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ABSTRACT

The vascular wilt fungi Verticillium dahliae and the closely related Verticillium 

albo-atrum are devastating plant pathogens. Both pathogens produce resting structures 

that accumulate in soil, and are difficult to eradicate. V dahliae produces microsclerotia 

(MCS), while V albo-atrum produces dark resting mycelia (DRM). The role of ATG8, 

an autophagy marker was studied by generating A TG8 knockouts in V dahliae (vdatg8), 

and V albo-atrum (vaatgS). Although dispensable for pathogenicity in both species, in 

V dahliae ATG8 was involved in dimorphic growth, conidiation, and MCS formation, 

but not glycogen accumulation. Increased temperatures restored conidiation and MCS 

formation in vdatg8, indicating that autophagy is involved in, but not essential for MCS 

formation in V dahliae. In V albo-atrum ATG8 was involved in glycogen accumulation, 

but not DRM formation. Considerable functional redundancy exists in V dahliae MCS 

formation, and although VdATG8 and VaATG8 amino acid sequences are almost 

identical, A TG8 function is species specific.

Keywords: Verticillium dahliae, Verticillium albo-atrum, autophagy, ATG8, 

microsclerotia, dark resting mycelia, temperature
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CHAPTER 1: INTRODUCTION

1.1 Verticillium

Founded in 1816 by Nees von Esenbeck, the genus Verticllium includes many 

globally significant pathogens (Isaac 1967). The genus is characterized by distinctive 

conidiophores that bear clusters of conidia at the apices of whorled phialides (Isaac 1967; 

Schnathorst 1981) (Figure 1.1). Although originally heterogeneously diverse, the genus is 

now comprised of only four soil-bome species: V. dahliae Kleb., V. albo-atrum, V 

nubilum, and V. tricorpus that all cause vascular wilt disease (Klosterman et al. 2009). 

Additionally, another wilt causing pathogen called V. dahliae var. longisporum (Stark 

1961) which has longer conidia than V. dahliae and produces elongate, irregular 

microsclerotia has recently been raised from a variety to a species called Verticillium 

longisporum (Karapapa et al. 1997). Of these species, V dahliae and V. albo-atrum have 

been the most widely studied given their wide host range and disease severity (Pegg & 

Brady 2002).

V. dahliae and V. albo-atrum cause vascular wilt in more than 200 dicotyledonous 

genera ranging from crops to trees (Fradin & Thomma 2006). However, V. albo-atrum is 

considered to have a narrower host range, with infections primarily restricted to alfalfa, 

hop, soybean, tomato and potato (Fradin & Thomma 2006). Both species cause disease 

in temperate and subtropical regions, but not in tropical areas. While V. dahliae grows 

best in warmer climes ranging from 25-28°C, the optimal growth temperatures for V. 

albo-atrum range from 20-25°C (Fradin & Thomma 2006).
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Besides differences in optimal growth temperatures, V dahliae and V albo-atrum 

are distinguished by the resting structures they produce. While V. dahliae produces 

swollen hyphae that differentiate to form clusters of spherical, melanized cells called 

microsclerotia (MCS), V. albo-atrum hyphae do not differentiate, but simply melanize to 

form dark resting mycelia (DRM).

1.2 Life cycles of V. dahliae and V albo-atrum

Both V dahliae and V. albo-atrum have similar life cycles that can be divided into 

parasitic, saprophytic and dormant phases (reviewed by Fradin & Thomma, 2006, see 

Figure 1.1). While V. dahliae is a monocyclic pathogen in that infection and inoculum 

production only occurs once during the growing season, V albo-atrum may produce 

conidia on infected tissues (Jimenez-Diaz & Millar 1988). Since airborne conidia may 

cause secondary infections, disease caused by V albo-atrum can be polycyclic (Jimenez- 

Diaz & Millar 1988).

The parasitic stage for both pathogens starts with hyphal penetration from 

germinated resting structures or conidia through root tips or wounds, and progresses with 

colonization of the root cortex and xylem by mycelia and conidia, and ultimately 

symptom development (Pegg & Brady 2002). Colonization of the vasculature occurs 

once the pathogen has crossed the endodermis (Fradin & Thomma 2006). At this stage, 

the fungus produces conidia that move in the transpiration stream until they are trapped 

by vessel end walls (Pegg & Brady 2002). To continue colonization, these conidia must 

germinate and grow as mycelia to cross the end wall plates and move laterally between 

adjacent vessel elements (Pegg & Brady 2002). Further systemic colonization is aided by



the dimorphic nature of Verticillium, where mycelia can produce conidia that can either 

germinate to grow as mycelia or bud to produce yeast-like cells (Fradin & Thomma 

2006). Given that strain aggression has been observed to be high for rapidly colonizing 

strains that produce abundant conidia (Schnathorst 1963), dimorphism is assumed to be 

critical to infectivity.

Despite the presence of vessel end walls, which slow the upward stream of 

conidia and yeast-like cells, and force the spores to stop and grow as mycelia to penetrate 

these barriers, colonization is rapid and the fungus can be detected in the xylem elements 

by four days post-infection (Chen et al. 2004; Gold & Robb 1995; Heinz et al. 1998).

The colonization stage is typified by cycles of fungal proliferation and elimination that 

are inversely proportional to expression levels of the plant defense gene phenylalanine 

ammonia lyase (PAL) (Heinz et al. 1998). While the cyclical colonization pattern has 

been attributed to inadequate host defenses (Heinz et al. 1998), another possibility is that 

the fungus itself undergoes autolysis (Vessey & Pegg 1973), and actively reduces its 

biomass to escape detection.

As colonization of the vascular system occurs, symptoms develop acropetally. 

Cotyledons and lower, then upper leaves first develop chlorotic blotches that later become 

necrotic, and affected leaves may abscise. Other symptoms associated with Verticillium 

wilt include vascular discolouration, stunting, reduced leaf size, and epinasty (Fradin &

3

Thomma 2006; Pegg & Brady 2002) (Figure 1.2).
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Figure 1.1. Lifecycle of V  dahliae and V. albo-atrum The lifecycles of V. dahliae and V. 

albo-atrum have three stages: parasitic, saprophytic and dormant. During the parasitic 

stage, the dimorphic fungus produces çonidia (C), yeast-like cells and hyphae (H). In the 

saprophytic stage, plant tissues start to die and the fungus produces characteristic 

conidiophores (P); image from A. Klimes, hyphae (H) and resting structures. V dahliae 

produces microsclerotia (M) while V albo-atrum produces dark resting mycelia (D) that 

persist in soils until germination is stimulated by plant root exudates. Diagram adapted

from that made by S. Amyotte (2010). The parasitic phase image and one saprophytic (P) 

image are from A. Klimes, and S. Amyotte took the photo of dark resting mycelia.



Fig. 1.2 Typical symptoms of Verticillium wilt disease in tomatoes

A healthy Bonny Best tomato plant (left), and plant infected with V. dahliae Dvd-T5 (right). 

The infected plant is stunted and has leaves and branches that show chlorosis, necrosis, and 

dieback. (Image was taken by A. Klimes).
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Some plant species infected with Verticillium spp. may initially exhibit wilting when 

exposed to direct sunlight or heat, but recover overnight. As the disease progresses the 

wilt becomes permanent and plant tissues start to senesce. Once plant tissues start to die, 

the fungus enters a brief saprophytic stage. With V dahliae this stage terminates with 

microsclerotia (MCS) formation (Wilhelm 1955), while V. albo-atrum may produce 

conidia on infected plant tissue that can disperse in air currents to cause new infections 

(Jimenez-Diaz & Millar 1988) or produce melanized dark resting mycelia (DRM). Both 

species can also over-winter as mycelia contained within perennial hosts, or in tubers, 

bulbs or seeds (Fradin & Thomma 2006).

1.3 Disease Control

V. dahliae and V. albo-atrum are responsible for billions of dollars in crop 

damages annually (Pegg & Brady 2002). Effective disease control is complicated by the 

persistence of resting structures, and broad host range of the fungi, limited sources of 

disease resistance, and lack of systemic fungicides that can target the fungus once it has 

colonized the vasculature (Fradin & Thomma 2006). Resting structures retain viability in 

the absence of susceptible hosts, and are the primary disease inoculum. Accumulation of 

these resting structures is a concern given that microsclerotia can survive 10-15 years in 

soil (Wilhelm 1955) while the dark resting mycelia survive for up to 5 years (Sewell & 

Wilson 1964), and that only one microsclerotium per gram of soil is enough to cause 

significant wilt in crops such as strawberry and tomato (Grogan et al. 1979; Nicot & 

Rouse 1987). Since Verticillium has such a broad host range, it also can survive on 

economically important species and weeds alike, creating a reservoir for the pathogen
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(Pegg & Brady 2002). In addition, the host range of Verticillium is continually 

expanding, with former non-host plants such as lettuce becoming susceptible (Subbarao 

etal. 1995).

For V. dahliae typical disease management practices such as crop rotation and 

pathogen avoidance are complicated by the genetic plasticity of the fungus, which 

facilitates its wide host range, leaving few areas inoculum-free. Other methods to reduce 

inoculum include soil solarization and chemical fumigation (Fradin & Thomma 2006). 

Soil fumigation, though effective in some regions, requires a suitable environment, and 

many chemical fumigants have been banned due to environmental concerns. Since 

resting structures readily build up in soil and are difficult to eradicate, targeting their 

development presents a good option for disease control.

1.4 Resting Structure Development

Research in our laboratory focuses on the molecular mechanisms governing 

resting structure formation in V. dahliae and V. albo-atrum. Early microscopic studies of 

the two fungi showed that early stages of differentiation that lead to resting structure 

formation are similar, despite their divergent outcomes (Griffiths 1970). Both MCS and 

DRM originate from highly septate, swollen hyphae. In V dahliae the swollen hyphae 

continue to differentiate by budding laterally to produce clusters of spherical cells that 

then become melanized to form MCS. To form DRM, the hyphal cell walls of V. albo- 

atrum thicken and are filled with heavy deposits of melanin.

Melanins are dark pigments produced by oxidative polymerization of phenolic or 

indolic compounds (Fradin & Thomma 2006). Studies with V. dahliae melanin deficient
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mutants showed that melanins in Verticillium are derived from precursor 1,8- 

dihydroxynaphthalene (DHN) (Wheeler et al. 1978). Melanins confer environmental 

protection and durability and are essential to the persistence of MCS and DRM, since un- 

pigmented MCS have reduced persistence (Hawke & Lazarovits 1994).

Far from being simply melanized clusters, the cells that comprise MCS originate 

as identical, thin walled, vacuolate hyaline cells. As these cells develop, two 

morphologically and functionally distinct types emerge. Thick walled, melanized cells 

contain food reserves while thin walled, hyaline cells germinate more readily than the 

thick walled cells (Gordee & Porter 1961). As the MCS continue to mature, some cells 

die. Autolysis coincides with the accumulation of autophagic vesicles in the cytoplasm of 

declining cells, while auto-parasitic hyphae infect adjacent cells to extract nutrients and 

nourish some cells, while compromising others (Griffiths 1970; Griffiths & Campbell 

1971).

Before becoming melanized, fibrillar material is secreted between individual cells 

(Griffiths 1970). Melanized particles are extruded by living cells into this fibrillar matrix 

between individual cells, and continue to build up in the interhyphal spaces (Griffiths 

1970). Mature MCS have both live and dead cells; the majority of dead cells are heavily 

melanized and located on the outside of the MCS.

Although microscopic studies have revealed the morphological changes that result 

in resting structures, the molecular mechanisms that govern resting structure development 

are still poorly understood. To identity candidate genes responsible for resting structure 

development, cDNA libraries were constructed in our laboratory from V. dahliae cells
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grown in two environments; a simulated xylem fluid medium (SXM) where the fungus 

exhibits dimorphic growth, and conditions that favour near-synchronous MCS 

development (Neumann & K. F. Dobinson 2003). Genes that may be involved in resting 

structure development can be identified from these collections and studied in more detail.

To date, a hydrophobin (VDH1) and a Verticillium mitogen-activated protein 

(MAP) kinase (VMK1) have been shown to be involved in MCS formation (Rauyaree et 

al. 2005; Klimes & Dobinson 2006). While VDH1 was isolated from the aforementioned 

cDNA library, VMK1 was isolated with degenerate primers based on conserved regions of 

the M. grísea PMK1 gene (Rauyaree et al. 2005). Both vdhl and vmkl mutants are 

defective in MCS production, and studies with the hydrophobin gene showed that 

conidiophore collapse and fusion of aerial hyphae are important for MCS formation 

(Klimes & Dobinson 2006). In contrast hydrophobin knockouts in V. albo-atrum were 

not defective in DRM production and showed no aberrant phenotype despite showing 

patterns of gene expression similar to those of V. dahliae (Amyotte 2010). Thus, studying 

the same genes in V. dahliae and V albo-atrum may provide insights into resting 

structure development and where this pathway diverges to produce different structures.

The V dahliae cDNA libraries from simulated xylem fluid media (SXM) and 

developing microsclerotia (DMS) have proven to be useful tools for identifying genes 

potentially involved in resting structure development or dimorphic growth. Accordingly, 

sequences highly similar to the yeast macroautophagy marker gene ATG8 were identified 

in both cDNA collections, indicating a potential role for autophagy in V dahliae 

development, specifically for resting structure formation and dimorphic growth. Taken
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together with the early observations that autophagic vesicles were visible during MCS 

formation, and that auto lysis occurs during parasitic growth in planta (Vessey & Pegg 

1973,), this additional molecular information raised our interest and led to my project 

studying the role of autophagy and ATG8 homologs in V. dahliae and V albo-atrum.

1.5 Autophagy

Cellular homeostasis is important for normal growth and development and is 

maintained by a balance between protein biosynthetic and degradative pathways. The 

main pathways for protein degradation are the ubiquitin-proteosome pathway, and 

autophagy (Nair & Klionsky 2005). Under vegetative growth conditions, most protein 

degradation occurs via the ubiquitin-proteosome pathway. Overall, autophagy is a 

response to nutrient starvation, hypoxia, overcrowding, high temperatures, and 

accumulation of damaged/superfluous organelles and cytoplasmic components (Levine & 

Klionsky 2004). Although autophagy is upregulated during stress, it also occurs at a 

basal rate, and is the only pathway that can degrade large protein aggregates or entire 

organelles (Nair & Klionsky 2005).

Autophagy is a catabolic membrane trafficking response that is highly conserved 

in eukaryotes, from yeast to humans (Pollack et al. 2009). During autophagy, cytoplasm 

and organelles are non-selectively sequestered within double membraned vesicles termed 

autophagosomes (Abeliovich & Klionsky 2001). These autophagosomes dock to 

vacuolar membranes, fusing the outer membrane of the autophagosome to the vacuolar 

membrane (Ichimura et al. 2004) (Figure 1.3). Inside the vacuole, proteases degrade the
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resulting autophagic body, enabling breakdown and recycling of cytoplasmic contents and 

long-lived organelles (Pollack et al. 2009; Yang et al. 2005).

Induction of autophagy occurs when TOR (target of rapamycin) kinase activity is 

inhibited. TOR is involved in nutrient sensing, regulation of transcription, translation and 

protein degradation (Pollack et al. 2009; Yang et al. 2005). When active, TOR kinase 

hyperphosphorylates ATG1 and ATG 13, preventing their interaction, and in so doing 

inhibits autophagy (Codogno & Meijer 2000) (Figure 1.4). However, upon nutrient 

deprivation or exposure to autophagy inducers such as rapamycin, TOR kinase is 

inactivated and an unknown phosphatase dephosphorlyates ATG1 and ATG13, allowing 

them to interact with ATG 17 and other autophagy proteins needed for autophagosome 

formation (Klionsky & Emr 2000) (Figure 1.4).

Autophagosome formation requires two ubiquitin-like conjugation complexes, 

ATG12-ATG5 and ATG8-phosphatidylethanolamine (PE) (Yang et al. 2005). Both 

conjugation complexes are necessary for autophagosome formation and expansion (Yang 

et al. 2005) (Figure 1.5). If the ATG12-ATG5 complex is defective, ATG8 localization is 

compromised (Yang et al. 2005).

1.5.1 The ,47X7# gene

ATG8 is a membrane bound protein that is cleaved at the C terminal arginine 

residue by ATG4 to expose a free glycine residue (Yang et al. 2005). Once cleaved, 

ATG8 undergoes a lipidation reaction with phosphatidylethanolamine (PE), allowing 

autophagosomal membrane expansion around cytoplasmic contents (Pinan-Lucarre et al.

2003).



12

Figure 1.3 Schematic model of autophagy in fungi. Diagram adapted from Klionsky & 

Emr (2000).

Nutrient rich conditions Nutrient starvation Rapamycin

phosphatase

i ATG l l  ATG13 j

[ A TG 17]

! ATG11 ! ATG1

! ATG20 ; ( ATG17 [ A TG 13]

i ATG24 ;

A u to p h ag y

Figure 1.4 Model for autophagy induction. Left panel: Under nutrient rich conditions, 

TOR kinase is active and hyperphosphorylates ATG1 and ATG13, preventing their 

interaction. Right panel: Nutrient starvation or rapamycin treatment inactivates TOR 

kinase, and a phosphatase dephosphorylates ATG1 and ATG13 so they can interact with 

one another, and form an initiation complex (ATG1-ATG13-ATG17) that is needed for 

autophagosome formation. Diagram adapted from Pollack (2009).
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ATG12-ATG5

Figure 1.5 Model of autophagosome formation. ATG12-ATG5 conjugate and ATG16 

(green dots) localize to the isolation membrane for the duration of elongation. ATG8 (red 

dots) is recruited to the membrane in an ATG5 dependent manner. Once autophagosome 

formation is complete, ATG12-ATG5 and ATG16 dissociate from the membrane, while 

ATG8 conjugates to phosphatidylethanolamine (PE). ATG4 cleaves the C terminal of 

ATG8 so that it can conjugate to PE, and later deconjugates the ATG8-PE complex, 

creating a pool of cytoplasmic ATG8. In so doing, ATG4 mediates recycling of ATG8, 

which can exist in conjugated and unconjugated forms. Adapted from Mizushima&

Levin (2010)
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ATG8 is considered to be a marker for autophagy since it is present in early 

autophagic membranes, autophagosomes and autophagic bodies (Abeliovich & Klionsky 

2001). Cleavage by ATG4 of the ATG8-PE conjugate provides a new source of ATG8 in 

the cytoplasm, thus recycling ATG8 (Yang et al. 2005) (Figure 1.5).

1.5.2 Autophagy in Filamentous Fungi

ATG8 was first characterized in yeast. Since then homologs of ATG8 have been 

identified in numerous species including Caenorhabditis elegans, Arabidopsis thaliana, 

and Homo sapiens (Pinan-Lucarre et al. 2003; Pinan-Lucarre et al. 2005; Kikuma et al. 

2006). In filamentous fungi autophagy is involved in nutrient recycling during starvation 

and is also involved in cellular differentiation and developmental processes such as 

sporulation (Pollack 2009). However, the outcome of ATG8 mutation varies between 

fungal species. In the filamentous deuteromycete Aspergillus oryzae, for example, 

mutation of A0ATG8 showed that autophagy is involved in the differentiation of aerial 

hyphae, conidiation, and conidial germination (Kikuma et al. 2006) In contrast, because 

autophagic cell death of conidial cells is required for appressorium formation and 

infectivity in the rice blast fungus Magnaporthe grisea, impaired autophagy renders the 

fungus non-pathogenic (Veneault-Fourrey et al. 2006).

1.5.3 Comparison of ATG8 gene homologs in V dahliae and V albo-atrum

Both V. dahliae and V albo-atrum hawe ATG8 gene homologs. In V. dahliae, the 

gene ( VdATG8) encodes a 366 bp open reading frame (ORF) interrupted by a 209 bp 

intron and a 55 bp intron, and the gene product is 120 amino acids long. In V. albo- 

atrum, the gene (VaATG8) encodes a 281 bp ORF interrupted by a 121 bp intron and a 55
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bp intron, and the gene product consists of 92 amino acids. The sequence of the longer 

intron is 87% conserved, while the sequence and location of 55 bp intron is 100% 

conserved between the two species. According to sequence analysis, VdATG8 and 

VaATG8 share 96% conservation at the amino acid level.

Consistent with the highly conserved nature of ATG8 in other species (Abeliovich 

and Klionsky, 2001), I found that the amino acid sequences of VdATG8 and VaATG8 are 

well conserved with those of other filamentous fungi (Figure 1.6). In yeast, cleavage of 

Argl 17 in ATG8 by ATG4 to reveal glycine 116 is essential for conjugation of ATG8 to 

PE, and subsequent autophagosome formation. Conservation of the glycine at position 

116 in VdATG8, VaATG8 and other fungal ATG8 gene homologs (Figure 1.6) suggests 

that the autophagic process in filamentous fungi is similar to that of other eukaryotes.
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A. fumigatus 
A. nidulans 
Podospora 
Neurospora 
V.dahliae 
Magnaporthe 
Saccharomyces 
V.albo-atrum

MRSKFKDEHPFEKRKAEAERIRQKYADRIPVICEKVEKSDIATIDKKKYLVPADLTVGQF 60 
MRSKFKDEHPFEKRKAEAERIRAKYADRIPVICEKVEKSDIATIDKKKYLVPADLTVGQF 6 0 
MRSKFKDEHPFEKRKAEAERIRQKYADRIPVICEKVEKSDIATIDKKKYLVPADLTVGQF 60 
MRSKFKDEHPFEKRKAEAERIRQKYSDRIPVICEKVEKSDIATIDKKKYLVPADLTVGQF 60 
MRSKFKDEHPFEKRKAEAERIRQKYSDRIPVICEKVEKSDIATIDKKKYLVPADLTVGQF 60 
MRS KFKDEHPFEKRKAEAERIRQKYTDRIPVICEKVEKSDIATIDKKKYLVPADLTVGQF 6 0 
MKSTFKSEYPFEKRKAESERIADRFKNRIPVICEKAEKSDIPEIDKRKYLVPADLTVGQF 60

MSSSARRWKSPTSPPSIR-RSIWCPRDLTVGQF 3 2 * * . :  ********

A.fumigatus 
A.nidulans 
Podospora 
Neurospora 
V. dahliae 
Magnaporthe 
Saccharomyces 
V.albo-atrum

VYVIRKRIKLSPEKAIFIFVDEVLPPTAALMSSIYEEHKDEDGFLYITYSGENTF DC-- 
VYVIRKRIKLSPEKAIFIFVDEVLPPTAALMS SIYEEHKDEDGFLYITYSGENTF DC-- 
VYVIRKRIKLSPEKAIFIFVDEVLPPTAALMSSIYEEHKDEDGFLYITYSGENTF GFET 
VYVIRKRIKLS PEKAIFIFVDEVLPPTAALMS SIYEEHKDEDGFLYITYSGENTF DFET 
VYVIRKRIKLSPEKAIFIFVDEVLPPTAALMSSIYEEHKDEDGFLYITYSGENTF DCET 
VYVIRKRITLSPEKAIFIFVQDTLPPTAALMSSIYELHKDEDGFLYITYSGENTF DLFE
VYVIRKRIMLPPEKAIFIFVNDTLPPTAALMSAIYQEHKDKDGFLYVTYSGENTF R--
VYVIRKRIKLSPEKAIFIFVDEVLPPTAALMSSIYEEHKDEDGFLYITYSGEKNF DCET******** * *********. ***.*****.*****• *  *

118
118
120
120
120
120
117
92

Figure 1.6 Clustal alignment of ATG8 in V. dahliae, V. albo-atrum, Aspergillus 

fumigatus, A. nidulans, Podospora anserina, Neurospora crassa, Magnaporthe grisea, 

and Saccharomyces cerevisiae. The yellow highlighted amino acid at position 117 is 

cleaved by ATG4 to reveal glycine at position 116 (highlighted in green).
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1.6 Research Rationale and Objectives

The aim of my project was to investigate the role of the ATG8 gene in autophagy 

and developmental processes critical to infectivity and survival of V. dahliae and V. albo- 

atrum. Relative to the importance of MCS and DRM in the lifecycle of these pathogens, 

and the challenges these persistent, long lived resting structures present to disease control, 

few studies have addressed the molecular mechanisms involved in their development. 

Given that the initial morphogenesis of DRM and MCS is so similar, it would seem that 

an initial developmental pathway diverges to give rise to different resting structures. 

Studying the same gene in both species may help further elucidate differences between 

the developmental pathways that result in MCS and DRM formation.

Since autophagy has been observed to be associated with resting structure 

development since the earliest microscopic studies (Griffiths 1970; Griffiths & Campbell 

1971) and expressed sequence tag (EST) data for V. dahliae revealed expression of 

autophagy genes during microsclerotial development, ATG8 is a good candidate for study. 

Furthermore, in various filamentous fungi, ATG8 is involved in cellular differentiation 

and affects critical processes including germination, sporulation, and infectivity (reviewed 

in Pollack 2009). Besides resting structure development, autophagy may play a role in 

plant colonization during the parasitic stage of the Verticillium life cycle. In the nutrient 

poor environment of the xylem, autophagy may enable fungal survival via nutrient

recycling.
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Thus, I hypothesized that ATG8 plays a role in development of V. dahliae and V. 

albo-atrum and subsequent resting structure formation, and secondly, that autophagy is 

involved in the observed proliferation and elimination of yeast-like cells during the 

colonization phase of plant infection.

To investigate this hypothesis, A TGS-disrupted strains were created in both V. 

dahliae (vdatg8) and V. albo-atrum (vaatg8). Comparative studies between A TG8 

disrupted and wild-type strains were done to assess the role of ATG8 in developmental 

processes such as germination, sporulation, radial growth, microsclertia formation and 

pathogenicity. In planta colonization by disrupted and wild-type strains was studied 

using stem sectioning and PCR assays. To understand VdATG8 expression and 

localization under autophagy-inducing and -inhibiting conditions, quantitative real time 

PCR (qRT-PCR) was done, and VdATG8 expression and localization constructs were

made.
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CHAPTER 2: MATERIALS & METHODS

2.1 Fungal strains and growth conditions

All Verticillium strains used in this study are described in Table 2.1, and derived 

from monoconidial cultures and maintained in Dr. K.F. Dobinson’s culture collection 

(Agriculture and Agri-Food Canada, London ON). Fungal isolates are maintained as 

silica gel stocks or at -20°C on filter paper. The wild-type V. dahliae strain Dvd-T5 used 

in this study was isolated from tomato in Essex county in 1993 (Dobinson et al. 1996), 

while wild-type V. albo-atrum 383-2 was isolated from potato in Ontario in 1989.

ATG8 knockouts in V dahliae ([vdatg8) and V. albo-atrum (vaatgS) were 

previously created from Dvd-T5 and 383-2, respectively, using a VdA TG8 knockout 

vector (Table 2.1). Details regarding construction of the ATG8 KO vector, and revertant 

strains are located in Appendix II. I made VdATG8 expression and protein localization 

constructs. Methods used to make these strains are detailed below (section 2.2.1 and 

2.2.2). E. coli MRF1 cells are host cells for plasmids used in the study, while AGL1 

Agrobacterium tumefaciens cells were used for fungal transformations.
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Table 2.1 Strains used in this study

S tr a in  n a m e D e s c r ip t io n S o u r c e

D vd-T 5 W ild -ty p e  V. d a h l ia e D o b in so n  1996

V D A T  3 8 -5  &  38-3 v d a tg 8  k n o c k o u ts  in D vd-T 5 A p p e n d ix  II

V D A T 3 8 - 6 e c to p ic  v d a tg 8  c o n s tru c t in D vd-T 5 A p p e n d ix  11

V D A T  4 4 -7  &  4 4 -4 3 V d A T G 8  re v e r ta n t s tra in s  in V D A T 3 8 -5 A p p e n d ix  II

V D A T  5 0 -2  &  50-5 V d A T G 8  e c to p ic  in V D A T 3 8 -5 A p p e n d ix  II

V D A T  43-11 G A P D ::e Y F P  in D v d -T 5 S te fan  A m y o tte  (P h D  
th e s is , 2 0 1 0 )

V D A T  74 V d A T G 8 (p )::e C F P  in D v d -T 5 sec tio n  2.2.1

V D A T  75 V d A T G 8 (p )::e C F P  in V D A T 4 3 -1 1 sec tio n  2.2.1

V D A T  77 V d A T G 8 : \e Y F P N (N -te rm in a l fu s io n ) in 
D v d -T 5

sec tio n  2 .2 .2

3 8 3 -2 W ild -ty p e  V. a lb o -a tr u m G . L a za ro v its
V A A T 1 0 -9 v a a tg 8  k n o c k o u ts  in 3 83 -2 A p p e n d ix  II

V A A T 1 0 -1 1 v a a tg 8  k n o c k o u ts  in 3 83 -2 A p p e n d ix  II

V A A T 1 0 -1 2 v a a tg 8  k n o c k o u ts  in 3 8 3 -2 A p p e n d ix  II

V A A T 1 0 -1 0 E c to p ic  v d a tg 8  c o n s tru c t in 3 8 3 -2 A p p e n d ix  II

* Wild-type strains used in this study are Dvd-T5, a race 1 strain of V. dahliae and 383-2, 
a V. albo-atrum strain. Strains prefaced by Vd and Va are V. dahliae and V. albo-atrum, 
transformants respectively.
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2.2.1 Construction of VdATG8 expression vector

The VdA TG8 expression construct contains the VdA TG8 promoter region fused to 

an enhanced cyan fluorescent protein (eCFP) gene (Figure 2.2A). The lkb ATG8 

promoter-containing fragment was amplified from genomic Dvd-T5 DNA with the 

atg8EcoFl and atg8promoterBamRl primers (sequences for these primers, and all others 

used in this study are listed in Appendix I). These primers introduced EcoPA and BamUl 

sites into the 5' and 3' ends, respectively, of the ATG8 promoter region amplicon. After 

double digestion with EcoRI and BamHl, the amplicon was ligated into EcoKMBamYH- 

digested pGEM to form pGEMSVT5C. To confirm correct integration of the promoter- 

containing fragment into pGEM, pGEMSVT5C was sequenced with vector-specific 

primers Sp6 and T7, as well as autoF7, autoFlO, autoR5 and autoFl primers.

Verification of the correct sequence identity was done by assembling the sequences in 

SeqMan (Lasergene 6), and aligning the resulting contig to the original VdATGS promoter 

sequence.

To construct the expression vector, pGEMSVT5C was digested with £coRI and 

BamHl to cut out the ATG8 promoter-containing fragment. The binary destination vector 

pSK1518 (Klimes et al. 2008), which contains a hygromycin B resistance gene and the 

eCFP gene, was also digested with iscoRI and BamHl. The ATG8 promoter-containing 

region was then ligated into pSK1518 to form the VdATG8(p)::eCFP construct, 

designated pSVIOl. To confirm correct integration of the promoter into pSK1518, the 

construct was sequenced using the vector-specific primers M13F and M13R, as well as 

auto FI and atg8promoterBamRl primers. The pSVIOl vector was transformed into



Dvd-T5 (designated VDAT74) and VDAT43 (designated VDAT75) by Agrobacterium 

tumefaciens-mediated transformation (ATMT), as described below.

2.2.2 Construction of VdATG8 localization vector
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Since the C-terminus of ATG8 is cleaved during the autophagic process, a vector 

containing a fluorescent reporter protein gene fused to the N-terminus of ATG8 was 

made. The A TG8 promoter was fused to enhanced yellow fluorescent protein (eYFP) (for 

vector construction flow chart see Figure 2.1) lacking a stop codon to allow in-frame 

translational read-through to the ATG8 ORF (for construct schematic see Figure 2.2B). 

Both pSVIOl (containing the ATG8 promoter fragment) and the destination vector 

pSK885 (Amyotte 2010) were double digested with EcoKl and BamHl, ThqATG8 

promoter fragment was gel-purified before ligation into pSK885 (which contains a 

geneticin resistance marker gene) to produce pSV106. pSV106 was sequenced with 

M13F and M13R primers to confirm correct integration of the promoter fragment. eYFP 

was then amplified from pSK518 with yfpBamF2 and yfpPstR4 to generate a 1.7 kb 

amplicon with BamHl and Pstl sites at the 5' and 3' ends, respectively, and lacking the 

stop codon of eYFP. Both pSV106 and the 1.7kb eYFP amplicon were then double 

digested with BamHl and Pstl so that the eYFP fragment could be ligated into pSV106 to 

form pSV107. This construct was sequenced with M13F, M13R, yfpBamF2 and 

yfpPstR4 primers to confirm correct ligation and orientation. Finally, the 1,5kb ORF of 

VdATG8 was amplified from genomic Dvd-T5 with atgPstF2 and atg8PstR2 to generate 

an amplicon containing 5' and 3' Pst 1 sites.



23

Digest pSVIOl with ScoRl and BamH\ to cut out ATG8 promoter fragment 

Digest destination vector pSK885 with ÆcoRl and BamRA

i
Ligate ATG8 promoter fragment to pSK885 = pSV106

pSV106

______________ i__________________
PCR ofpSK518 to amplify e YFP (no stop codon 

+ introduction of 5' BamR\ & 3' Pst\ sites)

Digestion of eYFP fragment 8l destination vector 
pSV106 with BamR\ 8cPst\

i
Ligation of eYPP into pSV106 = pSV107

pSV107

i
PCR to amplify ATG8 OKF from DvdT5 & 

introduce 5’and 3’ PstI sites

i
Gel purify A7U8 OKF fragment

i
Digestion of ATG8 OKF fragment & pSVI07 

destination vector with Pst I

i
De-phosphorylate pSV107 and ligate with 

ATG8 ORP = pSV108

pSV108

Figure 2.1 Flow chart for ATG8::eYFPN fusion protein construction



24

A.
EcoR1 BamH1 EcoR1

Figure 2.2
A. Schematic of VdATG8 expression vector
B. Schematic of VdATG8 localization vector
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The pSV107 vector and ATG8 ORF amplicon were both digested with Pstl, and the 

vector was dephosphorylated with shrimp alkaline phosphatase before ligation with the 

A TG8 ORF fragment to create pSV108. To identify clones carrying the correct 

orientation of the ATG8 ORF, PCR screening of the clones was done with atg8PstR2 and 

Ml3R primers. The pSV108 vector contained VdATG8 promoter fused to eYFP lacking a 

stop codon fused in frame to the ATG ORF to allow transcriptional and translational read 

though. Sequencing of pSV108 was done with M13F, M13R, Atg8pstF2, Atg8pstR2, 

AtgBamRl, AtgBamF2, yfpPstR4, yfpPstF2, autoF5 and autoR2 to verify correct 

sequence identity and orientation of the ATG8 ORF. The pSV108 vector was then 

introduced into Dvd-T5 via A. tumefaciens-mediated transformation and transformants 

were designated VDAT77.

2.2.3 Agrobacterium tumefaciens-mediated transformation (ATMT)

The methods for A. tumefaciens-mediated transformation of V. dahliae follow 

those described by Mullins et al. (2001) with modifications by Dobinson et al. (2004). A. 

tumefaciens colonies containing either pSVIOl or pSV108 were grown in minimal 

medium supplemented with kanamycin (50 pg/mL) and chloramphenicol (25 pg/mL) for 

two days at 28°C. The A. tumefaciens cells were then diluted in induction medium to an 

optical density (OD600) of 0.15, and grown for an additional seven hours at 28°C. An 

equal volume of cells was then mixed with 100 pL 106 Dvd-T5 or VDAT43 spores, and 

spread over a 0.45 pm pore, 45 mm diameter nitrocellulose filter (Whatman, Hillsboro, 

OR) overlaid onto co-cultivation agar media amended with 200 pM aceto-syringone.

After two days incubation at 24°C, the filters were moved from co-cultivation medium to
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selective medium (Complete Medium (CM) amended with cefotaxime (200 pM) and 

moxalactum (100 pg/mL) to kill A. tumefaciens, and hygromycin (25 pg/mL) or geneticin 

(50 pg/mL) to maintain selection). After a week, fungal transformants had generated 

clumps of mycelia on the filters. Twenty putative transformants from each transformation 

experiment were streaked out onto CM amended with hygromycin (25 pg/mL) or 

geneticin (50 pg/mL). Spores from these cultures were then streaked onto 1% water agar 

plates with a sterile wire loop. After incubating for 24 hours at 24°C, single germinating 

conidia were transferred to CM amended with hygromycin (25 pg/mL) or CM amended 

with geneticin (50 pg/mL) and left to grow for a week at 24°C.

2.2.4 Nucleic Acid Isolation

For DNA extraction, 200 mL flasks containing 35 mL liquid CM were inoculated 

with five mycelial plugs cut with a 0.5 cm cork borer from the growing margins of fungal 

cultures. The flasks were shaken at 150 rpm at 24°C for four days, and cultures were 

filtered though sterilized Miracloth (Calbiochem, La Jolla, CA) to remove the mycelia, 

and centrifuged at 1480 g for 10 min at 4 °C to pellet the spores. The spore pellets were 

then suspended in 1.5 mL microfuge tubes with 200 pL spore breakage buffer and glass 

beads (approximately 0.5 mm diameter) to just below the surface of the liquid. The 

suspensions were then alternately vortexed in pulses for 30 s, and placed on ice for 30 s 

(total of three min). DNA was then extracted with phenol:chloroform (1:1) followed by 

chloroform:isoamylalchohol (24:1), by vortexing 30 s, centrifuging at 1500 g, 5 min, 4°C. 

DNA was precipitated by addition of 0.5 volumes 7.5 M ammonium acetate and two 

volumes 100% ethanol (EtOH) in an overnight incubation at -20°C. A 30 min



centrifugation pelleted the DNA, which was then washed once with 70% EtOH, and 

dissolved in 35 pL TE + 1 pg RNAseA/mL.

2.2.5 Southern blot hybridization analysis
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Southern blot hybridizations were done as described by Dobinson et al. (2003). 

Approximately 600 ng of Verticillium genomic DNA was digested overnight with a 

restriction endonuclease, and size-fractionated by electrophoresis through 0 .8 % agarose 

gels made with 0.5X TBE buffer. The gel was soaked in 0.25 N HC1 for 10 min. The 

DNA was denatured by soaking the gel in Southern denaturing buffer (0.4 N NaOH, 0.8 

M NaCl) for 30 min, then in neutralization buffer (1.5 M NaCl, 0.5 M Tris-HCl pH 7.6) 

for 30 min. The DNA was then transferred to Hybond N+ membranes (Amersham 

Biosciences, Baie d’Urfe, QC) by capillary blotting with 20X sodium chloride-sodium 

phosphate-EDTA (SSPE) pH7.4 (3.6 M NaCl, 0.2 M NaH2P0 4 H20 , 0.02 M EDTA), and 

fixed to the membrane by UV cross-linking. Membranes were incubated for at least two 

hours at 65°C in prehybridization buffer (6 X SSPE containing 1% skim milk, 0.5% 

sodium dodecyl sulfate (SDS) and 50 pg salmon sperm DNA /mL, then transferred to 

hybridization buffer (6 X SSPE, 1% blocking reagent, 0.5% SDS) containing 10 ng 

digoxigenin (DIG)-labeled DNA hybridization probe, and incubated overnight at 65°C. 

The membranes were then washed three times for 20 min at 65°C in low stringency 

buffer (2x SSPE, 0.1% SDS, 0.1% sodium pyrophosphate) then three times (20 min at 

65°C) with high stringency buffer (0.2X SSPE, 0.1% SDS, 0.1% sodium pyrophosphate). 

Chemiluminescent detection of hybridized probes was done using an antibody detection 

method, and the chemiluminescent alkaline phosphatase substrate CSPD® (Disodium 3-
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(4-methoxyspiro{l,2-dioxetane-3,2'-(5'- chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl 

phosphate) (Roche Diagnostics, Indianapolis, IN) according to the manufacturer’s 

directions, with two modifications: (1) DIG antibody was diluted 1:20000, and (2), 

CSPD® was diluted 1:2500. Finally, the chemiluminescent reaction was detected by 

exposing blots overnight to X-ray film (Curix Ultra UV-G-Plus Medical X-Ray film, 

Belgium).

The DIG-labelled DNA hybridization probes were synthesized for ATG8 by the 

incorporation of DIG-labeled dUTP into PCR amplification products. Amplification 

reactions contained Platinum Taq polymerase (Invitrogen, Inc., Burlington, ON), DIG 

Labeling Mix (Roche Diagnostics, Indianapolis, IN), Dvd-T5 genomic. DNA template (10 

ng/pL), and autoF5 and autoR2 primers. Reaction conditions included an initial 

denaturation at 94°C for 2 min, then 30 amplification cycles of the following: 

denaturation at 94°C for 45 s, annealing at 65°C for 45 s, elongation at 72°C for 60 s, and 

a final extension at 72°C for 5 min.

2.3 Comparative Analyses:

2.3.1 Radial Growth, Colony Morphology and Microsclerotia Production

WT and KO strains were plated onto different types of media, and grown under 

different conditions to assess the effect of the ATG8 KO on radial growth, colony 

morphology and microsclerotia development. Additionally, cells were grown on 

autophagy-inducing and -inhibiting media to determine how these conditions affected 

growth of WT and KO strains. Mycelial plugs from WT and KO strains were cut with a 

0.5 cm cork borer and were plated onto basal medium (BM), BM lacking NO3 (BM-N),
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BM lacking glucose (BM-C), complete medium (CM), CM + 1 Ong rapamcyin/ml (an 

autophagy inducer), and CM+lmM 3-methyladenine (an autophagy inhibitor) and 

incubated at 24°C. Cultures grown on CM and BM were also incubated at 24°C and 

28°C. Radial growth was measured, and presence of MCS was noted at 7, 10, 14 and 21 

days post inoculation. To examine MCS formation microscopically, cultures were 

sectioned, and stained with lactophenol acid fuchsin (100 mL distilled water, 100 

mLcarbolic acid, 100 mL 85% lactic acid, 200 mL glycerin, 0.1% acid fuchsin). Two 

replicates were used for each treatment and experiments were done three times.

2.3.2 Conidiation

For comparison of sporulation on agar medium by WT and KO strains, cultures 

were grown on BM, BM-N, BM-C and CM media (200 pL agar on depression well 

slides). Ten pL aliquots of conidial suspension (at lxlO4 or 5x10s spores/mL) were 

spread onto the slides, which were placed in a sterile chamber, incubated at 24°C or 28°C, 

and examined microscopically daily over a five day period. Two replicates were used for 

each treatment and experiments were performed three times.

2.3.3 Spore production in liquid from mycelia-inoculated cultures

In a liquid environment, V. dahliae and V. albo-atrum produce spores from 

mycelia, and from the spores themselves (yeast-like growth). To assess spore production 

in liquid from mycelia-inoculated cultures, CM plates were initiated with WT and KO 

spores from silica gel stocks and grown at 24°C for two weeks before 0.5 cm plugs were 

taken from the growing margins and used to inoculate 35 mL liquid CM or CM+lmM 3- 

methyladenine. Liquid cultures were grown at 24°C in the dark for four days in a shaking



incubator (150 rpm), harvested by filtering through sterilized Miracloth to remove the 

mycelia, and the filtrate centrifuged at 1480 g for 10 min to pellet the spores. Spores 

were re-suspended in 1 mL sterile distilled water, and counted with a hemacytometer. 

Statistical analysis was done using the t test where PO.Ol was deemed significant with n 

= 3 cultures/strain/experiment. Experiments were done three times.

2.3.4 Spore production in liquid from spore-inoculated cultures

To assess spore production in liquid-grown cultures inoculated with spores, 

lx l0 5spores/mL were added to 5 mL liquid simulated xylem media (SXM), and grown in 

the shaking incubator (150 rpm) at 24°C for four days. Each treatment was done in 

triplicate and the experiment was done three times. Statistical analysis was done using 

the t test with n = 3 cultures/strain/experiment where PO.Ol was deemed significant.

2.3.5 Germination

Spores were harvested as described in section 2.3.3 and 100 spores from WT and 

KO strains were spotted in each of 5 locations on CM agar in 60x 15 mm plates. To aid 

visualization of spotted areas, a template containing five spots was printed onto 

transparency sheets and taped to the bottom of each plate prior to inoculation. Since two 

plates ( 1 0  spots) were counted at each time interval, a total of 1 2  plates were set up for 

each strain and incubated at 24°C. Immediately before viewing, spots were stained with 

lactophenol blue, and the numbers of germinated and ungerminated spores were counted 

every two hours between four and 14 hours post inoculation (hpi). Plates were discarded 

after counting. This experiment was done twice.
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2.3.6 Glycogen Accumulation

CM agar cultures were initiated with WT and KO spores from silica gel stocks, 

and grown at 24°C for two weeks before 0.5 cm plugs were taken from the growing 

margins and plated onto CM. Glycogen accumulation was determined by inverting 7 and 

14 dpi cultures for 15 min over a Petri dish containing one g iodine crystals; sublimated 

iodine strains glycogen purple (Sigma-Alderich, St. Louis MO). Cultures were 

photographed immediately afterwards.

2.3.7 Microscopy to assess VdATG8 expression and localization

VdATG8 expression and VdATG8  localization were visualized with depression 

well slide cultures: 10 pL of 5xl05 or lxlO4 spores/mL of VDAT 74, 75 or 77 were 

spread onto 200 pL BM agar, and incubated at 24°C or 28°C. Cultures grown from 

suspensions of 5x10s spores/mL were used to examine MCS formation, while 

suspensions of lx l0 4 spores/mL enabled examination of conidiophore development.

Over a five day period, the depression well cultures were examined daily with a Leica 

TCS SP2 confocal scanning microscope with HCPL Fluotar, lOx, 4 mm objective. 

Images were captured in cyan, yellow and transmitted light channels using integrated 

Leica software (Leica Microsystems, Wetzler, Germany).

Slide cultures were used for staining with monodansylcadaverine (MDC) (Sigma- 

Aldrich), which selectively stains autophagosomes (Biederbick, 1995). Agar plugs (1.0 

cm2) from BM, BM-N, CM, CM+10 ng rapamycin/mL and CM+1 mM 3-methyladenine 

were inoculated on all four sides with 1 pL lxlO7 spores from VDAT 77, wild-type and 

mutant strains. Sterile coverslips were placed over the agar plugs, and the slides were



incubated in a moist, sterile chamber at 24°C for four days. Four hours prior to staining 

with MDC, 10 pL 2 mM serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF), 

was added directly to the slide to delay autophagosome degradation. Cultures were 

stained for 10 min with 50 pM MDC solution, de-stained with water, and visualized with 

the Leica TCS SP2 confocal scanning microscope and UV laser.

2.4 In planta Analyses

2.4.1 Pathogenicity assays with V  dahliae and V albo-atrum

CM agar was inoculated with silica stocks, and cultures were grown at 24°C for 

two weeks before 0.5 cm plugs from the growing margins were used to inoculate 200 mL 

flasks containing 35 mL liquid CM. Spores were harvested as described in section 2.3.3. 

Spores were re-suspended in sterile distilled water, counted with a haemocytometer and 

diluted to 5 x 107 spores/mL in 10 mL 0.5% gelatin. Sand-grown Bonny Best tomato 

seedlings (14 day-old) were gently extracted from the sand, and their roots were rinsed 

with distilled water before a two minute root dip inoculation into either the spore 

suspension (pathogen treatment), or 0.5% gelatin (mock-inoculated treatment). Ten 

plants were inoculated for each treatment. All seedlings were planted into 4-inch pots of 

pre-moistened PROMIX (Premier Horticulture, Inc., Red Hill, PA). Fertilization with IX 

20-20-20 (Plant-Prod®, Brampton, Ontario) was done once per week. Plants were grown 

at 24°C with 16 hours of light per day. Disease symptoms were visually scored once a 

week over four weeks using a previously defined rating system (Klimes & Dobinson 

2006). At four weeks, the plants were cut 1 cm above the soil line so that the whole plant
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could be weighed. All experiments were done twice. The t test was done where PO.Ol 

was deemed significant with n = 1 0  plants/strain/experiment.

2.4.2 Stem section analysis to assess in planta colonization

To qualitatively determine fungal presence relative to symptom development, and 

potential differences in the rate of plant colonization by wild-type and vdatg8-KO strains, 

0.5 cm sections of root, stem and leaf sections were cut from three week old Bonny Best 

tomatoes that had been root dip inoculated with V dahliae spores as described in section 

2.4.1. Prior to sectioning, the entire plant was surface sterilized by immersion into 1.5% 

hypochlorite solution for 30 s, rinsed three times with sterile water and air dried on sterile 

paper towels. The sections were placed on a semi-selective agar medium (Soil Pectate 

Tergitol) (SPT) (Hawke & Lazarovits 1994) agar and incubated at 24°C. Every four 

hours post-inoculation three plants from each treatment were sectioned, from zero hours 

to 60 hours. Statistical analysis was done using the t test with n = 3 

plants/strain/experiment where P<0.01 was deemed significant.

2.4.3 Quantitative PCR analysis of V dahliae DNA in plant tissue

Three week old Bonny Best tomato seedlings were root dip inoculated with spores 

from wild-type and mutant strains as described above. Plants were surface sterilized as 

described in section 2.4.2, and DNA was extracted from single 1.5 cm stem sections that 

were cut from the apex of the plant. Every two days over a 14 day period post­

inoculation, stem sections from two plants per treatment were collected, and frozen in

liquid nitrogen.
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To extract DNA from the stem, two sections from each time point (i.e. two plants) 

were pooled and ground to a fine powder in liquid nitrogen with a mortar and pestle. The 

DNA extraction protocol was modified from that described by Murray & Thompson 

(1980). The ground plant tissue (0.05 g) was homogenized by vortexing 30 s in 1.8 mL 

extraction buffer (0.7 M NaCl, 50 mM TRIS, 10 mM EDTA, 2% CTAB, 1% 0- 

Mercaptoethanol), and then incubated for 30 min at 70°C. Once samples had cooled to 

room temperature, DNA was extracted by mixing with CHCI3 : isoamyl alcohol (24:1) and 

centrifuged at 12 000 g for 15 min. The aqueous (upper) phase was precipitated with 0.7 

volume of 2-isopropanol and spun at 12 000 g for 45 min to pellet the nucleic acids. The 

resulting pellet was washed with 70% ETOH, air dried and re-suspended in lxTE (10 

mM TRIS, 1 mM EDTA pH8 ) with RNaseA (1 pg/mL). DNA concentration was 

determined with the Nanodrop 1000 3.6.0 Spectophotometer (Thermo Scientific, 

Wilmington, DE, USA).

The amount of V. dahliae DNA in infected plant tissue was quantified using a 

competitive PCR assay (Hu et al 1993). For these assays, the pVDint2 plasmid 

containing the V. dahliae ribosomal RNA internal transcribed spacer (ITS) sequence 

(supplied by Dr. Jane Robb, University of Guelph) was used as the internal control (IC) 

template. A 230 bp product is amplified from this plasmid using the ribosomal RNA 

internal transcribed spacer (ITS) sequence primers, VD1 and VD2, while the same primer 

set amplifies a 300 bp product from DNA isolated from infected plant tissue. Twenty- 

five pL PCR amplification reactions contained 0.05 mM of each deoxynucleotide 

triphosphate, 5 pmol of each oligonucleotide primer, 1 pg internal control template, 0.5
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unit of Platinum TAQ polymerase, and 1 uL of DNA extracted from plant tissue. PCR 

amplification included an initial two minute denaturation step at 94°C, followed by 29 

cycles of denaturation at 94°C for 30 s, annealing at 65°C for 30 s, and elongation at 72°C 

for one min, and a final 5 min elongation step at 72°C. Amplicons were visualized on 

0.8% agarose gels and quantified using Molecular Analyst Software (Quantity One 4.4.1 

BioRad, Hercules, CA).

Fungal biomass was quantified against a standard curve. Since previous studies 

established that lpg of internal control allowed amplification of both the internal control, 

and the lowest concentration of fungal DNA extracted from plant tissue, a standard curve 

was generated from purified Dvd-T5 genomic DNA ranging from 0.001 ng to 10 ng, in 

the presence of 1 pg internal control (Hu et al. 1993). The ratio between purified DNA 

and lpg internal control template yielded a standard curve via non linear regression. To 

determine the concentration of extracted fungal DNA, the ratio of fungal amplicon to 

internal control template were fitted to the equation of the standard curve.

2.5 Gene Expression Assays

2.5.1 RNA extraction

For agar-grown cultures, plates of BM and CM agar were overlaid with cellulose 

membranes (Research Products International, Mount Prospect, IL), and inoculated by 

spreading lxlO6 spores from wild-type and mutant strains over the cellophane surface. 

After two days growth, the membranes were moved to BM, BM-N, BM-C, CM, CM+ 

lOng rapamycin/ml or CM+lmM 3-methyladenine media, and grown for another 2 days. 

To assess the influence of time and temperature on relative expression levels of VdATG8,
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the fungal strains were inoculated onto CM agar overlaid with cellophane, and grown for 

two, four and seven days at 24°C and 28°C. Mycelia was then scraped off the cellophane 

into liquid nitrogen and ground with mortar and pestle. Liquid grown cultures were 

inoculated with 0.5 cm mycelial plugs, and grown for four days in 200 mL flasks 

containing 35 mL liquid CM, and grown in a shaking incubator (150 rpm). Mycelia and 

spores were separated via filtration through sterile Miracloth. Mycelia was frozen 

immediately, while the spores were pelleted by centrifugation at 1500 g for 1 0  min before 

freezing and grinding. RNA was then extracted from 100 mg of each sample with an 

RNeasy® Plant Mini Kit (Qiagen, Maryland USA) following the manufacturer’s 

directions. The amount of RNA was determined with the Nanodrop (Thermo Scientific) 

and quality was assessed using the 2100 Bioanalyzer (Agilent, Waldbronn, Germany).

2.5.2 Quantitative RT-PCR of VdATG8

For reverse transcription (RT)-PCR, 1 pg RNA was treated with DNase I, and 

reverse-transcribed with Superscript™ II reverse transcriptase and oligo (dT)i2-i8 primer 

(Invitrogen Canada Inc.), according to the manufacturer’s instructions. VdATG8 and V. 

dahliae actin gene sequences were amplified from cDNA and genomic DNA using 

autophagy primers, autoF5 and autoR2, and actin primers, H02-1 and H02-2, 

respectively.

For quantitative RT-PCR (qRT-PCR), intron flanking primers were used to 

amplify actin, p-tubulin and VdATG8 genes. Each amplification reaction contained 5 pi 

SsoFast™ EvaGreen® super mix (BioRad, Hercules, CA), 300 pM of each primer, 2.5 

pL cDNA template and sterile distilled water to a final volume of 10 pL. PCRs were
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done in 96 well WHT-CLR hard shell microtitre plates sealed with Microseal® ‘B’ Film 

(BioRad, Hercules, CA).

Standard curves for the qRT-PCR assays were generated for ATG8, actin, and p- 

tubulin genes using svt-q-atg8-F4/svt-q-atg-R6, AKIF-actin/AKIR-actin and AK2F- 

Btub/AK2R-Btub primers, respectively (Appendix I), and 10-fold dilutions of template 

cDNA from 4 day-old cultures grown on CM. PCR amplification was done in a BioRad 

CFX96 real time cycler with an initial 3 min denaturation followed by 34 cycles of 10 s 

denaturation at 95°C and 30 s annealing at 58°C. The melting curve started at 65°C, and 

increased by 0.05°C increments to 95°C. Relative transcript abundance was calculated 

using the Delta-Delta CT method with BioRad CFX manager software version 1.6.

To study the effect of autophagy-inducing and -inhibiting conditions on VdATG8 

gene expression, cDNA was prepared from cultures grown on CM, CM+rapamycin, 

CM+3-methyladenine, BM, BM-C, or BM-N. Triplicate reactions containing 2.5 pi of 

the 1/5 dilutions of cDNA from each culture were set up with actin, autophagy and p- 

tubulin primers. Thus, a total of 9 wells with each type of cDNA were set up, with 3 

wells allotted for each primer pair. To control for genomic contamination in the cDNA, 

negative controls (lacking reverse transcriptase) in duplicate for each cDNA. To control 

for contamination in reagents, no template controls were set up in triplicate for each 

primer pair. For each qRT-PCR experiment, three wells in the plate were reserved for a 

calibrator sample of cDNA from a CM-grown culture.

The setup described above was used to study the effect of growth temperature on 

relative expression of VdATG8. cDNA was extracted from cultures grown on CM at
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24°C or 28°C for two, four, or seven days and diluted 1/5. For each cDNA sample 

triplicate reactions were set up with each of the aforementioned primer sets, and the same 

no reverse transcriptase, and no template controls were used.

2.5.3 RT-PCR for Gene Expression Studies

RT-PCR analysis was done for two experiments: 1) to determine whether ATG8 

was expressed in hydrophobin (vdhl) and map kinase (vmkl) mutants, and conversely, if 

VDH1 and VMK1 were expressed in vdatg8 and vaatg8 strains, and 2) to determine 

whether expression of other putative autophagy genes was altered in vdatg8 or vaatg8 

mutant strains.

RNA was extracted as described in section 2.5.1 from wild-type and atg8, vdhl, 

and vmkl knockout strains of V. dahliae and V. albo-atrum grown for 2 and 4 days on 

BM or CM agar. RT-PCR was done as described in section 2.5.2. Briefly, 1 pg of RNA 

was treated with DNase I, and reverse-transcribed with Superscript™ II reverse 

transcriptase and oligo (dT) 12-is primer (Invitrogen Canada Inc.) according to the 

manufacturer’s instructions. cDNA quality was assessed by amplification of the actin 

gene (H02-1 and H02-2 primers) using the standard PCR protocol: initial denaturation at 

94°C for 2 min, then 30 amplification cycles of the following: 94°C for 45 s, 65°C for 45 

s, 72°C for 60 s, with a final extension at 72°C for 5 min.

The standard PCR protocol described above was used to amplify all three genes, 

with an annealing temperature of 65°C for VMK1 and VdATG8, and 60°C for VDHl. 

VMK1 was amplified from vdatg8 and vaatg8 cDNA with VMK IF and VMK 2R 

primers, while the ATG8 gene homolog was amplified from vdhl and vmkl cDNA with
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autoF2 and autoR2 primers, and VDH1 was amplified from atg8 cDNA with C24-1A and 

C24-2A primers.

To identify in V dahliae and V. albo-atrum homologs of other autophagy genes 

(ATG1, 3, 12, and 16) a feature search was done of the Saccharomyces Genome database 

(SGD http://www.yeastgenome.org/cgi-bin/seqTools). Protein sequences from the SGD 

were then compared to sequences in the Broad Institute Verticillium Group Database 

(BIVGB) using the National Centre for Biotechnology Information (NCBI) Basic Local 

Alignment Search Tool (BLAST) program. The resulting hits were then compared (by 

BlastP analysis) to the sequences of the NCBI protein databases. Finally, an alignment 

using CLUSTALW (Higgins et al. 1996) was done to compare the protein sequences 

from SGD with those identified in BIVGB, and other fungal autophagy genes identified 

by the BLAST analyses.

Intron-flanking primers were designed from the BIVGB sequences. ATG 3, 12 

and 16 gene homologs were amplified with atg3F2/R6, atgl2F5/R3 and atgl6 Fl/Rl 

primer sets respectively, using touchdown PCR: initial 2 min denaturation at 95°C, 15 

amplification cycles of the following: 95°C for 45 s, 70°C for 45 s, 72°C for 90 s, then 20 

amplification cycles of 95°C for 45 s, 60°C for 45 s, 72°C for 90 s, with a final extension 

of 72°C for 5 min. The ATG1 sequence was amplified with the atglF2/Rl primer set 

using the standard protocol, and an annealing temperature of 60°C.

http://www.yeastgenome.org/cgi-bin/seqTools
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CHAPTER 3: RESULTS

3.1.1 Colony morphology

Morphological comparative analysis was done of V. dahliae and V. albo-atrum 

wild-type and ATG8 knockout strains (vdatg8 and vaatg8, respectively). With our 

standard growth medium and conditions (complete media (CM) at 24°C), the mycelium 

of V. dahliae WT colonies appeared white, while vdatg8 colonies had distinctive cream 

coloured centres surrounded by a 0.5 cm white, outer margin of the growing colony 

(Figure 3.1 A). Examination of the underside of colonies showed that WT colonies were 

producing microsclerotia (MCS), but that vdatg8 were not (Figure 3. IB). However, when 

grown at 28°C, WT colonies produced more MCS than they did at 24IC, and vdatg8 

colonies also produced MCS (Figure 3.IB). Thus, under these standard growth 

conditions, vdatg8 mutants were found to have a defect in MCS formation.

V. albo-atrum WT and knockout (vaatg8) cultures produced dark resting mycelia 

(DRM) at 24°C on CM (Figure 3.2A) and both and KO cultures produced more DRM at

28°C than at 24°C (Figure 3.2A).
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Figure 3.1 Effect of temperature on MCS formation by V. dahliae WT and vdatg8 

KO cultures. A. Colony morphologies of WT (Dvd-T5; left panel) and KO (VDAT38-5; 

right panel) cultures grown for 14 days on CM at 24°C. B. Cultures were grown on CM 

for seven days. WT and KO cultures in the left panels were grown at 24°C, while cultures 

on the right panels were grown at 28°C. Top panels: WT cultures produce some MCS at 

24°C, and even more at 28°C. Lower panels: \datg8 does not produce MCS at 24°C, but

does at 28°C.
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Figure 3.2 Effect of temperature on DRM formation and conidiation in V. albo- 

atrum WT and KO cultures. A. All cultures were grown on CM for seven days. WT 

(383-2) and KO (VAAT10-12) cultures produce DRM at 24°C (upper panel). DRM 

production is greater for both WT (383-2) and KO (VAAT10-12) cultures at 28°C (lower 

panel). B. WT (383-2) and KO (VAAT10-12) cultures were grown on depression well 

slides for three days on BM at 24°C and examined microscopically. Scale bar for the WT

is 60pm and 50pm for the KO.
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3.1.2 Conidiation and microsclerotia formation

To examine conidiation and resting structure production more closely in V. 

dahliae and V albo-atrum WT and KO strains, microscopy was done over a time course 

for cultures grown at 24°C and at 28°C. There were no defects or delays in conidiation in 

vaatg8. At each time point, WT and KO cultures were indistinguishable from one 

another. As seen in Figure 3.2B, by day three both WT and KO cultures were producing 

conidiophores and conidia. As anticipated from the observed colony morphologies, 

conidiation in vdatg8 was defective at 24°C. As shown in Figure 3.3A, WT cultures 

produced conidia at two days post inoculation (dpi), while KO cultures did not produce 

any conidia. At three dpi, KO hyphae were swollen and septate, but very few conidia 

were present compared to WT cultures, which had produced many clusters of conidia 

(Figure 3.3A). Although by five days, the WT cultures typically are producing MCS, 

vdatg8 cultures appeared be arrested at the same developmental stage as that seen at day 

three (Figure 3.3A). However, at 28°C, conidiation is accelerated, and the WT produces 

clumps of conidia by day two, while the KO has swollen septate hyphae (Figure 3.3B).

By day five at 28°C, both the WT and KO are producing clumps of conidia, and MCS 

initials (Figure 3.3B). Thus, increased temperature accelerates MCS formation in the WT 

and restores MCS formation in the KO. The appearance of melanized MCS in vdatg8 

indicates that temperature can restore the wild-type phenotype in vdatg8.



Figure 3.3 Effect of growth temperature on conidiation and MCS formation in V. 

dahliae WT and vdatg8 KO cultures. Cultures were grown on BM agar in depression 

well slides for five days at 24°C (A) and 28°C (B). A. Top panels: KO (VDAT38-5) 

shown at two, three and five days post inoculation. Scale bars represent (left (L) to right 

(R)) approximately 110, 100, and 120pm respectively. Arrows indicate swollen hyphae 

(KO day three), clumps of conidia (WT day three),and MCS (WT day five). Lower 

panels: WT (Dvd-T5) shown at two, three and five days post inoculation. Scale bars 

represent (left to right) approximately 100, 85, and 80 pm respectively. B. Top panels: 

KO (VDAT38-5) shown at 2, 3 and 5 days post inoculation. Scale bars represent (L to R): 

approximately 100, 100 and 80 pm respectively. Lower panels: WT (Dvd-T5) shown at 

two, three and five days post inoculation. Scale bars: (L to R) approximately 100, 80 and

100 pm.
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3.1.3 Influence of temperature on VdATG8 expression

Quantitative reverse transcriptase PCR (qRT-PCR) was done to assess changes in 

the WT strain VdATG8 expression levels in cultures grown on BM over a time course at 

24°C or 28°C. As shown in Figure 3.4, at 24°C, it takes four days before VdATG8 is 

expressed at detectible levels, and this expression is elevated by day seven. This 

expression coincides with development, since at 24°C conidiation occurs between days 

three to four, and microsclerotia develop from day five onwards (Figure 3.3A).
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Figure 3.4 Effect of temperature on VdATG8 expression levels over time.

Quantitative reverse transcriptase (qRT)-PCR of VdATG8 transcript levels in Dvd-T5 

cultures grown for two, four or seven days at 24°C or at 28°C on BM. VdATG8 transcript 

levels were measured relative to those of (3-tubulin.
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3.1.4 Effect of autophagy inducers and inhibitors on radial growth

To understand the effect of autophagy on radial growth of both wild-type and atg8 

disrupted strains, strains were grown on media amended with an autophagy inducer 

(rapamycin) or inhibitor (3-methyladenine). Radial growth was measured of V. dahliae 

and V albo-atrum WT and KO cultures grown on CM, CM +rapamycin, and CM + 3- 

methyladenine. For both species, growth of the KO on media containing either an 

autophagy inducer or inhibitor was not significantly different from that of the WT 

(P>0.01) (Figure 3.5). However, radial growth of both V. dahliae and V. albo-atrum was 

significantly reduced (P<0.01) in the presence of either an autophagy inducer or inhibitor 

as compared to growth on un-amended CM.

3.1.5 Effect of autophagy inducers and inhibitors on MCS formation

In addition to measuring radial growth of cultures grown on media amended with 

autophagy inhibitors or inducers, colony morphology and resting structure formation was 

also examined macroscopically and microscopically. In order to visualize developing 

MCS cultures were sectioned, and stained with lactophenol acid fuchsin prior to 

microscopic examination. V dahliae WT cultures treated with rapamycin (autophagy 

inducer) produced melanized MCS initials, and intriguingly, chains of swollen, hyaline 

cells that could be precursors to MCS, while the KO produced only a few melanized 

MCS, and no chains of hyaline, swollen cells (Figure 3.6). Conversely, when treated with 

the autophagy inhibitor 3-methyladenine, neither WT nor KO cultures produced MCS 

(Figure 3.6). Hyphae in both cultures remained undifferentiated, and did not exhibit the 

swelling or septation that typically precedes MCS development.
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Figure 3.5 Effect of autophagy inducers and inhibitors on radial growth of V 

dahliae and V  albo-atrum WT and atg8 KO cultures. Radial growth (cm) is shown of 

V. dahliae (left panel) and V albo-atrum cultures (right panel) grown at 24°C on CM,

CM + 1 Ong/pLrapamycin or CM + ImM 3-methyladenine.
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Figure 3.6 Effect of autophagy inducers and inhibitors on MCS formation in V. 

dahliae Underside of 14 day old cultures grown at 24°C. Top left panel: colonies of WT 

(Dvd-T5) and KO (VDAT38-5) on CM amended with rapamycin (autophagy inducer). 

Lower left panel: microscopic view of sectioned colonies stained with lactophenol acid 

fuchsin. Scale bar for WT is approximately 40 pm and 50 pm for KO. Top right panel: 

colonies of WT and KO on CM amended with 3-methyladenine (3-MA; autophagy 

inhibitor). Lower right panel: microscopic view of colonies treated with lactophenol acid 

fuchsin. Scale bars for WT and KO are approximately 100 pm.
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3.1.6 Effect of autophagy inducers and inhibitors on V albo-atrum DRM formation

In V. dahliae autophagy inducers promoted MCS formation in both WT and 

vdatg8 KO cultures, while autophagy inhibitors did the opposite. However, V albo- 

atrum WT and vaatg8 KO cultures both produced some DRM irrespective of whether the 

medium was treated with an inducer or an inhibitor (Figure 3.7).

3.1.7 VdATG8 expression during on different growth conditions

Since, both V dahliae WT and vdatg8 KO strains exhibited different phenotypes 

on media amended with an autophagy inducer or inhibitor, qRT-PCR was done to assess 

VdATG8 expression under different growth conditions. VdATG8 expression varied 

depending on whether V. dahliae was grown on solid medium or in liquid media. 

Expression of VdATG8 in spores and mycelia harvested from liquid CM was lower than 

expression during growth on CM agar (Figure 3.8). Expression on autophagy-inducing 

media was slightly higher than on autophagy-inhibiting media, however amendment with 

either agent greatly reduced VdATG8 expression compared to that in unamended CM

(Figure 3.8).
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Figure 3.7 Effect of autophagy inducer and inhibitor on DRM formation in V albo- 

atrum Underside of 14 day old V. albo-atrum cultures grown at 24°C. Cultures (left to 

right) were grown on CM, CM + 3-methyladenine (inhibitor), and CM + rapamycin 

(inducer). WT cultures are shown on the top panel, and vaatg8 KO cultures are shown on

the lower panel.
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CM Liquid Agar Media

Figure 3.8 VdATG8 expression under different growth conditions. Quantitative RT- 

PCR of VdATG8 transcript levels in Dvd-T5 cultures grown at 24°C for four days in CM 

liquid, and on standard agar medium (CM and BM), autophagy-inducing media 

(CM+rapamycin and BM lacking nitrate) and autophagy-inhibiting medium (CM+3- 

methyladenine). VdATG8 transcript levels were measured relative to those of (i-tubulin.
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3.1.8 Dimorphic growth

V dahliae and V. albo-atrum are dimorphic pathogens -  in a liquid environment, 

the mycelia can produce spores, which can either germinate to produce more mycelia, or 

bud (yeast-like growth) to enable rapid colonization of the plant vasculature. Spore 

production in liquid was assessed from two types of inoculum, mycelial and spores. 

While vdatg8 strains showed a 100-fold reduction in spore production from a mycelial 

inoculum compared to that of WT, spore production by vaatg8 was not significantly 

different from that of the WT strain (Figure 3.9). Treatment of the mycelia-inoculated 

cultures with the autophagy inhibitor 3-methyladenine eliminated spore production in 

vdatg8, and significantly reduced spore production in V dahliae WT (Figure 3.9). 

However, spore production by both V. albo atrum WT and KO was not significantly 

affected by 3-methyladenine (Figure 3.9).

Spore production was unaffected in spore-inoculated cultures of vdatg8 and 

vaatg8 strains; both V dahliae and V albo-atrum WT and KO strains produced between 

1.5xl06 -  1.5xl07 spores/mL (Figure 3.10). Thus, spore production in liquid was only 

defective in vdatg8 if cultures were initiated from mycelia, and not from spores.
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Figure 3.9 Spore production in liquid CM from V dahliae and V. albo-atrum 

inoculated with mycelia of WT and KO strains

Spores were grown at 24°C for four days, harvested and counted as described in materials 

and methods. Results from three separate experiments were pooled. Double stars 

indicate significant differences (PO.Ol) in spore production between V dahliae WT and 

KO (VDAT38-5) strains, while single stars indicate significant differences in spore 

production between Dvd-T5 cultures grown in CM and in CM amended with 3- 

methyladenine (PO.Ol).
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Figure 3.10 Spore production in liquid simulated xylem fluid medium (SXM) from 

spore inoculated cultures of V dahliae and V  albo-atrum WT and mutant strains.

Cultures were inoculated with lx l0 5spores/ml from the following strains: V. dahliae WT

(Dvd-T5), KO (KOI is VDAT38-5, K02 is VDAT38-3), revertant (VDAT44-7) and

ectopic transformant (VDAT38-6) strains, and V albo-atrum WT, KO (KOI is VAAT10- 

9, K02 is VAAT10-12), and ectopic transformant (VAAT10-10). Spore inoculum was 

generated from liquid CM cultures which had been inoculated with mycelial plugs of the 

respective strains grown for four days at 24°C, and harvested as described in materials 

and methods. The spore inoculated cultures were then grown in simulated xylem fluid

medium
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3.1.9 Germination

To assess differences in the germination rate between WT and KO strains of both 

species, CM agar was inoculated with spores as described in materials and methods, and 

the numbers of germinated and ungerminated spores were counted over a period of 14 

hours post inoculation (hpi). As shown in Figure 3.11, germination of V. dahliae KO 

spores lagged behind that of WT spores, and 20% more WT than KO conidia had 

germinated between 4 and 12 hpi. However, by 14 hours, 80% of KO and 92% of WT 

conidia had germinated (Figure 3.11). In contrast, there was no significant difference in 

germination rates of V. albo-atrum WT and KO spores at any of the time points and by 14 

hpi 83% of V. albo-atrum WT and 80% of KO spores had germinated (Figure 3.11).

3.1.10 Glycogen accumulation during mycelial growth

Since autophagy enables cellular survival during nutrient limiting conditions, this 

process is also involved in the regulation of long-term energy storage molecules like 

glycogen (Deng et al. 2009). To assess the effect of ATG8 KO on glycogen 

accumulation, seven and fourteen days-old mycelial cultures were inverted over iodine 

crystal vapour which stains glycogen dark purple. As shown in Figure 3.12, both V. 

dahliae WT and KO strains accumulated similar amounts of glycogen in the growing 

margin of the mycelia. However, V. albo-atrum WT accumulated much more glycogen 

than did V. dahliae WT, and glycogen accumulation was reduced in vaatg8 (Figure 3.12).
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Figure 3.11 Germination of V dahliae and V  albo-atrum WT and KO conidia. CM

plates were inoculated with spores from Dvd-T5, VDAT38-5, Va383-2 and VAAT10-12 

cultures and incubated at 24°C for 14 hours. Germinating spores were first counted at 

four hours post inoculation. The experiment was done twice, and 500 spores of each 

strain were counted at each time point.
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Figure 3.12 Glycogen accumulation in V. dahliae and V  albo-atrum WT and KO 

cultures. Top view of two-week old cultures grown on CM at 24°C. Glycogen is stained 

purple by iodine vapour. Top panel: V. albo-atrum (383-2) (left) and V dahliae (Dvd- 

T5) (right) WT strains. Lower panel: KO strains: vaatg8 (VAAT10-12) and \datg8 

(VDAT38-5).
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3.2.1 Pathogenicity Assays

Bonny Best tomatoes were infected with V. dahliae WT, KO, ectopic and 

revertant strains, and V. albo-atrum WT, KO and ectopic strains to assess the importance 

of the Verticillium spp. ATG8 homologs on pathogenicity. Two week-old plants were 

root dip inoculated with spores from the aforementioned strains. Infected plants started to 

lose their cotyledons by 14 dpi. Symptom development, namely cotyledon loss, wilting, 

and leaf chlorosis was similar between V dahliae WT- and KO-infected plants, and V 

albo-atrum WT- and KO-infected plants. At 28 dpi, plants were scored for disease 

symptoms according to criteria established by Klimes & Dobinson (2006), and fresh 

weights were measured. Mock-inoculated plants had no symptoms, and the highest fresh 

weights, while fresh weights and disease scores for V dahliae (Figure 3.13) and V. albo- 

atrum wild-type-infected plants were not significantly different from those of the vdatg8, 

and vaatg8-infected plants, respectively (Figure 3.14).



Figure 3.13 Symptoms, fresh weights, and disease scores in tomato plants 28 days after 

mock inoculation, or inoculation with V. dahliae wild-type (WT; Dvd-T5), vdatg8 

knockout (KO; VDAT38-5), or the revertant strain (Rl; VDAT44-7).

A. Mock-inoculated plants show no symptoms, while plants infected with WT, KO and 

revertant strains show similar disease symptoms, namely stunting, clorosis and necrosis 

of leaves.

B. Fresh weights of infected and mock-inoculated plants at 28 dpi. Data were pooled 

from three experiments (n = 10 plants/treatment/experiment). Differences between mock- 

inoculated plants, and infected plants were all significant (P<0.01). Differences in fresh 

weights between plants infected with the wild-type and knockout strains, and between 

plants infected with wild-type and revertant strains were not significantly different 

(P>0.01).

C. Disease scores of plants infected with V. dahliae WT, KO, Rl, or mock-inoculated. 

Disease symptoms were scored visually at 28 dpi. Scores were assigned based on the 

criteria established by Klimes 2006, with scores ranging from 0 -  5, (0 = neglible 

chlorosis or wilting, 1= chlorosis, wilting and/or curling in individual leaves, 2  = necrosis 

in leaves, 3 = at least one dead branch, 4 = wilt and/or chlorosis upper leaves, and/or two 

or more branches dead and 5 = dead plant, or most leaves dying/necrotic). Diseased 

plants also exhibited stunting. Disease scores of wild-type and vdatg8 knockout-infected 

plants were not significantly different (P>0.01).
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Figure 3.13 
A.

Mock WT KO R



Figure 3.14 Symptoms, fresh weights, and disease scores in tomato plants 28 days after 

mock inoculation, or inoculation with V. albo-atrum wild-type (WT; 383-2), vaatg8 

knockouts (KO 1 to 3 correspond to VAAT 10-9, 10-11 and 10-12, respectively), or 

ectopic transformant (VAAT 10-10)

A. Mock-inoculated plants show no symptoms, while plants infected with WT, KO, or 

ectopic transformant strains show similar disease symptoms, namely stunting, with 

chlorotic and necrotic leaves.

B. Fresh weights of infected and mock-inoculated plants were measured at 28 days post 

inoculation. Data were pooled from 2 experiments (n = 10 plants/treatment/experiment). 

Differences between mock-inoculated plants and all fungus-infected plants were 

significant (P<0.01), while there were no significant differences in fresh weights of plants 

infected with the wild-type or knockout strains (P>0.01).

C. Disease scores of plants infected with V. albo-atrum WT, KO or ectopic strains.

Mock plants had no symptoms. Disease scores were not significantly different (P>0.01) 

between wild-type infected plants and all knockout infected plants. However, the average 

disease score for ectopic transformant-infected plants was significantly higher than those

of the WT- or KO-infected plants (P<0.01).
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3.2.2 In planta colonization

The pathogenicity assays showed that vdatg8 and vaatg8 strains retained 

pathogenicity, and did not generate significantly different disease scores or fresh weights 

from those of the wild-type strains (Figures 3.13 and 3.14). However, one phenotype -  

the transition from mycelial growth to spore production in a liquid environment -  was 

shown to be defective in vdatg8 mutants (Figure 3.9). Two types of experiments, stem 

sectioning and a competitive PCR assay, were therefore done to determine whether this 

defect would influence plant colonization.

3.2.2-1 Plant sectioning experiment

The sectioning experiment involved root dip inoculating three week old Bonny 

Best tomatoes with Dvd-T5 or vdatg8 spores. The plants were then sectioned at several 

time points between 16 and 60hpi, and the sections plated onto soil pectate Tergitol (SPT) 

agar. The results of this experiment showed that by 16 hours post inoculation 20% more 

WT-infected plant sections contained fungus than did those of KO-infected plants (Figure 

3.15). This trend continued throughout the time course with 20% to 30% more WT- 

infected plant sections containing fungus at 20, 24, 44, and 48 hpi than KO-infected plant 

sections, until 60hpi, at which time both WT- and KO-infected plants were completely

colonized (Figure 3.15).
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Figure 3.15 Percentage of plant sections colonized by wild-type V. dahliae (Dvd-T5) and 

vdatg8 (VDAT38-5) over a 60 hour time course. Plants were root-dip inoculated with 

wild-type or vdatg8 spores, and sectioned at different time points as described in 

materials and methods. The difference in percentage colonization of wild-type and 

vdatg8 infected plant sections was significant (P <0.01) at all time points except 40 and 

60 hours. Data from three experiments were compiled, (n = three

plants/strain/experiment).
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2)22-2 Competitive PCR assay

Since the sectioning experiment showed that vdatg8 initially colonized plants 

more slowly than did the wild-type, another independent experiment was done to evaluate 

plant colonization. For this experiment, a competitive PCR assay was done to determine 

fungal biomass accumulation in the uppermost portion of the plants throughout infection. 

Sections were taken from the apex to assess whether the partial defect in dimorphism of 

vdatg8, which produces 1 0 0 -fold fewer spores from mycelia in liquid than does its parent 

wild-type strain, would impede the pathogen from reaching the top of the plant.

For the competitive PCR assay, both an internal control template (IC) and DNA 

extracted from plant sections were amplified with V. dahliae ITS primers, producing two 

amplification products (as seen in the example shown in Figure 3.16A). A standard curve 

was derived by amplifying V. dahliae genomic DNA (ranging from 10' 7 to lOng) in the 

presence of lpg of internal control template. The quantity of fungal biomass in the plant 

DNA samples was determined by fitting the gDNA:IC amplicon ratio to the equation of 

the standard curve (shown in Figure 3.16B).

By two dpi fungal DNA was detectable at the apex of both wild-type- and vdatg8- 

inoculated plants, and the concentration for both was 0.69-0.70 ng/g plant tissue (Figure 

3.17). Biomass increased sharply over the first two days following inoculation, and from 

two to sixteen days post inoculation levels of fungal biomass remained relatively constant 

with fluctuations between 0.65-0.83 ng/g of plant tissue (Figure 3.17).
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B.

Amount of V. d a h lia e  DNA template in reaction (ng)

Figure 3.16: Standard curve generated by amplification of internal control template 

and different concentrations of V dahliae gDNA. A. The competitive PCR results in 

two amplification products, the internal control (IC; lower band at 231 bp) and an 

amplicon synthesized from the V. dahliae genomic DNA (upper band at approximately 

300bp). From left to right: lOObp DNA ladder, and amplicons synthesized from lpg of 

internal control template and 10, 1, 0.1, 0.01, 0.001, 1 O'4, 10"5, 10"6, and 10'7ng V. dahliae 

DNA. B. Standard curve of the IC: V. dahliae gDNA amplicon ratios that were used to

measure fungal biomass in planta.
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days post inoculation

Figure 3.17 Quantification of in pianta fungal biomass using competitive PCR assay.

Samples were analyzed from three week old tomatoes inoculated with WT and KO V.

dahliae strains
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3.3.1 VdA TG8 expression

VdATG8 expression was visualized with an ATG8(p)::eCFP reporter construct. 

Expression was detected by 48 hours post-inoculation, which corresponds to the time at 

when conidia are being formed (data not shown). Consistent with the temporal pattern of 

VdATG8 expression at 24°C and 28°C (Figure 3.6) fluorescent microscopy of strains 

carrying the ATG8(p):\eCFP construct appeared to show at four days increased 

florescence at 28°C relative to that at 24°C (Figure 3.18). eCFP was seen in clusters of 

conidia at both temperatures.

3.3.2 VdATG8 localization

The VdATG8 ::eYFP reporter construct was made to study ATG8  localization in 

wild-type V. dahliae. The VdATG8 ::<?YFP fusion protein is localized in a punctate 

manner within hyphae and conidiophores. With addition of the autophagy inhibitor (3- 

methyladenine) to the growth medium, the number of fluorescent spots was markedly 

decreased, while during growth in the presence of autophagy inducer rapamycin or on 

CM, the number of fluorescent spots increased (Figure 3.19). In wild-type V dahliae 

grown under autophagy-inducing conditions (rapamycin shown in Figures 3.19 and 3.20, 

or BM lacking nitrate shown in Figure 3.20), the punctate localization of the eYFP-tagged 

VdATG8  corresponds to potential autophagosomes, which can be stained with 

monodansylcadaverine (MDC) (Figure 3.20). However, MDC staining is diffuse in the 

vdatg8 strains under all growth conditions, and in the WT strain under autophagy-

inhibiting conditions (Figure 3.20).
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Figure 3.18 Confocal scanning laser microscopy of V. dahliae conidiophores, at four 

days post inoculation, growing on basal medium agar in depression well slides. Top 

panel: Expression of VdATG8{p)::eCFP in WT VDAT75-5 at 24°C (left panel) and 28 °C 

(right panel) visualized in the cyan channel. Lower panel: Corresponding transmission 

light images. Scale bar is 60pm for all images.
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Figure 3.19 Confocal scanning laser microscopy of WT VDAT77 conidiophores, at four 

days post inoculation growing on complete media (CM), or CM amended with rapamycin

(+ inducer) or 3-methyladenine (3-MA) (+inhibitor). When grown on media amended

with 3-MA, the cultures formed small spherical cell clusters.
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Figure 3.20 Confocal scanning laser microscopy of V. dahliae WT and vdatg8 hyphae 

stained with monodansylcadaverine to detect autophagosomes. WT cultures were grown 

under autophagy-inducing (CM+rapamycin; BM lacking nitrogen), or -inhibiting 

conditions (CM+3-methyladenine) for four days at 24°C. Lower panel: V. dahliae WT 

and KO cultures grown on CM for four days. Hyphae were stained with 

monodansylcadaverine prior to visualization.
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3.3.3 ATG8 expression in other mutants

Apart from VdATG8 two other genes, encoding a hydrophobin (VDH1) and a map 

kinase (VMK1), have been found to have a role in V dahliae MCS formation. While 

VDH1 is involved in both MCS and DRM formation (Klimes & Dobinson 2006; Amyotte 

2010), deletion of VMK1 activity affected resting structure production only in V dahliae 

(Amyotte 2010). ATG8 expression was therefore assessed in both hydrophobin and map 

kinase knockout strains of V. dahliae (ydhl and vmkl, respectively), and V albo-atrum 

(vahl, and vamkl) to determine whether or not autophagy was linked to the expression of 

either gene. ATG8 was expressed in both hydrophobin (Figure 3.21 and map kinase 

(Figure 3.22) knockout strains with no noticeable difference in levels of expression in the 

wild-type and knockout strains. Similarly, VDH1 and VMK1 were both expressed in V. 

dahliae and V. albo-atrum ATG8 knockouts (Figures 3.23 and 3.24, respectively).

The expression of other autophagy gene homologs, specifically ATG1, 3,12, and 

16 was tested and found to be unaffected in V. dahliae and V. albo-atrum KO strains

(Figure 3.25).
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V d V a ____V a K Q ____________V a W T ___________ V d  K O ___________ V d W T
vdatg8 WT genomic DNA 2 d  4 d  2d  4 d  2d  4 d  2d  4d

Figure 3.21 RT (reverse transcriptase) PCR showing expression of the ATG8 gene 

homologs in vdhl and vahl grown on BM for two or four days at 24°C. Va KO is 

VAAT6 -8 , and the genomic DNA is from V. albo-atrum 383 DNA, while Vd KO is 

VDAT2-17, and WT is Dvd-T5 genomic DNA. Amplification of cDNA from the vdatg8 

strain was included as a negative control.

Figure 3.22 RT-PCR showing expression of the V dahliae and V. albo-atrum ATG8 gene 

homologs in map kinase knockouts of V. dahliae and V albo-atrum (vmkl and vamkl, 

respectively) grown on BM or CM for four dpi at 24°C. VaWT, VaKO, and Va ectopic 

correspond to V. albo-atrum wild-type strain 383-2, and transformants VAAT8-9 and 

VAAT8 -6 , respectively. VdWT, VdKOl and VdK02 are V. dahliae Dvd-T5, and 

transformants VDAT38-5 and VDAT38-3, respectively.
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Figure 3.23 RT-PCR showing expression of hydrophobin gene VDH1 in vdatg8 

knockouts of V. dahliae. All strains were grown for four days on either CM or BM at 

24°C. VdWT, VdKOl, VdK02 and Vd ectopic correspond to Dvd-T5, and transformants 

VDAT38-5, VDAT 38-3, and VDAT38-6, respectively. Vd WT genomic is Dvd-T5

DNA.

Figure 3.24 RT-PCR showing expression of map kinase (VMK1) gene in V. dahliae 

(vdatg8) and V. albo-atrum (vaatg8) strains grown on BM for two days or four days. 

VaKOl-3 are KO transformants VAAT-9, 10-11, and 10-12, respectively. Vd WT 

genomic is Dvd-T5 DNA.
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Figure 3.25 RT-PCR showing expression of actin and putative A TG 3, 12, 16, 1 gene 

homologs in vdatg8 and vaatg8 strains. All strains were grown on BM for four days at 

24°C. Va KOI to 3 correspond to KO transformants VAAT10-9, 10-11 and 10-12 

respectively. VdKOl, VdK02 and Vd ectopic correspond to VDAT38-5, VDAT38-3, and 

VDAT38-6 respectively.
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CHAPTER 4: DISCUSSION

Autophagy is a stress response during starvation that enables cellular survival by 

degrading cytoplasmic components and organelles (Klionsky & Emr 2000). 

Reconstitution of cellular components during autophagy results in changes to cellular 

morphology leading to differentiation and development (Klionsky & Emr 2000). Our 

interest in A TG8 originates from early microscopic studies that indicated that autophagy 

may be involved in V. dahliae resting structure development. Furthermore, autolysis, 

another process that could be attributed to autophagy is known to occur during parasitic 

growth of the fungus in planta (Vessey & Pegg 1973) Since autophagy could play a role 

in both resting structure formation, and dimorphic growth during the parasitic phase, we 

decided that the ATG8 gene homologs in V dahliae (VdATG8) and V. albo-atrum 

(VaATG8) could be used to study autophagy and its potential roles in resting structure 

development, and pathogenicity.

Comparative analysis of WT and atg8 KO strains in V. dahliae and V albo-atrum

The roles of autophagy appear to be species specific since vdatg8 KO strains 

exhibited developmental defects, while vaatg8 KO strains were indistinguishable from 

the wild-type strain. Specifically, vdatg8 strains showed delayed conidial germination, 

defective MCS production, reduced conidiation, and reduced sporulation initiated from 

mycelia during growth in liquid medium. In addition, under standard growth conditions 

at 24°C, vdatg8 colonies had a distinctive cream coloured centre, and did not produce 

MCS. These data are consistent with the developmental defects, such as reduced 

numbers of aerial hyphae, disrupted conidiation, and delayed spore germination that have
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been observed in ATG8 KO strains in other fungal species such as Magnaporthe grisea 

(Liu et al. 2007) Podospora anserina (Pinan-Lucarré et al. 2005; Pinan-Lucarré et al. 

2003), Aspergillus oryzae (Kikuma et al. 2006), and Aspergillus fumigatus (Richie et al. 

2007).

In contrast to the observable mutant phenotypes seen in V. dahliae vdatg8 strains, 

V. albo-atrum vaatg8 strains did not have observable phenotypic defects. Conidial 

germination, dark resting mycelia formation, conidiation, and sporulation initiated from 

mycelia during growth in liquid were unaffected in vaatg8 strains relative to wild-type V. 

albo-atrum. Similar to the lack of mutant phenotype in V. albo-atrum, disruption of 

autophagy by knocking out another autophagy gene ATG9, had no effect on hyphal 

differentiation or chlamydospore formation in the filamentous yeast Candida albicans 

(Palmer et al. 2007). Thus the role of autophagy in fungi appears to also be species 

specific.

Effect of temperature on resting structure formation

The surprising observation that vdatg8 cultures could produce MCS at 28°C, but 

not 24°C led to further investigation of the effects of temperature on resting structure 

development in wild-type and atg8 disrupted strains of V. dahliae and V. albo-atrum. V. 

dahliae has been found to produce MCS within 2 weeks at 15, 19.5, 24 and 29.5°C, but 

took four weeks to produce MCS at 10°C, while V. albo-atrum has been shown to 

produce DRM at 24°C within two weeks and at 19.5°C and 29.5°C within three weeks 

(Soesantol & Termorshuizen 2001). Similarly, Wilhelm (1948) found that MCS formed 

at temperatures between 25-31°C, and studies on MCS development in abscised cotton
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leaves infected with V. dahliae showed production of MCS between 18-30°C 

(Brinkerhoff 1969). Thus, the resting structure production that we observed in both 

species in response to temperatures between 24-29.5°C is consistent with the results of 

previous studies, and suggests that these responses may not be specific to isolate Dvd-T5 

(the parental strain of vdatg8). Furthermore, although the quantity of resting structures 

was not noted in any of the previous studies, Bell et al. (1976) showed that numbers of 

MCS produced are directly proportional to the number of hyphal fusions. Consistent with 

these data, at 28°C conidiation was accelerated in cultures of wild-type V dahliae, while 

vdatg8 produced conidiophores, which can fuse to form MCS (Figure 3.3). Since vdatg8 

can produce MCS at 28°C, autophagy appears to be, at least partially, functionally 

redundant in V. dahliae as well as in V. albo-atrum.

The fact that vdatg8 does not produce MCS at 24°C, and that increased VdATG8 

expression is concomitant with conidiation and MCS formation, suggests that autophagy 

does play a role in MCS formation. Previous studies in our laboratory have shown that 

VDH1, a class II hydrophobin, is required for MCS formation (Klimes & Dobinson 

2006). While vdhl mutants do not produce MCS at 24°C (Klimes & Dobinson 2006), my 

studies have shown that at 28°C vdhl mutants do produce some MCS like the vdatg8 

strains. Given that increased temperature induces MCS formation in these two 

amicrosclerotial mutants there appears to be considerable functional redundancy in the 

pathways leading to MCS formation, with increased temperature triggering other 

pathways besides autophagy to produce resting structures.
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In the context of the V. dahliae lifecycle, it is possible that increased temperatures 

at the end of the growing season may induce MCS formation in senescing plant tissue. In 

a study on MCS accumulation in plants grown at different temperatures, for example, the 

most rapidly senescing plants had been grown at the highest temperature and contained 

the most MCS per unit of plant material (Soesanto & Termorshuizen 2001). These and 

our data suggest a clear linkage between temperature, plant senescence, and MCS 

formation.

Effect of starvation on atg8 mutant phenotypes

Although atg8 mutants of other fungi showed similar phenotypes to vdatg8 in 

terms of defective conidiation and germination, their defects in conidiation and spore 

germination could be restored by nutrient supplementation, while those of vdatg8 could 

not. In A. fumigatus, for example, conidiation by an atgl knockout was restored by 

supplementing carbon- or nitrogen- deficient media with metal ions (Richie et al. 2007). 

Similarly, conidial germination of A. oryzae atg8 deletion mutants was delayed (up to 16 

hours) in nitrogen-deficient media, but not in nutrient-rich media (Kikuma et al. 2006).

In contrast, conidial germination of vdatg8 was tested on nutrient-rich complete medium 

(CM), and found, like that of A. oryzae grown in nitrogen-deficient medium, to be 

delayed by 20-30% at each time point relative to wild-type V. dahliae until 16hpi (Figure 

3.11). Thus, although conidial viability was not affected in V. dahliae by the defect in 

autophagy, and since conidial germination of vdatg8 strains was delayed even under 

nutrient-rich growth conditions, autophagy may not be as critical for nutrient cycling in V. 

dahliae as it is in other fungi. However, the initial delay in vdatg8 conidial germination
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suggests that autophagy may play some other morphological role in the early stages of 

germination.

Unlike other species such as A. fumigatus, in which atgl knockouts did not grow 

at all on minimal media (Richie et al. 2007), there is no difference in radial growth or 

colony morphology of V. dahliae WT and KO strains grown on nutritionally-deficient 

media such as water agar, or BM lacking nitrogen or carbon. In addition, q-RT PCR 

showed that ATG8 expression levels were lower on BM lacking nitrate than on BM with 

nitrate. The response of V. dahliae to nutrient limitation is in fact opposite to that of S. 

cerevisae and U. maydis which accumulate A TG8 transcripts under nutrient limiting 

conditions (Nadal & Gold 2010).

Consistent with the data which indicate that autophagy plays different roles in 

growth and development of V. dahliae and V. albo-atrum, glycogen accumulation was 

found to be defective in vaatg8, but not vdatg8 strains. In M. oryzae, autophagy has been 

shown to facilitate glycogen homeostasis to ensure proper asexual differentiation (Deng et 

al. 2009). In moatg8 mutants, for example, conidiation was restored by exogenous 

glucose or sucrose (Deng et al. 2009). Conidiation of moatg8 mutants was also restored 

by addition of glucose-6-phosphate (G6P), or loss of glycogen phosphorylase (Gphl), 

which catalyses glycogen breakdown. Overproduction of Gphl enhanced glycogen 

breakdown, and reduced conidiation in wild-type M. oryzae (Deng et al. 2009). Another 

study found that vacuolar glucoamylase SGA, which hydrolyses glycogen to provide 

nutrients for asexual development in M. grisea was essential for conidia formation, but 

dispensable for pathogenicity (Deng & Naqvi 2010).
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Finally, SNF1, a protein kinase required for glucose repression and glycogen 

metabolism may regulate autophagy via ATG1 and/or ATG13 in yeast (Wang et al. 2001). 

SNF1 has been studied in plant pathogens since many cell wall degrading enzymes are 

regulated by glucose repression (Nadal 2009). While disruption of SNF1 homologs in 

Fusarium oxysporum (Ospina-Giraldo et al. 2003), Cochliobolus carbonum(Tonukari et 

al. 2000), and recently V. dahliae (Tzima et al. 2011) reduced the expression of cell wall 

degrading enzymes, and consequently decreased pathogen virulence, disruption of SNF1 

did not affect virulence in U. maydis (Nadal 2009). Thus, the fact that defects in 

autophagy affect V. albo-atrum glycogen accumulation but not that of V dahliae suggests 

that glycogen metabolism may be regulated differently in different pathogens, which 

could subsequently affect expression of cell wall degrading enzymes.

Regulation of resting structure formation

Previous studies in our laboratory have shown that VDH1, a class II hydrophobin 

is required for MCS formation, and VDH1 was proposed to induce MCS formation by 

facilitating fusion and adhesion of aerial structures. Another gene involved in resting 

structure development is the map kinase gene VMK1. Like ATG8, both VDH1 and VMK1 

homologs are highly conserved between V. dahliae and V. albo-atrum, but the 

corresponding gene knockout strains show different phenotypes in the two species.

While vdhl mutants do not produce MCS, DRM formation is unaffected in vahl mutants 

(Amyotte 2010). On the other hand, V. albo-atrum vamkl mutants did not produce DRM 

(Amyotte 2010), while the V. dahliae vmkl mutants did produce some MCS (Rauyaree et 

al. 2005). VDH1 was expressed in vmkl mutants that produced some MCS, but not in the



amicrosclerotial vmkl mutant, while VAH1 expression was unaffected in the vamkl 

mutant (Amyotte 2010). In my study ATG8 was expressed in both hydrophobin, and map 

kinase mutants of both V. dahliae and V. albo-atrum. Similarly, VDH1, VAH1, and 

VMK1 were expressed in atg8 mutants of both species. Thus autophagy seems to operate 

either independently or in parallel with the VAH1 and VMK1 genes.

In the overall scheme of resting structure formation autophagy does play a role in 

MCS formation, and the results of my studies have shown that temperature, but not 

nutrient stress induces other pathways involved in MCS development. Autophagy has 

been implicated in facilitating hyphal autolysis for resting structure development by 

providing a nutrient source for developing MCS (Griffiths 1970). However, the fact that 

MCS and DRM can be formed in autophagy-defective mutants suggests that that autolysis 

may not be autophagic in origin, or that autolysis may occur independently of autophagy. 

The hyphal fusions, adhesion and collapse of condiophores that facilitate resting 

structure formation may also help release nutrients without employing autophagy.

Effect of autophagy inhibitors and inducers on growth

Autophagy inhibitors and inducers were used to verify that autophagy was 

responsible for the observed atg8 mutant phenotypes. Rapamycin, an autophagy inducer 

that blocks activation of TOR kinase, induced formation of both chains of hyaline cells, 

and melanized MCS in wild-type V. dahliae, and the production of a few melanized MCS 

in the vdatg8 strains. Conversely, 3-methyladenine, an autophagy inhibitor that blocks 

autophagosome formation via inhibition of type III phosphatidylinositol 3-kinases,

84
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inhibited MCS formation in both vdatg8 and V. dahliae wild-type cultures, significantly 

decreased spore production in V. dahliae WT, and eliminated spore production in vdatg8.

Finally staining cultures with monodansyl cadaverine (MDC) a dye known to 

selectively stain autophagosomes (Beiderbeck 1995), showed up as fluorescent spots in 

the hyphae and conidiophores, but not knockout V. dahliae strains under autophagy- 

inducing conditions, and those distinctive structures were lacking in KO cultures, and in 

WT cultures grown on media supplemented with the autophagy inhibitor. Disruption of 

VdA TG8 does therefore, as in other fungi, result in an autophagy-defective growth that 

decreases the accumulation of autophagosomes.

Under autophagy-inducing conditions the VdATG8 ::eYFP fusion protein was 

localized in a punctate manner like that in cells stained with MDC. The punctate 

localization of VdATG8 ::eYFP fusion protein is consistent with data from the studies of 

P. anserina (Pinan-Lucarre et al. 2005), A. oryzae (Kikuma et al. 2006), and A. fumigatus 

(Kikuma et al. 2006), which showed that ATG8  localized in a punctuate manner within 

vacuoles during nutrient stress.

Since the autophagy inhibitor affected spore production and resting formation in 

V. dahliae, but not V. albo-atrum, autophagy appears to be dispensable for conidiation 

and resting structure in V. albo-atrum, but not V. dahliae. Although the C terminal 

glycine that is needed for autophagosome formation is conserved in both species, 

differential regulation of VdATG8 and VaATG8 is possible, since the genes are not 

identical, but show variation in the size and placement of the 5’ region intron, and to the 

size, and sequence of the corresponding proteins.
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Effect of ATG8 on Pathogenicity

Autophagy has been shown to be required for pathogenicity in several fungal plant 

pathogens. In Collectotrichum lindemuthianum, for example, atgl deletion mutants are 

defective in leaf penetration (Dufresne et al. 1998), and in the rice blast fungus 

Magnaporthe grisea disruption of MgATG8 or MgATGl renders the fungus non- 

pathogenic (Veneault-Fourrey 2006; Liu et al. 2007). In both of these pathogens, 

penetration of the plant relies upon the pressure generated by infection structures 

(appressoria), and the abovementioned deletion mutants were shown to produce fewer 

appressoria, and have lower turgor pressure in appressoria (Liu et al. 2007; Veneault- 

Fourrey et al. 2006). Finally, atgl and atg8 mutants in the com smut pathogen Ustilago 

maydis exhibited decreased teliospore production, and subsequent decreases in gall 

formation and virulence while defects in double atgl/atg8 mutants were enhanced, thus 

eliminating gall formation entirely (Nadal & Gold 2010). Like other species that require 

autophagy for pathogencity, wild-type U. maydis produces an infective hypha which 

produces a poorly differentiated appressorium at the pathogen entry site (Snetselaar & 

Mims 1994). Since Verticillium does not require specialized structures to facilitate entry 

into the plant, and relies upon mycelial invasion through wounds or root hairs (Fradin & 

Thomma 2006) autophagy would not be expected to be necessary for pathogen 

penetration.

The results of my study showed that there was no difference in symptom severity 

or onset between that of the vdatg8 and vaatg8, and corresponding wild-type parental 

strains. Efficient spread through the vascular system by Verticillium spp. relies upon the
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production of mycelia, which can germinate from spores, and also on spore production by 

either mycelia, or spore budding (yeast-like growth). Since vdatg8 strains showed initial 

delays in conidial germination, and a 1 0 0 -fold reduction in the number of spores 

produced from mycelia in liquid environments, I hypothesized that this reduction would 

slow the plant colonization rate by these strains. However, although the stem section 

analysis showed that plant colonization by vdatg8 was delayed relative to that by the 

wild-type strain during the first 40 hpi, by 60hpi both vdatg8 and wild-type strains had 

infected the entire plant.

Previous studies have shown that amounts of fungal biomass in planta were 

inversely proportional to levels of plant defence gene phenylalanine ammonia lyase gene 

(PAL) (Heinz et al. 1998), and the observed cyclical pattern of proliferation and 

elimination of fungal biomass in the plant vasculature was attributed to such plant 

defences (Heinz et al. 1998). Given that hyphal autolysis occurs during growth in planta 

(Vessey & Pegg 1973), that autophagy has been shown to precede autolysis (Cebollero & 

Gonzalez 2006), and that VdATG8 sequences were found in the parasitic cDNA library, I 

wondered whether autophagy might play a significant role in the reduction of fungal 

biomass during parasitic growth. However, the fact that colonization is unimpeded after 

being initially delayed suggests that a threshold of fungal biomass must accumulate 

before infection can proceed.

Because Verticillium spp. produce numerous pectinases, and other plant cell wall 

degrading enzymes (Cooper & Wood 1975) that could release sufficient nutrients from 

the plant to support fungal growth, the endogenous nutrient cycling provided by
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autophagy may not be required by V. dahliae in planta. In addition, high levels of amino 

acids in xylem fluid have been observed during Verticillium infections of tomato (Dixon 

& Pegg 1972). Thus, V. dahliae may be capable of utilizing amino acids found in the 

xylem. Finally, in terms of colonization it is important to note that in vdatg8 strains the 

dimorphic growth defect is in only the production of spores from mycelial cells, and not 

in subsequent budding. Thus, this partial defect in dimorphism has only a minor effect on 

fungal colonization, and suggests that autophagy may be uninvolved in or subsidiary to V. 

dahliae pathogenicity.

Conclusions and future directions

Disruption of the V. dahliae autophagy gene homolog VdATG8 resulted in a 

defect in dimorphic growth and amicrosclerotial morphology at a growth temperature of 

24°C, with temperature stress, but not nutrient limitation as reported in other fungi, 

restoring conidiation and MCS formation. However, vaatg8 strains had no detectable 

mutant phenotype other than a defect in glycogen accumulation, and as with other, recent 

comparative studies of V. dahliae and V. albo-atrum, my analysis of the ATG8 homologs 

in the two species demonstrated that despite the sequence similarity of the gene 

homologs, the roles of the genes are different for each species.

An important finding of this study was that increased growth temperature restored 

MCS formation and conidiation in the vdatg8 strains, and those data, together with the 

observation that temperature stress also triggered MCS production in the 

(amicrosclerotial) vdhl strain, suggest that there is considerable functional redundancy in 

linked pathways (genes) responsible for MCS formation.
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This unexpected finding that temperature stress induces resting structure 

formation opens up many avenues to further investigate resting structure development. It 

would be useful to set up a microarray study of both V. dahliae and V. albo-atrum grown 

at 24°C, and at 28°C to further examine the possibility that temperature acts as a stress 

response to induce other genes involved in resting structure formation. I propose the 

microarray approach because it has already proven useful for identification of V dahliae 

genes involved in parasitic growth and microsclerotia formation (Klimes & Dobinson 

2006). In addition, information already exists for V dahliae grown at 24°C, and provides 

a baseline from which to compare data from 28°C. Genes that are differentially expressed 

between the two species or at different temperatures could determine which genes are 

involved in DRM versus MCS formation.

Another possibility for future studies would be to test whether or not any of the 

other hydrophobins that have been identified in the V. dahliae genome are upregulated in 

vdhl in response to temperature. RT-PCR of all the hydrophobin genes would need to be 

done for vdhl mutants grown at 24°C, and at 28°C.

To further study induction of autophagy, and potential redundancies in the 

autophagic pathway in V. dahliae, I have made vdatgl and atgl/atg8 (double) knockouts 

in V dahliae. Characterization of these strains may yield further insight into regulation of 

autophagy. Creation of atgl/atg8 double knockouts in V. albo-atrum would be useful 

since my studies have shown that autophagy affects glycogen accumulation in V. albo- 

atrum, but not V. dahliae, and since ATG1 is speculated to have a role in regulation of 

glycogen metabolism (Wang et al. 2001). The atgl/atg8 double mutant would help



90

determine whether the vaatg8 defect in glycogen accumulation is due to defects in 

glycogen synthesis, or defective glycogen storage.

Since SNF1 has been implicated in glucose repression, and found to decrease 

production of cell wall degrading enzymes, and pathogenicity in V dahliae (Tzima et al. 

2011), it would be very interesting to study the function of SNF1 in V. albo-atrum given 

that glycogen accumulation differs between the two species. Studying SNF1 function 

with respect to autophagy and expression of cell wall degrading enzymes may yield 

greater understanding of glucose metabolism and factors affecting pathogencity in both 

species.

Lastly, although VMK1 is expressed in vdatg8 mutants, it would be useful to 

create double vdatg8/vmkl mutants. Conidiophore formation and MCS formation at 24°C 

is abolished in both vdatg8 and vmkl mutants. However, temperature stress at 28°C 

restores conidiation and MCS formation in vdatg8, but not vmkl, and dimorphism is only 

defective in vdatg8. The vdatg8/vmkl mutant would help determine if the two genes are 

involved in separate, independent pathways, and whether or not MCS formation can be 

abolished entirely by mutations of both pathways.
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Appendix I: Primers used in this study

P rim e r  n a m e P rim e r  se q u e n c e P u rp o se  in th is  s tu d y
a tg 8 E c o F l 5 -G T G C G A C T T G A A T T C G A T C A G C C A G V d A T G 8 {  p ) ::e C F P  

c o n s tru c ta tg 8 p ro m o te rB a m
R1 5 '-G A T C C T G T C G G T T G T G G T T G
M 1 3 R 5 '-A G C G G  A T  A  A C  A  A T T T C  A C A C A G G S e q u e n c in g  fo r 

c o n s tru c ts  c o n ta in in g  
a  p D H t v ec to rM 1 3 F 5 -C C C A G T C A C G A C G T T G T A A A A C G

S p 6 5 '-T A T T T A G G T G A C A C T A T A G A A T S e q u e n c in g  fo r 
co n s tru c ts  c o n ta in in g  
a  p D H t v ec to r

T 7 5 '-A C G A C T C A C T  A T  A G G G C G A A T T G G

a tg 8 E c o F l 5 -G T G C G A C T T G A A T T C G A T C A G C C A G

V d A T G 8 N::eY F P  
c o n s tru c t c rea tio n

a tg 8 p ro m o te rB a m
R1 5 -G A T C C T G T C G G T T G T G G T T G
y fp B a m F 2 5 -C C A G G A T C C A A A A T G G T G A G C A A G G G C G
y fp P s tR 4 5 '-T G T A C T G C G G T C C A T G C C G A A G A G T G
a tg P s tF 2 5'-

C A C A C T G C A G A G T A T G C G A T C C A A G T T A C C
G G

a tg 8 P s tR 2 5 '-C G C T C T G C A G T T T G A G T T G G G G T C T G T C
p M O D F 5 -A T T C A G G C T G C G C A A C T G T S e q u e n c in g  o f  T n  fo r 

A  T G 8  K O  c o n s tru c tp M O D R 5 -G T C A G T G A G C G A G G A A G C G G A A G
a u to F  1 5 -G G T G C T G G T G C T G G T G A C

S e q u e n c in g  o f  
V d A T G 8 (jp )::eC ¥ P

au to R 5 5 -C A A G T T C A A G G A C G A G C A C C
au to F 7 5 -A A C C A A C C C A A C T C T A C C T C T C
a u to F  10 5 -T A A T T A G T C A C C T G C C A G C C
a u to -R 2 5 '-G C  A G T  A G G C C T T C G C  A T A G T T  - D IG -lab e lled  p ro b es  

an d  A T G 8  
a m p lif ic a tio na u to -F 5 5 '-C A A G T T C A A G G A C G A G C A C C

V d l 5 '-G C C G G T C C A T C A G T C T C T C T G rD N A  IT S  p rim ers  
u sed  fo r in  p ia n ta  
c o m p e titiv e  P C R  
an a ly s isV d 2 5 -G G A C T C C G A T G C G A G C T G T A A C

H 0 2 -1 5 -G T A G A A A C C A A C A C C C G A A C T T V. d a h l ia e  ac tin  g en e  
p rim ersH 0 2 - 2 5 '-C  A  A C  A C T G T C T A C T C C  A  A C  A  A G G

sv t-q -a tg 8 -F 4 5 '-T A C G A G G A G C A C A A G G A C G A G G A C

Q u a n tita tiv e  R T -P C Rsv t-q -a tg 8 -R 6 5 -G G T G T T C T C G C C A G A G T A G G T A A T G

F -ac tin  A K -1 5 -A G C A A T G G C G T C T A C A

R -ac tin  A K -1 5 -G C A A G A G T A C C C A T A C C G

F - p  tu b u lin  A K -2 5 -C C A A C A T C A A G A T G C G T

R - p tu b u lin  A K -2 5 '-C T C  A G T G T A G T G  A C C C T T T
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C 2 4 -1 A 5 '-C T A T T G C G A T T G C T C T G
R T  P C R  o f  V D H 1

C 2 4 -2 A 5 '-G A G C T C A A G G T T T T C G T G

V M K  IF 5 ’-C G C A G C A A C G C C C C T A A T C
R T -P C R  o f  V M K 1

V M K  2 R 5 '-C T T T C  A G G T C G C  A G T T G G

A T G 3 -F 2 5 '-C G T T G C T G C G G G C G  A C T  A T C

R T -P C R  o f  
au to p h a g y  genes

A T G 3 -R 6 5 '-C C A C C C T A A T C G C A A C C T C C T G

A T G 1 2  F5 5 -T T C T C C G G C G C A G C A G T C C

A T G 1 2  R3 5 -G C T G G T G T C A T G G A G T A A G A G A T A A C G

A T G 1 6  F I 5 '-T T  A C G C A  A C A  A G G C C A  A G A C A G

A T G 1 6  R1 5 -T C C T G G G C C A T T C T C T T C A T C C

A T G 1 F 2 5 '-A T C T C G A G G G T T G C G T  A A T C T C

A T G 1 R1 5 -C G T A C C T G C T G C T G G C T C T G C
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Appendix II: Previously generated VdATG gene knock-out (KO), and revertant 

strains

The VdATG8 knockout (KO) vector was made by J. Cucullo using methods 

described by Dobinson et al. (2004), and used to create both the vdatg8 and vaatg8 

mutant strains. To make this vector, the VdATG8 PCR amplicon was ligated into the 

pGEM-T Easy vector to generate pGEM{VdATG8). The pGEM(VdATG8) vector was 

electroporated into AmpR Blue MRF’ E. coli and the plasmid was purified from two 

colonies, and sequenced to confirm presence and correctness of the VdATG8 sequence. 

The pGEM(VdATG8) plasmid and pDHt binary vector (which contains a kanamycin 

resistance gene) (Mullins et al. 2001) were then digested with EcoRI restriction 

endonuclease. pDHt was dephosphorylated using shrimp alkaline phosphatase, and the 

VdATG gene fragment was ligated into the EcoRI site. The ligation mixture was 

electroporated into E. coli.

After identification of clones containing a plasmid with the VdATG8 gene 

fragment, the resulting plasmid (designated pJCATG) was purified from one of the 

transformants, digested with EcoRl, and used for transposon (Tn) mutagenesis with the 

EZ::TN system (Epicentre Technologies, Madison, Wis.). The Tn cassette randomly 

inserts into the plasmid DNA and carries both a chloramphenicol (chlorR) under control 

of a bacterial promoter, and a hygromycin B resistance (HygR) under the control of a 

constitutive fungal promoter. The mutagenesis reaction products were electroporated into 

E. coli and PCR amplification from KanR/ChlorR colonies was done with pMODF and 

pMODR primers to determine Tn location, and autoF2/R2. Of these, two transformants
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(designated pJCATG(Tn)4 and pJCATG(Tn)5) had a Tn located within the VdATG8 gene 

fragment. Both the pJCATG(Tn)4 and pJCATG(Tn)5 gene KO vectors were 

electroporated into A. tumefaciens cells, and KanR and ChlorR transformants were 

identified. HygR transformants containing a Tn in the mutant allele construct from 

pJCATG(Tn)4 and pJCATG(Tn)5 were designated VDAT 38-5 and VDAT 38-3 

respectively.

S. Grant constructed two types of revertants by transforming into vdatg8 cells an 

intact VdATG8 gene containing a downstream geneticin resistance marker gene into 

vdatg8 cells. The revertant cells are hygromycin sensitive and geneticin resistant. On the 

other hand, ectopic revertants have the same intact VdATG8 gene located ectopically, and 

are resistant to both hygromycin and geneticin.
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Appendix III: Compositions of growth media, and solutions

Complete medium (CM) contains 1 x nitrate salts (NaNCb ( 6  g/L), KC1 (0.52 g/L),

MgS04 .7H20 (0.52 g/L), KH2P0 4 (1.52 g/L), 1 x trace elements (ZnS04.7H20  (0.022 g/L), 

H3BO3 (.011 g/L), MnCl2.4H20  (0.005 g/L), FeS04.7H20  (0.005 g/L), CoCl2 6H20  (.0017 

g/L), CuS04 .5H20  (0.0016 g/L), Na2Mo04 2H20  (.0015 g/L), Na-jEDTA (0.05 g/L), glucose 

(10 g/L), peptone (2 g/L), yeast extract (1 g/L), casamino acids (1 g/L) and 1 x vitamin 

solution (biotin, pyridoxine, thiamine, riboflavin,/?-aminobenzoic acid, nicotinic acid, all at 

0.01% (w/v)). Adapted from Bennett and Lasure (1991).

Basal medium (BM) contains glucose ( 10 g/L), sodium nitrate (0.2 g/L), lx potassium salts 

(KC1 0.52 g IL, MgS04 '7H20  0.52 g /L, and KH2P041.52g /L), 3 pM thiamine HC1, and 0.1 

pM biotin. Adapted from Bennett and Lasure (1991).

Minimal medium (used for Agrobacterium tumefaciens-mediated transformation 

(ATMT)) (Hooykas et al., 1979; Mullins et al., 2001) contains K2HP04 (2 g/L), KH2P0 4 

(1.45 g/L), MgS04 .7H20  (0.6 g/L), NaCl (0.3 g/L), CaCl2.2H20  (0.001%weight/volume 

(w/v)), glucose (0.02% (w/v)), FeS04 (0.0001% (w/v)), ZnS04 .7H20  (100 mg/L), 

CuS04 .5H20  (0.5 mg/L), H3B03 (0.5 mg/L), MnS04.H20  (0.5 mg/L), Na2Mo04.2H20  

(0.5 mg/L), NH4N 0 3 (0.05% (w/v)).
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Induction medium (used for ATMT) (Bundock et al., 1995; Mullins et al., 2001) 

contains K2HP04 (2g/L),KH2P04(1.45 g/L), MgS04.7H20  (0.6g/L), NaCl (0.3 g/L), 

CaCl2.2H20  (0.001% weight/volume (w/v)), FeS04 (0.0001% (w/v)), ZnS04.7H20  (100 

mg/L), CuS04.5H20  (0.5 mg/L), H3B 03 (0.5 mg/L), MnS04.H20  (0.5 mg/L), 

Na2M o04.2H20  (0.5 mg/L), 10 mM glucose, 200 uM acetosyringone.

20 X SSPE contains 3.6 M NaCl, 0.2 M NaH2P04, 22 mM EDTA.

Spore Breakage Buffer (Elder et al. 1983) contains 0.5M NaCl, 0.2M Tris pH 7.5,10 

mM EDTA, 1% SDS.

TE buffer contains lOmM Tris-HCl, pH 7.6, 1 mM EDTA.
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