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ABSTRACT

The success of Deep Learning in various tasks is highly dependent on the large amount of

domain-specific annotated data, which are expensive to acquire and may contain varying

degrees of noise. In this doctoral journey, our research goal is first to identify and then

tackle the issues relating to data that causes significant performance degradation to real-

world applications of Deep Learning algorithms.

Human Activity Recognition from RGB data is challenging due to the lack of relative

motion parameters. To address this issue, we propose a novel framework that introduces

the skeleton information from RGB data for activity recognition. With experimentation, we

demonstrate that our RGB-only solution surpasses the state-of-the-art, all exploit RGB-D

video streams, by a notable margin.

The predictive uncertainty of Deep Neural Networks (DNNs) makes them unreliable

for real-world deployment. Moreover, available labeled data may contain noise. We aim

to address these two issues holistically by proposing a unified density-driven framework,

which can effectively denoise training data as well as avoid predicting uncertain test data

points. Our plug-and-play framework is easy to deploy on real-world applications while

achieving superior performance over state-of-the-art techniques. To assess effectiveness of

our proposed framework in a real-world scenario, we experimented with x-ray images from

COVID-19 patients.

Supervised learning of DNNs inherits the limitation of a very narrow field of view in

terms of known data distributions. Moreover, annotating data is costly. Hence, we explore



self-supervised Siamese networks to avoid these constraints. Through extensive experimen-

tation, we demonstrate that self supervised method perform surprisingly comparative to

its supervised counterpart in a real world use-case. We also delve deeper with activation

mapping and feature distribution visualization to understand the causality of this method.

Through our research, we achieve a better understanding of issues relating to data-driven

learning while solving some of the core problems of this paradigm and expose some novel

and intriguing research questions to the community.

INDEX WORDS: Computer Vision, Deep Learning, Data Efficient Learning, Data
Denoising, Data Abstention, Human Action Recognition, Self-
Supervised Learning.
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CHAPTER 1

Introduction

The success of Deep Learning Models has led to the deployment of these models into real-

world use-cases. However, often the success achieved in a controlled environment does not

translate well into real-world scenarios. In this research path, we aim to thoroughly in-

vestigate this issue and propose solutions to mitigate it. In this chapter, we present the

general introduction of the research we embark upon to provide a summary of the work, our

motivation and contributions, and the challenges we faced along the way.

1.1 Data Driven Learning

Deep Learning has been highly successful in a variety of tasks, including but not limited to,

Computer Vision [8, 9, 10], Audio Processing [11], Natural Language Processing [12], Medi-

cal Imaging [13], etc. One of the most notable successes can be observed in Computer Vision;

from simple handwritten digit detection [14] to complex Human Activity Recognition [10].

Deep Models have outperformed humans in complex visual tasks [8, 15]. However, this suc-

cess did require an extensive amount of high-quality data, e.g., ImageNet [8], one million

youtube videos[16], etc. Deep Neural Networks (DNN) heavily rely on data to learn mean-

ingful patterns or features. One of the reasons that traditional shallow Machine Learning was

not as successful as Deep Learning was that the features were required to be hand-crafted

depending on the task; hence these models did not translate well if presented with complex

data. The automated feature extraction capability of DNNs has caused a revolution in the

data-driven learning paradigm.
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The success of Deep Learning inspired wide deployment of DNNs in practice. Without

even realizing, we are utilizing technologies powered by Deep Learning in our day to day

life [17]. From search engines to voice assistants like Alexa or Siri, face unlocking smartphones

to cashier-less shopping, we experience the convenience of Deep Learning powered Artificial

Intelligence (AI). However, researchers face significant issues when translating DNN models,

that are proven successful with benchmark datasets, to real-world scenarios. Very large

DNNs require heavy hardware support, blocking deployment of such high performing systems

in computationally constrained environments, e.g., IoT and mobile devices. Data-driven

learning methods often fail to extract useful features if the data size is too small or not

clean. In some cases, traditional DNNs fail to extract sufficient information to identify

subtle differences from available limited training data. Researchers have been working on

bypassing these issues of labeled data for supervised training and working on alternative

approaches to training Deep Neural Networks (DNNs). Unsupervised, semi-supervised, and

self-supervised learning have been proposed and a great effort has resulted in significant

improvement in these fronts. However, there is still a lot of research to be done in this

regard.

1.2 Explainable Artificial Intelligence

The lack of transparency and explainability of AI systems has created a vast open area for

potential research [18]. Very recently, the term, “Explainable Artificial Intelligence” has

gained popularity among researchers and general users. Not long ago, people used to refer
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to Deep Learning as magic and got used to treating DNNs as a magical black box, where

given enough data and a task, it can generate good performance. In some use-cases, this

approach worked well (e.g., face recognition). However, this trend hit a brick wall when,

in some scenarios, high performing DNNs failed to deliver good enough results to a similar

yet real-world task. Researchers tried to understand the rationale behind and figured that

treating DNNs as black boxes can lead to several pitfalls, hence the performance degradation.

1.3 Issues faced by Data-Driven Learning

Explainable AI systems aim towards associating causality and rationale behind the decisions

made by DNNs, which can explain the misled predictions from them. In this research path,

we intend to exploit the insights we gain from the explainability to empower the DNNs to

differentiate unknowns from knowns and better utilize available data.

1.3.1 Perfect Data does not Exist

The availability of desired data can dramatically improve the performance of DNNs, yet

often such data is scarce and expensive in real-world scenarios [10]. Hence, the optimal

system should be able to make the best use of the available data.

For example, Human Activity Recognition (HAR) is inherently complex due to the inter-

class affinity and intra-class diversity. Hence, recognizing activity is a difficult task, which

has attracted numerous researchers’ attention [19, 20, 21, 22]. Most of the high performing

methods utilize RGB-D video data or sensor data to track movements accurately [3, 5, 7, 6].

However, in many real-world use-cases of human action recognition, the use of depth enabled
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cameras or wearable sensors are not practical due to economic factors and the complexity of

such specialized equipment.

Even though state-of-the-art image classification methods have surpassed human-level

accuracy [8], the performance of methods based on the RGB video stream proposed in the

literature for activity recognition is still unsatisfactory. One of the reasons behind this is that

the multi-modal data provide a higher quantity of information, and the depth information

provides precise detection of movement in the scene, which is not the case for RGB data. The

usability issue of specialized equipment led surveillance systems to use simple RGB cameras.

Therefore, a solution that efficiently leverages more widely available RGB videos to detect

and classify human motion would benefit the real-life applications and the users.

1.3.2 Data can be Noisy

With better utilization of available data, we may increase the performance of a real-world

AI system. Still, even these systems fall short of delivering reliable performance due to noisy

training data. Large amounts of manually annotated data often pose a gridlock constraint

towards the success of DNNs. Meta information based automated data collection has been

explored as an alternative to manual annotation [23]. However, both types of data acquisition

methods are susceptible to error and can introduce noise to the dataset, which results in

performance degradation of deep models [24].

We observe that noise in training data often throw DNNs off the rail. Even though state-

of-the-art DNNs are somewhat robust to a small amount of data noise, a high degree of noise

may significantly disrupt learning. Noise in training data makes learning harder, and with
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time, large DNNs tend to overfit the data, learning the noise as patterns. This phenomena

is defined as Memorization [25].

Noise in image or video domain can be of different types; random pixel noise, predom-

inantly crafted noise to fool DNNs (also known as Adversarial Examples [26]), label noise

while data collection, etc. In this work, we mainly focus on label noise in training data.

This type of noise can be especially damaging for deep models, as feature learning in DNNs

highly depends on associated labels for supervised learning. Noisy labels can easily confuse

deep models and hamper the learning significantly. Other types of noise mentioned above

are often introduced intentionally during training to improve the robustness of DNNs.

Being one of the major issues, training data noise has received a lot of attention from

the research community. There are several methods proposed in the state-of-the-art (SOTA)

literature to avoid noise during training. These methods can be categorized into two major

types; filtering noise in the preprocessing step and handling noise during training [27]. The

first type of solution tries to model the noise and filter it out before the training process,

while the second type utilizes specialized loss to create a robust model that can sustain noisy

data. However, existing solutions in the literature require significant modification to SOTA

DNNs, making it difficult to deploy in practice.

1.3.3 Data can be Confusing

Besides having noise in the training data, the in-the-wild data samples can be problematic

as well. In theory, researchers assume samples of the training set and test set are drawn from

very similar if not the same data distribution, which is not a realistic assumption. In real
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world, data samples may come from a completely different distribution than the training

phase. High performing DNNs do not possess the capability to differentiate between in and

out of distribution data samples, resulting in erroneous predictions [28]. Often data samples

from the edge of data distribution with affinity to other distributions cause confusion, but

lack of proper detection capabilities force DNNs to make predictions on these confusing

samples.

1.3.4 Data Annotation is Expensive

In most real world scenarios, available annotated data are very limited. Noise-free data

annotation is expensive in terms of time and resources and this process is highly error-

prone. More importantly, labeling life-critical data, e.g. medical data requires expert domain

knowledge and high precision, which is even more resource-intensive. Hence, if the process

of annotating large amount of data can be avoided, we can reduce cost significantly while

reducing the risk of noisy annotation.

(a) (b) (c)

Figure 1.1 Dummy data distributions simulating different learning scenarios: (a) in an ideal
scenario, (b) in presence of confusing samples that lie in the border of two distributions
(highlighted in gray), and (c) in presence of label noise, where a fraction of samples are
mislabeled.

In a data-driven learning paradigm, it is not feasible to learn all possible data distribution
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in an open world scenario, which marks a crucial issue with DNNs: Uncertainty or Risk,

reducing the trust in and the verifiability of an AI system entrusted with critical decision

making, e.g., healthcare systems, autonomous vehicle, secure authentication systems, etc. It

is natural to make errors, even by a human, but we have a critical capability to differentiate

between things we know and things we do not know. We often look for an expert’s opinion

when we are unsure about something. We go to doctors when we feel sick; we go to a

mechanic when our vehicle breaks down. In short, we humans can always refer to experts

when in confusion. However, even the most successful DNNs do not know what it does not

know, forcing themselves to decide with the limited knowledge it has from the training. It is

crucial for a reliable and robust system to differentiate between the known and the unknown.

We envision that a perfect AI system is not the one that has very high accuracy in

a particular task. Rather a perfect AI system should be the one that may make wrong

predictions due to the lack of knowledge or due to confusion, yet be able to identify such

instances and refrain from making a decision. There exists no perfect system that can achieve

optimum performance in a given task, but there should be systems that can identify where

it can potentially fail to make the right decision.

1.4 Mitigation of Shortcomings of Data-Driven Learning

In the previous section, we presented different issues with data. Now, we aim to explore

solutions to mitigate each of these issues.
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1.4.1 Data Enhancing

In subsection 1.3.1, we have discussed how desired data can be unrealistic in real-world

scenarios. Hence, extracting important features from available sub-optimal data is crucial.

In the Human Activity Recognition scenario, we aim to optimize learning from more available

RGB data instead of costly RGB-D data.

Traditionally, the works on RGB video stream are based on handcrafted features [29,

30, 31, 32, 33]. These approaches are highly data domain-dependent. Due to this problem,

these methods are hard to deploy in real life despite the higher accuracy they achieve. With

the advent of deep learning, methods were proposed where features could be automatically

extracted [34, 35, 36]. Successful use of deep learning with image classification inspired

researchers to deploy such methods in video classification [22]. These methods use raw

RGB frames, often coupled with motion, to learn the temporal features. But the complex

background and partial occlusion of subjects often cause these methods to perform poorly

compared to the handcrafted solutions.

Approaches based on multiple modalities of data [3, 5, 7, 6], however, achieves higher

accuracy even with complex actions. Skeleton information extracted from depth images is

proven very efficient in extracting important features of action. Inspired by that, in this

paper, we propose a technique that aims at separating salient features from the scene by

extracting skeleton key-points rather than using raw frames. We propose to use Openpose

API [37] as a black box to extract the skeleton key-points from each frame. These key-point

features are then fed into a Bidirectional Long Short Term Memory (BLSTM) based model
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to learn the spatio-temporal representations, which are subsequently classified by a softmax

classifier.

We use RGB-only modality for our experimental evaluations, whereas SOTA methods

utilized multiple available modalities (RGB, depth, inertia, and skeleton data). This essen-

tially reduces training data to one forth for our experiments compared to SOTA. Hence,

we are dealing with one of the key challenges of deep learning, i.e., training with limited

labeled data. To train the deep network effectively, we explore data augmentation and a few

additional algorithmic approaches. Experiments on two popular and challenging benchmark

datasets validate the effectiveness of these techniques and these approaches help to boost the

performance of our RGB-only solution even higher than that of state-of-the-art, which all

exploits RGB-D videos. We provide evidence that the proposed scheme is more cost-effective

and highly competitive than RGB-D based solution and, therefore, widely deployable.

1.4.2 Data Denoising and Abstaining

Noise in training data and confusing data samples during inference often coincide in real-

world scenarios. In our work, we aim to tackle both these issues in a unified manner.

For detecting and filtering label noise from data, recent works have utilized a scheme

that reduces misclassification loss by incurring penalty while training the model [38, 1].

SelectiveNet [1] proposes a specialized rejection model that learns to reject any sample that

produces high cross-entropy loss under the constraint of user-specified coverage. The authors

show that with different training coverage, inference performance can be improved with

corresponding calibrated coverage. DAC [38] proposed by Sunil Thulasidasan et al. utilizes
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a similar scheme that abstains hard to learn samples by learning the coverage constraint

while training. After introducing artificial noise to data, they show that their method can

identify that noise, and after filtering them, DNNs can achieve State-Of-The-Art (SOTA)

performance. However, these prior works on detecting noisy samples do not evaluate their

performance in a unified manner on training data noise detection and abstention of noisy

test data. To the best of our knowledge, no unified framework is known to perform well on

both tasks in an end-to-end manner.

To address this, we propose a simple yet effective framework, which can be applied to

any SOTA models for both training and test data filtering without any alteration to the

model architectures or loss functions. The high-level idea is to model the underlying data

distribution in such a way that any sample lying outside known data distribution or sample

that is equally distanced from any two or more distributions will be regarded as noise.

Deep models are proven to learn from dominant features at the beginning of the training

process before memorization occurs [25, 39]. Hence, deep models, trained with best-practice

choices to reduce overfitting, learn robust features even with the presence of noise. We assume

that such pre-trained models can learn the underlying data distribution reliably but at the

cost of a higher error rate. Under this assumption, we utilize the class-specific density of

samples in the feature space to identify noisy samples during training and utilize this training

data density to identify uncertain samples during inference. With empirical analysis, we

observe a strong correlation between the distance of samples from data distribution and the

noise associated with them.
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We demonstrate our proposed framework’s effectiveness in both tasks of denoising train-

ing data and test data abstention with widely used DNNs on benchmark datasets. Our pro-

posed method outperforms the state-of-the-art method, DAC, on denoising training data.

Moreover, we demonstrate the superior performance of our method over SelectiveNet on test

data abstention given different coverage calibrations. Through visualization of data samples

in feature space, we further justify the effectiveness of our proposed framework.

1.4.3 A Use-case of Data Abstention

As the main goal of this research is to bridge the gap between prototyping and real-world

deployment, we seek to test the capabilities of our proposed framework on reducing risk

and uncertainty of DNNs in life-critical applications. The use of DNNs has been immensely

increasing in the medical imaging field [13], e.g., Computer-aided diagnosis (CAD) [40],

medical image analysis, etc. Diagnostic tasks in medical imaging essentially require “learning

from data” for a large and complex deep model. Even though CAD has been studied widely,

the uncertainty of DNNs in medical imaging is remarkably understudied. Hence, we aim

to provide a comprehensive study of existing methods for mitigating uncertainty in a life-

critical decision-making scenario. There exist several medical imaging datasets, e.g., Lung

Xray and Lung CT scan images for pneumonia detection, Brain MRI for Alzheimer disease

detection, etc. The latest addition to these repositories is the COVID-19 lung Xray and ct

scan dataset.

The COVID-19 caused by the SARS-CoV-2 virus has been declared a pandemic, and it

is causing worldwide devastation and taking a heavy human toll [41]. The gold standard
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rtPCR test to detect COVID-19 suffers from complicated sample preparation, low detection

efficiency, and high false-negative rate [42]. Often, critical COVID patients develop lung

infection, and it can be visible through chest X-ray and CT scan [43]. A DNN enabled

CAD system can potentially be utilized to diagnose COVID through medical image inspec-

tion and provide noninvasive detection solutions that would prevent medical personnel from

contracting infections.

A lot of research is being conducted in this particular field, and some high performing

models have been proposed [42]. COVID-Net [2] is such a model that achieves 94% positive

predictive value (PPV) for detecting COVID positive Xray samples. Even though this is a

very high accuracy, the predictive uncertainty problem still persists.

In this work, we evaluated two state-of-the-art methods from the literature that helps

mitigate uncertainty by abstaining samples during inference; SelectiveNet, and our proposed

method. We demonstrate that our proposed method outperforms the SelectiveNet in re-

ducing uncertainty. We also propose a statistical testing based feature selection method to

improve the abstaining framework to achieve higher PPV.

1.4.4 Self-Supervised Learning on a real-world usecase

To further investigate data driven learning and to reduce load on data annotations, we ex-

plored state-of-the-art self-supervised learning on real-world usecase, specifically, on COVID-

19 detection from CXR images. As proven in the literature, proper representation learning

can boost the accuracy and robustness of the DNNs. However, most of these successful mod-

els rely on a very large amount of labeled training data, i.e. ImageNet [8], Youtube8M [44],
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etc. Transfer Learning often helps in this regard, however, pretraining datasets often require

to be of a similar domain to avoid the issue of domain-mismatch. While transfer learning

has been proven successful across different domains, researchers mostly utilized annotated

datasets from a similar domain, which is not always available or easily attainable for a variety

of tasks. Self-supervised learning has proven to perform very similarly on several complex

tasks with Supervised Learning, not relying on large annotated datasets [45, 46, 47, 48].

Self-supervised learning methods, hence, can reduce the cost of annotation by only using a

fraction of labeled data to finetune on a specific task at hand.

1.5 Objectives

The final goal of this research work is to ensure data-efficient reliable learning of deep models.

To break it down, the objective of this research is three folds.

• Efficient use of Data towards better performance.

• Denoising data to avoid distraction while learning.

• Mitigate risk and uncertainty of Deep models by abstaining from inferring.

• Minimize load on data annotation by utilizing self-supervised training.

As we discussed in the previous section, we have touched all three of our research objec-

tives with the completed work. However, we strongly feel that there are a number of open

research questions around our third objective. We only covered how to abstain confusing

samples; however, there still remains the issue of tackling out-of-distribution samples and
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the adversarial samples. Though several methodologies exist to address these issues, similar

to the other SOTA works, these methods require extensive modification to the model itself,

making them less suitable for real-world deployment.

1.6 Motivations

From the dawn of AI, researchers have made significant progress on a wide variety of tasks.

Yet a major issue persists when transferring models from controlled experimental settings

to reality. Noisy environments, the wide gap between training and in-the-wild samples, data

annotation bottleneck, and unreliability still bar DNNs to be efficiently deployed in the real

world. A significant amount of researches are being conducted to address these issues. Yet,

still, we have a long way to go before we can safely and with confidence deploy Deep Models

in critical decision-making tasks. This is the driving force of this research. We aim to close

this aforementioned gap with our research journey.

1.7 Challenges

While undergoing research to tackle the aforementioned issues, we have encountered several

challenges, especially associated with data. In this section, we try to summarize the most

critical challenges we faced during our research.

• Very limited amount of labeled data is readily available. Though extensive datasets are

made available by researchers in some domains, such a large amount of data collection

is very costly and error-prone.
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• Large datasets often contain label noise. Moreover, as mostly these noises are uninten-

tional, no information regarding them are present. The detection of such noise, thus,

mandate human verification, which is expensive and time-consuming.

• Large DNNs require high computational power, and training them is a lengthy process.

With limited resources, training large DNNs on extensive datasets were challenging and

often infeasible.

• Medical data are often privacy protected and scarce.

• Annotating medical data with the highest precision is even costlier, hence, the scarcity.

• Several potential projects could not be completed due to limited resources and time.

We have explored automated augmentation techniques that are learned from data

itself. We also have explored facial expression recognition, small object detection in

the heterogeneous field of view, and distress detection from video feeds. However,

carrying out these works demanded resources that were scarce, resulting in them being

abandoned prematurely. Competing with larger research teams with an abundance

of resources is challenging, especially in the fast moving field of Deep Learning and

Computer Vision.

1.8 Contributions

In this research journey, we have delved deep into different issues associated with data in

Deep Learning. In the process, we have made core contributions to the data-driven learning

paradigm. We list the contributions below.
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1.8.1 Human Action Recognition from Limited labeled data

• We proposed methodologies to efficiently extract important features from RGB-only

videos for human activity recognition.

• We leveraged data augmentation to tackle the problem of limited labeled data in deep

learning and compensate for the data sparsity issue caused by using RGB-only modal-

ity.

• Additionally, we explore a few algorithmic approaches such as Dynamic Frame Dropout

(DFD) and Gradient Injection (GI) to train the deep architecture effectively.

• We evaluate our proposed framework and demonstrate for the first time that using

RGB-only streams we can surpass the state-of-the-arts RGB-D based solution and

make our RGB-only solution widely deployable.

1.8.2 Unified Framework to handle Data Noise and Confusing data samples

• A novel approach to filter noise from both training and test data samples. We propose

a density-driven approach for data denoising and abstaining. We introduce modality

analysis and adaptive thresholding to differentiate between noise and clean data.

• End-to-end data filtering framework to improve deep models’ reliability in a realistic

noisy environment.

• Easy to incorporate in any real-world image classification applications as the framework

works without modifying existing SOTA deep models.
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• Through extensive experimentation and performance analysis, we demonstrate the

proposed framework’s performance benefit over existing SOTA methods.

1.8.3 Mitigating Uncertainty in Life-Critical applications of DNNs:
COVID-19

• Investigation of uncertainty estimation methods to detect confusing cases on COVID

diagnosis. To the best of our knowledge, we are the first to comprehensively study the

uncertainty of CAD systems on COVID diagnoses.

• Utilization of feature filtering algorithm to augment uncertainty estimation framework

in order to improve positive predictive value.

• Validation of the abstained samples by the best performing framework with medical

professionals. Expert opinion on confusing samples abstained by the framework further

validates the usability of the framework on screening COVID patients.

• Through extensive experimentation and performance analysis, we provide proof of

efficacy of the SOTA uncertainty estimation methods on COVID-19 diagnosis.

1.8.4 Uncertainty Aware Self-Supervised Contrastive Learning towards
Efficient Representation Learning on COVID-19 detection

• In order to understand the efficacy of siamese-based representation learning, we study

SimSiam Network [48] on the real-world scenario of detecting CODIV-19 from chest

x-ray images.

• Visualized gradient activation to evaluate the causality of representation learning by

SimSiam network.
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• Incorporated DbFF framework [28] to reduce the uncertainty of predictions by SimSiam

network.

1.9 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 reviews existing approaches

to Human Action Recognition, Data noise and uncertainty, and risk mitigation of DNNs

and COVID diagnose. Chapters 3, 4, 5 and 6 present our proposed approaches for Human

action recognition, data denoiser, COVID diagnosis and uncertainty aware self-supervised

representation learning. Finally, Part 7 concludes the thesis and discusses directions for

future work.
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CHAPTER 2

Related Works

In this chapter, we explore some state-of-the-art literature that are relevant to our research.

First, we look into the literature relating to Human Action Recognition. Then, we go

through how researchers have proposed different methodologies to combat noise in data and

handle confusing data during inference. We look into how deep learning is being utilized

in Medical Image analysis for disease detection, especially, detection of COVID-19 from

xray and CT scan images. Lastly, we explore self-supervised learning and siamese networks.

These literature reviewing assisted us not only to better understand the problem we hope

to tackle, but also to deliver more sophisticated solutions for them.

2.1 HAR

Human activity recognition has been extensively studied in the recent years [21, 22, 49].

Most of state-of-the-art methods trying to solve this problem using RGB data are based on

handcrafted feature [29, 30, 31, 32, 33]. Schuldt et al. [29] present a method that identifies

spatio-temporal interest points and classifies action by using SVMs. Zhang et al. [30]

introduce the concept of motion context to capture spatio-temporal structure. Liu and Shah

[31] considered correlation among features. Bregonzio et al. [32] proposed to calculate the

difference between subsequent frames to estimate the focus of attention. These methods

often achieve very high accuracy, however, hand-crafted features are highly data dependent,

hence not viable in real world.

Baccouche et al. [34] propose to use deep learning based Convolutional Neural Network
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(CNN) to extract spatial features and then use LSTM to learn the temporal features. Ji

et al. [35] present 3D CNN to classify actions which learns inherent temporal structure

among the consecutive frames. A two-stream CNN based method is proposed in [36]. These

methods, however, fail to achieve higher accuracy primarily because of the raw RGB frames

being used as input. Higher level feature vectors from CNN feature extractor fails to capture

sharp changes due to deep convolution and pooling.

Skeleton information from RGB-D video is being widely studied to improve recognition

accuracy. Liu et al. [50] propose a CNN based approach leveraging the skeleton data.

In [51] the authors propose hierarchical bidirectional Recurrent Neural Network (RNN) to

classify the human actions. Inspired from this work, we adopt bidirectional LSTM in our

method. However, we have not used skeleton data hierarchically and we extract skeleton

keypoints from RGB frames unlike [51], where the skeleton data is extracted from depth

information. Methods proposed in [6] and [5] utilize skeleton data on three CNN streams

that are pretrained on large ImageNet Dataset [52]. Li et al. [7] use view invariant features

from skeleton data to improve over [6] and [5], and they used similar four stream pretrained

models. All these methods utilize skeleton data, either extracted from depth data or kinect.

Evidently, methods leveraging skeleton data, extracted from depth information, edges

over methods that simply take raw frames as input. This inspired us to look deeper into how

skeleton extracted from RGB frames can be utilized to robustly classify actions. To the best

of our knowledge, we are the first to leverage skeleton key-points extracted from RGB-only

videos for human activity recognition. Although there exist a few CNN and LSTM based
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approaches for activity recognition, none address the issue of redundant information from

raw frames. We also emphasize more on algorithmic approaches to address the training

issues of deep networks, such as limited training data, overfitting and gradient vanishing.

Enhanced by these techniques, our RGB-only solution is able to surpass the state-of-the-arts

that all exploit RGB-D streams.

2.2 Denoising and Abstention

2.2.1 Selective Prediction

Classification with a reject option has been explored by researchers to tackle the prediction

uncertainty of deep models [53, 54, 55, 56, 57]. One idea of implementing selective prediction

is to define a threshold on posterior probabilities [54, 55]. Various SVMs-style variants have

been developed to incorporate reject option with classification tasks [56, 57].

Another more recent trend in this domain is to learn the prediction and the selection

parameter jointly [1]. SelectiveNet [1] proposes a user-defined coverage constraint to learn

to abstain samples with high classification loss. By minimizing overall loss, the model learns

to abstain from test samples that are difficult to predict. However, in order to set a coverage

constraint for the model, users need to have information about the magnitude of noise

present in training data, which is infeasible in a real-world scenario. The authors have not

demonstrated the effect of noise in training data, which will throw the whole system off the

rail, as the model will learn to abstain noisy samples from the training data and potentially

misclassify the test samples. One more issue we observed with SelectiveNet is that through
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the auxiliary head, the system is learning from all examples during the training process even

with the presence of noise; this makes the method unsuitable to handle noisy training data.

The proposed model requires heavy modifications to existing models and loss functions,

which increases overhead.

2.2.2 Label Noise Abstention

Label noise in training data has received less attention than the selective prediction problem.

Yet there are a number of interesting works proposed in the literature to tackle this problem.

The authors of [58] have proposed to use two-stream DNN that jointly learns from a large

noisy dataset and a small clean dataset. In [59], the authors first train an ensemble of

classifiers on data with noisy labels using cross-validation and then the predictions from

the ensemble are used as soft labels to train the final classifier. DAC [38] introduces a

more light-weight solution to handle label noise. Unlike SelectiveNet [1], DAC proposes to

automated learning of noise level while training and use abstention class to determine if a

training sample is abstained or not. The authors have empirically shown that adding artifact

(smudge) to images results in abstention. However, that might lead to misclassify samples

with similar occlusion pattern as noisy, even though the features of the point of interest is

still prominent. This might lead to degraded performance with adversarial examples. The

authors also have not demonstrated how their proposed model performs when test data were

abstained in the presence of label noise.
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2.2.3 Out-of-Distribution and Adversarial Example Detection

Out of Distribution detection is another aspect of detecting noise in test data which attracted

a lot of attention in recent years [60, 61, 62, 63]. ODIN [61] and its variants [60, 62] are

proven to be very successful in detecting OOD samples. One of the common themes of these

methods is the input preprocessing step: adding adversarial noise to test data to increase

the difference between in and out-of-distribution data. The authors of [60] have proposed

a similar framework to ODIN by adding Gaussian discriminant analysis of samples. They

empirically show that Mahalanobis distance can be effective in detecting OOD samples. We

adopt the use of distance in detecting noisy data samples, but with key differences from

them. For example, we do not employ input preprocessing and we introduce the concept of

automated thresholding of distance to differentiate between the noisy and clean examples.

However, OOD and adversarial sample detection are out of the scope of the current work.

We will address these issues in the future.

2.3 Uncertainty on Computer-Aided Diagnosis of COVID-19

2.3.1 CAD on COVID-19 Detection

Deep Learning powered Artificial Intelligence (AI) has been widely used in different aspects of

healthcare. Detection and diagnosis of COVID-19 are also not exceptions to that. COVID-

19 medical image analysis mainly involves examining Chest X-ray (CXR) and Lung CT

imaging. However, compared with CT images, CXR images are easier to obtain and cost

effective [42]. Hence, in this work we focus on COVID-19 CXR image data.
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There are several research that aims to make diagnosis of COVID-19 based on CXR

images [42], that utilizes ensemble of multiple high performing DNNs [2, 64]. Though,

they achieve satisfactory performance, these methods require extensive training procedure

for each of the DNNs and computationally expensive. Another school of researchers propose

specialized DNNs for COVID classification [2, 65]. COVID-Net [2] utilizes a projection-

expansion-projection design pattern along with human-machine collaboration. The authors

also publish COVIDx dataset, which is the largest publicly available COVID-19 dataset.

Although a large number of methods have been proposed in the literature for detection of

COVID-19, to the best of our knowledge, none of them address the uncertainty issue of their

proposed method.

2.3.2 Uncertainty Mitigation on Benchmark Datasets

Classification with a reject option has been explored by researchers to tackle the prediction

uncertainty of deep models [53, 55, 56]. Threshold on posterior probabilities [54, 55] and var-

ious SVMs-style variants have been developed to incorporate reject option with classification

tasks [56, 57]. Though these methods are widely used in practice because of their simplicity,

they have a major drawback. Research shows that DNNs often make wrong predictions with

a very high confidence [66]. Another school of researchers propose methods to jointly learn

rejection and classification from data itself. SelectiveNet [1] proposes a user-defined coverage

constraint to learn to abstain samples with high classification loss. By minimizing overall

loss, the model learns to abstain from test samples that are difficult to predict. However, this

method is more complex and require extensive repetitive training, which makes it difficult
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to deploy in practice.

2.3.3 Uncertainty Mitigation on CAD

Uncertainty mitigation on CAD is greatly understudied in the literature. Christian Leibig

et. al. [67] proposed one of the first uncertainty estimation methods utilizing stochastic

Monte-Carlo Dropout (MCDO) during testing to approximate the aleatoric uncertainty of

Bayesian CNN. However, the estimated uncertainty of correct and wrong predictions from

their proposed method overlap significantly. In [66] Mirat et. al. proposed an intuitive

framework based on test-time augmentation for quantifying the diagnostic uncertainty of

Bayesian CNNs. However, even though Bayesian statistics provide simpler ways to estimate

the uncertainty, these methods are intractable in most of the real-world scenarios. A very

few works exist on handling uncertainty in medical image segmentation [68]. The authors

propose uncertainty aware training to learn abstaining confusing segmentation on a data

sample.

2.4 Self Supervised Siamese Networks

2.4.1 Self Supervised Learning

Self supervised learning refers to learning methods that are trained with supervisory signals

that are generated from the data itself by leveraging its structure. Self supervised learning

methodologies can be categorized into Generative and Discriminative approaches. Gener-

ative methods learn visual features through the process of image generation. This type of

methods includes image super resolution [69], image inpainting [70], image generation with
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Generative Adversarial Networks (GANs) [71, 72], etc. However, pixel-level generation is

computationally expensive and this may not actively boost representation learning. On the

other hand, discriminative approaches learn representations using specific objective function,

but the labels are derived from an unlabeled dataset. Many discriminative approaches utilize

heuristics to design the training flow [73, 74, 75], which could limit the generalization of the

models. Contrastive learning, another discriminative approach, has been proven successful

recently, achieving state-of-the-art results [46, 47, 45, 48].

2.4.2 Siamese networks

Siamese networks [76] compare inputs with identical backbone networks. These networks

are extensively explored in signature [76] and face [77] verification, one-shot learning [78],

and tracking [79]. Recent advancements in self supervised learning are based on siamese

based networks [46, 47, 45, 48]. However, contrastive learning base siamese networks often

require very large number of negative examples and require especial techniques for successful

training, e.g. momentum, memory bank, etc. [46, 47, 45]. Authors in [48] provide proof

that none of these especial techniques are required to train a siamese network though they

may help boost the performance. They propose to use simple siamese network with stop

gradient instead and show that their proposed method is simple and does not require large

batch size as other methods do.
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CHAPTER 3

Towards Robust Human Activity Recognition fromRGB Video Stream with
Limited Labeled Data

Human activity recognition based on video streams has received numerous attentions in re-

cent years. Due to lack of depth information, RGB video based activity recognition performs

poorly compared to RGB-D video based solutions. On the other hand, acquiring depth in-

formation, inertia etc. is costly and requires special equipment, whereas RGB video streams

are available in ordinary cameras. Hence, our goal is to investigate whether similar or even

higher accuracy can be achieved with RGB-only modality. In this regard, we propose a novel

framework that couples skeleton data extracted from RGB video and deep Bidirectional Long

Short Term Memory (BLSTM) model for activity recognition. The biggest challenge of train-

ing such a deep network is the limited labeled training data, and exploring RGB-only stream

significantly exaggerates the difficulty. We therefore propose a set of techniques to train

this model effectively, e.g., data augmentation, video frame dropout and gradient injection.

The experiments demonstrate that our RGB-only solution surpasses the state-of-the-arts, all

exploit RGB-D video streams, by a notable margin.

3.1 Methodology

In this section, we present a novel end-to-end framework for human activity recognition

from RGB video containing human silhouette. We review some important concepts in the

following subsections, that are used in our proposed methodology, to make it self-contained.
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Figure 3.1 Overview of proposed method.

3.1.1 Overview

Our proposed architecture aims to detect, extract and classify human actions from RGB-

only data. We formulate our problem as learning the mapping, F : x → `, where x is the

raw video and ` is the collection of action label. After learning, F is used to classify the test

samples.

Fig. 3.1 shows the overall pipeline of our proposed method. First, we extract pose

key-points of human silhouette from input raw RGB video using Openpose API [37]. We

perform preprocessing on the extracted pose key-points. After preprocessing, we use Data

Augmentation on the extracted keypoints to mitigate the problem of data scarcity. Then

we feed the key-points into our classifier. We used deep BLSTM [80] network coupled

with MLP [81] as our classifier. Overfitting is a major drawback for LSTM when dealing

with small dataset. Therefore, in addition to data augmentation, we deployed Dropout and

L2 Regularization to introduce stochasticity, which prevent our model from overfitting. We
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Figure 3.2 High level concept of Gradient Injection.

propose Dynamic Frame Dropout to reduce the redundant frames and improve the robustness

of the BLSTM classifier. We also introduce Gradient Injection to improve gradient flow to

mitigate the vanishing gradient problem. Overview of Gradient Injection is presented in fig.

3.2. We will discuss each of these components in details in later subsections.

3.1.2 Openpose

Openpose [37] is an opensource API, providing applications that can be used to detect the

2D poses of multiple human subjects in an image. The API leverages a novel two stream

multi-stage CNN, which facilitates it to work on real time. The methodology proposed in [37]

was ranked number one in COCO 2016 keypoints challenge. The input of the architecture

is raw RGB image and the output of the system is 15 or 18 pose key-points along with the

part joining edges. More details about the architecture and working principle can be found

in [37]. In our work, we treat Openpose as a black box with raw video frames as inputs and
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18 pose key-points per person as output (fig. 3.3 shows 15 key-points that were detected by

openpose with higher confidence, remaining three key-points were excluded).

3.1.3 LSTM

Long Short-Term Memory (LSTM) [80] is a descendant of Recurrent Neural Network (RNN)

especially designed to adapt long range dependencies when modeling sequential data. RNN,

in general, has been proven very successful in modeling sequences that has strong temporal

dependency. However vanishing gradient problem makes Vanilla RNN hard to train [82].

LSTM solves the problem by introducing non-linear gates regulating the information flow.

However, Vanilla LSTM can only learn from past contexts, whereas Bidirectional RNN

(BRNN) [83] can learn both past and future by utilizing feed forward and backward layers.

Bidirectional LSTM (BLSTM) network can be obtained just by replacing the BRNN nodes

with LSTM. BLSTM can efficiently incorporate long term dependency in both directions

Figure 3.3 Output of Openpose: Rendered pose on silhouette.
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which helps improve learning of temporal data.

3.1.4 Preprocessing

The preprocessing step represents the first step of our end-to-end pipeline where the raw

video frames are fed into the Openpose API. The output of Openpose for each video frame

is a matrix of shape (npose, (a, b), c). Here, npose is the number of pose key-points, (a, b) is the

coordinates of the key-points in Cartesian plane and c is the confidence score of the respective

key-point. To simplify our problem, we put a constraint that each frame can contain at most

one person, hence, the value of npose here is 18. When all pose key-points are extracted from

a video, we use a filter to set the pose keypoints values that has confidence lower than a

threshold value, Θ, to zero. Later, we mask these zero valued keypoints in order to avoid

learning from these points as well as to prevent gradient calculation. Afterwards, the pose

matrix is flattened and converted into a vector, Λ, of size npose ∗ 2, excluding the confidence

value. We concatenate each pose frame into a 2 dimensional matrix of shape (nframe, v),

where nframe is the number of frames in the video and v is the length of pose vector, Λ.

3.1.5 Dynamic Frame Dropping

We propose to utilize Dynamic Frame Dropout (DFD) to reduce data redundancy. As

different actions require different time span, and often there are redundant informations

in consecutive frames, taking all frames into account actually occludes crucial information

and hampers the learning. Techniques like randomly dropping frames or dropping each n

frames etc. are often used in state-of-the-art methods to avoid redundancy. However, doing
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so may result in loss of important information. Hence, Dynamic Frame Dropout (DFD)

based on information redundancy is a more sensible solution. Moreover, DFD helps data

normalization which introduces stochasticity in data.

Pairwise euclidean distance, d, between key-points of two consecutive frames indicates

how different these frames are; lower distance corresponds to similarity and higher distance

means these frames actually have meaningful differences. Empirically, we set a cutoff thresh-

old, ĉ = 15. If d is distance between frame1 and frame2 and d < ĉ, then we drop frame2.

This setup of ĉ drops 20 to 25 frames per video that carries information with minimal sig-

nificance.

3.1.6 Data Augmentation

Training a deep networks with limited amount of labeled training data is a major challenge

in supervised learning paradigm. Our goal of achieving state-of-the-art performance with

RGB-only data modality faces the same brick wall: insufficient training data. According

Figure 3.4 Proposed BLSTM network architecture.
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to our problem formulation, we only leverage RGB data modality. Data augmentation has

been proven very successful in supervised learning for image analysis. Inspired by this,

we have explored several data augmentation techniques to solve the data scarcity problem.

Translation, scaling and random noise are used to augment data, equation (3.1), (3.2) and

(3.3) represent these augmentation techniques.

X ′ = X + btranslate (3.1)

X ′ = Ascale ∗X (3.2)

X ′ = X + brand (3.3)

Here, X and X ′ are input data and new manipulated data. btranslate and Ascale are

constant translate and scale factor, which are tunable hyper-parameters. brand is a random

sample drawn from normal distribution with mean, µ, and standard deviation, σ, which

again are tunable hyper-parameters. We can also combine translation and scaling together

to generate data variation in a more generic way as shown in Eq. (3.4). Our experimental

results 3.2 reflect the significance of data augmentation for training deep networks using

limited training data.

X ′ = Ascale ∗X + btranslate (3.4)
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3.1.7 Proposed Network Architecture

Our proposed deep architecture combines deep BLSTM layers and MLP (Fig. 3.4). We

use five consecutive BLSTM layers with dropout layers to regularize the model training.

We utilize Batch Normalization (BN) after each BLSTM layer to keep the data normalized

throughout the pipeline. We feed the output of the Deep BLSTM layers to the MLP con-

sisting of two Dense layers. For intermediate hidden BLSTM and Dense layers, we have

utilized the Parametric Rectified Linear Unit (PReLU) [84] activation layer. We used soft-

max activation function for the final output layer to produce probabilistic score for each

class. Categorical cross-entropy is used to measure the loss of our proposed network. We

utilized RMSprop optimizer [85] to minimize the loss function.

3.1.8 Gradient Injection

Although LSTM serves as the solution of vanilla RNN for gradient vanishing problem, it

itself faces this issue in some degree when training deep model [86]. LSTM many to one

architecture is often used as the final layer of network for video classification. This creates

a bottleneck dependency on the whole video sequence, but often a video can be clearly

classified before having to see all the frames till the end. Hence, to avoid gradient vanishing

problem and to reduce dependency, we propose to use Gradient Injection (GI) technique.

In concrete terms, we utilize many to many architecture of LSTM at the top layer to allow

gradients flow from multiple time steps, consequently, reducing the problem of vanishing

gradient. Moreover, as outputs from multiple time steps are now available, it creates an
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Figure 3.5 Sample frames from KTH (top row) and UTD-MHAD (bottom row) datasets.

ensemble of multiple outputs and reduces dependency on all the video frames. The high

level scheme of this concept is presented in fig. 3.2.

3.2 Experimental Results

The principle goal of this paper is to show that by only using RGB data modality with limited

training data, we can achieve similar or higher accuracy on action recognition task than the

state-of-the-arts that use RGB-D video streams. We have tested our proposed method with

two widely used datasets, KTH [29] and UTD-MHAD [3]. We focus on UTD-MHAD as this

is a complex dataset offering multiple modalities and current state-of-the-art methods utilize

data modalities consisting depth information to classify actions. Empirically, we show that

with data augmentation combined with Dynamic Frame Dropout and Gradient injection, our

proposed method surpasses state-of-the-art works. We also show that our proposed method

performs better with RGB-only dataset such as KTH, compared to current literature.

We implemented our system in Python with Tensorflow backend on a GPU cluster with

Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz with 504 GB of RAM and NVIDIA TI-
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TAN Xp with 12 GB of RAM and 3840 cuda cores. In our experiments, we empirically set

learning rate, lr = 0.00005 for RMSprop optimizer. We report confidence interval based

on 50 bootstrap trials. More details about datasets we evaluated our model on and com-

parative experimental studies with state-of-the-art literatures are presented in the following

subsections.

3.2.1 Dataset

KTH [29] is an RGB-only benchmark action dataset containing six action classes (walking,

running, boxing, hand-waving, and hand-clapping), performed by 25 subjects in various

conditions. KTH dataset provides full silhouette figure in all the sequences, which satisfies

our constraint. We have followed the original experimental setup stated in [29].

UTD-MHAD [3] is a multi-modal action dataset containing 27 actions performed by 8

subjects (4 males and 4 females) performing same action 4 times, a total 861 sequences. This

dataset provides four temporally synchronized data modalities; RGB videos, depth videos,

skeleton positions, and inertial signals from Kinect camera and a wearable inertial sensor.

We follow 50-50 train-test split similar to [3]. In the experiments we are only using RGB

modality to evaluate our proposed approach. Fig. 3.5 visualizes some example frames from

KTH and UTD-MHAD datasets in the first and second row respectively.

3.2.2 Comparative Results on KTH dataset

Comparative results of our proposed method on KTH dataset with the state-of-the-arts are

presented in Fig. 3.6. CNN based hybrid model proposed by Lei et al. [87] achieves 91.41%
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Figure 3.6 Accuracy comparison on KTH dataset with state-of-the-arts (confidence interval
of our method is also shown above).

accuracy. Other compared methods [33],[88],[30], and [32] use hand-crafted features. These

methods achieve high accuracy, but are extremely data dependent, hence not suitable for

real world deployment. Our proposed method with data augmentation and dynamic frame

dropout achieves 96.07% accuracy, outperforming all the others.

3.2.3 Comparative Results on UTD-MHAD dataset

We begin our experiments on UTD-MHAD dataset using our baseline model which takes

dynamic length video as input, but without Dynamic Frame Dropout (DFD), Gradient

Injection or Data Augmentation (DA). We then update our model by adding these features

in a cumulative fashion. In other words, the second model includes DFD; the third one

includes both DFD and GI; in the fourth model we use random jittering to augment data,

and finally in the fifth and last model we use affine transformation as data augmentation. Fig.

3.7 shows the comparison among all these models on accuracy and F1 score. As can be seen,

by using DFD on baseline, we surpass state-of-the-art accuracy (89.06%). An interesting
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phenomena to observe here is that, although Gradient Injection does not have much effect

on larger training data, it helps gaining performance over DFD. Utilizing data augmentation

we gain 2% accuracy over DFD model. However, using random jittering to augment data

does not improve accuracy.

Table 3.1 Effect of Data Augmentation on the UTD-MHAD dataset.
Augment Size Top-1 Error (%) Top-3 Error (%)
0 10.94 4.01
430 9.75 3.75
860 9.35 3.68
1290 9.09 3.69
1720 9.05 3.66

To investigate the effect of data augmentation on the predictive accuracy, we experi-

mented with incremental data augmentation. The results are summarized in Table 3.1. As

can be seen, data augmentation significantly helps model to regularize when we essentially

doubled the training data. Afterwards, the effect of data augmentation is less impressive yet

every iteration shows downwards trend on error. Another phenomena we observed is that

data augmentation did not have much affect on top-3 categorical accuracy, which means that

data augmentation mainly boosts correct answers from top-3 positions to top-1 position.

We also have explored our choices of depth of the network. We tested our baseline model

with three settings: 3 Layer, 5 Layer and 7 Layer model. Fig. 3.8 presents the accuracy of

these models on top 1, 3 and 5 categories. The performance gain of the 5 layer model can

be observed here. Notice that the 3 layer model has shown comparative accuracy on top 3

and 5 categories with other two models, and this indicates that deeper models mainly boost

the top-1 accuracy.

Finally, we present the comparison results of our proposed method with state-of-the-
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Figure 3.7 Accuracy comparison of the different design choices on the UTD-MHAD dataset.

arts (Fig. 3.9). Most of these existing methods [3, 5, 6, 7, 4], evaluated using UTD-MHAD

dataset, use depth or inertia data modalities or both (section 2.1). These data modalities are

only available from depth enabled camera and provide more precise information of motions

related to actions. On the contrary, we use RGB modality only to train our model from

scratch. As presented in fig. 3.9, our method achieves 90.95% accuracy which outperforms

the state-of-the-art methods.

Figure 3.8 Accuracy comparison on the UTD-MHAD dataset on our models with different
number of LSTM layers.
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Figure 3.9 Accuracy comparison on the UTD-MHAD dataset. [3],[4],[5],[6] and [7] use depth
enabled modalities, while our method use RGB-only modality (confidence interval of our
method is also included).

3.3 Discussion and Future Work

The state-of-the-art methods achieve accuracy as high as 88.1%, utilizing depth data modal-

ities on the UTD-MHAD dataset. However, RGB is the only data-modality we leverage.

Our proposed system successfully achieves significantly better performances with data aug-

mentation. Moreover, using 5-fold cross validation (80-20 train-test split) we could achieve

even better performance (above 94%). This essentially proves that even with RGB-only data

modality, data augmentation is sufficient to mitigate the problem of data sparsity and we

were successful to train our model with augmented data and achieve better accuracy.

However, our experiments were conducted on the KTH and UTD-MHAD datasets, where

there is only one person present per action and whole silhouette is visible. Additionally, these

datasets were collected in a more controlled environment which makes them less realistic. To

further strengthen our claim, as a future work, we will extend our method for multi-person
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datasets where silhouette is not a constraint.

3.4 Conclusion

In this paper we proposed an end-to-end framework that utilizes Openpose, a library for

extracting skeleton data from RGB video streams. We deployed BLSTM network coupled

with MLP for action recognition from the extracted skeleton data. We applied a number

of algorithmic techniques like Dynamic Frame Dropout, Gradient Injection and Data Aug-

mentation to train our framework effectively. Through extensive experimental evaluation,

we demonstrate that data augmentation can be a major regularizer tool for training deep

networks. Our experimental results indicate the superiority of our RGB-only solution over

the state-of-the-art methods that all exploit RGB-D streams. This makes our solution cost

effective and widely deployable.
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CHAPTER 4

A Unified Density-Driven Framework for Effective Data Denoising and Robust
Abstention

Success of Deep Neural Networks (DNNs) highly depends on data quality. Moreover, predic-

tive uncertainty makes high performing DNNs risky for real-world deployment. In this paper,

we aim to address these two issues by proposing a unified filtering framework leveraging un-

derlying data density, that can effectively denoise training data as well as avoid predicting

uncertain test data points. Our proposed framework leverages underlying data distribution

to differentiate between noise and clean data samples without requiring any modification

to existing DNN architectures or loss functions. Extensive experiments on multiple image

classification datasets and multiple CNN architectures demonstrate that our simple yet ef-

fective framework can outperform the state-of-the-art techniques in denoising training data

and abstaining uncertain test data.

4.1 Methodology

Given a DNN architecture, we propose a simple yet effective framework for detecting noise

in data. First, we present our intuition behind the core of the proposed framework. Then

we define the algorithmic steps of the framework in details.

We present an analogy of human social behavior to explain our intuition of noise in

data. A group of people who share common interests are more likely to spend more time

together or do more interaction with each other. Conversely, a group of people who do not

have common interests are less likely to be together. Similarly, data samples that share
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dominant features are more likely to belong to the same cluster or class and data samples

that project contrasting features are less likely to belong to the same distribution. Based on

this hypothesis, we construct a framework to differentiate noise from data.

Hypothesis: Samples that are away from distribution are potentially noisy or mislabeled.

DNN learns high-level features from data samples during training. In the case of su-

pervised learning, these features follow class constraints provided by labels. These features

are high dimensional vectors that represent each data sample. To simplify, let us consider

a dummy dataset where each sample only consists of two features. In an ideal world, sam-

ples of each class would be clearly separated and all samples of a class would be clustered

together. We define these two ideal situations as inter-class diversity and intra-class affin-

ity respectively. However, in real-world data, there exist inter-class affinity and intra-class

diversity often due to errors in labeling or noise in data samples.

Let us consider a training set consisting of input-target pairs, D = (xi, yi)
N
i=1, where

xi ∈ Rn belongs to one of the k ∈ L = {l1, l2, · · · , lk} classes. Note that in this paper

we will state “class” and “cluster” interchangeably, where both of them are semantically

similar. A DNN classifier consists of a feature extractor and a classifier. Feature extractor

is a parameterized function fθ : Rn → Rδ that learns to map n dimensional observed data xi

to feature space vxi of δ dimensions under the lj ∈ L class constraint. Classifier is a simple

mapping function, fc : fθ(xi)→ yi, which can be a softmax classifier.

Typically, parameter θ is optimized using the off-the-shelf cross-entropy loss. In an

ideal scenario, fθ thus learns to cluster semantically-similar inputs xi to k different clusters
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corresponding to k classes. For any given new sample s, fθ maps it to a feature vector vs,

which ideally should lie under any of k distributions observed during training. However,

in real-world data, there might be p ≥ k clusters formed by observed data samples of k

classes. Our goal here is to define each of these k data distributions robustly, such that even

with presence of noise, definitions of these distributions hold. We propose to utilize density

based clustering to identify which of these p clusters actually represent k classes and then

we calculate centroids to represent these k clusters.

4.1.0.1 Density-based Clustering

To identify core classes from p clusters, we propose to use DBSCAN clustering [89], on

feature space. Let us assume there are Nj samples that are bounded by the same class

constraint lj. Feature vectors vxji
extracted by fθ are utilized with DBSCAN algorithm to

identify hidden clusters within class lj. Any sample that is not affine to MinPts number

of density-reachable samples are treated as noise, and samples that are affine to at least

MinPts number of samples form a cluster. Though, there can be multiple clusters detected

by DBSCAN within a given class constraint, we define the cluster with the highest samples

as the core cluster. The rational behind is that only the most populous cluster can be

representative enough of a particular class. Other clusters with less samples may potentially

be label noise occurred during data acquisition. However, in scenarios where there is no label

noise presents, we expect to see a single cluster from the DBSCAN algorithm. Identifying

the most representative density distribution is crucial for our proposed framework, as we will

define this cluster as the reference point.
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4.1.0.2 Calculation of Centroid

We calculate the centroid of each class constrained core cluster yielded from DBSCAN by

calculating the median of feature vectors vx extracted from trained DNN for sample x. Let

us assume there are m samples in class j, and DBSCAN returns a core cluster with mcore

samples, where mcore ≤ m. Then the centroid is defined as

cj = median([vxji
]mcore
i=0 ), ∀xji ∈ lj. (4.1)

We collectively denote all k identified centroids as C = {c1, c2, · · · , ck}.

We take the approach of refining the data in multiple stages. Broadly, this can be divided

into two stages. Firstly, we conduct denoising training data by utilizing a pretrained model

and then we dive into abstaining from inferring noisy or confusing test data in inference

time.

4.1.1 Denoising Training Data

In the first stage, we calculate distance between data samples and observed distributions

and filter based on the derived distances. The first stage can be further granulated into five

steps.

Step 1: We first train a DNN model with given training data (noisy or clean) with regular-

ization. As demonstrated in [25], deep models learn from dominant features at the beginning

of training. We confirm that claim empirically by training models with smaller number of

epochs before memorizing starts. We also follow “best practice” to reduce overfitting.

Step 2: We employ DBSCAN on m samples belong to each class to identify the core
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cluster with mcore samples. Then we calculate centroids for each class using Eq. 6.4.

Step 3: We calculate the distance djxi between the feature vectors vxji
with label lj and

the corresponding centroid cj ∈ C. In this step, we consider all m samples that belong to

class j. We choose to use euclidean distance as our distance measure.

djxi = euclid(vxji
, cj) (4.2)

Step 4: We propose a methodology to denoise any outliers by multimodality analysis,

which will be discussed in details in Section 4.1.3.

Step 5: We train the model from scratch with denoised data we derived from the previous

step.

4.1.2 Abstain from Inferring on Test Data

Second stage of our proposed framework takes place during the inference. At this stage, we

already have a trained model on cleaned data. The second stage can be further divided into

four steps.

Step 1: We calculate distance between all test samples and training data distributions

under constraint of k classes. For s ∈ S, where S is the set of in-the-wild test samples, we

calculate distance ds between s and all cj ∈ C we derived in the previous stage:

djs = euclid(vs, cj). (4.3)

Here each sample s will have k distance values each corresponding to the distance from k

classes. Note that the difference between Eq. 4.2 and Eq. 5.2: we do not have the class label
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information for test sample s, whereas we know the ground-truth label for training sample

xi.

Step 2: We propose to invoke our first filtering criterion on test data based on the distance

we calculated in the previous step. It is expected that trained models can make better

predictions when test data follows the similar distribution as the training data. However, for

a state-of-the-art DNN, it is not possible to differentiate between samples that do or do not

belong to the same distribution as it has observed during the training process. Hence, we

calculate the maximum distance observed from respective centroids in training data to get

the sense of data distribution. We utilize this maximum distance as a threshold τ for in-the-

wild test samples so that the model can identify out-of-distribution samples. Specifically, we

calculate τ as follows

τj = max([djxi ]
Nj

i=0), ∀xji ∈ lj

where djxi is the distance between centroid cj and train sample xi that belong to class lj.

Step 3: In the first phase of two layered filtering, we abstain test samples based on the

threshold we calculate from training data. We first get the minimum of distances between

each test sample s and all clusters cj ∈ C. With this step, we abstain from classifying

out-of-distribution samples.

dmins = min([djs]
k
j=0) (4.4)

cmin = arg min([djs]
k
j=0) (4.5)
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And we abstain samples if the following condition satisfies:

dmins > τcmin (4.6)

Step 4: Having out-of-distribution samples abstained, we here focus on the noisy or

confusing samples. Samples that are similarly distanced from two or more class-constrained

data distributions, are deemed as confusing samples. We only consider those distributions

that are closest from the sample since samples belong to the distribution that they are closest

to. We abstain sample s if the following condition holds:

|das − dbs| < η,

where a and b are the two nearest clusters from sample s. das and dbs are the distances between

sample s and centroids ca and cb, respectively, and η is a tolerance parameter that we set

empirically.

4.1.3 Modality Detection and Thresholding

We hypothesize that DNN features are closely clustered when samples share similar features,

and they become scattered when there are less correlations between features. When noise

is present in any classes of data, varying correlations between samples are observed. For

example, as depicted in Fig. 4.1(b), multiple modalities in distance distribution of noisy

samples from the same class are observed. We also observe from Fig. 4.1(a) single modality

in distance distribution when data from the same class is free of noise, which supports

the above hypothesis. Modality in distance distribution plays a key role in detecting noisy
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samples during training.

(a) Distribution without noise (b) Distribution with 20% noise

(c) PDF and Otsu’s threshold on distribution (d) Distribution of 20% noise

Figure 4.1 Histograms of the distances between samples from CIFAR10 dataset and cluster
centroids.

We utilize Kernel Density Estimation (KDE) to perform the modality test on distance

distribution. Distance d here can be considered as a univariate sample that is drawn from

some distribution with unknown density that we would like to model. With KDE, the

Probability Density Function (PDF) of d can be approximated as

PDF(d) ≈ 1

nh

n∑
i=1

K

(
d− di
h

)
, (4.7)

where K is the kernel function, e.g. the Gaussian kernel, and h is a smoothing parameter
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that we empirically set to 0.3 in order to avoid detecting false peaks.

We identify the number of peaks by calculating the gradient of the KDE curve. If we

detect a single peak, we can define the distribution as unimodal, otherwise multimodal. In-

terestingly, in all our experiments we have observed that in presence of random label noise,

distance distributions always follow bimodality. Hence, here we focus on bimodal distribu-

tions. But our proposed method can easily be generalized to multimodal distributions.

In case of a bimodal distance distribution, we propose to re-purpose Otsu’s threshold-

ing [90] to detect cut-off threshold in order to detect noisy samples from training data. In

image processing, Otsu’s method is widely used to perform automated image binarization.

The algorithm returns a single intensity threshold to separate image pixels into two classes:

foreground and background. The algorithm exhaustively searches for a threshold t that

maximizes the inter-class variance σ2
B of the two classes, which is defined as

σ2
B(t) = ω0(t)ω1(t)(µ1(t)− µ0(t))

2 (4.8)

where ω0 and ω1 are the probabilities of the two classes separated by t and µ0 and µ1 are

the means of two classes. We repurpose this algorithm to detect the cut-off threshold of

bimodal distance distribution. We define two classes from Otsu’s algorithm as clean and

noisy data distributions. Fig. 4.1(c) shows the detection of bimodality by detecting peaks in

distance distribution of noisy data; it also shows modality testing and Otsu’s thresholding

in practice. As we can see, Otsu’s thresholding can effectively identify cut-off value to

differentiate between noisy data and clean data. Compared to Fig. 4.1(d), which illustrates

the ground truth distance distribution of randomized samples, we can observe that a very



51

small number of noisy data samples fall below the Otsu’s threshold, hence not excluded from

training set. We deem this as expected since with 20% label noise introduced randomly, the

probability of samples not being randomized within this 20% for a particular class is 1
k

given

that we are randomizing each of the k classes uniformly.

4.2 Experimental Analysis

In this section we demonstrate the performance of the proposed framework using various

CNN architectures, e.g. VGGNet [91] and ResNet [92] on multiple image classification

benchmarks: CIFAR10 [93], SVHN [94], and Fashion-MNIST [95]. We compare our method

with the state-of-the-art algorithms SelectiveNet [1] and DAC [38]. To ensure a fair com-

parison, our experiments closely follow those of the competing methods. We plan to open

source our code to facilitate the research in this area.

4.2.1 Detecting label noise

We aim at a problem of label noise that might occur on some fraction of data. Here, we

assume that a fraction of labels have been corrupted by random assignment. Our proposed

framework identifies the mislabeled samples and removes them as noisy samples from training

set. To identify the corrupted samples, we first train an off-the-shelf DNN with best practice

regularization to avoid overfitting using a validation set, which we assume to be clean.

Our proposed framework utilizes the features extracted by the trained DNN to differentiate

between noisy and clean training examples. We present our results by retraining the same

DNN from scratch with cleaned training set.



52

We first compare our proposed framework with DAC [38], a state-of-the-art method that

introduces an additional abstention class to learn to abstain noisy samples during training.

We also present the performance of the bare baseline model, which is the same DNN utilised

in both DAC and our proposed method. To ensure fairness, we report our results using

similar setup as [38] and we use the numbers reported in their paper [38].

We conduct experiments on CIFAR10 [93] and Fashion-MNIST [95] with varying amount

of arbitrary label noise. In our proposed approach, we use same CNN architectures for pre-

training and retraining phases. We use the same hyperparameters, e.g., initial learning rate,

learning rate decay and optimizer, as in DAC and baseline model for the retraining phase.

We utilize ResNet18 and ResNet34 [92] without modifications as our DNN architecture for

experiments presented in this section. For the DBSCAN algorithm, we empirically set

MinPts = 300 and eps = 0.8 for our experiments. We randomly choose a seed value (seed

= 1) in our experiments to ensure reproduciblity.

Table 4.1 presents the comparative results of this experiment. Our proposed framework

achieves improved accuracy in most of our experiments as compared to the state-of-the-art

DAC [38]. Our framework could identify noisy data points reliably, even outperforming

specialized learning model DAC when percentage of noise label is lower than 60%. When

percentage of noise label is 80%, we observe that our framework does not perform as well

as DAC. This is because with highly corrupted data our method’s performance degrades as

DNN struggles to learn class specific features, which results in scattered feature distribution

of training data. In order to promote simplicity, our framework does not use the feedback
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Models
Dataset Noise Label Baseline DAC Ours

CIFAR10
(ResNet34)

20% 88.64% 92.91%
(0.24/0.01)

93.03%
(0.25/0.03)

40% 85.95% 90.71%
(0.41/0.03)

90.88%
(0.41/0.03)

60% 80.92% 86.30%
(0.56/0.07)

86.28%
(0.56/0.05)

80% 67.17% 74.84%
(0.75/0.16)

69.7%
(0.64/0.16)

Fashion-
MNIST

(ResNet18)

20% 93.92% 94.76%
(0.25/0.01)

94.95%
(0.21/0.01)

40% 93.09% 94.09%
(0.48/0.01)

94.20%
(0.38/0.02)

60% 91.83% 92.97%
(0.66/0.03)

93.05%
(0.58/0.01)

80% 88.61% 90.79%
(0.88/0.04)

89.77%
(0.72/0.03)

Table 4.1 Comparative results (accuracy) with varying percentages of noise labels.

loop from the noise to the model, whereas DAC [38] models the noise explicitly while training,

which helps them to learn more from the clean samples than from the noisy ones, yet DAC

still suffers from the issue of memorization [38]. Nevertheless, we argue that presence of very

high amount of noise (e.g., 80%) in dataset is not very realistic in real world as the label

quality in this case is close to be random (e.g., random guess accuracy on 10 classes is already

10%), hence investing heavily to improve performance in this scenario is impractical. Despite

that, our framework achieves improved results when percentage of noise label is lower than

60% even though DAC requires specialized loss function to learn the pattern of noise while

training, whereas our proposed framework employs simple yet effective filtering approach on

feature space extracted by DNNs.
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Models

Dataset Coverage SelectiveNet
(varying coverage)

SelectiveNet
(100% coverage) Ours

CIFAR10
(VGG16)

100% 93.21% 93.21% 93.21%
95% 95.40% 95.44% 95.64%
90% 97.27% 97.16% 97.41%
85% 98.40% 98.19% 98.40%
80% 99.03% 98.69% 98.97%
75% 99.31% 98.83% 99.24%
70% 99.40% 98.94% 99.40%

SVHN
(VGG16)

100% 96.22% 96.22% 96.22%
95% 98.20% 97.80% 97.88%
90% 98.97% 98.74% 99.07%
85% 99.25% 98.99% 99.40%
80% 99.41% 99.10% 99.49%

Table 4.2 Comparative results on CIFAR10 with varying calibrated coverages of our proposed
framework and SelectiveNet [1].

4.2.2 Abstaining test samples

We now consider the predictive uncertainty problem during inference. For these particular

experiments, we assume training data is free of noise, but in-the-wild test samples may be

noisy or confusing. We aim to abstain such samples using our proposed framework to reduce

predictive uncertainty. We first train an off-the-shelf DNN with given dataset and in the

post training phase we employ our algorithm to filter out samples that are deemed confusing

or out-of-distribution.

To demonstrate the advantages of our proposed framework, we compare its performance

with state-of-the-art SelectiveNet [1], and report the results in Table 4.2. SelectiveNet [1]

proposes a specialized rejection model that learns to reject any sample that produces high

cross-entropy loss under the constraint of user-specified coverage. We use similar parame-

ter settings reported in the paper [1] for a fair comparison. Note that reported numbers

for “SelectiveNet (varying coverage)” are obtained by training with target coverage value
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and inferred on the same calibrated coverage as described in [1], whereas we report our

performance by training DNN once and use varying calibrated coverage by tuning tolerance

parameter η accordingly only during inference. To make a fair comparison, we also train

SelectiveNet with 100% coverage only, similar to ours, and then use varying calibrated cover-

age to obtain results for “SelectiveNet (100% coverage)”. Our proposed framework achieves

reported results with greatly reduced complexity (both time and resource) compared to

SelectiveNet.

We conduct experiments on CIFAR10 [93] and SVHN [94] with off-the-shelf VGG16 [91]

architecture. Performance analysis is presented in Table 4.2. We observe that our proposed

framework can outperform or achieve very similar performance compared to SelectiveNet [1]

for both datasets. Moreover, our framework demonstrates a very clear advantage when

compared with results from “SelectiveNet (100% coverage)”. We found this observation

very intriguing as our proposed method only takes advantage of feature learning capability

of DNN coupled with intuitive filtering techniques. This would mean that using specialised

loss functions to abstain samples has very small impact on the performance, and DNNs are

robust enough to learn distinctive features but lack the ability to reject noisy or confusing

samples. Overall, not only being more efficient (i.e., training once), our proposed framework

also achieves better accuracies in most of the coverage levels, demonstrating the superiority

of our method.
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(a) Training-set features without label
noise

(b) Training-set features with 20% la-
bel noise

(c) Training-set features after employ-
ing our framework

(d) Test-set features from DNN
trained with noisy data

(e) Test-set features from DNN
trained with denoised data

(f) Test-set features after abstaining
from DNN trained with denoised data

Figure 4.2 t-SNE visualization of CIFAR10 training and test sets in feature space.
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4.2.3 Visualizing Effectiveness of Proposed Framework

In order to demonstrate the effectiveness of our proposed framework in detecting noise in both

training data as well as in-the-wild test data, we visualize the feature spaces of the trained

model ResNet34 [92] on CIFAR10 [93] using T-distributed Stochastic Neighbor Embedding

(t-SNE) [96]. We utilize color coding to annotate samples from different classes.

We visualize how data distribution is affected by noise in Fig. 4.2, where Fig. 4.2(a)

presents the visualization of CIFAR10 training set features without any artificial noise, yet

we can observe a very small amount of noise. We hypothesise that similar noise can be

present across different annotated datasets, targeting a variety of tasks, available today.

When we introduce 20% random label noise to the dataset, the samples get more scattered

across the feature space (Fig. 4.2(b)). Our framework can identify these noisy samples and

effectively clean them as demonstrated in Fig. 4.2(c). We also present the visualization of

test samples from CIFAR10 in Figs. 4.2(d)-(f). Training with noisy data adversely affects

the DNN’s ability to extract features robustly (Fig. 4.2(d)). If data denoising is performed

prior to training a DNN, we can minimize this adverse effect greatly (Fig. 4.2(e)). However,

data distributions still cannot be very concise and often overlap. This phenomenon can be

explained as even if there are no noise in a training set and the test set might still contain

noise and confusing samples. Our framework can filter out most of the boundary samples

from respective distributions, as demonstrated in Fig. 4.2(f). Yet, if we closely observe,

our framework missed some samples what are well within the distribution but predicted

labels do not match the ground-truth labels. We argue that these samples share dominant
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Figure 4.3 Sample images identified by our framework that are potentially mislabeled in CI-
FAR10 testset. Text below each image denotes the ground-truth label provided by CIFAR10
and text in parenthesis are the predicted labels by our framework.

features with samples from the closest distribution or may be mislabeled, as we can similarly

observe in clean training data distribution (Fig. 4.2(a)). We have presented some examples

of potentially mislabeled test samples of CIFAR10 in Fig. 4.3.

Fig. 4.4 provides further evidence of the effectiveness of our proposed framework. In

this plot we show how denoising helps accelerate learning of DNNs. In this experiment, we

train ResNet34 on CIFAR10 introducing heavy label noise (60%). Fig. 4.4 shows a stark

difference between learning from original noisy data vs. denoised data by our framework.

Our framework not only accelerates learning (left), but also improves accuracy on test data

when learning from denoised data (right). Evidently, our framework can effectively clean

data and expedite learning by eliminating noisy or confusing samples.

4.3 Conclusion

Noisy data is one of the most crucial hurdles for DNNs to achieve high accuracy and reliable

performance. In this paper, with rigorous experimentation, we have shown that complicated,

specialized training to filter out noise in data is not always effective and necessary. On the
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Figure 4.4 Effect of our proposed framework on training ResNet34 with the original noisy
data (60% label noise) and denoised data. (left) Learning curves on CIFAR10 training data;
(right) Learning curves on CIFAR10 test data.

contrary, we show features learned by off-the-shelf DNNs are quite robust. With a simple

yet effective filtering mechanism, we can achieve competitive, often better, performance than

these specialized models. However, we would like to point out some limitations and future

work of our proposed framework. We consider threshold based on distance from distributions

as a filtering criteria. While it has proven to be very successful, a distance threshold will limit

data distribution to be spherical, but in reality data distributions can often be irregular. This

can explain why our framework sometimes does not perform as expected. A more robust

filtering method requires a more accurate model of distribution. One other pathway to

address this issue would be learning more robust features along with filtering techniques.

We leave these areas open for future research.
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CHAPTER 5

Towards Reduced Risk and Uncertainty of Deep Neural Networks on
Diagnosing COVID-19 Infection

Effective and reliable screening of patients via Computer Aided Diagnosis could play a cru-

cial part in the battle against COVID-19. Most of the existing works focus on developing

sophisticated methods that yield high detection performance, while not addressing the pre-

dictive uncertainty of their proposed systems. In this work, we propose to utilize density

driven uncertainty estimation to detect confusing cases for further expert referral to address

the unreliability of state-of-the-art (SOTA) DNNs on COVID-19 detection. To the best of

our knowledge, we are one of the first to address this issue on COVID-19 detection problem.

We also propose a novel feature denoising algorithm to further improve the Positive Predic-

tive Value (PPV) of COVID positive cases. In collaboration with medical professionals, we

further validate the results to ensure the viability of such systems in clinical practice. With

extensive experimentation, we show that our proposed framework can effectively identify

the confusing COVID-19 cases for further expert analysis, while outperforming the existing

uncertainty estimation methods.

5.1 Methodology

Uncertainty is the source of risk in any decision making process, which leads to unreliability.

Uncertainty associated with DNNs can be categorised into two types; aleatoric and epistemic

uncertainty [97]. Aleatoric uncertainty is caused by the noise in data, whereas epistemic

uncertainty is generated from the stochasticity of DNN models. Monte-Carlo methods are
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frequently used to estimate Epistemic uncertainty, and Aleatoric uncertainty can be reduced

by gathering more knowledge, which is an expensive process and often infeasible in real-world

scenarios.

In this paper, we aim to address the Aleatoric uncertainty by identifying noisy or confus-

ing samples from data distribution using features learned by DNNs. In supervised learning,

DNN learns high-level features from data dictated by class constraints. In an ideal world,

samples of each class would be clearly separated and all samples of a class would be clustered

together. However, in real-world data, there exist inter-class affinity and intra-class diversity

often due to errors in labeling or noise in data samples.

5.1.1 Problem Formulation

A supervised prediction task is formulated as follows. Let us consider a training set con-

sisting of input-target pairs, D = (xi, yi)
N
i=1, where xi ∈ Rn belongs to one of the k ∈ L =

{l1, l2, · · · , lk} classes. A DNN classifier consists of a feature extractor and a classifier. Fea-

ture extractor is a parameterized function fθ : Rn → Rδ that learns to map n dimensional

observed data xi to feature space vxi of δ dimensions under the lj ∈ L class constraint.

Classifier is a simple mapping function, fc : fθ(xi)→ yi, which can be a softmax classifier.

Typically, parameter θ is optimized using the off-the-shelf cross-entropy loss. In an

ideal scenario, fθ thus learns to cluster semantically-similar inputs xi to k different clusters

corresponding to k classes. For any given new sample s, fθ maps it to a feature vector vs,

which ideally should lie under any of k distributions observed during training. However, in

real-world data, there might be p ≥ k clusters formed by observed data samples of k classes.
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As shown in [28], we can robustly define these underlying data distributions with DBSCAN

clustering [89]. On the feature space, DBSCAN algorithm identifies the core clusters given

class constraint, then centroids can be utilized to define these clusters robustly. Our aim in

this work is to identify samples that are nontrivial to classify within these k clusters utilizing

their distance from cluster centroids.

Calculation of Centroid Let us assume there are m samples in class j, and DBSCAN

returns a core cluster with mcore samples, where mcore ≤ m. Then the centroid is defined as

cj = median([vxji
]mcore
i=0 ), ∀xji ∈ lj. (5.1)

We collectively denote all k identified centroids as C = {c1, c2, · · · , ck}.

5.1.2 Abstaining Confusing Samples

We hypothesize that DNN features are closely clustered when samples share similar features,

and they become scattered when there are less correlations between features. Some samples

often share features from different distributions and they exist near the boundary of either

of these distributions. Hence, such samples that are similarly distanced from two or more

class-constrained data distributions, are defined as confusing samples. We only consider those

distributions that are closest from the sample since most of the cases samples belong to the

distribution that they are closest to. During inference, we utilize the centroids calculated

after training process to identify such confusing samples. We deem in-the-wild sample s to

be confusing if the following condition holds:

|das − dbs| > η,



63

where a and b are the two nearest clusters from sample s. das and dbs are the distances between

sample s and centroids ca and cb, respectively, and η is a tolerance parameter that we set

empirically. By tuning the tolerance parameter, one can define the abstention rate of the

framework, which provides additional control over the uncertainty of DNNs.

We calculate distance between test samples and training data distributions under con-

straint of k classes. For s ∈ S, where S is the set of in-the-wild test samples, we calculate

distance ds between s and centroid cj ∈ C:

djs = euclid(vs, cj). (5.2)

Here each sample s will have k distance values each corresponding to the distance from k

classes. Note that we do not have the class label information for test sample s.

5.1.3 Refinement of Feature Vector

Lack of information or misinformation often cause confusion for DNNs. Hence, DNNs often

make prediction on samples based on sub-optimal features extracted from noisy samples. To

some extent DNN classifiers (e.g. softmax or sigmoid) are robust to these feature noise due

to the supervised feedback process. On the other hand, our proposed technique solely rely

on the features learned by the DNN and unlike other complex methods, it doesnot require

learning from the data. However, precise calculation of centroids is prerequisite to the

success of our framework, as these centroids are utilized to determine the confusing samples.

Hence, we propose a number of alternative ways to minimize the aleatoric uncertainty of

the DNNs while filtering out the confusing samples. First, we propose to utilize the most
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simplistic idea of Monte-Carlo Dropout (MCDO) on feature vectors to randomly dropout

features and calculate centroid. After T iterations we get T centroids for a particular data

distribution and then we calculate the median to get the final centoid for the distribution.

Using MCDO would reduce the dependency to a particular set of features while calculating

centroid. Median of the centroids can be defined as follows.

cmedianj = median([ctj]
T
t=0) (5.3)

Where ctj is the centroid of class j on tth iteration.

MCDO is a naive approach as we decide to dropout random features on each run without

considering their importance. To address this, we propose to utilize statistical analysis of the

features rather than randomly choosing features to dropout. Specifically, we utilize chi test

to obtain the scores on each features and based on an empirical threshold we filter-out the

features with low statistical scores. However, chi test alone cannot quantify the importance

of features. Variance of features is also calculated to identify very low variant and very high

variant features. Low variance could mean these features are useless as they are present

across different distributions. Again, very high variance could mean that these features are

random noise in the data.

5.2 Experimental Analysis

In this section, we present and analyze the experimental study, which demonstrates the

effectiveness of the framework described in section 5.1. We conducted our experiments on
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the COVIDx dataset [2], which is the largest publicly available COVID-19 dataset in terms

of the number of COVID-19 positive patient cases.

5.2.1 Experimental Setup

For comparative studies of existing uncertainty estimation methods, we choose ResNet and

VGGNet as our baseline DNNs as they are successful and popular in CAD systems. We

utilized SelectiveNet [1] and incorporated our proposed method on these baseline DNNs to

obtain the results. We plan to open-source our code to facilitate the research in this area.

We utilized SDG optimizer with a learning rate of 0.1 and used seed as 1 in all our

experiments with ResNet and VGGNet to ensure reproducibility. We set the batch size to

32 for these experiments. We kept these settings constant to ensure a fair comparison. We

also followed similar preprocessing steps mentioned in the COVID-Net paper. We measure

the test accuracy for performance analysis, along with Positive Predictive Value (PPV) and

Sensitivity for each class.

5.2.2 Comparative Study on Existing Methods

First, we present the experimental studies on the effectiveness of existing methods on the

COVIDx dataset [2]. We compare our proposed method with state-of-the-art SelectiveNet [],

and report the results in Table 5.1. Please note, for a fair comparison, we report SelectiveNet

results when trained their model with 100% coverage and then calibrated to the desired

abstention rate. It can be observed from Table 5.1 that our proposed method outperforms

SelectiveNet in all abstention rate. Moreover, SelectiveNet utilizes a specialized loss function
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Abstention Rate Model
SelectiveNet Ours

0% 92.90% 92.90%
5% 93.28% 93.94%
10% 93.95% 95.01%
15% 94.37% 95.70%
20% 95.26% 96.21%
25% 96.48% 96.72%
30% 96.81% 97.12%

Table 5.1 Comparative results on COVIDx with varying abstention rates of our proposed
framework and SelectiveNet [1]. In these experiments we used VGG-16 as the baseline DNN.

which requires modification to the existing DNN, whereas our method can be utilized with

any DNNs in a plug-and-play manner. This demonstrates the superiority of our method over

the existing state-of-the-art.

5.2.3 Effect on COVID-Net

To further explore the effectiveness of our proposed method, we incorporated our frame-

work with state-of-the-art COVID-Net. Although the authors only open-sourced the trained

model, the required effort to integrate our method was minimal. We present the results of

this experiment in Table 5.2. As we can observe, we can effectively reduce the error rate

of COVID-Net with the abstention of confusing samples. Our method can identify 49.4%

of the mistaken samples as confusing while only abstaining 10% of the data for referral.

Our method also improves PPV and sensitivity of COVID-Net dramatically with higher

abstention rate. In order to demonstrate the effectiveness of our proposed framework in de-

tecting confusing samples, we visualize the feature spaces of the trained COVID-Net model

on COVIDx [2] test-set using T-distributed Stochastic Neighbor Embedding (t-SNE) [96] in

Figure 5.1 a. From the visualization, it is visible how our model can identify the confus-
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Abstention Rate Accuracy Sensitivity Positive Predictive Value
Normal Pneumonia COVID Normal Pneumonia COVID

0% 94.82% 94.80% 94.90% 94.00% 96.30% 92.80% 94.00%
10% 97.16% 97.80% 96.60% 94.80% 97.30% 97.10% 95.70%
20% 98.81% 99.60% 98.30% 95.60% 98.60% 99.60% 96.60%
30% 99.18% 99.70% 99.00% 96.60% 99.00% 99.7% 97.70%

Table 5.2 Experimental results on COVIDx with varying abstention rate our proposed frame-
work with COVID-Net [2] as the baseline DNN. Note that, the results presented here with
0% abstention rate represent the COVID-Net performance.

ing samples lying on the boarder of class distributions and with higher abstention rate well

defined distributions for each class emerges. However, if closely observed, we can find few

samples fall into wrong distributions. To address this issue, we proposed feature selection

methods to be integrated with proposed uncertainty estimation framework.

5.2.4 Effects of Feature Selection on Uncertainty Estimation

We also experimented with the proposed feature selection methods on the COVIDx dataset

and another benchmark dataset, CIFAR-10 [93]. The results are presented on Table 5.3.

As we can observe, the chi-square test based selection method outperformed other methods,

while both methods achieved better PPV and sensitivity for most cases. The feature selection

method’s effectiveness can be observed with the t-SNE visualization in Figure 5.1 a and b. If

we consider the third plot of fig 5.1 a and fig 5.1 b, we can observe that the misclassification

Abstention
Rate

Positive Predictive Value
W/O Feature Selection

Positive Predictive Value
W Feature Selection

Normal Pneumonia COVID Normal Pneumonia COVID
10% 97.30% 97.10% 95.70% 97.40% 97.50% 95.70%
20% 98.60% 99.60% 96.60% 98.60% 99.50% 98.80%

Table 5.3 Experimental results on COVIDx demonstrating the effects of feature selection on
our framework. In this experiment we empirically set the number of features to retain to
1024 from COVID-Net feature vector of length 259584.
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(a) Test-set features with 0%, 10% and 20% abstention rate (from left to right).

(b) Test-set features with 10% and 20% abstention rate after feature
selection (from left to right).

Figure 5.1 t-SNE visualization of COVIDx test-set in the feature space.

has been reduced. We argue that static or noisy features often create issues with the centroid

calculation utilized in our proposed framework. After filtering these unwanted features, class

constrained centroids become more robust to noise, hence improving performance.

5.3 Expert Analysis

To further analyze the experimental results we conducted on COVID-Net, we collaborated

with medical professionals, including an Epidemiologist closely working with the COVID-19
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outbreak. We set up the experiment as follows.

• First, we randomly sample x-rays from each class on the COVIDx test-set that are

predicted correctly by the DNN, so that we get the samples where our model was

confident enough to predict.

• Secondly, we sample x-rays from the abstained samples, while only 10% of data are

abstained. The rationale behind this is that these are the most confusing samples to

our model, chosen to be abstained for expert referral.

• Lastly, we sampled more x-rays from ones that were predicted wrong, yet not abstained

by our model while abstaining 25% data. These are the samples where our model was

pretty confident about the prediction but made mistakes.

We shared these three sets of samples with medical professionals without disclosing the

sampling criteria to ensure unbiased analysis. Their analysis of each set is as follows.

• First set of samples were straight forward to diagnose (Fig 5.2 a-c).

• Samples from the second set were confusing, and medical professionals recommended

lateral view x-ray or CT scan for further investigation. They mentioned that for some

images, the x-ray quality was poor (Fig 5.2 d) as a reason for confusion. For some

samples, the x-ray was not clear due to the obesity of the patients(Fig 5.2 e). There

were a few samples where our model made mistakes, but the experts could diagnose.

They pointed out that these x-rays had breast shadows as the patients were female

(Fig 5.2 f).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.2 Samples from COVIDx dataset; (a)-(c) samples that were correctly classified
by model; (d)-(f) samples that were deemed as confused when 10% data were abstained;
(g)-(h) samples that were not abstained yet mistaken by model. Sample (g) and (h) were
predicted as normal by the model while the ground truths are Pneumonia and COVID
positive respectively.

• The last set were mostly identifiable expect a few poor quality samples. However, the

experts agreed with the DNN’s prediction over the ground truth on two samples (Fig

5.2 g and h). We argue that, these samples may be affected by label noise.
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5.3.1 Recommendations from the Experts

X-rays are not a very reliable indicator of diagnosis. However, a CT scan or RT PCR test may

not be available in remote parts of the world, where x-ray can be available. Hence, detecting

critical patients via x-ray analysis could save their lives. However, our collaborating medical

professionals suggested using a better quality x-ray for detection. They also recommended

associating metadata with x-ray analysis, e.g., sex, BMI index, other clinical features, etc.

for more reliable detection performance.

5.4 Conclusion

Since the beginning, COVID-19 has been causing devastation in every part of our lives.

Detection and intervention are critical for patients who develop COVID-pneumonia. The

research community has come together to create a reliable and accurate COVID-19 detection

system with Deep Learning. On this consolidated effort, we intend to add our contribution.

We are one of the first to address the predictive uncertainty issue of DNNs by proposing an

uncertainty estimation framework on COVID-19 detection. Additionally, we also proposed a

feature selection algorithm to improve PPV on the COVID data. Through extensive exper-

imentation, we demonstrated that our framework could effectively improve the reliability of

existing CAD systems. With expert collaboration, we further analyzed the samples to gain

valuable insights regarding such CAD systems. Lastly, we came across a number of potential

research areas that require further investigation; collecting high-quality x-ray data, handling

potential label noise that may occur during data collection, incorporating clinical metadata
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with x-ray analysis, and handling obesity and sex bias on data. We leave these areas open

for future research.
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CHAPTER 6

Uncertainty Aware Self-Supervised Contrastive Learning towards Efficient
Representation Learning: A Real-World Scenario Evaluation.

While supervised learning has proven to be very successful in many applications, limited

noise-free annotated data has created a significant bottleneck. Self-supervised learning, on

the other hand, can play an important role in avoiding stringent labeled data constraints. In

this work, we explore SimSiam [48], a self-supervised learning method that can learn under-

lying representations from data without labels. While prior work have explored the SimSiam

network on benchmark datasets, we evaluate the representations learned from data samples

to understand the efficacy of this model on a real-world scenario, specifically, COVID-19

detection from Chest X-Ray (CXR) images. Through empirical evaluation, we demonstrate

that the SimSiam network can learn useful representations achieving very comparable per-

formance against the supervised counterpart. We also incorporate Uncertainty Estimation

framework to compare the performance with a supervised model to better grasp the distribu-

tion of learned representations. These results demonstrate the promise of Siamese networks

for generating robust representations while reducing the data annotation cost of medical

data significantly, and establish future directions for employing such networks in real-world

scenarios where annotating data is costly.

6.1 Methodology

Self-supervised learning though was first introduced in robotics, machine learning researchers

further develop the idea into different aspects and applications. In self-supervised learning,
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models obtain labels from the data itself by using a semi-automatic process. One crucial part

of self-supervised learning is data augmentation. The SimSiam Network [48] utilizes simple

siamese architecture on these augmentations to learn representation from data samples. In

the later sections, we explore the SimSiam Network and our proposed pipeline for evaluation

in details.

6.1.1 Siamese Network

A Siamese Neural Network is a type of neural network architecture that contains two or more

identical sub-networks [76]. These sub-networks share weights and parameters. Updates from

each backward pass are mirrored across both sub-networks. It is used to find the similarity

of the inputs by comparing its feature vectors, hence, these types of networks do not depend

on traditional class labels.

Traditional DNNs learn to predict multiple classes. Moreover, these types of networks

require a vast amount of labeled data, which in many use cases are hard to acquire. One

other issue with these networks is that in case a new class is introduced or removed from the

use case, the whole network requires to be retrained. To address these drawbacks, siamese

networks learn from a similarity function.

For a given input pair, Xi and X ′
i, siamese architecture can be depicted as shown in the

Figure 6.1. Xi and X ′
i are fed into two identical DNNs, fw(.). Then, the outputs from the

DNNs are fed into contrastive energy function as defined below.

Ew = ||fw(Xi)− fw(X ′
i)|| (6.1)
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Figure 6.1 Siamese Network Architecture

In conventional use cases, the inputs to Siamese networks, Xi and X ′
i are from different

images, and the comparability is determined by supervision.

There are some advantages and disadvantages of Siamese architecture. These networks

are more robust to class imbalance. Due to the fact that these networks do not rely on data

labels, class imbalance does not affect representation learning. In most real-world scenarios,

the data is imbalanced. Another advantage is these networks learn from Semantic Similarity.

Siamese focuses on learning embedding that place the same classes/concepts close together.

Besides strong advantages, Siamese networks have some disadvantages. These networks

require more training time than normal networks. Since Siamese Networks learn from

quadratic pairs, it is slower than the normal classification type of learning.
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6.1.2 SimSiam Network

In conventional use cases, the inputs to Siamese networks, Xi and X ′
i are from different

images, and the comparability is determined by supervision. However, as we are dealing with

unlabeled data during train, recent self-supervised Contrastive Learning frameworks [45, 46]

propose negative and positive samples for each iteration. Positive examples here are referred

to as the transformed view, Xi and X ′
i, of the input image, X, whereas the negative examples

are the samples that are not generated from X. With positive and negative samples in each

iteration, the siamese model learns distinct features from the samples by contrasting between

them [45, 46]. However, one major drawback to these contrastive learning methods is that

they require a large number of negative samples, and the batch size required is very large.

Such models require TPUs to train which are not feasible in most use cases.

Authors in [48] propose to use a simple siamese network and rather than using negative

samples, they propose to only utilize positive samples during training. To avoid gradient

collapse, they proposed a Stop-Gradient operation on the one branch of the siamese networks.

The SimSiam architecture takes two inputs, similar to siamese networks, Xi and X ′
i,

which are two views generated from original image X. The two views are processed by an

encoder network fw consisting of a backbone DNN and a projection MLP layer. The encoder

fw shares weights between the two views. The projection head, h, transforms the output of

one view and matches with the other. Figure 6.2 depicts the architecture.
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Figure 6.2 SimSiam Network Architecture

The authors [48] propose to use negative cosine similarity to measure the distance, D.

D(pi, zi) = − pi
||pi||2

· z′i
||z′i||2

(6.2)

Where || · ||2 is l2 norm, pi , h(fw(Xi)) and z′i , fw(X ′
i).

The authors also propose symmetric loss with Stop-Gradient to calculate the loss, L.

L =
1

2
D(pi, stopgrad(z′i)) +

1

2
D(p′i, stopgrad(zi)) (6.3)

Here the backbone DNN on X ′
i receives no gradient from z′i in the first term, but it

receives gradients from p′i in the second term and vice versa for Xi. Please refer to the

paper [48] for further details of implementation.
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(a) Identifying core cluster centroids, C from training samples

(b) Evaluating uncertainty and prediction for test samples

Figure 6.3 Incorporating DbFF with trained SimSiam Encoder.

6.1.3 Uncertainty Estimation and Confusing Sample Abstention

With the SimSiam network learned representations, the issue of uncertain prediction still

persists. We aim to evaluate how SimSiam representations affect the uncertainty estimation

methods, specifically, the DbFF framework. As this method heavily relies on representation

learned from the data, the performance of the DbFF framework would heavily depend on

the robustness of the SimSiam network. The overall flow of the algorithm is depicted in

Figure 6.3.

First, utilizing trained encoder from SimSiam network, fw, we generate the respective

representations, vX , for training samples, X. We then feed the vX to DbSCAN algorithm

to generate core clusters and calculate respective centroids, C = {c1, c2, · · · , cj, · · · }, using
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equation.

cj = median([vxji
]mcore
i=0 ), ∀xji ∈ lj. (6.4)

Here, mcore is the number of core samples in cluster and lj is the class label of sample xji .

During inference, similar to the previous step, we generate representation, vs for test

sample, S. We feed vs to DbFF framework to evaluate uncertainty of the samples and

Prediction head, H, to generate respective classification of the sample. Please refer to [28]

for further details on how uncertainty score is generated and how a sample is abstained based

on the score.

6.2 Experimental Analysis

In this section, we present and analyze the experimental study, which demonstrates the

effectiveness of the SimSiam network, described in Sec. 6.1. We conducted our experiments

on the COVIDx dataset [2], which is the largest publicly available COVID-19 dataset in terms

of the number of COVID-19 positive patient cases. COVIDx is comprised of a total of 13,917

CXR images (Normal:7966, Pneumonia: 5462, COVID:489) for training and 1578 CXR

images (Normal:885, Pneumonia: 593, COVID:100) as test-set. We visualize the gradient

activation projected on CXR images to provide insight into how the SimSiam network decides

on the prediction. Additionally, we present our empirical study on uncertainty estimation

of SimSiam network by augmenting it with DbFF framework [28].
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6.2.1 Experimental Setup

For all the experiments conducted, we utilize ResNet18 architecture as our backbone DNN

as it is lightweight and popular in CAD systems. We use Vanilla ResNet18 for supervised

learning as a baseline to ensure a fair comparison. To initialize the network weights, we

used ImageNet pretrained weights for all our experiments. We also employ the same hy-

perparameters, e.g., initial LR, LR decay, batch size, and epochs, unless otherwise stated.

Alongside that, we use the same optimizer, augmentations, and activation functions for all

our experiments for a fair comparison. For hyperparameters and the optimizer, we follow

a similar setting as presented in [48], except batch size. Due to computational constraints,

we set batch size as 32 for all our experiments instead of 512. We run each experiment five

times and present the mean values.

6.2.2 How well can SimSiam learn representations from CXR images?

To evaluate the efficacy of SimSiam network on COVIDx dataset, we trained the network

with training data without the annotations. Then we freeze the encoder network and fine-

tune a single layer perceptron network as prediction head. Finally, we feed test samples on

to the encoder + prediction head to calculate the accuracy. On the other hand, we train

the same encoder + prediction head in a supervised manner. Bar chart depicted in Figure

6.4 presents the accuracy from each experiment side by side. We included the untrained

ResNet18 initialized with ImageNet pretraining weights to highlight how training on task

domain data can help learning. As we can observe, the self-supervised SimSiam ResNet18
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Figure 6.4 Performance comparison of encoder + prediction head model under different
training scenarios on COVIDx Dataset. Please note, all models are initialized with ImageNet
pretraining weights.

(SiamNet18) achieves very competitive performance compared to the supervised ResNet18,

especially considering SiamNet18 was trained without any labels then only the prediction

head was finetuned. Please note, we trained SiamNet18 for 800 epochs whereas we trained su-

pervised ResNet18 for 200 epochs with other hyperparameters same. Self-supervised learning

are proven to learn better with larger batch size and epochs, on the other hand, supervised

learning tends to overfit with longer training. Due to limited computing resources we did

not experiment with larger batch sizes.

6.2.3 Visualizing the Gradient Activations

This promising result inspires us to dig deeper into understanding the causality of the pre-

dictions made by SiamNet18. Hence, we investigated gradient mapping to locate the con-
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Figure 6.5 Visualization of gradient activation. Each row represent samples from each three
classes of COVIDx dataset. Each columns from left to right present original images, activa-
tion plot from untrained ResNet18, supervised ResNet18, and the self-supervised SiamNet18
respectively.

tributing features of CXR images for a particular prediction. Figure 6.5 shows the gradi-

ent activation plotted on the corresponding CXR images by supervised and self-supervised

methods (ResNet18 and SiamNet18). We employed GradCam++ [98] to generate these

visualizations.

As shown in Figure 6.5, out-of-the-box ImageNet pretrained models cannot identify the
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Table 6.1 Error (±confidence interval) on different abstention rate on COVIDx dataset.
Please note, both networks are initialized with ImageNet pretraining weights.

Models
Abstention Rate ResNet18 (Supervised) SiamNet18 (Self-supervised)

0% 7.91 ±0.1% 8.64 ±0.06%
5% 6.04 ±0.07% 8.25 ±0.08%
10% 4.75 ±0.09% 7.93 ±0.09%
15% 3.38 ±0.08% 7.72 ±0.07%
20% 2.39 ±0.1% 7.64 ±0.08%
25% 2.04 ±0.05% 7.56 ±0.1%
30% 1.18 ±0.09% 7.41 ±0.08%

lung as the important part of the CXR images. Supervised ResNet18, on the other hand,

can locate portions of the lung as a source of prediction. But, the gradient activation is

scattered and noisy. An interesting observation we can make here is that for SiamNet18,

each of the CXR images is highlighted to the portions that are the actual contributing factors.

For example, if we observe the sample with ground truth as Normal, the SimSiam network

actually highlighted the dark portions of both lungs which indicate that these lungs are

healthy. Similarly, for the COVID-19 positive CXR image, the SimSiam network actually

looks at the ground glass opacities on the lungs. Bacterial pneumonia infection can be

identified when one of the lobes is opaque while the other is not. The SiamNet18 accurately

highlights portions of both lungs to predict it as Pneumonia infection.

6.2.4 Abstaining Confusing Samples from SimSiam Predictions

The uncertainty of DNN predictions is a major contributing factor for Computer-Aided

Systems not being deployed widely in practice. The SimSiam network also suffers from the

issue, even though it can learn useful representations from data. To mitigate the issue of

predictive uncertainty, we augment the SimSiam network with the DbFF framework [28] that
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abstains from uncertain predictions during inference. DbFF framework relies heavily on the

representation learned from the data. Even though supervised ResNet18 and the SiamNet18

achieve similar performance on accuracy metric, the performance of DbFF contrasts highly

among these two methods as shown in Table 6.1. DbFF could only achieve 14% improvement

with 30% data abstention on SiamNet18, we can achieve close to 99% accuracy on supervised

ResNet18.

This surprising observation leads us to investigate the representations learned by SiamNet18

visually. We have utilized tSNE [96] to plot the high dimensional representations into a Carte-

sian plane. Figure 6.6 depicts the data distribution over varying abstention rate. As we can

observe, samples from different classes are disseminated throughout the plot which causes

the degraded performance of DbFF framework on the SimSiam network. As we abstrain

more, we start to observe more tight clusters with less contamination. This plot provides us

insight that the representation learning still need to be more robust for SimSiam networks

on real-world use cases even though we achieve comparable performance. We suspect that

the class imbalance of the dataset may have lead to this issue. More deeper investigation is

required to fully understand the discrepancy.

6.3 Conclusion

Self-supervised learning has proven to be competitive with its supervised counterpart on

benchmark datasets in recent times. However, very limited work has been done on self-

supervised learning on real-world use cases. Self-supervised learning has a significant advan-
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(a) With 0% abstention (b) With 10% abstention

(c) With 20% abstention (d) With 30% abstention

Figure 6.6 tSNE plot of representations learned by SimSiam network from COVIDx dataset.
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tage over supervised learning, it does not require a large annotated data pool to train on.

In most real-world scenarios, annotated data is a crucial bottleneck, which can be overcome

by utilized self-supervised learning. From this motivation, in this work we evaluated the

state-of-the-art contrastive loss-based self-supervise learning network, SimSiam, on a life-

critical real-world use case of COVID-19 detection from CXR images. We also visualized

the activation map to observe the causality of the network. We augmented the SimSiam

network by DbFF framework to abstain from confusing samples during test time. These

experimentations have provided proof that SimSiam networks can learn useful representa-

tions for detecting pathogen infections even without the labels. These outcomes are very

promising and demand further in-depth investigations to locate the contributing factors for

SiamNet18 to learning representations that are scattered across. Augmentation can play a

major factor for the SimSiam network. Generating domain-compatible augmentation is a

major challenge that is still an open problem. We leave these as future research directions.
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CHAPTER 7

Conclusion

In this research path, we focus on issues associated with the data-driven learning paradigm.

Data represents the core of the success of DNNs. While investigating issues that hinder the

performance of DNNs when dealing with real-world applications, we have come to realize

the shortcomings of existing methodologies. We have faced several major challenges and

proposed methods to overcome them. Specifically, we have proposed a method to utilize

RGB data instead of RGB-D data to achieve state-of-the-art performance on Human Action

Recognition. We have also investigated the issue of uncertainty and risk of DNNs and

attempted to mitigate that by proposing a novel density-based framework to filter noisy

training data while at the same time abstain from inferring on confusing samples. We also

tested the effectiveness of uncertainty mitigation methodologies on the life-critical application

of DNNs. We have proposed feature filtering methods to be utilized with our density-driven

framework to further reduce the risk of uncertain predictions in detecting COVID-19 positive

patients. To further investigate data efficient learning, we explored self-supervised siamese

networks to learn representations without annotated data. Throughout this journey we

have explored different aspects of data driven learning in depth, and solved some exciting

challenges of most crucial aspect of Deep Learning, data. From our research, several new

intriguing problems have surfaced, where a lot of attention is required.

• Augmentation in contrastive siamese networks is a crucial element for successful train-

ing of such networks. There have been a number of works proposed in the literature
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that generates augmentation based on the task at hand. However, majority of these

automated augmentation methods rely on data labels [99]. There are other works that

aim to utilize adversarial noise to augment data for contrastive learning [100]. More

in depth investigation in this field is required to close the current performance gap

between the supervised and self-supervised methods.

• The state-of-the-art contrastive learning frameworks utilize all available data during

training. However, prior work has shown that all data at once may cause more harm

than good. Some hard to learn samples may distract training at an early state, while

there might be samples that does not carry valuable information for the network to

learn from [101]. Hence, we can adopt active meta learning with contrastive siamese

networks to boost data efficiency.

• We have explored denoising the training data pool and abstaining confusing samples on

supervised settings. However, supervised methods are more vulnerable to adversarial

attacks and that may reduce the representation learning capability of such networks.

On the other hand, self-supervised learning methods are more robust to adversarial at-

tacks and theoretically would perform better than supervised encoders. More research

work in this aspect would help clarify unsolved questions in this regard.
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