and ATreeC [11], as well
as model-free baselines, DQN [1] and A2C [2].
Multi-Goal Gridworld: We use a Multi-Goal Gridworld do-
main with randomly placed obstacles that an agent must navi-
gate searching for goals. The environment, randomly generated

3 We tested both vanilla implementations and versions using our architec-
ture. A version of DPN with the planning components disabled, equivalent to
an A2C model, was evaluated as well. We used the best performing version.

(a) Distance Functions (b) Planner Branching (c) Planning Length

Figure 5: a) Distance Functions: the performance of different distance functions. Centered on curve differences. b) Planner
Branching: Various branching choices for the planner. All corresponds to the default architecture, Current results in a forward
rollout, and Reset is the same as 1-step look ahead. ATreeC-1 corresponds to 1-step look ahead as well. c) Planning Length:
Training over varying planning lengths, T = {1, 2, 3, 5}, in the Push Environment. Centered on curve differences.

between episodes, is a 16x16 grid with 3 goals. We force a
minimum distance between goals and between the agent and
goals. The agent must learn an optimal policy to solve new
unseen maps. Figure 4(a) shows several instances of a 16x16
Multi-Goal Gridworld. The rewards that an agent receives are
as follows: +1 for each goal captured, -1 for colliding with
a wall, -1 for stepping off the map, -0.01 for each step, and
-1 for going over the step limit. An episode terminates if the
agent collides with an obstacle, collects all the goals, steps
off the map, or goes over 70 steps. We evaluate our algorithm
against model-free baselines such as A2C [2], variants of DQN
(recurrent and non-recurrent) [1], and Value Iteration Network
(VIN) [28]. Each baseline, with the exception of VIN, used
the same encoder structure as DPN. We train for 20 million
environment steps.

Planner Distance Functions: We vary the distance function
used by the planner’s loss defined in Equation 2. We examine
L1, L2, KL, and Cosine distance functions.

Planner Branching: We examine the affect on performance
of different branching options: current, reset, or all. We also
included the ATreeC-1 baseline as this corresponds to the reset
branching option of our architecture and serves as a sanity
check.

Planning Length: Using the Push environment, we varied
the parameter T , which adjusts the number of planning steps,
with T = {1, 2, 3, 5} evaluated. The Push environment was
chosen because the performance is sensitive to an agent’s
ability to plan effectively.

Planning Patterns: We examine the planning patterns that
our agent learns in the Push environment with T = 5. Here
we are interested in understanding what information the agent
extracts from the simulation as context before acting.

V. RESULTS AND DISCUSSION

A. Push Environment

Figure 3(c) shows DPN compared to DQN, A2C, TreeQN
and ATreeC baselines 4. For TreeQN and ATreeC, we chose
tree depths which gave the best performance, corresponding

4 The data for the training curves of DQN, A2C, TreeQN, and ATreeC
were provided by Farquhar et al. via email correspondence. Each experiment
was run with 12 different seeds for 40 million steps.

to tree depths of 3 and 1 respectively. Our model clearly out-
performs both planning and non-planning baselines: TreeQN,
ATreeC, DQN, and A2C. We see that our architecture con-
verges at a faster rate than the other baselines, matching
ATreeC-1’s final performance after roughly 20 million steps
in the environment. In comparison to the other planning
baselines, TreeQN and ATreeC, require roughly 35-40 million
steps: ∼2x additional samples.

We note that the planning efficiency of DPN is higher in
terms of overall performance per number of state-transitions.
On the Push environment, with A = 4 actions, TreeQN with
tree depth of d = 3 requires

(Ad+1−1
A−1

)
− 1 = 84 state-

transitions. In contrast, using DPN with a planning length
of T = 3 requires only T state-transitions – a 96% reduc-
tion. Loosely comparing to I2As, simply in terms of state-
transitions, we see that I2As require A × L state-transitions
per action step, where L is the rollout length. This perfor-
mance improvement is a result of DPN learning to selectively
expand actions and being able to dynamically adjust previously
simulated actions during planning.

B. Multi-Goal Gridworld

Figure 4(c) shows, the results of DPN compared to various
model-free baselines. Within this domain, the difference in
performance is clear: our model outperforms the baselines by
a significant margin. The policies that DPN learns generalizes
better to new scenarios, can effectively avoid obstacles, and is
able to capture multiple goals. Of the model-free baselines, we
see that the A2C baseline performs the best. We believe that
the A2C baseline is able to better explore the environment due
to the multiple workers running in parallel throughout training.
We trained VIN without curriculum learning for 20million
steps with near identical settings5 prescribed by Tamar et al.
[28]. As seen in Figure 4(c), the DQN variants and VIN fail to
capture any goals and do not achieve a score higher than -1.0.
It should be noted we saw little performance improvement
even when allocating the A2C and DQN baselines an addi-
tional 2x environment steps (40 million) or, in the case of DQN
models, a 2-4x longer exploration period (8-16 million). The

5 The original results with VIN relied on curriculum learning. To provide
a fair comparison all methods are trained without curriculum learning.

(a)

(b)

(c)

(d)

Figure 6: Samples of observed planning-type patterns the agent uses in the Push environment with T = 5. The faded
environments, to the right of each sample, is used to signify when the agent is planning. Highlighted squares represent
the location that the planner chose to move towards during planning. Faded squares show where it has been during planning.

poor performance of the baseline models might be the result
of high variance in the environment’s configuration between
episodes and sparse rewards. We believe that DPN performs
better because it captures common structure present between
all permutations of the environment by using the environment
model. This allows it to exploit the model for planning in
newly generated mazes.

C. Planner Distance Functions

From 5(a), we see an evaluation of distance functions used
in Equation 2. The L1 distance function has the best perfor-
mance with slightly faster convergence. While the L2, Cosine,
and KL functions have worse performance. We hypothesize
that the L1 distance performed better due to its robustness to
outliers, a likely event during learning, as the distance is a
function of noisy and changing vectors from the agent and
state-transition model.

D. Planner Branching

In Figure 5(b), we see how different branching options
affects the architecture performance. Our proposed branching
improves performance of the architecture as compared to the
current and reset options. Interestingly, the performance of our
architecture when using the reset options is roughly the same
as ATreeC-1. This is unsurprising as the reset and ATreeC-1
options employ a similar planning strategy of a shallow 1-step
look-ahead. The small discrepancy in performance could be
due to ATreeC-1 evaluating all 4 actions while DPN evaluates
only 3. We see that the current branching option results in
better performance and amounts to a forward-only rollout. We
hypothesize the performance difference between current and
reset is from DPN being able to see the results of its actions
from the first planning step over a longer time span.

E. Planning Length

In Figure 5(c), we see the performance of our model over
the planning lengths T = {1, 2, 3, 5}. As seen in Figure 5(c),
model performance increases as we add additional planning
steps, while the number of model parameters remains constant.

As the planning length increases, we see the general trend
of faster model convergence. Even a single step T = 1 of
planning allows the agent to test action-hypotheses and avoid
poor choices in the environment. From Figure 5(c) we see

that an additional planning step, from T = 1 to T = 2,
does not provide benefit until later in training. We see that
both the planning lengths T = 3 and T = 5 tie for the best
performance. Similar to Farquhar et al. [11], we hypothesize
that this is due to a ceiling effect in this domain. This is clear
as there are diminishing returns in performance with increased
planning lengths. In terms of the shorter planning lengths, we
suspect that they do not allow the planner to learn a policy that
provides enough utility to the agent. Ideally, the architecture
would be able to adjust the number of planning steps T
dynamically based on current needs. We see this expansion,
similar to the adaptive computation presented by Graves [32],
as an interesting avenue for future work.

F. Planning Patterns

By watching a trained agent play through newly generated
maps, we observe the possible emergence of planning-type
patterns, which are shown in Figure 6 for T = 5. We
see what appears to be a mixture between breadth-first
search (BFS) and depth-first search (DFS). We found the
resulting patterns to be quite consistent. Furthermore, the
entropy of the planner’s policy was quite low at the end of
training, which indicates the produces planning patterns are
near-deterministic. In Figure 6(a) we see the agent does first
performs a partial breadth-first search around itself before
continuing farther left. Figure 6(b) shows the agent learning
to exploit the “previous” state, which is a “lazy reset” to
explore the upper right corner. The agent moves as follows:
right with the current state, upward with the current state,
right again with the current state, left from the previous
state, and right one last time after resetting. In Figure 6(c)
we see the planner does a partial breadth first search around
the agent. In this case the planner used the current state for
the entire planning trajectory. Finally, in Figure 6(d) we see
the planner alternate between a breadth-first and depth-first
search. The planner moves upward from the root state, resets
moving downward, picks the current state moving downward
once more, selects the previous state while moving up, and
then finishes by moving left using the current state.

VI. CONCLUSION

In this paper, we have presented DPN, a new architecture
for deep reinforcement learning that uses a planner and agent
working in tandem. The planner is optimized to maximize
a pseudo-reward, the utility provided to the agent, which
balanced between exploitation and exploration during plan-
ning. We have demonstrated that DPN outperforms the model-
free and planning baselines in both the Mutli-Goal Gridworld
and Push environments while using ∼2x fewer environment
samples. Furthermore, the ability for DPN to learn a dynamic
planning style enables it to achieve much greater efficiency in
terms of the state-transitions required; this is especially evident
when comparing between TreeQN, with a fixed planning
style, and DPN, with a dynamic planning style. By letting
the planner learn it’s own planning style we see evidence
of emergent planning patterns appear, such as breadth-first
search. In the Push environment we see DPN achieves greater
or equal performance to TreeQN while requiring 96% percent
fewer applications of the state-transition model. Taken all
together, DPN, in comparison to other architectures, reduces
the computational requirements to reach a similar level of
performance. Finally, we have shown that giving the planner
the option to select where to plan from helps avoid sub-optimal
trajectories. In our studies we have provided evidence that
the triplet previous, current, reset provides the greatest per-
formance. In future work we plan to examine how structured
memory can help improve this dynamic planning process.

VII. ACKNOWLEDGMENTS

We would like to thank Eder Santana, Tony Zhang, and
Justin Tomasi for helpful feedback and discussion. This
project received funding from Ontario Centres of Excellence,
Voucher for Innovation and Productivity (VIPI) Program
Project #29393.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[4] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
second edition, in progress ed. MIT press, 2017.

[6] J. Peng and R. J. Williams, “Efficient learning and planning within the
dyna framework,” Adaptive Behavior, vol. 1, no. 4, pp. 437–454, 1993.

[7] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[8] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, 2014, pp. 1071–1079.

[9] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[11] G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson, “Treeqn and
atreec: Differentiable tree planning for deep reinforcement learning,”
arXiv preprint arXiv:1710.11417, 2017.

[12] T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J.
Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li et al., “Imagination-
augmented agents for deep reinforcement learning,” arXiv preprint
arXiv:1707.06203, 2017.

[13] A. Vezhnevets, V. Mnih, J. Agapiou, S. Osindero, A. Graves, O. Vinyals,
K. Kavukcuoglu et al., “Strategic attentive writer for learning macro-
actions,” arXiv preprint arXiv:1606.04695, 2016.

[14] R. Pascanu, Y. Li, O. Vinyals, N. Heess, L. Buesing, S. Racanière,
D. Reichert, T. Weber, D. Wierstra, and P. Battaglia, “Learning model-
based planning from scratch,” arXiv preprint arXiv:1707.06170, 2017.

[15] A. Deac, P. Veličković, O. Milinković, P.-L. Bacon, J. Tang, and
M. Nikolić, “Xlvin: executed latent value iteration nets,” arXiv preprint
arXiv:2010.13146, 2020.

[16] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. P. Singh, “Action-conditional
video prediction using deep networks in atari games,” CoRR, vol.
abs/1507.08750, 2015. [Online]. Available: http://arxiv.org/abs/1507.
08750

[17] S. Chiappa, S. Racaniere, D. Wierstra, and S. Mohamed, “Recurrent
environment simulators,” arXiv preprint arXiv:1704.02254, 2017.

[18] M. Guzdial, B. Li, and M. O. Riedl, “Game engine learning from video,”
2017.

[19] J. Oh, S. Singh, and H. Lee, “Value prediction network,” CoRR, vol.
abs/1707.03497, 2017. [Online]. Available: http://arxiv.org/abs/1707.
03497

[20] J.-B. Grill, F. Altché, Y. Tang, T. Hubert, M. Valko, I. Antonoglou, and
R. Munos, “Monte-Carlo tree search as regularized policy optimization,”
in Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 3769–3778.
[Online]. Available: http://proceedings.mlr.press/v119/grill20a.html

[21] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[22] N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated
reinforcement learning,” in Advances in neural information processing
systems, 2005, pp. 1281–1288.

[23] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” ACM SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[24] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference
on Machine Learning, 2016, pp. 2829–2838.

[25] A. Guez, T. Weber, I. Antonoglou, K. Simonyan, O. Vinyals, D. Wierstra,
R. Munos, and D. Silver, “Learning to search with mctsnets,” arXiv
preprint arXiv:1802.04697, 2018.

[26] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley,
G. Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto et al.,
“The predictron: End-to-end learning and planning,” arXiv preprint
arXiv:1612.08810, 2016.

[27] V. François-Lavet, Y. Bengio, D. Precup, and J. Pineau, “Combined
reinforcement learning via abstract representations,” arXiv preprint
arXiv:1809.04506, 2018.

[28] A. Tamar, S. Levine, P. Abbeel, Y. WU, and G. Thomas, “Value iteration
networks,” in Advances in Neural Information Processing Systems, 2016,
pp. 2146–2154.

[29] J. Schmidhuber, “On learning to think: Algorithmic information theory
for novel combinations of reinforcement learning controllers and recur-
rent neural world models,” arXiv preprint arXiv:1511.09249, 2015.

[30] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

[31] G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson, “https://github.
com/oxwhirl/treeqn/blob/master/treeqn/envs/push.py”, 2017.

[32] A. Graves, “Adaptive computation time for recurrent neural networks,”
arXiv preprint arXiv:1603.08983, 2016.

	Dynamic Planning Networks
	Citation of this paper:

	tmp.1619388721.pdf.4mvmy

