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Abstract. Prostate segmentation on T2w MRI is important for several diagnostic and therapeutic procedures for
prostate cancer. Manual segmentation is time-consuming, labor-intensive, and subject to high interobserver
variability. This study investigated the suitability of computer-assisted segmentation algorithms for clinical trans-
lation, based on measurements of interoperator variability and measurements of the editing time required to yield
clinically acceptable segmentations. A multioperator pilot study was performed under three pre- and postediting
conditions: manual, semiautomatic, and automatic segmentation. We recorded the required editing time for each
segmentation and measured the editing magnitude based on five different spatial metrics. We recorded average
editing times of 213, 328, and 393 s for manual, semiautomatic, and automatic segmentation respectively, while
an average fully manual segmentation time of 564 s was recorded. The reduced measured postediting inter-
operator variability of semiautomatic and automatic segmentations compared to the manual approach indicates
the potential of computer-assisted segmentation for generating a clinically acceptable segmentation faster with
higher consistency. The lack of strong correlation between editing time and the values of typically used error
metrics (ρ < 0.5) implies that the necessary postsegmentation editing time needs to be measured directly in
order to evaluate an algorithm’s suitability for clinical translation. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JMI.3.4.046002]
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1 Introduction
In 2015, prostate cancer (PCa) was one of the most commonly
diagnosed noncutaneous cancers and the second leading cause
of death from cancer among men in North America.1,2 Due to
its high soft tissue contrast, magnetic resonance imaging
(MRI) has demonstrated potential for detection, localization,
and staging of PCa 3–6 and is entering routine clinical use
for PCa diagnosis, treatment planning, and therapy
guidance.3,6–8 Using an endorectal receiver (ER) coil during
MRI acquisition yields images with higher resolution and
improved signal-to-noise ratio, with reported positive impact
on PCa diagnosis.7,9,10

Delineation of the prostate gland on MRI is required for
several clinical procedures in which MR images are employed;
e.g., MRI-targeted transrectal ultrasound (TRUS)-guided
biopsy, MRI-guided radiotherapy planning, and MRI-guided
focal therapy. T2-weighted (T2w) prostate MRI plays an impor-
tant role in anatomy description,11,12 PCa detection and locali-
zation,13 and therefore, prostate contouring is usually performed
on T2w MRI. However, three-dimensional (3-D) manual

prostate contour delineation is laborious and time-consuming,
and subject to substantial interoperator variability.14

Several algorithms have been presented in the literature for
3-D segmentation of the prostate on T2w MRI, as described in a
recent survey.15 However, a minority of these methods has been
validated for use on T2w MRI acquired using an ER coil (ER
MRI). Although ER MRI can improve PCa detection, its
improved contrast results in the presence of additional high-fre-
quency details in the images. This makes automatic segmenta-
tion more challenging, especially for algorithms designed for
use on non-ER MRI, where the intraprostatic signal is more
homogeneous. Furthermore, the ER coil deforms and displaces
the prostate gland and produces MRI artifacts16 that further chal-
lenge automatic segmentation. We have previously reported on a
semiautomatic segmentation algorithm and this method is based
on prostate shape and appearance models learned from a training
set.17 Segmentation is performed in two steps: coarse localiza-
tion of the prostate, followed by 3-D segmentation boundary
detection and refinement. In the semiautomated approach,
coarse localization is performed by the operator with four
mouse clicks requiring ∼30 s of user interaction time. In the
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automated approach, coarse localization is performed automati-
cally within 3 s of computation time, with no requirement for
user interaction.

A range of segmentation accuracy values has been reported
in the literature for automated and semiautomated algorithms
(Table 1). Typically, reported error metrics include the mean
absolute distance (MAD) between the boundaries of the auto-
matic and manual segmentations, and/or the Dice similarity co-
efficient (DSC). Reported MAD values range from 1.5 to
3.4 mm,17–20 and reported DSC values range from 82% to
91%.17–21 Reasons for the range of different error values
reported include algorithm design, the use of single-operator
manual reference segmentations for validation in most studies,
and the use of different imaging datasets. These differences not-
withstanding, the errors yielded by state-of-the-art segmentation
methods are approaching the differences observed between
human expert operators.14 It is thus timely to shift the focus
of research in this area to studies aimed at enabling clinical
translation of these techniques for routine clinical use.

For reasons of diagnostic accuracy and patient safety, the
integration of any computer-assisted segmentation algorithm,
fully automatic or otherwise, into clinical use will require
that an expert reviews (and edits) the segmentation before pro-
ceeding. This will always be necessary since regardless of the
reported accuracy of a given segmentation algorithm, variations
in anatomy or image acquisition will occur in the clinic that
could result in aberrant computer-assisted segmentations,
with potentially adverse consequences to the patient if such seg-
mentations were used to guide treatment without correction.
Therefore, the clinical utility of a method will depend not

only on its accuracy metric values (based on the final segmen-
tation), such as the MAD and DSC, but also on the amount of
editing deemed necessary by expert physicians in order to render
the segmentation suitable for clinical use. This editing can be
measured spatially using standard metrics, such as MAD and
DSC, to compare the segmentation as output by the algorithm
to the segmentation after editing, and these metrics can be com-
puted on anatomically distinct regions to learn about the por-
tions of the prostate requiring the most editing. Potentially of
even greater importance, the amount of required editing time
can be measured. For a segmentation algorithm to have clinical
utility, it must allow the expert physician to obtain a segmenta-
tion deemed clinically acceptable by him/her in less time than
would be required to perform a manual segmentation. This state-
ment holds true regardless of the reported segmentation accu-
racy metrics (e.g., MAD, DSC) for an algorithm in the
literature. Mahdavi et al. presented a semiautomatic prostate
segmentation algorithm for TRUS images and reported the accu-
racy, repeatability, and the total segmentation time including
user interaction, algorithm execution, and expert editing times
for their method and compared them to the corresponding mea-
surements for manual segmentation. They showed that semiau-
tomatic segmentation approaches after manual editing could be
an appropriate replacement for fully manual segmentation due to
their relatively shorter segmentation times, higher consistency,
and less reliance on operator experience.23,24 However, to the
best of our knowledge, questions of editing magnitude and
time have not been extensively studied for ER MRI prostate
segmentation algorithms reported in the literature. Ultimately,
segmentation tools need to be integrated with other tools in

Table 1 Reported segmentation errors for prostate segmentation algorithms intended for use on T2w ER MRI.

Group Method Dataset size Accuracy Segmentation time

Our group17 Local appearance
and shape model
(semiautomatic)

42 (test and training) Whole gland:
MAD: 2.0� 0.5 mm
DSC: 82%� 4%
Recall: 77%� 9%
Precision: 88%� 6%
ΔV : −4.6� 7.2 cm3

Operator interaction: 28� 14 s.
(across 10 images and 9 operators)
Execution: 85� 20 s. (across 42
images, one operator)

Cheng et al.21 Atlas-based (automatic) 100 (training) and
40 (test)

Whole gland:
TP: 91.2%
DSC: 87.6%
ΔV : 8.4%

NA

Liao et al.18 Multi-atlas-based
(automatic)

66 (test) 9 (atlas) Whole gland:
MAD: 1.8� 0.9 mm
DSC: 88%� 3%

Execution: 2.9 min

Toth and
Madabhushi19

Active appearance model
(semiautomatic)

108 Whole gland:
MAD: 1.5� 0.8 mm
DSC: 88%� 5%

Execution: 150 s

Vikal et al.22 Shape model
(semiautomatic)

3 Has not reported for
whole gland

Execution: 23 s

Martin et al.20 Atlas-based
(semiautomatic)

1 (reference)
17 (test)

Whole gland:
MAD: 3.4� 2.0 mm
Recall: 89%� 6%
Precision: 78%� 12%

NA

Note: MAD, mean absolute distance; DSC, Dice similarity coefficient; ΔV , volume difference; TP, true positive.
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user friendly clinical contouring platforms; such integration is
beyond the scope of this work.

In this paper, we conducted a user study to answer four
research questions related to our segmentation algorithm.
(1) How much spatial segmentation editing do expert operators
perform to obtain clinically useful segmentations? (2) What is
the interoperator variability in segmentation with and without
the use of the tool? (3) How much segmentation editing time
do expert operators require to obtain clinically useful segmen-
tations? (4) Can the necessary time requirement for segmenta-
tion editing be predicted from spatial segmentation error
metrics? Questions (1), (2), and (3) were answered and com-
pared under three conditions, in which the segmentations pro-
vided to the operators for editing came from (a) our automatic
segmentation algorithm, (b) our semiautomatic segmentation
algorithm, and (c) manual segmentation performed by another
expert operator. As the scope of question (4) is limited to evalu-
ation of computer-assisted segmentation algorithms, it was
answered under conditions (a) and (b) only.

2 Materials and Methods

2.1 Materials

Our sample consisted of 10 axial T2w fast spin echo ER MRI
acquired at 3.0-T field strength, all from patients with biopsy-
confirmed PCa. Images were acquired with TR ¼ 4000 to
13,000 ms, TE ¼ 156 to 164 ms, NEX ¼ 2. The voxel sizes
were 0.27 × 0.27 × 2.2 mm as is typically seen in clinical pros-
tate MRI. The images were acquired using a Discovery MR750
(General Electric Healthcare, Waukesha, Wisconsin). The study
was approved by the research ethics board of our institution, and
written informed consent was obtained from all patients prior to
enrolment. All 10 MR images were segmented manually by
three operators: one radiologist, one radiation oncologist, and
an expert radiology resident with >3 years’ experience reading
>100 prostate MRI studies in tandem with a board-certified
radiologist as part of a trial conducted at our center. Editing
was conducted by four radiation oncologists with genitourinary
specialization and the same expert radiology resident. The ITK-
SNAP software tool25 was used for manual segmentation.

2.2 Study Design

Our study design is shown in Fig. 1. Each operator #i edited a
total of 15 segmentations under three conditions: (1) five auto-
matic segmentations (performed using an automated version of
our semiautomatic segmentation algorithm, described in
Appendix), (2) five semiautomatic segmentations performed
based on the operator’s own inputs as the semiautomatic seg-
mentation algorithm operator, and (3) five manual segmenta-
tions performed by a different expert operator #j. Operator #j
was the same individual throughout the entire experiment; oper-
ator #j provided only manual reference segmentations and did
not take part in this editing study in any other way. Editing was
performed in slice-by-slice mode using the ITK-SNAP25 version
2.4.0 interface on axially oriented slices. Changes were applied
only on the axial slices but sagittal and coronal views were also
provided to the operator during editing, so the operator could
check for spatial coherence of the segmentations in these
views (Fig. 2). The operators used the adjustable-size paint
brush tool in ITK-SNAP to add/remove area to/from the seg-
mentation labels. They were able to adjust window and level

and zoom in and out during editing. Spatial and temporal met-
rics were collected for each of the three conditions to compare
the editing that was performed within each operator and between
operators. To enable direct comparison of the editing of the auto-
matic and semiautomatic segmentations, we used the same sub-
set of five MRI scans for each operator for these two conditions.
To mitigate possible effects of the order of MRI scan presenta-
tion on the experiment, the 15 segmentations were presented in a
different randomized order for each operator, with a constraint
that between any two presentations of the same MRI scan to the
operator (i.e., once for automatic segmentation, and again with
the same scan for semiautomatic segmentation), there were at
least six MRI scans from other patients presented. Training
in the use of ITK-SNAP and practice was provided in advance
of the measured editing sessions.

2.3 Spatial Editing Magnitude and Interoperator
Variability

We compared the pre-editing segmentations to the postediting
segmentations in each of the three conditions shown in
Fig. 1, “answering research question (1).”We used five different
metrics, including MAD, DSC, recall, precision, and volume
difference (ΔV), to perform comparisons in terms of surface dis-
agreement, regional misalignment, and volume difference.
Where applicable, the postediting segmentation was defined
as the reference segmentation. These metrics are defined in
detail below.

2.3.1 Mean absolute distance

The MAD metric measures the disagreement between two 3-D
surfaces as the average of a set of Euclidean distances between
corresponding surface points of two shapes. For each point on
one surface, the closest point on the other surface is defined as
the corresponding point. Equation (1) shows the MAD of X and
Y as two surface point sets, where Dðp; qÞ is the Euclidean dis-
tance between points p and q. A MAD of zero indicates ideal
agreement between two shapes:

Fig. 1 Study design showing the workflow for a particular operator
#i. The operator edited three sets of segmentations: five automatic
segmentations, five semiautomatic segmentations performed by
the operator, and five manual segmentations performed by a different
operator #j. Spatial and temporal segmentationmetrics were collected
to measure the editing task and compared across the three
conditions.
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EQ-TARGET;temp:intralink-;e001;63;434MADðX; YÞ ¼ 1

N

X

p∈X
min
q∈Y

Dðp; qÞ: (1)

The MAD calculation needs to consider one of the shapes as the
reference (e.g., point set Y is the reference in Eq. (1)]. Therefore,
when two segmentations are to be compared and there is no
reference segmentation, we use the bilateral MAD, which is
the average of the two MAD values obtained using each seg-
mentation as the reference.

2.3.2 Dice similarity coefficient

The DSC is a region-based metric that measures the proportion
of the volume of the overlap region between two shapes and the
average of their volumes in 3-D [Eq. (2)]. The DSC is a unitless
metric and will be 100% in the case of ideal segmentation and
0% when there is no overlap.

2.3.3 Recall and precision rates

Recall (or sensitivity) and precision are also unitless error met-
rics that measure the regional misalignment in terms of the over-
lap region with 100% and 0% as the ideal and worst-case
measurement values, respectively. To calculate recall and preci-
sion, we need to consider one shape as the reference. Recall
measures the proportion of the reference that is within the seg-
mentation [Eq. (3)] and precision measures the proportion of the
segmentation that is within the reference [Eq. (4)]:

EQ-TARGET;temp:intralink-;e002;63;133DSCðX; YÞ ¼ 2ðX ∩ YÞ
X þ Y

¼ 2TP

FPþ 2TPþ FN
× 100; (2)

EQ-TARGET;temp:intralink-;e003;63;94RecallðX; YÞ ¼ TP

TPþ FN
× 100; (3)

EQ-TARGET;temp:intralink-;e004;326;423PrecisionðX; YÞ ¼ TP

TPþ FP
× 100; (4)

where TP is the true positive or correctly identified region, FP is
the false positive or incorrectly identified region, and FN is the
false negative or incorrectly ignored region (see Fig. 3).

2.3.4 Volume difference

To calculate ΔV, we subtract the reference shape volume from
the segmentation shape volume. Therefore, ΔV is a signed error
metric; i.e., negative values of ΔV show that the segmentation is
smaller than the reference and positive values of ΔV show that
the segmentation is larger than the reference.

2.4 Interoperator Variability

To quantify interoperator variability in segmentation and editing
[answering research question (2)], we calculated simultaneous
truth and performance level estimation (STAPLE)26 consensus
segmentations from the five operator segmentations before and

Fig. 2 A snapshot of ITK-SNAP interface used for editing the segmentation labels.

Fig. 3 Elements used to compute the DSC, recall, and precision val-
idation metrics.
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after editing under all three conditions, with two exceptions. In
the case of the pre-editing automatic segmentations, no opera-
tors were involved, so no STAPLE segmentation was calculated.
In the case of the pre-editing manual segmentations, only the
segmentations of a single operator #j were edited in this
study. To obtain a measure of interoperator variability in pre-
editing manual segmentations, we computed a STAPLE seg-
mentation from manual segmentations performed by three of
our operators on the same five images that were used for manual
segmentation editing in our study. There were five sets, each
containing five segmentations performed by different operators,
with accompanying STAPLE consensus segmentation: (1) pre-
editing semiautomatic, (2) postediting semiautomatic, (3) poste-
diting automatic, (4) pre-editing manual, and (5) postediting
manual. Within each of these five sets, our five segmentation
error metrics were computed to compare each operator’s seg-
mentation to the corresponding STAPLE segmentation, with
the means of the metric values indicating the amount of
interoperator variability. We used a one-way ANOVA test fol-
lowed by one-tailed pairwise heteroscedastic t-tests to test for
statistical significance of differences in these interoperator vari-
ability measurements between paired elements of the five sets.
This allows us, for instance, to measure whether there is a sta-
tistically significant reduction of interoperator variability in
edited semiautomatic segmentations, versus edited automatic
segmentations.

2.5 Required Editing Time and Correlation
with Spatial Error Metrics

For each label, we recorded the interaction time that was
required to have a clinically acceptable segmentation using
manual, semiautomatic, and automatic segmentation methods,
answering research question (3). The time was documented
from the moment when the operator began reviewing and edit-
ing the segmentation until the moment the operator verbally
confirmed that the segmentation was ready to be used in clinic.
The editing time included browsing through the slices in the 3-D
volume, reviewing the segmentation, adding to and removing
from the segmentation, window and level adjustment, editing
tool selection and adjustment, and zooming in and out. For
each of the three conditions, the mean and standard deviation
of the interaction time was calculated across the five presented
MRI scans separately for each operator, and also in aggregate
across all five operators. For the semiautomatic algorithm, we
measured the interaction time required for algorithm operation
and included this interaction time as part of the time required for
the condition involving semiautomatic segmentation.

We evaluated the degree to which measured spatial error met-
ric values can be used as surrogates for the amount of editing
time needed to achieve a segmentation that is satisfactory to the
operator, answering research question (4). To do this, all five of
our error metrics were calculated for the whole gland, apex, mid-
gland, and base, comparing the pre-editing segmentation to the
postediting segmentation for the automatic and semiautomatic
segmentations (conditions 1 and 2 in Fig. 1), using the postedit-
ing segmentation as the reference where applicable. We mea-
sured the monotonicity of the relationship between each
metric value and editing time using Spearman’s rank-order cor-
relation (ρ). We tested the statistical significance of the correla-
tion coefficients using the null hypothesis that there was no
association between the error metric values and editing time

values. For all tests, the sample size was 50 (10 images each
contoured by 5 operators).

3 Results

3.1 Spatial Editing Magnitude and Interoperator
Variability

Figure 4 shows the spatial magnitude of editing required for
automatic, semiautomatic, and manual segmentations for oper-
ators to achieve final edited segmentations suitable for clinical
use. As might be expected, the general trend is that the automatic
segmentations required the most editing, followed by the semi-
automatic and manual segmentations. However, this trend was
not reflected in all of the error metrics. For instance, looking at
the DSC and recall metrics, we detected no significant differ-
ence in the amount of editing applied to the automatic versus
semiautomatic segmentations based on these two metrics.
Operator editing of manual segmentation consistently decreased
segmentation volume without substantially affecting precision.
This suggests that the manual pre-editing segmentations were
deemed by the operators to be oversegmentations, and editing
drew the boundaries inward by an amount reflected by the MAD
metric values in Fig. 4 (MAD < 1 mm, in general). Figure 5
shows the interoperator variability in segmentation before and
after editing, reported using the mean of each segmentation
error metric across all operators for each image, with respect
to a STAPLE reference standard. This analysis revealed signifi-
cant differences in interoperator variability for most of the con-
ditions, for all metrics except for the volume difference. Note the
substantial interoperator variability in manual segmentation
(reflected by large mean metric values and large variability
indicated by the whiskers) for many metrics, relative to the inter-
operator variability in semiautomatic and automatic segmenta-
tions, even when manual editing is applied (e.g., compare the
“manual-pre” measurements to the other measurements for
the MAD metric in Fig. 5). Overall, postediting variability is
lower than pre-editing variability, with postediting automatic
and semiautomatic segmentations having similar variability.
The MAD, DSC, and precision metrics revealed that editing
reduced the amount of interoperator variability for the semiau-
tomatic segmentation condition [compare SA (pre) to SA (post)
in Fig. 5 for these three metrics]. Interestingly, a similar pattern
was observed for the manual segmentations. No significant
differences were found between pre-editing manual segmenta-
tions and computer-assisted segmentations for any of the
conditions or metrics. Postediting automatic segmentation con-
sistently demonstrated lower variability than pre-editing semi-
automatic segmentation. No significant differences were
found between postediting automatic segmentation and poste-
diting semiautomatic segmentation.

3.2 Required Editing Time and Correlation with
Spatial Error Metrics

Table 2 shows the mean� standard deviation of the recorded
time required for each of the three conditions. For the semiau-
tomatic condition, the time required only for editing, as well as
the time required for editing plus the time required to interact
with the semiautomated algorithm are reported separately.
Figure 6 shows the breakdown of these editing times for
each image. Significant differences were found among editing
times for all conditions, except when comparing automatic
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(a) (b)

(c)

(e)

(d)

Fig. 4 Editing magnitude based on (a) MAD, (b) DSC, (c) recall, (d) precision, and (e) volume difference,
showing the differences between the segmentations pre- and postediting for each of the three conditions.
Each bar shows the average metric value for one image across five operators. The error bars indicate
one standard deviation. The horizontal lines indicated statistically significant differences on the averages
of the groups across all the five operators and five images (p < 0.05).
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(a) (b)

(c)

(e)

(d)

Fig. 5 Interoperator variability based on (a) MAD, (b) DSC, (c) recall, (d) precision, and (e) volume differ-
ence. Each bar shows the average metric value for one image across five operators. The error bars
indicate one standard deviation. The horizontal lines indicated statistically significant differences on
the averages of the groups across all the five operators and five images (p < 0.05). SA, semiautomatic.
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segmentation to semiautomatic segmentation. To provide con-
text for these editing times, according to the literature, the
time required for manual prostate delineation on MRI can
range from ∼527 to 20 min per patient,28 or about 1.6 min
for each 2-D slice.29 Our experience is concordant with this
reported time range; timing of manual segmentation on the
five images used in conditions (a) and (b) for one expert operator
yielded a mean� standard deviation segmentation time of
564� 162 s (9∶20� 2∶42 min). Based on Table 2, we observe
that operators spent ∼2 to 3 additional minutes editing com-
puter-assisted segmentations, compared to the amount of time
spent editing manual segmentations performed by a different
expert operator.

3.3 Correlation of Editing Time with the Metric
Values

Table 3 shows the correlations between editing time and spatial
editing magnitudes as measured using our segmentation error
metrics. There were few significant correlations and none had
magnitude >0.5. Significant correlations were predominantly
in the base of the gland. In the base, recall was positively corre-
lated with editing time, and precision and volume difference
were negatively correlated with editing time. This pattern

was observed in the whole gland as well but only weakly in
the mid-gland and not in the apex.

4 Discussion

4.1 Spatial Editing Magnitude and Interoperator
Variability

As shown in Fig. 4, there was a nonzero difference between pre-
editing and postediting expert manual segmentations for all met-
rics. The amount of editing performed on the manual segmen-
tations provides valuable perspective on the amount of editing
performed on the automatic and semiautomatic segmentations.
One might expect that improvements to computer-assisted seg-
mentation algorithms would require amounts of editing asymp-
totically approaching the amounts of editing that operators deem
necessary for expert manual segmentations provided by other
experts (i.e., expert operators would elect to edit outputs
from even an ideal computer-assisted segmentation algorithm).
For studies of computer-assisted segmentation algorithms using
single-operator manual reference standard segmentations for
validation, this observation is especially important; this suggests
that algorithms yielding segmentation error metric values within
the range observed in expert editing of manual expert segmen-
tations could be considered to have essentially the same perfor-
mance. For instance, Fig. 4 would suggest that two algorithms
reporting DSC values of 94% and 96% would be considered to
perform equally, as these values are well within the range of
manual editing of manual segmentations. This observation
could have ramifications for the ranking schemes used for seg-
mentation grand challenges (such as PROMISE1230), sug-
gesting a practical equivalence of some top-ranked algorithms
and a potential means for deciding when top-ranked algorithms
are ready to be moved to the next stage of translation to clinical
use. Although some metrics revealed a significant difference in
the amount of editing required for automatic versus semiauto-
matic segmentations, this significance (and the magnitude of the
difference) varied across metrics. This observation emphasizes
the need for multiple, complementary spatial metrics to compre-
hensively assess the performance of a segmentation algorithm.

Our analysis in Fig. 5 indicates that, in general, allowing
operators to edit provided segmentations reduces interoperator
variability in segmentation, compared to the interoperator

Table 2 User manual interaction time for ready to use prostate seg-
mentation in T2w MRI.

Segmentation
labels

No. of
images

No. of
Operators

User interaction
time

Manual 5 5 213� 90 s
(3∶33� 1∶30 min)

Semiautomatic 5 5 328� 126 s
(5∶28� 2∶06 min)

Semiautomatic
(user interaction
time included)

5 5 351� 128 s
(5∶51� 2∶08 min)

Automatic 5 5 393� 146 s
(6∶33� 2∶26 min)

Fig. 6 User manual interaction time on manual, semiautomatic (S.A.) and automatic segmentations. The
statistically significant differences indicated with * on the averages of the groups across all the five
images (p < 0.05).
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variability resulting from manual segmentations performed from
scratch. The trend held even when comparing manual segmen-
tations performed from scratch to manual segmentations that
have been edited to satisfaction by another operator. This result
underscores the value of providing operators with a starting seg-
mentation for editing as this could improve the reproducibility
of prostate segmentation, which is important for multicenter
clinical trials and consistency of patient care in clinical practice.
While the lowest interoperator variability resulted from giving
operators a starting segmentation performed manually by
another expert, in clinical practice, this is clearly impractical.
From this perspective, the automatic segmentation could be
seen as a practical alternative approach to obtain the starting seg-
mentation. Although the difference in interoperator variability
between postediting manual segmentations and postediting
automatic segmentations was statistically significant, inspection
of Fig. 5 reveals that this difference is very small from a practical
perspective (<0.5 mm in terms of MAD; 5% in terms of DSC,
recall and precision; and 1 cm3 in terms of volume difference).
This leads to the hypothesis that providing operators with an
automatic segmentation with accuracy metric values similar
to ours (Table 1) as a starting point will yield superior interop-
erator reproducibility even after editing, compared to manual
segmentations performed from scratch. This hypothesis needs
to be tested in a larger study covering a broader range of seg-
mentation algorithms, a larger dataset, and a larger pool of oper-
ators having different experience levels.

4.2 Required Editing Time and Correlation with
Spatial Error Metrics

Our results suggest that the use of automatic or semiautomatic
segmentation algorithms to provide a starting segmentation for
editing should reduce the total amount of time required to
achieve a clinically acceptable segmentation, relative to typical
reported times required for manual segmentations performed
from scratch. Our results also suggest that the difference in
total time required to use our automatic versus semiautomatic
segmentation algorithms for this purpose is small, when the
time required to interact with the semiautomatic segmentation
algorithm is taken into account. Thus, the choice in this regard
may come down to operator preference; the semiautomatic seg-
mentation algorithm allows the operator to specify the apex-to-
base extent of the prostate, reducing the need for editing involv-
ing adding or removing entire slices in these regions. This comes
at the cost of needing to wait for <60 s for the segmentation to
be computed online, whereas the automatic segmentations can

be computed offline immediately after MRI scanning and thus
would appear instantaneously to the operator at time of editing.
Our results also showed that operators spent more time in edit-
ing the computer-assisted segmentations, compared to the time
spent in editing manual segmentations by another expert oper-
ator. We posit that this difference in editing time is an important
metric for determining the suitability of a computer-assisted seg-
mentation algorithm for translation to clinical use in scenarios in
which for safety or other reasons, expert operator verification for
necessary editing will be performed on every segmentation.
From this perspective, there is room for improvement in our
semiautomatic and automatic algorithms of ∼2 to 3 min of edit-
ing time per prostate in order to achieve concordance with the
amount of editing performed on manual segmentations.

Table 3 indicates a consistent negative correlation of the pre-
cision metric value with editing time, with statistically signifi-
cant correlations in all anatomic regions except for the apex.
This implies that the greater the false positive area in a com-
puter-assisted segmentation, the greater the time that will be
required to edit the segmentation to a clinically acceptable
level. This is corroborated by the consistent positive correlation
with the volume difference metric (again, significant everywhere
except the apex), implying that the greater the amount of over-
segmentation performed by computer-assisted segmentation
algorithm, the more editing time that will be required.
Comparing the correlation coefficients for precision and volume
difference within the apex, mid-gland, and base, the strongest
correlations were found in the base region. This implies that
the above relationships are especially applicable for false-pos-
itive regions and oversegmentation of the base. However, based
on these observations, one could make only a weak recommen-
dation that the amount of necessary editing time could be esti-
mated based on the precision and volume difference spatial error
metric values; although the correlation coefficients are sta-
tistically significant in many cases, they do not have high
magnitude.

The lack of strong correlations in Table 3 implies weak rela-
tionships between editing time and spatial editing magnitudes,
as measured by our segmentation error metrics. The observa-
tions in the previous paragraph notwithstanding, this implies
that in general, one cannot use spatial metrics such as the
MAD, DSC, precision, recall, and volume difference to estimate
the amount of time that an operator will require to produce a
clinically acceptable segmentation using the output of a segmen-
tation algorithm as a starting point. This is an important obser-
vation since in most clinical workflows, time is a scarce and
valuable resource; if it takes (nearly) as long to edit a segmen-
tation from an algorithm as it does to perform a manual segmen-
tation from scratch, the clinician may be inclined toward the
simpler approach of performing manual segmentation. We sur-
mise that this issue is a major contributor to the present state of
affairs, in which the academic literature has produced many hun-
dreds of computer-assisted segmentation algorithms and yet
very few of them have moved forward to clinical use. This
leads to the conjecture that the most important metrics to com-
pute when evaluating the suitability of an algorithm for clinical
translation are operator variability, measured using spatial met-
rics, such as MAD, DSC, and so on, and editing time, measured
directly using a sample of multiple operators. Viewed through
this lens, the ideal segmentation algorithm would yield low
operator variability and low editing time. This suggests that a
potential reevaluation of the use spatial metrics for measuring

Table 3 Correlation between editing time and spatial editing magni-
tude measured using five metrics. Each value is the Spearman’s cor-
relation coefficient between the value of each error metric and editing
time. The bold numbers indicate statistically significant correlations
(p < 0.05).

Anatomic region MAD DSC Recall Precision ΔV

Whole gland 0.204 0.18 0.361 −0.341 0.417

Apex 0.206 −0.081 −0.194 −0.138 0.092

Mid-gland 0.263 −0.149 0.149 −0.282 0.312

Base −0.14 0.367 0.428 −0.305 0.406
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segmentation “accuracy” may be in order, since in most prac-
tical clinical workflows, the final segmentation as edited and
approved by the clinician will be used for its clinical purpose
and could be considered 100% “accurate” for practical purposes.
This observation supports engineers and computer scientists
aiming for the concrete goal of “producing a clinically useful
segmentation in a minimum amount of time,” in lieu of setting
our aims according to the nebulous notion of accuracy, with all
of its attendant issues (e.g., differing expert opinions on what
constitutes a correct segmentation, issues regarding whether
“gold standard” expert segmentations truly delineate the histo-
logic boundary of the target of interest).

4.3 Limitations

This work must be considered in the context of its strengths and
limitations. We acknowledge that given our image sample size
and number of operators participating in the study, this is a
descriptive, hypothesis-generating study that points the way
to potentially fruitful studies on larger sample sizes with suffi-
cient statistical power to draw firmer conclusions. We also
acknowledge that although the editing interface we used, involv-
ing a mouse-driven variable-sized paintbrush tool, is concordant
in its mode of operation with the interfaces used in many clinical
workflows, it does constitute only a single mode of performing
segmentation editing. Thus, our study generates no knowledge
about the impact of the choice of editing tool on editing times,
and this would be a subject of valuable further study. Finally, in
this user study, we tested only two computer-assisted segmen-
tation algorithms; a more comprehensive future study involving
a broader cross-section of current algorithms is warranted.

4.4 Conclusions

In this paper, we conducted a user study measuring the amount
of spatial editing performed by expert users on segmentations
generated manually, semiautomatically, and automatically. We
measured the interoperator variability in segmentation before
and after editing, and measured the relationship between editing
magnitude and time spent editing. With reference to the enumer-
ated research questions in Sec. 1 of this paper, we have reached
four main conclusions, with the acknowledgment that our sam-
ple size implies that these conclusions should be considered as
hypotheses to test in future, larger studies. (1) As would be
expected, the operators performed the most spatial segmentation
editing on the automatic segmentations, followed by the semi-
automatic segmentations, and the least amount of editing on the
manual segmentations. The measured editing magnitudes varied
according to the error metric used, reinforcing the value of using
multiple, complementary error metrics in segmentation studies,
rather than focusing on one or two typically used metrics (e.g.,
the MAD and DSC). (2) Providing operators with a starting seg-
mentation for editing, either performed manually by another
operator or (semi-)automatically through an algorithm, yielded
lower interoperator variability in the final segmentation, com-
pared to interoperator variability in manual segmentations per-
formed from scratch (as is frequently performed in clinical
workflows currently). Interoperator variability resulting from
using our automatic algorithm to generate starting segmenta-
tions was not substantially higher than that resulting from
using expert manual segmentations as starting segmentations,
suggesting a role for our automated segmentation algorithm
in this context. (3) The use of our automatic or semiautomatic

segmentation algorithms to generate starting segmentations for
editing is expected to decrease the total required segmentation
time, compared to the time required to perform manual segmen-
tations from scratch, and the choice of automatic versus semi-
automatic segmentation for this purpose comes down to
operator preference. (4) The necessary time requirement for seg-
mentation editing cannot be reliably predicted from spatial seg-
mentation error metrics in all anatomic regions of the prostate.
Thus, for the many clinical workflows, where manual segmen-
tation review and editing will be performed for safety and other
reasons, and minimization of editing time is a primary goal, the
fact that one algorithm outperforms another in terms of spatial
metrics such as the MAD and DSC does not imply that the algo-
rithm is more suitable for clinical translation. In such contexts,
where the medical expert’s final edited segmentation is taken as
correct for practical purposes, the ideal segmentation algorithm
supports the expert’s obtaining a clinically acceptable segmen-
tation in a minimum amount of time while minimizing interop-
erator segmentation variability. This increases the volume of
patients that can be treated and simultaneously supports consis-
tent quality of the intervention patients receive.

Appendix
The automatic segmentation method consists of two main steps:
training and segmentation. The training step is identical to the
training step used in the semiautomatic method and fully
described in Ref. 17. At a high-level, during training, the algo-
rithm learns (1) the local appearance of the prostate border
through extracting a set of locally defined mean intensity
image patches and (2) the prostate shape variation across the
training image set by extracting 2-D statistical shape models
for the prostate at each axial cross-section.

To segment a new prostate MR image, the algorithm first
coarsely localizes the prostate region by automatically position-
ing a polygonal template shaped similarly to a typical prostate
shape on the mid-sagittal plane. Then, the algorithm searches
within a region defined based on the template position to
find the prostate border on the axial slices. The segmentation
is described in detail below.

Anterior rectal wall boundary determination: The first step
for positioning of the template was to fit a line to the anterior
rectal wall boundary on the mid-sagittal slice of the image. To
define the line, we extracted 10 equally spaced line intensity
profiles (every second line) on the mid-sagittal image slice, par-
allel to the axial planes, and nearest to the mid-axial slice. Along
each line, running from anterior to posterior, we selected a can-
didate point at the minimum of the first derivative (the point of
sharp intensity transition from bright to dark at the rectal wall).
We reduced the search space along each profile by covering 50%
of the mid-sagittal plane width in the anteroposterior direction,
starting from a 30% offset from the anterior-most extent of the
plane. We tuned an optimizer to treat 40% of the points as out-
liers by computing a least-trimmed squares fit31 line to the can-
didate points. The dashed line in Fig. 7 shows the resulting rectal
wall boundary line.

Inferior bladder boundary determination: The next step was
to define the inferior boundary of the bladder on the mid-sagittal
plane. We defined a set of lines oriented parallel to the rectal
boundary line defined in the previous step. We extracted the
intensity profile along each line and running from superior to
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inferior, we selected loci of minimum first derivative of the
intensities, corresponding to the sharp intensity transition
from bright to dark at the bladder border. We defined the parallel
lines with 2 mm spacing starting 5 mm anterior to the rectal wall
and limited the search space along the lines to the segments
lying within the superior half of the image. We removed the
points forming a local concave shape near the posterior end
of the curve (i.e., inconsistent with bladder inferior aspect
anatomy). Then, we computed a least-trimmed squares fit31 pol-
ynomial curve (second-order curve when the candidate point
configuration yielded a convex shape and first-order curve oth-
erwise) to the points with the optimizer tuned to treat 20% of the
points as outliers. The dashed curve in Fig. 7 shows the deter-
mined bladder boundary.

Coarse prostate localization by template fitting: A prostate
shape template (described in Fig. 7) was defined based on pros-
tate dimensions readily available from the prostate ultrasound
examination performed prior to MRI. The prostate template
was positioned inferior to the bladder boundary curve, parallel
to the rectal wall line and 3 mm anterior to it along a line
perpendicular to the rectal wall line. The template was posi-
tioned to have a single contact point between the template
and bladder boundary curve (Fig. 7).

3-D prostate boundary localization: The final segmentation
step was to define the surface of the prostate in 3-D. The tem-
plate position defined the center points for the base-most slice,
the apex-most slice, and the mid-gland slice equidistant to the
base- and apex-most slices. By interpolation of these three
points using piecewise cubic interpolation, we estimated the
center points for all the axial slices between base and apex.
Then, we used the approach described in detail in Ref. 17
for prostate boundary localization. At a high level, for each
slice, we defined 36 equally spaced rays emanating from the
center point. Each ray was corresponded to one of the mean
intensity image patches extracted during training. We translated
the image patch along the ray to select a point on the ray whose
circular image patch had the highest appearance similarity to the
mean intensity patch, using the normalized cross-correlation

similarity metric. After selecting 36 prostate border candidate
points for each slice, 2-D shape regularization was performed
using the corresponding shape model extracted during training.
3-D boundary localization was finalized by 3-D shape regulari-
zation. Full details are available in Ref. 17.

This method was tested using leave-one-out cross validation
using a dataset of 42 images. The segmentations given by the
algorithm were compared to segmentations performed by a sin-
gle human expert operator. This experiment yielded a MAD of
3.2� 1.2 mm, DSC of 71%� 11%, recall of 69%� 15%, pre-
cision of 76%� 12%, and ΔV of −3.6� 1.4 cm3. Execution
time was 54� 13 s.
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