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Abstract 

Inclusive fitness models in sociobiology emphasize the importance of relatedness, R, and 

synergy, S when exploring the evolution of social behaviours. Very few models explicitly 

consider ‘role’, or environmental stimuli, influencing the expression of behaviours, and 

none consider genetic-environment interactions where genotype predisposes individuals 

to certain roles. I propose a third key variable for inclusive fitness models, Q, which 

describes the overlooked potential bias in the genetic composition of individuals exposed 

to an environmental stimulus – here referred to as ‘role’. I describe a model built from 

Price’s formula which can be presented in a ‘Hamilton’s Rule’ format. I consider classic 

social behaviour models using this format, and find that the inclusion of gene-

environment interactions dramatically changes the results. This, in conjunction with the 

increasing evidence supporting gene-environment interactions in eusocial caste 

determination, suggests that current inclusive fitness models may be missing key details 

about the evolution of social behaviours. 

Keywords 

Inclusive fitness, kin selection, Price equation, social evolution, modelling, Hamilton’s 

Rule, conditional expression, conditional strategies, Hawk/Dove/Bourgeois game, 

altruism, eusociality, gene-environment interactions. 
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Summary for Lay Audience 

To understand the evolution of social behaviours, evolutionary theorists must consider 

the direct fitness effects of a behaviour – how the behaviour influences the reproductive 

success of those enacting it, or ‘actors’ – and the indirect fitness effects of the behaviour 

– how the behaviour influences the reproductive success of individuals interacting with 

the actors. The combination of these two fitness components, called inclusive fitness, can 

be described in a simple mathematical form: RB – C > 0. When the relatedness, R, 

between the actor and recipient of the behaviour, is multiplied by the effect, B, that the 

actor’s behaviour has on the recipient, minus the effect of the actor’s behaviour on itself, 

C, is greater than zero, the behaviour is favoured by selection. This mathematical 

expression, commonly referred to as Hamilton’s Rule, helps to make clear how 

behaviours such as altruism can evolve. Hamilton’s Rule does not explicitly consider 

behaviours that are expressed conditionally depending on environmental factors however, 

nor does it consider the interaction of environmental factors and the genes involved in a 

behavior’s expression. For my thesis, I develop a mathematical model that expands upon 

Hamilton’s Rule to include conditionally expressed behaviours and the possibility for an 

interaction between the genotype of actors and the environmental stimuli to which they 

are exposed. Using my model, I explore a classic social behaviour example and find that 

when conditional expression and gene-environment interactions are considered, the 

outcome of this example change dramatically. Current sociobiological models that do not 

include these factors may not be getting the full picture of how social behaviours can 

evolve.  
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1 Introduction 

Natural selection does not act solely on the individual. Discussed ad nauseum by 

evolutionary theorists for decades, the concept of indirect selection was touched upon 

even in Charles Darwin’s The Origin of Species (1859). While the majority of Darwin’s 

arguments supporting natural selection focus on examples of direct fitness effects – i.e., 

how an individual’s traits may affect its own reproductive success – he also touched upon 

the concept of selection acting on traits in one individual that affect the reproductive 

success of others, what are now known as indirect fitness effects. In his monumental 

book, Darwin discusses potential real-life examples of behaviours that may be difficult to 

explain with his theory of natural selection. One such example, which he referred to as 

“one special difficulty,” involved the evolution of sterile castes in eusocial insects.  

Eusocial insects such as ants, bees, wasps, and termites are differentiated into 

reproductive castes, such as queens and drones, and nonreproductive castes, such as 

workers. Nonreproductive castes in eusocial colonies – as the name suggests – do not 

produce their own offspring, and instead invest energy into helping reproducing relatives 

in ways that increase their (the relatives’) reproductive output. If natural selection only 

acted on traits that improve an individual’s direct fitness, sterile castes would be 

considered an anomaly that went against Darwin’s theory. Darwin understood this 

potential problem however, and resolved it to some degree by considering other ways in 

which selection may act, writing: 
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“This difficulty, though appearing insuperable, is lessened, or, as I believe, 

disappears, when it is remembered that selection may be applied to the family, as 

well as to the individual, and may thus gain the desired end.” 

In this way, ahead of his time, Darwin speculated upon the concept of indirect selection.  

1.1 Indirect selection theories 

Following The Origin of Species, the prevailing understanding of how traits detrimental 

to an organism’s direct fitness (for example, sterility in eusocial insects) might evolve 

became the topic of much investigation (Boomsma 2016). One highly controversial book 

exploring this topic, written by Wynne-Edwards (1962), strongly argued in support of 

group selection theory, which he defined as selection acting on traits which contribute to 

“the welfare and survival of the group… and when necessary subordinating the interests 

of the individual.” The history of literature on group selection is somewhat conflicting, 

with some works describing Wynne-Edwards as the first to coin the term (e.g., Williams 

1966, p. 96) despite its use much earlier in the literature (e.g., Fisher 1930), and others 

describing the concept as being widely accepted up until 1966 (e.g., Wilson 1983). It has 

been argued (Borello 2005) that Darwin also used group selection – though he did not use 

that terminology – as a solution for some of the difficulties he faced when applying 

natural selection to, for example, sterile worker castes in eusocial insects. The confusion 

here is likely due to the inconsistency in defining group selection, and a lack of historical 

reflection on the subject by some authors. David Sloan Wilson (1983), in discussing the 

mathematical approach to group selection, called the subject “polyphyletic,” as models of 

group selection seem to have stemmed from multiple authors (e.g., Wright 1945, Wynne-
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Edwards 1962, Maynard Smith 1964), with some neglecting to cite others’ previous 

works. 

In the meantime, other methods for exploring indirect selection were developing. Fisher 

(1930), for example, followed Darwin in considering the possibility of natural selection 

favoring traits detrimental to an individual if the individual’s relatives benefitted as a 

result. Haldane, often cited for his alleged comments about jumping into a river to save 

two brothers or eight cousins, also wrote of relatedness as a potential means for 

behaviours which are “socially valuable but individually disadvantageous” to evolve 

(1932, p. 207): 

“For a character of this type can only spread through the population if the genes 

determining it are borne by a group of related individuals whose chances of 

leaving offspring are increased by the presence of these genes in an individual 

member of the group whose own private viability they lower.” 

Sewall Wright, in his time, seems to have come the closest to developing an effective 

mathematical representation of indirect selection involving relatives, but failed to put the 

pieces together effectively. In 1922, Wright developed a coefficient of relationship, r, 

which he used to measure the level of relatedness between two focal individuals. Later, in 

a 1945 book review, Wright described a group selection model that illustrated how a 

“character of value to the population, but disadvantageous at any given moment to the 

individuals” may evolve, depending on a minimum benefit to the population caused by 

the trait, and a maximum disadvantage experienced by the individuals possessing the 

trait. He did not, however, include his coefficient of relatedness in this model. While it is 
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impossible to know why these researchers – known by some as being the founders of 

population genetics – were unable to develop an effective mathematical model of the 

problem they so clearly could describe verbally, Alan Grafen had some insight on the 

matter (Dugatkin 2007). It is possible that, because the economic-based approach to 

population genetics had not become popularized during the times of Fisher, Haldane and 

Wright, they did not have the foundational perspective required to make the appropriate 

connection in their work. The individual who did have this economic perspective was 

William Donald Hamilton.  

1.2 Inclusive fitness theory and Hamilton’s rule 

Hamilton was an undergraduate student at Cambridge University when he discovered 

Fisher’s The Genetical Theory of Natural Selection – a book which absorbed Hamilton to 

the point where his coursework suffered. Captivated by Fisher’s work, Hamilton was 

lucky enough to meet the professor himself, who happened to be teaching genetics at 

Cambridge University at that time. Despite getting along well with Fisher, Hamilton 

struggled to enjoy his undergraduate degree due to the lack of support for evolutionary 

theory from some of his professors (Grafen 2004). Possibly as a result of this, for his 

graduate degree Hamilton initially enrolled in an MSc in human demography at the 

London School of Economics. As his work shifted towards his interests in genetics and 

mathematics however, Hamilton transferred into a joint supervision at both the London 

School of Economics and University College London (Dugatkin 2007). During his 

graduate education, Hamilton remained interested in evolution and genetics and was 

greatly influenced by Fisher’s ‘Fundamental Theorem of Natural Selection’ (1930) which 

states: 
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“The rate of increase in fitness of any organism at any time is equal to its genetic 

variance in fitness at that time.” 

Hamilton sought to develop a mathematical model that was as generally applicable as 

Fisher’s theorem while remaining useful even for scenarios involving social behaviour, in 

which individuals behave in such a way that influences the fitness of others (of the same 

species). In his studies, Hamilton recognized the connection between relatedness and 

social behaviours referenced by previous researchers (see previous section for examples) 

(Hamilton 1964 II). Making use of Wright’s coefficient of relationship, Hamilton worked 

to create a model which considered the fitness effects of social behaviours and the 

relatedness between the social interactants involved. One difficulty he faced was the 

implication of Fisher’s fundamental theorem that the number of offspring an individual 

produced was dependent on its own genotype, not the genotype of other individuals 

(Grafen 2004).  

To fully understand the complication Hamilton faced, consider nonreproductive castes in 

eusocial insect colonies as an example. Nonreproductive workers in these colonies have 

evolved such that they themselves do not reproduce, but instead convey fitness benefits to 

reproducing queens. If we focus on the fitness benefits conveyed to the queen when 

modeling the evolution of the workers’ behaviour, we must take into consideration not 

only the queen’s genotype, but the genotype of the workers, because their behaviour is 

(presumably) caused by their genotype. In doing so, we imply that the number of 

offspring produced by the queen is dependent on both her genotype and that of the 

worker, but do not consider this interaction from the perspective of the workers. The 

question thus remains: why would workers give up their own fitness to help the queen? 
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To tackle this question, Hamilton developed the concept of inclusive fitness, which 

considered the fitness effects of an individual’s behaviour towards relatives as indirectly 

affecting its own fitness (Hamilton 1964 I). Thus in our eusocial insect example, we 

would consider the fitness benefit conveyed from a worker to a queen as indirectly 

affecting the worker’s own fitness. This concept can be formally written as an inequality, 

now commonly known as ‘Hamilton’s Rule’, which weighs the fitness effect that a focal 

individual (FI) has on another individual by the degree to which they are related, and 

compares this to the fitness effect that the FI has on itself. This can be written as 𝑅𝐵 > 𝐶, 

where R is approximate to Wright’s coefficient of relationship, RB is the indirect fitness 

effect experienced by the FI (calculated by multiplying R by the fitness effect the FI has 

on another individual, B), and C is the fitness effect that the FI causes to itself 

(alternatively written as RB – C > 0, depending on the signs of each coefficient).  When 

Hamilton’s Rule is fulfilled, the FI is said to be working to maximize its inclusive fitness 

– a measure of all direct and indirect fitness effects to the FI caused by its behaviour. See 

sections 2.1 and 2.2 for a full derivation of Hamilton’s Rule. 

In the years following his original 1964 publications, Hamilton worked to improve upon 

the minor weaknesses in his inclusive fitness formulas. With help from George R. Price, 

a population geneticist who has significantly contributed to selection mathematics, 

Hamilton re-derived his measure of relatedness R to encompass a wider variety of 

circumstances, such as inbred populations or spiteful behaviours (Grafen 2004). This new 

derivation of R has been the source of some confusion in previous literature (Gardner et 

al. 2011), as well as discussion of alternative measures of relatedness (Michod and 

Anderson 1979). For clarity, I will briefly review here both Wright’s (1922) coefficient 
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of relationship used as an estimator in Hamilton’s original (1964) models, and 

Hamilton’s re-derived ‘coefficient of relatedness’ described in his 1970 and 1972 works.  

Wright’s coefficient of relationship is calculated using inbreeding coefficients – a 

measure of the likelihood that an individual bears two copies of the focal allele as 

opposed to just one (i.e. it is autozygous for the focal allele) (Hamilton 1972). Using 

these inbreeding coefficients, Wright was able to trace back pedigrees to calculate the 

likelihood that two focal individuals share alleles at a given locus that are ‘identical by 

descent’ (IBD), or descended without mutation from the same ancestral allele in a 

common ancestor (Hill 1996; Michod and Anderson 1979). Wright’s relationship 

coefficient is therefore limited to positive values between 0 and 1. This seems reasonable; 

intuitively, we would not expect to find a “negative” relatedness value between 

individuals. For inbred populations, however, this type of measurement will be less 

useful, as two random individuals in the population may be more likely to share identical 

alleles at a given locus than two focal individuals. To avoid this problem, Hamilton re-

derived his inclusive fitness formula to include a coefficient of relatedness which 

incorporates Wright’s coefficient weighted against the likelihood that any two random 

individuals in the population will share genes IBD (Hamilton 1970). Many authors have 

since attempted to add to or modify this relatedness formula, with varying limitations or 

assumptions required for each. An overview of the various derivations of R was 

published in 1980 by Michod and Hamilton, who showed that these alternative formulas 

were effectively equivalent. The most effective and widely applicable form of R 

supported in Michod and Hamilton’s review paper was originally described by Orlove 

(1975) and Orlove and Wood (1978). The formula is described in Michod and Hamilton’s 
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(1980) publication as the covariance between a FI’s genotype at a given locus, z, and the 

genotype of its social partner, z’, divided by the variance of the focal allele in the 

population Z, or 𝑅 = 𝐶𝑜𝑣(𝑧, 𝑧′) 𝑣𝑎𝑟(𝑍)⁄ . This can be interpreted as the extent to which 

the genotype of any given FI in the population matches that of its partner, divided by the 

extent to which the genotypes of any two random individuals in the population match. 

This regression form of R has fewer limitations than Wright’s coefficient of relationship. 

If, for example, the FI and partner are less related than two random individuals in the 

population, the resulting R would be negative. With this less restrictive measurement of 

relatedness, we can now model behaviours like spite, which tend to involve negative R 

values (Gardner and West 2004). I will be using this formula of R for my methods. 

1.3 Controversy of inclusive fitness theory 

Hamilton’s inclusive fitness theory has often been cited as ‘revolutionizing’ the study of 

social behaviours (e.g., Michod 1982), and its utility has been supported in numerous 

studies (Bourke 2014). Despite this, controversy has surrounded Hamilton’s work for 

decades. Perhaps the most famous source of disagreement is the so-called ‘haplodiploidy 

hypothesis’. In his 1964 papers, Hamilton discussed the prevalence of high relatedness 

values between haplodiploid eusocial insect workers: full-sibling workers in these 

colonies often show R values of 0.75 at any given locus (as opposed to 0.5 in full sibling 

diploids). According to Hamilton (in 1964, at least), this high relatedness might help 

explain why eusociality is so prevalent in haplodiploid hymenopterans. At the time, 

however, Hamilton failed to recognize the resulting lower relatedness between sisters and 

brothers in haplodiploids (0.25). Several critics of inclusive fitness theory leapt at this 

oversight, treating it as key evidence that Hamilton’s rule was incorrect (for example, see 
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Wilson 2005, Nowak et al. 2010). Hamilton’s haplodiploidy idea is not required for 

inclusive fitness to work however, despite the insistence otherwise by some (Foster et al. 

2006, Gardner et al. 2011). 

Another source of confusion regarding the utility of Hamilton’s rule involves the 

perceived requirement of additive fitness effects. When the fitness effects of a social 

interaction are additive, the change in fitness to the FI after an interaction with its partner 

is equal to the sum of the fitness effects of each individual’s behaviour. For example, if 

the FI’s behaviour increases its own fitness by X, and the partner’s behaviour increases 

the FI’s fitness by Y, the additive fitness effect of a social interaction between the FI and 

its partner would be X + Y. If there is a synergistic effect, however, and the combined 

behaviours of the FI and its partner result in a fitness effect greater than (or alternatively, 

less than) X + Y, then the fitness effects of their behaviours would be considered 

nonadditive. Several authors (e.g., Queller 1992, Fletcher and Doebeli 2006, Nowak et al. 

2010) have argued that there is an implicit assumption of additive fitness effects in 

Hamilton’s rule, with many regarding B and C to be additive fitness parameters that can 

be freely and independently varied in any given model. This has led some (e.g., Queller 

1992) to believe that a third fitness parameter, sometimes labeled D, must be added to 

Hamilton’s rule to represent nonadditive or synergistic effects not included in B and C. In 

reality, B and C are regression coefficients derived from a least-squares regression 

analysis, the formulas for which encapsulate both additive and nonadditive fitness effects 

(see full derivation in sections 2.1 and 2.2) (Gardner et al. 2011). As explained in 

Gardner et al. (2011), alternative inclusive fitness models that partition the nonadditive 

and additive fitness effects, such as those described by Queller (1992), are still useful for 
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understanding how different components of inclusive fitness influence selection. The 

point here is that Hamilton’s rule is still valid with nonadditive effects, which are already 

encapsulated by Hamilton’s original coefficients B and C. In fact, different types of 

fitness effects can be partitioned out of these coefficients directly, the methods for which 

I will describe in Section 2.2. 

1.4 Applications 

Despite ample criticism, Hamilton’s inclusive fitness theory was eventually widely 

supported by evolutionary geneticists and is considered to have significantly contributed 

to the Modern Synthesis and the genetical theory of natural selection. Prominent 

supporters of inclusive fitness, such as George C. Williams (who was among the first to 

support the theory publicly), hail Hamilton’s rule for its wide applicability and utility for 

understanding the evolution of adaptation and social behaviours (Bourke 2011, Boomsma 

2016). As discussed above, Hamilton’s rule can be applied not only to cooperative and 

altruistic behaviours, but also selfish and spiteful ones, depending on the values of R, B 

and C. This formula is not limited to the study of theory either – Hamilton’s rule can be 

applied to real-world data to investigate the mechanisms behind the evolution of a wide 

variety of behaviours. Loeb (2002), for example, used Hamilton’s rule to study the 

evolution of egg dumping in the lace bug Gargaphia solani, and found the fitness effects 

of this behaviour support it being altruistic (as opposed to selfish or cooperative) in 

nature. These practical applications of Hamilton’s rule help to answer specific questions 

about social behaviour, often with a focus on specific organisms. Theoretical 

applications, by contrast, look to explore the overarching mechanisms behind the 

evolution of such behaviours – the why and how as it applies to all life on earth. Theory 
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provides the foundation for practical research to build from – Hamilton’s inclusive fitness 

theory, for example, has illuminated the importance of indirect fitness effects in the 

evolution of some social behaviours.  

Since Hamilton’s original 1964 papers, some evolutionary theorists have worked to 

further investigate the evolution of social behaviours through inclusive fitness models. It 

is now well understood that inclusive fitness plays an important role in behaviours such 

as altruism and spite, but how does that manifest in life? Questions of dispersal by 

individuals from their natal sites, the conditional expression of genes for social 

behaviours, gene penetrance, intra-genomic conflicts, and many more have been 

investigated and are still being explored via inclusive fitness models. Charlesworth 

(1978), for example, compared models of the evolution of altruistic behaviour by means 

of parental manipulation (in which reproductive mothers influence their offspring to 

behave altruistically) and kin selection, where individuals behaved altruistically towards 

their siblings with a specified probability. The results of these models revealed several 

interesting implications, such as how the B and C values required for altruism to evolve 

are influenced by the probability of expressing altruism. This makes sense for the model 

because, as Charlesworth himself (1978) put it: 

“The higher the probability of expression of the gene for altruistic behaviour, the 

higher the probability that the sibs being helped do not carry the gene, or that if 

they do, they themselves express it and suffer the concomitant loss in fitness.” 

Charlesworth calls these models “crude” because – as many models do – they require 

broad assumptions that leave out important aspects of the modeled organism’s life 
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history. Despite this, his and many theoretical works allow for a better understanding of 

specific aspects of behavioural evolution. While any one study cannot give us a full 

picture of how, for example, altruistic behaviour evolves, each investigation can 

illuminate pieces of the puzzle which, together, paint a larger picture. 

Another example of research ‘illuminating a piece of the puzzle’ regarding the evolution 

of altruism is Parker’s (1989) research on role-based conditional expression. In nature, 

there are many circumstances in which animals may fall into different roles; birth order 

(or age), territory establishment (owner or invader), size (assuming correlation of 

nutrition with size), and social status are all examples of potential asymmetric roles 

between interacting individuals which generally do not involve differing genotypes. This 

is important for the study of altruism because in many cases, an individual will behave 

altruistically or not depending on an environmental stimulus such as asymmetric roles. In 

honeybees (Apis mellifera), for example, larvae differentially develop into queens or 

workers depending on the diet they are fed by nurse bees (Mao et al. 2015). The 

conditional expression of social behaviours like altruism is thus an important aspect to 

study, and while Charlesworth (1978) used a probability of expression to this end, Parker 

(1989) explored this concept by dividing his model population into roles X and Y. 

Several examples are explored in the paper, but in essence, individuals that possess a 

specific allele or genotype for a given behaviour are modeled such that they only express 

the behaviour associated with their genotype when in a specific role. For example, in the 

sibling competition models, carriers of Parker’s hypothetical focal allele will take more 

resources than their siblings when in role X, but not when in role Y.  
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1.5 Developing Inclusive Fitness Theory 

In this thesis I aim to expand upon the current understanding of conditionally expressed 

social behaviours by developing a general inclusive fitness model based on the methods 

of Gardner et al. (2011). In the model building process, I describe how Hamilton’s Rule 

can be derived from a general evolutionary model, the Price equation, and introduce the 

variables B and C in Hamilton’s Rule as partial regression coefficients of fitness and 

genotype (see sections 2.1 and 2.2). I then begin the development of my model by 

describing a basic structure for the scenarios I will be modelling, identifying the 

parameters involved, and assigning appropriate variables for each component – 

collectively called my Model Foundation (Section 2.3). Using the variables and formulae 

compiled in my model foundation, I find mathematical expressions for the partial 

regression coefficients B and C in Hamilton’s Rule (see Section 2.4). I then apply these 

expressions to Hamilton’s rule (as derived from the Price equation) and describe the 

sociobiological significance of each component of the resulting formula, with particular 

emphasis on the coefficient of relatedness, R, as described by Michod and Hamilton 

(1980), and a coefficient of synergetic pairings, S (see Section 2.5).  

After assembling a base model structure, I explore several themes of conditionally 

expressed social behaviours touched upon by previous researchers such as Parker (1989) 

and Charlesworth (1978), and consider effects that were not included in previous 

inclusive fitness models. From Parker’s work I adopt a similar concept of ‘roles’ for my 

model, such that individuals occupy one of two different roles in an interaction. In nature, 

these roles could represent any asymmetry between the two interactants, such as habitat 
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defense vs invasion, food availability, age, birth order, etc., which may influence the 

conditional expression of a focal social behaviour.  

Current inclusive fitness papers modelling conditionally-expressed social behaviours 

often do so in such a way where the ‘condition’ – the stimulus influencing a behaviour’s 

expression – is allocated at random, or with a given probability, without consideration of 

the genotype of the focal individual. In other words, these models do not allow for gene-

environment interactions that bias an individual’s likelihood of exposure to an 

environmental stimulus. For example, in Parker’s (1989) role-dependent expression 

model, he explicitly states “To obey Hamilton’s rule, roles must be assigned randomly 

with respect to the genotype of the pair of relatives, and a gene must be expressed in one 

role only; i.e. its expression must be conditional upon role.” Given that Hamilton’s 

inclusive fitness theory was somewhat inspired by the behaviours of social insects 

(Grafen 2004), it is understandable why Parker and others may have made this 

assumption. Until relatively recently, it was assumed that eusocial insect castes, such as 

workers and queens, were determined entirely by environmental factors such as diet, or 

the presence of specific pheromones (Schwander et al. 2010). Intuitively, this seems to 

make sense; if castes were genetically determined, queens would be unable to produce 

non-reproductive castes like workers, and these non-reproductive castes would rapidly go 

extinct. With the allowance of conditional gene action (or conditional behaviour 

expression), we may once more consider the prospect of genes influencing the 

determination of caste – i.e., gene-environment interaction.  

To include the possibility of a gene-environment interaction in my model, I introduce a 

third key variable in addition to the coefficient of relatedness R and the synergistic 
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pairings coefficient S, called the ‘asymmetry quotient,’ Q. The asymmetry quotient 

accounts for genetic bias in role by measuring the proportion of individuals carrying a 

focal allele that are found disproportionately in one role over another. To use Parker’s 

roles X and Y (discussed in section 1.4) as an example, Q in Parker’s model could be 

calculated by taking the number of individuals with the focal allele that are in role X in a 

heterogeneous pairing divided by the total number of individuals with the focal allele in a 

heterogeneous pairing. This calculation can be done with either role as the point of focus 

(i.e., it does not matter whether role X or Y is used in the formula, so long as the role 

used is consistent throughout the model). 

With a base model structure with roles assembled, I apply my model to two example 

social evolution scenarios for illustrative purposes. The first scenario, named the 

‘Hawk/Dove/Bourgeois Game’ (or HDB for short), is based on Maynard Smith’s game 

theory model of the same name, and describes the evolutionary dynamics between three 

different behaviour strategies, Hawk, Dove, and Bourgeois, which are adopted by 

individuals when either defending a territory from, or invading the territory of, another 

individual. Inclusive fitness models are often used to investigate social behaviours like 

cooperation, altruism, and occasionally spite, but they are less frequently used for selfish 

behaviours like territory defense. In applying my model to a modified form (see section 

3.1) of Maynard Smith’s HDB game, I hope to show that inclusive fitness models can 

provide insight into how factors like relatedness, synergy, and gene-environment 

interactions can influence the evolution of what seems to be purely selfish behaviour. The 

second scenario I apply my model to is of my own design, and explores the evolution of a 

conditionally expressed altruistic behaviour that is prone to some degree of ‘error’ in its 
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conditional expression. In this scenario, ‘altruism’ is defined as a behaviour that reduces 

the fitness of the FI behaving altruistically and increases the fitness of a social partner 

that shares the same focal allele. I integrate a modified form of Charlesworth’s (1978) 

‘penetrance’ value here, where instead of a probability of expression as Charlesworth 

used, I apply a frequency of error, e (see section 3.2), such that individuals make errors in 

their expression of altruism with frequency e. These errors are meant to represent any 

roadblocks in a FI’s lifetime that prevent it from expressing altruism towards relatives. 

For example, one type of error would be misidentifying an unrelated social partner as a 

relative, and behaving altruistically towards that non-relative.  

With the two example applications of my model described, I explain the results in detail, 

and discuss the implications of my model in the context of current evolutionary theory. 
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2 Model Description 

In the following sections I derive the two main formulae upon which my model is built: 

the Price equation and Hamilton’s rule. I begin with a description of the basic variables 

involved in the Price equation, and how to build Price’s formula using these components. 

I then show how Hamilton’s rule can be derived from a simple rearrangement of the Price 

equation using regression coefficients of fitness and genotype. Following this, I describe 

the various parameters involved in my own application of the Price equation, called my 

model foundation, and how to find expressions for the aforementioned regression 

coefficients using these parameters. Once my base formula is created, I explain how the 

model can be simplified by rearranging it to include the variables R and S, which allow 

for more intuitive interpretation of results. This more simplified formula is explained in 

sociobiological terms, and I introduce the new component I wish to add to the formula, 

Q, to describe fitness effects not clearly represented in the base form of the model. 

2.1 The Price equation 

To construct my inclusive fitness model, I begin with a formula developed by Price 

(1970) that has been used by various researchers – including Hamilton himself (Hamilton 

1970) – to describe the allele frequency change, ∆p, resulting from natural selection and 

other evolutionary forces (e.g., mutation). To derive Price’s formula, consider first a 

simplified scenario involving a population of N haploid, asexual organisms. Each 

individual i (where i = 1, 2, …N) in the F0 (parent) generation has a genotypic value Zi, 

where Zi = 1 indicates that individual i possesses a focal allele, and Zi = 0 indicates that i 

does not possess this allele. Fitness Wi for each individual in this model is expressed as 
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the number of offspring produced, thus Wi = 2 indicates individual i contributes two 

offspring to the F1 (daughter) generation. The average genotypic value of i's offspring 

can be found with Zi + ∆Zi, where ∆Zi is the average difference in genotypic value 

between i and i's offspring. This difference in genotypic value in a diploid, sexual 

population could be the result of individual i’s offspring inheriting a different allele from 

the other parent, but in this haploid, asexual scenario differences in genotypic value 

between parent and offspring may be caused by mutation. Table 2.1 illustrates how these 

data may be laid out for analysis purposes.  

Table 2.1. Example dataset of hypothetical population described for model building, 

where i denotes a number label for each individual from 1 to N. Data in each row 

correspond to the individual i in the far-left column. Zi is the genotypic value of 

individual i, such that a Zi of 1 indicates that individual i possesses the focal allele, 

and a Zi of 0 indicates that it does not. Wi is the number offspring produced by 

individual i. Zi’ is the average genotypic value of i's offspring, calculated by 

summing Zi and ΔZi, which is the average difference in genotypic value between i 

and i's offspring. 

i Zi Wi Zi’ = Zi + ΔZi 

1 1 2 1 – 0.5 

2 0 5 0 + 0 

3 1 3 1 + 0 

⋮ ⋮ ⋮ ⋮ 

N 1 2 1 + 0 
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To find the change in allele frequency Δp, or p’ – p, we first calculate p, which is 

equivalent to the expected value of Z, or E[Z] = ∑
1

𝑁
𝑍𝑖.

1 Similarly, allele frequency for 

the F1 generation, p’,  can be calculated by multiplying fitness Wi, or the number of 

offspring produced by i, with the average genotype of i’s offspring, Zi', summed across 

all is and divided by the number of individuals in the F1 generation, N’. We can easily 

find the size of the F1 generation by summing all Wi values, thus 𝑝′ = ∑ 𝑊𝑖(𝑍𝑖′)/ ∑ 𝑊𝑖, 

which can be rewritten (by multiplying the numerator and denominator by 
1

𝑁′
) as 𝑝′ =

𝐸[𝑊𝑍]+𝐸[𝑊𝛥𝑍]

𝐸[𝑊]
. Calculating Δp can now be done by taking p’ – p to find  

∆𝑝 =
𝐸[𝑊𝑍] + 𝐸[𝑊𝛥𝑍]

𝐸[𝑊]
− 𝐸[𝑍] 

(1) 

which can be rewritten as2 

∆𝑝 =
𝐶𝑜𝑣(𝑊, 𝑍)

𝐸[𝑊]
+

𝐸[𝑊𝛥𝑍]

𝐸[𝑊]
 

(2) 

 

1
 The expected value of a random variable, X, is the sum of all the values X may take on weighted by the 

probability that X will take on that value. In many cases, this can be considered the same as the weighted 

average of X. For this thesis, I will use the terms “expected value” and “average” interchangeably to 

describe parts of my models. In the current example, each individual i contributes equally to the population 

as reproduction only occurs once per organism, thus E[Z] = ∑
1

𝑁
𝑍𝑖. 

2
 Note: The covariance of two random variables, in this case W and Z, is defined as the expected product of 

the individual values minus expected values of each variable, or Cov(W,Z) = E[(Wi – E[W])(Zi – E[Z])]. 

This formula can be simplified to E[WZ] – E[W]E[Z] (see full derivation in Appendix). Thus, Equation 1 

has been simplified as follows: 

   

∆𝑝 =
𝐸[𝑊𝑍] + 𝐸[𝑊𝛥𝑍]

𝐸[𝑊]
− 𝐸[𝑍] =

𝐸[𝑊𝑍] − 𝐸[𝑊]𝐸[𝑍] + 𝐸[𝑊𝛥𝑍]

𝐸[𝑊]
=

𝐶𝑜𝑣(𝑊, 𝑍) + 𝐸[𝑊𝛥𝑍]

𝐸[𝑊]
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This final simplified version is the Price equation. The first term in Equation 2 describes 

the partial change in allele frequency due to selection, ∆𝑠𝑝 =
𝐶𝑜𝑣(𝑊,𝑍)

𝐸[𝑊]
, as a covariance 

between individual fitness, W and genotypic value, Z, for all individuals in the population 

divided by the average population fitness. The second term describes the partial change in 

allele frequency due to other, non-selective effects such as mutation, drive, or even 

cultural transmission (Price 1970; Gardner 2008). Interpreting the above expression is 

relatively straightforward: assuming that the effects of transmission bias (differences in 

genotypic and/or phenotypic value between parents and offspring) are small (though this 

may not always be the case), and because average fitness cannot be negative, we may 

simply focus on the sign of the covariance expression. A positive covariance between W 

and Z indicates an increase in frequency of the focal allele due to selective action, while a 

negative covariance indicates a decrease due to selection against the focal allele. The 

covariance in Price’s formula is valuable in its intuitively appealing results: if carrying a 

focal allele is positively correlated with fitness, one would naturally expect the frequency 

of this allele to increase. 

2.2 Regression 

An alternative form of the Price equation, which may appeal more to quantitative 

geneticists, involves multiplying the variance of the focal allele by a regression 

coefficient of fitness and genotype, such that  

∆𝑝 =
𝛽𝑊𝑍𝑉𝑎𝑟(𝑍)

𝐸[𝑊]
+

𝐸[𝑊∆𝑍]

𝐸[𝑊]
 

(3) 
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where βWZ = Cov(W,Z)/Var(Z) (Gardner et al. 2011). This format allows us to consider 

the partial change in allele frequency due to selection, ∆𝑠𝑝, as a selection gradient 

multiplied by the genetic variance of the population, weighted by the population average 

fitness. To develop my own model predictions in an inclusive fitness context, I will 

employ an alternative approach to analyzing this regression form of the Price equation 

with my model data. Because I am focusing specifically on changes in allele frequency 

due to selective effects in my models, I will from this point be referring solely to the ∆𝑠𝑝 

formula, and omit the second term of Price’s original equation. 

Describing the inclusive fitness effects of a hypothetical allele which influences social 

behaviour (henceforth called a ‘social allele’ for short) involves not only considering how 

a focal individual’s (FI) behaviour will affect its own fitness, but also how any social 

partners’ (other individuals interacting, either indirectly or directly, with the FI) 

behaviours will indirectly affect the FI’s fitness. The coefficient in Equation 3 can be 

partitioned into two for this purpose, such that one coefficient represents the partial 

regression of the FI’s fitness on its own genotype (𝛽𝑊,𝑍|𝑧 = 𝛽𝐹𝐼) and the other represents 

the partial regression of the FI’s fitness on the genotype of a social partner (𝛽𝑊,𝑍|𝑧′ =

𝛽𝑃𝑎𝑟𝑡), which gives 

∆𝑠𝑝 =
𝛽𝐹𝐼𝑣𝑎𝑟(𝑧) + 𝛽𝑃𝑎𝑟𝑡𝐶𝑜𝑣(𝑧, 𝑧′)

𝐸[𝑊]
 

(4) 

Each of the coefficients is multiplied by its respective genotype covariance: 𝛽𝐹𝐼 with the 

covariance of its own genotype, i.e. the variance of the focal allele (Cov(z,z)=var(Z)), and 

𝛽𝑃𝑎𝑟𝑡 with the covariance of the FI’s genotype on its social partner’s genotype. With the 
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understanding that the average genetic relatedness between social partners, R, is defined 

as 𝑅 = 𝐶𝑜𝑣(𝑧, 𝑧′) 𝑣𝑎𝑟(𝑍)⁄  (Michod and Hamilton 1980), we can rearrange Equation 4 to 

show  

∆𝑠𝑝 =
(𝛽𝐹𝐼 + 𝛽𝑃𝑎𝑟𝑡𝑅)𝑣𝑎𝑟(𝑍)

𝐸[𝑊]
 

(5) 

(Gardner et al. 2011). This formula is, in essence, Hamilton’s rule: so long as 𝛽𝑃𝑎𝑟𝑡𝑅 >

𝛽𝐹𝐼, ∆𝑠𝑝 will be positive and the focal allele will increase in frequency over one 

generation. If one were to consider this formula in the context of altruistic behaviours, 

𝛽𝑃𝑎𝑟𝑡 would be Hamilton’s benefit term, B, and 𝛽𝐹𝐼 would be cost, C (Gardner, 2008). 

The interpretation of 𝛽𝐹𝐼 and 𝛽𝑃𝑎𝑟𝑡 here is straightforward when considering only 

additive fitness effects from interactions, meaning that we assume the resulting fitness to 

the FI after an interaction is equal to the sum of the fitness effects of the FI’s behaviour 

and its social partner’s behaviour. In this case, 𝛽𝐹𝐼 would simply measure the average 

difference in residual (individual minus average) fitness to the FI when it possesses the 

focal allele versus when it does not. The term 𝛽𝑃𝑎𝑟𝑡 would then measure the average 

change in residual fitness to the FI when its partner possesses the focal allele versus 

when it does not. If, however, the total fitness effect of an interaction is not equal to the 

sum of the individual fitness effects of the FI and partner’s behaviours (i.e. it is 

nonadditive), the above formula remains valid (Gardner et al. 2011; Queller 1992) but the 

interpretation of each coefficient becomes more complicated, because (in a departure 

from Hamilton’s original formulation) coefficients depend directly on allele frequency. 

If, for example, two carriers of the focal allele interact more effectively than 
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heterogeneous (carrier with non-carrier) pairings, the total fitness effect on the FI may be 

greater than simply the sum of the individual fitness effects. 

To find the mathematical expressions for 𝛽𝐹𝐼 and 𝛽𝑃𝑎𝑟𝑡 which encompass both the 

additive and nonadditive fitness effects of the social behaviours I wish to model, I will 

first describe an evolutionary “game” outlining the rules that will act as the foundation of 

my model. 

2.3 Model Foundation 

Consider a finite population of haploid, asexual organisms, each of which, at one point in 

its lifetime, engages in a pairwise interaction with another individual in the population. 

The behaviour of an individual during this interaction is controlled by a single locus 

where genotype Z = 0 indicates possession of the wild-type allele (A0), and Z = 1 

indicates the mutant allele (A1). Interactions of each type occur at frequency 𝐹𝑧+𝑧′. 

Therefore, interactions between two carriers of the mutant allele A1 occur with frequency 

F2, interactions between two carriers of the wild-type allele A0 occur with frequency F0, 

and interactions between one A1 carrier and one A0 carrier occur with frequency F1. Each 

individual i may experience a fitness cost or benefit dependent on its own behaviour and 

that of its partner. 

The frequency of allele A1, E[Z], in the F0 generation can be calculated by summing the 

frequency values of all pairings involving A1 carriers weighted by the frequency of A1 

interactants in each pairing, giving 𝐸[𝑍]= F2 + ½F1. Average fitness E[W] in the F0 

population can be similarly calculated by taking the fitness outcome to the FI in an 

interaction weighted by the frequency of that pair summed across all interactions.  
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2.4 Mean Squared Error 

The expressions for 𝛽𝐹𝐼 and 𝛽𝑃𝑎𝑟𝑡 in Equation 5 can now be obtained using the formulae 

outlined in the previous section. Note that there are four possible residual fitness (Wi – 

E[W]) outcomes that can be calculated using the input values in section 2.3, one for each 

possible interaction type that a focal individual can have (interactions between A1 and A0 

carriers account for two of these, one for each type of FI in this pair). These fitness 

outcomes are not separated into those resulting from the FI’s behaviour or that of its 

partner, and thus may be less informative in this form. To partition residual fitness 

outcomes into the coefficients 𝛽𝐹𝐼 and 𝛽𝑃𝑎𝑟𝑡, I fit these coefficients such that they fulfill 

the same function in the model as each of the observed residual fitness values. I 

accomplish this by finding the mean squared error (MSE), which calculates the average 

squared difference between a set of estimated values and the observed values being 

estimated. The fitted residual fitness values used to calculate the MSE are expressed 

using the 𝛽𝐹𝐼 and 𝛽𝑃𝑎𝑟𝑡 coefficients in the following formula: 

𝑊𝐹𝐼 − 𝐸[𝑊] = 𝛽𝐹𝐼(𝑧 − 𝐸[𝑍]) + 𝛽𝑃𝑎𝑟𝑡(𝑧′ − 𝐸[𝑍]). 
(6) 

All fitted and observed residual fitness values are laid out in Table 2.2, labelled DObs and 

DFit respectively (uppercase D is used to remind us that we are comparing the difference 

between observed, DObs, and fitted, DFit, residual fitness values).  

 

 



25 

 

Table 2.2. Expressions used to develop the MSE formula. Fitness and genotype 

values from each row correspond to a specific focal individual in each pair. For 

example, 𝑫𝑶𝒃𝒔𝟏𝟎 is the residual fitness to all A1 carriers in heterogeneous (A1 with 

A0) pairings. 

FI + 

partner 

Frequency of 

pairing 
𝑫𝑶𝒃𝒔𝒛𝒛′ = 𝑾𝑭𝑰 − 𝑬[𝑾] 𝑫𝑭𝒊𝒕𝒛𝒛′ = 𝜷𝑭𝑰(𝒛 − 𝑬[𝒁]) + 𝜷𝑷𝒂𝒓𝒕(𝒛′ − 𝑬[𝒁]) 

𝑨𝟏 + 𝑨𝟏 𝐹2 𝐷𝑂𝑏𝑠11 𝛽𝐹𝐼(1 − 𝐸[𝑍]) + 𝛽𝑃𝑎𝑟𝑡(1 − 𝐸[𝑍]) 

𝑨𝟏 + 𝑨𝟎 
𝐹1

2
 𝐷𝑂𝑏𝑠10 𝛽𝐹𝐼(1 − 𝐸[𝑍]) + 𝛽𝑃𝑎𝑟𝑡(0 − 𝐸[𝑍]) 

𝑨𝟎 + 𝑨𝟏 
𝐹1

2
 𝐷𝑂𝑏𝑠01 𝛽𝐹𝐼(0 − 𝐸[𝑍]) + 𝛽𝑃𝑎𝑟𝑡(1 − 𝐸[𝑍]) 

𝑨𝟎 + 𝑨𝟎 𝐹0 𝐷𝑂𝑏𝑠00 𝛽𝐹𝐼(0 − 𝐸[𝑍]) + 𝛽𝑃𝑎𝑟𝑡(0 − 𝐸[𝑍]) 

 

Using the 𝐹𝑧+𝑧′ values to weigh each partial squared difference, I derive the MSE using 

the formula3 

                 𝑀𝑆𝐸 = ∑ 𝐹𝑧+𝑧′(𝐷𝑂𝑏𝑠 − 𝐷𝐹𝑖𝑡)2

= 𝐹2(𝐷𝑂𝑏𝑠11 − 𝐷𝐹𝑖𝑡11)2 +
𝐹1

2
(𝐷𝑂𝑏𝑠10 − 𝐷𝐹𝑖𝑡10)2 +

𝐹1

2
(𝐷𝑂𝑏𝑠10 − 𝐷𝐹𝑖𝑡10)2

+ 𝐹0(𝐷𝑂𝑏𝑠00 − 𝐷𝐹𝑖𝑡00)2 

(7) 

where 𝐷𝑂𝑏𝑠 𝑧𝑧′ and 𝐷𝐹𝑖𝑡 𝑧𝑧′ represent the observed and fitted residual fitnesses 

respectively of a focal individual with genotype z whose partner possesses genotype z’.  

 

3
 Note that F1 here is divided in two, because half of the interactants in heterogeneous pairs are A1 carriers, 

and half are A0 carriers. 
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Using the mathematics program Maple (2020) to carry out the calculations, I determine 

the expressions for 𝛽𝐹𝐼 and 𝛽𝑃𝑎𝑟𝑡 which minimize Equation 7 (the mean squared error 

between the observed residual fitnesses and those predicted by Equation 6) (see equations 

8a and 8b in appendix). While the expressions resulting from my MSE analysis can be 

substituted directly into Equation 5 for calculation purposes, they are difficult to interpret 

in this form. In the following section, I will illustrate simplifications that can be used to 

interpret the outcomes of selection studied with this type of social behaviour model. 

2.5 Sociobiological Interpretation 

To make the interpretation of a somewhat unwieldy, large equation more intuitive, we 

may assign simplifying variables to represent some of the frequency-dependent 

components of a formula. With these modifications, the interacting dynamics of the 

model can be more easily described using sociobiological language, as opposed to purely 

frequency-dependent terms. For my model, I focused on isolating two key variables 

frequently used in inclusive fitness analyses: relatedness, R, which I have previously 

defined in Section 2.2 as 𝑅 = 𝐶𝑜𝑣(𝑧, 𝑧′) 𝑣𝑎𝑟(𝑍)⁄  (see Equation 5), and synergy, S. 

Fitness effects may be considered synergistic if the combined effect of two interacting 

individuals is greater than (or conversely, less than) the sum of the effects caused 

independently by each interactant. In this model, I focus on the synergistic effects 

resulting from the interaction of two A1 individuals. The proportion of individuals with 

the focal allele, A1, that interact with an A1-carrying social partner can be written as 

𝐹2 𝑝⁄ . Assigning the variable S to this fraction (i.e., 𝑆 = 𝐹2 𝑝⁄ ) provides a means of 

weighting synergistic fitness effects by the frequency at which A1 carriers are in a 
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homogeneous pairing. Using the synergy coefficient S in combination with Hamilton’s 

coefficient of relationship R, expressions (8a) and (8b) may be rearranged as follows: 

𝛽𝐹𝐼 =
𝑆(𝐷𝑂𝑏𝑠11  −  𝐷𝑂𝑏𝑠10  −  𝐷𝑂𝑏𝑠01  +  𝐷𝑂𝑏𝑠00) +  (𝐷𝑂𝑏𝑠10  − 𝐷𝑂𝑏𝑠00)(𝑅 +  1)

𝑅 + 1
 

(9a) 

and  

𝛽𝑃𝑎𝑟𝑡 =
𝑆(𝐷𝑂𝑏𝑠11  − 𝐷𝑂𝑏𝑠10  −  𝐷𝑂𝑏𝑠01  +  𝐷𝑂𝑏𝑠00) +  (𝐷𝑂𝑏𝑠01  −  𝐷𝑂𝑏𝑠00)(𝑅 +  1)

𝑅 + 1
 

(9b) 

Focusing on the first portion of the formula in Equation 5 again, and replacing the beta 

coefficients there with the above expressions, I find4 

∆𝑠𝑝 ∝ 𝑅(𝐷𝑂𝑏𝑠01  −  𝐷𝑂𝑏𝑠00) + 𝐷𝑂𝑏𝑠10  −  𝐷𝑂𝑏𝑠00

+ 𝑆((𝐷𝑂𝑏𝑠11  −  𝐷𝑂𝑏𝑠10) − (𝐷𝑂𝑏𝑠01  −  𝐷𝑂𝑏𝑠00)) 

(10) 

Unlike equations 8a and 8b, the above formula can be more easily broken into the 

specific behavioural phenomena at play. The first component, 𝑅(𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00), can 

be broken into the two factors, R and (𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00), the latter of which can be 

interpreted as the difference in additive direct fitness effects to individuals when their 

partner is switched from an A0 to A1 carrier. In other words, this measures how an 

 

4
 The symbol ∝ used in Equation 10 indicates “proportional to,” meaning the change in p is proportional to 

the right-hand side of the equation. 
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individual’s fitness is affected by a partner exhibiting wild type behaviour (A0) compared 

to mutant behaviour (A1). To understand how these effects influence the mutant’s own 

fitness, I multiply by R, a measure of the extent to which interactants are more related to 

each other than two random individuals in the population. In doing so, our perspective is 

then redirected to the A1 carrier itself, and the resulting product measures the difference 

in additive indirect fitness effects to A1 carriers in comparison to A0 carriers. It is helpful 

here to consider a hypothetical scenario where individuals are somehow able to ‘will’ 

their alleles to change – in which case the first component would measure the change in 

additive indirect fitness effects to individuals that ‘switch’ their social allele from A0 to 

A1.  

The second component in Equation 10,  𝐷𝑂𝑏𝑠10 – 𝐷𝑂𝑏𝑠00, is the difference in additive 

direct fitness effects between A0 and A1 carriers. Following the above hypothetical 

scenario, this could be thought of as the change in additive direct fitness effects to 

individuals that ‘switch’ their social allele from A0 to A1.  

The third component in Equation 10, 𝑆((𝐷𝑂𝑏𝑠11 – 𝐷𝑂𝑏𝑠10) − (𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00)) 

encapsulates the nonadditive fitness effects resulting from pairings between two A1 

carriers, i.e. the synergistic effects. This can be expanded slightly for explanatory 

purposes to 𝑆((𝐷𝑜𝑏𝑠11 − 𝐷𝑜𝑏𝑠00) − (𝐷𝑜𝑏𝑠10 − 𝐷𝑜𝑏𝑠00) − (𝐷𝑜𝑏𝑠01 − 𝐷𝑜𝑏𝑠00)). In 

this expanded form, we can see that the synergistic component first takes the difference 

in fitness effects to A1 carriers in homogeneous pairings – that is, pairings consisting of 

individuals with the same social allele – and fitness effects to A0 carriers in homogeneous 

pairings, or (𝐷𝑜𝑏𝑠11 − 𝐷𝑜𝑏𝑠00). From this expression, both the direct (𝐷𝑜𝑏𝑠10 −
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𝐷𝑜𝑏𝑠00) and indirect (𝐷𝑜𝑏𝑠01 − 𝐷𝑜𝑏𝑠00) additive effects are subtracted such that only 

the nonadditive effects remain. Considering again the hypothetical allele switching 

scenario, we may consider the synergistic component to be measured as the change in 

fitness effects to individuals when both they and their partner simultaneously ‘switch’ 

their social allele from A0 to A1, minus the additive effects described above. The result is 

then weighted by S, because these effects are only experienced by A1 carriers in 

homogeneous pairings. When simplified, the synergistic component becomes 

𝑆((𝐷𝑂𝑏𝑠11 – 𝐷𝑂𝑏𝑠10) − (𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00)), as shown above. 

In its current form, Equation 10 is informative in its ability to partition the fitness effects 

of an allele for social behaviour into additive and nonadditive parts while also providing 

insight into the influence that both relatedness between interactants (R) and proportion of 

synergistic pairings (S) have on allele frequency. As is, the model contains factors that 

describe the dynamics between a FI’s genotype and that of its social partner. What is 

missing, however, is a descriptor for the dynamics between a FI’s genotype and its 

environment, i.e., a measure of gene-environment interaction effects.  

To incorporate environmental effects in my model, I designate a role label to each 

individual in an interacting pair, labelled P1 and P2. ‘Role’ here will be used to represent 

a difference in environmental stimulus experienced by a FI in comparison to the stimulus 

experienced by the FI’s social partner. In other words, roles P1 and P2 will be used to 

model an environmental asymmetry between the FI and its partner that causes them to 

differentially express their behaviour depending on the role they occupy. This asymmetry 

can be thought of as, for example, a difference in size (nourishment), territory defender 
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versus invader, birth order, or any other asymmetry that may occur that is not a direct 

result of genetic differences between individuals.  

To quantify a measure of gene-environment interaction, I assign a new simplifying 

variable, Q, which describes the proportion of individuals carrying a focal allele – in this 

case, A1 – that are disproportionately found in one role over another. This asymmetry 

quotient provides insight into the significance of gene-environment interaction effects on 

the evolution of a social behaviour. 

Consider, for example, an asymmetric game in which individuals in the P1 role have an 

advantage over those in role P2, such as already owning (as opposed to seeking) a 

territory which positively influences fitness of the territory holder. If alleles A1 and A0 

are associated with differing territory invasion and/or defense behaviours, then an 

asymmetry in the proportion of A1 carriers in each role may have an influence on which 

allele outcompetes the other. In the following chapter I will go through a few example 

applications of my model, illustrating how different levels of gene-environment 

interaction (as measured by Q) can influence the resulting change in allele frequency ∆𝑠𝑝. 
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3 Examples 

The final model built and described in Chapter 2 (Equation 10) is a generalized formula 

that can be applied to a wide variety of social behaviours, including behaviours that are 

not typically associated with inclusive fitness theory such as aggression or territory 

defense. The model does not require a kin selection effect to be applicable, but it can help 

reveal whether relatedness or synergy play a part in the selection for (or conversely, 

against) a social behaviour. The asymmetry quotient Q is not included in this base model 

form, because Q is directly involved in the fitness outcomes of each interaction. If an 

individual’s behaviour – and therefore, its fitness – is influenced by which role it 

occupies, the average fitness outcome of each type of interaction (A1 with A1, A1 with A0, 

etc.) is dependent on the proportion of A1 carriers disproportionately occupying each role, 

which is quantified by Q.  

In the following sections I describe two examples of how my model can be applied to 

social behaviours, and how Q is applied to the fitness outcomes of these behaviours. 

3.1 Hawk/Dove/Bourgeois Game 

In Maynard Smith’s (1982) Hawk-Dove-Bourgeois (HDB) game, an asymmetry is 

described in which the focal individual (FI) occupies one of two roles: owner or invader 

of a resource which increases an owner’s fitness by amount V. Individuals in a population 

may employ one of three strategies:  

H or “Hawk”: Defend resource (if owner) or fight to obtain resource (if invader) 

until either the individual is injured (in which case the individual would flee, 
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losing the resource) or the opponent retreats. Injury causes the individual to 

experience a fitness cost C. 

D or “Dove”: Retreat before injury (if opponent is H) or share the resource 

without escalation to injury (if opponent is D). 

B or “Bourgeois”: If already owner of the resource, act as H; if invader, act as D.  

For this game, Maynard Smith assumes an infinite, randomly mixing population 

consisting mostly of individuals adopting behaviour strategies H or D, in which a rare 

mutant behaviour B is introduced to the population. The game was initially developed to 

help explain why same-species conflicts rarely result in life-threatening injury (Bacaër 

2011), and therefore was not originally designed with an inclusive fitness context in 

mind. As a result, relatedness is not taken into consideration, and thus individuals do not 

interact with relatives more often than by chance (i.e., R = 0). Using the parameters 

described in the HDB game, Maynard Smith describes the requirements for each 

evolutionary stable strategy (ESS) – a behavioural strategy or phenotype which, when 

adopted by a population, cannot be supplanted by a competing mutant strategy. In his 

original HDB game, Maynard Smith finds that the values of V and C determine which 

strategy is the ESS; when V > C, H is the ESS, and when C > V, B is the ESS.  

In this game, Maynard Smith fails to consider biases in strategies adopted by territory 

owners or invaders. Consider, for example, the fitness outcomes of interactions between 

H and B strategists if B individuals were always territory invaders (and therefore always 

acted like doves)? What if B strategists were always territory owners?  
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To apply the HDB game to my model and explore these possible scenarios, I must make 

some modifications to Maynard Smith’s original design. Because my model is designed 

to compare only two competing alleles at a time (A1 and A0), I combine the two pure 

strategies H and D to create a mixed strategy associated with the allele A0. Similarly to 

Maynard Smith, I will consider B to be the mutant strategy in my model. Territory 

owners and invaders will be considered separate roles, where owners are labelled P1, and 

invaders labelled P2. 

If H is considered to be a strategy employed with frequency h by carriers of the wild-type 

allele A0, D is considered to be a strategy employed with frequency (1 – h) by A0 carriers, 

and B is considered to be a strategy employed by all carriers of the mutant allele A1, the 

fitness payoffs for interactions between A0 and A1 carriers can easily be applied to the Wi 

values as described in Section 2.3. Here, however, Wi values for each interaction are 

partitioned into the fitness outcome to P1 and the fitness outcome to P2, labelled v1zz’ and 

v2zz’, respectively, where z and z’ represent genotypes of P1 and P2. Figure 3.1 illustrates 

how fitness outcomes v1zz’ and v2zz’ are applied to each possible interaction type between 

A1 and A0 carriers in each role. This guide can be used for scenarios other than the 

current HDB game by substituting the placeholder labels v1zz’ and v2zz’ with fitness 

values for any social behaviour one wishes to model. 
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Figure 3.1. A decision tree illustrating the fitness outcomes, labelled v1zz’ and v2zz’, 

to individuals in roles P1 and P2, respectively, following pairwise interactions 

between individuals carrying one of two alleles: the mutant allele A1 or the wild-type 

allele A0. Fitness outcome labels z and z’ indicate the genotypes of individuals in 

roles P1 and P2, respectively, where 1 indicates A1 and 0 indicates A0. 

Thus, v110 represents, for example, the fitness outcome (measured as the number of 

offspring directly produced in the next generation) for P1 in an A1:A0 interaction, and 

v210 is the outcome for P2 in that same interaction. As there are now four distinct 

interaction types when role is taken into account (A1:A1, A1:A0, A0:A1, and A0:A0), 

interaction frequencies for each type will now be labelled fzz’. 

The resulting fitness outcomes from Maynard Smith’s HDB game to resource owners, 

P1, and resource invaders, P2, upon enacting either strategy H or D, is illustrated in Figure 

3.2 below. Strategy B is not labelled here explicitly, as individuals employing this 

strategy will ultimately act as either H or D, depending on which role it occupies.  
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Figure 3.2. A decision tree illustrating the fitness outcomes – V indicating an 

increase in fitness, C indicating a fitness decrease – to individuals in roles P1 and P2, 

respectively, following pairwise interactions between individuals employing one of 

two strategies: H or D. Genotype labels z and z’ for each fitness outcome are not 

specified here. 

To vary the level of bias in the genotypic composition of each role (i.e., to vary the level 

of gene-environment interaction), I designate a mathematical expression for the 

asymmetry quotient, Q. In this model, the focal (or mutant) allele is A1, and roles are 

assigned labels P1 and P2. As described in section 1.5, Q is found by taking the number 

of individuals with the focal allele that are in a focal role in a heterogeneous (A1:A0) 

pairing, divided by the total number of individuals with the focal allele in a 

heterogeneous pairing. For this example, P2 will be the focal role, and therefore 𝑄 =

𝑓01/(𝑓01 + 𝑓10). 

Table 3.1 below outlines the average fitness outcomes, v1zz’ and v2zz’ to interactants in 

roles P1 and P2 respectively, for all possible allele and strategy combinations. Note that 

Q is integrated into these fitness outcomes, because the average fitness outcome to, for 



36 

 

example, A1 carriers in heterogeneous pairings, is dependent on how frequently A1 

carriers are found in each role. 

Table 3.1. Average fitness outcomes – V indicating an increase in fitness, C 

indicating a fitness decrease – to individuals carrying either allele A0 or A1 and 

occupying either role P1 or P2 following pairwise interactions of each possible pair 

type. For example, the average fitness outcome to P2 in an A0:A1 pairing, or v201, is 

(1-h)V/2. Because A0 carriers employ H with frequency h and D with frequency (1 – 

h), the average fitness outcome to P2 (which, as a B invader, is employing D) is 

found by taking the weighted sum of the outcome when A0 enacts H and when it 

enacts D. 

Pair type = zz’ Fitness to P1 = v1 Fitness to P2 = v2 

11 V 0 

10 
(1 − 𝑄) (

ℎ(𝑉 − 𝐶)

2
+ (1 − ℎ)𝑉) (1 − 𝑄) (

ℎ(𝑉 − 𝐶)

2
) 

01 
𝑄 (ℎ𝑉 +

(1 − ℎ)𝑉

2
) 𝑄 (

(1 − ℎ)𝑉

2
) 

00 𝑉 − ℎ2𝐶

2
 

𝑉 − ℎ2𝐶

2
 

Substituting fitness outcomes v1zz’ and v2zz’ from Table 3.1 into the DObszz’ expressions in 

Equation 10 produces 

∆𝑠𝑝 ∝ 𝑅 [
𝑄(ℎ𝑉 + 𝑉)

2
+

(1 − 𝑄)(ℎ(𝑉 − 𝐶))

2
−

(𝑉 − ℎ2𝐶)

2
] + [

𝑄(1 − ℎ)𝑉

2
+ (1 − 𝑄) (𝑉 −

ℎ(𝑉 + 𝐶)

2
) −

(𝑉 − ℎ2𝐶)

2
]

+ 𝑆 [
𝑉

2
− (

𝑄(1 − ℎ)𝑉

2
+ (1 − 𝑄) (𝑉 −

ℎ(𝑉 + 𝐶)

2
)) − (

𝑄(ℎ𝑉 + 𝑉)

2
+

(1 − 𝑄)(ℎ(𝑉 − 𝐶))

2
−

(𝑉 − ℎ2𝐶)

2
)] 

(11a) 

which can be simplified to Equation 11b below: 
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∆𝑠𝑝 ∝
𝑅(𝑄 + ℎ − 1)(𝐶ℎ + 𝑉)

2
+

(𝑄 + ℎ − 1)(𝐶ℎ − 𝑉)

2
+ 𝑆 (𝐶ℎ ((1 − 𝑄) −

ℎ

2
)) 

(11b) 

Notice here that both equations 11a and 11b can be broken into the three main partitions 

as seen in Equation 10: additive indirect (𝑅(𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00)) additive direct 

(𝐷𝑂𝑏𝑠10 – 𝐷𝑂𝑏𝑠00) and nonadditive fitness effects (𝑆((𝐷𝑂𝑏𝑠11 – 𝐷𝑂𝑏𝑠10) −

(𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00)). I will describe equation 11a first, because its respective parts are 

more easily connected back to Equation 10. To describe the principal results of this 

formula, I will use the simplified form, Equation 11b. 

Beginning with the simplest of the three components in (11a), the additive direct effect 

(𝐷𝑂𝑏𝑠10 – 𝐷𝑂𝑏𝑠00), we can understand the meaning behind the formula by considering a 

hypothetical scenario similar to that discussed in Section 2.4, in which a wild type (WT) 

focal individual is making a unilateral “decision” to switch from the WT strategy of H 

with probability h and D with probability (1 – h) (or the H/D strategy for short), to the 

mutant behaviour B. While obviously in nature organisms cannot ‘will’ their alleles to 

mutate or change suddenly, adaptation of game theory helps us understand the equation 

more intuitively. This allows us to compare the fitness outcomes experienced by A1 

carriers resulting from the mutant behaviour with those experienced by A0 carriers. In 

following this hypothetical scenario, we can consider Q to be the probability of being in 

the P2 role when an individual is making a unilateral decision. Therefore the FI in the 

additive direct effect portion of Equation 11a is P2 (resource invader) with probability Q 

and P1 (resource owner) with probability (1 – Q). Following Table 3.1, the fitness payoff 



38 

 

received by the FI here is5 𝑄(1 − ℎ)𝑉/2 + (1 − 𝑄)(ℎ(𝑉 − 𝐶)/2 + (1 − ℎ)𝑉). Had the 

FI not changed behavioural strategies, it would have received a fitness payoff of ℎ2(𝑉 −

𝐶))/2 + ℎ(1 − ℎ)𝑉 + (1 − ℎ)2 𝑉/2, which simplifies to (𝑉 − ℎ2𝐶)/2. To calculate the 

change in fitness to the FI caused by the switch in behavioural strategies, or 

(𝐷𝑂𝑏𝑠10 – 𝐷𝑂𝑏𝑠00), we simply subtract the ‘final’ fitness effect from the ‘initial’, as 

shown in the second component of Equation 11a. The result is then the additive direct 

fitness effect to B strategists caused by their mutant behaviour. 

Moving on to the indirect additive effect 𝑅(𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00), we now imagine a scenario 

where the FI’s partner is switching strategies from H/D to B. This time, Q measures the 

probability that the P2 role is held by the partner as opposed to the FI, because the partner 

here is making the unilateral decision. The fitness payoff received by the FI due to its 

partner’s change in behaviour therefore is 𝑄(ℎ𝑉 + (1 − ℎ)𝑉/2) + (1 − 𝑄)ℎ(𝑉 − 𝐶)/2. 

Had the partner not changed behaviours, the FI’s fitness payoff would have been the 

same as in the additive direct scenario above when the FI did not switch to B and was 

paired with another H/D, or 𝐷𝑂𝑏𝑠00. The change in fitness to the FI due to its partner’s 

switch in strategies is again calculated by subtracting the ‘final’ (𝐷𝑂𝑏𝑠01) minus ‘initial’ 

(𝐷𝑂𝑏𝑠00). Here however, the result is multiplied by R, thereby shifting our perspective 

such that the individual switching strategies is now considered the FI, and thus weighing 

the fitness effects which this FI (who switched from H/D to B strategies) by the 

relatedness between the FI and its social partner. The resulting product can then be 

 

5
 Some minor simplification was applied to this and the following formulae to reduce the size of Equation 

11b. 



39 

 

considered the additive indirect fitness effect to B strategists caused by their mutant 

behaviour. 

Finally proceeding to the nonadditive component, (𝑆((𝐷𝑂𝑏𝑠11 – 𝐷𝑂𝑏𝑠10) −

(𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00)), we see the exact same simplified form as that described in Equation 

10. With the last three fitness effect terms (𝐷𝑂𝑏𝑠10, 𝐷𝑂𝑏𝑠01, and 𝐷𝑂𝑏𝑠00) already described 

above, the foremost fitness effect, 𝐷𝑂𝑏𝑠11, is simply the effect experienced by B strategist 

individuals in homogeneous pairings. Notice that a Q factor is not included here – as both 

individuals in this type of pairing implement the same strategy, B, there can be no bias in 

roles (i.e. half the B strategists in this type of pair are P1, and the other half are P2). 

There is also no h frequency involved, as there are no H/D strategists in this pairing, and 

thus the 𝐷𝑂𝑏𝑠11 term here is simply V/2. The entire synergy component, when assembled, 

measures all nonadditive (synergistic) fitness effects resulting from homogeneous 

pairings between B strategists. 

What does Equation 11b tell us? To answer this question, I first set up a baseline analysis 

to test whether the results obtained with this model match those of Maynard Smith’s 

(1982) original model. Several assumptions are made in Maynard Smith’s basic Hawk-

Dove- Bourgeois game that can be used to enter values for variables in my own formula 

and recover Maynard Smith’s original results. Mainly, Maynard Smith assumes an 

infinite, random mixing population, with a rare introduced mutant strategy (B) and 

individuals that do not interact with relatives more often than by chance. For my model, 

these assumptions translate to my R and S values being set to zero. In doing so, the first 

and third component of Equation 11b reduce to zero, leaving only the additive direct 
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effect (𝑄 + ℎ − 1)(𝐶ℎ − 𝑉)/2. In his model, Maynard Smith found that when V > C, 

strategy H is the only ‘evolutionarily stable strategy,’ or ESS, a strategy in which, when 

adopted by the entire population, cannot be invaded by other mutant strategies. In other 

words, when V > C in Maynard Smith’s HDB model, strategy H cannot be supplanted 

once fixed in the population. In contrast, when C > V, strategy B is the only ESS in 

Maynard Smith’s model. These same results can be found in the expression (𝑄 + ℎ −

1)(𝐶ℎ − 𝑉)/2 by setting h = 1, meaning that all wild type A0 carriers enact strategy H. 

When this is done, I find that ∆𝑠𝑝 ∝ 𝑄(𝐶 − 𝑉)/2. When V > C, the change in A1 allele 

frequency ∆𝑠𝑝 becomes negative, meaning that strategy H cannot be outcompeted by B 

once it (H) is sufficiently high frequency in the population, and the reverse is true when C 

> V – a rare B can invade a population of individuals playing only H. When h is set to 

zero, ∆𝑠𝑝 is always positive, assuming that strategy (i.e. genotype) is independent of role. 

This assumption was also made by Maynard Smith, and can be adopted here by setting Q 

equal to one-half, meaning that B strategists are equally likely to be territory owners or 

invaders.  

Maynard Smith considered H and D to be pure strategies in his basic HDB model, 

meaning that he considered H and D strategists to be separate entities, as opposed to the 

mixed strategy H/D used in my model. As a result, when considering intermediate values 

of h (between 0 and 1) I find some interesting results. This is more easily shown if the 

additive direct component of Equation 11b is rearranged to (ℎ − (1 − 𝑄))(𝐶ℎ − 𝑉)/2. 

When V > C, ∆𝑠𝑝 is only negative (meaning that A1 allele frequency is decreasing) if 

wild type individuals enact strategy H more frequently than mutants are territory owners 

(h > (1 – Q)). This makes sense because the role occupied by a B strategist dictates its 
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behaviour. If mutants are behaving as H more frequently than wild-type (WT) 

individuals, they have more opportunities to reap the full value of a territory V from 

social partners enacting strategy D. Also, as a higher frequency of enacting strategy H 

involves a lower frequency of enacting D, when mutants behave as H more often than 

wild type individuals (in other words, WT individuals behave as D more than mutants), a 

partner acting as D is more likely to be WT than mutant.  

When C > V, the sign of ∆𝑠𝑝 becomes not only dependent on the relationship between h 

and (1 – Q), but also the ratio of V/C. To understand how each of these variables interact 

to influence the sign of ∆𝑠𝑝, I set the expression (ℎ − (1 − 𝑄))(𝐶ℎ − 𝑉)/2 equal to zero, 

and solve for h, which gives the two expressions stated above: (1 – Q) and V/C. These 

two expressions are linear functions of h which intersect, and between these two 

functions is where ∆𝑠𝑝 becomes negative. For visualization purposes, these functions can 

be plotted in three dimensions using the command plot3d in Maple by setting values for 

V and C. Figures 3.3 and 3.4 illustrate two such examples, with V/C ratios of 1/2 and 3/4, 

respectively.  



42 

 

 

Figure 3.3. Two perspectives of a 3D plot of ∆𝒔𝒑, Q, and h, (in colour) when R = 0, S 

= 0, V = 1 and C = 2. A secondary plane (black) at ∆𝒔𝒑 = 0 has been added for 

illustrative purposes.  

 

Figure 3.4. Two perspectives of a 3D plot of ∆𝒔𝒑, Q, and h, (in colour) when R = 0, S 

= 0, V = 3 and C = 4. A secondary plane (black) at ∆𝒔𝒑 = 0 has been added for 

illustrative purposes.  

 

 

Δ 

Δ 
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In the secondary (right-hand side) perspectives of each example plot, the functions h = (1 

– Q) and h = V/C are clearly visible as borders through which ∆𝑠𝑝 crosses as it dips 

below zero. Based on the expressions found above and the example figures shown, when 

C > V, ∆𝑠𝑝 is only positive when h is either greater than both V/C and (1 – Q) or when h 

is less than both V/C and (1 – Q). If h is only greater or less than one of these functions 

and not the other, ∆𝑠𝑝 becomes negative. 

One final interesting scenario involving the additive direct component is when h = 0 and 

Q = 1, meaning that B strategists are always playing D, as are mixed strategists 

(individuals choosing H with frequency h, and D with frequency (1 – h)). When this 

occurs, ∆𝑠𝑝 = 0, because selection cannot differentiate between mutants and WTs, as 

both are behaving as D in all interactions. The same goes for when h = 1 and Q = 0, in 

which case both WTs and mutants are behaving as H in all interactions. Based on these 

and the results described above, it is already clear that role is important for modelling 

natural selection, without yet even considering these dynamics in connection to 

relatedness or synergy.  

With the baseline of Maynard Smith’s HDB game established, I can now relax the 

assumptions made earlier, starting with the assumption of a rare mutant allele. As I allow 

the mutant allele A1 to appear more frequently in the population (increasing allele 

frequency p), the likelihood of homogeneous A1 pairs increases, and therefore so does S. 

When S is greater than zero, the nonadditive component of Equation 11b, 𝑆(𝐶ℎ(1 − 𝑄 −

ℎ/2)), influences ∆𝑠𝑝 accordingly. To understand if synergy contributes positively or 

negatively to the change in A1 allele frequency, we may look again at the relationship 
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between h and (1 – Q). Whereas in the additive direct component, the requirements for 

∆𝑠𝑝 to be positive or negative depended on whether (1 – Q) exceeded h or vice-versa, the 

sign of the synergy component seems to more heavily favor a positive ∆𝑠𝑝. For the 

component to contribute positively to ∆𝑠𝑝, (1 – Q) must exceed h/2, meaning that wild-

type individuals must behave as H twice as often as the frequency at which mutants own 

territories (1 – Q) in order for A0 to outcompete A1. These results are interesting, because 

they imply that synergy can significantly influence the selection of certain social 

behaviours, and models which assume only rare alleles with no homogeneous interactions 

may produce different results if those assumptions are relaxed, particularly if role-based 

expression is also considered. 

Finally moving on to relaxing the assumption of random mixing, meaning that R is no 

longer zero (reminder that R may be either positive or negative). The entire additive 

indirect component, 𝑅(𝑄 + ℎ − 1)(𝐶ℎ + 𝑉)/2, contributes to ∆𝑠𝑝 relative to the size and 

sign of R. This component may be rearranged to 𝑅(ℎ − (1 − 𝑄))(𝐶ℎ + 𝑉)/2 for easier 

interpretation, and in doing so it looks similar to the additive direct component described 

previously ((𝑄 + ℎ − 1)(𝐶ℎ − 𝑉)/2), differing only in the sign of V and the factor of R. 

With C and V both positive, whether the additive indirect component contributes 

positively or negatively to ∆𝑠𝑝 – assuming, for now, that R is positive – becomes entirely 

dependent on R and the ratio of h and (1 – Q). This time, however, (1 – Q) exceeding h 

does not contribute positively to ∆𝑠𝑝, but negatively, and the opposite is true for h 

exceeding (1 – Q). Even more interesting is when we consider negative values of R, 

which reverses this dynamic back such that values of (1 – Q) exceeding h cause the 

additive indirect component to contribute positively to ∆𝑠𝑝. To understand the 
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interactions between these variables, I adopt the same methods used for the additive 

direct component. Using arbitrary values for C and V (in this case, I used C = 2 and V = 

1), I set the expression 𝑅(ℎ − (1 − 𝑄))(𝐶ℎ + 𝑉)/2 = 0 and solve for h, which gives the 

expressions (1 – Q) and −(𝑅 − 1)/2(𝑅 + 1). As before, these two expressions are linear 

functions of h which intersect, and between them is where ∆𝑠𝑝 dips below zero. Figures 

3.5 and 3.6 visualize two examples of these functions in 3D plots with values for Q set to 

1/2 and 1/4, respectively. 

 

Figure 3.5. Two perspectives of a 3D plot of ∆𝒔𝒑, R, and h, (in colour) when Q = 1/2, 

S = 0, V = 1 and C = 2. A secondary plane (black) at ∆𝒔𝒑 = 0 has been added for 

illustrative purposes. 
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Figure 3.6. Two perspectives of a 3D plot of ∆𝒔𝒑, R, and h, (in colour) when Q = 1/4, 

S = 0, V = 1 and C = 2. A secondary plane (black) at ∆𝒔𝒑 = 0 has been added for 

illustrative purposes. 

The secondary (right-hand side) perspectives of each example plot show the functions h = 

(1 – Q) and h = −(𝑅 − 1)/2(𝑅 + 1) as borders through which ∆𝑠𝑝 crosses as it dips 

below zero. Based on the expressions found for h in the additive indirect component and 

the example figures shown, when C and V are positive values, ∆𝑠𝑝 is only positive when 

h is less than both (1 – Q) and −(𝑅 − 1)/2(𝑅 + 1) or when h is greater than both (1 – Q) 

and −(𝑅 − 1)/2(𝑅 + 1). As with the additive direct component, if h is only greater (or 

conversely, less than) one of these two functions, ∆𝑠𝑝 will be negative. 

These results, in conjunction with the results from the synergy component, indicate that 

there is a potential cost to B strategists disproportionately favoring other B strategists as 

their partners as opposed to H/D mixed strategists. However, when the frequency of B 

strategists is high in the population and homogeneous A1 pairs occur by virtue of this 

high allele frequency, there is a potential nonadditive benefit to these pairings. In terms of 

Δ 

Δ 
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my model, this means that when R is low but S is high (which can occur when there is 

random or disassortative pairing but high A1 frequency) the requirements for mutants to 

outcompete WT individuals are less restrictive than for WT individuals to outcompete 

mutants. 

Clearly, relatedness, synergy, and role-based expression each significantly influence the 

selection of social behaviours, even when the behaviour is non-cooperative like conflict 

over territory ownership.  

3.2 Altruism 

Price’s equation has classically been used as a means of exploring different ways to 

model altruistic behaviour (Grafen 2006; Queller 1992; Frank 1995), and due to the 

complications of inclusive fitness, the utility of my heterogeneous pair composition 

variable Q may be best illustrated with this example.  

Previous literature has emphasized the importance of altruistic behaviour being expressed 

conditionally (e.g., Charlesworth 1978; Parker 1989). Queller (2000) has particularly 

emphasized this in the context of sterile castes in eusocial insect species, where altruists 

forgo any personal fitness in order to convey a fitness benefit (in the form of brood care, 

for example) to a reproducing relative. Recognition systems, which often coevolve with 

altruistic behaviour (Axelrod et al. 2004), allow individuals to discriminate between kin 

and non-kin, and can be vital in the evolution of conditionally expressed altruistic 

behaviours with significant fitness costs.  

To explore the importance of kin recognition systems with my model, I consider the same 

haploid, asexual population of organisms as described in the Model Foundation section, 
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with individuals in the population again carrying one of two alleles, the wild-type allele 

A0 or the mutant A1. As in the previous example, individuals in the population occupy 

asymmetric roles, P1 and P2, and exhibit pairwise interactions resulting in individual 

fitness outcomes v1zz’ and v2zz’. Each interactant in a pair may employ one of two 

strategies: 

A or altruist: invests energy in helping partners, reducing its own reproduction as 

a result, incurring fitness cost c on the FI but conferring fitness benefit b to its 

social partner. 

E or egoist: reproduces as usual. 

In this example, carriers of the wild-type allele A0 always employ strategy E, whereas 

carriers of the mutant allele A1 employ one of either strategy depending on their role (P1 

or P2) and their social partner’s genotype. I will assume, for now, that individuals in this 

population possess perfect kin recognition systems. In other words, A1 carriers recognize 

their social partner’s genotype with perfect accuracy. In this model, individuals in the P1 

role will be considered to establish a social environment for individuals in the P2 role to 

react to. In nature, this would be analogous to, for example, P1 locating a habitat first and 

P2 reacting by either moving on to a new habitat area (egoist) or staying to help P1 care 

for its offspring, forgoing its own reproduction as a result (altruist). By virtue of the 

above allele descriptions, A0 carriers will not vary in their strategy choice, regardless of 

role. By contrast, individuals carrying A1 will only employ strategy A when in the P2 role 

and – with the assumption of perfect kin recognition – their social partner is also an A1 
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carrier. The fitness outcomes of each type of interaction according to the above 

description are laid out in Table 3.2.  

Table 3.2. Average fitness outcomes to individuals carrying either allele A0 or A1, 

where A1 carriers employ strategy A conditionally on their own role and the 

genotype of their social partner. In this example, individuals exhibit perfect kin 

recognition. 

Pair type = zz’ Fitness to P1 = v1 Fitness to P2 = v2 

11 b -c 

10 0 0 

01 0 0 

00 0 0 

Substituting these values into the DObszz’ expressions in Equation 10 produces 𝛽𝐹𝐼 and 

𝛽𝑃𝑎𝑟𝑡 coefficients that are identical:  

∆𝑠𝑝 ∝
𝑅𝑆(𝑏 –  𝑐)

2𝑅 +  2
+

𝑆(𝑏 –  𝑐)

2𝑅 +  2
∝

𝑆(𝑏 − 𝑐)

2
 

(12) 

where 𝛽𝐹𝐼 = 𝛽𝑃𝑎𝑟𝑡 =
𝑆(𝑏 – 𝑐)

2𝑅 + 2
. This result is expected: when A1 carriers express strategy A 

exclusively towards other A1 carriers, and never towards A0 carriers, fitness effects 

condense to be solely dependent on the size of b and c, and the likelihood that interacting 

pairs share the same allele (measured via R and S).  

To vary the accuracy of recognition between A1 carriers in this example, I modify the 

fitness outcomes in Table 3.2 such that with frequency e, A1 reactors (i.e., those in P2 

role) will make an error in the recognition of their social partner and behave accordingly. 

When such an error occurs in an A1 – A1 pairing for example, P2 would erroneously 
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recognize its partner as an A0 carrier, and employ strategy E instead of A. Table 3.3 

outlines these modified fitness outcomes.  

Table 3.3. Average fitness outcomes to individuals carrying either allele A0 or A1. 

With frequency (1 – e), A1 carriers in the P2 role employ strategy A conditionally on 

the genotype of their social partner; with frequency e, A1 carriers make an error in 

recognizing their partner, and behave according to said error. In this example, A1 

carriers in the P1 role are unable to make an error, as they are not reacting to the 

genotype of their partner, and instead setting the phenotypic environment for P2 

individuals to react to. 

Pair type = zz’ Fitness to P1 = v1 Fitness to P2 = v2 

11 (1 – e)b (1 – e)(-c) 

10 0 0 

01 eb e(-c) 

00 0 0 

When these outcomes are substituted into the DObszz’ expressions in Equation 10, we find6 

∆𝑠𝑝 ∝ 𝑅𝑄𝑏𝑒 − 𝑄(𝑐𝑒) + 𝑆 [
(1 − 𝑒)(𝑏 − 𝑐)

2
− 𝑄𝑒(𝑏 − 𝑐)]. 

(13) 

As with the Hawk/Dove/Bourgeois example, the three components of Equation 13 

correspond to the additive indirect, additive direct, and nonadditive fitness effect 

components described in Section 2.5 for Equation 10. Applying the same hypothetical 

 

6
 Equation 13 simplifies immediately to the formula shown here due to several factors of zero being 

removed. The fully expanded form of this equation is  
∆𝑠𝑝 ∝ 𝑅[𝑄𝑏𝑒 + (1 − 𝑄)0 − 0] + [𝑄(−𝑐𝑒) + (1 − 𝑄)0 − 0]

+ 𝑆 [(
(1 − 𝑒)(𝑏 − 𝑐)

2
− 𝑄(−𝑐𝑒) + (1 − 𝑄)0) − (𝑄𝑏𝑒 + (1 − 𝑄)0 − 0)]. 
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scenario as before, we may think of each component based on the idea of interactants 

‘switching’ their alleles. For the additive direct component, (𝐷𝑂𝑏𝑠10 – 𝐷𝑂𝑏𝑠00), a wild 

type (WT) focal individual is making a unilateral ‘decision’ to switch from its original 

allele A0 to the mutant allele A1. In doing so, this individual moves from experiencing 

zero fitness effects due to its own behaviour (a reminder that this does not mean the FI 

experiences zero fitness, simply that its base fitness has not been influenced), to 

potentially experiencing an additive fitness effect due to its behaviour, depending on its 

role and the likelihood of error, e. When in the P1 role with probability (1 – Q), the 

mutant is establishing the social environment (arriving in a new territory first, for 

example) and thus is not in a position to ‘react’ to an already established social 

environment and potentially make an error in doing so. In contrast, when the mutant is in 

the P2 role with probability Q, it is in a position to react to the social environment 

established by its social partner, P1. If the FI recognizes its social partner to be a WT 

individual and behaves accordingly, it will adopt strategy E. If, however, an ‘error’ 

occurs, the FI will instead adopt strategy A, thereby experiencing a fitness cost – c. This 

‘error’ can manifest in a number of ways, including problems with the FI’s ability to 

recognize kin, epigenetic effects involving penetrance of the allele involved, or even 

cultural effects. The entire additive effect component, when taking the ‘final’ (𝐷𝑂𝑏𝑠10 ) 

minus ‘initial’ (𝐷𝑂𝑏𝑠00) additive effects due to the FI switching from the WT to mutant 

allele, produces −𝑄𝑐𝑒. 

For the indirect additive effect 𝑅(𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00), we may imagine the FI’s partner 

switching from A0 to A1, thereby switching from both individuals experiencing zero 

fitness effects to the mutant potentially conferring a fitness benefit b to the FI depending 
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on its role and on the frequency of error e. Again, the mutant is only in a position to make 

an error when in the P2 role, which occurs with probability Q. When in the P2 role, the 

mutant will recognize its social partner’s genotype with probability (1 – e) and adopt 

strategy E accordingly. When an error occurs with probability e, the mutant will instead 

adopt strategy A and confer a fitness benefit b to the WT individual. When this effect is 

multiplied by R, we reorient the perspective such that the individual switching from WT 

to mutant is now the FI. The indirect effect to this FI caused by its switch in alleles is 

measured as the fitness effect that the FI causes to its partner weighted by the extent to 

which the interactants are related, or Qbe. 

Moving on to the nonadditive component, 𝑆((𝐷𝑂𝑏𝑠11 – 𝐷𝑂𝑏𝑠10) − (𝐷𝑂𝑏𝑠01 – 𝐷𝑂𝑏𝑠00)), 

the last three fitness terms have again already been described above (𝐷𝑂𝑏𝑠10 =

−𝑄𝑐𝑒, 𝐷𝑂𝑏𝑠01 = 𝑄𝑏𝑒, 𝐷𝑂𝑏𝑠00 = 0) leaving only 𝐷𝑂𝑏𝑠11 to describe. This effect 

encompasses the outcome to a mutant FI in a homogeneous pairing. When the FI is in the 

P2 role, it may recognize the genotype of its mutant partner and adopt strategy A 

accordingly with probability (1 – e), conferring a fitness benefit b to its partner and 

experiencing a fitness cost c due to its behaviour. When an error occurs with probability 

e, the FI in role P2 does not confer this benefit to its partner and does not experience a 

cost from its behaviour. Because the FI in a homogeneous A1 pairing has an equal 

likelihood of being in either role P1 or P2, the effects to each individual in such an 

interaction are simply added together and divided by two to find 𝐷𝑂𝑏𝑠11 = (1 − 𝑒)(𝑏 −

𝑐)/2.  
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Using Equation 12 as a baseline, Equation 13 can be analyzed in a manner similar to the 

analysis of the HDB game in the previous section (3.1). Without errors, the sign of ∆𝑠𝑝 in 

the altruism model depends only on three variables: S, b and c. This indicates that the 

degree to which interactants are more related to each other than what is expected by 

random chance, or R, does not influence the frequency of A1 when altruism is expressed 

conditionally on role and the partner’s genotype, without any errors. This makes sense 

because if mutants only confer benefits exclusively towards other mutants, and only 

when the other mutant (the partner) is behaving as an egoist, then the proportion of 

mutants in homogeneous pairs is the only factor influencing the size of ∆𝑠𝑝. Whether the 

rate of mutant homogeneous pairs is greater than or less than what is expected by chance 

doesn’t matter: assuming b > c, so long as S is greater than zero, ∆𝑠𝑝 will be positive. 

When S is zero, obviously ∆𝑠𝑝 is also zero, as A1 carriers are never paired with other 

carriers and thus the fitness effects of this allele are no different than those of A0.  

Relaxing the assumption of no errors, the variables Q and R reappear in the model. If 

there is again a simplifying assumption of a rare mutant allele and random mixing, the 

frequency of homogeneous A1 pairings approaches zero (and therefore R = S = 0) leaving 

only the additive direct cost −𝑄𝑐𝑒. As the mutant allele becomes more frequent, S will 

begin to rise accordingly. R, however, may not necessarily rise with an increase in A1 

allele frequency: depending on whether individuals pair randomly, assortatively (‘like 

with like’) or disassortatively, R may be zero, positive, or negative. For now, I assume 

random pairing (therefore R = 0) in order to focus on the synergistic effect, 

𝑆 [
(1−𝑒)(𝑏−𝑐)

2
− 𝑄𝑒(𝑏 − 𝑐)], with error rates above zero now considered. This component 

is fairly straightforward, with a form similar to that shown in Equation 12. With errors 
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incorporated, the expression 𝑆(𝑏 − 𝑐)/2 is now partitioned into the fitness effects 

resulting from an interaction without errors, which occurs with frequency (1 – e), minus 

those same fitness effects multiplied by the rate of error, e. In essence, this component is 

measuring the difference between the average fitness effects experienced by an individual 

in a homogeneous A1 pairing and the average fitness effects experienced by an individual 

in a heterogeneous pairing. The importance of kin recognition, conditional expression, 

and role in my model is clear in this nonadditive component, as whether it contributes 

positively or negatively to ∆𝑠𝑝 depends on the rate of non-error, (1 – e), in proportion to 

the rate of error, e, and the probability of a mutant being in the P2 role, Q. So long as the 

rate of non-error is more than double the likelihood of an error occurring multiplied by 

the likelihood that mutants are in the P2 role (because errors are only possible when P2 is 

a mutant), or (1 – e) > 2eQ, ∆𝑠𝑝 will be positive. This relationship between e and Q is 

illustrated in Figure 3.7: as Q increases, the maximum level of e allowable for ∆𝑠𝑝 to be 

positive decreases. At Q = 0.5 (meaning mutants are in the P2 role 50% of the time), the 

rate of errors must be less than 0.5 for A1 carriers to spread in the population.  
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Figure 3.7. Two perspectives of a 3D plot of the nonadditive component of ∆𝒔𝒑 

(𝑺[(𝟏 − 𝒆)(𝒃 − 𝒄)/𝟐 − 𝑸𝒆(𝒃 − 𝒄)]) in relation to Q and e (in colour), with S and (b – 

c) held constant (b = 2, c = 1). A secondary plane (black) at ∆𝒔𝒑 = 0 has been added 

for illustrative purposes. 

Finally relaxing the assumption of random pairing, the additive indirect component RQbe 

begins to come into play. This component’s contribution to ∆𝑠𝑝 is relatively 

straightforward: when R is positive, the expression RQbe contributes positively to ∆𝑠𝑝 

proportionately to Qe, because Q and e must be above or equal to zero, and when R is 

negative the expression contributes negatively to ∆𝑠𝑝. It seems perplexing, at first, that 

the additive indirect component includes both Q and e in its expression; Q implies a 

unilateral ‘switch’ to mutant, and e implies that an error is made in the strategy chosen (A 

or E). It is important to remember, however, that indirect additive effects are measured 

based on heterogeneous pairings, to avoid including any nonadditive effects from a 

homogeneous interaction. 

Δ 

Δ 
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4 Discussion 

My original goal for this thesis was to explore the evolution of conditionally expressed 

social behaviours using mathematical modelling techniques. More specifically, I aimed to 

study how selection acts on genes for social behaviours that are conditionally expressed 

based on an environmental trigger, particularly when carriers of said genes 

disproportionately experience the trigger more or less often than non-carriers. To answer 

this question, I developed a mathematical model following the methods of Gardner et al. 

(2011) and those described therein. Beginning with the covariance form of Price’s 

formula, which describes a population’s change in allele frequency over a single 

generation, I developed my model in an inclusive fitness framework such that individuals 

occupy one of two roles (the conditional ‘trigger’) when interacting with a social partner. 

I then used the mathematics software Maple (2020) to streamline the process of 

rearranging my model into a form that can be more easily interpreted verbally, with 

particular emphasis on the inclusive fitness variables R and S, as well as my newly 

described variable, Q. This new variable, Q, was added to describe biases in whether 

carriers of a focal allele are disproportionately found in one role over another. To 

illustrate the utility of this new variable, I applied my model to two social behaviour 

scenarios. The first is a modified form of Maynard Smith’s Hawk/Dove/Bourgeois game 

in which the pure strategies ‘Hawk’ and ‘Dove’ are combined to create a mixed wild-type 

strategy, such that individuals behave as ‘Hawk’ or ‘Dove’ depending on a set frequency 

h, and the ‘Bourgeois’ strategy is considered mutant. The second model, of my own 

design, features an altruism scenario, where mutant strategists behave as altruists 

conditionally depending on what role they occupy and the genotype of their social 
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partner (i.e., whether they are kin or non-kin), with wild-type individuals acting as non-

altruists. To explore possibilities in which errors may occur in an individual’s ability to 

recognize kin, or its ability to express the behaviour, among other errors, I introduced an 

additional variable e, representing the frequency of such errors. I interpreted the 

components of the resulting formulae using Maple (2020) to create three-dimensional 

figures describing some of the results of these two scenarios. 

In the following sections, I will provide an overview of the results described for both 

models and their significance in the greater context of sociobiology and evolutionary 

genetics. I will also describe the limitations of this study and how it may be developed 

further to increase our understanding of inclusive fitness and evolutionary theory. 

4.1 Results overview 

In both the Hawk/Dove/Bourgeois and altruism models, the extent to which mutants 

occupied one role more than the other dramatically influenced the resulting change in 

mutant allele frequency. A clear visual representation of this influence can be seen by 

comparing figures 3.5 and 3.6 from the HDB model, where the value of Q, the frequency 

of mutants that are territory invaders, can even affect whether relatedness between 

interactants positively or negatively contributes to the survival of the mutant allele in the 

next generation. In the altruism model, lower values of Q (particularly when Q < 0.5) 

allow for greater flexibility in the frequency of errors, e, in conditionally expressed 

altruism. These results imply that models which do not include roles, or asymmetries in 

stimuli that trigger the conditional expression of social behaviours, may yield 

significantly different results if these details were included. Indeed, when we consider the 

HDB model without relatedness or synergy effects, as it was originally described by 
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Maynard Smith, Q still holds influence over the change in allele frequency regardless of 

whether mutants are more frequently paired with H or D strategists (see figures 3.3 and 

3.4). 

4.2 The significance of role and the variable Q 

When discussing inclusive fitness, particularly in the context of altruistic behaviours, 

there is a generally accepted assumption of – as described by Parker (1989) 

“conditionality of gene action”. In other words, genes associated with a behaviour, such 

as altruism in eusocial insects, cannot be unconditionally expressed such that all carriers 

always behave altruistically. If this were the case, members of sterile castes in eusocial 

colonies would not have a reproducing relative to receive their help and indirectly pass 

their genes on to the next generation, effectively leading to the colony’s extinction. While 

the assumption of conditional expression is important, I have found very few inclusive 

fitness papers that explicitly model mechanisms for this conditional action of genes for 

social behaviour. Parker’s (1989) method of doing so, which I have partially adopted for 

my model, involves creating an asymmetry between two interacting individuals such that 

one occupies role P1 and the other P2 (labeled ‘X’ and ‘Y’ in Parker’s model). These 

roles, as explained in Section 1.4 of this thesis, may represent any asymmetry between 

the two interacting individuals, such as birth order/age, territory establishment 

(owner/invader), size, and social status.  

One clear example of such an asymmetry in nature, where phenotypic expression is 

influenced by which ‘role’ an organism occupies, can be observed in the European 

honeybee Apis mellifera. Females in this eusocial species have two main castes, queens 

and workers, which are reared from larvae by nurse workers in the hive (males, or drones, 
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are also reared in this way). The specific diet fed to each female larva, as opposed to a 

larva’s genotype, is the main contributor to caste differentiation (Evans and Wheeler 

1999). The molecular mechanisms behind this process are still being studied, but thus far 

it is clear that both the type of food given to larvae (with queens-to-be fed primarily a 

substance called ‘royal jelly’, and workers fed a mixture of royal jelly and nectar) and the 

amount that each larva is fed play major parts in whether an individual will develop into a 

queen or worker bee (Slater et al. 2020). If these differential diets are thought of as binary 

environmental stimuli that influence the phenotypic expression of a specific gene (or 

group of genes) in European honeybees, it is easy to see how ‘role’ (in this case, if a larva 

is fed a queen diet vs a worker diet) might be an important aspect to the evolution of 

conditional phenotypes. 

Examples of asymmetric roles in nature aren’t limited to diet alone, of course. Parker 

(1989) described other mechanisms such as age, relative physical strength, and social 

dominance/subordination. In his models, Parker also explored potential genetic 

mechanisms involved: for example, it may be that one locus determines an individual’s 

behaviour when in role X, and another locus determines behaviour when the individual 

occupies role Y. An aspect of asymmetric roles which Parker fails to consider, and which 

is yet to be explored in modelling literature, is the potential for bias in the genotypes 

found in each role. If, for example, there was a rare allele in honeybees which increases 

the chances of carriers being chosen as new queens by nurse bees, how might that affect 

the evolution of these eusocial behaviours? 

Interestingly enough, evidence has already been found of genetic predispositions to castes 

in some eusocial species. Volny and Gordon (2002), for example, describe differences in 
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genotype at a particular microsatellite locus between reproductive and non-reproductive 

members of the red harvester ant Pogonomyrmex barbatus. This is possible because, 

according to Volny and Gordon, non-reproductives inherit heterozygous genotypes and 

reproductives inherit homozygous genotypes at the focal locus, which allows both alleles 

found in workers to be carried by homozygous queens and drones. Genetic 

predispositions influencing caste determination have been observed in other eusocial 

insect species as well, such as members of the stingless bee genus Melipona (Hartfelder 

et al. 2006). Despite this, the potential effect of genotype on caste differentiation seems 

generally to be overlooked in the literature. Schwander et al. (2010) discussed this in 

further depth, arguing that there is an assumption commonly made that evidence for 

environmental influences on caste differentiation suggests that the environment is the 

main or only factor involved. In fact, according to Schwander et al, there is growing 

evidence that caste differentiation is caused by a combination of both environmental and 

genetic factors in several eusocial species.  

To integrate concepts of genetic inheritance and developmental biology (environmental 

influence) into a modern evolutionary synthesis is a huge undertaking. Weitekamp et al. 

(2017) discuss some of the complexities of considering environment-gene interactions in 

empirical studies, such as a significantly higher number of variables that must be 

controlled for. Mary Jane West-Eberhard has been a strong advocate for the integration of 

environmental effects into evolutionary theory. In much of her work (1987, 1989, 2005), 

she argues that current research puts too little emphasis on the contribution of 

development and the environment to the evolutionary change of organisms, resulting in a 

gap in our understanding of the evolution of complex traits such as eusocial behaviours. 
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The use of mathematical modelling techniques – such as those used in this thesis – may 

help to bridge this gap, and possibly provide valuable insight in situations where it is 

impossible to control all variables necessary for informative results. 

4.3 Limitations and future development 

When I first began the development of my model, I decided to use the Price formula for a 

number of reasons, including its common usage in the inclusive fitness theory literature 

and the ease with which the model can be converted into Hamilton’s Rule. I was also 

aware of the limitations of Price’s equation, which can be summarized as follows.  

Most likely the greatest criticism of Price’s formula is its lack of dynamic sufficiency; in 

other words, the model cannot be iterated over and over to explore the evolution of a trait 

though several generations. The source of this limitation stems from the use of pair 

frequencies, such as F2 (the frequency of A1 – A1 pairings). Because these frequencies are 

assumed to be unknown (so that it’s possible to explore different pair frequency effects), 

we do not know the composition of different pairs in the daughter generation, and thus 

cannot calculate the fitness effects of their interactions. If needed, dynamic sufficiency 

can be forced into the model by creating a calculation ‘rule’ for social pair distributions. 

For example, if a rule is created such that the frequency of each pair type is always 

proportional to the population allele frequencies (thus F2 = p2), both the HDB and 

altruism models can be made to be dynamically sufficient. The results from such a 

modification, however, provide little novel information, and thus I have not provided 

them in this thesis. 
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Another limitation is the exponential increase in complexity when attempting to model 

multiple alleles and/or more than two interactants with the Price equation. To model more 

than two alternative alleles for example, or to model diploid organisms, fitness effects 

must be created for each possible combination of alleles (assuming nonadditive effects – 

less so if the effects are additive). Since role is emphasized here as well, we would also 

need to consider how the fitness effects of different allele combinations may vary 

depending on which carriers are in which roles. To model more than two interactants, 

new model parameters would need to be designed to consider how many interactants 

exist in each role per interaction, and how the various allele combinations may influence 

the fitness effects resulting from these interactions. While these added details can 

absolutely be explored using the concepts introduced in my thesis, I aimed to make clear 

the importance of conditional expression with my model, and so avoided adding too 

many details for simplicity’s sake.  

4.4 Conclusion 

Inclusive fitness models in sociobiology commonly emphasize the importance of 

relatedness, R, and synergy, S. In this thesis I propose a third key variable for inclusive 

fitness models, Q, which describes the commonly overlooked potential bias in the genetic 

composition of individuals exposed to an environmental stimulus – here referred to as 

‘role’. I describe an inclusive fitness model built from Price’s formula which can be 

converted into Hamilton’s rule, and provide results from two example applications of the 

model – one in which I consider the classic Hawk/Dove/Bourgeois game originally 

described by Maynard Smith, and another where I consider fitness outcomes of altruistic 

behaviour prone to errors in kin recognition. Both the Hawk-Dove-Bourgeois and 
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altruism applications of my model show dramatically different results when Q is 

considered (i.e., when biases in allele frequency for each role are allowed) versus when 

the models only focus on R and S. Based on these results, it is possible that inclusive 

fitness models which do not consider biases in role composition may be missing key 

details in their results. Bearing in mind the current increase in evidence supporting gene-

environment interactions involved in eusocial insect behaviours, the integration of details 

which take these interactions into account – such as the variable Q – in inclusive fitness 

models may be an important step to furthering our understanding of social evolution. 
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Appendix A: Supplementary Equations 

𝛽𝐹𝐼

=
2𝑝2(𝐷𝑂𝑏𝑠10  −  𝐷𝑂𝑏𝑠00) +  𝑝(𝐹2(𝐷𝑂𝑏𝑠11 − 𝐷𝑂𝑏𝑠10 − 𝐷𝑂𝑏𝑠01 + 𝐷𝑂𝑏𝑠00) − 𝐷𝑂𝑏𝑠10 + 𝐷𝑂𝑏𝑠00) − 𝐹2(𝐷𝑂𝑏𝑠11 − 𝐷𝑂𝑏𝑠01)

2𝑝2 − 𝑝 − 𝐹2
 

(8a) 

𝛽𝑃𝑎𝑟𝑡

=
2𝑝2(𝐷𝑂𝑏𝑠01  −  𝐷𝑂𝑏𝑠00) +  𝑝(𝐹2(𝐷𝑂𝑏𝑠11 − 𝐷𝑂𝑏𝑠10 − 𝐷𝑂𝑏𝑠01 + 𝐷𝑂𝑏𝑠00) − 𝐷𝑂𝑏𝑠01 + 𝐷𝑂𝑏𝑠00) − 𝐹2(𝐷𝑂𝑏𝑠11 − 𝐷𝑂𝑏𝑠10)

2𝑝2 − 𝑝 − 𝐹2
 

(8b) 
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