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Abstract
Tissue engineering scaffolds act as a structural template for seeded cells and play a 

significant role in dictating the performance of the final tissue construct. Scaffold 

properties are governed by the fabrication method and must be tailored to meet the 

intended application. In this work, 3D poly(carbonate) urethane (PCU) scaffolds were 

fabricated by solvent casting/particulate leaching (SCPL) and electrospinning. For 

SCPL, three different types of porogens, namely, alginate beads, D-fructose particles, 

and gelatin spheres were used. The effects of porogen type and fabrication method on 

scaffold morphological characteristics were examined. Highly porous scaffolds with 

uniform pore morphology were fabricated using all three porogen types, and fibrous 

scaffolds having an average fiber diameter of -200 nm were fabricated by 

electrospinning. Preliminary cell culture studies carried out with vascular smooth 

muscle cells indicated that electrospun scaffolds and scaffolds fabricated by SCPL 

using alginate beads and D-fructose were not cytotoxic and provided a favorable 

environment for cell growth.

Keywords: Polyurethane, scaffold, solvent casting/particulate leaching,

electrospinning, porogen, alginate beads, D-fructose, gelatin spheres, vascular smooth

in

muscle cells.
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CHAPTER 1

1 Scope and Thesis Outline

1.1 Overall Objectives and Rationale

At its central tenet, tissue engineering involves the in vitro seeding and attachment of 

cells onto three-dimensional (3D) scaffolds. These cells then migrate, proliferate, and 

differentiate into the intended specific tissues while secreting the extracellular matrix 

(ECM) components required for support and tissue morphogenesis. It is evident, 

therefore, that the choice of scaffold is crucial to enable the cells to behave in the 

required manner to produce tissues and organs of the desired shape and size.1 

Engineered tissues eliminate many of the problems that are faced when using donor 

organs or synthetically made devices for therapeutic applications. The morphological 

and mechanical properties of tissue engineered biomaterial constructs should closely 

resemble those of the tissue they intend to replace.2 Thus, the success of engineered 

constructs largely depends on the said properties of the scaffold, which supports the 

survival, proliferation, and differentiation of seeded cells. Engineering scaffolds 

provide the supporting structure needed for cells to organize in 3D and form a tissue. 

Scaffolds can be biodegradable or biostable and their properties are dependent on the 

intended application. However, in general, they should be biocompatible and highly 

porous in order to allow for cell ingrowth. Scaffold properties are greatly dependent 

on the fabrication technique, and there are a vast number of techniques that have been
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reported, each with advantages and disadvantages. In this work, a comparative study 

of scaffold fabrication techniques was carried out in order to evaluate the effect of the 

fabrication method on the morphological properties of the scaffold, and to assess the 

suitability of the techniques for vascular tissue engineering applications.

1.2 Thesis Layout

This thesis has 5 Chapters. Chapter 2 introduces the concept of tissue engineering, 

discusses the importance of vascular tissue engineering, and provides a 

comprehensive review of the scaffold fabrication techniques reported in the literature 

thus far. The specific objectives of this project are also provided at the end of 

Chapter 2. Chapter 3 details the experimental procedures, while Chapter 4 presents 

and discusses the results of this study. Finally, the important findings and future 

directions are summarized in Chapter 5.
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CHAPTER 2

2 Introduction

2.1 Tissue Engineering

In accordance with one of the most widely accepted definitions,3 tissue engineering is 

an interdisciplinary field that applies the principles of engineering and life sciences to 

the development of biological substitutes that restore, maintain, or improve tissue 

function or a whole organ. The main objective of tissue engineering is to aid tissue 

formation or regeneration of diseased or damaged organs through the use of cultured 

human cells or through the recruitment of endogenous cells, and thereby provide 

therapeutic or diagnostic benefit.4,5

There are four main tissue engineering approaches: cell transplantation, scaffold 

implantation, cell-seeded scaffold implantation, and in vitro tissue engineering.4 In 

vitro tissue engineering is the most frequent approach whereby cells are seeded onto a 

supporting structure known as a scaffold and the construct is then cultured in a 

bioreactor before implantation in the body as a replacement. In some applications, 

this approach is modified such that certain steps from the general procedure are 

omitted. For example, in myocardial tissue regeneration, cardiac muscle cells can be 

directly injected into the heart tissue to repair damaged myocardium.6 This is the cell 

transplantation approach. In other cases such as vascular intervention, natural or 

synthetic grafts are directly implanted into the host such that the cell-seeding and in
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n
vitro maturation step are omitted. This is known as the scaffold implantation 

approach whereby endogenous cells are prompted to invade the uncellularized 

construct. Finally, in the cell-seeded implantation approach, only the in vitro 

maturation step is omitted, such as in the case of endothelial cell-seeding of vascular 

grafts.8

The first commercial application of engineered tissue was a bioartificial skin product 

for burn treatment that was introduced in 1990.9 Engineered tissues such as blood 

vessels,10 bladder11 and trachea12 have already seen success and are used to some 

extent clinically.

2.2 Why Vascular Tissue Engineering?

Vascular disease is the leading cause of mortality in Western Societies. The body’s 

vasculature maintains homeostasis, regulates blood flow, and provides necessary 

nutrients and oxygen exchange to all parts of tissues.13 As a result, diseases that affect 

the function of blood vessels are often serious and life threatening.

Although minimally invasive surgeries such as angioplasty and stenting are frequent, 

vascular intervention often involves the surgical implantation of grafts. The use of 

saphenous vein, internal mammary artery, and radial artery as autologous bypass 

grafts is the mainstay of revascularization for ischemic heart disease and peripheral 

vascular disease.7, 14 Each year over 500,000 patients in USA, 220,000 in Western 

Europe and 23,000 Canadians undergo coronary artery bypass grafting operations.15,16
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As the elderly segment of the population increases, the numbers of coronary and 

peripheral vascular interventions are expected to increase. However, 20%-30% of 

patients who require coronary artery bypass grafting do not have suitable autologous 

vessels for the procedure.17 Allograft and xenograft vascular substitutes provide an 

alternative but often result in immune rejection, poor patency, and compliance 

mismatch.16

Synthetic materials such as polyethylene terephathalate (PET, Dacron®) and 

polytetrafluoroethylene (PTFE) have been used for treatment of coronary and 

peripheral vascular disease, but they are limited to high-flow/low-resistance 

conditions because of poor elasticity, low compliance, and thrombogenicity of 

synthetic surfaces.14 Thus, small-diameter synthetic vascular grafts (internal diameter 

less than 5 mm) have shown poor patency rates.7 In addition, synthetic grafts often 

fail due to immune-mediated rejection by the host.16 Synthetic materials also lack 

growth potential.7 Furthermore, none of the aforementioned therapies provide 

permanent solutions. The goal of vascular tissue engineering is, therefore, to resolve 

the problems associated with these approaches.

A tissue engineered vascular graft offers many advantages such as its inherent healing 

potential and ability to be remodeled by the body according to the needs of the 

environment.5 In the in vitro tissue engineering approach, vascular cells may be 

seeded onto biodegradable scaffolds ex vivo and allowed to remodel before 

transplantation. As the cells organize in three-dimensions and synthesize their own
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natural ECM, the scaffold degrades, leaving only the natural tissue. Despite the 

advantages of tissue engineered vascular grafts, there are also substantial challenges 

faced with this approach. Difficulties arise in designing a biomaterial that retains 

seeded vascular cells while maintaining morphological and phenotypical 

characteristics. In addition, while some engineered tissues may rely on remodeling 

of the tissue in vivo, tissue engineered vascular substitutes must be immediately 

functional upon implantation, since premature substitutes lead to catastrophic 

failure.16 A functional tissue engineered blood vessel should also be 

nonthrombogenic, nonimmunogenic, and have viscoelasticity similar to that of native 

vessels.19

Engineered vascular tissues have not only clinical significance but also the potential 

to be used in diagnostic applications for testing drug uptake and metabolism, toxicity, 

as well as pathogenicity contributing to our understanding of genetic or 

environmental factors regulating treatment outcomes. The use of cell and organ 

culture in combination with animal models to study vascular diseases (e.g. 

atherosclerosis, post angioplasty restenosis, and hypertension) with the goal of 

developing therapeutics is not new, but employing engineered human vascular tissues 

for this role is a novel concept.20, 21 Although conventional 2D cell cultures are 

neccesary to our understanding of tissue morphogenesis and function in physiological 

and pathological states, they do not accurately replicate the 3D microenvironment of 

human tissues. For example, 2D culturing of vascular cells for studying intimal 

hyperplasia without the arterial wall structure and ECM cannot recapitulate the
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90 99intricate vascular wall mechanics and morphogenesis. ’ Similarly, animal organ 

cultures and whole animal models do not completely mimic the human biology due to 

inevitable inter-species differences. Studies using closely related nonhuman primates 

are constrained by limited availability, legal restrictions, ethical concerns, and high 

cost.20

The most realistic model when studying human vascular diseases and therapeutics is 

obviously that of a human tissue, but the inability to experiment directly on human 

subjects limits this progress. As such, the need for an engineered human vascular 

tissue model to close this gap is of vital importance. Although engineered vascular 

tissues are not likely to replace animal or human subjects, they have the potential to 

provide high throughput of substantive and detailed information regarding specific 

conditions under controlled environments. The significance is far-reaching as these 

"made to order" vascular tissues comprising cells (smooth muscle and endothelial 

cells) and ECM (elastin and collagen) could serve as a powerful high-throughput tool 

to study disease models and therapeutic outcomes that are not possible with animal- 

based models.23,24 In this context, engineered vascular tissue technology may be used 

both to validate drug targets and to optimize loads. This allows for cardiovascular 

drug screening in a more controlled and efficient way than can be performed using a 

traditional whole animal approach, thereby minimizing the number of laboratory 

animals used and decreasing the overall cost of performing research. The use of 3D 

engineered tissue to reduce the cost and time required for physiological genomic 

research is another niche which is unexplored. Recently engineered 3D tissues such as
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c  o/i o*7 o o
cardiac patch, lung tissue, cornea, and solid tumor models have emerged as 

powerful tools for drug discovery and to study cells in 3D. In comparison with 2D 

cultures, 3D cell models create a more realistic representation of real tissues, which is 

critical for many important cell functions, including morphogenesis, cell metabolism, 

gene expression, differentiation, and cell-cell interactions. In view of this, 3D 

scaffolds play a role in vascular tissue engineering platforms.

2.3 Tissue Engineering Scaffolds

Primary cells are anchorage-dependant and require specific environments, meaning a 

supporting material is needed to act as a template for survival and growth.30 Tissue 

engineering scaffolds are used for this purpose. The scaffold should promote cell 

adhesion, proliferation, and ECM production. That is, the scaffold should surrogate 

the missing ECM. With the exception of a few cases, ’ " tissue engineering

strategies rely on appropriate scaffolds. Scaffolds are basically three-dimensional 

structural templates to support cell adhesion, migration, differentiation, proliferation 

and provide guidance for neo tissue formation. ’ Ideally, after fulfilling their 

function as a template, they should degrade into nontoxic byproducts. The 

coordinated rates of scaffold degradation and neo tissue generation are essential 

elements to be considered.39
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2.3.1 Scaffold Properties

An ideal tissue engineering scaffold should mimic the structure and biological 

function of native ECM in terms of both chemical composition and physical structure. 

Native ECM does much more than just provide a physical support for cells. It also 

provides a substrate with specific ligands for cell adhesion and migration. 

Furthermore, it provides various growth factors, which regulate cellular proliferation 

and function.40 Thus, a scaffold needs to provide both contact guidance cues, which 

direct the development and alignment of cells, as well as biochemical cues, which
y

direct compositional and organizational changes in the construct.

A scaffold should be biocompatible, and, in most cases, biodegradable. The scaffold 

degradation rate should coordinate with extracellular matrix deposition carried out by 

the cells in order to guarantee the required support during tissue formation.31 

Scaffolds also need to possess appropriate mechanical properties in order to provide 

the appropriate stress environment for the neotissue.30 The rate of degradation and 

mechanical properties of the scaffold are linked to the degree of porosity. There is a 

trade-off between high porosity and mechanical strength of the scaffold.

Architecture and porosity are two other required features for tissue engineering. 

Scaffold architecture should be such that it permits cell infiltration, nutrient and waste 

product permeation, and new capillary network formation.31 This architecture is 

believed to play a significant role in the development of specific biological functions 

in tissues while providing appropriate nutritional conditions and spatial organization
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for cell growth.30 Spatial cellular organization determines cell-cell and cell-matrix 

interactions and is critical to tissue and organ function 41 It is also important that the 

pore architecture be uniform and that the pores be interconnected. Tissues generated 

from nonuniform pore architectures have shown inferior biomechanical properties 

when compared with scaffolds having a uniform pore structure.31 Interconnected 

pores are important because transport of materials and cell migration is inhibited if 

the pores are not interconnected, even if the porosity is high.42

Scaffold porosity is equally a required characteristic for the regeneration of tissues. 

High porosity (70-95%) and surface-area-to-volume ratio is desired. High surface 

area is beneficial for cell attachment and anchorage, while high pore volume enables 

cell growth, migration, and transport of fluids and nutrients.31 More specifically, 

microporosity is important for capillary ingrowth and interactions between the cells 

and matrix, while macroporosity is more important for nutrient supply and waste 

removal of cell metabolism.31 Pore size and shape can also affect tissue ingrowth.43 

The optimal pore size range is strictly connected to the tissue type, but when the pore 

size is too small, pore occlusion can occur, preventing cell penetration.44 Finally, 

scaffolds also require appropriate surface structure and chemistry for cell attachment, 

and often chemical or physical surface modifications are imparted to enhance cell-

material interactions.
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2.3.2 Scaffold Materials

Both naturally occurring and synthetic materials are available to fabricate scaffolds. 

Developing materials for tissue engineering scaffolds is often challenging since they 

must have specific mechanical and bioresorbable properties as well as being suited 

for various fabrication processes. The choice of material for tissue engineering 

scaffolds depends on the application. In general, it is not possible to meet all criteria 

by a particular scaffold material since biological and synthetic scaffolds have both 

advantages and disadvantages (see Table 1).

Table 1: Properties of biological and synthetic scaffolds.45

Biological Scaffolds Synthetic Scaffolds

Advantages ■ Naturally occurring, nontoxic

■ Favorable for cell binding.

■ Generally biocompatible.

■ Precise control over material 
properties.

■ Easily available and cheap.

■ Easy to process.

■ Little or no batch-to-batch 
variations.

Disadvantages ■ May degrade rapidly.

■ Weak mechanical property 
unless crosslinked.

■ Inconsistency between 
different batches.

■ Risk of disease transmission.

■ Toxic residual monomers or 
catalysts and degradation 
byproducts may illicit 
inflammation.

■ Poor cellular interaction.
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For hard tissue applications such as bone and teeth, ceramics, composites, and rigid 

polymers have been widely used as scaffold materials, while for soft tissues such as 

skin, tendon, and blood vessels, soft natural or synthetic polymers have been used.46 

Natural polymers, such as collagens, glycosaminoglycan, starch, chitin, and chitosan,
•>rv

have been used to repair nerves, skin, cartilage, and bone. Although naturally 

occurring polymers offer great potential due to their biocompatibility, they cannot be 

easily mass-produced, and concerns about finding the large amounts of material 

needed for clinical applications have led to the investigation of synthetic polymers for 

use as scaffold materials.47

Synthetic polymers can be easily mass-produced, and their properties can be tailored 

for specific applications. Most of these polymers can be designed to undergo simple 

hydrolytic degradation reactions.31 The degradable polymers that are most used as 

scaffold materials are poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and their 

copolymer, poly(DL-lactic-co-glycolic acid) (PLGA), as well as the aliphatic 

polyester polycaprolactone (PCL).31

Although not strictly biodegradable, polyurethanes have excellent physical properties 

and good biocompatibility, making them good candidates for many biomedical 

applications.7 They were first used in the early 1950s for foam breast implants and
o 1

cardiovascular devices. They have also been used in applications such as 

pacemakers, catheters, and heart valves. For all of these applications, biostable 

polyurethanes were used. The favorable mechanical properties of polyurethanes has
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led to considerable research aimed at their use as scaffolds for the development of
n

vascular grafts.

2.3.3 Scaffold Fabrication Techniques

When designing scaffolds for tissue engineering, the desired chemical and physical 

properties, as well as the reproducibility, cost-effectiveness, and ability to include 

biological components during processing should be considered. There are many 

different scaffold fabrication techniques that have been developed, each with 

advantages and disadvantages. Brief reviews of these different techniques are 

presented here.

2.3.3.1 Fiber Meshes and Fiber Bonding

Some of the first scaffolds used to demonstrate the feasibility of tissue regeneration 

were made from non-woven fibers in the form of tassels and felts. Scaffolds were 

also prepared such that fibers were woven or knitted into 3D patterns of variable pore 

size. Advantages of these fiber meshes include large surface area for cell attachment 

and rapid diffusion of nutrients. However, their structure lacked the stability needed 

for in vitro use. This led to the development of the fiber bonding technique.48,49 There 

are two different fiber bonding techniques. In the first technique, polymer fibers 

(polymer A) are immersed in a solution consisting of a second polymer (polymer B) 

and a solvent that is a non-solvent for polymer A. The solvent is evaporated, resulting 

in the formation of a polymer-polymer composite, whereby the network of polymer A
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fibers is embedded in polymer B. When heating the composite to above the melting 

point of both polymers, polymer B melts first, filling all voids left by the fibers. As 

polymer A begins to melt, fibers at the cross-points become ‘welded’ together, and 

polymer B is then removed by dissolution. Foams with porosities as high as 81% and 

pore diameters of up to 500 ¡im were produced with this technique. In the second 

fiber bonding technique,50 polymer A fibers are bonded by coating them using 

atomization of polymer B, whereby fibers are sprayed with a solution of polymer B. 

The fibers remain unchanged during this process, and following solvent evaporation 

the fibers are glued together. Similar pore sizes were obtained with this technique.

Although these fiber bonding approaches produced highly porous scaffolds with 

interconnected pores, there are several disadvantages that limit their use. First, fine 

control of porosity is difficult. Second, the choice of solvent, immiscibility of the two 

polymers, and their relative melting temperatures restricts the choice of polymers that 

can be used. Finally, the use of toxic chemicals and extreme temperatures (in the case 

of the first fiber bonding technique) makes it difficult to include cells or bioactive 

molecules, such as growth factors, during processing 47

233.2 Gas Foaming

Gas foaming was developed to eliminate the need for organic solvents.42 In this 

process, solid polymer (PGA, PLLA, or PLGA) discs are prepared using compression 

molding with a heated mold. The discs are then placed in a chamber and exposed to
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high pressure carbon dioxide for several days. The pressure is then rapidly reduced to 

atmospheric pressure. Porosities of up to 93% have been achieved by this technique, 

but the pores are largely unconnected, especially on the surface of the foam.47

23 3 3  Phase Separation

Phase separation is frequently used in the preparation of 3D tissue engineering 

scaffolds. In this technique, phase separation of a polymer solution is induced, 

creating polymer-rich and solvent-rich domains within the solution. This is created by 

quenching under low temperatures. Following solvent removal by freeze-drying, 

porous polymer scaffolds are produced. If phase separation is induced by changing 

the temperature, it is known as thermally-induced phase separation, while if it is 

induced by adding a non-solvent to the polymer solution, it is known as non-solvent- 

induced phase separation.51 Scaffolds with porosities of up to 95% have been 

fabricated with the phase separation method. These scaffolds usually have a 

spongelike porous morphology with microscale spherical pores.53 However, the 

morphology can be altered by changing parameters such as the type of polymer used, 

polymer concentrations, solvent/non-solvent ratio, and thermal quenching strategy.30 

For example, the phase separation technique has been used to fabricate nano fibrous 

scaffolds with fiber diameters ranging from 50 to 500 nm.54,41

Although the ability to tailor pore size and porosity by altering process parameters is 

appealing, in practice, the phase separation technique is so sensitive to process 

variations that precise control of scaffold morphology is difficult. In addition, this
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technique is limited to small pores.

2.3.3.4 Emulsification/Freeze-drying

In this technique,55 water is added to a polymer solution to form an emulsion. The 

polymer/water mixture is cast into a mold and quenched using liquid nitrogen. The 

scaffold is then freeze-dried to remove the dispersed water and solvent. The porosity 

and pore size is dependent on parameters such as the ratio of polymer solution to 

water, and emulsion viscosity. Scaffolds with porosities of up to 95% and median 

pore sizes between 13 to 35 pm have been prepared using this technique.55 This 

method is limited by the small pore sizes obtained as well as the sensitivity of process 

variations.

2.3.3.5 Solvent Casting/Particulate Leaching (SCPL)

One of the most common scaffold fabrication methods is the solvent casting and 

particulate leaching technique. In this technique, porogen particles are used to 

generate pores. The particles are packed into a predesigned mold and a polymer 

solution is cast over the particle assembly. Following solvent evaporation, the 

porogen particles are removed through leaching, leaving a porous structure. When 

selecting the porogen/polymer/solvent combination, careful consideration should be 

taken. First, the porogen should not be soluble in the solvent used to dissolve the 

polymer, and second, the polymer should not be soluble in the solvent used to leach 

the porogen.
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The first porogens used in this technique were salts such as sodium chloride, sodium 

tartrate, and sodium citrate.56 Although salts such as sodium chloride and ammonium 

chloride are still the most commonly used porogens because they are readily 

available and easy to handle, the use of other types of porogens has also been 

investigated. In particular, researchers have investigated the use of spherical porogens 

because they can be closely packed together, which results in more interconnection 

between the resulting pores formed following leaching. As such, paraffin spheres 

have been prepared for use as a porogen with promising results. ’ ’ ’ For 

example, highly open and interconnected polyurethane scaffolds with an average 

porosity of 84% were fabricated using paraffin spheres. Another group compared 

the morphology of scaffolds prepared using three different porogens: sodium chloride 

particles, paraffin spheres, and gelatin spheres.43 They found that the scaffolds 

prepared with spherical porogens showed better mechanical performance and lower 

flow resistance.43 The use of gelatin spheres as a porogen has shown promise due to 

its biocompatibility and potential to be used with a wide range of polymers.60’61,62 

Gelatin is known as a material that enhances cell attachment and proliferation.63 A 

comparative study on the biocompatibility of scaffolds prepared using gelatin 

porogens and salt porogens showed that scaffolds made with gelatin porogens 

enhanced cell attachment. However, one drawback of using gelatin as a porogen 

that has been reported is that it is difficult to achieve high scaffold porosity since high 

weight fractions of gelatin led to swelling during leaching.64
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Sugar particles,41 cubes,65 spheres,66,67 and fibers41 have also been used as porogens in 

the particulate leaching technique and are reported to be good choices due to their 

biocompatibility and ease of use. In one approach, sugar spheres were prepared by 

spheronizing sugar particles using a horizontal Meker-Fisher burner flame.68 

Scaffolds fabricated using sugar spheres as a porogen were highly porous with 

interconnected pores. Rabbit bone marrow mesenchymal stem cells were found to 

adhere to the scaffold and proliferate in vitro over 21 days.68 Another group has 

investigated the use of alginate beads as a porogen.69 The beads were prepared by an 

emulsification and ionic gelation technique, whereby the size and shape of the beads 

could be controlled by altering process conditions. ATR-FT-IR spectroscopy 

demonstrated the existence of alginate molecules on the surface of the PLA scaffold 

fabricated using the alginate beads, which was shown to significantly enhance 

osteoblast adhesion and proliferation.69

Polyethylene glycol (PEG) has also been reported for use as a porogen in the 

particulate leaching technique. PEG is biocompatible and the resulting scaffolds 

showed excellent morphology in terms of interconnection between the pores.70 

However, use of this porogen extended the time required for scaffold fabrication due 

to the extra time required to leach the PEG.70

In general, the main advantage of the solvent casting/particulate leaching technique 

for scaffold fabrication is that the porosity and pore size can be easily controlled. The 

amount of porogen added relates to the porosity, while the size of the porogen
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particles is directly related to the size of the pores in the resulting scaffold. However, 

one difficulty that is often faced when using this technique, particularly for scaffolds 

requiring lower porosity levels, is the lack of interconnection between pores. This is 

because the spatial organization of the resulting scaffold is directly related to the 

spatial arrangement of the porogen particles in the porogen/polymer composite.52 If 

the volume fraction of porogen particles is decreased, the number of contact points 

between particles decreases, and thus the interconnection between the pores formed 

after leaching also decreases. If the volume fraction of porogen particles is typically 

less than 65% for rigid spheres, a completely open-celled structure cannot be obtained 

due to the isolated particles in the polymer matrix. ’ Furthermore, with this scaffold 

fabrication technique, the interconnection between the pores is smaller than the size 

of the pores, which may limit the propagation of cells from one pore to another in

S7certain applications.

In view of these difficulties, studies have been conducted to improve pore 

interconnectivity when using the particulate leaching technique. For example, 

pretreatment has been imparted to partially bond the porogen particles by working in 

a humid environment in the case of NaCl porogen or by heat treatment in the case of 

paraffin spheres or sugar particles. ’ ’ Interconnectivity has also been improved by 

utilizing a pressure differential/particulate leaching technique.18 In this method, 

porogen particles are packed into a cylindrical mold where an air supply is connected 

to the top of the mold and a vacuum is connected to the bottom. Due to the pressure 

differential created, the particles are more tightly packed, which results in improved
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interconnection between pores in the resulting scaffold. This method is also

advantageous because the air-scaffold interface is eliminated by using a closed

chamber. This prevents skin formation and ill-defined pore structures at the surface,

which are common problems faced when using the solvent casting/particulate 

18leaching method.

In order to eliminate the need for organic solvents, which can potentially be harmful 

to cells, it was proposed that the solvent casting step in SCPL be replaced by melt

molding, resulting in the melt-molding/particulate leaching method.74 In the melt

molding step, polymer powder and porogen particles are premixed and then hot- 

pressed together.74 Although this eliminates the need for organic solvents, the 

elevated temperatures make it difficult to include cells or bioactive molecules during 

processing.

Another drawback of the solvent casting/particulate leaching technique is the 

limitations on scaffold thickness. Preparation of thick foams using this technique is 

not practical because of the time required for the casting and leaching steps. However, 

for applications that do not require exceptionally large foams, such vascular tissue 

engineering, this is not an issue.

23 .3.6 Rapid prototyping/solid free-form fabrication

Rapid prototyping (RP) or solid free-form (SFF) fabrication refers to a group of 

techniques that model a scaffold directly from a computer-aided design (CAD) data
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7 c
set. Examples of these techniques include 3D-printing, selective laser sintering, 3D- 

plotting, and fused deposition modeling. RP techniques build up a specific body 

shape by the selective addition of material, layer-by-layer, guided by a computer 

program. The advantage of these techniques it that complex scaffolds with an exact

75predefined shape can be fabricated. However, these techniques are time consuming
r 7

and are limited to pore sizes greater than 50 [Am and porosities lower than 70%.

233.1 Combined Techniques

It is often beneficial to use a combination of different scaffold fabrication techniques 

and it also offers more flexibility. For example, in a combination of gas foaming and 

particulate leaching,77,78 ammonium bicarbonate was added to a polymer solution in 

methylene chloride or chloroform, forming a highly viscous mixture that can be 

shaped with a mold. After solvent evaporation, the composite is immersed in warm 

water, which results in concurrent gas evolution and particle leaching. This method 

greatly improved the pore interconnection of the gas foaming technique and porosities 

of up 90% were obtained.77

The particulate leaching technique has also been combined with the phase 

separating,54 emulsification/freeze-drying,55 and rapid prototyping techniques.79 

These combined techniques result in the creation of a multi-porous structure 

characterized by different pore sizes and/or pore morphologies. However, control 

over scaffold morphology is difficult.
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2.3.3.8 Electrospinning

Electrospinning is a polymer-processing technology used for the production of 

polymer fibers. Polymer fibers with diameters from 3 nm to greater than 5 pm have

on

been produced with this technique. The technology of electrospinning first appeared 

in the 1930s, but the technique has only recently gained interest within the tissue 

engineering community as a means to fabricate scaffolds.40

A typical electrospinning setup consists of a syringe pump, a high voltage source, and 

a collector. In the electrospinning process, the electric field created by the high 

voltage source is used to draw polymer solution or melt through the needle to the 

collector. The application of an electric field induces charges within the polymer, 

resulting in charge repulsion within the solution.81 Eventually, this charge repulsion 

overcomes the surface tension and a fine jet is ejected from the needle. The solvent in 

the ejected jet begins to evaporate to form polymer fibers that travel toward the 

grounded counter electrode where they are collected.

The electrospinning process can be manipulated to achieve the desired fiber diameter 

and morphology of the resulting fiber mesh. For example, when electrospinning 

polyurethaneurea solutions, fiber diameters in the range of 7 nm to 1.5 pm were 

obtained by varying the solution concentration. Tunable parameters include: 

polymer solution concentration, solution feed flowrate, distance between the needle 

tip and collector, and applied voltage.
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One of the drawbacks of the electrospinning technique is that nonwoven sheets with a 

two-dimensional profile are usually produced because it is time-consuming to 

produce thicker 3D meshes due to the low flowrate required.40

Modifications to the electrospinning technique have been developed to suit specific 

applications. One such development is a multi-layering electrospinning technique 

designed for fabrication of scaffolds for blood vessel tissue engineering. In the 

multi-layering technique, a rotating mandrel-type collector is used to produce aligned 

nanofiber matrixes. Aligned nanofibers can be advantageous because cell orientation 

can be controlled.

Electrospinning is the most appealing method for producing nanoscaled polymeric 

fibers because it is the most simple and efficient.40 It also shows promise as a scaffold 

fabrication technique because it offers the ability to fabricate scaffolds that closely 

mimic the scale and fibrous nature of the native ECM.

2.4 Specific Objectives and Rationale

Isolated cells need a specific environment to guide their growth for new tissue 

formation, and tissue engineering scaffolds play a significant role in creating such an 

environment. The success of tissue regeneration greatly depends on the 

microstructure and morphology of this supporting structure. These properties are of 

course governed by the fabrication technique. The focus of this work was to fabricate 

scaffolds for vascular tissue engineering applications from biostable polyurethane.
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The rationale for choosing biostable polyurethane is based on previous investigations 

by our laboratory for vascular tissue engineering.16, l8, 84-86 The specific objectives 

were as follows:

• Prepare alginate beads that are suitable for use as a porogen.

• Fabricate highly porous 3D polyurethane scaffolds by SCPL and 

electrospinning.

• Evaluate and compare their fabrication-method dependent morphology.

• Study the interaction of vascular smooth muscle cells with these scaffolds.
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CHAPTER 3

3 Materials and Methods

3.1 Materials

Polycarbonate urethane) (PCU) (Bionate® 55D) was supplied by the Polymer 

Technology Group (Berkeley, CA) and was used as the scaffold material in this work. 

Sodium Alginate (Manucol® LKX) was obtained from ISP Pharmaceuticals (Wayne, 

NJ). Gelatin microspheres (120-150 pm) were purchased from Thies 

Microcapsules™ (Henderson, NV). D-fructose, ethanol, Dimethylformamide (DMF), 

Dimethylsulfoxide (DMSO), Ethylenediaminetetraacetic acid (EDTA), Span® 80 

(Sorbitane monooleate), Tween® 80 (Polyethylene glycol sorbitan monooleate), 

mineral oil, isooctane, hexane, and calcium chloride were purchased from Sigma 

Aldrich. Human coronary artery smooth muscle cells (HCASMCs), and smooth 

muscle growth medium-2 bullet kit (SmGM-2) were purchased from Lonza 

Walkersville Inc. (Walkersville, MD). Fibronectin was purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). Paraformaldehyde was purchased from EMD 

Chemicals (Gibbstown, NJ). Alexa Fluor® 568 phalloidin, and 4',6-diamidino-2- 

phenylindole (DAPI) were purchased from Invitrogen (Eugene, OR). SHUR/Mount™ 

Liquid Mounting Medium was obtained from Triangle Biomedical Sciences Inc. 

(Durham, NC).
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3.2 Methods

3.2.1 Alginate Bead Preparation

Alginate beads were prepared by an emulsification and ionic gelation technique as 

previously reported ’ with notable modifications. 50 mL of 4.5 wt% aqueous 

sodium alginate (1,2, and 3 wt% were used in preliminary experiments) was added 

drop-wise to a 250 mL beaker containing 75 mL of mineral oil (isooctane was used in 

preliminary experiments) with 1.2 mL of Span® 80 while mixing at 300 rpm using an 

overhead mixer. After mixing for 10 minutes, 5 mL of deionized water containing 0.7 

mL Tween® 80 was added. Following mixing for another 20 minutes, 30 mL of 

calcium chloride solution (of varying concentration: 100, 150, and 200 mg/mL) was 

added. In order to allow the ionic cross-linking to go to completion, the emulsion was 

left mixing overnight. The beads were then filtered, washed with hexane, and allowed 

to dry at ambient temperature in a fume hood for at least 30 minutes. The beads used 

as a porogen for scaffold fabrication were finally sieved to a particle size range of 

106-300 îm. Scanning electron microscope (SEM) images of the beads were captured 

using the procedure described in Section 3.2.3.1. For each experiment, a total of 100 

particles were selected and their bead diameters were measured using ImageJ 

software (NIH, Bethesda, MD, USA). Data were then analyzed using two-tailed, 

unpaired Student’s t-tests for n=100, and statistical significance was assigned for p <

0.05.
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3.2.2 Scaffold Fabrication

3.2.2.1 Solvent casting/particulate leaching

A pressure differential solvent casting-particulate leaching method (SCPL) was used 

to fabricate scaffolds using one of three different types of porogen particles: alginate 

beads (sieved to 106-300 pm), gelatin microspheres (120-150 pm), and D-fructose 

particles (sieved to 180-212 (Am). In each case, the respective porogen particles were 

first packed into a cylindrical mold (5.5 mm diameter, 8 cm height). This was done by 

subjecting the particles to a pressure differential after incremental amounts were 

added. The pressure differential was created through a nozzle at the top, which 

supplied air, and a nozzle at the bottom, which applied a vacuum (see Figure 1). Once 

the column was packed, a viscous solution of PCU (25% v/v) dissolved in DMF was 

added to the top of the porogen bed and forced through the entire packed column 

using an air supply line and vacuum. Note that in the case of the scaffolds fabricated 

using D-fructose as a porogen, a solvent mixture of DMF and DMSO (with various 

mixture ratios) was used to dissolve PCU whereas in the case of the scaffolds 

fabricated using alginate or gelatin as a porogen only DMF was used. Once the 

polymer solution had infiltrated through the porogen assembly, the mold was 

removed from the apparatus and the cylindrical construct was pushed out of the mold 

using a metal rod. With the exception of scaffolds fabricated using gelatin porogens 

and the combined SCPL/Phase inversion (PI) method, scaffolds were then placed in a 

fume hood for 3 days to allow the solvent to evaporate. Scaffolds fabricated using 

gelatin and combined SCPL/PI were immersed in 95% ethanol before the leaching 

step. The porogen particles were then leached out by submerging in deionized water
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at room temperature (in the case of fructose) or at 60°C (in the case of gelatin) or by 

immersing in 0.1 M EDTA at 35°C (in the case of alginate). Scaffolds were leached 

for 2 days (fructose porogen) or 4 days (gelatin and alginate) while exchanging the 

leaching solvent every 12 hours. Scaffolds immersed in EDTA required an additional 

step and had to be immersed in water for another day to remove residual EDTA.

Figure 1: Apparatus used for fabrication of scaffolds by SCPL

3.2.2.2 Electrospinning

Various concentrations (5, 10, 12.5, 15% v/v) of PCU in DMF were prepared. The 

solution was transferred to a plastic syringe equipped with a stainless steel needle (22 

gauge needle, OD=0.7176 mm, ID=0.413 mm), which was connected to a high 

voltage supply (set at 15 kV, 18 kV, and 20 kV). The solution was fed through the 

needle using a syringe pump (set at a flowrate of 0.1 mL/h or 0.15 mL/h), and the 

grounded collector was located 8 cm from the tip of the needle.

1. Air supply
2. Stainless steel body

4. Vacuum application

3. Glass cylindrical mold (5.5 mm 
diameter and 8 cm height) 
containing porogen particles
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3.2.3 Scaffold Characterization

3.2.3.1 Scanning Electron Microscopy (SEM)

Scaffold morphology was visualized using Scanning Electron Microscopy (SEM). 

Samples were first mounted on carbon-taped aluminum stubs and gold sputtered 

(Emitech K550X) with a current of 15 mA and a run time of 1.30 minutes. The stub 

was then placed in the SEM (S- 2600N, Hitachi, Japan), where the sample was 

subjected to a vacuum and the tungsten filament was turned on. The secondary 

electron detector was used and the voltage for the electron beam was set to 5 kV. The 

imaging could then be performed at various magnifications. From SEM images, 

scaffold pore size and fiber diameter were measured using ImageJ software (NIH, 

Bethesda, MD, USA). A minimum of four SEM micrographs was selected for 

measurements and data were analyzed using two-tailed, unpaired Student’s t-tests. 

Statistical significance was assumed for P<0.05.

3.2.3.2 Microcomputed tomography (MicroCT)

Samples were imaged by microcomputed tomography (microCT) (GE Locus, GE 

Healthcare, Canada). Scans were preformed with an x-ray voltage of 80 kV and a 

current of 0.45 mA, and reconstructed at an isotropic voxel size of 0.020 mm. 2D 

slice images were reconstructed and compiled to generate a 3D image, and the images 

were analyzed using a commercially available trabecular bone analysis software 

(MicroView, GE Healthcare). Porosity, pore size, strut thickness, and surface-area-to- 

volume ratio measurements were analyzed using two-tailed, unpaired Student’s t-test 

(statistical significance assumed for p<0.05).
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3.2.3.3 Mercury Porosimetry

Measurements were made using an Autopore IV porosimetery (Micromeritics, 

Norcross, GA). Cylindrical scaffold samples were cut into disks having a mass 

between 0.015 and 0.03 g before placing in the penetrometer. The filling pressure of 

the penetrometer was 0.5 psi and the maximum pressure was 60 psi. Data analysis 

was carried out using the Washburn equation, which relates pressure to the size of the 

intruded pore diameter88: DP = -4/COS0, where D represents pore diameter, P is 

applied pressure, y is surface tension, and 0 is the contact angle between mercury and 

pore wall. The surface tension of mercury and the intrinsic contact angle with the 

scaffolds were taken to be yHg = 485 dynes/cm and 0 = 130° respectively. Scaffold 

porosity was calculated from the total intrusion volume, polymer density, and sample 

mass.

3.2.4 Cell Proliferation and Cytotoxicity

In preparation for cell culture studies, scaffolds prepared by SCPL were sliced into -1 

mm cylindrical disks using a rotating razor blade while electrospun mats were cut into 

cylindrical disks having a diameter of 12 mm. All samples were affixed to a 24-well 

cell culture plate (BD Falcon™, Franklin Lakes, NJ) using silicone grease, sterilized 

by immersion in 70% ethanol for 30 min, and allowed to dry for 30 min under 

germicidal UV light. Samples were then coated with fibronectin (5 pg/sample) for 1 

hour at room temperature according to the supplier’s instructions.

Human coronary artery smooth muscle cells (HCASMCs) between passage 5 and 8
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were used for cell culture studies. HCASMCs were cultured in SmGM-2 

supplemented with 1 % penicillin/streptomycin solution (P/S). Cultures were 

maintained in a humidified incubator at 37°C and 5% CO2. HCASMCs were seeded 

onto samples at an initial cell density of approximately 50 x 104 cells/sample and 

cultured for 7 and 14 days before fixation and immunostaining. Following culture 

time, cells were fixed for 20 min at room temperature in 4% paraformaldehyde in 

divalent cation-free PBS and permeabilized with 0.5% Triton X-100 in PBS. 

HCASMCs were incubated for 1 hour at ambient temperature in 1% BSA/PBS 

containing Alexa Fluor® 568 phalloidin (1:50 dilution). DAPI (300 nM in PBS) was 

used to label nuclei. Samples were mounted on slides in SHUR/Mount™ and 

analyzed with a Zeiss LSM 410 confocal microscope (Carl Zeiss, Toronto, ON, 

Canada) equipped with an argon/neon as well as a UV laser.

For cytotoxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay was carried out following the manufacturer’s protocol (Vybrant®, 

Invitrogen, Burlington, ON, Canada). The initial cell density was 6x104 cells/scaffold 

in 96-well tissue culture plates which were then cultured for 7 and 14 days. An MTT 

solution was added to each well to make the final concentration 1.10 mM and then 

incubated at 37°C. After removal of the supernatant, 10% (weight/volume) SDS was 

added and the absorbance was recorded at 570 nm by a plate reader. Negative control 

experiments were carried out by adding MTT to the culture medium only.
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CHAPTER 4

4 Results and Discussion

4.1 Scaffold Material Selection

Biodegradable scaffolds are often preferable as a responsive tissue de void of scaffold 

fragments is the ideal alternative when compared with hybrid constructs;16 but they 

have a number of disadvantages. Commonly used biodegradable polymers such as 

poly(L-lactic acid), poly(glycolic acid), and their copolymers often generate acidic 

degradation products, and this raises concerns that the scaffold microenvironment 

may not be ideal for tissue growth.70, 84 In addition, strict coordination of scaffold 

biodegradation and extracellular matrix deposition is required.39 The tissue 

maturation process is also generally lengthy, especially in vascular tissue engineering 

applications, since vascular tissues have to be mechanically strong and function 

immediately upon implantation.84 For these reasons, considerable attention has 

recently been given toward the use of nondegradable scaffolds in vascular tissue 

engineering.16,89,90 Polyurethanes have shown promise as a scaffold material in the 

design of hybrid vascular substitutes due to their proven mechanical properties.16,18,84 

Furthermore, in order to effectively study the influence of scaffold morphology on 

cellular interactions, biostable scaffolds are preferable, since scaffold degradation is 

linked to scaffold morphological characteristics. Thus, biostable polycarbonate 

urethane) (PCU) (Bionate® 55D) was selected as the scaffold material in this work.
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4.2 Alginate Beads as a Porogen

Alginates are generally regarded as non-toxic and biocompatible and are widely used 

in the pharmaceutical, cosmetics, and food industries.91 This makes them a good 

choice for use as a porogen, since residual alginate would not be cytotoxic. Although 

the use of alginate particles to fabricate poly(D,L-lactic acid) (PLA) scaffolds for 

bone tissue engineering applications has been reported,69 the bead sizes and the 

resulting pore sizes were too large for vascular tissue engineering applications and 

scaffold morphology was not extensively studied.

4.2.1 Porogen Bead Preparation and Stability

Alginate (or alginic acid) is a naturally occurring hydrophilic colloidal polysaccharide 

isolated from brown seaweed (Phaeophyceae). It is a linear polymer composed of P- 

D-mannuronic acid (M) and a-L-guluronic acid (G) residues arranged in the polymer 

chain in blocks (see Figure 2). These homogeneous blocks are separated by blocks 

made of random or alternating units of mannuronic and guluronic acids.91 The relative 

amount of these blocks varies with the source of the alginate.
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Figure 2: Different alginate block types. G = guluronic acid, M = mannuronic acid.91

Alginates have the ability to form two types of gels. At low pH (below 4), hydration 

of alginic acid leads to the formation of a high-viscosity ‘acid gel,’ while at a pH 

above 4, monovalent metal ions can form soluble salts with alginate, and cross- 

linking with divalent cations such as Ca2+, Zn2+ and Cu2+ leads to ionotropic 

gelation.87, 91 In the latter gelation technique, the divalent cation replaces the 

monovalent Na cation and binds to the polymer wherever there are two neighboring 

guluronic acid residues, resulting in cross-linking of both different polymer molecules 

as well as different parts of the same chain.92 This technique is often used for

87microencapsulation of drugs, proteins, cells, and DNA.
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The most common method for preparing alginate microspheres is by extruding 

sodium alginate solution as droplets into calcium chloride solution. However, this 

method typically produces beads with a diameter greater than 1 mm.93 Given that the 

optimal pore size range for scaffolds for vascular tissue engineering applications has 

been reported as 100-300 microns,16, 89 the extrusion technique is not suitable for 

preparing beads for use as a porogen in this study. Instead, alginate beads were 

prepared by an emulsification technique, which is more appropriate for producing 

smaller sized microspheres.94 In this method, aqueous sodium alginate solution is 

dispersed in an immiscible organic phase to which calcium chloride solution is then 

added.

The formation of beads by emulsification is thermodynamically unfavorable and 

requires a greater degree of chaos than does the extrusion method. The extrusion 

method relies only on simple diffusion for gelation of alginate to take place, while the 

emulsification method is more complicated due to the presence of an organic phase 

and the need for dispersion stability to prevent aggregation of dispersed alginate 

globules. For this reason, the use of two surfactants was required. Span 80 

(Sorbitane monooleate) and Tween® 80 (Polyethylene glycol sorbitan monooleate), 

two nonionic surfactants, were chosen based on their solubility, Hydrophile Lipophile 

Balance (HLB), as well as previous work that reported the use of these surfactants in 

the formation of alginate beads.69
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There are many process parameters that affect the emulsion stability as well as the 

resulting bead size and shape. These include surfactant concentration, sodium alginate 

concentration, calcium chloride concentration, type of oil used, and mixing speed.

At the early stage of this study, preliminary experiments were carried out using 

isooctane, which has been used extensively as the lipophilic phase in previously 

reported studies.69,87,94,95 However, problems with emulsion stability were 

encountered. The sensitivity of the process to slight process variations resulted in 

notable batch-to-batch variations making it difficult to produce reliable data. 

Furthermore, the beads tended to agglomerate to one another following the drying 

step. This can be seen in Figure 3, where SEM images of alginate beads prepared 

using isooctane and three different sodium alginate concentrations (1,2, and 3 wt%) 

are shown. Alterations to surfactant concentration and calcium chloride concentration 

were carried out, but these alterations did not result in notable improvements in terms 

of bead agglomeration or morphology, nor were there quantifiable changes in bead 

size (data not shown). However, bead diameter was observed to increase with 

increasing sodium alginate concentration, the beads having average diameters of 45.0 

+ 15.7 pm, 175.2 + 63.1 pm, and 228.8 + 101.0 pm (expressed as mean + standard 

deviation) with sodium alginate concentrations of 1, 2, and 3 wt% respectively (see 

Figures 3A-C).
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Figure 3: SEM images of alginate beads prepared using isooctane and a sodium alginate 
concentration of 1 wt% (A), 2 wt% (B), and 3 wt% (C). Note: all other parameters 
remained constant (1.2 mL Span® 80, 0.7 mL Tween® 80,150 mg/mL CaCl2).

An increase in sodium alginate concentration results in an increase in viscosity of the 

dispersed phase, which in turn increases the size of the emulsion droplets and 

decreases emulsion stability due to the higher energy level needed to disperse a 

solution of higher viscosity. The decreased stability also results in more irregularly 

shaped beads with a rougher surface (see Figure 3C).
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In an effort to improve emulsion stability and avoid agglomeration of the beads, 

which has been reported to be a common problem encountered when preparing 

alginate beads using the emulsification technique,96, 97 mineral oil was used as the 

lipophilic phase instead of isooctane. The rationale here is that the increase in oil 

viscosity reduces the diffusion coefficient of the dispersed droplets, which reduces 

their frequency of collision and rate of coalescence, and increases emulsion stability. 

Figure 4A shows a representative image of beads prepared using mineral oil as the 

lipophilic phase which supported this assumption. Minimal bead agglomeration was 

encountered, and the beads were more regularly shaped with a smoother surface. In 

addition, smaller beads were generally achieved when using mineral oil instead of 

isooctane. Furthermore, beads of the desired size range could be obtained at higher 

sodium alginate concentration, which made the process more efficient, since higher 

concentrations of sodium alginate produce larger quantities of beads in a single batch. 

When using mineral oil and a sodium alginate concentration of 4.5 wt%, beads with 

an average diameter of 145.3 ± 66.1 pm were obtained (Figure 4A). In contrast, when 

using isooctane and a sodium alginate concentration of 3 wt%, beads with a much 

larger average diameter (228.8 ± 101.0 pm), which was too large for the desired 

application, were obtained. In view of these advantages, mineral oil was found to be a 

better choice than isooctane and was used as the lipophilic phase for the remaining

part of the study.
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Figure 4: Alginate beads prepared using mineral oil, 4.5 wt% sodium alginate, 1.2 mL 
Span® 80, 0.7 mL Tween® 80, and 150 mg/mL CaCh (A), and alginate bead size 
distribution (N=100) at a calcium chloride concentration of 100 mg/mL (B), 150 mg/mL 
(C), 200 mg/mL (D) (all other parameters are the same as in A).

Three different calcium chloride concentrations (100, 150, and 200 mg/mL) were 

evaluated in order to achieve the desired bead size. Past studies have shown that the 

mean size of microspheres is strongly related to the Ca concentration. ’ Figure 5 

shows the effect of the calcium chloride concentration on the mean bead diameter. It 

can be seen that the bead diameter increases as the concentration of calcium chloride 

increases. This can be explained by examining the nature of the non-covalent ionic 

cross-linking. When the calcium chloride solution is added to the emulsion under 

constant mixing it is sheared into globules and the initiation of the ionic cross-linking 

is dependent on the chance collision between the alginate globules and the calcium
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chloride globules. Upon collision, inter-globular or intra-globular cross-linking can 

occur. Intra-globular cross-linking results in densification and size reduction, while 

inter-globular cross-linking causes alginate globules to combine and form a larger 

bead. The mean size of the beads formed depends on the net extent of inter-globular 

and intra-globular cross-linking. At higher calcium chloride concentration there is 

more Ca available to exchange with Na and inter-globular cross-linking dominates, 

resulting in larger beads.

Calcium Chloride Concentration (mg/mL)

Figure 5: Effect of calcium chloride concentration on mean diameter of alginate beads. 
Error bars represent the standard error and * indicates statistical significance.

Figures 4B-D show that the bead-size distribution is also affected by the calcium

chloride concentration. As the concentration increases the distribution widens
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considerably. This makes sense because if the intra-globular cross-linking dominates 

such that the majority of the alginate globules do not combine to form larger 

microspheres, the resulting bead size should be similar to that of a single alginate 

globule in the emulsion with little variation. This was observed at a calcium chloride 

concentration of 100 mg/mL (Figure 4B). In contrast, as the concentration increased 

to 150 mg/mL, and then to 200 mg/mL, the size distribution widened considerably 

(Figures 4C & D).

In this study, the alginate beads that were prepared using a calcium chloride 

concentration of 150 mg/mL were selected for scaffold fabrication because the 

majority of beads were within the desired size range. Figure 4A shows an SEM image 

of the beads and it can be seen that they are spherical in shape. Spherical beads are 

preferred because they can be closely packed together during scaffold fabrication, 

which improves uniformity and interconnection of pores in the resulting scaffold.

4.3 Scaffolds Fabricated by SCPL

Solvent casting/particulate leaching is among the most versatile fabrication 

techniques, and the type and shape of porogen used play a major role in dictating the 

properties of the resulting scaffold. Thus, the use of three different types of porogens 

(alginate beads, D-fructose particles, and gelatin spheres) was evaluated. The results

are discussed below.
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4.3.1 Scaffolds Fabricated using Alginate Beads

Alginate beads sieved to a size range of 106-300 \im were used to fabricate scaffolds 

by the particulate leaching technique. The beads were leached out using 0.1 M 

EDTA, which is a calcium chelating agent.

Figure 6 shows the morphology of the resulting scaffold, from which it can be 

inferred that the pores are well interconnected and spherical in shape, owing to the 

shape of the alginate beads used.

Figure 6: Representative SEM images of PCU scaffolds (different magnifications) 
fabricated by SCPL using alginate beads (106-300 pm) as a porogen.
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As mentioned in Chapter 2, it is often difficult to obtain well-interconnected scaffolds 

with tailored pore shape, particularly when using the SCPL fabrication technique. 

One of the crucial points in scaffolding is the level of pore interconnection, since an 

open porous network is believed to enhance nutrient circulation, metabolic waste 

removal, and cell proliferation. Because of this, researchers have investigated 

incorporating additional steps, such as fusion of the porogen particles prior to solvent 

casting ’ ’ , in order to improve pore interconnectivity. Here, an interconnected pore 

network was achieved without any additional steps by using spherical alginate beads 

and employing a pressure differential solvent casting-particulate leaching technique, 

whereby the beads were tightly packed in a cylindrical mold using an air supply line 

(applied at the top) and vacuum (applied at the bottom).

In addition, the spherical pores obtained are advantageous because they allow for a 

more regular structure and uniform distribution of interconnections between pores. 

Studies have shown that scaffolds with spherical pores have lower flow resistance 

when compared with scaffolds with an irregular geometry of pores.43 This in turn 

means improved fluid exchange and nutrient supply to cells.

MicroCT analysis was able to provide further insight into scaffold morphology. 

Figure 7 A shows a 3D isosurface of a scaffold fabricated with alginate beads (lighter 

regions represent the polymer matrix while darker regions correspond to air), and 

Table 2 displays the quantitative results.
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Figure 7: Representative MicroCT isosurfaces of PCU scaffolds fabricated by SCPL 
using alginate beads (A), D-fructose with a polymer solvent mixture of 30% 
DMSO/70% DMF (B), and D-fructose with polymer solvent mixture of 50% 
DMSO/50% DMF (C).
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Table 2: MicroCT Analysis of PCU scaffolds fabricated using SCPL and two different 
types of porogens.

Porogen
Type

Porosity (%) Strut
Thickness

(|xm)

Pore
Diameter

(pm)

Surface Area 
to Volume 

Ratio 
(mm1)

Alginate 85.6 ±4.5 29.1 ±7.5 146.7 ±34.3 84.7 ±20.5

D-Fructose
(30%
DMSO)

88.1 ±3.1 31.2 ± 6.1 172.1 ±36.3 68.3 ± 11.3

D-Fructose
(50%
DMSO)

82.8 ±7.5 27.3 ±4.9 112.2 ±33.2 86.5 ± 16.8

Data expressed as mean ± standard deviation for n = 27. 
Analyzed using two-tailed unpaired Student’s t-test (p < 0.05).

The average scaffold porosity was found to be 85.6%, which is within the optimal 

scaffold porosity range (80-90%) for vascular tissue engineering.16, 89 An average 

surface-area-to-volume ratio of 84.7 mm"1 is also an attractive feature because it is 

toward the higher end of the range of values that have been reported as typical for the 

SCPL technique.56,98 A high surface-area-to-volume ratio is also a good indication of 

a well-interconnected scaffold morphology. The average strut thickness (29.1 pm) 

and average pore size (146.7 pm) were consistent with what was observed with SEM. 

The mean pore size was also consistent with the mean diameter of the beads used to 

fabricate the scaffold (refer to Figure 4C).
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However, even after excluding the bead sizes above and below the range in which the 

beads were sieved prior to scaffold fabrication (beads were sieved to size range of 

106-300 ¡¿m), the upper limit pore size (-181 pm) was noticeably less than the upper 

limit alginate bead size (-300 pm). This was most likely due to batch-to-batch 

variation in the preparation of the alginate beads, which resulted in slight shifts in the 

bead size distribution.

From Figure 5A it can be seen that although the scaffold morphology is fairly 

uniform throughout the 3D slice, slight variations in scaffold porosity exist. This is 

likely due to the tacky nature of the alginate beads, which causes them to adhere to 

one another as well as to the glass tube during scaffold fabrication. A potential 

solution to this problem that could be investigated in the future is to prepare the beads 

using an emulsification/intemal gelation technique.97, 100 In this method, internal 

gelation can be achieved by adding an insoluble calcium salt to the sodium alginate 

solution. After formation of the emulsion, the internal gelation occurs by adding an 

oil-soluble acid that causes calcium ion release. This technique has been reported to 

improve emulsion stability and prevent the aggregation phenomenon. The improved 

emulsion stability may also help to minimize batch-to-batch variations.

4.3.2 Scaffolds Fabricated using D-Fructose Particles

D-fructose is found in many foods and is a readily available and cost effective choice 

for use as a porogen. It is biocompatible and highly water-soluble, which means 

additional organic solvents are not needed to leach the fructose particles following
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solvent casting. In this study, a novel method of tailoring scaffold morphology using 

D-fructose particles as a porogen was developed.

Typically, when using the SCPL method, the porogen particles should not be soluble 

in the solvent used to dissolve the polymer. However, in this study the effect of the 

partial solubility of fructose in the polymer solvent was evaluated. This was done by 

using a solvent mixture of DMF and DMSO to dissolve the polymer. The PCU used 

in this work is soluble in both these solvents while fructose is only sparingly soluble 

in DMF but is readily soluble in DMSO. The rationale here was that by altering the 

percentage of DMSO in the solvent mixture from 0-50% (v/v), scaffold properties 

such as pore size and shape could be controlled and that microporosity could be 

induced within the scaffold.

The D-fructose particles were sieved to a narrow size range of 180-212 pm to make it 

easier to observe the effects of altering the concentration of DMSO on the pore size in 

the resulting scaffolds. As can been seen in Figure 8, the fructose particles are 

irregularly shaped. It is important to note that since the particles are irregularly 

shaped and their aspect ratio differs from 1, there are likely to be particles that fall 

outside the sieve range.
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Figure 8: SEM images of D-Fructose particles (180-212 pm).

Figure 9 shows SEM images of scaffolds fabricated using different concentrations of 

DMSO in the polymer solvent mixture. Starting with just pure DMF as the polymer 

solvent (Figure 9A), it can be seen that the pores are well interconnected but 

irregularly shaped, which was expected due to the irregular shape of the fructose 

particles used. When a small amount of DMSO was added to make a polymer solvent 

mixture of 10% DMSO and 90% DMF, no noticeable changes to scaffold 

morphology were observed (Figure 9B). However, as the DMSO concentration in the 

polymer solvent mixture was gradually increased from 10 to 20, 30, 40 and 50% 

(Figures 9C-F), notable changes to scaffold morphology were observed. Pore size 

decreased and pore shape became more spherical as the concentration of DMSO

increased.
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Figure 9: PCU scaffolds fabricated by SCPL using D-fructose as a porogen and various 
DMSO/DMF polymer solvent mixtures: 0% DMSO (A), 10% DMSO (B), 20% DMSO 
(C), 30% DMSO (D), 40% DMSO (E), 50% DMSO (F).

This was caused by the partial dissolution of fructose in DMSO prior to solvent 

evaporation. As fructose molecules began to break away from the surface of the 

particles and were transported into the solvent, the porogen particles became more

spherical in shape in order to minimize surface tension. This resulted in scaffolds with
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a more organized pore architecture, which is beneficial for nutrient supply and waste 

removal of cell metabolism.31

Figure 10 shows the effect of DMSO concentration on the mean pore diameter of 

PCU scaffolds. There was no significant difference in mean pore diameter for 

scaffolds fabricated with DMSO concentrations between 0 and 30%, but when 

increased from 30 to 40%, and from 40 to 50%, a significant decrease in mean pore 

diameter was observed.
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Figure 10: Effect of DMSO concentration on the mean pore diameter of scaffolds 
fabricated with D-fructose particles. Data expressed as mean ± standard error. Data 
connected with * are significant (p<0.05). Note: for each concentration, N=50.

MicroCT was used to conduct further analysis on the scaffolds fabricated using 

DMSO concentrations of 30 and 50% (refer to Figure 7 and Table 2). The results
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were consistent with that of SEM analysis and showed a statistically significant 

decrease in mean pore diameter from 172.1 to 112.2 îm when DMSO concentration 

was increased from 30 to 50%. There was also a significant decrease in porosity from 

88.1 to 82.8%. This was most likely caused by slight dissolution of the fructose 

particles during the solvent casting fabrication step for the higher DMSO 

concentration. At the higher DMSO concentration, where the polymer solvent 

mixture consisted of 50% DMSO and 50% DMF, problems with the uniformity of the 

scaffold were observed. MicroCT analysis showed that the porosity in the central 

regions of the scaffold slice was less than the outer regions, which resulted in a much 

larger standard deviation of 7.5% in contrast to only 3.1% for the scaffold fabricated 

using 30% DMSO. This observation could also be seen from the 3D representation of 

the scaffold slice (see Figure 7C). These less porous regions can be understood by 

looking at the solvent evaporation process. Solvent in the center regions of the 

cylindrical scaffold will take longer to evaporate since it must first diffuse through the 

construct. As a result, DMSO is in contact with the fructose particles in the center for 

a longer period of time than those in the outer regions. When the DMSO 

concentration is high, this causes a noticeable difference between the rate of 

dissolution of fructose in the center and that of the outer regions. This in turn causes a 

non-uniform distribution of pores throughout the scaffold when the DMSO 

concentration is at or above 50%.

In addition to the porosity and pore size, there was also a statistically significant 

difference in average strut thickness and surface-area-to-volume ratio between
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scaffolds fabricated using 30% DMSO and those fabricated with 50% DMSO. Strut 

thickness is related to pore size, and for scaffolds with similar porosity, a decrease in 

pore size results in a decrease in average strut thickness since a larger number of 

pores must exist to maintain a constant porosity. ’ Based on this reasoning, a 

decrease in pore size should also result in an increase in surface-area-to-volume ratio. 

Although there was a significant difference in the porosities of the two scaffolds 

fabricated with DMSO concentrations of 30 and 50% (Table 2), it did not invalidate 

these expected trends, since the p-value (0.0014) was much larger than the p-value
o

calculated when comparing the average pore size (6.1 x 10"). At the higher DMSO 

concentration, the average strut thickness (27.3 pm) was significantly lower than at 

the lower DMSO concentration (31.2 pm). In addition, there was a significant 

increase in surface-area-to-volume ratio from 68.3 mm"1 (30% DMSO) to 86.5 mm"1 

(50% DMSO). A high surface area is advantageous because it is believed to enhance 

cell attachment.41,98

The effect of DMSO concentration on scaffold microporosity was also examined. 

Figure 11 shows a magnified view of the scaffold fabricated using 50% DMSO in 

order to show the micropores. From SEM analysis, microporosity appeared to 

increase with increasing DMSO concentration. Mercury porosimetry was carried out 

to examine this further, since MicroCT analysis was limited to a spatial resolution of

20 pm.
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Figure 11: Microporosity of PCU scaffold fabricated by SCPL using D-fructose and a 
polymer solvent mixture of 50% DMSO and 50% DMF.

Figure 12 and Table 3 show the results of mercury porosimetry analysis conducted on 

scaffolds fabricated using 30 and 50% DMSO concentration. The peak pore diameter 

represents the pore diameter at which the largest fraction of mercury is intruded and 

corresponds to the maximum of the differential mercury intrusion profile.101 The peak 

pore diameters were consistent with SEM and MicroCT analysis, since they were 

similar to the mean diameters found. In addition, as was found with MicroCT 

analysis, mercury porosimetry results showed that the porosity of scaffolds fabricated 

with 50% DMSO was lower than those fabricated with 30% DMSO. Although 

mercury porosimetry data presented scaffold porosities that were slightly lower than 

what was found with MicroCT, they were within an acceptable range, given the 

standard deviation calculated from MicroCT analysis.
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Figure 12: Mercury porosimetry results of PCU scaffolds fabricated by SCPL using D- 
fructose as a porogen and two different polymer solvent mixture concentrations: 30%
DMSO/70% DMF and 50% DMSO/50% DMF.

Table 3: Porosity and Peak Pore Diameter as determined from mercury porosimetry for 
PCU scaffolds prepared by SCPL using fructose and gelatin as a porogen.

Porogen Type Porosity (%) Peak Pore Diameter (¿im)

D-Fructose (30% DMSO) 83.7 162.0

D-Fructose (50% DMSO) 75.8 112.9

Gelatin 90.6 100.2
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The mercury intrusion curves (Figure 12) supported the premise that an increase in

DMSO concentration would result in increased microporosity within the resulting

scaffold. At 30% DMSO concentration, the smallest pore sizes were approximately

10 pm in magnitude, while at a DMSO concentration of 50%, pore sizes as small as

about 0.01 pm were observed. As was seen with SEM, micropores within the range of

30-10 pm existed at any solvent mixture concentration, including scaffolds fabricated

with 100% DMF. However, these pores were scarce and could be derived form the

nucleation and growth of solvent bubbles before evaporation, and/or phase separation

caused by the presence of residual solvent during the particulate leaching step.57

Through an increase in DMSO concentration, additional micropores were created as

fructose molecules at the surface of the porogen particles began to migrate through

the polymer/solvent solution during the solvent evaporation step of the scaffold

fabrication process. This enhanced microporosity should increase mass transfer and

intercellular communication within the construct, which could significantly improve

the formation of 3D tissues and the in vivo performance of the tissue-engineered 

102construct.

In summary, it was shown that D-fructose particles could be used to fabricate 

scaffolds with a regular geometry of pores and enhanced microporosity by using a 

polymer solvent mixture of DMF and DMSO. The pore size and degree of 

microporosity could be tailored by altering the concentration of DMSO in the solvent 

mixture. The high microporosity and surface-area-to-volume ratio of scaffolds 

fabricated with a high DMSO concentration is advantageous since it could potentially
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improve cell-attachment and mass transfer within the tissue-engineered construct. 

However, at DMSO concentrations as high as 50%, the regular distribution of pores 

was compromised and a non-uniform porosity was found within the scaffold. In 

addition, if microporosity is too high, it could potentially affect the mechanical 

properties of the scaffold. Thus, a balance must exist in order to maximize the 

desirable attributes without compromising scaffold uniformity and mechanical 

properties. One of the main advantages of this technique is that it is a simple way to 

induce an open-celled, spherical and regular pore geometry within the scaffold 

without any additional steps required in the fabrication process, such as heat treatment 

or spheronization of the sugar particles prior to SCPL.66,68

4.3.3 Scaffolds Fabricated using Gelatin Spheres

Gelatin is a denatured product of collagen and contains bioactive sequences that can 

enhance positive cell-material interaction.60 As such, it is a promising choice of 

porogen for scaffold fabrication, since residual gelatin remaining after porogen 

leaching could potentially be beneficial to cell growth. Several groups have reported 

the use of gelatin particles60,62,63 and spheres43,61 ’64,71 ’103 as porogens with promising 

results. In this work, scaffolds were fabricated using gelatin microspheres in order to 

evaluate their suitability for vascular tissue engineering applications and to directly 

compare their morphological characteristics with the previously discussed scaffolds

fabricated from the same PCU.
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Although it is dependent on the type of polymer used in scaffold fabrication, a 

problem often observed when using gelatin as a porogen is the lack of 

interconnectivity between pores.61 Some researchers have improved interconnectivity 

by bonding the gelatin spheres (or particles) together through pretreatment methods.43, 

6i, 62 Mother group combined particulate leaching of gelatin spheres with a phase
1 A -l

inversion (PI) technique. Here, the effectiveness of the combined technique in 

improving interconnectivity was evaluated by fabricating scaffolds by the SCPL 

method as well as by the combined SCPL and PI technique. Figure 13A shows an 

SEM image of the purchased gelatin microspheres (120-150 ^m), and Figure 13B 

shows the morphology of scaffolds fabricated using these microspheres and the SCPL 

technique. It can be seen that the vast majority of the pores are isolated from one 

another, which would drastically limit cell ingrowth. In contrast, Figures 13C and D 

show that scaffolds fabricated with the combined SCPL/PI technique have superior 

pore interconnectivity. In this method, instead of allowing the solvent to evaporate 

following solvent casting, the scaffold was immediately immersed in ethanol, a 

nonsolvent for both the polymer and the porogen. This results in a ternary 

polymer/solvent/nonsolvent phase separation in which the solvent (DMF) is 

exchanged for nonsolvent (ethanol), causing precipitation of the polymer. This 

process helps to improve the interconnection of pores in the resulting scaffold 

because the polymer chains retract from the gelatin spheres, preventing them from 

forming a thin layer between porogen contact points.
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Figure 13: Purchased gelatin microspheres (120-150 pm) (A), and scaffold fabricated 
with gelatin microspheres using SCPL method (B) and SCPL/PI method (C-D). 
Example pore size and window size is indicated (C).

The phase inversion technique also typically creates micropores within the range of 

approximately 1 to 10 pm, and the extent of microporosity depends on the relative 

rates at which solvent is exchanged for nonsolvent.103 Mercury porosimetry analysis 

was carried out on a scaffold fabricated using the combined SCPL/PI technique, and 

both SEM and mercury porosimetry analysis showed minimal presence of micropores 

(Figure 13C and Figure 14). This suggests that the nonsolvent (ethanol) enters the 

solution at a rate lower than that at which the solvent (DMF) leaves.103 The degree of 

microporosity could potentially be tailored through the choice of nonsolvent.
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Figure 14: Mercury porosimetry results of scaffold fabricated using gelatin spheres and 
a combined SCPL/PI technique.

Through mercury porosimetry analysis, the peak pore diameter was determined to be 

100.2 pm (Table 3), which is smaller than the lower limit gelatin sphere diameter of 

120 pm. This can be understood by examining the pore architecture. Figure 13C

j shows that the interconnecting windows between pores are often smaller than the pore
I

size itself (the example shows a window size of ~50 pm, and a pore size o f-130 pm), 

i Thus, since the Washburn equation calculates pore diameters assuming a cylindrical

; pore, it underestimates the pore sizes for this kind of pore geometry.
I

From mercury porosimetry data, scaffold porosity was determined to be 90.6% (Table 

3). This is a promising result because difficulties in obtaining high porosities while

\
t

i
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using gelatin as a porogen have been reported.64,71 The high porosity obtained here 

could be attributed to the combination of tight packing of the gelatin spheres 

(imparted by the application of a pressure differential) and shrinkage of the PCU 

during the phase separation step.

4.4 Scaffolds Fabricated by Electrospinning

While scaffolds prepared by the solvent casting/particulate leaching method contain 

pores that are of a macro-sized scale as viewed by the cells, electrospinning offers the 

ability to fabricate scaffolds that closely mimic the scale and fibrous nature of the 

native extracellular matrix (ECM). Native ECM consists of nanoscaled protein fibers, 

such as collagen and elastin, which entangle with each other to form a nonwoven 

mesh that provides tensile strength and elasticity for the tissues 40 Adhesive proteins 

that provide specific binding sites for cell adhesion, such as fibronectin and laminin, 

also exist as nanoscaled fibers in ECM.40 Considerable research has indicated that 

these nanoscaled features influence cell behavior.40, 81 From the electrospinning 

scaffold fabrication technique, fibers at the sub-micron and nanometer scale can be 

prepared, and since the diameters of these fibers are orders of magnitude smaller than 

the size of cells, cells are able to organize around the fibers or spread and attach to 

adsorbed proteins at multiple focal points.81 These fiber matrices also have high 

surface-area-to-volume ratios, which allow for a high percentage of cellular 

attachment,40, 81 and for many cell types cell migration, proliferation, and 

differentiated function are dependent on cell adhesion.41,98
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In view of these benefits, electrospun fiber mats were prepared in this study using the 

same PCU used to prepare the aforementioned SCPL scaffolds in order to evaluate 

and compare the effectiveness of these fabrication techniques. The polymer was spun 

at various conditions to determine the effects on the properties of the fibers, such as 

fiber diameter, which can affect cell attachment, proliferation, migration and 

cytoskeletal organization.104

Since polymer solution concentration has been reported to be one of the biggest 

determiners of fiber size and morphology when electrospinning,81 the effects of 

solution concentration were studied here. Figure 15 shows SEM images of 

electrospun fibers prepared using a PCU concentration of 15 % (v/v), while Figure 16 

shows the effect of altering the polymer solution concentration (PCU in DMF) on 

fiber diameter. Note that fiber morphology was the same at 10, 12.5, and 15% PCU 

concentration, so SEM analysis is shown for one of these concentrations only. It can 

be seen that there was a significant increase in mean fiber diameter when 

concentration was increased from 10 to 12.5%, while no significant difference was 

observed when concentration increased from 12.5 to 15% (Figure 16D). 

Electrospinning at concentrations above 15% was not possible, since the droplet at the 

tip of the needle dried out before jets could be stabilized. In addition, fibers could not 

be produced at or below a concentration of 5% because the fibers were still wet when 

they reached the collector.
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Figure 15: Different magnifications of PCU fibers prepared by electrospinning at the 
following conditions: 15% PCU, 15 kV voltage, 8 cm distance from collector, and 0.1 
mL/h flowrate.
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Figure 16: Fiber diameter distribution (N=100) of electrospun fibers prepared using 15 
kV voltage, 8 cm distance from collector, 0.1 ml/h flowrate, and 10% PCU (A), 12.5% 
PCU (B), 15% PCU (C), and the effect of PCU concentration on mean Fiber diameter 
(D). Data expressed as mean ± standard error. Statistical significance (p<0.05) indicated 
by*.

The resulting morphology of PCU spun at a concentration of 5% is shown in Figure 

17. These clusters of beads and droplets formed at low polymer concentrations are 

characteristic of electrospraying, whereby the jet breaks into droplets.81,82
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Figure 17: SEM image of electrospun PCI) at the following conditions: 5% PCU, 15 kV 
voltage, 8 cm distance, and 0.1 ml/h flowrate.

Between these concentration limits, however, promising results were obtained. At 10, 

12.5, and 15% PCU concentration, mean fiber diameters of 205, 283, and 267 nm 

respectively were obtained. This is desirable because when electrospinning tissue 

engineering scaffolds, nanofibers with diameters from several tens to 300 nm, the 

typical diameter of protein fibril/fibers in native ECM, are usually preferred.40 

Furthermore, another important feature is that the fibers obtained were very uniform 

in diameter (see Figure 16). This is a key point because precise control of fiber 

morphology and fiber diameter uniformity have proven difficult to achieve, yet are 

necessary for improved scaffold designs that better recreate the functions of native 

extracellular matrix. For example, one group reported that when electrospinning 

12.8 wt% polyurethaneurea solutions, an approximate trimodal distribution in fiber 

diameter was observed, whereby fibers ranged from less than 0.5 pm to greater than 

1.4 pm in diameter. “ In contrast, in this study, narrower fiber diameter distributions,
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which were more normally distributed, were obtained, as can be seen in Figures 16A- 

C.

The effect of voltage on fiber diameter and morphology was also examined in this 

study. Figures 18A-C show SEM images of electrospun PCU at three different 

voltages (note that all other conditions remained constant).

Figure 18: Electrospun PCU at 10% PCU, 8cm distance from collector, 0.1 ml/h 
flowrate, and a voltage of 15 kV (A), 18 kV (B), 20 kV (C), and effect of voltage on mean 
fiber diameter (D). Data expressed as mean ±  standard error. * indicates statistical 
significance (p<0.05).
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It can be seen that an increase in voltage caused bead formation; however, in order to 

get an idea of the effect of voltage on fiber diameter, fiber diameter measurements 

were made excluding the beads, and the results indicated that fiber diameter decreases 

with voltage (Figure 16D). Bead formation has been said to stem mainly from the 

high electrical field applied to the system.82 For tissue engineering scaffolds, beads 

are not desirable because they significantly reduce scaffold uniformity and decrease 

the surface area to volume ratio.82 Beads were also formed when the flowrate was 

increased from 0.1 mL/h to 0.15 mL/h (see Figure 19). The increased flowrate did not 

allow enough time for solvent evaporation, which resulted in bead formation. 

Flowrates below 0.1 mL/h were not considered practical due to the time required to 

prepare fiber mats.

Figure 19: SEM image of electrospun PCU at the following conditions: 10% PCU, 15 kV 
voltage, 8cm distance, and 0.15 mL/h flowrate.
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4.5 Vascular Smooth Muscle Cell Culture Studies

Cytotoxicity and cell spreading were the two main focuses for conducting preliminary 

cell culture studies. First, when using the SCPL scaffold fabrication method, residual 

amounts of the porogen material could remain within the scaffold following 

processing. This can happen due to the possibility of porogen entrapment in the 

polymer matrix or due to insufficient leaching.60 Therefore, it is important to ensure 

that any residual porogen or solvent left following scaffold fabrication are not toxic to 

cells. The second focus was to observe the effect of scaffold properties, namely 

morphological characteristics, on cellular attachment and spreading.

Human coronary artery smooth muscle cells (HCASMCs) were used to carry out 

preliminary cell studies on 3D PCU scaffolds. The rationale for using HCASMCs is 

based on our long-term objective of fabricating a human vascular tissue model with 

clinical relevance. The scaffolds chosen were those fabricated by: (1) SCPL using 

alginate beads; (2) SCPL using D-fructose (30% DMSO); and (3) electrospinning 

(15% PCU, 15 kV voltage, 8 cm distance from collector, and 0.1 mL/h flowrate). The 

morphology of these scaffolds was presented in Figures 6, 9D, and 15, respectively. 

For the scaffold fabricated using D-fructose, a solvent mixture concentration of 30% 

DMSO/70% DMF was used because the DMSO concentration was such that the 

resulting scaffolds had spherically shaped pores without compromising the overall 

scaffold integrity.
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For cytotoxicity tests, MTT assay was used to determine cell number. This method is 

based on the reduction of yellow tétrazolium salt (MTT) to purple formazan crystal 

by metabolically active cells.105 The reduction occurs when mitochondrial reductase 

enzymes are active, meaning conversion can be directly related to the number of 

viable cells. After the formazan is solubilised, resulting in a colored solution, its 

concentration can be determined though optical density measurements at 570 nm. The 

resulting colorimetric signal is proportional to the cell number. Cytotoxicity data were 

obtained following 7 and 14 days of culture. The results are shown in two different 

ways in order to compare the effect of both scaffold fabrication method (Figure 20) 

and culture time (Figure 21).

Figure 20: Effect of scaffold fabrication method on HCASMC viability on 3D PCU 
scaffolds fabricated by (1) SCPL using alginate beads, (2) SCPL using D-Fructose (30% 
DMSO), and (3) by electrospinning (15% PCU, 15 kV voltage, 8 cm distance from 
collector, and 0.1 mL/h flowrate). Data expressed as mean ± SD for experiments 
conducted in quadruplicate. One way ANOVA and post-hoc Tukey comparative tests 
were used. Solid line indicates data that are not statistically significant.
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At day 7 there was a statistically significant difference in cell viability between all 

three scaffold fabrication methods, with electropun (ESP) scaffolds having the highest 

cell viability and scaffolds prepared using D-fructose having the lowest (Figure 20). 

In contrast, at day 14, there was no statistical significance in cell viability between 

any of the three different fabrication methods. The much higher cell viability at day 7 

for electrospun scaffolds when compared to those prepared by SCPL was likely due 

to the higher surface area available for cell attachment. Previous studies have 

indicated that scaffolds fabricated by electrospinning have higher surface-area-to-
Q O

volume ratios than those fabricated by SCPL. The statistical significance in cell 

number between scaffolds fabricated using alginate beads and those fabricated using 

D-fructose may also be explained by their statistical significance in surface-area-to- 

volume ratio. Scaffolds prepared using alginate beads were found to have a surface- 

area-to-volume ratio of 84.7 ± 20.5 mm'1, while scaffolds prepared using D-fructose 

(30% DMSO) had a significantly lower surface-area-to-volume ratio of 68.3 ±11.3 

mm'1 (refer to Table 2). Another possible reason for the higher cell viability at day 7 

for scaffolds fabricated using alginate beads than those fabricated using D-fructose is 

the presence of residual porogen material. Yu and Fan reported that, following 

fabrication of PLA scaffolds by SCPL using alginate beads as a porogen, the 

existence of alginate molecules on the surface of scaffolds significantly enhanced 

osteoblast adhesion and proliferation.69 Thus, residual alginate on the surface of 

scaffolds likely enhances cell attachment for scaffolds prepared using alginate beads.
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Although cell viability was initially much higher for electrospun scaffolds, there was 

no statistical difference in cell viability between any of the three scaffolds at day 14. 

Cell number for scaffolds fabricated by SCPL increased significantly between 7 and 

14 days of culture but remained constant for electrospun scaffolds (Figure 21). This 

is an interesting observation that suggests that the large differences in scaffold 

morphology between electrospun scaffolds and those fabricated by SCPL affect 

cellular responses.

a  D ay  7

Figure 21: Effect of culture time on HCASMC viability on 3D PCU scaffolds fabricated 
by (1) SCPL using alginate beads, (2) SCPL using D-Fructose (30% DMSO), and (3) by 
electrospinning (15% PCU, 15 kV voltage, 8 cm distance from collector, and 0.1 mL/h 
flowrate). Data expressed as mean ± SD for experiments conducted in quadruplicate. 
One way ANOVA and post-hoc Tukey comparative tests were used. Solid line indicates 
data that are not statistically significant.

The lower proliferation rate observed on the electrospun scaffolds is likely caused by 

differences in gene and/or phenotype expression imparted by differences in
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morphological characteristics. The major difference between electrospun scaffolds 

and those fabricated by SCPL is that the former contains pores that are smaller than 

the size of cells, while the in the case of the latter the majority of the pores are larger 

than the size of cells. This difference is a factor because it is believed that if pore 

sizes are similar or larger than that of cells (-5-30 pm diameter), cells behave as if in 

a 2D environment with a curvature, and that in order for cells to behave as in a true 

3D environment, the scaffold’s fibers and/or pores must be much smaller than the 

cells.106 In view of this, it is reasonable to assume that differences in cell behavior 

observed on the electrospun scaffolds when compared with the scaffolds fabricated by 

SCPL may be comparable to differences that have been previously observed when 

comparing 2D and 3D scaffold environments. One such report indicated that human 

aortic smooth muscle cells cultured on 3D collagen matrices had a lower proliferation 

rate than when cultured on 2D surfaces.107 Their studies indicated that this was due to 

the lower expression levels of genes involved in cell cycle in the 3D matrix. Taken 

altogether, preliminary cell studies showed that between 7 and 14 days of culture, 

cells were less proliferative on electrospun scaffolds than those prepared by SCPL, 

and this could support the notion that scaffolds with pores and/or fibers smaller than 

that of the cells provide an environment more like that of true 3D.

Cell morphology was examined after 7 days of culture using confocal microscopy, 

and the results are shown in Figure 22. For all three scaffolds, cells appeared well- 

spread with abundant F-actin.
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Figure 22: Representative confocal microscopy images of HCASMCs cultured for 7 
days on 3D PCU scaffolds fabricated by SCPL using alginate beads (A), SCPL using D- 
fructose (30% DMSO) (B), and by electrospinning (15% PCU, 15 kV voltage, 8 cm 
distance from collector, and 0.1 mL/h flowrate) (C). Green represents F-actin 
(phalloidin stained) and blue is for nuclei.
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For the scaffolds fabricated by SCPL (Figures 22A & B), it can be seen that cells 

align along the struts, while for the electrospun scaffold, cells spread along the fibers 

and thus have a larger area for cell attachment and spreading (Figure 22C). When 

comparing the scaffolds fabricated by SCPL using the two porogen types, it appears 

that scaffolds fabricated using D-fructose (Figure 22B) are more densely populated 

with cells than scaffolds fabricated using alginate beads (Figure 22A). This is 

contrary to what was found with MTT assay and may be a result of the difference in 

pore size, since scaffolds fabricated using D-fructose (30% DMSO) have a 

significantly larger pore size (172.1 ± 36.3 pm) than the scaffolds fabricated using 

alginate beads (146.7 ± 34.3 pm) (Table 2), and as such, cells appear more densely 

populated along the struts even if overall cell number is not high. Despite this 

difference, preliminary cell studies indicated a favorable environment for cell growth 

on all three different types of scaffolds examined.
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CHAPTER 5

5 Conclusions and Future Directions

5.1 Conclusions

In this study, 3D scaffolds were fabricated from biostable polyurethane by solvent 

casting/particulate leaching and by electrospinning. Scaffolds fabricated using SCPL 

were fabricated using three different types of porogens: alginate beads, D-fructose 

particles, and gelatin spheres. The alginate beads were successfully prepared within 

the desired size range by an emulsification and ionic gelation technique. Using 

alginate beads as a porogen, highly porous scaffolds with well-interconnected and 

spherical pores were fabricated without the need for any additional processing steps. 

By using D-fructose as a porogen, a novel method of tailoring scaffold morphological 

characteristics such as scaffold microporosity, and pore size and shape was 

established. Scaffolds prepared using gelatin spheres as a porogen had a closed pore 

morphology; however, when using a combined SCPL/phase inversion technique, the 

resulting scaffolds had open-celled pore morphology. 3D scaffolds were also 

fabricated by elecrospinning, whereby the fibrous mats had a narrow fiber diameter 

distribution and mean fiber diameters of approximately 200 nm. HCASMC culture 

studies carried out on scaffolds fabricated by electrospinning and by SCPL using 

alginate and D-fructose as a porogen indicated that the scaffolds were not cytotoxic 

and that the large difference in morphological characteristics between scaffolds
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fabricated by SCPL and those fabricated by electrospinning can significantly affect 

cell behavior.

Developing scaffolds to suit the intended application is crucial to the success of tissue 

engineering. In this study, the morphological properties of scaffolds fabricated by a 

variety of methods were examined, and the findings could not only be valuable in 

contributing to the long-term goal of developing fully functional tissue engineered 

vascular constructs for clinical use but may also be extended to other scaffold- 

dependent applications within the field of tissue engineering.

5.2 Future Directions

The different scaffolds fabricated in this study were evaluated in terms of their 

morphology, but their mechanical properties were not evaluated. In the future, it 

would be beneficial to study the effect of different morphological characteristics, such 

as microporosity, on the mechanical properties of the scaffold. In addition, further cell 

studies should be carried out in order to examine the effects of scaffold morphology 

and residual porogen material on cell behavior, such as protein and cell phenotype

expression.
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