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BIONFORMATICS METHODS FOR STUDYING INTRA-HOST AND INTER-HOST

EVOLUTION OF HIGHLY MUTABLE VIRUSES

by

PELIN B. ICER BAYKAL

Under the Direction of Pavel Skums, PhD

ABSTRACT

Understanding viral disease progression is vital to the detection of outbreaks and subse-

quent planning for public health actions. Bioinformatics methods are extremely useful for this

purpose through a range of applications among which the analysis of viral next-generation se-

quencing (NGS) data, tracing virus evolution and reconstruction of transmission networks have

been explored in this research.

The first part of this research focuses on the processing of NGS data where quantification



methods are proposed to describe the robustness and reproducibility of the output of bioinformat-

ics tools. This research shows the importance of assessing the reliability of genomic tools. The

second part of this study is the application of processed NGS data to investigate the intra-host

evolution of Hepatitis C Virus (HCV) to diagnose and detect new and incident HCV cases. A

computational method based on Machine Learning algorithms is proposed to solve this problem.

This genomic multi feature-based model not only aims to predict the stage of infection but also

aims to understand the evolution of HCV and its underlying complex mechanism. The third part

of this research aims to reconstruct transmission networks for new cases which were identified

during the aforementioned research. In this part the inter-host evolution of highly mutable viruses

is studied. A Maximum Likelihood approach consisting of Uncapacitated Facility Location Algo-

rithm is proposed to solve this problem. Finally, the last part of this dissertation focuses on the

inference of the global transmission network of SARS-CoV-2 prior to the pandemic state.

INDEX WORDS: Robustness, Quasispecies, Transmission Network, Machine Learning, Hep-
atitis C Virus, SARS-CoV-2
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PART 1

ROBUSTNESS AND REPRODUCIBILITY OF COMPUTATIONAL GENOMIC

TOOLS

1.1 Abstract

Reproducibility and robustness of genomic tools are two important factors to assess the

reliability of bioinformatics analysis. Such assessment based on these criteria requires repetition

of experiments across lab facilities which is usually costly and time consuming. In this study we

propose methods that are able to generate computational replicates, allowing the assessment of

the reproducibility of genomic tools. We analyzed three different groups of genomic tools: DNA-

seq read alignment tools, structural variant (SV) detection tools and RNA-seq gene expression

quantification tools. We tested these tools with different technical replicate data. We observed

that while some tools were impacted by the technical replicate data some remained robust. We

observed the importance of the choice of read alignment tools for SV detection as well. On

the other hand, we found out that the RNA-seq quantification tools (Kallisto and Salmon) that

we chose were not affected by the shuffled data but were affected by reverse complement data.

Using these findings, our proposed method here may help biomedical communities to advice on

the robustness and reproducibility factors of genomic tools and help them to choose the most

appropriate tools in terms of their needs. Furthermore, this study will give an insight to genomic

tool developers about the importance of a good balance between technical improvements and

reliable results.

1.2 Introduction

Bioinformatics is a rapidly evolving area that reflects extremely fast developments of biotech-

nological platforms. Development of tools has several difficulties that could be tackled due to

the constant evolution of bioinformatics algorithms. The success of these algorithms is often
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determined by how well it captures the biological problem and accounts for technical aspects of

the biotechnological protocol. However, sometimes there is a trade-off between overcoming a

technical difficulty, such as lowering the running time, and producing less reliable results.

Perturbation of experimental results may cause unexpected effects on bioinformatics results

[1]. The higher are these effects the more deviated the results would be, which will put the

reliability of the results in question. Therefore, the reproducibility of results obtained using

bioinformatics analysis is important in terms of reliability, especially if such results are used in

clinical settings [2].

In order to assess the reproducibility of the sequencing protocol, one would need to repeat

the same experiment multiple times across multiple laboratory sites and directly compare the

bioinformatics results. However, such an approach carries an additional cost and is often infeasible,

sometimes such an approach is even impossible (if, for example, clinical rather than laboratory

data is analyzed).

Our approach is capable of generating technical replicates computationally based on a single

sample and assessing reproducibility of genomic tools [3]. Here we report the development of this

computational approach which is capable of altering the priorities of the dataset and check how

consistent the results of bioinformatics tools are across different technical replicates of input data.

The goal of our approach is not to replace reproducibility measures based on multiple technical

replicates generated by multiple laboratory sites, instead, provide a more scalable and affordable

approach to assess the reproducibility of genomics tools [3]. Here we report a computational

approach able to generate technical replicates for the purpose of evaluating tool robustness and

reproducibility.

Our study is the first one to systematically compare the reproducibility of genomics tools

across diverse biology domains. Our analysis will inform the broad biomedical community about

robustness and reproducibility of genomic tools. The proposed metrics of reproducibility can be

used in addition to current used metrics which could potentially help to build reliable and robust

genomics tools that maintain reproducibility across replicates and diverse laboratory sites.
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1.3 Materials and Methods

1.3.1 Data collection and preprocessing

Reference genome

We used the GRCh38 reference genome from NCBI (National Center for Biotechnology

Information).

DNA-seq and RNA-seq data

We randomly selected ten samples for DNA-seq data (Table 1.1) and RNA-seq data (Table

1.2) data from 1000 Genomes Project. The samples are paired-end short reads contained in

FASTQ files.

Table (1.1) DNA-seq samples randomly selected from 1000 Genomes Project

Sample ID Number of reads Read length
ERR009308 14, 587, 316 108bp
ERR009309 12, 118, 654 108bp
ERR009332 13, 024, 918 108bp
ERR009345 17, 763, 608 108bp
ERR013101 10, 640, 477 108bp
ERR013103 18, 297, 585 108bp
ERR013104 14, 645, 438 108bp
ERR013105 12, 246, 126 108bp
ERR013106 12, 235, 123 108bp
ERR015522 11, 577, 876 108bp

Table (1.2) RNA-seq samples randomly selected from 1000 Genomes Project

Sample ID Number of reads Read length
ERR188040 27, 256, 165 75bp
ERR188071 20, 054, 899 75bp
ERR188166 40, 548, 322 75bp
ERR188167 27, 795, 111 75bp
ERR188247 26, 894, 803 75bp
ERR188293 27, 915, 228 75bp
ERR188315 13, 960, 716 75bp
ERR188328 17, 669, 529 75bp
ERR188428 39, 687, 917 75bp
ERR188465 25, 841, 778 75bp
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1.3.2 Generation of technical replicates

We used two computational techniques to modify the properties of the genomic data. Each

FASTQ file was modified (and subsequently saved as a different FASTQ file) by random shuf-

fling of the reads. Additionally, we replaced each paired-end reads by its reverse complement.

Each sample produces two types of files: randomly shuffled reads (n = 3 times) and reverse

complemented reads.

1.3.3 Selection of genomic tools

We selected nine DNA-seq alignment tools available on Bioconda environment, three struc-

tural variant (SV) detection tools, and two recent tools for quantifying expression of transcripts

(Table 1.3).

Table (1.3) Genomic tools

Tool type Tool name Version

Read alignment

Bowtie2 [4] 2.4.1
BWA-MEM [5] 0.7.17
BWA-MEM2 [6] 2.1
HISAT2 [7] 2.2.1
Minimap2 [8] 2.17
NextGenMap [9] 0.5.5
SMALT [10] 0.7.6
SNAP [11] 1
Subread [12] 2.0.1

Structural variant
BreakDancer [13] 1.3.6
Delly [14] 0.7.3
PopDel [15] 1.5.0

Transcript quantification
Kallisto [16] 1.4.0
Salmon [17] 0.46.1

1.3.4 Definition and extraction of unambiguous reads

In order to be able to compare replicates of reads fairly we only considered mapped reads

marked as ’primary alignment’ in the BAM (Binary Alignment Map) file. In this research we
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will refer to these type of mapped reads as unambiguous reads. The definition of secondary

alignment read could be different across tools, it either can refer to a multi-mapped read or

another alignment with a worse score than the best alignment. Here, we assumed that all such

are reads are multi-mapped and we discarded them all. Therefore, for each read (unambiguous

read) there is only one alignment, which is the best alignment reported by the corresponding read

alignment tool.

1.3.5 Consistency estimation of read alignment across technical replicates and original

samples

To investigate the consistency of global alignment and local alignment across original and

technical replicates, we investigated different metrics (position, edit distance) and categorized

them as follows (color codes of metrics are represented in Table 1.4:

• Identical: common unambiguous reads regardless of other metrics.

• Consistent global and inconsistent local (CG - IL): common unambiguous reads

mapped to the same position with different edit distance.

• Inconsistent global (IG): common unambiguous reads mapped to the different position

with different edit distance.

• Multi-mapped: common unambiguous reads mapped to different position with same edit

distance.

• Inconsistent type 1 (IT1): unambiguous reads mapped only with original data.

• Inconsistent type 2 (IT2): unambiguous reads mapped only with replicated data.

1.3.6 Consistency of detecting structural variants across technical replicates and original

samples

We investigated the ability of the tools to maintain the coordinates of reported SVs across

original and replicated read alignment files.
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Table (1.4) This table represents comparison output of different properties (reads (R), position
(P), edit distance (E). Commonality (green), difference (red), only present in original output
(blue), only present in replicate output (orange). Grey fields are not applicable.

Categories R P E
Identical
Consistent global - inconsistent local
Inconsistent global
Multi-mapped
Inconsistent 1
Inconsistent 2

For this we chose three SV tools (Table 1.3). We compared the coordinates of the POS fields

and END fields within a VCF (Variant Call Format) file. The POS field refers to the reference

position which is the first base having position 1 and the END refers to the end reference position

which indicates the variants interval positions (POS-END) on reference.

In our analysis we set four different thresholds (T = 0, 10, 100, 1000) to compare the per-

centage of matching coordinates of deletion variants between replicate and original data. If the

absolute difference between POS and END coordinates were smaller or equal to the threshold

we considered an exact match of coordinates of deletion between replicated and original data.

1.3.7 Consistency of quantifying gene and transcript expression levels across altered and

original samples

We checked the consistency of transcripts counts across replicated and original data. We

compared the TPM (Trancripts Per Million) variation across output generated from original data

and replicate data. In order to assess the performance of Kallisto and Salmon without input

protocol violation, we used single end data (first end of paired data only) for this process.
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1.4 Results

1.4.1 Read alignment tools

In terms of the mapping percentage of unambiguous reads we observed that only reverse

complement data makes a difference. As shown in Fig. 1.1 the most affected tool in terms of

mapping percentage is Bowtie2 with approximately a 14% of mapping difference between output

produced by original data and output produced by reverse complement data. On the other hand,

BWA-MEM, BWA-MEM2, NextGenmap, and Subread are the tools producing almost the same

mapping percentage with both types of replicate data.

Figure (1.1) Percentage of unambiguous reads.

The breakdown of reads to different categories as in Fig. 1.2 show different behaviors of

tools. We noticed that Bowtie2 produces the least robust results with reverse complemented

data, only 78.71% (Table A.1) of reads are identical to the reads produced by original data. The
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Figure (1.2) Breakdown of reads according to Table 1.4.

difference comes from the inconsistent type 1 reads (unambiguous reads available for original

data but missing for reverse complemented data). In particular, although Bowtie2 has the less

identical read percentage between original and reverse complemented output, with other tools

we observed differences between output generated with original data and replicate data (Table

A.1). For instance, in terms of multi-mapping Minimap2 has the highest difference, ∼ 7% of

unambiguous reads become multi-mapped with reverse complemented data. Again, in terms of

inconsistent global alignment Minimap2 has the highest difference which is ∼ 5.7%. BWA-MEM

and BWA-MEM2 results are almost identical which suggests there is no significant difference in

terms of robustness between these two different versions. Overall, NextGenmap performs the best

with reverse complemented data with a ∼ 99.7% of identical reads. Concerning shuffled data

we can infer from Table A.1 that results do not change that much. The least good performing
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tools with shuffled data here are BWA-MEM and BWA-MEM2 with ∼ 3.1% of reads aligned

globally in an inconsistent way. Tools that produced exactly the same output with shuffled data

are in majority (Bowtie2, HISAT2, Minimap2, SMALT and Subread). However, NextGenMap

performed the best overall with ∼ 99.7% and 99.97% of similar reads with each technical replicate

category.

We checked the percentage of unambiguous reads mapped to different position regardless

of other metrics mentioned in Table 1.4. According to Fig. 1.3 Minimap2 tool has the highest

(∼ 12%) percentage of reads mapped to different position with reverse complemented data. On

the other hand, with average of ∼ %3 BWA-MEM, BWA-MEM2 and SNAP has the highest

difference with shuffled data.

Figure (1.3) Percentage of unambiguous reads mapped to different position regardless of the
chromosome.
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1.4.2 Structural variant (SV) tools

Our results show that the deletion coordinates change based on the type of the aligner tool

and the SV tool.

For this analysis we chose three samples (ERR009308, ERR009309 and ERR009332)

and five read alignment tools (BWA-MEM, Bowtie2, Minimap2, NextGenMap and SMALT ) to

generate input BAM files for the SV tools (BreakDancer, DELLY, PopDel).

According to Fig. 1.4, with threshold T = 0, PopDel results obtained by NextGenMap BAM

file input produces the lowest percentage (89.3%) of matching coordinates between original and

shuffled data. In this scenario, the distribution of this percentage across the three different

samples is the highest ranging from 91.55% to 99%. Although, with BreakDancer and DELLY

we observe higher matching percentage there is still a variation across different samples. Results

obtained from BWA-MEM BAM input file also follows the same behavior as results obtained from

NextGenMap. With input BAM files from Bowtie2 and Minimap2, BreakDancer and PopDel

report exact matching of coordinates and DELLY reports a matching of more than 98% between

original and all three version of shuffled data. Finally, with SMALT Breakdancer again reports an

exact matching of coordinates and we can observe a very minor difference of matching reported

by DELLY and PopDel.

We incremented the threshold to see if results would change and we observed that tools

overall reported higher percentage of matching coordinates. With NextGenMap we observed that

the difference across samples decreased significantly and with SMALT all SV tools produced an

exact matching of coordinates with a threshold of T = 1000.

We observed the difference of deletion coordinates varies across the three version of BAM

files produced with FASTQ files with randomly shuffled reads. In Fig. 1.5 with NextGenMap

PopDel reports the highest variation of difference of deletion coordinates between the three

different shuffled data and original data. We observed these differences for all three SV tools

with BWA-MEM and NextGenMap. Increasing the threshold reduces the difference, but we can

still observe the variation across the three shuffled data. We suggest that this difference is a

result of eliminating some alignments once enough coverage is obtained by the respective SV
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Figure (1.4) Percentage of matching coordinates of shuffled data and original data with two
different thresholds. Boxplots represent the difference among the three different samples of
shuffled data.

tool. Therefore, the random order of reads will affect the aligned reads present on the coverage

produced by the SV tool to detect the structural variant.

1.4.3 Gene expression quantification tools

We ran Kallisto and Salmon with ten RNA-seq samples. Fig. 1.6 shows that the tools have

similar robustness when using shuffled data while Salmon has a tendency to show lower deviation

with reverse complemented data.
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Figure (1.5) Percentage of matching coordinates of shuffled data and original data with two
different thresholds. Boxplots represent the difference among the three different version of shuffled
data.

Figure (1.6) TPM of original reads against TPM of replicate reads per transcripts for Kallisto
and Salmon tools.
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1.5 Discussion

We present a study of reproducibility and robustness of genomic tools which comprises the

analysis of a broad range of genomic tools. We introduced the notion of technical replicate data

in order to allow the testing of reproducibility of these genomic tools.

Our results indicate different behaviors in terms of robustness and reproducibility. We

observed that some DNA-seq tools such as BWA-MEM and BWA-MEM2 are more sensitive

to both types of technical replicate data. In order to validate the effect of replicate data we

ran DNA-seq alignment tools a couple of times with exact data and we observed that output

remained the same across these different runs. Concerning SV tools the changes were basically

related at the same time to the choice of read alignment tools and the order of reads within

the BAM file provided by the respective alignment tools. This indicates the impact of results

of the read alignment tool on the result produced by the SV tool. On the other hand, some

trade-off between output consistency and technical issues seems to also be creating an impact

on the robustness of SV tools. As mentioned in the results section of SV tools, PopDel relies on

the order of the reads within a BAM file to reduce running time which causes variation between

different versions of BAM files (output obtained with randomly shuffled reads). Regarding RNA-

seq quantification tools, we observed no difference between output obtained from original data

and output obtained from randomly shuffled data for both Kallisto and Salmon. However, higher

deviation was observed with Kallisto when reverse complement input was used.

Our current analysis clearly suggests the importance of testing reproducibility and robustness

of genomic tools. Since genomic tools have protocols for paired-end data we were not able to

use the reverse complement data for SV tools and RNA-seq quantification tools in order to not

to violate any rules for input data requirement. However, for RNA-seq quantification tools we

dropped the second-end of the paired-end data and created replicates based on only first-end

data and ran the tools with single-end data. With this approach we were able to compare the

tools without violating any input protocols specific to the tools.

Based on our analysis, we believe our study will inform the broad biomedical community



14

whether or not their genomics tools of choice are able to maintain consistent results across

replicate data. The ultimate results presented in our study will help to build reliable and robust

genomics tools that maintain reproducibility across replicates and diverse laboratory sites. We

hope that the proposed reproducibility metrics will be adopted by current bioinformatics studies

in addition to standard methods of accuracy, running times and memory usage.
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PART 2

QUANTITATIVE DIFFERENCE BETWEEN INTRA-HOST HCV POPULATION

FROM PERSONS WITH RECENTLY ESTABLISHED AND PERSISTENT

INFECTION

2.1 Abstract

Detection of incident hepatitis C virus (HCV) infections is crucial for identification of out-

breaks and development of public health interventions. However, there is no single diagnostic

assay for distinguishing recent and persistent HCV infections. HCV exists in each infected host

as a heterogeneous population of genomic variants, whose evolutionary dynamics remain incom-

pletely understood. Genetic analysis of such viral populations can be applied to the detection of

incident HCV infections and used to understand intra-host viral evolution. We studied intra-host

HCV populations sampled using next-generation sequencing from 98 recently and 256 persis-

tently infected individuals. Genetic structure of the populations was evaluated using 245,878

viral sequences from these individuals and a set of selected features measuring their diversity,

topological structure, complexity, strength of selection, epistasis, evolutionary dynamics, and

physico-chemical properties. Distributions of the viral population features differ significantly be-

tween recent and persistent infections. A general increase in viral genetic diversity from recent

to persistent infections is frequently accompanied by decline in genomic complexity and increase

in structuredness of the HCV population, likely reflecting a high level of intra-host adaptation at

later stages of infection. Using these findings, we developed a machine learning classifier for the

infection staging, which yielded a detection accuracy of 95.22 per cent, thus providing a higher

accuracy than other genomic-based models. The detection of a strong association between several

HCV genetic factors and stages of infection suggests that intra-host HCV population develops in

a complex but regular and predictable manner in the course of infection. The proposed models

may serve as a foundation of cyber-molecular assays for staging infection, which could potentially
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complement and/or substitute standard laboratory assays.

2.2 Introduction

Hepatitis C virus (HCV) infection remains a major cause of morbidity and mortality, with

an estimated 70 million people being HCV infected worldwide in 2015 [18].HCV infection is the

leading cause of chronic liver diseases and hepatocellular carcinoma worldwide, contributing to

the death of more than 350,000 people in 2015 [18]. Hepatitis C outbreaks continue to occur,

posing a serious challenge to public health [19]. HCV is highly mutable. As a result, each infected

individual hosts a heterogeneous population of genetically related HCV variants or ‘quasispecies’

[20]. Substantial diversity of intra-host viral populations plays a crucial role in disease progression

and epidemic spread [21, 22, 23]. However, intra-host dynamics of HCV and other RNA viruses

remain poorly understood. One of the most important questions is the relative contribution

of random and deterministic evolutionary factors in disease progression or, using the metaphor

of [24], whether it is possible to ‘replay the tape of life’ for the virus evolution inside a host.

This question is of high importance for biomedical research, as predictability of viral evolution

potentially implies the power to understand and control the disease [25, 26], which may result in

advanced diagnostic and treatment strategies.

In this article, we study evolutionary factors associated with the transition between HCV in-

fection stages. In more than 50 per cent of cases untreated HCV infection proceeds to the chronic

phase, which can lead to the development of liver cirrhosis and/or hepatocellular carcinoma [26].

Accurate recent or persistent staging of HCV infection is important for biomedical applications. In

clinical settings, it may inform the patient management and treatment strategy. In epidemiology,

identification of acute cases allows for detection and investigation of recent transmissions and

outbreaks and provides information on disease incidence. Understanding of changes in intra-host

HCV populations at different stages of infection would constitute a large step towards reliable

forecasting of viral evolutionary dynamics.

Recent HCV infection is usually assessed using clinical symptoms and time since serocon-

version. HCV infection may, however, remain asymptomatic for years while seroconversion is



17

not frequently detected, preventing accurate identification of infection stages. Several laboratory

methods have been reported for distinguishing acute and chronic stages of infection [27, 28].

Detection of HCV RNA in the absence of anti-HCV activity in serum specimens was used as an

indication of recent HCV infection [29]. Although a strong marker, it has a very short duration

and cannot be used for reliable detection of acute infections.

Advent of next-generation sequencing (NGS) presented an opportunity to sample and analyse

unprecedented large numbers of intra-host viral variants from numerous infected individuals.

HCV variants sampled by NGS have been used to detect stages of HCV infection [30, 31]. The

stage detection methods are generally based on the assumption that intra-host viral evolution

is driven by the continuous immune escape resulting in genetic diversification. Consequently,

quantitative measures of genetic diversity of intra-host viral variants are assumed to be most

useful for staging. However, several recent reports contested the veracity of this assumption. In

particular, after initial diversification, intra-host HCV populations may actually lose heterogeneity

and stop diverting at later stages of infection [21, 32], with certain viral variants persisting in

infected hosts for years [21, 32]. Furthermore, this process is accompanied by an increase of

negative selection over the course of HCV infection [33, 21, 32, 34]. These findings suggest

a high level of intra-host adaptation at late stages of infection [22] and indicate that genetic

heterogeneity is not a reliable marker for infection staging, and more elaborate metrics are needed

to understand HCV evolution and to accurately classify recent and persistent HCV infection.

Here, we present a new approach for staging HCV infection using quantitative genomic

measures to evaluate diversity, information content, effective dimensionality, topological struc-

ture, evolutionary dynamics, and physico-chemical properties of intra-host HCV variants and

populations. Analysis of fea- tures’ distributions at early and late stages of infection suggests

that intra-host HCV populations evolve in a complex but regular and predictable manner. Based

on these findings, we propose a multi-feature machine learning classifier for staging HCV infec-

tion. The model allows for more accurate detection of recent HCV infection than models based

only on population diversity and provides new insights into mechanisms of infection progression.
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2.3 Materials and Methods

2.3.1 Data collection and preprocessing

We analysed intra-host HCV populations sampled from recently (N1⁄498) and persistently

(N1⁄4256) infected persons collected as described in [35]. The E1/E2 junction of the HCV

genome (L = 246nt), which contains the hyper- variable region 1 (HVR1), was sequenced us-

ing the GS FLX System and the GS FLX Titanium Sequencing Kit (454 Life Sciences, Roche,

Branford, CT). Obtained sequences were processed using the error correction and haplotyping

algorithm K-mer Error Correction (KEC) [36], which produced 245,878 unique viral haplotypes

with frequencies. Sequences of each population were aligned using MUSCLE [37]. Since obtained

average numbers of sequences for recent and persistent populations were different (∼n = 295 and

∼n = 846, respectively), the features studied in this paper were normalized, when appropriate.

2.3.2 Features calculation

The analysed features could be loosely split into four groups: genomic features, complexity

features, network features, and bio-chemical features. The features are summarized in Table B.1.

We assumed that a given intrahost population contains n unique haplotypes with frequencies

f1, ..., fn. Sixteen features corresponding to this population constitute its ‘feature vector’.

Genomic features

These features are obtained by direct comparison of sequences from each population.

‘Distance-based’ features include ‘mean and SD’ of pairwise hamming distance distribution

(‘Features 1 and 2’), and the ‘conservation score (Feature 3)’ of the population consensus se-

quence calculated with the NUC44 scoring matrix [38]. We also used the so-called ‘mutation

frequency’ feature (Feature 4) [31], which is defined as the mean distance between all haplotypes

and the most frequent haplotype. All four features measure the population diversity.

Diversity was also quantified using three ‘entropy-based’ features. Suppose that the intra-

host population. S = {s1, ..., sn} is fixed. For the genomic position i, let Hi,k = {(sij, ..., s
j
i+k−1) :
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j = 1, ..., n} be a collection of k-mers (subsequencess of length k) of all haplotypes starting at

that position.The positional k-entropy Ek,i is defined as the entropy of the frequency distribution

of k-mers starting at i:

Ek,i = −
∑

h∈U(Hi,k)

fi,k(h) log2(fi,k(h)) (2.1)

Here U(Hi,k) is the set of unique elements of Hi,k, h is a k-mer, and fi,k(h) refers to the

relative frequency of h inside Hi,k. An ’average positional k-mer entropy’ Ek (Feature 5) is the

mean of positional k-entropies over all positions. For k = L, the feature EL (Feature 6) is an

entropy of observed haplotype frequencies, while for k = 1, it is an average position-wise single

nucleotide variant (SNV) entropy (Feature 7). In our model, we used entropies E1 (Feature 7),

EL (Feature 6), and E10 (Feature 5).

Next, we estimated the frequency of ‘transversions (Feature 8)’ (mutations between purines

and pyrimidines) among all observed mutations within the population. This feature is suggested

by previous studies [39] that reported higher frequencies of transitions over transversions in HCV

populations.

‘Selective pressure’ was measured using the DN/DS ratio (Feature 9), which has been cal-

culated as the ratio of rates of non-synonymous (DN) and synonymous (DS) substitutions with

respect to the most frequent genomic variant.

Complexity features

’PCA complexity (Feature 10)’ is derived from principal component analysis (PCA). PCA

has been widely used to quantify patterns of genomic population structure, and the idea to use

the number of principal components that explain a given portion of variation to estimate the

effective number of subpopulations inside a population has been described and justified in [40]

and [41]. In our case, for each population, we transform its alignment into n × 4L numerical

matrix M by transforming nucleotides as A=0001, C=0010, T=0100, G=1000. The complexity

fP (v), 0 ≤ v ≤ 1, is then defined as the percentage of principal components required to explain

at least v per cent of the observed genetic variance, that is fp(v) = min
{
k/4L :

∑k
i=1 λi∑4L
i=1 λi

≥ v
}

,
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where λ1 ≥ λ2 ≥ ... ≥ λ4L are the eigenvalues of a covariance matrix of M . In this study,

we used the complexity fp(v) with v = 0.5. This can be justified by several arguments. First,

the value v = 0.5 is large enough to reflect the significant portion of the population’s genomic

composition. Second, each population in general can be characterized by the are under curve

fp(v), which takes into account all possible values of v. However, if M is non-singular, then given

that fp(v) is monotonically increasing, fp(v) → 0 as v → 0 and fp(v) → 1 as v → 1, this area

is accurately enough reflected by the value fp(0.5) at the middle-point of the curve’s domain.

‘Kolmogorov complexity (feature 11)’ is the classical concept of information theory, which

quantifies the descriptive/information complexity of a string over a finite alphabet [42]. Informally

it is defined as the highest possible degree of compression of a given string without loss of

information. Although the exact value of Kolmogorov complexity (feature 11) is algorithmically

incomputable, it can be efficiently approximated using data compression techniques. In our

case, each viral sequence has been transformed into a binary string (as described above), and

these strings have been concatenated into a string s of length —s—. Following (Kaspar and

Schuster 1987), the normalized Kolmogorov complexity KC (feature 11) was estimated as KC =

(c(s))/(b(s)). Here c(s) is a Lempel-Ziv complexity of s defined as the number of unique

substrings encountered by a computational process that constructs s by adding its symbols one

by one; and b(s) = |s|/log2(|s|) is the asymptotical expected Lempel-Ziv complexity of a random

string of |s| (for more detailed description see [43, 44]. Under this definition, “simpler strings”

(i.e., strings with more regular structure) have lower complexity.

Network features

This group of features is derived from the analysis of genetic networks of HCV populations,

that represent a sequence space [44] of a virus. Formally, for each patient its genetic network

GN = (V,E) is a graph, whose vertices V represent sampled viral haplotypes, and edges E connect

variants which differ by at most T mutations (by default T=1) Fig. 2.1. With each vertex we

associate the frequency of the corresponding haplotype. In the case of a large population size

accompanied by a high mutation rate and a fast reproduction time, genetic networks constructed
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using NGS data represent population structures significantly more accurately than phylogenetic

trees [34]. Their structure is shaped by various factors, such as epistasis, founder effects, and

selection pressures that affect the virus over the course of infection [21, 45]. For each network,

the following four features have been calculated.

Figure (2.1) Examples of genetic viral networks for a (A) persistently infected individual and
(B) for a recently infected. The viral network of the recently infected host has the structural
properties typical for scale-free network.

‘Robustness/selection balance (feature 12)’ has been measured by the correlation between

vectors of vertex frequencies and eigenvector centralities. The latter is the principal eigenvector

of the adjacency matrix A of GN . In the classical quasispecies model, vertex centralities are

indicative of the mutational robustness of corresponding viral variants, while a high frequency

may be indicative of a higher fitness or a higher mutational robustness [46].

Topological structures of genetic networks have been assessed using two features. The first

of them is a normalized s-metric (feature 13) [47] s(GN) =
∑

(i,j)∈E(GN ) didj, which measures

how close a network is to being scale-free. Here, di is a degree (number of neighbors) of a

vertex i, and the normalization factor n4 represents the order of magnitude of the maximum

non-normalized s-metric for n-vertex network. Scale-free networks are ubiquitous in biological
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and social systems and share specific properties such as a power-law degree distribution, small

diameter and presence of hubs.

The second network structural feature is the average clustering coefficient C (feature 14),

which measures the degree to which network vertices tend to cluster together. It reflects the

probability that a random connected vertex triplet is complete (i.e., every pair of vertices is

connected by an edge) and is calculated as C = 2
n

∑n
i=1

∑
j,k∈V AijAikAjk

di(di−1) .

Evolutionary dynamics (feature 15) feature estimates an age of the genetic network using a

dynamic evolutionary model. The general idea is to simulate variant frequencies using a system of

ordinary differential equations (ODE) (feature 15) and estimate an age of the network as the time

when simulated frequencies achieve the best agreement with observed frequencies. Owing to the

inherent uncertainty of quantitative features of the model, we do not use the actual estimated

age as a feature for infection staging, rather we classify patients based on the qualitative behavior

of the function describing the deviation of simulated and observed frequencies over time.

Formally, we separate each intra-host viral population into subpopulations corresponding

to connected components of the genetic network. For each subpopulation, viral evolution is

described by the dynamical system (2.2)-(2.5), partially inspired by the ideas from [48, 49].

ċ = α + ρ(1− c+
∑n

i=1 ci
C∗

)− θc− βc
n∑
i=1

vi (2.2)

ċi = βcvi − δhci (2.3)

v̇i = p
∑
ij∈E

qjicj − λrivi (2.4)

ṙi = φvi − σri (2.5)

In this study we utilized the values of model parameters estimated in [50, 49].

Variable c represents numbers of uninfected target cells, variables ci, represents cells in-
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fected by virions with ith genome, variables vi represents virions with ith genome in the host’s

serum, and variables ri represents B-cell antibodies targeting the ith genome. The constants

α, ρ, θ, β, δ, p, λ, φ and σ are model parameters representing various rates. In this study we uti-

lized the values of these parameters estimated in [50, 49]. According to the model, uninfected

hepatocytes are produced by differentiation of precursor cells at a constant rate α, proliferate by

a logistic growth law with a rate ρ due to the limited liver cell carrying capacity and die at rate

θ. Cells are infected by a variant i at a rate βvi and, after being infected, are eliminated by the

cross-immunoreactive CTLs at rate δ. The virions with the ith genome are introduced to the

blood by the cells infected by the variant j at the rate pqji, where qji = (ε/3)dij(1− ε)L−dij is a

probability of mutation between variants i and j, dij is the Hamming distance between genomes

i and j, L is the length of the genomes and ε is the mutation rate. Specific B-cell antibodies ri

eliminate the corresponding virions at a rate λri. They are stimulated by the corresponding viral

variants at the rate φ and decays at a rate σ in the absence of stimulation.

An estimated age of the network could be defined as the time T ∗ when simulated fre-

quencies gi(t) = vi(t)∑n
i=1 vi(t)

achieve the best agreement with observed frequencies, i.e., T ∗ =

argmin(JS(g(t), f)), where JS(g, f) is a Jensen-Shannon divergence between distributions g(t)

and f . However, numerical features in equations (2.2)-(2.5) could be uncertain or patient spe-

cific. As a result, the estimated numerical values of T ∗ for different patients cannot be directly

compared and used for the classification. More reliable classification can be achieved using qual-

itative characteristics of the deviation function ϕ(t) = JS(g(t), f), which are not significantly

affected by the parameters’ variation. Intuitively, if the model (2.2)-(2.5)adequately describes

the evolution of viral populations, then the model for recent populations achieves the best agree-

ment between model-based and observed frequencies for earlier populations, and the agreement

deteriorates with time. Similarly, for older populations the agreement is low at earlier times and

increases till it reaches a maximum at some late time point. Thus, in general, recent and old

populations are expected to be characterized by deviation functions ϕ(t) with descending and

ascending trends, respectively. Based on this idea, we classify viral subpopulation as recent or

old based on the coefficients of the approximation of ϕ(t) by the exponential function a+ bect.
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It is known that some patients have mixtures of components under different types of selection

[34]. In particular, chronically infected hosts may have components of different ages, and the

overall age of infection should be defined by the oldest component. Given this, the classification

of a patient was performed separately for each connected component of the genetic network. The

patient is classified as persistently infected, if at least one of the connected components is old,

and as recently infected, if all of them are recent. The prediction age variable cODE (feature 15)

is set to be equal to -1 in the first case and 1 in the second case.

Biochemical feature

This feature (feature 16) assesses the physico-chemical properties of sequences from viral

populations. In brief, a large set of physico-chemical parameters is considered for each sequence

from a given population. The goal is to synthesize the information from all sequences into a single

population feature that is added to the other features for the final analysis. This is done first by

applying a prediction model to assess whether a given sequence has a physico-chemical profile

associated with recent or persistent infection, using the method described below. The biochemical

index of an entire population is then defined as the probability that a random sequence from this

population has a profile pointing to persistent infection. This part of the analysis was carried out

by our collaborator Dr. James Lara from the Centers for Disease Control and Prevention, and it

is described in detail in [51].

2.3.3 Machine learning classifier

Feature vectors of recently and chronically infected hosts were used to train machine learning

classifiers for infection stage prediction. Given a labelled training set comprising feature vectors

together with their class labels (recent or persistent), each classifier is fitted to the training

data by adjusting its model features and assigns labels for unlabelled feature vectors using the

trained model. In this study, we used Support Vector Machines (SVM) with linear and polynomial

kernel and Logistic Regression. Both approaches are classical supervised learning methods that

construct a hyperplane in the multidimensional Euclidean space, which serves as a separator for



25

feature vectors from classes of recently and persistently infected hosts.

2.4 Results

2.4.1 Stage-specific distributions of features

Our model consists of 16 diverse features categorized in four groups: genomic features,

complexity features, network features and biochemical features. The 3 features (k-entropy, SNV

entropy, and conservation score; features 3, 5, and 7 respectively) were found to be in high

correlation with feature 1 and with each other Fig. 2.2. For the remaining 13 features there is

a small-to-medium correlation between them Fig. 2.2, demonstrating that they reflect different

properties of intra-host viral populations.

Feature vectors of recent and persistent populations are separable from each other Fig. 2.2.

For the features, Mann-Whitney U-test suggests statistically significant difference between recent

and persistent intra-host populations (p < 0.001, Table B.1).

Figure (2.2) (A) Heatmap of absolute values of pairwise correlations between features. (B) 3-
Dimensional projection of recently and persistently infected hosts (with highly correlated features
removed).

As expected, diversities are on average higher for persistent than recent populations (Fig.
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2.3 (1-7)). Higher genetic diversity of persistent populations is accompanied by significantly

lower PCA (p < 0.01) and Kolmogorov complexities (feature 10 and 11) (Fig. 2.3 (10, 11)).

The decrease of complexity points to a higher level of adaptation and organization of intra-host

populations (see Discussion). The emergence of intra-host adaptation is further supported by

the increase in negative selection (feature 9) (Fig. 2.3 (9)) at later stages of HCV infection. It

can be claimed that this trend is not due to spurious correlations associated with the difference

in numbers of sequences for recent and persistent populations. When the patients with less

than q sampled sequences are discarded, then the numbers of sequences for recent and chronic

patients are more balanced ( 1139 and 1340 in average, respectively, for q = 200 and 1350 and

1594, respectively, for q = 300), and the trend to have lower PCA and Kolmogorov complexities

(feature 10 and 11) for persistent populations remain to be statistically significant (P < 0.01).

Furthermore, the significant difference between PCA complexities (feature 10) of recent and

persistent populations is observed for different values of the variance threshold. Indeed, the areas

under the curves fp(v), (0 ≤ v ≤ 0.9), for persistent populations P remain significantly lower

than for recent populations (P < 0.02).

Recent and persistent HCV populations are also separable by an ODE feature cODE (feature

15) (Fig. 2.3 (15)). However, it should be noted that the minimal Jensen-Shannon divergence

between model-based and observed frequencies is significantly lower for recent than for chronic

patients ( 0.07 vs 0.12, respectively, P < 0.001). Thus, the immune escape-based model (2.2)-

(2.5) describes recent populations more accurately than persistent populations. This observation

could point to a declining role of immune escape.

Transition mutations were overwhelmingly more frequent than transversion mutations (fea-

ture 8) for both classes of samples. This fact agrees with the previously published results [39],

although the magnitude of difference vary along the genome: HVR1 transitions are ∼ 18 times

more frequent than transversions, while a 75-fold difference was reported for NS5B [39]. How-

ever, prevalence of transversions was ∼ 2 times higher in persistent populations (Fig. 2.3 (8)).

This property of intra-host viral evolution also agrees with previous studies [52] on the between-

host level that suggests that the propensity of transition/transversion ratio to decline could be
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associated with the growth of genetic saturation.

Figure (2.3) Boxplots of feature distributions for persistent (left box plot on each graph) and
recent (right box plot on each graph) intra-host HCV populations. The plots are in the same
order as in Table B.1.

Genetic networks of recent and persistent intra-host populations possess different structural

properties. Networks of recent populations have significantly higher s-metrics and clustering

coefficients (feature 13 and 14) (2.3 (13, 14)). It indicates that, in contrast to the persistent
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Table (2.1) Prediction accuracies of machine learning methods

Method Prediction Accuracy 95 % CI
SVM - linear kernel 95.17% (94.009, 95.233)
SVM - quadratic kernel 95.22% (95.004, 95.356)
Logistic regression 93.17% (92.908, 93.051)

populations, they tend to have structural properties more typical for scale-free networks, including

the power-law degree distribution with clearly manifested hubs (high-degree vertices), with their

vertices having propensity to cluster (Fig. 2.1). This observation reflects the role of founder

viral variants at the earlier stage of infection (see Discussion). A significantly higher correlation

between frequencies and network centralities of variants in persistent populations (feature 12)

(2.3 (12)) indicates that the population structure at later stages is significantly influenced by

mutational robustness, while at earlier stages it is basically defined by founders.

Finally, individual sequences of recent and persistent populations have distinct physico-

chemical properties (feature 16) (2.3 (16)).

2.4.2 Machine learning classification

Mutation frequency, k-entropy and frequency entropy (feature 4, 5 and 6) have been excluded

from the prediction model as they are highly correlated with feature 1 and with each other.

The remaining 13 features were used to train Support Vector Machines (SVM) and Logistic

Regression classifiers for binary classification of intra-host viral populations labelled as ”persistent”

and ”recent”. Although these classifiers do not necessarily require removal of highly correlated

features, they were dropped to reduce a likelihood of overfitting. Accuracy of classifiers has been

assessed using a two-step cross-validation. First, to account for the bias associated with unequal

numbers of cases with persistent (n = 256) and recent (n = 98) infection, repeated random

subsampling of 98 populations from the persistent sample dataset was performed. For each of

the balanced training sets 10-fold cross-validation was carried out.

The average prediction accuracies are reported in Table 1. Classification performance eval-

uation of all methods indicates a high accuracy of infection stage inference, with SVM with
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quadratic kernel demonstrating the highest accuracy of 95.18%.

Figure (2.4) ROC curves of classification models

SVM classifier with quadratic kernel has been compared to the previously published HCV

infection staging models [31] which classify intra-host viral populations as recent or persistent

using frequency entropy (feature 6), SNV entropy (feature 7) or mutation frequency (feature 4).

The ROC curves of the classifiers are shown in Fig. 2.4. Previously proposed methods (AUROC

= 0.81, 0.66 and 0.78, respectively) were less accurate in comparison with the SVM classifier

(AUROC = 0.99), thus suggesting that diversity features alone are not sufficient for accurate

distinction between recent and persistent cases. SVM classifier performed at the expected lower

accuracy on randomly labelled datasets (average AUROC = 0.5), thus indicating that the as-

sociations between feature distributions and infection stages are likely due to the structural and

evolutionary factors rather than to random statistical correlations in the data.
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2.5 Discussion

We present the results of comprehensive analyses of the structure of intra-host viral popu-

lations using a large set of samples from individuals with recent and persistent infection, which

significantly exceeds data sets used in earlier studies [31]. Amplicons covering HCV HVR1 have

been sequenced by NGS. Intrinsically disordered regions (IDR) of proteins like HVR1 seem to be

most useful for application in models to identify viral clinical properties from sequences. It has

an extensive epistatic connectivity across the entire HCV polyprotein [53], and is associated with

immune escape [54], drug resistance [55, 53] and virulence [56]. Consequently, IDRs play an

important role in viral adaptation to the host environment, making regions like HVR1 sensitive

”sensors” that accurately reflect intra-host biological changes during the infection process.

Our results indicate significant differences in the structure of HCV populations sampled from

recently and persistently infected hosts and suggest that intra-host HCV populations develop in a

complex but ordered and predictable manner during the course of infection. This form of evolu-

tionary regularity manifests itself in the presence of viral genetic features strongly associated with

stages of infection. Utilization of these features for machine learning allowed us to train classifiers

capable of inferring infection stage from HCV sequence data with accuracies as high as 95%. Our

study confirms a previously established positive correlation between infection stage and intra-host

viral diversity [28, 57, 31]. However, because of complexities in the structural development of

intra-host populations affected by bouts of selective sweeps and negative selection during chronic

infection [22, 58], simple metrics of genetic heterogeneity are insufficient for the accurate staging

of HCV infections. High accuracy could be achieved by using a combination of features measuring

different structural and evolutionary properties of viral populations. Furthermore, most of the

analyzed features are easily computable and do not require computationally intensive phyloge-

netic and phylodynamic inference. Thus, the proposed prediction models may serve as accurate

and scalable cyber-molecular assays for staging infection, that could potentially complement and

substitute standard laboratory assays. In particular, the proposed models are currently being

incorporated into Global Hepatitis Outbreak and Surveillance Technology (GHOST) [59] — a
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web-based molecular surveillance system developed and maintained by CDC. Moreover, the over-

all strategy described in this study may serve as a foundation for cyber-molecular diagnostics

[60].

All feature changes described in this study reflect major trends of intra-host viral evolution

that have been previously explored and described [21, 52, 22]. Some changes such as the increase

of transversions and genetic heterogeneity of viral populations seem to be more directly than others

associated with duration of infection and linked to high mutability and genetic saturation [52, 31].

Changes of other features are likely associated with variation in selection pressures operating at

different stages of infection.

The dynamics of analyzed features suggests that intra-host HCV evolution at the initial

stage of infection is largely different from evolution at later stages of infection. In particular, the

physico-chemical properties of HVR1 variants appear to be influenced by and responsive to intra-

host environmental factors specific to the recent and persistent stages of HCV infection. The

change of properties is likely to be associated with different evolutionary mechanisms operating

at different infection stages. Early evolution is likely defined by a founder-flush process [61, 21],

which rapidly generates massive selectable genetic heterogeneity. This is reflected, in particular,

by pronounced scale-free properties of recent genetic networks. Indeed, star-like networks (the

simplest scale-free networks), just like star-like phylogenies, typically represent populations that

recently underwent a population expansion from a single founder. For HCV, transmissions of

higher multiplicity have been observed [62]; furthermore, the population could expand by the

time of sampling. In that case, the observed genetic network may not be exactly star-like, but

multiple founder variants (median = 4 [63]) should still serve as most central vertices, resulting in

more general scale-free structure. Evolution of recent populations seems to be driven by positive

selection (DN/DS > 1). In such settings, the contribution of mutational robustness is less

pronounced, resulting in the lower values of the robustness/selection balance feature (feature 12)

for recent populations. In particular, the network centers are likely founders transmitted from

their previous hosts, some of which may be less fit than newly generated variants in the new host,

resulting in the eventual decrease of their observed frequencies over time.
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In contrast, later stages are likely to be defined by the virus adaptation to the host environ-

ment and varying immune selection pressures. The process of adaptation results in an orderly

development of intra-host viral populations that is reflected by the increase of negative selection

and decrease of PCA and Kolmogorov complexities (feature 10 and 11). The major role here is

played by epistasis. For HCV, it is frequently detected in the form of coordinated substitutions,

which are organized into a complex network of epistatic connectivity [64]. Coordinated substitu-

tions reflect selection pressures acting on intra-host viral populations and represent dependence

of phenotypic effects of mutations on other mutations or on genetic background to which these

mutations occur [64]. HCV epistatic interactions have been shown to be associated with host

factors [53, 65], drug resistance [55, 56, 66], disease severity [65], and coinfections [50]. Many

features analyzed here could be essentially linked with the underlying epistatic networks. For

example, high complexity indicates a high level of randomness of a sequence, while low com-

plexity implies the presence of specific structural patterns inside a sequence [42]. The reduction

in complexity of the late-stage intra-host HCV populations indicates increase in epistatic con-

nectivity among polymorphic sites resulting from strong functional constraints experienced by

these populations. Such constraints shape adaptation of viral populations to specific intra-host

environments. At the earlier stages of infection, nucleotide changes are seemingly more random,

resulting in populations with higher dimensionality. Changes in physico-chemical properties based

on auto-correlation also likely reflect variations in the structure of epistatic networks established

during early and late stages of infection in addition to variation in the strength of connectivity in

these networks [35].

Given the above observations, it is unlikely that the entire intra-host HCV evolution is driven

by a single evolutionary mechanism. The changes of evolutionary parameters are consistent with

the hypothesis that intra-host HCV evolution is not a simple accrual of genetic heterogeneity

resulting from the “arms race” between the virus and the host’s immune system or a random

genetic drift within the space of effectively neutral genomic variants. It is rather a complex

process defined by the recurring presentation of a succession of selection challenges specific to

each stage of infection [21, 22]. In this process, different modes of evolution can be dominant
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at different stages. The “arms race” seems to drive intra-host HCV evolution at its early stages,

as indicated by the positive selection, smaller impact of mutational robustness and the fact that

ODE model (feature 15) (2)-(5) describes recent populations quite accurately. However, the

“perpetual arms race” model is inconsistent with the observed increase of negative selection,

long-term persistence of particular genomic variants [21, 67] and antigenic convergence [68].

Similarly, strong coordination of variability and functionality among genomic sites is unlikely to

be established as a result of a neutral evolution and should be the result of selection. However, it

is quite possible that the stable “end-game” or equilibrium population observed at its later stages

will be internally neutral (under the network neutrality definition from [46]). Such a population

can be located at a local fitness landscape plateau and form a neutral genetic network, where

fitnesses of its nodes are equal and greater than for variants outside the network. This can

lead to the higher impact of mutational robustness on the relative variant frequencies inside this

network (van Nimwegen, Crutchfield and Huynen 1999). However, it should be remembered that

the viral fitness landscape is essentially dynamic and is defined by emerging immune responses

and cross-immunoreactivity between current and past viral genotypes [22]. Thus, the currently

observed internally neutral network should have been selected over the course of evolution.

The most intriguing stage of intra-host HCV evolution is the transition between two afore-

mentioned stages, i.e., between the immune escape under positive selection and a conditionally

stable state under the negative selection. The reported results are consistent with the hypothesis

that this transition can be caused by the development of specific cooperative interactions among

intra-host viral variants [22, 69]. Under this model, HCV immune adaptation is associated with

antigenic cooperation among intra-host HCV variants [21, 22], owing to complementary roles

played by viral variants in mitigation of neutralizing immune responses defined by their topo-

logical location in cross-immunoreactivity networks [68]. This model posits that intra-host viral

populations evolve as quasi-social systems of functionally complementary variants [22, 69]. Such

functional differentiation enables HCV adaptation to the changing intra-host environment as a

group of cooperators rather than independent variants.
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PART 3

RECONSTRUCTION OF VIRAL TRANSMISSIONS IN CONTACT NETWORKS

WITH EXPECTED DEGREE DISTRIBUTIONS

3.1 Abstract

Reconstruction of transmission networks is a major problem of genomic epidemiology. Many

methods have been developed in the past decade, which methods have showed that genomic

data alone is not enough to reconstruct the transmission network of an outbreak. In this research

we proposed to combine genomic data with information concerning the social component of

epidemics. We considered that the contact network (outbreak network) is a random graph

with expected degree distribution (for example, it can be scale-free). We proposed a Maximum

Likelihood approach to find the transmission network as the tree with the highest embedding

likelihood to a random contact network. In order to calculate the likelihood of embedding of a

candidate tree within a contact network, we used a uncapacitated facility location problem that,

in turn, can be reduced to a maximum perfect matching problem for bipartite graphs. In our

approach, candidate transmission trees are produced using simulated annealing and local search

algorithms. When applied to synthetic data, the proposed method in average correctly predicted

∼ 82% of transmission links and ∼ 83% of transmission ancestries. Thus, the proposed method is

capable of inferring the majority of transmission links of an outbreak, and with more information

specific to the outbreak better predictions can be achieved.

3.2 Introduction

Outbreaks of RNA based viral pathogens such as Hepatitis C virus (HCV) and Human

Immunodeficiency Virus (HIV) are major concerns in public health. Reconstruction of viral trans-

missions of an outbreak is crucial for understanding the dynamics of viral spread. The history of

viral transmissions can be formed based on the following information:
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1. Transmission clusters with host involved in outbreaks.

2. Transmission history of each outbreak

Phylogenetic tree reconstruction from genomic data helps to detect transmission clusters

of an outbreak. However, the question of ’who infected whom’ within each cluster remains a

complex problem to solve. Extraction of such information is a challenging task due to factors

caused by the RNA virus nature. In particular, topologies of phylogenetic trees alone may not

reflect the true transmission history [70]. Therefore, additional epidemiological and biological

related information should be used along with sequencing data. In this research we propose a

Maximum Likelihood approach that uses expected properties of contact networks of susceptible

individuals for the accurate transmission network inference.

3.3 Materials and Methods

3.3.1 Method Description

A set of heterogenous population P = Pi, ..., PN is given where each population Pi consists

of n haplotypes of length L sampled from a particular infected host. Based on this population,

a Maximum Likelihood approach is used to reconstruct the transmission network. This approach

requires the information mentioned below.

• A relatedness matrix W consisting evolutionary distances.

• A prior information Is which is the expected degree distribution (EDD) of a contact network

Gc. EDD reflects properties from spectral and structural properties of contact networks

[71, 72]. In particular, here it is adjusted to account for some epidemiological settings such

as needle-sharing.

Based on the relatedness matrix W of a genetic network (Fig. 3.1 (A)), a relatedness graph

GR (Fig. 3.1 (B)) is constructed. We assume that tree T is a subgraph of Gc and GR at the same

time. Tree T is one of the candidate spanning trees with the highest embedding likelihood inferred

from the Maximum Likelihood approach. In this example, if the contact network is assumed to
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be scale-free, then the left tree on the Fig. 3.1 (C)) would be the most likely transmission tree

(tree T ).

In our approach, the relatedness network GR is constructed as follows: given a threshold T ,

estimated as the minimal integer such that GR is connected, where a pair of vertices i, j in GR

is adjacent if the distance Wi,j between the corresponding populations does not exceed T . The

obtained graph is then further sparsified out by applying the aforementioned procedure to each

of its biconnected components.
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Figure (3.1) (A) Network of viral haplotypes. Different colors represent different hosts [73]. (B)
Relatedness graph GR. (C) Spanning trees derived from GR.

3.3.2 Estimation of tree likelihood

We assume that the transmission tree T is a subgraph of GC and one of the spanning trees

of GR. Then, every vertex v ∈ V (T ) = V (GR) has a degree dv in T .

Since the contact network is not observed we use only its expected degree counts C =

(C1, ..., CN−1), where Cj is an expected number of vertices of degree j in GC . An embedding of

T in GC , where Is is the prior information EDD, is the tree likelihood calculated as follows:

p(T |Is) = max
D

p(GT |D)p(D) (3.1)

In this study a Maximum Likelihood approach is used to solve this objective function (Equa-

tion 3.1).
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3.3.3 Estimation likelihood of an embedding

Let Cj and σj be the numbers of vertices with expected degree j in GC and GT , respectively.

The conditional probability p(GT |D), which is the likelihood of an embedding, is calculated as

here [71], in which the probability of an edge between vertices with expected degrees Di and Dj

is equal to
DiDj

2M
. Based on that the following equation is deducted:

p(GT |D) =
∏

i,j∈E(GT )

DiDj

2M
=

1

(2M)m

n∏
i=1

Ddi
i . (3.2)

The counts σk follow a multivariate hypergeometric distribution such as p(D) = 1

(Nn)

∏N−1
j=1

(
Cj

σj

)
.

After transition to log-probability, the problem in Equation. 3.2 can be represented as a gener-

alized uncapacitated facility location problem with convex costs. This problem can be solved in

polynomial time as shown by Hajiaghayi et al. [74].

3.3.4 Uncapacitated facility location algorithm

Let C = {u1, ..., un} represents the set of clients and F = {1, ..., N − 1} represents the set

of facilities, and d = (d1, ..., dn) is the degree sequence vector of GT and C = (C1, ..., CN − 1)

is the expected degree count vector of GC .

If client i is assigned to facility j, then (i.e. the vertex vi has a degree j in GC):

bij =


di log j if di ≥ j

− inf otherwise

(3.3)

Assignment of σj number of clients to a facility j generates a profit of:

fj = fjσj = log

(
Cj
σj

)
(3.4)

Here the functions −fj(σj) are convex, so this problem can be reduced to the maximum-

weight perfect matching problem for bipartite graphs [74]. Based on this algorithm, for each

facility j ∈ F , one copy for each facility is created for each client i. Considering, the general
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convex function the opening costs of the jth copy of a facility F will be fj(i + 1) − fj(i) for

0 ≤ i ≤ N − 1.

Since −fj(σj) is convex, the facility profit becomes fj = − log
(
Cj

σj+1

)
+ log

(
Cj

σj

)
. From the

reduction if a jth copy of a facility is used kth copy must also be used for k ≤ j, because fj is

convex. Finally, a bipartite graph G = (X ∪Y,E) is constructed, where for each client i a vertex

in the set of X is placed and for each facility j a vertex in the set of Y is placed. Finally, an

edge i, j, is placed in E, where this edge is between a client i and facility j and its weight is:

− bij − fj(σk+1) + fj(σk) (3.5)

Based on this bipartite graph G, a maximum-weight perfect matching is performed to assign

clients to facilities in the most profitable way.

3.3.5 Simulated annealing and local search

Given GR and the EDD of the contact network (GC) our goal is to find the tree T with the

highest likelihood of embedding within GC . To solve this problem we used simulated annealing

(SA) algorithm as described in Fig. 3.2, followed by a local search (LS) algorithm as described

in Fig. 3.3.

Here s(T ) is the minimum spanning tree of GR. Tact and Pact represent the actual (current)

tree and its likelihood respectively. Tnew is the new tree generated from Tact and Pact is again

the likelihood of this new tree. The probability of accepting the new tree is calculated as follows:

p = exp(Pnew−Pact)
t

, where t is the temperature used in SA algorithm. Temperature t is reduced

by the following formula: t× (1− α), where α is the reduced factor.

In the LS diagram (Fig. 3.3), n and iteration represent the total number of steps required

for LS algorithm and the actual iteration number respectively. Finally Tfinal represents the tree

with the highest embedding likelihood obtained after applying SA and LS algorithms.



39

Figure (3.2) Diagram of simulated annealing (SA).

3.3.6 Tree rearrangement

As shown in the SA diagram (Fig. 3.2) and the LS diagram (Fig. 3.3) Tnew is generated

from Tact. The tree modification here is performed by deleting a random edge from Tact which

will result in two sub-trees. Then, two random vertices are chosen from these two sub-trees and

connected to each other which creates our new spanning tree Tnew.
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Figure (3.3) Diagram of local search (LS).

Table (3.1) Common pairwise link and parent-ancestor link accuracies.

Number of nodes Mean link accuracy Mean ancestry accuracy
10 84.5% 85.3%
20 83.2% 85.6%
30 78.3% 77.6%

3.4 Results

We tested our method with simulated data with three different tree sizes (n = 10, 20, 30)

where n is the number of vertices. We simulated the infection spreads over contact network
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according to the SI model with the transmission rate ρ = 10−2. Each infected individual is

assumed to carry a viral sequence, at each transmission events the source’s sequence is transmitted

to the recipient. The sequences mutate at the basic rate of µ = 10−6. The transmission tree

generated from this simulator is used as the true tree which is compared to the tree inferred by

our proposed method. For each different size of tree we used 10 different simulated data. As

ground truth we used the tree generated from the simulator. As for the contact network (GC) we

set the maximum degree of vertices to a large enough number to cover all possible transmission

networks. We used the EDD of the assumed network GC calculated following a power-law degree

distribution.

We applied our method as described in Fig. 3.2 and Fig. 3.3 starting with the GR obtained

from the simulator. As default values we set the parameters as initial temperature t = 30 with a

reduced factor α = 0.003 and following with an iteration number n = 30 for local search.

We applied our method 10 times for each tree with different nodes. We recorded the average

accuracies of matching direct links and matching parent-ancestry links between the true tree and

the inferred tree Tfinal with the maximum embedding likelihood (see Table 3.1).

3.5 Discussion

In this research we studied the problem of ”who infected whom” within an outbreak. In

addition to genomic data we incorporated the structure of an outbreak contact network. We sug-

gested to solve this problem by finding the most ”scale-free-like” spanning tree given a relatedness

network and the EDD of a random scale-free contact network.

It is known that infection occurs through contact between susceptible individuals within a

social network, even though the contact networks of outbreaks are not exactly known. Therefore,

the transmission networks reflect the characteristics of these social networks [75, 76, 77, 78] Our

model shows that the introduction of such prior information specific to the outbreak is useful

to detect the source of the infection transmission and the structure of the transmission tree.

However, this information alone is not always sufficient to find the most likely transmssion tree.

The more prior information is introduced, the better the results would be.



42

Here in this study we tested our method with simulated HCV data and our preliminary results

suggest that the concept of scale-free contact network is an important information for HCV

outbreak transmission reconstruction. The general method composed of uncapacitated facility

location algorithm reduced to maximum-weight perfect matching can be applied to different types

of outbreak such as HIV and SARS-CoV-2 outbreaks. Especially during an emerging outbreak,

this method could potentially complement genomic data analysis with adequate prior information.
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PART 4

GLOBAL TRANSMISSION NETWORK OF SARS-COV-2: FROM OUTBREAK TO

PANDEMIC

4.1 Abstract

The pandemic caused by the SARS-CoV-2 virus is straining health systems around the world.

Although the Chinese government implemented severe restrictions on people’s movement in an

attempt to contain its initial spread, the virus had reached the majority of countries, partially due

to its potent transmissibility and frequency of asymptomatic cases. As the pandemic continues,

understanding its global transmission network properties is essential. The goal of this study is to

characterize the network associated with the establishment of the pandemic.

We employ molecular surveillance data for inference and analysis of SARS-CoV-2 global

transmission network, and exploit an algorithmic approach specifically tailored to emerging out-

break settings. It traces accumulation of viral genomic heterogeneity via mutation trees, that are

then transformed into transmission networks.

SARS-CoV-2 into the majority of regions via heterogeneous transmission pathways. The

transmission network is scale-free, with few genomic variants responsible for the majority of

transmissions. The network structure is in line with the temporal data and suggest the expected

sampling time difference of few days between potential transmission pairs. The findings emphasize

the extent of the global epidemiological linkage and demonstrate importance of internationally

coordinated containment measures.

4.2 Introduction

The COVID-19 pandemic due to the SARS-CoV-2 virus that emerged out of the city of

Wuhan, China in December, 2019 [79, 80, 81, 82, 83], is now straining or overwhelming health

care systems around the world. Hundreds of new confirmed cases have been reported daily in
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countries of every continent [84, 85, 86, 87, 88, 89]. To combat the spread of the virus, in the

absence of a vaccine or specific treatments, travel restrictions and social distancing interventions

have been put in place. In order to devise effective control strategies at different spatial scales, it

is critical to have a clear understanding of transmission pathways of SARS-CoV-2, including local

human-to-human transmission dynamics [90, 91, 81] as well as long-range transmission events

(country-to-country) [92].

In this study, we sought to characterize the transmission pathways that facilitated the virus

to establish itself as a pandemic. We utilized a network-based approach to infer and analyze the

global SARS-CoV-2 transmission network using viral genomes sampled around the world before

the pandemic declaration by WHO on March 11, 2020. The richness and accessibility of genomic

data accumulated in almost real time owing to wide utilization of next-generation sequencing

technologies distinguishes this SARS-CoV-2 pandemic from previous large-scale epidemics includ-

ing the 2009/AH1N1 influenza pandemic and the 2003 SARS outbreaks. Another feature of the

scope of the genomic data for COVID-19 is the high sampling density available to investigate the

early transmission stages. Indeed, although the virus genetic diversity gradually increases as the

virus spreads, particular genomic variants have been repeatedly sequenced at different time points

and geographical locations. These observations indicate that the available sequencing data cover

a significant part of the evolutionary space explored from the onset of the epidemics and is less

susceptible to the effects of sampling and reporting biases.

For such molecular surveillance data, viral evolution could be accurately modeled, recon-

structed and visualized by genetic networks models [34, 93, 76], that have been successfully used

for the analysis of different viral epidemics [93, 76, 23] and shown to be particularly efficient to

ascertain transmission links compared to methods based on binary phylogenies [76]. However, in

emerging outbreak settings, when all circulating viral genomes are relatively close to each other,

it is necessary to employ methods that allow the analysis of viral population structures at finer

resolution than provided by state-of-the-art network models. We achieve such resolution by using

mutation trees [94] associated with character-based phylogenies that keep track of the accumu-

lation of mutations in viral populations. These trees, in turn, allow for accurate inferences of
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transmission networks. Note that besides us, other researchers simultaneously and independently

suggested the usefulness of character-based phylogenies for SARS-CoV-2 evolutionary analysis

[95].

Our results presented here summarize the up-to-date picture of the spread of SARS-CoV-2

between and within countries and geographic regions. The structural properties of the inferred

network, transmission clusters and pathways as well as virus introduction routes emphasize the

extent of the global transmission network. It also demonstrates the importance of internationally

coordinated public health measures and highlights how epidemiological and molecular surveillance

analyses complement each other to characterize the spatial-temporal spread of epidemics.

4.3 Materials and Methods

4.3.1 Data preprocessing.

We obtained the genomics data and associated metadata from the first stage of COVID-19

epidemics (before March 11, 2020) from the GISAID database [96]. The sequences identified by

GISAID as low-quality have been removed. The reference genome was taken from the literature

[97]. It coincides with the most prevalent sequence sampled from Wuhan at the outbreak onset

and from a number of other locations. Given this fact, we assume that the reference represent

the original states (major alleles) of analyzed genomic positions. The sequences were aligned to

the reference using MUSCLE [37] and trimmed to the same length of m = 29772 bp. In order to

be as conservative as possible in the mutation calling, gaps and non-identifiable positions have

been assumed to have major alleles. As a result, the set of n = 319 sequences S = {s1, ..., sn}

have been selected for the further analysis.

4.3.2 Dimensionality reduction and clustering.

Viral sequences were embedded into the 2-dimensional space using T-distributed Stochastic

Neighbor Embedding (t-SNE) [98] based on the Hamming distance. The embedding points were

clustered by k-means clustering, and the optimal number of clusters was estimated using the gap

statistics [99].
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4.3.3 Mutation tree reconstruction.

First, genomic positions without variation have been removed, leaving m = 274 single

nucleotide variants (SNVs) for further analysis. Finally, the alignment was represented by the

n×m (0, 1)-mutation matrix M with rows corresponding to sequences and columns corresponding

to SNVs, where Mi,j = 1 whenever the i-th genome has a minor allele at the position j with

respect to the reference.

The major structure used for such inference is a mutation tree, where

• internal nodes correspond to mutations, with the root representing the zero mutation (the

absence of mutations);

• leafs represent sampled genomes;

• mutational profile of each sequence consists of mutations on the path from the correspond-

ing leaf to the root.

This tree does not have to be binary. In a perfect phylogeny, which is the simplest character-

based phylogenetic model [100], each mutation occurs only once and can be represented by a

single internal node. This model can only explain the data without 4-gamete rule violation, i.e.

whenever for each pair of columns in the mutation matrix M , there are no 4 sequences that

have all possible combinations of alleles (0, 0), (0, 1), (1, 0), (1, 1) at that positions. SARS-CoV-2

sequences contain several 4-gamete rule violations, thus implying repeated mutations in the same

genomic positions. Therefore, we fit the data to more general Camin-Sokal phylogenetic model,

that allows homoplasy in the form of repeated mutations, while mutation losses are not allowed

and each mutation could be acquired at most twice [101].

We first identify potential repeated mutations and then construct plausible mutations trees

taking into account for the possibility of false SNV calls resulting from the sequencing noise as

follows:

1) Identify potential repeated mutations. This is achieved using a graph G4g, whose vertices are

SNVs, and two vertices are adjacent whenever the corresponding pair of SNVs violates 4-gamete
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rule [102].

In this graph, we are looking for the minimum vertex cover, i.e. the minimum set of vertices

whose removal destroys all edges. The set of genomic positions corresponding to vertices in a

minimum vertex cover forms the most parsimonious set of mutations that should be repeated.

We find all minimal vertex covers using Bron-Kerbosch algorithm [103] for maximum inde-

pendent sets generation; the complements of maximum independent sets are exactly minimum

vertex covers. Since the number of 4-gamete rule violations for SARS-CoV-2 data was relatively

small, this method was fast and allowed to significantly simplify the phylogeny reconstruction.

2) Construct mutation trees.

For each minimum set R = {m1, ...,mk} of potential repeated mutations from the previous

step, we construct a Camin-Sokal phylogeny which minimizes the number of mismatches with

the original mutation matrix M as follows. We generate an extended set of mutations P =

{1, ...,m,m + 1, ...,m + k}, where each original mutation j ∈ {1, ...,m} \ R is represented by

a single copy and each mutation j ∈ R is represented by a pair of copies C(j). The sought-for

Camin-Sokal phylogeny T would be a perfect phylogeny with respect to the extended set of

mutations P . To construct this phylogeny and the corresponding extended mutation matrix X,

we utilize an integer linear programming (ILP) approach [102]. The following binary variables are

used:

(a) Xi,j = 1 whenever the genomic variant i has a mutation j from the extended set P ,

i = 1, .., n; j = 1, ...,m+ k.

(b) Dj,l,a,b = 1 whenever there is a sequence that have an allele combination (a, b) at the

positions j and l, j = 1, ...,m+k; l = j+1, ...,m+k; (a, b) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Then we seek to minimize the total number of mismatches between the observed mutation

matrix M and the mutation profiles defined by the tree T by minimizing the objective

function

∑
(i,j):Mi,j=0

∑
p∈C(j)

Xi,p +
∑

(i,j):Mi,j=1

∑
p∈C(j)

(1−Xi,p) (4.1)
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subject to constraints

Dj,l,1,1 −Xi,j −Xi,l ≥ −1, (4.2)

Dj,l,1,0 −Xi,j +Xi,l ≥ 0, (4.3)

Dj,l,0,1 +Xi,j −Xi,l ≥ 0, (4.4)

Dj,l,0,0 +Xi,j +Xi,l ≥ 1, (4.5)

Dj,l,0,0 +Dj,l,0,1 +Dj,l,1,0 +Dj,l,1,1 ≤ 3 (4.6)

∑
p∈C(j)

Xi,p ≤ 1 (4.7)

i = 1, ..., n; j = 1 : m+ k; l = j + 1, ...,m+ k (4.8)

The first 4 sets of constraints enforces the relations between the variables Xi,j and Di,j,a,b

specified by (a) and (b), the fifth set of constraints guarantees that T is the perfect phylogeny

with respect to the extended set of mutations P , and the last set of constraints ensures that two

gains of the same mutation appear only in parallel lineages. The instances of the ILP problem

were solved to optimality using Gurobi 8.1. The trees were constructed for all potential sets of

repeated mutations, and the tree with the best objective function was selected.

4.3.4 Transmission network construction and bootstrapping.

The transmission network defined by the mutation tree T is a directed graph, whose vertices

represent viral genomes, and two genomes are connected by an arc if their mutational composition
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suggests potential direct or indirect transmission linkage between their hosts. For a given mutation

tree T , the corresponding transmission network GT is constructed as follows:

1) Collapse sequences that share the same parent in T into a single haplotype. The set of

haplotypes forms the vertex set of GT .

2) A pair of haplotypes hi and hj are connected by a directed arc whenever (a) the parent of hi

is an ancestor of the parent of hj and (b) there is no haplotype hk whose parent belongs to the

path between the parents of hi and hj.

In graph-theoretical terms, GT is the transitive reduction of the reachability graph of the parents

of observed haplotypes.

Some SNV calls could be possibly misplaced due to the sequencing noise and underlying

complexity of the SARS-Cov-2 genome. To account and quantify the uncertainty for the hypoth-

esized transmission links, bootstrapping of the transmission networks was performed. At each

bootstrap, m mutations were sampled with replacement from the the original set of mutations,

and the mutation tree and the transmission network were constructed using the obtained mu-

tation matrix as discussed above. For each potential transmission link, its bootstrap probability

was calculated. The final consensus transmission tree was estimated as the maximum-weight

spanning arborescence [104] with respect to the edge probabilities.

4.4 Results

4.4.1 Transmission clusters.

t-SNE/clustering analysis suggest that as of March 11, 2020 five distinct viral subpopulations

have been circulating globally (Fig. 4.1):

1) The original cluster(black) that includes sequences sampled from Wuhan and other mainland

China provinces during the early transmission phase, as well as from USA, Singapore,

Taiwan, Thailand, South Korea, Nepal and several European countries are most probably

epidemiologically linked with China at earlier outbreak stages.

2) European cluster (red) that includes sequences almost exclusively from European countries,
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Figure (4.1) t-SNE plot of observed SARS-CoV-2 genomes. Wuhan-1 haplotype is depicted as
a triangle. Identified clusters are highlighted in different colors. In the upper right corner, gap
statistic values are shown.

as well as from a few non-European countries (Nigeria, Mexico, Brazil) most of whom are

documented to be epidemiologically linked to Europe.

3) The cluster from mostly Pacific countries (blue) that includes sequences from mainland

China, South Korea, Hong Kong, Singapore, Vietnam, Australia, USA and Chile, including

the subcluster of sequences from the US Washington State.

4) The mixed cluster that include significant portion of genomes sampled in Australia and New

Zealand (green). Among their hosts, three were reported to have travel history to Iran. It

may mean that this strain is a branch of an Iranian strain tied to the epidemics at a much

larger scale in that country.
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5) The cluster that includes sequences sampled across several regions of Southeastern Asia

(Hong Kong, South Korea, Taiwan, Singapore), as well as the major United Kingdom

cluster (violet).

We observed the negative log-linear relationship between cluster sizes and maximum pairwise

Hamming distances between the genomes inside the clusters (Fig. 4.3a, R2 = 0.984, p < 0.001).

It suggest a preferential attachment-like mechanism of cluster formation, where the majority of

newly appearing genomes tend to concentrate around few older genomes. This mechanism is

further confirmed by the following analysis.

4.4.2 Transmission network.

The inferred transmission network is visualized in Fig. 4.2, haplotypes are annotated by the

full list of their sampling locations. Although the majority of haplotypes (80%) were sampled in

a single geographical location, a number of them were sampled in multiple locations, including

the most prevalent haplotype sampled in Wuhan and associated with the initial phase of the

epidemic (highlighted in red) that is further referred to as Wuhan-1 haplotype. For the potential

transmission links e, their bootstrapping-based probabilities pe are reported.

4.4.3 Comparison of different transmission detection tools.

We compared the performance of our tool (CS-phylogeny) to others that are currently

available. For this purpose we compiled epidemiological links prior to March 11th, 2020 from

different sources, such as news and articles. These compiled epidemiological links were marked as

true transmission links. Table shows sensitivity and specificity of the transmission detection tools

based on the detected transmission links. With a sensitivity of 80% CS-phylogeny outperformed

other tools (Table 4.1).

Network and temporal information

The network structure was found to be in line with the reported genome sampling times,

even though the network was constructed using the genomic data alone. Indeed, the correlation
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Figure (4.2) The transmission network constructed using SARS-CoV-2 genomes available as
of March 10, 2020 and vizualized using Gephi [105]. Vertices represent viral genomes, and
two vertices are connected by an arc if their mutational composition suggests potential direct
or indirect transmission linkage between their hosts. Each vertex is annotated by the list of
geographical locations were it was sampled. The thickness and color (from blue to red) of the
edges are proportional to their bootstrapping probabilities.

between network distances and differences in first sampling times between ancestor-descendant

pairs of network nodes is 0.78 (p < 10−116). The fact that this correlation is not absolutely
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Table (4.1) Sensitivity is defined as the ratio of true transmission links formed by the tool to the
total number of true links. Specificity is defined as the ratio of true links formed by the tool to
the total number of links formed by the tool.

Tool Sensitivity Specificity

CS-phylogeny 80% 4.76%
NETWORK5011CS 72% 4.99%
RAxML 64% 4.26%
bitrugs 52% 3.38%
hivtrace (t=0) 40% 7.81%
outbreaker 28% 5.83%
phybreak 4% 0.83%

(a) (b) (c)

Figure (4.3) (a) Relationship between cluster sizes and the logarithms of maximum pairwise dis-
tances. (b) The distribution of sampling time differences for linked pairs. (c) Degree distribution
of the transmission network (in log-log scale).

perfect is not surprising, as sampling times are prone to sampling and reporting biases and may

not accurately reflect actual transmission times. Even in such settings, for 86.10% of potential

transmission pairs, their sampling times agree with each other, i.e. the source was sampled earlier

than the recipient; and for 94.25% of these pairs their sampling times either agree or differ by

at most 7 days. Finally, the mean minimum time difference between sampling times of potential

transmission pairs was 3.74 days (95% CI = [2.75, 4.73], Fig. 4.3b), while for the random pair

of haplotypes the expected time difference was 20.48 days (95% CI = [20.21, 20.74]), making

this difference significant (p < 10−45, Kolmogorov-Smirnov test).

Network structure

The transmission network is robust to an input data variation, with 97.34% of its edges being
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supported by the majority of bootstrap experiments, and 78.19% of edges having bootstrapping

probabilities above 95%.

SARS-CoV-2 transmission network appears to be scale-free, with the the right-skewed de-

gree distribution (Fig. 4.3c). Degree distributions of such networks follow power law (i.e. the

probability of having a particular degree is proportional to the power of that degree), and they

are often the result of a preferential attachment process, where a vertex joining a network gets

connected to an existing vertex with the probability proportional to the degree of that vertex -

the model is often described by the metaphor ”the rich get richer”. Following [76, 106], we fitted

negative binomial, Yule, Pareto and Waring distributions to the observed degree distribution of

the transmission network. To compare the goodness of fit yielded by different models, we used

the Akaike (AIC) and Bayesian (BIC) Information Criteria (Table 4.2). The Pareto distribution,

that represent the classical power-law, demonstrated the best fit. The exponent of the Pareto

distribution was estimated to be 1.20 (95%CI = [1.12, 1.34]), indicating the higher tendency

of vertices to be connected to hubs (high-degree vertices). The correlation between vertex de-

grees and sampling frequencies of the corresponding genomes was high: ρ = 0.8932, p < 10−65.

All these observations suggest that few genomes were responsible for the majority of possible

transmissions.

Transmission history

The structure of the potential transmission network mostly agrees with the distribution of

t-SNE clusters (Fig. 4.1) and allows to hypothesize multiple transmission routes. The virus

spread is characterized by multiple introductions of SARS-CoV2 into regions and countries: for

14 out of 34 countries with reported sequences multiple introductions could be claimed. Below

we summarize the information about the transmission pathways in different regions outside the

mainland China (whose subnetwork is depicted on Fig. C.1) that could be deduced from the

network.

USA (Fig. C.2). There are indications of multiple introductions of SARS-CoV2 into the

country, as well as of sustained human-to-human transmissions inside the country prior to March
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Table (4.2) Comparison of different models for the transmission network degree distribution.

Distribution AIC BIC

Negative Binomial 708.49 714.96
Pareto 603.48 609.95
Waring 704.59 711.06
Yule 804.91 808.15

11. Most of introduced haplotypes could be directly linked to the first epidemic wave in mainland

China, with the average graph distance between US haplotypes (Washington cases excluded) and

Wuhan-1 haplotype being equal to d = 1.79 links. In particular, the state of California alone

could have exhibited multiple introductions with no identified significant clustering of cases, as

its observed viral haplotypes were either also sampled in China (2 cases) or linked directly to

the haplotypes in mainland China (2 cases, pe = 1), or to haplotypes from Singapore, Vietnam,

Australia and Canada (4 cases, pe = 0.98, 0.97, 0.99 and 1, respectively) which are, in turn, linked

to haplotypes sampled in mainland China (pe = 0.98, 0.77, 1 and 1). In contrast, the haplotypes

from the state of Washington formed a connected subtree with the root sampled in China, thus

suggesting a single introduction followed by the sustained human-to-human transmissions inside

the state (mean pe = 0.99). In addition, the network suggests independent introductions to Mas-

sachusetts, Wisconsin, New York, Illinois and Arizona. Two possible cases of virus transmission

between US states were identified: from Arizona to Texas (pe = 0.83) and from Washington

to California (pe = 1). The sequences from the Grand Princess cruise ship could be linked to a

single case identical to the Wuhan-1 haplotype.

Western Europe. The major European cluster was linked to the Wuhan-1 haplotype

through the haplotype sampled in Germany on January, 28, 2020 (pe = 0.79) (Fig. C.3). The

parent of this haplotype is the Wuhan-1 haplotype (pe = 0.91) and its only child is the haplotype

later sampled in Italy. This potential transmission route is in agreement with epidemiological and

molecular evidence reported by other sources [107, 108, 109, 95]. For Italy, the analysis suggests

that there was another independent SARS-CoV-2 introduction with no genomic evidence of the

further spread. Similarly, at least two introductions are hypothesized for Netherlands (Fig. C.4);
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however in that case both resulted in sustained host-to-host transmissions inside the country.

The first Netherlands cluster was the part of the major European cluster, while the second one

could be linked to the Wuhan-1 haplotype (pe = 1). This cluster has the genetic signature in the

form of codon deletion in nsp2 genomic region that was observed only there; furthermore, both

viral subpopulations are not geographically separated and co-exist in the same cities. A similar

situation was observed in Germany, where two separate subpopulations coexisted: first of them

is linked to the major European cluster, while the second one was directly linked to the Wuhan-1

haplotype (pe = 1). Multiple introductions have also been observed in Finland. Haplotypes from

Switzerland, Spain and Czech Republic are only observed in the main European cluster and most

probably were introduced from Italy; in the latter case, this claim has an epidemiological support

as the infected person reportedly had traveled to Italy.

The epidemiological history in the United Kingdom seems to be quite different from that

of continental Europe (Fig. C.5). There were multiple separate clusters detected there, three of

which were not associated with other European cases and directly linked to the sequences sampled

in China and Australia in January, 2020 (mean pe = 0.82). Of the remaining haplotypes, one

is linked to the second Netherlands cluster, while others belong to the major European cluster

(the majority of them being sampled in Wales). Two clusters showed indications of intra-country

transmissions (mean pe = 0.93).

East Asia. All introductions in Singapore, Japan and South Korea (Figs. C.6, C.7 and

C.8) were linked to the haplotypes observed in mainland China. Singapore possibly experienced

four such introductions (mean pe = 0.99). In both Japan and South Korea, two potential

introductions were predicted, one linked to Wuhan-1 haplotype, and the other linked to intra-

country transmissions (mean pe = 0.99 in Japan and pe = 0.86 for South Korea).

Australia. There are indications of at least three potential virus introductions to Australia

either from mainland China or, as discussed in the previous subsection, from Iran, although the

latter claim is currently based only on epidemiological evidence. Three of the corresponding

clusters have evidences of intra-country transmissions (mean pe = 0.88).

Central and South America and Africa. All viral variants sampled in Nigeria and Mexico,
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2 variants from Brazil and 1 variant from Chile were linked to haplotypes from the major European

cluster (mean pe = 1) and have reported travel history to Italy, while one variant from Brazil is

linked to the genome from the United Kingdom (pe = 0.99), thus confirming that the virus was

imported from continental Europe. On the other hand, three other Chilean haplotypes belong to

the Pacific cluster and could be linked to the haplotype sampled in mainland China, Taiwan and

Australia (mean pe = 0.92).

4.5 Discussion

In this work, we report the results of molecular surveillance analyses of SARS-CoV-2 prior

to the transition from epidemic to pandemic state. Our aim was to identify and analyze the

transmission pathways that allowed the epidemic to rapidly progress from the initial outbreak

in Wuhan to the pandemic that is now affecting almost every geographic region of the globe

[110, 79, 111]. To achieve this aim, we implemented a computational framework to recover the

network of potential SARS-CoV-2 transmissions from the aggregated genomic data. The analysis

allowed to identify potential transmission links and routes of disease introduction in different

geographic regions, and confirm the presence of multiple sources of introduction to the majority of

countries. This conclusion supports the implementation of travel restrictions and border screening.

The fact that a number of countries exhibited multiple introductions demonstrates how the global

transportation network allowed the virus to exploit multiple transmission pathways and spread so

rapidly. It underscores the need to put in place coordinated efforts involving multiple countries in

order to achieve epidemic control.

The scale-free structure of the global SARS-CoV-2 transmission network suggests that few

genomes were responsible for the spread of the virus. The question whether this pattern is due to

founder effects, epidemiological settings or differences in phenotypic features across SARS-CoV-2

genomic variants requires further investigation. Furthermore, scale-freeness of the network should

be taken into account in epidemiological modelling and planning of public health intervention

measure, since epidemic processes on such networks exhibit a specific behaviour [112, 113].

Although additional data that appeared since the declaration of the pandemic will add vertices
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and links to the network, its general structural properties will likely be preserved.

The ongoing pandemic of SARS-CoV-2 is the first global public health emergency for which

next-generation sequencing technologies have been employed at such scale. This has led to

a high density sampling that is unprecedented for both the geographic extent of virus spread

and the evolutionary space explored by the virus since its emergence. It provides the means of

tracking virus spread and evolution across time and space using the methods of computational

genomics and molecular epidemiology. Automatic high-performance computing-based molecular

surveillance systems such as Nextstrain [114], HIV-Trace [115] and GHOST [59] could be instru-

mental in such global surveillance and decision making. However, the results of such molecular

surveillance analyses should be interpreted with caution. First of all, the genomic analysis do not

necessarily replace traditional epidemiology methods. It rather complements other epidemiologi-

cal investigations using the sequencing data as an independent source of information that is not

subject to the biases associated with the traditional epidemiological data [116, 117]. Second, it

is important to understand that the edges in the estimated global transmission network may not

be synonymous with actual transmission events, but rather link infected hosts from the same epi-

demiological transmission clusters. Furthermore, underreporting and undersampling effects still

could be sensable. The dataset available for this analysis is a convenience sample rather than

a random sample within infected individuals, which results from the aggregation of data from

different countries and sequencing labs and instruments. This is an inevitable consequence of

sequencing data analysis since the procedure itself can be relatively expensive when implemented

on a large scale [118, 119], and the decision to sequence each particular case is largely done

subjectively in each specific country and lab.
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APPENDICES

Appendix A

Table A.1 contains data used to generate Figure. 1.2 for clarity due to the presence of small

fractions that are difficult to see on the full size image.

Table (A.1) Percentage of reads for different categories (identical, CG - IL: constant global
and inconsistent local, IG: inconsistent global, MM: multi-mapped, IT2: inconsistent type 1,
inconsistent type 2) between original data and replicate data (reverse complement and shuffled).

Data type Tool Identical CG - IL IG MM IT1 IT2

rev. comp.

Bowtie2 78.706 0.397 0.009 0.425 19.746 0.717
BWA-MEM 95.470 0.069 2.352 0.915 0.641 0.553
BWA-MEM2 95.470 0.069 2.352 0.915 0.641 0.553
HISAT2 94.162 0.048 0.232 0.642 4.541 0.375
Minimap2 82.958 0.003 5.681 7.036 4.252 0.070
NextGenMap 99.643 0.000 0.000 0.000 0.178 0.179
SMALT 92.164 0.002 0.548 0.962 5.178 1.146
SNAP 93.167 0.000 1.990 1.421 2.905 0.517
Subread 97.544 0.002 0.083 0.194 1.058 1.118

shuffled

Bowtie2 100.000 0.000 0.000 0.000 0.000 0.000
BWA-MEM 96.498 0.000 3.096 0.379 0.014 0.013
BWA-MEM2 96.499 0.000 3.095 0.378 0.014 0.013
HISAT2 100.000 0.000 0.000 0.000 0.000 0.000
Minimap2 100.000 0.000 0.000 0.000 0.000 0.000
NextGenMap 99.961 0.000 0.002 0.007 0.016 0.013
SMALT 100.000 0.000 0.000 0.000 0.000 0.000
SNAP 100.000 0.000 0.000 0.000 0.000 0.000
Subread 99.714 0.064 0.013 0.098 0.055 0.056
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Appendix B

Table B.1 describes all statistical results of analyzed features, their dynamics in time and

interpretation in part 2: Quantitative difference between intra-host HCV populations from persons

with recently established and persistent infection.

Table (B.1) Summary of features (P. mean refers to persistent mean and R. mean refers to recent
mean).

Features p-value P.mean R.mean Dynamics in time
1. Mean distance 1.41E − 24 0.034 0.015 ↑
2. Std distance 4.10E − 14 0.019 0.010 ↑
3. Conservation score 5.11E − 25 0.422 0.188 ↑
4. Mutation frequency 3.07E − 16 0.023 0.010 ↑
5. k-entropy (k = 10) 7.00E − 23 0.630 0.357 ↑
6. Frequency entropy 4.56E − 06 0.668 0.567 ↑
7. SNV entropy 1.14E − 21 0.084 0.043 ↑
8. Transversion mutation 1.06E − 07 0.061 0.032 ↑
9. DN/DS 5.39E − 10 0.713 1.330 ↓
10. PCA complexity 1.4E − 03 0.0053 0.0125 ↓
11. Kolmogorov complexity 1.55E − 11 0.041 0.052 ↓
12. Robustnesss/Selection 3.66E − 15 0.628 0.386 ↑
13. s-metric 1.93E − 20 0.001 0.044 ↓
14. Clustering coefficient 2.08E − 13 0.082 0.356 ↓
15. ODE feature 2.42E − 06 −0.270 0.224 N/A
16. Biochemical feature 2.92E − 35 0.628 0.379 ↑
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Appendix C

Figures C.1 - C.10 represent transmission networks for the regions described in part6: Global

transmission network of SARS-CoV-2 from outbreak to pandemic.

Figure (C.1) Transmission subnetwork of genomes sampled in China
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Figure (C.2) Transmission subnetwork of genomes sampled in USA
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Figure (C.3) Transmission subnetwork of genomes sampled in Germany
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Figure (C.4) Transmission subnetwork of genomes sampled in Netherlands
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Figure (C.5) Transmission subnetwork of genomes sampled in UK
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Figure (C.6) Transmission subnetwork of genomes sampled in Singapore
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Figure (C.7) Transmission subnetwork of genomes sampled in Japan
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Figure (C.8) Transmission subnetwork of genomes sampled in South Korea
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Figure (C.9) Transmission subnetwork of genomes sampled in Australia
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Figure (C.10) Transmission subnetwork of genomes sampled in Africa, Central and South America
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