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Abstract: The human brain carries out cognitive control for the inhibition of habitual behaviors by
suppressing some familiar but inappropriate behaviors instead of engaging specific goal-directed
behavior flexibly in a given situation. To examine the characteristics of neural dynamics related
to such inhibition of habitual behaviors, we used a modified rock–paper–scissors (RPS) task that
consisted of a basic, a lose-, and a win-conditioned game. Spectral and phase synchrony analyses were
conducted to examine the acquired electroencephalogram signals across the entire brain during all
RPS tasks. Temporal variations in frontal theta power activities were directly in line with the stream
of RPS procedures in accordance with the task conditions. The lose-conditioned RPS task gave rise to
increases in the local frontal power and global phase-synchronized pairs of theta oscillations. The
activation of the global phase-synchronized network preceded the activation of frontal theta power.
These results demonstrate that the frontal regions play a pivotal role in the inhibition of habitual
behaviors—stereotyped and ingrained stimulus–response mappings that have been established
over time. This study suggests that frontal theta oscillations may be engaged during the cognitive
inhibition of habitual behaviors and that these oscillations characterize the degree of cognitive load
required to inhibit habitual behaviors.

Keywords: electroencephalography; rock–paper–scissors task; habitual behaviors; frontal theta
oscillations; phase synchronization

1. Introduction

Human information processing deals with relationships among presented external
stimuli, subsequent cognitive responses, and behavioral outcomes. Previously established
stimulus–response (S–R) mappings are able to either facilitate or inhibit relevant cognitive
processes. Especially, task switching or rule changing in the formed S-R mappings leads
to cognitive interferences or conflicts and a “switching cost”, that is, the higher use of
cognitive resources [1–3]. As an essential modulator of flexible goal-directed behavior [4],
cognitive control refers to the ability to regulate, coordinate, and sequence thoughts and
actions in accordance with internally maintained behavioral goals [5]. For decades, studies
have investigated cognitive theories and neural mechanisms underlying cognitive control
to manipulate a variety of interferences and conflicts within S-R mappings [6–13]. To date,
many types of experimental paradigms have been used in traditional stimulus–response
compatibility (SRC) tests. For example, the Stroop [14], Simon [15], go/no-go [16], and
flanker [17] paradigms investigate distinct cognitive processes by generating a variety of
combination conditions between S-R mappings. The well-known rock–paper–scissors (RPS)
game is also regarded as a useful experimental paradigm not only in cognitive psychology
and neuroscience but also in clinical research. Studies that use the RPS game as the
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main experimental paradigm often modify the classical RPS game to create different goal-
directed conditions [18–22]. For example, participants might be instructed to intentionally
lose, win, or come to a draw in the RPS games. These instructions generate cognitive
interference that can be resolved to achieve a specific goal by adapting and changing
behavior flexibly [18,19,23]. Compared to other SCR tests comprising inhibition processes,
a modified RPS task engages in the inhibition of more prepotent, habitual, stereotyped,
and ingrained behaviors specifically [19].

Due to the fact that high-level execution functions, such as working memory, decision
making, and response inhibition, are engaged in the execution of modified RPS tasks,
most studies using this paradigm have mainly paid attention to the frontal areas of the
brain to understand underlying neural mechanisms. Consistently, a series of functional
magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS)
studies that have adopted modified RPS tasks have addressed distinct characteristics of
hemodynamics changes in several neural substrates in frontal areas. Paulus and colleagues
reported that the inferior prefrontal cortex is highly engaged in computing a trend from
previous experiences by adopting the temporal difference model in reinforcement learning,
by using RPS games that were specifically modified for the acquisition of advantageous
versus disadvantage actions [20]. In addition, by using the same RPS task, these authors
also found a pivotal role of the bilateral insula and the medial prefrontal cortex (MPFC)
including the anterior cingulate cortex (ACC) in the assessment and action selection stages
of decision making [24]. These studies leveraged the usefulness of RPS games for the
investigation of decision making and reward processing and found that the frontal areas
are predominantly involved in the corresponding cognitive processes. In addition, one
fMRI study that used a modified RPS task consisting of three types of goal-directed condi-
tions (draw, lose, and win) reported that the anterior part of the left inferior frontal gyrus
is responsible for the inhibition of habitual manual behavior [19]. Two fMRI studies by
Kadota and colleagues [18,23] showed the higher activation of the anterior prefrontal cortex
in the inhibition of stereotyped responses during a modified RPS task in which subjects
were instructed to lose, suppressing the typical response to winning. They also proposed
a key role of the dorsolateral prefrontal cortex in the inhibition of stereotyped responses,
by assessing blood oxygen level-dependent (BOLD) activation in combination with tran-
scranial magnetic stimulation (TMS) [23]. An fNIRS study also examined hemodynamic
changes in the prefrontal cortex (PFC) during a modified RPS task that comprised lose and
win conditions [22]. This study revealed increases in hemodynamic activation at specific
electrodes corresponding to the left dorsal and ventral lateral PFC (DLPFC and VLPFC), the
bilateral premotor area, and the supplementary motor area (SMA). The authors suggested
that these linear trends of hemodynamic activation in correspondence with task condition
showed the role of the lateral PFC in executive behavioral control related to workload.
A recent psychiatric study proposed that the fNIRS signals acquired during a modified
RPS task might provide useful information for the evaluation of the cognitive functions of
patients with schizophrenia. When such patients performed a lose-conditioned RPS game,
the oxygenated hemoglobin changes in the frontal pole area, the dorsolateral prefrontal
regions, and the parietal association area were significantly lower than those when healthy
subjects performed the same task [21].

Taken together, in spite of some differences in the precise localization due to different
task conditions and measurement techniques, there is no doubt that the frontal areas, in-
cluding the PFC, ACC, SMA, and premotor area, are strongly responsible for the inhibition
of habitual behavior during a modified RPS task. The evidence that the frontal areas
are highly engaged in the inhibition of habitual behavior is consistent with the results of
other SCR tasks, irrespective of the type of behavior. As for other tasks, it is known that
the ACC and the DLPFC are closely related to the execution of conflict monitoring, with
possible conflicts being detected and evaluated in the ACC and top-down adjustments
being exerted in the DLPFC [7,25,26]. As described earlier, neuroimaging studies using
modified RPS tasks have sufficiently demonstrated the distinct neural correlates of the
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inhibition of habitual behaviors [18–20,22–24]. Unlike past fMRI studies mentioned above,
to the best of our knowledges, there is no EEG study to investigate the cognitive control to
inhibit habitual behaviors by adopting the RPS paradigms directly. However, it has been
established that cognitive control is closely related to the theta oscillations ranging from
4 to 8 Hz in the frontal regions [27,28]. By using the flanker, Simon, and go/no-go tasks,
Nigbur and colleagues proposed that theta power is a marker for cognitive interference
that could measure enhanced processing demands [29]. In addition, the author showed
that the medial frontal cortex established long-range phase synchronization with visual,
motor, and lateral prefrontal cortices as well as an increase in theta power in the case of
cognitive control demands in a conflicting situation [30]. By using the Simon and flanker
tasks, another EEG-beamforming study investigated the neural source interactions in cog-
nitive interferences and proposed that interference processing and conflict resolution were
reflected in a broad theta network comprising the prefrontal region, such as the superior,
middle, and inferior frontal gyri, and the left supplementary motor area [31].

However, there are still limitations that need to be addressed by further studies. First,
as mentioned above, while many studies have revealed specific spatial and anatomical sub-
strates underlying the inhibition of habitual behaviors, little is known about the temporal
characteristics of the neural dynamics underlying these processes. Second, these studies
have not identified specific network patterns by means of functional or effective connec-
tivity related to these processes. Finally, past studies using RPS tasks have not analyzed
response times for the assessment of behavior response. To the best of our knowledges,
to date, no study has shown the distinct temporal characteristics of the neural dynamics,
including not only local power activity but also global networks, which are involved in
these processes. In this study, we thus aimed to reveal the overall spatiotemporal charac-
teristics of the neural dynamics underlying the inhibition of habitual behaviors that are
naturally established over a long period of time. To achieve this, we used spectral analysis
on electroencephalography (EEG) signals to identify overall spatiotemporal patterns in
local neural activities, and phase synchrony analysis on these multichannel signals to
recognize the specific characteristics of global functional networks that reflect the inhibition
of habitual behaviors during a modified RPS task.

2. Materials and Methods
2.1. Participants

Seventeen university students aged 21 to 27 years (mean age = 23.29; standard de-
viation (STD) = 1.93; 12 males and 5 females) participated in this study. Participants
were right-handed and had no history of neurological or psychological disorders; they
provided written informed consent and were paid for their participation. The study was
approved by the ethics committee of Ulsan National Institute of Science and Technology
(UNISTIRB-16-37-C).

2.2. Rock–Paper–Scissors Task

As one of the most famous games, the RPS game consists of three types of hand shape
that represent a rock, paper, and scissors, respectively. Two or more persons simultaneously
present one of their hands in one of three shapes. For the task, as described in Figure 1a,
the standard rules apply: rock wins scissors, scissors wins paper, and paper wins rock.
Based on the standard rules in RPS games, we adopted a modified RPS task comprising a
basic RPS (BRPS) task and two different conditioned RPS tasks (CRPS)—lose-conditioned
(LCRPS) and win-conditioned (WCRPS) tasks. That is, the modified RPS task in the present
study included three different RPS game conditions: (1) BRPS, (2) LCRPS, and (3) WCRPS.
These conditions were conducted separately, with two blocks per condition. A BRPS
block consisted of 30 trials, and LCRPS and WCRPS blocks consisted of 45 trials, so all
participants performed 240 RPS game trials in total over six blocks. Instead of an opponent
who played against the participants, three types of visual stimuli represented the RPS
actions corresponding to “ROCK”, “PAPER”, and “SCISSORS”. One of these RPS stimuli
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was presented at the onset of the auditory action cue and remained on the screen until
the end of the task. During a resting period, a black cross marker with a white color
background for eye-fixation was presented on the screen. The timeline of the RPS task in
the present study is illustrated in Figure 1b. The participants played all RPS games against
these RPS stimuli on screen accompanied by a sequence of auditory cues that consisted of
two different tones (500 and 1000 Hz) instead of the directive sounds “ROCK”, “PAPER”,
and “SCISSORS” used in the real RPS game. A trial began with the first preparatory
cue (abbreviated to “1” in this study) and was followed by the second preparatory cue
(abbreviated to “2”) and the action cue (abbreviated to “A”). The two preparatory cues
were identical low (500 Hz) tones, and the action cue was a high (1000 Hz) tone. All
auditory cues were presented for 100 ms, with a 500 ms time interval. All subjects perfectly
recognized the specific goal of the RPS condition as well as the common procedures of the
RPS task prior to the corresponding task.
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Figure 1. Diagram of RPS task procedures. (a) Standard RPS rules. (b) In the visual stimulus, a cross marker for eye-fixation
and three types of visual stimuli for each RPS action were presented on the screen. The blue arrow indicates the duration of
presentation of the fixation stimulus. The red arrow indicates the duration of presentation of one of the RPS actions. The
interstimulus interval (ISI) varied from 1 to 2 s. “1” and “2” indicate the first and second preparatory cues, respectively. “A”
is the action cue occurring at 0. “E” indicates the end of the trial at 1.0 s.

In the BRPS, the participants were asked to play a classical RPS game in accordance
with the auditory cues naturally, so they simply intended to present one of their hands in
one of three shapes at the onset of action cue (“A”). Thus, it is natural that the draw, lose,
and win rates in the BRPS would theoretically be expected to be 1/3, and the participant’s
RPS action would be in accordance with the onset of the RPS action’s cue as in a classic RPS
game. Figure 1a shows the standard RPS rules that was applied in the BRPS. In contrast,
both CRPS were modified by specific instructions. In the LCRPS, the participants were
instructed to lose all games intentionally; they were thus allowed to perform the suitable
action after watching the opponent’s action. However, they were instructed to decide
and perform their action within 1 s after the onset of the opponent’s action. Reversely,
in the WCRPS, we asked the participant to win all games intentionally, using the same
method as in the LCRPS. We, therefore, expected a win rate of 0% and 100% in the LCRPS
and WCRPS, respectively. For analytic simplicity, in this study, we defined a success
rate in both tasks that was ideally expected to be 100% instead using lose and win rates.
The task began with two consecutive BRPS blocks followed by two alternating series of
LCRPS and WCRPS blocks. All 240 RPS sequences for the opponents’ actions were created
prior to the experiment in a controlled random order to maintain the same probability of
RPS realization and transition as 1/3 and 1/9, respectively. That is, all probabilities for



Brain Sci. 2021, 11, 368 5 of 17

the occurrence of RPS actions were 1/3, and all probabilities for the transition from the
previous RPS action to the current RPS action were 1/9.

2.3. EEG/EMG Recordings

Participants performed all experimental tasks in a sound-attenuated and dimly lit
chamber. They were asked to sit on a comfortable chair at a distance of 60 cm from a 24 inch
full HD LCD computer monitor (1920 × 1080 resolution). All visual RPS stimuli were
presented on a white colored background and measured at 22.5 cm width × 20.5 cm height
(visual angle: 21.2◦ × 19.4◦) in the center of the screen. A fixation stimulus consisted of a
black cross marker (visual angle: 1.91◦ × 1.91◦) on a white colored background the same
size as the screen for the RPS stimuli. A ball-shaped supporter was attached to the table for
the fixation of the participant’s hand, and all participants placed their right hand on the
supporter with an open palm gesture so that all hand movements began from the same
gesture and position. We asked participants to perform their RPS actions as quickly but
“lightly” as possible to reduce the impact of muscle activity on EEG signals, and then to
return their right hand back to the fixation position. While participants were performing
the experimental tasks, we simultaneously recorded EEG and electromyography (EMG)
signals from the participants’ heads and wrists, respectively. Thirty-two-channel EEG
signals were continuously acquired using the amplifier (Brain Products GmbH, Munich
Germany) at a sampling rate of 512 Hz with active electrodes mounted on an elastic head
cap in accordance with the 10–20 international system. Impedance of all EEG electrodes
was kept below 5 KΩ. Online EEG recordings were made with respect to a left-mastoid
reference, with a ground lead placed on the right mastoid. In addition, we collected several
kinetic signals related to participants’ hand movements that consisted of eight-channel
EMG, a three-channel accelerometer, and three-axis gyroscope signals using a wrist-type
EMG device (Myo, Thalmic Labs, Kitchener, ON, Canada) at a sampling rate of 500 Hz via
wireless Bluetooth communication to detect the exact onset of all individual RPS actions.
All participants’ RPS responses were recorded with a video recorder and then manually
documented, offline, by two operators using a double cross-checking approach. Because all
experimental procedures were executed in accordance with the sequence of three auditory
RPS cues, we recorded not only EEG and EMG but also auditory sounds, captured on an
embedded sound card, for the detection of exact event times.

2.4. Response Time and Accuracy Rate Analysis

For the reliable measurement of individual response times, we first defined the onset
time of RPS action as the starting time of participants’ hand movements for RPS actions.
Instead of eight-channel EMG and three-channel accelerometer signals, three gyroscope
signals were used to determine the individual onset times because these gyroscope signals
were more stable and noise free than other signals. As illustrated in Figure 2, we first
defined the objective kinetic signals, K(t), as K(t) = gyroX(t) + gyroZ(t)− 2 ∗ gyroY(t),
where gyroX(t), gyroY(t), and gyroZ(t), corresponding to the x-, y-, and z-axis gyroscope
signals, respectively. Despite variations in amplitude and slope across epochs and partici-
pants, the gyroscope signals had the same bipolar pattern at the onset of participants’ hand
movements; however, the sign of gyroY(t) was reversed in comparison with gyroX(t) and
gyroZ(t). Second, we smoothed K(t) by using a moving average filter with an order of 20
and determined the positive and negative reference points as the first points that exceeded
the predefined double threshold set at ±0.1 × STD of K(t). All negative reference points
were earlier than the corresponding positive reference points. Finally, the onset point of
RPS action was determined by the first point that crossed zero values from the negative
reference point (in reverse). The response time was defined as the latency time between
the onset of the action cue (A) and the onset of the hand movement obtained from the
gyroscope signals. For the assessment of the behavioral data, we quantified two measure-
ments, response time (RT) and success rate, to evaluate the participants’ performance of
the RPS tasks and then examined these measurements statistically using two-way repeated-
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measures ANOVAs (rmANOVAs) with the within-subject factors order (first/second) and
task (LCRPS/WCRPS). False-discovery rate (FDR) corrections for multiple comparison
were applied [32].

Figure 2. Examples of electromyography (EMG) and kinetic signals and illustration of the onset detection algorithm. (a)
basic rock–paper–scissors RSP (BRPS), (b) lose-conditioned RPS (LCRPS), (c) win-conditioned RPS (WCRPS), (top) eight
EMG signals (blue color), three gyroscope signals (red color). (bottom) Kinetic signals (red color) for the onset detection of
participants’ hand movements. The black cross indicates the detected onset time. The two blue broken lines indicate the
positive and negative thresholds for the reference points, respectively. The black vertical lines indicate the time points in the
RPS epoch. The two dotted lines correspond to the two preparatory cues, and the solid line corresponds to the action cues.

2.5. EEG Preprocessing

All EEG and EMG analyses in this study were conducted off-line using the EEGLAB
toolbox [33] and custom Matlab codes (Mathworks, Natick, MA, USA). The EEG signals
were first band-pass filtered from 0.1 to 55 Hz using a zero-phase finite impulse response
(FIR) filter. To eliminate eye movement and muscle artifacts, we performed an indepen-
dent component analysis, removed the corresponding components manually by visual
inspection, and then recomposed them into the EEG signals. We constructed EEG epochs
covering the entire RPS task period from 1 s before the onset of the first preparatory cue
to 1 s after the action cue, with an additional residual margin (±1 s) to avoid unnecessary
edge artifacts from further signal processing analysis. The start and end points of EEG
epochs were abbreviated as “S” and “E”, respectively.

2.6. EEG Spectral Analysis

Prior to the following spectral and phase synchrony analyses, we first removed “bad”
EEG epochs by checking whether a trial represented a failed mission or whether the
corresponding RT exceeded 1 s after the onset of the action cue. Only the remaining “valid”
EEG epochs were used for further statistical analyses. From the 90 trials in both CRPS, the
average and STD of the number of valid EEG epochs across all participants were 77 ± 15.7
for the LCRPS and 89 ± 9.0 for the WCRPS, respectively.

Next, for the overall spectral characteristics of induced oscillations during the task,
a spectral analysis based on continuous wavelet transform estimated the event-related
spectral perturbation from the time-series EEG signal. The EEG signal was first convolved
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with a complex Morlet wavelet: w(t, f0) =
(
σt
√

π
)−1/2e−t2/2σ2

t e2πi f0t, where i was the
imaginary unit, σt = m/2π f0. For the trade-off between time and frequency resolution,
we determined the constant m = 5, in line with the study conducted by Nigbur and
colleagues [29], yielding a time and frequency resolution of the theta frequency band at
f0 = 6 Hz of σt = 0.133 ms and σf = 1.2 Hz, respectively. In each trial, spectrograms ranging
from 2 to 55 Hz were generated by averaging the squared absolute values of the convoluted
values. The boundaries for the baseline correction ranged from −0.5 to −0.1 s after the
onset of the first preparatory RPS cue. The power values for each frequency were applied
to a log-transform and subtracted from the mean of the baseline power. All spectrograms
in an epoch were ordered by condition (BRPS/LCPRS/WCRPS) and by task (first/second
for each condition) for the following statistical analyses. To remove the unwanted edge
effect from signal processing, all spectral procedures were performed in the total period of
EEG epochs. The residual margins (±1 s) were then eliminated from the EEG epochs.

2.7. EEG Phase Synchrony

Because we found a significant difference in the spectral power of theta frequency
(4–8 Hz) oscillations among the RPS conditions exclusively, these modulatory oscillations
were intensively examined with respect to the distinct characteristics of their neural syn-
chrony. More detailed spectral results are described in the Results section below. To
quantify the spatiotemporal characteristics of functional connectivity in theta oscillations
during the tasks, we estimated all phase locking values (PLVs) in each pair of EEG channels
by performing a phase synchrony analysis [34,35]. For the calculation of PLVs, we first
extracted instantaneous phase values of all EEG signals by applying the Hilbert transform
in combination with a band-pass filter as follows. The EEG signal was filtered in the theta
frequency range of 4 to 8 Hz using an FIR filter with an order of 256. If the filtered signal
is defined as x(t), by using the Hilbert transform, we can determine the analytic signal,
z(t) = x(t) + ix̂(t). The imagery part of x̂(t) is the Hilbert transform of x(t) defined
as x̂(t) = 1

π P
∫ ∞
−∞

x(τ)
t−τ dτ, where P is the Cauchy principal value operator. By using the

analytic signals expressed as z(t) = Aej(ωt+θ), the instantaneous phase value at time t was
defined as θ(t) = arctan

(
x̂(t)
x(t)

)
, where A is the amplitude of signal x at time t, ω is the

frequency, and θ is the phase. All filtering procedures for phase synchrony analyses were
performed with a two-way, zero phase-lag, least-squares FIR filter to avoid phase distortion.
To remove artifacts from edge effect during the signal processing, all filtering procedures
were performed in the continuous EEG signals. After converting the EEG epochs from
these continuous theta-filtered EEG signals, the residual parts of the EEG epochs were
eliminated as in the spectral analysis in this study. Next, we calculated instantaneous
phase differences of all pairs by subtracting the calculated instantaneous phase values
of the corresponding two signals. As we defined the PLVs between two signals as the
degree of consistency in phase difference between them at the same time across trials, these
values were calculated as the average of instantaneous phase differences at the same time
across trials. Therefore, PLVs ranged from 0 to 1; that is, if two signals were random, this
value was close to 0; otherwise, if two signals were perfectly synchronized, this value was
close to 1.

2.8. Statistical Evaluation

The PLVs for all task conditions were statistically analyzed to determine whether a pair
of EEG sites was significantly synchronized or desynchronized by using the permutation
test, called phase locking statistics, proposed by Lachaux and colleagues [35,36] and
replicated by Trujillo and colleagues [37]. Specifically, sample by sample, in each RPS task
condition, we constructed a set of surrogate PLVs in which the trial order at one EEG site
was randomly shuffled, and the PLVs between two sites were repeatedly calculated. A
sample in an RPS task condition had one original PLV and 500 surrogate PLVs because
500 permutation tests were conducted. Time courses of both the original PLV and the
500 surrogate PLVs were individually normalized by subtracting the mean and by dividing



Brain Sci. 2021, 11, 368 8 of 17

the STD of the baseline interval at −1.4–−1.0 s before the onset of the RPS action cue.
By averaging across 500 surrogate PLVs already transformed to z-score PLVs, we created
the representative surrogate z-scored PLVs for each RPS task condition. To display the
spatiotemporal patterns of synchronized theta pairs, we divided the entire time course
PLVs into eleven 200 ms time windows, as in the spectral analysis. For each time window
and each RPS condition, paired t-test analyses were used to compare the original PLV
and a distribution of averaged surrogate PLVs to decide whether the original PLV was
significantly higher or lower than the mean of the surrogate PLVs in each time window
(p < 0.05; false-discovery rate (FDR)-corrected). Finally, the statistical results obtained from
all participants in the same time window were aggregated, and nonparametric paired
Wilcoxon tests were conducted to determine a significant increase or decrease in synchrony
for each individual time window in comparison with the baseline (p < 0.05; FDR-corrected).

3. Results
3.1. Response Times and Success Rates

For the RT analyses, we compared the differences in RTs between the BRPS and the
CRPS, to clarify how the different RPS task conditions affect RTs. RT data were separately
aggregated and represented as frequency histograms with gaussian fitting, as illustrated in
Figure 3a. The average and STD were −0.5 ± 0.172 s for the BRPS and 0.245 ± 0.155 s for
the CRPS (where movement onset was set as 0 s), respectively. Note that the RT defined in
this study was the immediate time of subjects’ hand movements detected by the kinetic
signals. So, the mean RT in the BRPS was faster than the time of action cue, because
most subjects started their actions before the onset time of the auditory action cue in the
BRPS. A two-way rmANOVA on RTs revealed a faster performance for the first block
(F(1,16) = 39.361; p = 0.000) and a faster performance for the WCRPS (F(1,16) = 10.745;
p = 0.005). There was no interaction effect (F(1,16) = 0.040; p = 0.844). The RT average and STD
were 0.22 ± 0.10 sec for the first LCRPS, 0.31 ± 0.08 s for the second LCRPS, 0.18 ± 0.10 s for
the first WCRPS, and 0.27 ± 0.07 s for the second WCRPS (Figure 3b), respectively.

Figure 3. Statistical results of behavior data. (a) Two distributions of response times to RPS action in BRPS (black color)
and CRPS (green color), respectively. (b) Response times for the LCRPS and WCRPS for the first (red) and second (blue)
sessions, respectively. (c) Success rates for the LCRPS and WCRPS for the first (red) and second (blue) sessions, respectively.

For the success rate analyses, the rmANOVA for success rates revealed higher suc-
cess for the second block than for the first block (F(1,16) = 9.729; p = 0.007) and higher
success for the WCRPS than for the LCRPS (F(1,16) = 7.948; p = 0.012) (Figure 3c). There
was no interaction effect (F(1,16) = 1.628; p = 0.220). The average and STD of the suc-
cess rate increased from 0.85 ± 0.20 for the first LCRPS to 0.90 ± 0.17 for the second
LCRPS, and from 0.95 ± 0.13 for the first WCRPS to 0.97 ± 0.07 for the second WCRPS,
respectively. These results showed that there was both a repetition effect and lower task
performance in the LCRPS compared to the WCRPS. Concomitantly, we could obtain the
win, draw, and lose rates instead of the success rate in the BRPS, because there was no goal-
directed behavior. In the BRPS, the average and STD were 0.343 ± 0.084 for the lose rate,
0.329± 0.058 for the draw rate, and 0.333± 0.064 for the win rate, respectively. As expected,
there was no statistical difference among them. Regarding these behavior analysis results,
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we can summarize that the participants were more careful to respond with the proper RPS
action by accepting a slightly slower RT in the second block compared to the first block.
Moreover, they found that it was more difficult to perform the LCPRS compared to the
WCPRS, so it took longer to execute the proper RPS action in the LCRPS.

3.2. Overall Spectral Analysis

To examine the overall spatiotemporal characteristics of the induced EEG oscillations,
we constructed power spectrograms ranging from 4 to 50 Hz within an EEG epoch for each
RPS task ORDER and CONDITION, respectively. By performing two-way rmANOVAs
with 2 (ORDER: first/second) × 3 (CONDITION: BRPS/LCRPS/WCRPS) factors, we
examined statistical differences in spectral power among the three RPS task conditions
and found no main effect of ORDER and no interaction effect; we did, however, find a
main effect of CONDITION. Figure 4a, for example, illustrates three power spectrograms
calculated from the Fz channel that belongs to the mid-frontal area corresponding to BRPS,
LCRPS, and WCRPS, respectively. As shown in these logarithmic power spectrograms
before baseline correction, the three RPS task conditions consistently modulated both
theta (4–8 Hz) and alpha (8–13 Hz) bands but no other frequency bands. That is, the RPS
action onset triggered the pronounced decrease in alpha power activities and increase in
theta power activities. Moreover, as shown by the statistical results on the main effect of
CONDITION in Figure 4b, statistical differences in spectral power among the three RPS
tasks were exclusively observed in theta oscillations from 4 to 8 Hz in the mid-frontocentral
regions (FPz, F3, Fz, FC1, FC2, C3, and Cz). As with the other frequency bands, the
power decreased in the alpha band after the onset of RPS actions, which did not show any
significant difference among conditions.

Figure 4. Overall spectrograms for the three RPS tasks. (a) Three spectrograms of overall spectral characteristics obtained
from the Fz channel corresponding to BRPS (top), LCRPS (middle), and WCRPS (bottom), respectively. (b) Topographies of
statistical results on power differences among the three RPS tasks (one-way ANOVAs); statistical differences are indicated
by light red (p < 0.05) and dark red (p < 0.01) colors (FDR-corrected). In both A and B, “S” indicates the beginning of an
individual trial at −1.5 s, and “1” and “2” indicate the first and second preparatory cues at −1.0 and −0.5 s, respectively.
“A” is the action cue occurring at 0. “E” indicates the end of the trial at 1.0 s.



Brain Sci. 2021, 11, 368 10 of 17

3.3. Spectral Analysis of the Induced Theta Oscillations

Based on the observation of overall spectral changes during the RPS tasks illustrated
in Figure 4, we only focused on the induced theta oscillations and examined their specific
spatiotemporal characteristics specifically. First, the time course for theta power signals
was built by extracting and aggregating the spectral power corresponding to the theta
band. Next, for the significant differences in induced theta power between the LCRPS and
WCRPS, we conducted paired t-tests to examine spatial and temporal differences. The
analyses revealed that the statistical differences between the LCRPS and WCRPS were
significant at four sites (FPz, F3, Fz, and FC2) in the frontocentral regions between 0.25
and 0.50 s (Figure 5a). Within this time interval of interest, Figure 5a shows the 3D spatial
distribution of theta power across all scalp regions in the LCRPS (left top) and the WCRPS
(right top). Two 2D spatial distributions are illustrated as power differences in theta activity
between both conditions and corresponding t-values in the left bottom panel and the right
bottom panel of Figure 5a, respectively. Figure 5b shows the three individual theta power
time course signals calculated by averaging over the four significant sites corresponding
to the BRPS, LCRPS, and WCRPS. Interestingly, these time course signals showed both
common and distinct temporal characteristics of theta activities modulated by a sequence
of RPS tasks. Specifically, theta powers fluctuated according to two cues, a preparatory
and an action cue, and two or three peaks of power activity were observed at the onset
time of these cues, with some time delay. In the BRPS, three peaks of theta power time
course signals appeared to be observed, in accordance with the onset of the preparatory
and the action cue (1, 2, and A). The enhancement in theta power occurred consistently for
the interval between the two preparatory cues and disappeared after the onset of the action
cue (0 s). In contrast, in both CRPS, there were two large peaks of increased theta power
corresponding to the onset of the first preparatory cue and the action cue (1 and A), while
the mid-peak of theta activity corresponding to the second preparatory cue (2) markedly
decreased and disappeared in both tasks.

Figure 5. Spatiotemporal characteristics of theta power and phase synchronization with statistical results for all tasks.
(a) Two 3D topographies of the theta power in the LCRPS (top left) and the WCRPS (top right), respectively, and two
2D topographies of the power difference between the LCRPS and the WCRPS (bottom left), respectively, as well as the
corresponding t-values; four black circles in the frontocentral areas (FPz, F3, Fz, FC2) indicate statistical significance
(p < 0.05, FDR-corrected) (bottom right). (b) Time course theta powers averaged across the four EEG sites belonging to
the frontocentral regions. The dark area indicates the time interval of statistical differences (p < 0.01, FDR-corrected). “S”
indicates the beginning of an individual trial at −1.5 s, and “1” and “2” indicate the first and second preparatory cues at
−1.0 and −0.5 s, respectively. “A” is the action cue occurring at 0. “E” indicates the end of the trial at 1.0 s.
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3.4. Phase Synchrony Analysis of the Theta Oscillations

For the examination of the spatiotemporal characteristics of phase synchrony in theta
oscillations, we first divided the sample-by-sample statistical results of the PLV validation
test into eleven 200 ms intervals and then constructed the individual adjacent matrix
representing which pairs were significantly synchronized or desynchronized. Figure 6a
illustrates the three types of topographical patterns of significant synchronized pairs in
the theta oscillations induced by the different task conditions. As shown in Figure 6a, the
strongest phase synchronization in theta oscillations was observed in the LCRPS between 0
and 600 ms after the onset of the RPS action cue. As for other conditions, significant phase
synchronization pairs occurred rarely in the BRPS, and only a few synchronized pairs
were observed in the WCRPS. To evaluate the binary networks in all individual adjacent
matrices, we calculated two measures, the degree of nodes and efficiency. Figure 6b,c show
the degree of nodes and efficiency for all RPS conditions, respectively. Both measures
showed the early presence of synchronized pairs in the WCRPS and the stronger and more
pronounced synchronization in the LCRPS.

Figure 6. Spatiotemporal characteristics of theta phase synchronization for all RPS tasks. (a) Three series of topographies
for spatiotemporal patterns in theta phase synchronization during each RPS task. The black lines mean synchronized pairs,
and the green lines mean desynchronized pairs in comparison with the baseline (p < 0.05, FDR-corrected). The time stamps
in the top indicate the corresponding time interval. (b) Bar graph for the degree of nodes. (c) Bar graph for efficiency. In
(b,c), the time stamps at the bottom indicate the corresponding time interval.
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Based on these temporal patterns of power activation and of phase synchronization in
theta oscillations during the task, we further examined their occurrence in time. For the
examination of time differences between power activation and phase synchronization, the
relevant signals corresponding to all RPS task conditions needed to be defined at the same
time by reorganizing all corresponding time course signals. For this purpose, we averaged
all time course signals of frontal theta power amplitudes, which were obtained from the
Fz channel, and log-transformed and normalized all power values. We constructed two
representative time-course signals of power amplitude corresponding to the LCRPS and
the WCRPS for each trial and each subject within a 200 ms time window with a 50 ms shift
time (25% overlap). Figure 7a shows the time-course numbers of synchronized pairs in
the LCRPS and WCRPS separately. These results show the early presence of synchronized
pairs in the WCRPS and the stronger and more pronounced synchronization in the LCRPS.
Figure 7b illustrates the mean and standard error signals of theta power amplitudes for
both CRPS. In addition, we obtained peak times of theta power activities for these time-
course signals from all subjects. Figure 7c shows the peak time distributions of theta power
for both CRPS (first two boxplots) and the time distribution of the maximum differences
between these within an individual (last boxplot). The mean and STD of the RPS trial peak
times were 0.426 ± 0.229 s in the LCRPS and 0.352 ± 0.240 s in the WCRPS, respectively,
and these signals were maximally different at 0.526 ± 0.194 s. For the representation
of time-course signals of the degree of theta phase synchronization, we performed an
additional phase synchrony analysis (as described in the Methods above) by matching
the time resolution that was the same as that of the theta power amplitude calculation
shown in Figure 6b, with a 200 ms time window and a 50 ms time shift (25% overlap). For
each time window, we calculated the total number of synchronized pairs corresponding
to the LCRPS and WCRPS, respectively. Because we defined synchronized connections
across all subjects (as described in the Methods), we obtained the total time-course signals
for the total number of paired connections with peak times (marked with red and blue
squares for the LCRPS and WCRPS, respectively, in Figure 6a for each condition). To
examine the significant differences in power activation times and phase synchronization
between the two CRPS, we conducted one-sample Wilcoxon signed rank tests to determine
whether the peak time of phase synchronization was statistically different from the mean
of the distribution of peak times. These analyses revealed that the peak times of phase
synchronization in both the LCRPS and the WCRPS came before the power activation in
each condition (T = 84, Z = 2.665, p < 0.005 for the LCRPS; T = 153, Z = 3.602, p < 0.001
for the WCRPS; T is the value of the sign rank test that indicates the sum of the ranks
of positive differences, and Z is the value of the z-statistics). In addition, these analyses
showed that the time of the maximum difference in phase synchronization between the
LCRPS and the WCRPS preceded the time of maximum differences in power activation
(T = 133, Z = 3.343, p < 0.001). In sum, these analyses revealed two main findings related to
the time difference between two different neural dynamics, namely, local power and global
networks. First, in both the LCRPS and the WCRPS, the activation of the global network
preceded the activation of local power. Second, the differences in phase synchronization
between the LCRPS and the WCRPS appeared before differences in power activation.
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Figure 7. Time differences between power activation and phase synchronization in theta oscillations during the tasks. (a)
Time course signals of the number of paired connections in the phase synchronization network in the LCRPS (red) and the
WCRPS (blue), respectively. Red and blue square markers indicate the peak times, respectively. (b) Time course signals of
the average and standard error of the theta power in the LCRPS (red) and the WCRPS (blue), respectively. (c) Boxplots
for the distribution of individual peak times of theta power in the LCRPS (red) and the WCRPS (blue), respectively, and
time differences between the two conditions (black). As in A, red and blue square markers indicate the peak times of phase
synchronization in the LCRPS and WCRPS, respectively, and the black square marker is the peak time of time difference
between them.

4. Discussion

Grounded in the previous findings on neural correlates of the inhibition of habitual
responses from past neuroimaging studies, the present study extended these analysis to the
spatiotemporal characteristics of neural dynamics underlying this cognitive process. In the
following, we discuss the behavior and neural mechanisms underlying cognitive control
related to long-term established, habitual behavior responses established involuntarily
without any effortful learning.

4.1. Temporal Variation in Frontal Theta Power Reflects a Stream of Cognitive Processes

Considering the special role of the frontal area in cognitive control, it is not surprising
that conducting the modified RPS used here strongly reflected the neural dynamics over
the frontal regions specifically. For decades, many neuroimaging studies have addressed
the observation that the frontal regions in the brain, including the PFC, ACC, medial frontal
cortex (MFC), and SMA, are highly involved in the processing of cognitive control [38–40].
One meta-analysis of human fMRI studies concluded that the medial frontal cortex is
engaged in cognitive control related to adaptive goal-directed behavior that is needed
to monitor and adjust ongoing performance [26]. However, new findings in our study
indicated that the theta power amplitude was significantly higher in the LCRPS than
in the WCRPS and that the temporal characteristics of theta power in the frontal areas
directly reflected the stream of cognitive processes involved in the corresponding RPS
task. In the BRPS, which lacked any instructions, the time-course theta power showed
three distinct peaks with similar amplitudes in accordance with the three auditory cues for
the RPS game. In contrast, in both the LCRPS and the WCRPS, which included specific
goal-directed instructions, there were only two peaks of theta activity, corresponding
to the first preparatory and the action cues. Given the waning and waxing of frontal
theta power, we addressed that this apparently revealed the typical temporal dynamics
of theta power as a mediator of cognitive processes, although S-R mappings reflected
customary and habitual behaviors that were established without any explicit training.
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Considering this close relationship between frontal theta power and cognitive processes,
we speculate that the theta power peaks reflect the distinct stages of cognitive processes,
such as preparation and action for performing the corresponding RPS tasks, and postulate
that the differences in cognitive control between the RPS tasks induce differences in the
neural dynamics underlying theta oscillations sourced from the frontal areas, including the
PFC and the ACC.

4.2. Activation of Phase Synchronization Precedes Power Activity

One main finding in this study is that stronger phase synchronization was observed
in the LCRPS than in the WCRPS. We proposed that this appeared to reflect the processing
of cognitive control in which it largely engages in global interactions for inter-regional
communication. Generally, the functional characteristics of phase synchronization are
known to play pivotal roles in neural communication and plasticity [41]. Much evidence
supports that a variety of executive functions require specific phase-synchronized net-
works among task-relevant brain regions. Among them, the phase synchronization in the
theta oscillations is among the most important media in decision making [42,43], visual
perception [44], working memory [41], goal-directed behavior [45], and conflict detection
and resolution processes [46]. Like the habitual behavior responses in this study, Cavanagh
and colleagues reported that error-related EEG activities generated strong phase synchro-
nization between the medial (FCz) and lateral (F5/6) PFC when the participants performed
action monitoring in a modified Eriksen Flanker task. The authors addressed that this
finding reflected a mechanism of communication between networks related to action moni-
toring and cognitive control [47]. Similarly, using the speeded flanker tasks for perceptual
and response conflicts, Nigbur and colleagues observed that theta phase synchronization
between the medial frontal (FCz) and lateral frontal (F5/6) sites w only as enhanced at
the occurrence of response conflict in the incongruent response. The authors suggested
that theta oscillations in the MFC were engaged in conflict processing and linked with a
neural network for control response conflict [30]. In line with these previous findings on
the phase synchronization in the theta oscillations related to cognitive control, our results
demonstrated that the higher cognitive control to resolve the LCRPS condition requires
large-scale neural communication between task-related regions, which strongly modulates
the dynamics of theta oscillations. In addition, Cohen and Donner investigated the dynam-
ics of theta oscillations in association with action monitoring and conflict resolution in the
Simon and auditory–visual Simon tasks [46]. The authors divided the properties of ERP
signals into phase-locked and nonphase-locked components and proposed that the power
of nonphase-locked theta-band oscillations within the MFC is more reliably modulated
by the cognitive control rather than by phase-locked EEG components. In this study, we
found that the onset time of power activation in the phase-locked components was faster
than that in the nonphase components. Regarding the onset time difference between
phase synchronization and power activation in the LCRPS, we proposed that the precedent
theta phase synchronization reflected in the large-scale neural communication within the
brain before the proper task-relevant regions mainly operated in specific goal-directed
cognitive controls.

4.3. The LCRPS Is More Difficult Than the WCRPS

Statistical analyses on the behavioral data showed that it was more difficult for the
participants to perform the LCRPS than the WCRPS. Generally, this finding is line with the
evidence shown in two past studies using modified RPS tasks [19,23]. In the Matsubara
study, during the modified RPS tasks consisting of DRAW, LOSE, and WIN conditions
in the right-hand block, the error rate was higher for the LOSE condition than for the
WIN condition. Given these behavior results, the authors suggested that it is natural
behavior for people to attempt to win the game [19]. In the Kadota study, a significant
difference in the mean correct performance was observed between two different groups,
a win group and a lose group. The win group achieved higher correct rates than the lose
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group [23]. Consequently, our behavior results were in line with both intersubject and
intrasubject evidence that the participants were accustomed to trying to win the game. In
addition, these behavior characteristics were firmly supported by the statistical analysis
on the response time, which has not been addressed before. Notably, we first defined the
response time as the exact onset of hand movement in this study. To assess and analyze the
RT data, it is necessary to define a fiducial time point as the response time during the real
hand movement in the task. Therefore, most of the RTs in the BRPS preceded the onset of
the action cue because all participants were just starting to move their hand before they
heard the action cue. Given the behavior results of RTs showing a slower RT for the LCRPS
compared to the WCRPS, we verified that it is more difficult to perform the LCRPS, which
demands more cognitive processing. Similarly, a recent study by Cooper and colleagues
reported that the increase in frontal theta power could predict the size of the cognitive
switch cost and decreases in the RT [48]. Therefore, we concluded that the difficulty in
the LCRPS led to lower success rates and longer RTs in the LCRPS, which required higher
cognitive control to inhibit habitual responses.

4.4. Limitations and Future Work

The present study demonstrates the pivotal role of the frontal regions in the inhibition
of habitual behavior by showing distinct temporal patterns in theta dynamics. However,
it has several limitations. First, due to the small number of EEG channels used in this
study, we could not perform source localization to investigate specific neural correlates
of these processes. There are still some controversial arguments about how many EEG
channels are needed for reliable source localization. The 32 EEG channels used in this study
barely satisfy the minimum number for reliable source localization [49,50], so we could
not guarantee that some results from source localization provided more reliable findings
compared with past anatomical results from fMRI studies. Second, we were not able to
account for the observed repetition effect using long-term training on the LCRPS because
there were only 90 trials (2 blocks) of the LCRPS performed in one day. With more trials, we
may address the following questions: Is it possible that the inhibition of habitual behavior
can be trained? If it is possible, how does the difference in RPS tasks change the response
times and spatiotemporal characteristics of neural dynamics? We speculate that it would
be possible to increase the performance of the LCRPS to close to the level of the WCRPS
through training, and the differences in neural dynamics between both CRPS tasks would
be reduced. However, this should be verified and explained by further studies.

5. Conclusions

This study identified that the cognitive control for the inhibition of habitual behaviors
intensively modulated the spatiotemporal changes in theta oscillations. In line with the
degree of difficulty in this cognitive control, the preceding global phase-synchronized
network and the following frontal power were activated in the theta oscillations. These
results demonstrated that the cognitive inhibition of habitual behaviors was apparently
reflected in the theta oscillations, although it was established involuntarily without any
effortful learning.
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