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Sharing electronic health record data is essential for advanced analysis, but may put sen-
sitive information at risk. Several studies have attempted to address this risk using contex-
tual embedding, but with many hospitals involved, they are often inefficient and inflexible.
Thus, we propose a bilingual autoencoder-based model to harmonize local embeddings in
different spaces. Cross-hospital reconstruction of embeddings makes encoders map
embeddings from hospitals to a shared space and align them spontaneously. We also sug-
gest two-phase training to prevent distortion of embeddings during harmonization with
hospitals that have biased information. In experiments, we used medical event sequences
from the Medical Information Mart for Intensive Care-III dataset and simulated the situa-
tion of multiple hospitals. For evaluation, we measured the alignment of events from dif-
ferent hospitals and the prediction accuracy of a patient’s diagnosis in the next admission
in three scenarios in which local embeddings do not work. The proposed method efficiently
harmonizes embeddings in different spaces, increases prediction accuracy, and gives flex-
ibility to include new hospitals, so is superior to previous methods in most cases. It will be
useful in predictive tasks to utilize distributed data while preserving private information.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Machine learning and artificial intelligence (AI) are increasingly used in healthcare [23]. Many hospitals have adopted
electronic health record (EHR) systems since the Health Information Technology for Economic and Clinical Health (HITECH)
Act of 2009 [43], so a large amount of medical data has been collected. Many studies have analyzed these medical data to
assist in medical diagnosis [26], information extraction [33], and cost reduction [24]. Many attempts have also been made to
apply deep-learning techniques in medical informatics [23,43,46]. However, the amount of data stored in an individual insti-
tution (i.e., hospital) may be insufficient to learn a predictive AI model [9]; furthermore, data from one hospital may show
bias, so a model trained on them may not be generalizable to patients in another hospital, and this inability is a major chal-
lenge in healthcare [46].

Learning of generalizable models requires use of combined EHR data from several hospitals. However, sharing of EHR data
risks breach of confidentiality, so strict regulations, such as the Health Insurance Portability and Accountability Act (HIPAA)
in United States [37], the California Consumer Privacy Act of 2018 (CCPA) [4], and the EU General Data Protection Regulation
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(GDPR) [45], forbid direct sharing of data from multiple institutions [29]. Data can be anonymized to be shared, but most
become expensive as the volume of the data increases [47], and confidential information can be inferred even in anonymized
data [38].

An alternative to removing identifiable information is to train models on data that are distributed across multiple sources
without sharing raw data. Most of these studies assume horizontally distributed data and use traditional predictive models
such as naïve Bayes [15], k-nearest neighbors [48], support vector machines (SVM) [30], logistic regression [21], ridge regres-
sion [7], random forest [32], and neural networks (NNs) [34,31]. Other studies have also analyzed vertically partitioned data
using traditional models such as SVM [30] and logistic regression [28]. Most of these methods only share intermediate statis-
tics, such as gradients, but can still reveal sensitive information by the shared statistics [35,49], so they have used privacy
and security techniques such as differential privacy (DP) [1,13,21], homomorphic encryption (HE) [7,15,22,25,32,48], and
secure multi-party computation (MPC) [7,31]. Despite success in preserving privacy, these techniques cause computational
burden and entail a trade-off between privacy and model accuracy. Also, the assumption that distributed datasets can be
integrated horizontally or vertically may be unrealistic in some cases.

Some studies construct a predictive model in an environment in which the before-mentioned assumptions are inappro-
priate such as healthcare. Several studies have recently shown that contextual embeddings of medical events, which are
dense and low-dimensional representations learned using NNs, are useful [8,10]. The contextual embeddings contain only
relationships among medical events, and do not include patient-level information, so sharing embeddings does not violate
privacy, and as a result does not require privacy and security techniques. However, NN algorithms include randomness, so
the embeddings learned in each institution lie in independent spaces. This status complicates the task of combining the
embeddings from various institutions.

To solve this problem, a variant of noise-contrastive estimation [29] trains the global embedding model by sequentially
learning each data source in a way similar to online Word2Vec [36]. This method requires the vocabularies and their fre-
quencies are shared and integrated, but sharing medical events and their frequencies can expose patients’ records, so clus-
tering of vocabularies and DP techniques must be used to protect privacy. Including data from new hospitals is also difficult
after training. As an alternative, different embedding models can be harmonized by solving the space alignment problem
[11,17]. However, this method uses Procrustes [16], a linear transformation between two sets of embeddings at a time, so
it requires holding one hospital as the base space, and restricts information used in harmonization.

In this paper, we aim to propose a method for efficient harmonization of embedding models, and this method allows
privacy-preserving predictive analysis across multiple institutions while solving the limitations of the previous work. The
main contributions of this work are as follows.

� A bilingual autoencoder-based method to harmonize contextual embeddings that have been trained independently from
different sources: The proposed method transforms embeddings in separate spaces into embeddings in one space shared
by all sources, so transformed embeddings can collaborate in the privacy-preserving predictive analysis. The proposed
method can exploit corresponding information from all pairs of sources at once, so it finds the shared space that is most
useful, efficiently. This approach significantly improves prediction accuracies in situations that local embeddings alone
cannot handle successfully.

� Two-phase training to guide the proposed method to better harmonization even when the size of the sources to be fed-
erated differs: This method improves prediction accuracies in both large and small sources by conserving the contextual
information of the large sources in the harmonization process, and motivates large ones to participate in the federation.

� Extensive experiments on various scenarios to demonstrate that the alignment and prediction accuracies are superior to
those of the previous method, usually significantly.

The rest of this paper is organized as follows. Section 2 explains the predictive procedure, then introduces the structure of
the proposed autoencoder and the two-phase training method. Section 3 describes experiments to evaluate the proposed
method. This section shows the alignment of the embeddings from different hospitals after harmonization, and the predic-
tion accuracies in three simulation scenarios. Section 4 presents contributions and limitations of this study and provides
directions of future work. Section 5 summarizes results of experiments and concludes.
2. Methods

2.1. Preliminaries

Here we outline the concept of predictive modeling before explaining the proposed harmonization method. EHR data
include various information such as demographics, clinical notes, and radiological images [43]. A structured part of EHR con-
tains information from diverse clinical aspects such as lab tests, prescriptions, symptoms, conditions, and diagnoses. The
temporal clinical pathway of a patient is constructed by listing medical codes of EHR in chronological order. By learning con-
textual embeddings from constructed clinical pathways, medical events and patients are represented as continuous vectors.
To learn contextual embeddings, Word2Vec is used, but other methods such as GloVe [39] or BERT [12] could also be used.
After the contextual embeddings are learned, the patient-diagnosis projection similarity (PDPS) method [14] is used to pre-
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dict a patient’s diagnoses in the next admission. In PDPS, the probability of diagnosis is computed using the cosine similarity
between a patient vector and a diagnosis vector. Here, the patient vector means the context vector that encodes information
of all medical events in his or her clinical pathway, and is calculated by normalizing the summation of vectors of medical
events in the patient’s clinical pathway, with each vector weighted by a time-decaying factor.

The overall prediction procedure uses information from multiple hospitals. We present an example that considers two
hospitals (Fig. 1). In step 1, each hospital learns local contextual embeddings by using only clinical pathways of its own
patients. Contextual embeddings from different hospitals were previously used only in each hospital because they lie in dif-
ferent spaces. In step 2, the harmonization places them in the same space (green box, Fig. 1). In step 3, the harmonized
embeddings can be used together in various ways, and PDPS is applied on top of the harmonized embeddings to improve
the prediction accuracy. The harmonization method is explained in the next section.

2.2. Bilingual autoencoder

An autoencoder is a multi-layer neural network that consists of two sub-networks: an encoder and a decoder [5]. The
encoder transforms its input into latent features; the decoder produces a reconstruction of the input from these latent fea-
tures. The encoder and decoder are also networks that can have multiple layers. The autoencoder is trained to minimize the
reconstruction error, which is
LAEðHEnc;HDecÞ ¼ 1
jXj

XjXj
i¼1

kxi � DecðEncðxi;HEncÞ;HDecÞk22 ð1Þ
where X 2 RjXj�dX is the input matrix, jXj is the number of instances in X, and xi is the i-th instance of X. Enc and Dec represent
the encoder and decoder with parameters HEnc and HDec , respectively. In almost all cases, the true objective of the autoen-
coder is not just to copy the original input but to learn representations that take useful properties as an output of the encoder
Fig. 1. The overall procedure of prediction. Details are provided in the text.
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(i.e., bottleneck layer). The last layer of the encoder usually has smaller dimensionality than the input layer to prevent the
autoencoder from learning a trivial copy of the input. In addition to limiting the number of dimensions in the bottleneck
layer, many recent studies on autoencoders have developed various strategies to learn useful information about the input
data [6,41]. The representations learned by these autoencoders have proven their usefulness in various tasks such as image
generation [40] and recommendation systems [27].

Also in natural language processing, bilingual autoencoder models are proposed to learn hidden representations by
extracting information from both languages [42]. Suppose that we have a set of ðm;nÞ pairs where m and n are each a
bag-of-words that indicate the same sentence in languages M and N, respectively. To learn similar representations for pairs,
an autoencoder is forced to reconstruct the bag-of-words in both languages from the sentence in either language. For cross-
lingual reconstruction, distinct encoders and decoders are trained for each language. Encoders map the sentence in the form
of a bag-of-words into the shared continuous space, and decoders can reconstruct the sentence given a representation from
either language. To train overall encoders and decoders simultaneously, four loss functions are defined according to which
language is reconstructed from which language. Some variations of the bilingual autoencoder have been proposed with tech-
nical improvement, but their structures are mostly as described above [3,44].

2.3. Harmonization model derived from bilingual autoencoder

Inspired by the bilingual autoencoder, we propose HarmoAE (Fig. 2), which is an autoencoder model to harmonize
embeddings from multiple sources (i.e., hospitals). As in the bilingual autoencoder [3,42], the encoder and decoder are
trained for each hospital independently. We make decoders reconstruct the embeddings by using hidden representations
from any hospital, and encoders map embeddings in each hospital into a hidden space that is shared by all hospitals. In real-
ity, hospitals may use different terminologies even for the same medical events. Therefore, only some event pairs that are
known to be the same in two hospitals, such as International Classification of Diseases (ICD), can be used to train encoder
and decoder in different hospitals. These event pairs are called corresponding pairs. After all encoders and decoders are
trained, all embeddings from hospitals are mapped into a common hidden space and can be used as harmonized
embeddings.

Suppose a set of k hospitals, each of which has contextual embeddings with dimensionality de. Let Xi 2 Rni�de be an
embedding matrix of hospital i where ni is the number of medical events in hospital i. Let Hi be hidden representations with
dimensionality dh encoded from the hospital i. Then, for i ¼ 1; . . . ; k, the encoding is
Hi ¼ EnciðXiÞ ¼ f aðXiW i þ 1ni � bT
i Þ ð2Þ
where W i 2 Rde�dh and bi 2 Rdh represent respectively the weights and bias for the encoder of hospital i and f a is the activa-
tion function of a hidden layer. 1ni 2 Rni is an ni-dimensional vector in which all elements are 1. In the notation Hi, the sub-
script i clarifies where the hidden representations come from although they need not be distinguished in the harmonized
embeddings. Each Hi can be mapped to the embedding space of any hospital.

Let Y i;j be the reconstructed embedding matrix in hospital j given the hidden representation Hi from the embedding
matrix Xi in hospital i. Then, for i ¼ 1; . . . ; k and j ¼ 1; . . . ; k, the decoding is
Y i;j ¼ DecjðHiÞ ¼ f lineara ðHiV j þ 1ni � cTj Þ ð3Þ
where V j 2 Rdh�de and cj 2 Rde represent respectively the weights and the bias of the decoder that corresponds to hospital j.

Decoders have a linear activation function f lineara to predict continuous embedding values.
Fig. 2. The structure of HarmoAE. Each color represents one embedding space.
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To train HarmoAE we define the loss function as the sum of the averaged reconstruction errors of all hospital pairs. The

loss function consists of a total of k2 terms, of which k terms are self-reconstruction errors and kðk� 1Þ terms are cross-
hospital reconstruction errors. The definition of loss function L is
Fig. 3.
hospita
L ¼
Xk

i¼1

Lselfi þ
Xk

i¼1

Xk

j¼1

Iði– jÞ � Lcrossi;j ð4Þ
where Lselfi is the average self-reconstruction error of hospital i and Lcrossi;j is the cross-hospital reconstruction error; both errors
are defined below. The indicator Ið�Þ returns 1 if � is true, and 0 otherwise.

The average self-reconstruction error Lselfi of hospital i is defined as in a general autoencoder as
Lselfi ¼ 1
ni
kY i;i � Xik2F ð5Þ
For the cross-hospital reconstruction error, suppose that we make hidden representations by encoding embeddings in
hospital i and decode the hidden representations to the embeddings of hospital j. For the same medical events, embeddings
reconstructed from hospital i should be similar to the original embeddings in hospital j. Let Xi;j 2 Rni;j�de and Xj;i 2 Rnj;i�de each
be the subset of embeddings in hospital i and j, respectively, and both subsets only contain medical events in corresponding
pairs between the two hospitals; the number of events in Xi;j and Xj;i, denoted ni;j and nj;i respectively, are the same. If we
assume that medical events in Xi;j and Xj;i are sorted in the same order, the cross-hospital reconstruction error Lcrossi;j , for
i ¼ 1; . . . ; k and j ¼ 1; . . . ; k, can be calculated as
Lcrossi;j ¼ 1
ni;j

kY cp
i;j � Xj;ik2F ð6Þ
where Y cp
i;j ¼ DecjðEnciðXi;jÞÞ represents the embeddings in hospital j that were reconstructed using Xi;j in hospital i, which

includes only medical events in corresponding pairs.
All encoders and decoders of the proposed autoencoder are simultaneously trained with the loss function L. However, if

some hospitals have insufficient data, they would have biased embeddings. The biased embeddings can corrupt well-trained
embeddings during harmonization. To prevent this occurrence, we suggest a two-phase training for HarmoAE (Fig. 3). During
the first phase, pre-training is performed only for encoders and decoders of hospitals that have embeddings learned with
sufficient data. The number of patients in each hospital could be a good measure to assess whether the hospital’s embed-
dings are well-trained or not. The pre-trained encoders may form a hidden layer that preserves contextual information of
useful embeddings. In the second phase, all other encoders and decoders are concurrently trained, while the weights of
the pre-trained encoders are frozen. The freeze prevents the pre-trained encoders from being contaminated when they har-
monize with other hospitals.

3. Results

3.1. Experimental setting

We used the structured data of Medical Information Mart for Intensive Care-III (MIMIC-III) dataset, which is a freely-
accessible clinical-care database [20]. We pre-processed these data as described in the previous work [17]. We reduced
Illustration of two-phase training for HarmoAE when three hospitals are considered. Here source 1 is a large hospital and sources 2 and 3 are small
ls.
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the ICD codes for diagnoses to three digits, excluded both patients that had one admission and medical events that had fewer
than 50 occurrences when we generate patient clinical pathways. Finally, medical event sequences of 5,077 patients for the
experiment remained.

We divided these patient sequences into several groups, each of which represents a hospital dataset. We simulated
mainly three, four, and five groups, but in one extreme case nine (Appendices A–D). In all cases, we repeated experiments
ten times and reported average performance. We used Word2Vec to learn embeddings with each group of patients, and then
harmonized the embeddings from different hospitals in the same space by using corresponding pairs. We simulated using
one dataset, so hospitals share most terminologies, but this is an unrealistic condition. For the realistic simulation, we
allowed each pair of hospitals to randomly select a fraction of events as their corresponding pairs, and so some medical
events may belong to corresponding pairs of other hospital pairs. We experimented with several ratios of corresponding
pairs, and used different sets of ratios among different experiments. For the parameters of Word2Vec, we set the embedding
dimension to 350 and the window size to 30 according to the previous work; whereas, we determined parameters of the
proposed method experimentally (Table 1).

We conducted four experiments: One experiment quantified how the harmonization aligns medical events that indicate
the same event in different hospitals (Section 3.2), and the other three experiments measured how the harmonization
improves prediction accuracy (Section 3.3). In predictive experiments, PDPS predicts the final diagnoses of patients in the
test set, given their clinical pathways before final admission. The decay factor used in calculating patient vectors was set
to 1.

We compared our method to the previous work [17] that uses Procrustes for harmonization. Procrustes learns a linear
mapping that is formulated with an orthogonal matrix and a scaling factor for transformation from one space to another.
The optimal transformation is easily computed by singular value decomposition. Here we also used ”Global” to describe
the contextual embeddings learned with all patients in the training set, and ”Local” to embeddings learned with each group
of patients; Both embeddings show benchmark performance.

3.2. Alignment

The goal of the embedding harmonization process is to align embeddings from different hospitals by mapping them into
the common shared space. After harmonization, distance metrics can directly compare new representations of medical
events from different spaces. The alignment measure that uses nearest neighbors quantifies the proximity of pairs of medical
events with the same semantics in the aligned space [11]. Given two embedding matrices A and B, and a number K of nearest
neighbors to search, the measure is defined as the Probability of Capturing the parallel embedding within its Nearest neigh-
bors in the aligned space (PCN). In this paper, we used a slightly modified measure:
Table 1
Implem

Item

The
Opti
Activ
PCN ¼ 1
nA þ nB

XnA
i¼1

Iðbf
i 2 NKðaf

i ;B
f ÞÞ þ

XnB
j¼1

Iðaf
j 2 NKðbf

j ;A
f Þ

( )
ð7Þ
where NKðx;XÞ is the set of the K-nearest neighbors of x in a set X. Af and Bf are representations in the aligned space mapped

from A and B, respectively; af
i and bf

i each is i-th instance of Af and Bf . In this study, because medical events that belong to
only one of A and B cannot find parallel embeddings, they are excluded from PCN calculations, so the number of events in A
and B, denoted nA and nB respectively, are the same.

In our experiment, alignment should be measured for multiple spaces. We first calculated PCN for all pairs of spaces and
averaged them. Consider three embedding matrices A;B, and C. Given K, we calculated alignments between A and B; B and
C; C and A, then averaged them. We obtained results for the cases of three, four, and five hospitals (Fig. 4). We computed the
alignment by adjusting the ratio of corresponding pairs to 40%, 70%, and 100% in a hospital-pairwise perspective; K to 1, 10,
50, and 100. HarmoAE (Encoder Transformed, ‘‘EncT”) always showed significantly higher average PCN than Procrustes (Pro-
crusted Transformed, ‘‘ProT”) at the significance level of p < 0:01 (paired t-test).

3.3. Prediction

In this section, we measured prediction accuracies in three scenarios in which contextual embeddings trained in each
hospital alone cannot provide an accurate prediction. We calculated the area under the receiver operating characteristic
entation details of HarmoAE.

Value Item Value

number of units in hidden layer 100 Dropout rate (on input and hidden layer) 5%
mizer Adam Learning rate (initial) 0.001
ation function ELU The number of epochs 500
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Fig. 4. Average PCN.
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curve (AUC) for each of the most common 80 diagnoses (Appendix E) and then averaged them. We selected 500 of 5,077
patients randomly as a test set, and divided patients in the training set into several groups depending on the number of hos-
pitals. In each subsection, we described each scenario in detail.
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3.3.1. Incomplete information
Most hospitals may not encounter all possible medical events. Hospitals cannot learn embeddings for missing events, and

therefore hospitals cannot predict diagnoses missing at each hospital. However, the harmonized embeddings of the same
events from another hospital can compensate for information of the missing events. To simulate hospitals that have missed
some diagnoses, we divided the most common 80 diagnoses into k groups, assigned one such group of diagnoses to each
hospital, and then for each hospital, removed all diagnoses not assigned to it from the training data. We calculated average
AUC only for events that were missing at each hospital. The high AUC means that compensation for missing events from
other hospitals works well.

In the case of three hospitals as an example, we divided the most common 80 diagnoses into three groups of 27, 27, and
26 diagnoses and assigned each group to each hospital. The first hospital can have only 27 diagnoses assigned to it, and the
other 53 diagnoses were removed, i.e., none of the patients in the first hospital had any of these 53 diagnoses. As a result, the
local embedding model in the first hospital does not have the embeddings of removed diagnoses. However, embeddings for
missing diagnoses are necessary to make predictions and measure prediction accuracy for them. In an ideal situation that all
hospitals can share raw EHR to construct the global embedding model, the average AUC for these 53 diagnoses can be easily
computed (Fig. 5a, ‘‘Global” Site 1). Without the global embedding model, if no other information is available, the first hos-
pital could represent the embeddings of missing events naïvely by using random vectors to compute the average AUC
(Fig. 5a, ‘‘Random” Site 1). Instead of random vectors, local embeddings from other hospitals could substitute for them
(Fig. 5a, ‘‘Local” Site 1). Likewise, harmonized embeddings can compensate for missing diagnoses to compute the average
AUC (Fig. 5a, ‘‘ProT” and ‘‘EncT” Site 1). The other two hospitals were treated in the same way.

Experimental results were obtained for the cases of three to five hospitals (Fig. 5). When the embeddings of missing
events were represented naïvely using random vectors, the AUC was indistinguishable from the random prediction (AUC
= 0.5). Furthermore, importing the local embeddings of another hospital did not significantly improve the average AUC
because the embeddings lie in different spaces. However, the use of embeddings of other hospitals after harmonization
yielded a significant increase in AUC. HarmoAE achieved a higher mean AUC than Procrustes at all numbers of hospitals;
the difference was significant (paired t-test; p < 0:01) except for the 10% corresponding pairs.

3.3.2. Split patient history
In reality, each patient visits several hospitals. No hospital can access the patients’ clinical pathways from other hospitals,

so each hospital can use only part of the clinical pathway to predict future diagnoses. This limitation makes predictions
somewhat inaccurate even with the harmonized embedding model. To make an accurate prediction, hospitals first calculate
local patient vectors using the partial clinical pathways, sum these locally-calculated patient vectors, and normalize the
summed vectors. These vectors approximate global patient vectors. In this procedure, hospitals share only local patient vec-
tors that already compressed a sufficient number of medical event vectors, so this sharing does not disclose sensitive records
of patients. With approximated global patient vectors, each hospital can consider the overall clinical pathways of patients, so
improve prediction accuracy.

To explain the experiment in detail, suppose that patients can visit three hospitals. We simulated the situation by dividing
the records of patients into three parts and randomly assigning them to one of the hospitals; as a result, each hospital had
one-third of records for each patient. In cases that harmonized embeddings were not available, each hospital used these par-
tial records to compute local patient vectors and made predictions using these patient vectors and local embeddings (Fig. 6a,
‘‘Local” Partial). Alternatively, to exploit scattered clinical pathways, hospitals summed and normalized patient vectors in
them to compute approximated global patient vectors (Fig. 6a, ‘‘Local” Comb.). With the harmonized embeddings, each hos-
pital also computed patient vectors using only partial records and made predictions (Fig. 6a, ‘‘ProT” and ‘‘EncT” Partial). As
above, with the harmonized embeddings, hospitals computed approximated global patient vectors by utilizing patient vec-
tors calculated in the three hospitals together (Fig. 6a, ‘‘ProT” and ‘‘EncT” Comb.).

Experimental results were obtained for cases that the patients visit three, four, or five hospitals (Fig. 6). When scattered
records were not fully exploited, predictions provided poor accuracy regardless of whether embeddings were harmonized or
not. When we used local embeddings that lie in different spaces, the method that combines patient vectors in three hospitals
showed somewhat increased AUC, but it was still much lower than ideal AUC ‘‘Global”. After harmonization, regardless of
‘‘ProT” and ‘‘EncT”, the use of combined patient vectors achieved higher AUC than the use of local patient vectors. In partic-
ular, ‘‘EncT” showed significantly higher AUC than ‘‘ProT”. The average AUC decreased as the number of hospitals increased,
because the dataset was finely divided so the amount of training data for learning local embeddings was reduced at each
hospital. ‘‘EncT” was significantly more accurate (paired t-test; p < 0:01) than ‘‘ProT” when combined patient vectors were
used, but not when local vectors were used.

3.3.3. Hospitals with different sizes
A small or new hospital may collect biased data. The bias can lead to incorrect or uninformative local embeddings, which

causes a decrease in the prediction accuracy. Harmonization with embeddings in a large hospital can alleviate the problem.
To simulate the situation, we divided data in the training set into one large hospital and several small hospitals. Each small
hospital had 5% and 10% of the total training data; the large hospital had the rest.

Experimental results were obtained for three, four, or five hospitals, with split ratios for each. For each case, we calculated
the average AUC of hospitals that correspond to the proportions below the graph (Fig. 7). Overall, due to insufficient data, the
410



Fig. 5. Average AUC in the scenario ‘‘Incomplete information”. ‘‘Global” is the average AUC using the global embedding model, which is an ideal accuracy of
our predictive modeling. The legend applies the same way to the rest.
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small hospitals showed significantly lower AUC than the large hospital. Regardless of the ratio of the corresponding pairs, the
results were the same as below. ‘‘ProT” did not produce a noticeable AUC improvement in small hospitals even over ‘‘Local”,
whereas ‘‘EncT” noticeably increased the AUC in small hospitals by harmonizing embeddings of small hospitals with the
411



Fig. 6. Average AUC in the scenario ‘‘Split patient history”. ‘‘Partial”: average AUC using patient vectors derived from partial clinical pathways of the
hospital. ‘‘Combined”: average AUC using approximated global patient vectors. The legend applies the same way to the rest.
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embeddings of large hospitals. However, the AUC of the large hospital decreased after embeddings were harmonized using
HarmoAE. The decrease may occur because the proposed method adjusts not only embeddings in small hospitals but also the
embeddings in large hospitals to harmonize these embeddings.
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Fig. 7. Average AUC in the scenario ‘‘Hospitals with different sizes” when HarmoAE is trained without two-phase training. Results for 3 hospitals (top row),
4 hospitals (middle row), and 5 hospitals (bottom row). Split ratio: percentages of data in a large hospital and remaining hospitals. The first bar in each part
of graphs corresponds to the large hospital, and remaining bars to small hospitals.
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We applied two-phase training to prevent the distortion of contextual information during the harmonization (Fig. 8). A
notable difference from Fig. 7 is that the average AUC in the large hospital did not show any performance degradation. This
result means that the two-phase training successfully maintained the contextual information in embeddings of the large
hospital. Additionally, with HarmoAE, by exploiting maintained contextual information in the large hospital, the small hos-
pitals showed a slightly increased average AUC compared to the AUC without two-phase training. The AUC of the large hos-
pital was highest in ‘‘EncT” by discovering useful low-dimensional manifolds. ‘‘EncT” achieved significantly higher AUC than
‘‘ProT” (paired t-test; p < 0:01) in all cases regardless of the size of hospitals.
413



Fig. 8. Average AUC in the scenario ‘‘Hospitals with different sizes” when HarmoAE is trained with the two-phase training. Experimental results for 3
hospitals (top row), 4 hospitals (middle row), and 5 hospitals (bottom row).
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4. Discussion

For privacy-preserving predictive analysis, this study proposes HarmoAE to harmonize contextual embeddings in differ-
ent spaces. HarmoAE can efficiently and simultaneously harmonize the embeddings of multiple hospitals in one model,
whereas the previous work uses Procrustes that projects embeddings in one space directly into the other space for only
two spaces at a time, so harmonization is implemented independently for all pairs of hospitals. Also, during the harmoniza-
tion procedure, HarmoAE learns a non-linear mapping from local embeddings into the harmonized embeddings, and discov-
ers low-dimensional manifolds by considering corresponding information between all pairs of hospitals. With this efficient
414



Taek-Ho Lee, J. Lee and Chi-Hyuck Jun Information Sciences 568 (2021) 403–426
harmonization, HarmoAE significantly improved the prediction accuracy in diverse situations. In a few worst cases, it
achieved only similar accuracy to the existing method.

HarmoAE can be extended easily to include new hospitals by using corresponding pairs with any hospital. Therefore, Har-
moAE can easily harmonize more information and lead to more accurate prediction compared to the existing method. In con-
trast, to integrate embeddings of new hospitals, the existing method requires that each new hospital have enough
corresponding pairs with the base hospital; otherwise, embeddings must be transformed sequentially through spaces of
other hospitals with corresponding pairs, and this process may cause information loss in embeddings.

This study has some limitations. We randomly divided a single dataset, MIMIC-III, and simulated the distributed environ-
ment in a single machine. Randomly-divided parts that represent different hospitals originate from the same dataset, so they
can be harmonized more successfully than reality, and this result may artificially boost the prediction accuracy. Heteroge-
neous datasets are difficult to harmonize using simple models, so the use of encoders and decoders that have only one layer
might not work successfully. Therefore, the use of encoders and decoders with more than one layer need to be tested for
them. Furthermore, although HarmoAE is readily applicable to the case of many hospitals, the experimental results of the
scenario ‘‘Incomplete information” with nine hospitals (Appendix B) show no significant improvement. A single dataset
was finely partitioned, so contextual embeddings from each hospital deteriorated as the number of patients in each hospital
decreased, and as a result, the prediction accuracy decreased. This deterioration might reduce the difference in prediction
accuracy between HarmoAE and the previous method. Meanwhile, in addition to predictive accuracy, further analyses
should simulate diverse environments of organizations that have different computing resources.

The same medical events could have different semantics or even conflict with each other in some hospitals, and this prob-
lem was not considered in this study. Some of these events might be used as corresponding pairs; if so, placing their embed-
dings close in the space of harmonized embeddings may lead to wrong harmonized embeddings. This heterogeneity would
be further studied in future work. We may hold both embeddings of the same event with different semantics, whereas we
could unify embeddings that have the same semantics to improve the prediction accuracy.

Immediate future work is to find the best implementation for each component of the privacy-preserving predictive
framework used in this study (Fig. 1). To isolate the performance difference due to the change of the harmonization method,
the framework remained the same as the previous work [17] except for the harmonization part. However, the use of cutting-
edge methods regarding each of the components might improve the results. For example, many recent embedding models
aforementioned and some studies of bilingual autoencoders [3,44] can be the alternatives in the first and second step,
respectively. Comparison of the efficiency and accuracy further achieved using these substitutions might yield insights.

Another future research direction is to integrate the whole predictive framework in an end-to-end learning context. In
this study, we trained each component of the framework independently. For example, learning contextual embeddings in
each hospital or training HarmoAE does not consider the predictive analysis after that. The learning and harmonization of
embedding, calculation of patient vectors, and future diagnostic predictions could be continuously stacked in a single model
to build an optimal model for a final predictive task rather than for separate processes. Instead of sequentially stacking tasks,
some recent studies trained models jointly by using a combined cost function that consists of costs for different tasks and
achieved good performance [18,9]. This success implies that we could also build a model that harmonizes embeddings while
simultaneously minimizing prediction errors.

Reducing the model complexity could be a remaining task. In this study, we trained independent mapping for each hos-
pital to handle separate spaces of embeddings. However, although embeddings in different hospitals lie in separate spaces,
some hospitals have similar contextual information in EHRs; as a result, there may exist geometric properties that we can
exploit to harmonize embeddings. In further research, we would try to find and use these geometric commonalities to lessen
the model complexity required for efficient harmonization. We can also reduce computation and time complexity by using
only a fraction of corresponding pairs at each iteration. Some studies of language and data embedding have shown that
stochastic sampling can decrease the complexity while retaining model performance [2,19]. Lastly, to achieve maximum effi-
ciency, we would find the minimum number of corresponding pairs that can maintain the harmonization performance.
5. Conclusion

Contextual embedding has been successfully used for predictive tasks. A contextual embedding does not contain patient-
level data, so it is relatively free from the risk of revealing private information. Due to this, unlike other privacy-preserving
methods, sharing embeddings does not require rigorous and expensive privacy and security techniques such as DP, HE, or
MPC. However, to use the embeddings independently learned in each hospital together, they must be aligned in one space.
To this end, this paper proposed a novel method that extends a bilingual autoencoder to achieve efficient harmonization of
embeddings that are learned from numerous hospitals. The proposed method utilizes the corresponding information
between all pairs of hospitals in the model, learns non-linear transformation, and finds useful representations. As a result,
the proposed method showed significantly improved alignment and prediction accuracy over the existing method in most
experiments with multiple hospitals. Also, in an experimental scenario that considered hospitals of different sizes, the pro-
posed two-phase training method increased the prediction accuracies for both large and small hospitals. This result may
motivate large hospitals to participate in the model, and the involvement of large hospitals is crucial because it dominates
the overall predictive performance. Several complications remain to be further studied, such as heterogeneity of data, differ-
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ent computing resources between sources, and model complexity, but nevertheless, the proposed method allows the con-
struction of a harmonized contextual embedding model with no assumption that data are distributed horizontally or verti-
cally, so it can be a useful and practical alternative to existing distributed models for predictive tasks.
CRediT authorship contribution statement

Taek-Ho Lee: Methodology, Software, Writing - original draft. Junghye Lee: Conceptualization, Methodology, Supervi-
sion, Writing - review & editing. Chi-Hyuck Jun: Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MEST) (No. 2020R1A2C1005442 and No. 2020R1C1C1011063); The work was also supported by Institute of Information
& communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2020-0-
01336, Artificial Intelligence graduate school support (UNIST)).
Appendix A. Experimental results of ‘‘Alignment

See Table A.1–A.4.
Table A.1
Average PCN (standard deviation) over 10 repetitions in the case of three hospitals. Bold: the significantly higher average PCN in the paired t-test.

Alignment K

1 10 50 100

Original 0.001 0.0078 0.0319 0.0603
(0.000) (0.001) (0.002) (0.001)

ProT 40% 0.1654 0.3536 0.5346 0.629
(0.002) (0.004) (0.004) (0.003)

EncT 40% 0.2268⁄⁄ 0.4262⁄⁄ 0.5758⁄⁄ 0.6528⁄⁄

(0.004) (0.005) (0.006) (0.005)

Original 0.001 0.0081 0.0339 0.0619
(0.000) (0.001) (0.002) (0.002)

ProT 70% 0.2164 0.4097 0.5766 0.6634
(0.003) (0.004) (0.006) (0.005)

EncT 70% 0.2643⁄⁄ 0.4713⁄⁄ 0.6131⁄⁄ 0.6867⁄⁄

(0.003) (0.004) (0.005) (0.005)

Original 0.0009 0.0076 0.0317 0.0592
(0.000) (0.002) (0.003) (0.003)

ProT 100% 0.2502 0.4389 0.5973 0.6797
(0.003) (0.003) (0.003) (0.003)

EncT 100% 0.2775⁄⁄ 0.4865⁄⁄ 0.6263⁄⁄ 0.6985⁄⁄

(0.003) (0.004) (0.005) (0.004)

⁄⁄p < :01.
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Table A.2
Average PCN (standard deviation) over 10 repetitions in the case of four hospitals. Bold: the significantly higher average PCN in the paired t-test.

Alignment K

1 10 50 100

Original 0.0011 0.0088 0.0355 0.0656
(0.000) (0.001) (0.002) (0.003)

ProT 40% 0.1348 0.3155 0.5052 0.6076
(0.003) (0.006) (0.007) (0.006)

EncT 40% 0.2013⁄⁄ 0.403⁄⁄ 0.5627⁄⁄ 0.6461⁄⁄

(0.003) (0.007) (0.006) (0.007)

Original 0.001 0.0086 0.0353 0.0651
(0.000) (0.001) (0.003) (0.003)

ProT 70% 0.1823 0.3732 0.5513 0.6444
(0.003) (0.005) (0.005) (0.005)

EncT 70% 0.2355⁄⁄ 0.4442⁄⁄ 0.5956⁄⁄ 0.6753⁄⁄

(0.003) (0.003) (0.004) (0.005)

Original 0.001 0.0086 0.0353 0.0647
(0.000) (0.001) (0.003) (0.004)

ProT 100% 0.215 0.4007 0.5681 0.6566
(0.002) (0.003) (0.003) (0.003)

EncT 100% 0.2471⁄⁄ 0.4544⁄⁄ 0.605⁄⁄ 0.6826⁄⁄

(0.003) (0.003) (0.003) (0.003)

⁄⁄p < :01.

Table A.3
Average PCN (standard deviation) over 10 repetitions in the case of five hospitals. Bold: the significantly higher average PCN in the paired t-test.

Alignment K

1 10 50 100

Original 0.001 0.01 0.0395 0.0727
(0.000) (0.001) (0.001) (0.002)

ProT 40% 0.1201 0.2989 0.4898 0.5947
(0.003) (0.004) (0.004) (0.004)

EncT 40% 0.1881⁄⁄ 0.3901⁄⁄ 0.5521⁄⁄ 0.6383⁄⁄

(0.003) (0.003) (0.003) (0.003)

Original 0.0011 0.0094 0.0384 0.0702
(0.000) (0.001) (0.002) (0.002)

ProT 70% 0.1621 0.3476 0.5288 0.6259
(0.002) (0.005) (0.006) (0.005)

EncT 70% 0.2132⁄⁄ 0.4179⁄⁄ 0.5761⁄⁄ 0.6592⁄⁄

(0.002) (0.005) (0.005) (0.004)

Original 0.001 0.009 0.0383 0.0708
(0.000) (0.001) (0.002) (0.003)

ProT 100% 0.1924 0.3767 0.5484 0.6399
(0.002) (0.004) (0.004) (0.004)

EncT 100% 0.2227⁄⁄ 0.4294⁄⁄ 0.5854⁄⁄ 0.6679⁄⁄

(0.002) (0.004) (0.004) (0.004)

⁄⁄p < :01.
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Table A.4
Average PCN (standard deviation) over 10 repetitions in the case of nine hospitals. Bold: the significantly higher average PCN in the paired t-test.

Alignment K

1 10 50 100

Original 0.001 0.0113 0.0462 0.0853
(0.000) (0.000) (0.002) (0.003)

ProT 40% 0.0966 0.267 0.4594 0.5658
(0.002) (0.004) (0.004) (0.004)

EncT 40% 0.1502 0.348 0.5204 0.6139
(0.002) (0.003) (0.003) (0.003)

Original 0.0013 0.0113 0.0468 0.0862
(0.000) (0.001) (0.002) (0.002)

ProT 70% 0.1261 0.2995 0.4826 0.5843
(0.001) (0.003) (0.003) (0.003)

EncT 70% 0.1613 0.3596 0.5293 0.6214
(0.002) (0.003) (0.003) (0.003)

Original 0.0011 0.0111 0.0464 0.0852
(0.000) (0.001) (0.002) (0.002)

ProT 100% 0.1486 0.3182 0.4943 0.5933
(0.001) (0.003) (0.004) (0.004)

EncT 100% 0.1661 0.364 0.5341 0.6261
(0.002) (0.003) (0.004) (0.004)

⁄⁄p < :01.
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Appendix B. Experimental results of ‘‘Incomplete information

See Tables B.1–B.4.
Table B.1
Average AUC (standard deviation) over 10 repetitions of three hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Random Local ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

1 0.704 0.505 0.56 0.66 0.667⁄ 0.669 0.675⁄⁄ 0.671 0.678⁄⁄

(0.007) (0.026) (0.011) (0.014) (0.013) (0.013) (0.013) (0.013) (0.012)

2 0.697 0.492 0.563 0.655 0.658 0.665 0.672⁄⁄ 0.667 0.673⁄⁄

(0.008) (0.027) (0.015) (0.017) (0.01) (0.017) (0.018) (0.017) (0.016)

3 0.694 0.509 0.561 0.655 0.658 0.666 0.67⁄⁄ 0.667 0.673⁄⁄

(0.011) (0.027) (0.018) (0.015) (0.011) (0.012) (0.011) (0.012) (0.01)

⁄⁄p < :01. ⁄p < :05.

Table B.2
Average AUC (standard deviation) over 10 repetitions of four hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Random Local ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

1 0.701 0.512 0.582 0.649 0.653 0.66 0.666⁄⁄ 0.662 0.667⁄⁄

(0.009) (0.027) (0.014) (0.009) (0.009) (0.006) (0.007) (0.006) (0.006)

2 0.7 0.513 0.573 0.651 0.658⁄⁄ 0.66 0.667⁄⁄ 0.662 0.669⁄⁄

(0.007) (0.028) (0.013) (0.01) (0.01) (0.009) (0.008) (0.01) (0.009)

3 0.698 0.498 0.567 0.647 0.654⁄ 0.657 0.666⁄⁄ 0.659 0.666⁄⁄

(0.009) (0.025) (0.019) (0.007) (0.009) (0.007) (0.008) (0.008) (0.007)

4 0.7 0.515 0.562 0.649 0.657⁄⁄ 0.657 0.666⁄⁄ 0.66 0.667⁄⁄

(0.008) (0.028) (0.021) (0.008) (0.008) (0.007) (0.007) (0.007) (0.007)

⁄⁄p < :01. ⁄p < :05.
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Table B.3
Average AUC (standard deviation) over 10 repetitions of five hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Random Local ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

1 0.693 0.502 0.56 0.631 0.639⁄⁄ 0.642 0.65⁄⁄ 0.645 0.654⁄⁄

(0.008) (0.025) (0.014) (0.01) (0.007) (0.009) (0.006) (0.008) (0.008)

2 0.69 0.504 0.563 0.633 0.639 0.644 0.648⁄⁄ 0.646 0.653⁄⁄

(0.008) (0.024) (0.01) (0.01) (0.006) (0.007) (0.006) (0.008) (0.007)

3 0.696 0.5 0.565 0.637 0.644⁄ 0.647 0.653⁄ 0.649 0.657⁄⁄

(0.009) (0.016) (0.016) (0.008) (0.008) (0.008) (0.006) (0.008) (0.006)

4 0.692 0.495 0.575 0.633 0.643⁄⁄ 0.645 0.651⁄ 0.647 0.655⁄⁄

(0.011) (0.014) (0.025) (0.011) (0.01) (0.01) (0.008) (0.01) (0.009)

5 0.691 0.497 0.568 0.632 0.64⁄ 0.644 0.649⁄⁄ 0.646 0.653⁄⁄

(0.007) (0.016) (0.016) (0.008) (0.009) (0.009) (0.006) (0.009) (0.005)

⁄⁄p < :01. ⁄p < :05.

Table B.4
Average AUC (standard deviation) over 10 repetitions of nine hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Random Local ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

1 0.69 0.496 0.561 0.621 0.629⁄ 0.631 0.634 0.633 0.634
(0.012) (0.016) (0.013) (0.01) (0.014) (0.013) (0.015) (0.013) (0.015)

2 0.688 0.493 0.564 0.622 0.628⁄ 0.633 0.632 0.633 0.633
(0.008) (0.025) (0.018) (0.01) (0.008) (0.01) (0.007) (0.009) (0.007)

3 0.689 0.486 0.571 0.621 0.626 0.631 0.63 0.633 0.631
(0.008) (0.035) (0.011) (0.01) (0.008) (0.009) (0.007) (0.008) (0.008)

4 0.688 0.489 0.562 0.621 0.626⁄ 0.63 0.63 0.632 0.631
(0.008) (0.03) (0.02) (0.012) (0.011) (0.013) (0.01) (0.012) (0.01)

5 0.691 0.499 0.57 0.623 0.633⁄⁄ 0.635 0.634 0.636 0.635
(0.009) (0.025) (0.022) (0.01) (0.007) (0.009) (0.008) (0.009) (0.009)

6 0.688 0.491 0.565 0.622 0.629⁄ 0.633 0.632 0.633 0.633
(0.009) (0.024) (0.009) (0.014) (0.007) (0.011) (0.007) (0.01) (0.007)

7 0.689 0.509 0.565 0.621 0.628⁄⁄ 0.631 0.632 0.634 0.633
(0.008) (0.027) (0.015) (0.007) (0.007) (0.007) (0.006) (0.008) (0.008)

8 0.689 0.498 0.568 0.622 0.627 0.631 0.63 0.633 0.631
(0.007) (0.024) (0.015) (0.011) (0.007) (0.01) (0.006) (0.009) (0.006)

9 0.689 0.503 0.569 0.621 0.629⁄ 0.631 0.632 0.633 0.633
(0.01) (0.022) (0.011) (0.01) (0.009) (0.011) (0.011) (0.01) (0.011)

⁄⁄p < :01. ⁄p < :05.
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Appendix C. Experimental results of ‘‘Split patient history

See Tables C.1–C.4.
Table C.1
Average AUC (standard deviation) over 10 repetitions of three hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Original ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

Local 1 0.692 0.603 0.61 0.612 0.605 0.61⁄⁄ 0.603 0.608⁄⁄

(0.009) (0.011) (0.023) (0.025) (0.012) (0.012) (0.01) (0.01)

Local 2 0.692 0.603 0.609 0.611 0.605 0.608⁄ 0.602 0.605⁄

(0.009) (0.008) (0.023) (0.025) (0.012) (0.013) (0.008) (0.008)

Local 3 0.692 0.602 0.608 0.611 0.599 0.603⁄⁄ 0.602 0.606⁄⁄

(0.009) (0.008) (0.015) (0.014) (0.007) (0.008) (0.009) (0.01)

Combined 1 0.692 0.642 0.671 0.688⁄⁄ 0.668 0.685⁄⁄ 0.665 0.682⁄⁄

(0.009) (0.013) (0.028) (0.029) (0.011) (0.011) (0.008) (0.009)

Combined 2 0.692 0.642 0.663 0.68⁄⁄ 0.666 0.681⁄⁄ 0.663 0.68⁄⁄

(0.009) (0.014) (0.037) (0.035) (0.016) (0.016) (0.011) (0.01)

Combined 3 0.692 0.639 0.675 0.69⁄⁄ 0.66 0.679⁄⁄ 0.665 0.683⁄⁄

(0.009) (0.012) (0.02) (0.018) (0.009) (0.006) (0.011) (0.009)

⁄⁄p < :01. ⁄p < :05.
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Table C.2
Average AUC (standard deviation) over 10 repetitions of four hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Original ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

Local 1 0.696 0.585 0.586 0.591 0.587 0.596⁄⁄ 0.586 0.592⁄⁄

(0.005) (0.009) (0.016) (0.017) (0.01) (0.01) (0.009) (0.01)

Local 2 0.696 0.582 0.577 0.581⁄ 0.579 0.586⁄⁄ 0.581 0.587⁄⁄

(0.005) (0.005) (0.017) (0.019) (0.007) (0.007) (0.005) (0.006)

Local 3 0.696 0.584 0.579 0.586⁄⁄ 0.581 0.588⁄⁄ 0.584 0.59⁄⁄

(0.005) (0.008) (0.013) (0.015) (0.009) (0.01) (0.008) (0.01)

Local 4 0.696 0.583 0.583 0.59⁄ 0.584 0.59⁄⁄ 0.583 0.589⁄⁄

(0.005) (0.009) (0.013) (0.014) (0.01) (0.011) (0.01) (0.011)

Combined 1 0.696 0.624 0.638 0.663⁄⁄ 0.645 0.671⁄⁄ 0.644 0.668⁄⁄

(0.005) (0.01) (0.025) (0.019) (0.011) (0.008) (0.009) (0.01)

Combined 2 0.696 0.618 0.631 0.659⁄⁄ 0.64 0.664⁄⁄ 0.644 0.667⁄⁄

(0.005) (0.012) (0.022) (0.027) (0.009) (0.01) (0.007) (0.009)

Combined 3 0.696 0.624 0.627 0.66⁄⁄ 0.638 0.665⁄⁄ 0.643 0.667⁄⁄

(0.005) (0.008) (0.021) (0.023) (0.011) (0.012) (0.007) (0.01)

Combined 4 0.696 0.622 0.641 0.668⁄⁄ 0.643 0.667⁄⁄ 0.644 0.668⁄⁄

(0.005) (0.011) (0.019) (0.02) (0.006) (0.008) (0.005) (0.009)

⁄⁄p < :01. ⁄p < :05.

Table C.3
Average AUC (standard deviation) over 10 repetitions of five hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Original ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

Local 1 0.696 0.573 0.569 0.57 0.573 0.579⁄⁄ 0.574 0.579⁄⁄

(0.004) (0.009) (0.012) (0.012) (0.01) (0.01) (0.009) (0.008)

Local 2 0.696 0.574 0.577 0.581⁄ 0.573 0.58⁄⁄ 0.574 0.582⁄⁄

(0.004) (0.006) (0.009) (0.011) (0.007) (0.009) (0.006) (0.007)

Local 3 0.696 0.574 0.573 0.577⁄ 0.574 0.58⁄⁄ 0.574 0.581⁄⁄

(0.004) (0.006) (0.01) (0.009) (0.006) (0.006) (0.006) (0.006)

Local 4 0.696 0.574 0.576 0.58 0.575 0.581⁄⁄ 0.574 0.581⁄⁄

(0.004) (0.009) (0.013) (0.013) (0.01) (0.01) (0.009) (0.01)

Local 5 0.696 0.575 0.577 0.581⁄⁄ 0.575 0.58⁄⁄ 0.575 0.581⁄⁄

(0.004) (0.007) (0.013) (0.013) (0.007) (0.008) (0.007) (0.006)

Combined 1 0.696 0.606 0.615 0.644⁄⁄ 0.627 0.655 0.628 0.657
(0.004) (0.014) (0.016) (0.017) (0.008) (0.01) (0.005) (0.007)

Combined 2 0.696 0.602 0.626 0.652 0.626 0.652 0.628 0.656
(0.004) (0.008) (0.012) (0.011) (0.006) (0.008) (0.005) (0.006)

Combined 3 0.696 0.61 0.621 0.65 0.627 0.655 0.628 0.658⁄⁄

(0.004) (0.018) (0.013) (0.014) (0.006) (0.004) (0.004) (0.004)

Combined 4 0.696 0.601 0.62 0.648⁄⁄ 0.628 0.655⁄⁄ 0.628 0.656⁄⁄

(0.004) (0.012) (0.014) (0.013) (0.008) (0.009) (0.006) (0.007)

Combined 5 0.696 0.612 0.621 0.652⁄⁄ 0.627 0.653⁄⁄ 0.628 0.656⁄⁄

(0.004) (0.008) (0.015) (0.017) (0.004) (0.006) (0.004) (0.005)

⁄⁄p < :01. ⁄p < :05.
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Table C.4
Average AUC (standard deviation) over 10 repetitions of nine hospitals. Bold: the significantly higher average AUC in the paired t-test.

Site Global Original ProT 10% EncT 10% ProT 40% EncT 40% ProT 70% EncT 70%

Local 1 0.693 0.57 0.566 0.563 0.569 0.565 0.57⁄ 0.565
(0.005) (0.011) (0.011) (0.01) (0.01) (0.009) (0.01) (0.009)

Local 2 0.693 0.574 0.573 0.57 0.574 0.572 0.574 0.571
(0.005) (0.01) (0.012) (0.013) (0.01) (0.01) (0.01) (0.01)

Local 3 0.693 0.579 0.576⁄ 0.569 0.579⁄ 0.574 0.579⁄⁄ 0.572
(0.005) (0.008) (0.011) (0.011) (0.008) (0.007) (0.008) (0.006)

Local 4 0.693 0.569 0.564 0.56 0.568⁄ 0.565 0.568 0.566
(0.005) (0.008) (0.009) (0.005) (0.008) (0.007) (0.007) (0.007)

Local 5 0.693 0.582 0.581⁄⁄ 0.575 0.582⁄⁄ 0.577 0.582⁄⁄ 0.577
(0.005) (0.007) (0.009) (0.011) (0.007) (0.008) (0.007) (0.007)

Local 6 0.693 0.575 0.571 0.567 0.575⁄ 0.571 0.575 0.572
(0.005) (0.009) (0.011) (0.009) (0.009) (0.007) (0.009) (0.007)

Local 7 0.693 0.571 0.567 0.567 0.571 0.57 0.571 0.569
(0.005) (0.006) (0.01) (0.013) (0.006) (0.007) (0.006) (0.007)

Local 8 0.693 0.576 0.568⁄⁄ 0.564 0.576⁄ 0.573 0.576⁄⁄ 0.572
(0.005) (0.006) (0.011) (0.009) (0.006) (0.006) (0.006) (0.006)

Local 9 0.693 0.574 0.573⁄ 0.568 0.574⁄⁄ 0.568 0.574⁄⁄ 0.568
(0.005) (0.008) (0.013) (0.013) (0.008) (0.005) (0.008) (0.007)

Combined 1 0.693 0.599 0.605 0.63⁄⁄ 0.618 0.634⁄⁄ 0.619 0.634⁄⁄

(0.005) (0.018) (0.011) (0.011) (0.008) (0.005) (0.007) (0.004)

Combined 2 0.693 0.588 0.605 0.631⁄⁄ 0.617 0.636⁄⁄ 0.618 0.636⁄⁄

(0.005) (0.02) (0.012) (0.009) (0.008) (0.005) (0.007) (0.005)

Combined 3 0.693 0.592 0.603 0.629⁄⁄ 0.618 0.637⁄⁄ 0.62 0.637⁄⁄

(0.005) (0.016) (0.01) (0.013) (0.007) (0.005) (0.007) (0.006)

Combined 4 0.693 0.588 0.602 0.625⁄⁄ 0.616 0.633⁄⁄ 0.618 0.634⁄⁄

(0.005) (0.017) (0.008) (0.009) (0.007) (0.005) (0.006) (0.004)

Combined 5 0.693 0.592 0.605 0.629⁄⁄ 0.618 0.636⁄⁄ 0.621 0.637⁄⁄

(0.005) (0.015) (0.011) (0.009) (0.007) (0.005) (0.006) (0.006)

Combined 6 0.693 0.595 0.61 0.632⁄⁄ 0.621 0.639⁄⁄ 0.622 0.638⁄⁄

(0.005) (0.013) (0.009) (0.009) (0.007) (0.004) (0.008) (0.006)

Combined 7 0.693 0.59 0.608 0.634⁄⁄ 0.615 0.635⁄⁄ 0.617 0.635⁄⁄

(0.005) (0.011) (0.012) (0.011) (0.006) (0.004) (0.006) (0.007)

Combined 8 0.693 0.602 0.607 0.63⁄⁄ 0.619 0.638⁄⁄ 0.62 0.638⁄⁄

(0.005) (0.01) (0.014) (0.013) (0.006) (0.005) (0.006) (0.006)

Combined 9 0.693 0.598 0.611 0.635⁄⁄ 0.619 0.636⁄⁄ 0.62 0.636⁄⁄

(0.005) (0.016) (0.013) (0.012) (0.011) (0.007) (0.011) (0.009)

⁄⁄p < :01. ⁄p < :05.
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Appendix D. Experimental results of ‘‘Hospitals with different sizes

See Tables D.1–D.4.
Table D.1
Average AUC (standard deviation) over 10 repetitions of three hospitals. Bold: the significantly higher average AUC in the paired t-test.

Ratio (size) Original ProT 40% EncT 40% ProT 70% EncT 70% ProT 100% EncT 100%

80 0.7 0.707 0.72⁄⁄ 0.701 0.714⁄⁄ 0.7 0.713⁄⁄

(0.002) (0.007) (0.008) (0.002) (0.004) (0.002) (0.003)

10 0.643 0.643 0.683⁄⁄ 0.645 0.687⁄⁄ 0.644 0.686⁄⁄

(0.01) (0.008) (0.009) (0.01) (0.008) (0.01) (0.009)

10 0.643 0.652 0.697⁄⁄ 0.647 0.693⁄⁄ 0.644 0.69⁄⁄

(0.01) (0.01) (0.008) (0.01) (0.008) (0.01) (0.006)

90 0.699 0.7 0.714⁄⁄ 0.699 0.713⁄⁄ 0.699 0.712⁄⁄

(0.002) (0.006) (0.009) (0.004) (0.005) (0.002) (0.003)

5 0.623 0.624 0.669⁄⁄ 0.623 0.667⁄⁄ 0.624 0.668⁄⁄

(0.012) (0.012) (0.015) (0.013) (0.013) (0.013) (0.01)

5 0.613 0.616 0.666⁄⁄ 0.615 0.665⁄⁄ 0.614 0.665⁄⁄

(0.011) (0.02) (0.022) (0.011) (0.012) (0.012) (0.011)

⁄⁄p < :01. ⁄p < :05.
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Table D.2
Average AUC (standard deviation) over 10 repetitions of four hospitals. Bold: the significantly higher average AUC in the paired t-test.

Ratio (size) Original ProT 40% EncT 40% ProT 70% EncT 70% ProT 100% EncT 100%

70 0.7 0.7 0.711⁄⁄ 0.699 0.711⁄⁄ 0.7 0.711⁄⁄

(0.003) (0.007) (0.008) (0.005) (0.006) (0.003) (0.003)

10 0.645 0.647 0.69⁄⁄ 0.646 0.689⁄⁄ 0.646 0.69⁄⁄

(0.01) (0.011) (0.011) (0.01) (0.008) (0.01) (0.009)

10 0.637 0.636 0.68⁄⁄ 0.638 0.683⁄⁄ 0.638 0.683⁄⁄

(0.012) (0.013) (0.011) (0.012) (0.009) (0.012) (0.01)

10 0.649 0.652 0.69⁄⁄ 0.65 0.688⁄⁄ 0.649 0.688⁄⁄

(0.009) (0.01) (0.01) (0.009) (0.006) (0.009) (0.006)

85 0.698 0.697 0.71⁄⁄ 0.699 0.712⁄⁄ 0.698 0.71⁄⁄

(0.002) (0.004) (0.005) (0.003) (0.004) (0.002) (0.003)

5 0.609 0.61 0.657⁄⁄ 0.612 0.66⁄⁄ 0.611 0.659⁄⁄

(0.009) (0.013) (0.011) (0.009) (0.008) (0.009) (0.007)

5 0.621 0.62 0.661⁄⁄ 0.619 0.662⁄⁄ 0.62 0.661⁄⁄

(0.012) (0.012) (0.013) (0.012) (0.013) (0.011) (0.011)

5 0.624 0.625 0.665⁄⁄ 0.626 0.664⁄⁄ 0.624 0.662⁄⁄

(0.012) (0.012) (0.014) (0.012) (0.01) (0.011) (0.009)

⁄⁄p < :01. ⁄p < :05.

Table D.3
Average AUC (standard deviation) over 10 repetitions of five hospitals. Bold: the significantly higher average AUC in the paired t-test.

Ratio (size) Original ProT 40% EncT 40% ProT 70% EncT 70% ProT 100% EncT 100%

60 0.699 0.698 0.712⁄⁄ 0.699 0.712⁄⁄ 0.699 0.712⁄⁄

(0.003) (0.005) (0.005) (0.003) (0.004) (0.003) (0.003)

10 0.647 0.649 0.685⁄⁄ 0.648 0.685⁄⁄ 0.648 0.685⁄⁄

(0.01) (0.012) (0.011) (0.01) (0.009) (0.011) (0.009)

10 0.64 0.639 0.683⁄⁄ 0.641 0.685⁄⁄ 0.641 0.685⁄⁄

(0.011) (0.012) (0.014) (0.011) (0.009) (0.011) (0.01)

10 0.652 0.651 0.686⁄⁄ 0.652 0.688⁄⁄ 0.653 0.689⁄⁄

(0.01) (0.011) (0.01) (0.01) (0.01) (0.01) (0.009)

10 0.647 0.649 0.689⁄⁄ 0.647 0.687⁄⁄ 0.647 0.687⁄⁄

(0.006) (0.007) (0.007) (0.006) (0.002) (0.006) (0.003)

80 0.699 0.698 0.711⁄⁄ 0.699 0.714⁄⁄ 0.699 0.714⁄⁄

(0.002) (0.004) (0.006) (0.002) (0.003) (0.002) (0.003)

5 0.622 0.619 0.664⁄⁄ 0.622 0.668⁄⁄ 0.623 0.669⁄⁄

(0.016) (0.017) (0.016) (0.016) (0.015) (0.016) (0.016)

5 0.628 0.63 0.661⁄⁄ 0.628 0.661⁄⁄ 0.628 0.661⁄⁄

(0.015) (0.017) (0.015) (0.015) (0.012) (0.015) (0.012)

5 0.617 0.618 0.662⁄⁄ 0.618 0.66⁄⁄ 0.617 0.661⁄⁄

(0.012) (0.012) (0.013) (0.012) (0.011) (0.012) (0.01)

5 0.626 0.624 0.664⁄⁄ 0.626 0.664⁄⁄ 0.626 0.664⁄⁄

(0.014) (0.015) (0.008) (0.014) (0.008) (0.014) (0.008)

⁄⁄p < :01. ⁄p < :05.
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Table D.4
Average AUC (standard deviation) over 10 repetitions of nine hospitals. Bold: the significantly higher average AUC in the paired t-test.

Ratio (size) Original ProT 40% EncT 40% ProT 70% EncT 70% ProT 100% EncT 100%

20 0.673 0.673 0.699⁄⁄ 0.673 0.7⁄⁄ 0.673 0.7⁄⁄

(0.008) (0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

10 0.651 0.652 0.678⁄⁄ 0.652 0.675⁄⁄ 0.652 0.678⁄⁄

(0.01) (0.01) (0.007) (0.01) (0.007) (0.01) (0.005)

10 0.646 0.646 0.67⁄⁄ 0.647 0.669⁄⁄ 0.647 0.67⁄⁄

(0.012) (0.012) (0.011) (0.012) (0.009) (0.012) (0.01)

10 0.652 0.654 0.68⁄⁄ 0.653 0.677⁄⁄ 0.653 0.68⁄⁄

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.005)

10 0.647 0.648 0.674⁄⁄ 0.648 0.672⁄⁄ 0.648 0.675⁄⁄

(0.013) (0.013) (0.012) (0.014) (0.011) (0.014) (0.01)

10 0.638 0.639 0.67⁄⁄ 0.639 0.669⁄⁄ 0.639 0.671⁄⁄

(0.012) (0.012) (0.009) (0.012) (0.01) (0.012) (0.009)

10 0.649 0.649 0.675⁄⁄ 0.649 0.675⁄⁄ 0.649 0.676⁄⁄

(0.01) (0.01) (0.008) (0.01) (0.01) (0.01) (0.01)

10 0.647 0.647 0.673⁄⁄ 0.648 0.673⁄⁄ 0.648 0.673⁄⁄

(0.01) (0.01) (0.01) (0.01) (0.009) (0.01) (0.01)

10 0.645 0.644 0.671⁄⁄ 0.646 0.672⁄⁄ 0.646 0.674⁄⁄

(0.008) (0.008) (0.01) (0.009) (0.011) (0.009) (0.011)

60 0.698 0.698 0.711⁄⁄ 0.698 0.711⁄⁄ 0.698 0.711⁄⁄

(0.003) (0.004) (0.004) (0.003) (0.004) (0.003) (0.004)

5 0.617 0.616 0.655⁄⁄ 0.616 0.656⁄⁄ 0.616 0.655⁄⁄

(0.021) (0.019) (0.015) (0.02) (0.017) (0.02) (0.015)

5 0.615 0.616 0.656⁄⁄ 0.616 0.659⁄⁄ 0.616 0.657⁄⁄

(0.013) (0.013) (0.011) (0.013) (0.012) (0.013) (0.011)

5 0.628 0.627 0.662⁄⁄ 0.627 0.661⁄⁄ 0.627 0.66⁄⁄

(0.014) (0.014) (0.014) (0.015) (0.013) (0.015) (0.015)

5 0.622 0.621 0.66⁄⁄ 0.621 0.659⁄⁄ 0.621 0.658⁄⁄

(0.017) (0.017) (0.013) (0.016) (0.009) (0.016) (0.013)

5 0.621 0.622 0.657⁄⁄ 0.622 0.656⁄⁄ 0.622 0.656⁄⁄

(0.016) (0.016) (0.015) (0.016) (0.015) (0.016) (0.015)

5 0.621 0.622 0.657⁄⁄ 0.62 0.657⁄⁄ 0.62 0.656⁄⁄

(0.012) (0.012) (0.01) (0.012) (0.01) (0.012) (0.01)

5 0.62 0.62 0.654⁄⁄ 0.62 0.655⁄⁄ 0.62 0.657⁄⁄

(0.016) (0.016) (0.015) (0.016) (0.016) (0.016) (0.015)

5 0.615 0.615 0.653⁄⁄ 0.615 0.653⁄⁄ 0.615 0.651⁄⁄

(0.014) (0.015) (0.012) (0.015) (0.01) (0.015) (0.012)

⁄⁄p < :01. ⁄p < :05.
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Appendix E. The 80 most common diagnoses

See Table E.1.
Table E.1
The 80 most common diagnoses.

ICD Description

8 Intestinal Infections due to other organisms
38 Septicemia
41 Bacterial infection in conditions classified elsewhere and of unspecified site
70 Viral hepatitis
112 Candidiasis
197 Secondary malignant neoplasm of respiratory and digestive systems
198 Secondary malignant neoplasm of other specified sites
244 Acquired hypothyroidism
250 Diabetes mellitus
263 Other and unspecified protein-calorie malnutrition
272 Disorders of lipoid metabolism

(continued on next page)
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Table E.1 (continued)

ICD Description

274 Gout
275 Disorders of mineral metabolism
276 Disorders of fluid, electrolyte, and acid-base balance
278 Overweight, obesity and other hyperalimentation
280 Iron deficiency anemias
285 Other and unspecified anemias
286 Coagulation defects
287 Purpura and other hemorrhagic conditions
288 Diseases of white blood cells
293 Transient mental disorders due to conditions classified elsewhere
294 Persistent mental disorders due to conditions classified elsewhere
300 Anxiety, dissociative and somatoform disorders
303 Alcohol dependence syndrome
305 Nondependent abuse of drugs
311 Depressive disorder, not elsewhere classified
327 Organic sleep disorders
338 Pain
345 Epilepsy and recurrent seizures
348 Other conditions of brain
357 Inflammatory and toxic neuropathy
362 Other retinal disorders
401 Essential hypertension
403 Hypertensive chronic kidney disease
410 Acute myocardial infarction
412 Old myocardial infarction
414 Other forms of chronic ischemic heart disease
416 Chronic pulmonary heart disease
424 Other diseases of endocardium
425 Cardiomyopathy
427 Cardiac dysrhythmias
428 Heart failure
438 Late effects of cerebrovascular disease
440 Atherosclerosis
441 Aortic aneurysm and dissection
443 Other peripheral vascular disease
453 Other venous embolism and thrombosis
456 Varicose veins of other sites
458 Hypotension
482 Other bacterial pneumonia
486 Pneumonia, organism unspecified
491 Chronic bronchitis
493 Asthma
496 Chronic airway obstruction, not elsewhere classified
507 Pneumonitis due to solids and liquids
511 Pleurisy
518 Other diseases of lung
519 Other diseases of respiratory system
530 Diseases of esophagus
536 Disorders of function of stomach
560 Intestinal obstruction without mention of hernia
562 Diverticula of intestine
569 Other disorders of intestine
571 Chronic liver disease and cirrhosis
572 Liver abscess and sequelae of chronic liver disease
577 Diseases of pancreas
578 Gastrointestinal hemorrhage
584 Acute renal failure
585 Chronic kidney disease (CKD)
599 Other disorders of urethra and urinary tract
600 Hyperplasia of prostate
682 Other cellulitis and abscess
707 Chronic ulcer of skin
724 Other and unspecified disorders of back
733 Other disorders of bone and cartilage
995 Certain adverse effects not elsewhere classified
996 Complications peculiar to certain specified procedures
997 Complications affecting specified body systems, not elsewhere classified
998 Other complications of procedures, NEC
E8798 Abn react-procedure NEC
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