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A B S T R A C T

Classification and segmentation of objects using machine learning algorithms have been widely

used in a large variety of scientific domains in the past few decades. With the exponential

growth in the number of ground-based, air-borne, and space-borne observatories, Heliophysics

has been taking full advantage of such algorithms in many automated tasks, and obtained valu-

able knowledge by detecting solar events and analyzing the big-picture patterns. Despite the

fact that in many cases, the strengths of the general-purpose algorithms seem to be transferable

to problems of scientific domains where scientific events are of interest, in practice there are

some critical issues which I address in this dissertation. First, I discuss the four main categories

of such issues and then in the proceeding chapters I present real-world examples and the differ-

ent approaches I take for tackling them. In Chapter II, I take a classical path for classification of

three solar events; Active Regions, Coronal Holes, and Quiet Suns. I optimize a set of ten image

parameters and improve the classification performance by up to 36%. In Chapter III, in contrast,

I utilize an automated feature extraction algorithm, i.e., a deep neural network, for detection and

segmentation of another solar event, namely solar Filaments. Using an off-the-shelf algorithm, I

overcome several of the issues of the existing detection module, while facing an important chal-

lenge; lack of an appropriate evaluation metric for verification of the segmentations. In Chapter

IV, I introduce a novel metric to provide a more accurate verification especially for salient objects

with fine structures. This metric, called Multi-Scale Intersection over Union (MIoU), is a fusion

of two concepts; fractal dimension from Geometry, and Intersection over Union (IoU) which

is a popular metric for segmentation verification. Through several experiments I examine the

advantages of using MIoU over IoU, and I conclude this chapter by a follow-through on the

segmentation results of the previously implemented filament detection module.

I N D E X W O R D S: Object Detection, Image Classification, Verification, Heliophysics
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1 I N T R O D U C T I O N

The massive volume of the Heliophysics data that have continuously been collected in the past

few decades, has made the interesting problems of this domain relevant to the realm of Big Data,

Machine Learning, and Deep Neural Networks. Even though monitoring solar events dates back

to the Ancient Period1, and telescopic observations of the Sun started almost with the invention

of the telescope, the idea of the systematic data collection of solar images was an ambition

born with the proven success of (Digital) Image Processing in the mid-twentieth century. This

practice resulted in huge image archives of several different observatories. For example, Big Bear

Solar Observatory (BBSO, 1969) in California [2] has now a publicly available archive of a large

collection of daily full-disk, H-α images of the Sun from 1982 to present. Another example is the

online archive2 of Kanzelhöhe Solar Observatory (KSO, 1949) in Austria [3] that provides open

access to their observations of the Sun from 2007 to present.

With the advances in Space Science, powerful instruments mounted on spacecrafts started

providing a new generation of image data, with no impact of cloud cover or pollution on the

quality of observations. Fig. 1.1 illustrates a fleet of solar, heliospheric, geospace, and planetary

spacecrafts that operate simultaneously. The spaceborne observations are now being collected

with a much shorter observation cadence resulting in a significantly higher growth rate in the

volume of data. Solar Dynamics Observatory (SDO) launched on February 11, 2010, for instance,

is a semi-autonomous spacecraft that provides full-disk, near real-time observations of the Sun

through a suite of instruments. This spacecraft alone transmits to Earth ∼0.55 petabytes (∼550

Terabytes) of data per year. To put this volume in context, one could look at the stream of

data that two of the SDO’s instruments produce; Atmospheric Imaging Assembly (AIA) captures

an image every ten seconds in each of the eight channels; Helioseismic and Magnetic Imager

(HMI) records a magnetogram every 45 seconds, and a vector magnetogram every 90 seconds [4].

1 Babylonians regularly recorded solar activities in the 8
th century BC [1].

2 http://cesar.kso.ac.at/main/ftp.php

1
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Figure 1.1: Launch dates of Heliophysics System Observatory missions plotted on a solar cycle timeline.
Credit: NASA.

This ever-growing volume of solar data is indeed a precious source of information, especially

of importance, given the possible devastating impact of solar events on human activity and

technology both in space and on the ground.

1.1 Motivation

Extreme space-weather events, similar to extreme terrestrial events such as hurricanes and torna-

does, can have economic and collateral impacts on mankind [5,6]. The Sun, as the main creating

source of space-weather events, continuously emits a stream of plasma, and occasionally releases

large expulsions of plasma and magnetic field from its corona, which are called Coronal Mass

Ejections (CME). With strong enough CMEs directed towards the Earth, the energetic particles

can reach the Earth in a course of a few (1-5) days. The interaction of CMEs with the Earth’s

magnetic field can cause a geomagnetic storm with direct impacts on our electronic infrastruc-

tures. Such extreme events can abruptly disturb the GPS system and consequently impact the

GPS-based positioning industries. It can also cause wide-area electric power outage that, with

the interconnectedness of today’s technologies relying heavily on electricity, could result in tragic

socioeconomic damage. Disruption of the transportation, communication, government services,

potable water, as well as loss of perishable foods and medications are only some of the pieces

in the giant chain-reaction machine that our modern technologies have built. The National Re-

2



search Council (NRC) in 2008 published a report [7] that thoroughly reviews these impacts, and

estimates the devastating socioeconomic damages caused by severe space-weather events. The

report (in page 4) gives “an estimate of $1 trillion to $2 trillion [for the United States] during the

first year alone [. . . ] with recovery times of 4 to 10 years.” In 2012, an independent study [8] es-

timated that the probability of a strong geomagnetic storm (an equivalent of the 1859 Carington

Event) occurring within the next decade is ∼ 12%. In recognition of this degree of vulnerability,

in 2016, the U.S. president, Barack Obama, signed an executive order3 that established policy to

prepare for such events in order to minimize the potential impact on the economy and society.

Solar events are those occurring within the Sun’s magnetically heated atmosphere. Automated

detection of these events on the captured images of observations is the starting point for exploring

many interesting avenues of curiosity. For instance, the detection of solar filaments, as one of

these event types, allows tracking and profiling of filament instances. Such tracking provides

critical information about filaments’ evolution over time. A basic understanding of the nature of

filaments reveals the importance of this type of metadata. Typically, the life-cycle of a filament

ends with either a dissipation or an eruption. Studies have shown that a significant number of

filament eruptions result in a CME [9–11]. Therefore, knowing the coordinates from which a

potential CME could originate, as well as the magnetic structure of the nearby filaments, would

help a CME forecast model to estimate the direction of the expulsion. There are many examples of

this sort of applications for automated detection and classification of solar events on Heliophysics

image data. And taking full advantage of this deluge of data without a proper automation is

simply infeasible. However, a reliable automated process comes with a number of challenges

that must be addressed and dealt with rigorously. In this dissertation I discuss several of such

challenges centered in the object detection of scientific events. The following section lays out a

brief review of the challenges.

3 Executive Order 13744 of October 13, 2016
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1.2 Challenges

Automated detection of solar events is at the same time, both very similar to and very different

from the ‘typical’ object detection task. Here, the word ‘typical’ refers to the detection of everyday

objects such as cars, people, and traffic signs, as opposed to scientific objects/events such as

those in medical or satellite imagery. An example of those events in solar images is eruptions of

electromagnetic radiation, i.e., flares, in the Sun’s chromosphere, or oil spills in satellite images

of oceans. The similarities between these two avenues of object detection are more intuitive than

the differences, as the main objective in both tasks is to label each pixel as either foreground or

background. In a slightly more difficult, yet more common, scenario, the goal is to distinguish

between the foreground pixels of multiple objects as well. The differences, however, may not be

so easily noticeable, but they are the source of an array of unique challenges. In the following, I

briefly discuss some of these challenges.

1.2.1 Segmentation Precision

One major difference between the object detection on scientific and non-scientific images is that

Regions of Interest (RoI) in scientific images are not ‘objects’, per se. For instances, satellite

imagery has recently been used for classification of lands [12]. In this context, regions defined

as forests, urban fabrics (with high-, medium-, and low-density), water bodies, and the like are

considered as the objects. It is easy to imagine that such regions often have unclear bound-

aries which make it nearly impossible to obtain a set of reliable ground-truth annotations for, to

start with. Consider a pixel-level annotation of the low-density urban regions and their adjacent

forests. Drawing the separating lines between these two regions seems to be, at least to some ex-

tend, a subjective task. Even when the ground-truth annotations are somehow obtained, because

of the undefined acceptable margin for the separating lines, verification of the detected regions

produced by an algorithm would still be a challenging task, or to be exact, an ill-defined prob-

lem. To elaborate on this problem, take Intersection over Union (IoU) [13] as one of the verification

measures that is widely used for the typical object-detection task. IoU is simply the ratio of the
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intersection of the two regions (the ground-truth and the detected region) over their union. This

is a simple yet powerful method as long as only a coarse segmentation of the regions is sufficient.

In scientific images, however, this is often not the case; a pixel-level segmentation is required

to capture the key structural characteristics of the objects. Measures such as IoU completely

disregard such important details.

1.2.2 Rules of the Underlying System

Another unique aspect of object detection in scientific images is that a robust detection algorithm

should take into account the underlying properties of the system under study. Solar sigmoids

make a good example for such a difference. Sigmoids are S-shaped structures that can be ob-

served (with X-ray telescopes) in the outer atmosphere of the Sun. A sigmoid-detection algorithm

must take into account the S-shaped properties of these objects, instead of solely relying on the

textural information of the regions. Otherwise, a large number of bright regions which are not

necessarily sigmoids will falsely appear among the detected sigmoids. The constraints imposed

by the underlying system is not limited to the features used for detection though. Augmentation

of images, by means of transformation, is a common practice to generate more samples in order

to improve the performance of algorithms. While for training of typical-object detectors (almost)

any transformation function can be used, in scientific events some transformations may render

the detection process completely ineffective. For example, a solar filament can be attributed to

either a right- or left-handed magnetic signature, but not both [14]. And it has not been reported

that a filament changes its handedness during its evolution. Taking this into consideration, this

simple observation should prevent horizontal flips as a technique for the augmentation of fila-

ments, since such a transformation flips the handedness of filaments as well. Consequently the

model will lose its potential discriminative power for separating the left-handed filaments from

the right-handed ones.
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1.2.3 Non-generic Features

The selection and optimization of features to be used is another aspect that is often carried out

slightly differently for the detection of scientific objects. Whenever the image-based features

are to be engineered, and not automatically extracted as it is the case in Convolutional Neural

Networks (CNNs), the selected features are optimized specifically based on the unique textural

and structural characteristics of the subjects of study. For example, a set of features that has

been found effective and then optimized for the detection of malignant or benign lesions in

mammograms are unlikely to be equally optimized (or even useful at all) for the detection of

defected regions on electronic boards. Whereas for the typical objects, the engineered features

are (by definition) supposed to enhance the general characteristics of the typical objects. A set of

popular features of this kind consists of variants of an edge-enhancement feature. This family of

features are rather generic and useful for all the different, yet typical, objects.

In the above discussion, we excluded CNNs because the feature extraction process in those

algorithms is automated. CNN’s learn the features from the data and for typical objects the pre-

trained models are often as good as (or even better than) the freshly trained models on relatively

smaller dataset. Having said that, it is worth noting that due to the significant differences between

the textures and structures of scientific and typical objects, it is good practice to train the model

on the scientific data instead of using the pre-trained models, and then compare it with the pre-

trained models. Otherwise, the knowledge obtained from the analysis of the learned features,

which is one of the CNNs’ greatest strengths, would not be specific to the objects of interests, but

would be rather generic representations of them.

1.2.4 Scarcity and Class Imbalance

For the detection of everyday objects there is rarely a distinction in the importance of some

objects over the others. That is, all object types are equally frequent, i.e., equally probable to

appear in an image, and therefore all objects must be treated equally by the algorithm. In object

detection in scientific images, however, more often than not the prior probability of the object
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types are significantly different due to scarcity of some object types, i.e., the populations of

objects belonging to different types (i.e., data classes) are significantly disproportional. Take the

detection of cancerous and non-cancerous tissues from the microscopic biopsy images [15] as an

example. Sampling cancerous tissues is notably more costly than the non-cancerous ones. This

consequently results in the scarcity of one class. This imbalance in data classes, known as class-

imbalance, causes unique challenges both for training the models and for a proper evaluation of

the models’ performance. For instance, most of Machine Learning algorithms tend to favor the

class(es) with higher prior probability (i.e., with larger population). One approach to remedy

this data-driven bias is to adjust the cost function of the learning algorithm to take into account

the weighted penalty of a misclassification proportional to the imbalance ratio of the classes.

Regarding the performance evaluation, the challenge is to choose an appropriate performance

metric. A simple example of an inappropriate metric for imbalanced data is accuracy. It is widely

known that this metric, as well as many others, assign overly optimistic performance scores to

any model whenever the test data are significantly imbalanced [16].

1.3 Contributions

This dissertation comprises a select studies in which I have attempted to take on some of the

challenges reviewed above. Chapter 2 focuses on image-classification of solar events, and it is

published in the Astrophysical Journal Supplement Series of the American Astronomical Society

(AAS) organization [17]. Chapter 3 presents detection and segmentation of solar events, which is

published in the proceeding of the IEEE International Conference on Big Data 2019 [18]. Chapter

4 introduces a novel metric for evaluation of salient object detection algorithms with the focus on

objects with fine structures. At the time of writing this dissertation, this metric is under review.

For a better flow of the content of this dissertation, the paper titles are partially or completely

altered when used as the chapter titles. In the following, I review the contribution of each chapter.

Chapter 2 is dedicated to the optimization of image parameters, and classification of solar

events using classical Machine Learning algorithms, namely Naïve Bayes and Random Forest

classifiers. A list of selected image parameters are optimized with the objective of maximizing
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the classification performance (in terms of f1-score statistics) in discrimination between two solar

events; Active Region (AR) and Coronal Hole (CH). A third event type, called Quiet Sun (QS),

is introduced and added to the dataset to form the control group in the experiments. QSs are

sampled from regions with no intersection with either an AR or a CH instance. Optimization of

these image parameters are one of the main challenges in this study as each image parameter

requires a unique approach for its optimal values to be found. For instance, the optimized set-

tings of Fractal Dimension (one of the ten image parameters) turns out to be determined by the

optimization of an edge-detection algorithm, while optimization of Tamura Directionality (an-

other image parameter) is carried out by finding the optimal state of a peak-detection algorithm.

This rigorous process of optimization pays off with a significant boost in the classification of

the events. The optimized image parameters calculated on every AIA image since January 2011

through the current date is now publicly available through a web API 4. This results in about 1

TiB of data for each year. The details of this dataset and its reliability analysis are presented in

this chapter as well.

Chapter 3 illustrates the application of object detection in solar images using a state-of-the-

art, region-based CNN, namely Mask R-CNN [19]. The detection of filaments in H-α images of

the BBSO ground-based observatory requires data acquisition and integration of heterogeneous

sources; the observations in the form of raster images, the header information of the images, and

the spatiotemporal metadata of the recorded filaments. The spatiotemporal metadata come from

another filament detection module that was built in 2005, taking advantage of the classical Image

Processing techniques. Relying on the generally believed premise that Deep Neural Networks’

performance improves with the increase of sample size, I feed Mask R-CNN with one year worth

of the old module’s output annotations. I then evaluate its performance on three other years

worth of BBSO observations. In addition to the numerical analysis of the results in comparison

with that of the old module, I catalogue three classes of detection issues of the old module and

compare them with the annotations of Mask R-CNN. Interestingly, in many cases the known

issues do not appear in Mask R-CNN’s annotations. Putting aside the observed improvements

in detections, employing CNN comes with two major advantages: (1) even though it is computa-

tionally expensive to train a CNN model on a large number of images especially given that these

4 See: http://dmlab.cs.gsu.edu/dmlabapi/
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images are relatively large (i.e., 2k-by-2k pixels), its detection phase is impressively fast. In fact,

the trained model returns binary masks of a few thousands of filaments in a matter of a few min-

utes using a standard core-i5 Thinkpad laptop. This is beneficial knowing that BBSO is only one

of the multiple observatories in the Global Oscillation Network Group (GONG) that archive full-

disk, H-α images of the Sun. A fast algorithm can be executed on all filament samples observed

by all GONG’s observatories and therefore provide the community with an unprecedented sam-

ple size of annotated filaments, across different observatories. In addition, (2) Mask R-CNN

comes with an embedded classification component. Therefore, in addition to segmentation of

filaments, it identifies the event types i.e., filament, as well. This is important because there is an-

other solar event type visible in H-α images, called sunspots. Including sunspot instances to the

training data, a similar model can be built but this time it is scaled up to a multi-event, detection

and classification model.

One of the main challenges I faced in the evaluation of this filament detection module is veri-

fication of segmentations. Chapter 4 is dedicated to this issue. Often object detection algorithms

used on scientific events require more than just a rough estimate of events’ boundary. In the

filament detection problem, one of the most important pieces of information that can be inferred

from the filaments’ shape is the orientation of the magnetic field in the associated coronal mass

ejections (CME). This detection process can be automated only if the object detection module is

sensitive to small details such as the legs of the filaments, known as barbs. If filaments’ barbs are

detected in such a way that their angle with respect to the filaments’ spine can be accurately cal-

culated, one can then measure the above-mentioned magnetic field orientation. In this chapter, I

show a few examples where popular metrics such as Intersection over Union (IoU) fail to capture

such details in the fine structure of salient objects. In the absence of an alternative, I introduce

a new metric that compares a detected region with its corresponding ground-truth region in a

multi-scale fashion. This metric, called Multi-scale IoU (MIoU), is the marriage of two concepts:

IoU and fractal dimension. The former is a popular similarity measure and the latter quantifies

the complexity of fractals’ structure and their lacunarity. At the end, we run several experiments

to juxtapose the performance of MIoU with that of IoU, precision, recall, and f1 score.

9



2

I M A G E - B A S E D C L A S S I F I C AT I O N O F

S O L A R E V E N T S : A C T I V E R E G I O N S A N D

C O R O N A L H O L E S

2.1 Introduction

Near real-time monitoring and recording of the Sun’s activities has opened new doors for solar

physicists to better understand the physics of different solar events. This was made possible in

February 2010, when the Solar Dynamic Observatory (SDO) [20] was launched as the first mis-

sion of NASA’s Living With a Star (LWS) Program, which is a long term project dedicated to the

study of the Sun and its impact on human life [21]. The SDO mission is invaluable for monitoring

of space weather and prediction of solar events which produce high energy particles and radia-

tion. Such activities can have significant impacts on space and air travel, power grids, GPS, and

communications satellites [7]. SDO started capturing and transmitting to earth, approximately

70, 000 high-resolution images of the Sun, per day, or about 0.55 petabytes of data per year [4].

This volume of data will only increase in time and with future missions. It is simply infeasible to

take full advantage of such a large collection of data by traditional, human-based analysis of the

images. But with the recent advances in other domains such as database management, computer

vision, machine learning, and many others, extracting knowledge from such a large volume of

data is now a well-defined task.

One of the primary objectives for improving the usability of such a large dataset is to reduce

the size of the L1.5 FITS data without a significant loss of the information contained within the

data. This can be done by utilizing either data compression algorithms or feature extraction (i.e.,

summarization) techniques, or both. While the features can be extracted from the highest quality

of available data (in our study for instance, from AIA images in FITS format that we will discuss

thoroughly later), the images may only be needed in smaller sizes or in compressed formats such
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as JP2000 or JPG. Of course, different approaches must be tailored for different tasks for which

the data is being prepared, but an appropriate data reduction is extremely beneficial regardless.

By significantly reducing the size of the dataset, many useful tasks are made possible that

previously may have been too costly to compute, if at all. To name a few, this would pave the road

for a more efficient search and retrieval of images, clustering of similar regions of images across

a wider temporal window, classification of solar events based on their regional texture, tracking

of different events in time, and even real-time prediction of solar phenomena, for which the total

computation time must comply with the streaming rate of the SDO images. Such reduction in

size not only allows faster operations but also keeps the focus on some key aspects of the data,

called features. Reducing the raw data into some important features is crucial owing to the

fact that image repositories inherit the ‘curse of dimensionality’ as every pixel is represented in

one dimension. These high dimensional spaces are problematic as they may yield misleading

results in any analysis that requires statistical significance, and this expands to affect almost all

machine learning techniques [22–24]. The curse is attributed to the situation where the growth

in dimensionality of the data space is so fast that the number of available data samples cannot

properly fill up the high dimensional space, which renders machine learning models powerless.

Another important outcome of reducing the data volume is that by providing a more manageable

data repository that can be easily accessed and managed by anyone without needing large and

expensive storage devices or being highly skilled in dealing with ‘big data’, more researchers

from different domains may be encouraged to run different experiments on this collection of

data and possibly provide more insight about the data.

To be able to more efficiently and accurately extract a set of important features from SDO’s

image data, various means of data mining should be utilized. This study builds upon a stack

of techniques to derive the important image parameters, for the entire collection that is contin-

uously being updated, starting from 2011. Preprocessing of the original (L1.5) AIA image data,

integrating the data with the spatiotemporal information such as the detected bounding boxes of

different solar events’ instances and the time stamp of their occurrences, extracting the important

characteristics of the images, and labeling the instances are some of the major steps we take to

transform the original data to the data that can be fed into the machine learning models. We

utilize supervised learning to tune the features to reach their highest performance in classifying
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two important solar events’ instances, namely active regions and coronal holes. In addition, we

provide a comparative analysis between the extracted features from different image formats, in

terms of their quality in distinguishing different solar events. In addition to providing the dataset

as our primary goal, we hope that our detailed discussion on these topics would be informative

for scientists interested in SDO images, or extraction of image parameters in general.

Releasing the final dataset in the form of a public API will make the image-based analysis of

the solar events easier and may open new doors to not only solar physicists but also computer

scientists who are interested in feeding their models with a dataset different than the existing,

general-purpose, image repositories.

The remaining of this paper is organized in the following way: A background overview on

SDO data and the image parameters that we are interested in is presented in Section 2.2. In

Section 2.3, we explain the different sources we retrieve the data from and discuss the image

types we run our models on. We then in Section 2.4, analyze each of the image parameters and

their variables which require tuning. The tuning process, and its evaluation using supervised

learning, is presented in Section 2.5 . Section 2.11 concludes this work and discuss the future

work. And finally, in 2.8, we present some statistical analysis of the created dataset to paint a

more accurate picture of the reliability and usability of the data.

2.2 Background

The Solar Dynamic Observatory (SDO) was launched on February 11, 2010, as the first mission

of NASA’s Living With a Star (LWS) Program, with a five-year prime mission lifetime. The main

goal of this project is to better understand the physics of solar variations that influence life and

society. Now that it has been close to a decade since its launch, the observatory has provided

us with approximately 4 petabytes of data in total and is currently continuing to record even

more. The Atmospheric Imaging Assembly (AIA), as one of the three SDO instruments, focuses

on the evolution of the magnetic environment in the Sun’s atmosphere and its interaction with

embedded and surrounding plasma [25].
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Table 2.1: The ten image parameters computed on the AIA images used to produce the dataset.

Image Parameter Formula

1 Entropy −
∑L
i=0 p(i) · log2(p(i))

2 Mean (µ)
∑L
i=0 h(i) · i

3 Standard Deviation (σ)
√∑L

i=0 h(i) · (i− µ)

4 Fractal Dimension − lim
ε→0

log(N)
log(ε)

5 Skewness (µ3) 1
σ3

∑L
i=0 h(i)(i− µ)

3

6 Kurtosis (µ4) 1
σ4

∑L
i=0 h(i)(i− µ)

4

7 Uniformity
∑L
i=0 p

2(i)

8 Relative Smoothness 1− 1
1+σ2

9 Tamura Contrast σ2

µ4
0.25

10 Tamura Directionality See Eq. 2.3

L: maximum intensity value (e.g. 255),
i: color intensity value (i ∈ [0,L]),
p: probability (i.e., normalized histogram),
h: histogram,
N: number of counting boxes,
ε: side length of the counting box

The AIA images archived in the Joint SDO Operations Center (JSOC) 1 science-data processing

(SDP) facility, have been processed by the SDO Feature Finding Team (FFT)2 [4] using its 16 post-

processing modules. The modules are designed for detection of solar event classes such as flares,

active regions, filaments, and CMEs, in near real-time, and others such as coronal holes, sunspots,

and jets. The results are posted at least twice a day to the Heliophysics Event Knowledgebase

(HEK) system [26] since March 2010. One of the FFT’s modules, which targets AR and CH events

is called SPoCA suite [27]. SPoCA, or Spatial Possibilistic Clustering Algorithm, is run in near-

real time at Lockheed Martin Solar and Astrophysics Laboratory and reports to the AR and CH

catalogs of the HEK. It works on a variety of data sources including SDO’s AIA images. SPoCA

segments EUV images into three classes, namely, AR, CH, and QS. That is, it eventually attributes

each pixel to one of the three classes, after running different fuzzy clustering algorithms on the

images and applying some pre- and post-processing filters.

Due to the size of the dataset produced by the SDO, an efficient search and retrieval system

over the entire archive is a necessity. In 2010, this issue was first explored by Banda et al., and

the ambitious task of creating a Content-Based Image Retrieval (CBIR) system on the SDO AIA

images was started [28]. Given the volume and velocity of the data stream, the ten best image

parameters (listed in Table 2.1) were chosen based on their effectiveness in classification of the

1 JSOC; joint between Stanford and the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL)
2 An international consortium groups selected by NASA to produce a comprehensive set of automated feature recogni-

tion modules.
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solar events and also their processing time [29]. The concern regarding the running time of the

implemented parameters is rooted in the ultimate goal of near real-time processing of the data

and the prediction of solar events. The processing window is therefore bounded by the rate of

eight 4096× 4096-pixel images being transmitted to earth every 10 seconds. The performance

of these parameters was further experimented and confirmed by [30, 31]. Due to the variety of

issues that must be addressed for a reliable CBIR system to be created, this is still an active

research with the latest update in [32].

In addition to the analysis performed in the previously mentioned works, these parameters

have also been used for the classification of filaments in H-alpha images from the Big Bear Solar

Observatory (BBSO) and similar success was reported by [33]. Schuh et al. also employed these

ten image parameters for the development of a trainable module for use in the CBIR system

[34], along with a thorough analysis on three years of SDO data (from Jan 1, 2012 through Dec

31, 2014). Yet another sequence of studies benefits from the same set of image parameters for

tracking of the solar phenomena in time [35–37]. In that work, their tracking model utilize sparse

coding to classify solar event detections as either the same detected event at a later time or

an entirely different solar event of the same type. This model links the individually reported

object detections into sets of object detection reports called tracks, using a multiple hypothesis

tracking algorithm. This was accomplished through the consideration of the same set of image

parameters on which we concentrate in this study. We hope that our thorough analysis, which

results in a significant improvement in effectiveness of the ten image parameters, helps all of the

above studies in their performance noticeably.

2.2.1 Image Parameters

All parameters in Table 2.1, except for fractal dimension and Tamura directionality, capture some

information about the distribution of the pixel intensity values of the images and none of them

preserve the spatial information of the pixels. Even though the spatial information is not pre-

served, the distribution-related data provide many clues as to the characteristics of the image.

For example, a narrowly distributed histogram indicates a low-contrast image. A bimodal dis-
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4096 pixels (64 cells)

64 pixels

Figure 2.1: Grid-based segmentation of an AIA image with a grid of 64× 64 cells, each of side length 64
pixels. As an example, the mean image parameter is calculated on each cell and the resultant 64× 64-
pixel heat-map of the output is shown on the bottom-right corner. The heat-map is enlarged for a better
visibility.

tribution often suggests that the image contains an object or a region with a narrow amplitude

range against a background of differing amplitude. However, the location and shape of the solar

phenomena, similar to the temporal information, are the crucial aspects of our data. In order to

help preserve some of the spatial information of the data, we apply a grid-based segmentation on

the images. This is a widely used technique already experimented on the AIA images by [29,38]

that has shown good results. Each 4096× 4096-pixel AIA image is segmented by a fixed 64× 64-

cell grid. For each grid cell that spans over a square of 64× 64 pixels of the image, the 10 image

parameters will be calculated. In Fig. 2.1, such segmentation, as well as the heat-map of the

mean parameter (µ) as an example, is visualized. Since we are processing 10 parameters for each

image, (see Fig. 2.2), the image then forms a data cube of size 64× 64× 10. Additionally, for each

time step, we process 9 images from different wavelength filter channels of the AIA instrument.

The image parameters can also be categorized in two main groups; those which describe purely

statistical characteristics of an image and those that capture the textural information. The former

further divides into two subcategories: 1) Parameters such as mean, standard deviation, skew-

ness, kurtosis, relative smoothness, and Tamura contrast that solely depend on the pixel intensity
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(a) Entropy (b) Mean (c) Std. Deviation (d) Fractal Dim (e) Skewness

(f) Kurtosis (g) Uniformity (h) Rel. Smoothness (i) T. Contrast (j) T. Directionality

Figure 2.2: Heatmap plots of the ten image parameters extracted from an AIA JP2 image captured on
2017-09-06 at 12:55:00, from the 171–Å channel.

values of the image, 2) Parameters such as uniformity and entropy, that, in addition to the pixel

values, depend on the choice of the bin size required for construction of the normalized his-

togram of the color intensities 3. The latter captures the characteristics of the image texture

within the regions of interest (i.e., solar events). In the following text, we elaborate more on the

four image parameters which require a deeper attention.

Entropy

Entropy, as an image parameter, has been widely utilized in a variety of interdisciplinary studies

ranging from medical images [39] to astronomical [40] and satellite [41] images. Depending on

the specific goal in each study, different approaches might be needed. All of the suggested models

try to measure the disorder or uncertainty of pixel values in an image (or bits of data in general).

Almost all of them are inspired, one way or another, from the definition of entropy introduced

by [42] of the Information Theory domain. Despite the valuable achievements in this direction,

the Monkey Model Entropy (MME) [43, 44] which is identical to what Shannon introduced for

decoding communication bits, is still the most popular model in the image processing community.

3 Note that in Table 2.1, in order to have a unified formulation for different parameters, whenever possible we used the
histogram function (i.e., h(i)) to formulate the parameter, however, it is only for two parameters, namely uniformity
and entropy, that the calculation of the normalized histogram (i.e., p(i)) is necessary.
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In this model, the random variable ix,y, i.e., the intensity value of the pixel at position (x,y),

is assumed to be independent and identically distributed (i.i.d) and therefore the entropy is

measured as follows:

entropyMME = −

L∑
i=0

p(i) · log2(p(i)) (2.1)

where p is the probability distribution function of the pixel intensity value i, and L is the number

of gray levels minus one (e.g., 255 for a typical 8-bit quantized image). This can be computed

directly from the intensity-based histogram of an image. As an intuitive interpretation of this

parameter, one could say that an image with low entropy is more homogeneous than one with

higher entropy.

This model of entropy was utilized previously by Banda et al., as one of ten selected image

parameters in their research [28]. It is worth noting that we are aware of the fact that the assump-

tion of i.i.d pixel intensities disregards the presence of spatial order or contextual dependency of

the image pixels, however, the segmentation step discussed above provides some compensation

for this loss of spatial information. In addition, the simplicity of this model is in line with the

previously discussed focus on prioritizing the computation cost of the parameter choices. The

MME is indeed the simplest model and can be computed faster than other approaches, for in-

stance, those which require the computation of the joint probability distribution function of the

pixel values [45].

Uniformity

Similar to entropy, uniformity is also a popular statistical measure that is widely used to quantify

the randomness of the color intensities and to characterize the textural properties of an image.

Uniformity is calculated as:

uniformity =

L∑
i=0

p2(i) (2.2)

and reaches its highest value when gray level distribution has either a constant or a periodic

form [46]. In this formula, the variables p, i, and L are similar to those in Eq. 2.1, where p is the
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probability distribution function of the pixel intensity value i, and L is the number of gray levels

minus one.

Fractal Dimension

Fractal dimension is another well-known measure utilized by scientists of different domains.

However, unlike the parameters discussed so far which are purely statistical measures, fractal

dimension (and Tamura directionality) focus more on the textural aspects that we believe are

in particular importance for distinction of at least some of the solar phenomena, such as active

regions and coronal holes. Whenever it comes to analyzing scientific image data, this parameter

seems to be a useful choice. In solar physics, as a relevant example, fractal dimension was used

for a variety of purposes including detection of active regions [47], and to exhibit fractal scaling

of solar flares in EUV wavelength channels [48].

Historically, fractal dimension was once used as a clever solution to a problem that is now

known as the coastline paradox [49]. It was the idea of measuring the length of the coast of

Britain, independent from the scale of measurement [50], that provided the basis for the defini-

tion of this parameter. Fractal dimension is a measure of nonlinear growth, which reflects the

degree of irregularity over multiple scales. In other words, it measures the complexity of fractal-

like shapes or regions. A larger dimension indicates a more complex pattern while a smaller

quantity suggests a smoother and less noisy structure. Among the several different methods

for measuring the fractal dimension [51], the box counting method, also known as Minkowski-

Bouligand dimension, is the most popular one.

The general approach for the box counting method can be described as follows. The fractal

surface, in an n-dimensional space, is first partitioned with a grid of n-cubes with the side length

of ε. Then, N(ε) is used to denote the number of n-cubes overlapping with the fractal structure.

The counting process is then repeated for the n-cubes of different sizes, and the slope β of the

regression line fitting the plot of ε against N(ε) gives the dimension of this fractal. In a 2-D space

such as ours, the n-cubes are simply squares with a side length of ε. More details of employing

this parameter for measuring the complexity of solar events is discussed in Section 2.4.
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Tamura Directionality

Directionality as a texture parameter is a well-known concept in image processing and texture

analysis domains. This parameter was extensively investigated by [52] and later on by [53]. The

proposed method by Tamura, used to measure the directionality, has become a popular texture

parameter and has been used in a variety of studies. The well-known examples are in QBIC [54]

and Photobook [54] projects which are content-based image retrieval (CBIR) systems. Some

more domain specific examples would be the solar image data benchmark gathered by [33] and

the tracking of the solar events by [35]. In addition to Banda’s work [28] on evaluating the

effectiveness of Tamura directionality on AIA solar images, [55], a discipline-independent study,

showed that directionality is indeed one of the most important texture features when the human

perception is considered the ground truth.

Tamura directionality is a measurement of changes in directions visually perceivable in image

textures. Tamura formulated this parameter as follows:

Tdir = 1− r ·np ·
np∑
p

∑
φ∈ωp

(φ−φp)
2 · h(φ) (2.3)

where:

p: a peak’s index,

np: the total number of peaks,

φp: the angle corresponding to the p-th peak,

ωp: a neighborhood of angles around the p-th peak,

r: the normalizing factor for quantization level of φ,

φ: the quantized direction code (cyclically in modulo 180◦).

In the statistical terms, this parameter calculates the weighted variance of the gradient angles,

φ, for each peak, p, of the histogram of angles, h(φ), within each peak’s domain, ωp, considering

the angle corresponding to each peak be the mean value of the angles within that peak’s domain.

It then aggregates across the identified peaks, and after re-scaling the result to the range [0, 1],
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it subtracts the final value from one to achieve a monotonically increasing function. That is, it

returns greater quantities for a more directional texture.

2.3 Data Sources

In order to tune the calculation of image parameters for achieving an effective set of features

requires an evaluation process. The evaluation process we utilize relies on reported solar events

to evaluate the performance of each image parameter individually for each wavelength channel

we are utilizing. In order to accomplish this, we use supervised learning to measure the perfor-

mance of each of the image parameters in detecting some of the solar events. In this section, we

detail our data sources for our images and the event-related metadata that was collected. We

also briefly explain the FITS format, a commonly used format in astronomy that is employed

by the SDO repository as the primary way for digitizing the AIA images. Understanding of the

structure of this format and how the AIA images are stored in such format is crucial for our

preprocessing steps.

2.3.1 HEK: Event Data

The Heliophysics Event Knowledgebase (HEK) is the source of the spatiotemporal data used in

this study. The HEK system, as a centralized archive of solar event reports, is populated with

the events detected by its Event Detection System (EDS) from SDO data. There are considered

18 different classes of events such as active region, coronal hole, and flare. For each event class,

a unique set of required and optional attributes is defined. Each event must have a duration and

a bounding box that contains the event in space and time. We use this information to map the

meta data of the reported events to the corresponding AIA images.

For the evaluation of image parameters performed in this study, we utilize two of the reported

solar event types active region and coronal hole. There are multiple reporting sources for active

regions that are reported to HEK, and those reported by the Space Weather Prediction Center
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(SWPC) of NOAA (National Oceanic and Atmospheric Administration) are assigned numbers

daily. The NOAA active region observations, as [26] explains, is an event bounded within a 24-

hour time interval, and therefore HEK considers all NOAA active regions with the same active

region number to be the same active region. However, there is a second automated module from

the Feature Finding Team that reports both active region and coronal holes described by [27] and

called the SPoCa module, which reports detections every four hours. It is the reports from this

module that are utilized as the solar events of interest in this study.

2.3.2 SDO: AIA Image Data

The atmospheric imaging assembly (AIA) has four telescopes that provide narrow-band imaging

of seven extreme ultraviolet (EUV) band passes (94–Å, 131–Å, 171–Å, 193–Å, 211–Å, 304–Å, and

335–Å) and two UV channels (1600–Å and 1700–Å) [25]. The captured 4k images of the Sun,

which are full-disk snapshots with the cadence of 12 seconds, are compressed on board and

without being recorded on orbit, are transmitted to SDO ground stations. The received raw data

(Level 0) are archived on magnetic tapes in JSOC science-data processing facility. The uncom-

pressed data is then exported as FITS files with the data represented as 32-bit floating values.

At this point, images are already calibrated, however, some corrections and cleaning are still re-

quired due to the existence of a small residual roll angle between the four AIA telescopes. At this

stage (Level 1.5), the data is ready for analysis. In some repositories including Helioviewer, the

FITS files are converted to JP2 format to reduce the volume of their database. In this study, we

use the level 1.5 (in short L1.5) FITS files and the JP2 images to achieve a comparative analysis. In

the following subsections, we elaborate more on how FITS files are different from the JP2 images

and why a fair comparison should take into account the differences in the distribution of pixel

intensities in these two image formats.

AIA Images in FITS

FITS, short for Flexible Image Transport System, is a data format for recording digital images of

scientific observations. This format was proposed as a solution to the data transport problem.
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For details on FITS format we refer the interested reader to [56] and [57]. Here, we only mention

a few key points about this format to provide the basic knowledge needed for understanding

the preprocessing steps that will be discussed later. For processing of the FITS files we use the

nom-tam-fits4 Java library.

A FITS file consists of a header where the basic and optional meta data are stored, and immedi-

ately following that is the data matrix representing the image starts. In the header of AIA images,

a plethora of information is stored [58] 5 that might be useful for different purposes, such as the

minimum and maximum color intensities, the date of creation of the file, the exposure time of

CCD detectors of the AIA instrument, the name of the telescope (e.g., SDO/AIA) and the in-

strument (e.g., AIA), wavelength in units of Ångstroms (e.g., 94–Å), several descriptive statistics

about the captured intensities, radius of the Sun in pixels on the CCD detectors, and so on. It is

important to note that unlike the typical 8-bit quantized image formats such as JP2, JPG, or PNG,

that are limited to 256 different intensity levels, the intensity level in FITS format is only bound to

the sensitivity of the sensors of the camera. Since the AIA cameras use a 14-bit analog-to-digital

converter (ADC) to translate the charge read out from each pixel to a digital number value [59],

the FITS color intensity value has an upper-bound at 16384 (i.e., 214). Such a level of precision

comes at the cost of introducing a significant degree of skewness in the distribution of intensities.

In the next section, this will be discussed in greater detail.

Distribution of Pixel Intensities

Since in this study, we run all of our experiments on both JP2 and FITS images, it is important

to have a good understanding of the distribution of pixel intensities in these two formats, the

differences and similarities. We begin the discussion with the theoretical pixel intensity extrema

in FITS files, i.e., 0 and 16383. For instance, in FITS format, the appearance of pixels with the

maximum brightness is not as frequent as it is in the JP2 images.This is of course, the result of

the JP2 lossy compression which transforms the pixel intensity domain of the FITS file into a

much narrower range of 0 to 255. However, these extreme values are very likely to appear in

FITS images, in the bright regions caused by the strong flares. In the other extreme, for FITS

4 Library: http://nom-tam-fits.github.io/nom-tam-fits/
5 Documentation of FITS header keywords: http://jsoc.stanford.edu/~jsoc/keywords/AIA/
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format images, some negative values might be present, which appear to be a byproduct of the

post-processing data transformation (level 0 to level 1.5) since the CCD detectors are not capable

of recording negative values. As a pre-processing step, we replace all the negative values with

zeros in order to clean the data. It is interesting to note that such an extreme skewness in the

distribution of pixel intensities is not limited to a specific wavelength channel, and is held true

across all EUV and UV channels.

Next, we would like to learn about the amount of contribution of the extreme values in the

distribution of pixel intensities. In this, we are interested in knowing the percentage of pixels

in each image that carry such extreme values. To answer this question, we studied one month

worth of AIA FITS images, since 2010.09.01 through 2010.09.30, with the cadence of 2 hours,

from 9 wavelength channels (excluding the visible wavelength, 4500–Å), that sums up to a total

of 3240 images. In Fig. 2.11, the p-th percentile of the observed intensities for each of the images

within this period is shown. The maximum values in these plots should be compared against the

maximum intensity reached during this period, which is the theoretical maximum, i.e., 16383 for

all 9 wavelength channels. By looking at the spike in the first plot (i.e., wavelength 94–Å), we can

see that 99.5% of the pixels in the corresponding image had color intensities less than 44, while

pixels as bright as 16383 existed in that very image. Such significant gaps between the mean

values of the distributions and the maxima is summarized in Table 2.2.

The above statistical analysis suggests an extreme skewness in the distribution of pixel intensi-

ties in FITS images. This is illustrated in plot A of Fig. 2.3. The visual effect of such skewness is

“underexposure”. In other words, if the pixel values of a FITS image are (linearly) transformed

to the range of 8-bit images (i.e., [0, 255]), the output would be mostly black, with few to no small,

extremely bright regions. It is important to note that our image parameters, which are utilized

in supervised machine learning models to distinguish the different solar phenomena, are pixel-

based features. That is, the relative differences between the pixels’ brightness will be taken into

account and not their absolute values. Therefore, providing the classifiers with the original L1.5

AIA data containing such far-out values, and not treating the outliers appropriately could bias

the fit estimates and distort the classification results. We provide more details on how this issue

is addressed in the next section.
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Figure 2.3: Distribution of pixel intensities in a FITS image (A), a clipped FITS (B), and in a similar image
in JP2 format (C). The illustration shows how clipping of the raw FITS image can reveal the hidden shape
of the bimodal distribution which is not visible in (A) due to the large number of bins.

2.3.3 FITS, Clipped FITS, and JP2

In this section, we will explain how we preprocess FITS files prior to the feature extraction

and classification tasks. It is worth noting that, since such preprocessing steps introduce some

changes on the pixel values of the original L1.5 FITS files, for the sake of completeness of our

later comparisons and to avoid any bias in our study, we extend our experiments to cover the

three data types: JP2, L1.5 FITS, and clipped FITS, as defined in the following sections.

Clipping FITS Images

Treating the outliers is a common practice in the process of cleaning the data for any machine

learning task, as they may introduce a significant bias to the learning process and hence reduce

the effectiveness of the extracted features for the classification goal. In the case of outliers being

the extreme values, the general approaches are: a) removal of the outliers, b) replacing them with

some statistics (imputation), c) altering with expected extrema (capping), and d) predicting their

“expected” values based on the local changes of the intensities. Of course, the removal of the

outliers and re-scaling the values into the quantized range of 8-bit values would leave us with
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Table 2.2: Maximum percentiles of the pixel intensities of AIA FITS images, observed from 9 wavelength
channels, for the period of 2010.09.01 to 2010.09.30, with the cadence of 2 hours.

W 80-th 90-th 95-th 99-th 99.5-th Max

94Å 7 10 15 34 44 16383

131Å 19 30 43 88 123 16383

171Å 568 777 1034 1935 2602 16383

193Å 574 904 1354 2884 3968 16383

211Å 154 258 429 1159 1673 16383

304Å 116 151 188 327 431 16383

335Å 16 26 43 171 305 16383

1600Å 196 242 289 427 509 16046

1700Å 1801 2205 2558 3517 4138 16215

the results not so much different than the existing JP2 images. This would void our attempt to

study the potential differences in analysis of FITS versus JP2.

So, instead of removing outliers all together, we will employ the capping approach, that is also

known as clipping if applied to images. The process involves finding a global cutting point on

the skewed tail of the probability distribution function, and shift all the pixel intensities above

this threshold to this point. By “global” cutting points, we mean thresholds that are fixed across

all AIA images for each wavelength channel. This ensures that the clipping filter affects all of

the images uniformly. The result of such data transformation is that while no data points are

removed (but shifted to the cutting point), the extreme skewness of the distribution is slightly

mitigated. We use the maximum of the 99.5-th percentiles of pixel intensities as the global

cutting point for each wavelength. That is, in the worst case scenario, 0.5% of the observed

pixel intensities will be shifted to the new maximum point. The chosen cutting points for each

wavelength is highlighted in Table. 2.2.

Pixel Intensity Transformation

After having used the statistically derived cut-off points for capping outlier pixel values, an addi-

tional processing step that should be done is to re-scale the now capped values. Note that after

clipping the FITS images, although the distribution of pixel intensities are now more naturally

skewed, they do not have the same distribution as the pixels in JP2 images have. This is due to

the non-linear transformation of the data in conversion of FITS to JP2 format. This transforma-
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tion is done by Helioviewer’s JP2GEN project6. The transformation model, as well as their choice

of the cut-off points, are primarily based on what the AIA project recommended at the time

and how the Helioviewer project team wanted the images to look like. As applying a transform

function does not introduce a loss of information in the data, and to ensure that the two sets of

distributions are similar in shape, we apply the same data transformation functions that were

used in JP2GEN module.

The transformation methods differ depending on the wavelength channel of the image. A

linear transformation is used for 1700–Å images, a square root transformation for images from

171–Å, and a logarithm transformation for the remaining channels. Note that, this is a bijection

(t : N −→ R) and no data points are removed. The result of such transformation is illustrated

in Fig. 2.3, on a sample AIA image. It compares the distribution of pixel intensities in a FITS

image before clipping (A) and after clipping and transformation (B), and the one derived from

the corresponding JP2 image (C). By looking at such comparison, one can see how the hidden

bimodal shape of the distribution is perfectly restored after clipping and transformation. This

verifies both the correctness and the importance of this step for an unbiased comparison of

different image types. In addition to that, a 3D model of the same AIA image in JP2 and in FITS

both before and after clipping and transformation is illustrated in Fig. 2.4. In these visualizations,

the spikes (representing the magnitude of brightness) reach their highest values at 16383, 51 (i.e.,

≈
√
2602), and 255, in FITS, clipped FITS, and JP2, respectively. From this point on we refer to

the un-clipped FITS images as L1.5 FITS, and to the clipped and transformed FITS as the clipped

FITS.

In this preprocessing step, before clipping of the extreme far-out values, we also take into

account the exposure time of the CCD detectors of the AIA instrument for each image. We

normalize the pixel intensities based on the specific exposure time with which the image was

captured. This is important since it provides us a uniform brightness in our image collection.

These values are stored in the header section of each image, under the keyword ‘EXPTIME’, as

floating points in double precision (in seconds) [58].

In summary, we analyze the AIA images in three different formats: L1.5 FITS (as archived

in JSOC), clipped FITS, and JP2 (as provided by Helioviewer API) images. The L1.5 FITS and

6 JP2GEN: https://github.com/Helioviewer-Project/jp2gen
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16383

(a) FITS with max value at 16383

(b) Clipped FITS with max value at 51 (c) JP2 with max value at 255

Figure 2.4: 3-D views of an AIA image from the 171–Å channel, in different formats. The z-axis represents
the pixel intensities. Note that due to the extremely large spikes in the raw FITS image, its 2-D side-view
is presented instead of the 3-D view.
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JP2 images are on the two extreme ends of the pre-processing path. L1.5 FITS image are only

pre-processed in JSOC for cleaning and calibration in the process of digitizing the images and are

relatively large files (varying from ≈ 5 to ≈ 14 MB). Whereas, JP2 images are fully pre-processed

and compressed (down to ≈ 1MB) to a typical 8-bit quantized image format. Clipped FITS

images lie somewhere in between. They don’t have the extreme far-out intensities as the L1.5

FITS images do, but at the same time, they are not limited to 255 gray levels as JP2 images are.

As we mentioned before, we use all these three image types to evaluate our image parameters in

Section 2.5.

2.4 Settings of Image Parameters

Now that we have studied our data types and the image parameters to be tuned, we need to spot

the variables in each image parameter that can determine the performance of that parameter.

In this section, we provide more information about each of the four image parameters and the

implementation details of their computation that allow for the tuning of specific variables and

their domains of changes.

2.4.1 Entropy and Uniformity

As discussed in Section 2.2.1, entropy and uniformity parameters solely depend on the normal-

ized histogram of the image color intensities. And it is in the nature of histograms that different

choices of the bin size result in different levels of smoothing the histogram. In other words, p

in Eq. 2.1 and 2.2, which is the probability density function of the random variable i, is defined

differently for different bin sizes. Although there are several general rules for determining the

bin size, such as Sturges’ formula [60] or Scott’s rule [61], often the best choice is the one that is

data driven and can be verified by the target classes of the data.

So, for these two parameters, the optimal bin size is the variable that will be tuned for utilizing

the experiments described in Section 2.5. The optimal value of the variable is independently
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evaluated for each wavelength of image and a set of these values are obtained through the

experimental evaluation, one for each wavelength of image we included in the resultant dataset.

The domain set for this variable is the set (0, I) ⊂ N or R, depending on the image type, where

I is the max color intensity for the image type under study. For example, the domain set for this

variable on the JP2 images from Helioviewer will be the set of [0, 255] ∈ Z, whereas the domain

set for L1.5 FITS will be the set of [0, 16383] ∈ Z.

2.4.2 Fractal Dimension

Formerly, in Section 2.2.1, we explained how fractal dimension utilizes the box counting method

to measure the dimension of the fractal-like shapes. However, there are a number of different

decisions on the implementation of this method that can have an effect on the resultant values

that it produces. For instance, the decision on what edge detection algorithm and what values

are used for variables of each of the different algorithms will produce differing results. In the

following sections, we will explain how this method will be applied to AIA images, and what

variables will need tuning in our experimental evaluations of Section 2.5.

Box Counting on AIA Images

To compute fractal dimension image parameter, we first need to know how the box counting

method that we discussed before, can be applied on the AIA images. Let us assume that an edge

detection algorithm has been chosen and the appropriate settings were found for the algorithm.

We can then apply an edge-detection algorithm to an AIA image and then treat the detected

edges as the fractals’ contour whose dimension is to be measured. Then, for each ε (box’s side

length) from a predefined domain, we count the number of grid cells that overlaps with an edge.

Considering the resultant pairs, 〈ε,N(ε)〉, as a set of points in the 2-D feature space of box sizes

and the number of boxes, the slope β of the fitted regression line can then be measured. β is the

fractal dimension corresponding to this region. Since the patch size of our image segmentation

discussed before is 64× 64 pixels, the box size in the above procedure will have an upper bound
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Figure 2.5: An experiment that shows the growth of fractal dimension on a series of sine waves in two
different situations: a) with an iterative increase of random noise to the signal and b) with an iterative
increase of frequency of another sine wave to the signal. The results confirms the sensitivity of this
parameter to the complexity of the shapes’ contour.

of 64 pixels. To have a natural sequence of side lengths for these boxes, we use the set of all

powers of two within this range, i.e., {2, 4, 8, 16, 32, 64}, as the domain of the box side length.

Fractal dimension provides a measure to quantify the complexity of the shapes’ contour, with

larger values indicating higher complexity. In Fig. 2.5, we show how the complexity of a shapes’

contour affects the fractal dimension value by using two groups of test signals that are generated

to mimic fractal-like shapes. One set is created by adding an incrementally increasing random

noise to a sine wave, and the other one, by adding an incrementally increasing frequency of

another sine wave to the base sine wave. Measuring the dimension of each signal, a roughly

linear growth of fractal dimension is observed that conforms to our expectation.

Edge Detectors

The brief explanation of the box counting method tells us that the effectiveness of the fractal

dimension parameter in describing the textural feature of an image relies on the quality of the

edge detector method that provides the fractal-like shapes. That is, a noisy input, as well as

an overly smoothed image, may render this parameter completely ineffective. This fact is the

motivation for the following survey of existing edge detection methods and their performance
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on AIA images. Note that for this application, both the quality of the detected edges that are to

be the input to the box counting method, and the execution time of each of the edge detection

methods are important, as a longer execution time will require more computational resources for

the near real time constraint to be met.

Among the existing edge detection methods, we choose Sobel [62], Prewitt [63], Roberts Cross

[64] edge detectors as the classical candidates, Canny’s [65] edge detector as a popular, modern

method, and also SUSAN [66] as a less popular but a more recent approach. It has been shown

in several different comparative analysis [67–69] that Canny edge detection algorithm performs

better than all of its ancestors in most scenarios, especially on noisy images. Given the special

noisy nature of the AIA solar images, with layers of noisy textures instead of solid foreground

objects and background landscapes, the classical methods are likely to fail. That being said we

do not wish to simply rely on general knowledge about the performance of these methods on

textural inputs. Instead, we apply these filters on AIA images and compare the quality of the

detected edges that are to be the input to the box counting method.

The first three edge detection methods, Sobel, Prewitt and Roberts Cross, are relatively simple

algorithms. They each begin by estimating the first derivative of the image by their corresponding

gradient operators (masks). Then, since the magnitude of the gradient vectors do not give thin

and clear edges, non-maximum suppression is also applied (as it is done in Canny) to eliminate

the multiple representations of each edge. The results of the Sobel, Prewitt, and Roberts Cross

methods can be seen in Figures 2.6b, 2.6c, and 2.6d respectively.

Canny edge detection, however, is more complicated and starts with a prior smoothing step

using a 5× 5 Gaussian kernel. This mitigates the effect of noise on calculation of the gradient.

Then, using a 3× 3 Sobel operator, the gradient of each pixel, g = (gx,gy), which is a vector

with magnitude
√
gx2 + gy2 and orientation arctan(gy/gx), is calculated. Each pixel having nine

adjacent neighbors, allows nine different angles for the edge passing through that pixel. Since

only the orientation of the edges matter (and not the direction), the choices will be limited to four.

Therefore, the continuous range of the calculated angles should be quantized and mapped to one

of the following choices: 0◦, 45◦, 90◦, or 135◦. This is followed by a thinning process of the edges

(i.e., non-maximum suppression) which eliminates the pixels which are labeled as edges but their

locations are not in line with the calculated orientation of the edges. At the end, a hysteresis
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thresholding comes to clean up the disconnectivity of the edges by using two thresholds; a low

threshold, lt, and a high threshold, ht. Any pixel with gradient magnitude greater than ht is

labeled as an edge, and a non-edge if its magnitude is less than lt. For pixels with magnitudes

between lt and ht, they are considered part of an edge if and only if they are connected to a

pixel which is already labeled as an edge. This last step, next to the initial smoothing step, makes

Canny edge detector an expensive filter, but this cost pays off by producing less broken edges

and a less noisy output.

SUSAN edge detector on the other hand, adopts a very different approach by not using any

image derivatives which makes it a good candidate for noisy images like ours. This is the

very reason for including it in our list, despite its computation cost. This edge detector has

a core concept called Univalue Segment Assimilating Nucleus (in short USAN) which is the

central point (nucleus) of the circular masks, and a principle called SUSAN principle which is

stated as follows: “An image processed to give as output inverted USAN area has edges and

two dimensional features strongly enhanced, with the two dimensional features more strongly

enhanced than edges”. The intensity of the nucleus and the second moment of the area of USAN

masks are used to find the edge directions. And eventually, similar to Canny, a non-maximum

suppression will be applied to clean up the edges. In this study, we use the implementation of

this method from OpenIMAJ library [70].

To compare the quality of these edge detectors, we fed each of those methods with a variety

of AIA images varying in the queried time of the solar events, wavelength channels, and the

appearing event types. Fig. 2.6 illustrates one of the visual comparisons; a cut-out of an active

region instance observed on March 7, 2012 from the 171–Å channel and the output of each of

the above-mentioned edge detectors. As it is visible in this comparison, Canny edge detector

provides much cleaner edges and maintains the orientation of the coronal loops (that electrified

plasma flows along) of the flaring region, whereas others barely distinguish the texture caused by

the powerful magnetic fields from the more quiet (darker) areas. Given that the edges detected

are to be passed to the box counting method with the box sizes as large as those shown in Fig. 2.6a,

it is visually convincing that for the Sobel-like methods (i.e., Sobel, Prewitt, and Roberts), such a

uniform distribution of the extremely short and broken edges does not lead to a reliable measure

of the dimension corresponding to different regions. About SUSAN’s output (see Fig. 2.6e),
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8 4 2

(a) A flaring region (b) Sobel (c) Prewitt

(d) Roberts (e) SUSAN (f) Canny

Figure 2.6: A cut-out of an active region instance observed on March 7, 2012 at 00:24:14:12 UT from the
171–Å channel, as well as the outputs of different edge detector methods are shown. In a, the relative size
of the boxes (i.e., 64, 32, 16, 8, 4, and 2 pixels) used in the box counting method is also illustrated.

although the results are very different from the others, it does not seem to be a good choice for

noisy textures as it does very little in identifying the visible edges.

Another argument in favor of Canny edge detector is the tunability of this method that is

possible by adjusting its three variables; the standard deviation of the Gaussian smoothing (σ)

and the lower (lt) and higher (ht) thresholds, as discussed in Section 2.4.2. In Fig. 2.7, the effect

of such tuning on the same sample active region used before is shown. Note the smooth decrease

in the noise level as σ increases while the general patterns and directions are maintained.

Regarding the running time of these methods, Table 2.3 summarizes our comparisons. Al-

though, the execution time of the utilized methods is an important factor in general, in this case,

it does not seem that there are many choices left for us, except the relatively most expensive one,

i.e., Canny edge detector. This is because only this method is producing the relevant input for

the box counting method of the fractal dimension parameter. The decision is between a faster

method which mostly produces uniform noise, and a relatively more expensive one that provides

the right input (where the physical characteristics such as the coronal loops as the curving lines

of powerful magnetic fields are enhanced) for fractal dimension.
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(a) σ = 1.0 (b) σ = 2.0 (c) σ = 3.0

(d) σ = 4.0 (e) σ = 5.0 (f) σ = 6.0

Figure 2.7: Canny edge detector on an active region instance, with lt = 0.02, ht = 0.08 for all cases and σ
varying from 1 to 6.

Table 2.3: The average execution time for different edge detection methods on 4096 × 4096–pixel AIA
images.

Method Execution Time (Sec.)

1 Sobel 2.267

2 Prewitt 2.208

3 Roberts 1.809

4 SUSAN 0.674

5 Canny 3.619

The results listed in Table 2.3 are the average execution time measured by running each of

the algorithms on a group of 100 full-disk AIA images of size 4096× 4096 pixels in 10 different

wavelength channels, having different event types. To put the numbers in context, it is worth

noting that these experiments are conducted on a Linux machine with a core i5− 6200U CPU,

2.30GHz×4, and an 8GB of memory, while for any operational task, a much more powerful

machine would be used to process the images. Therefore, the running time of Canny edge

detector is expected to be less than 3.619 seconds for a single image.

Having Canny edge detector chosen as the method to filter the input AIA images and pass

them to the box counting method, tuning of fractal dimension parameter would then depend

on the choices of lt, ht, and σ of the edge detector. Our experiments show that by changing σ
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while having lt and ht fixed at a narrow interval close to zero (e.g., lt = 0.02 and ht = 0.08), we

could cover almost the entire spectrum of the possible outputs. This observation leaves only one

variable, σ, for the tuning of this image parameter.

2.4.3 Tamura Directionality

The general formula to compute the directionality parameter was explained in Section 2.2.1. As

it calculates the weighted variance of the gradient angles, it requires the gradient of the image to

be calculated beforehand. For an image I, the gradient vector is:

∇I = [gx,gy] =

[
∂I

∂x
,
∂I

∂y

]
(2.4)

from which the direction and magnitude of the vectors can be calculated as follows:

[φ, r] =
[

arctan
(gy
gx

)
,
√
gx2 + gy2

]
(2.5)

There are different kernel convolution matrices used to approximate the gradient vector of an

image. Since no preprocessing such as smoothing is required for this task, their computation

time depends only on the kernel size. Therefore, we limit our choices to the simple but well-

known gradients, such as Sobel–Feldman [62], Prewitt [63], and Roberts Cross [64]. The last

one has a 2× 2 kernel matrix that makes it slightly faster but more sensitive to noise, due to its

smaller kernel matrix comparing to the 3× 3 matrices of the other two. After we visually studied

the remaining two kernels, we observed that both their gradient outputs and the histograms of

angles are fairly similar. Therefore, we decided to utilize Sobel–Feldman as our gradient mask,

which seems to be more popular and widely used in different libraries and applications.

From the derived gradient matrix, the histogram of angles can be computed and passed to

Eq. 2.3. Now, the tuning of Tdir has come down to a peak detection method that identifies the

“dominant” peaks. Therefore, to achieve any improvement on this parameter, a peak detection

algorithm must be utilized. There has been a great deal of effort in identification of peaks and

valleys, specially in the domain of time series analysis and signal processing [71]. But it is
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important to note that peak identification is a subjective task that is often determined by the

general behaviour of the data under study. Since peak detection tends to be a domain specific

task, where each domain has different criteria for the definition of peaks, it is logical to design

a peak detection method which is more compatible with the type of the data we have, i.e, the

distribution of the gradient angles of the AIA images. The method that we have chosen to utilize

is explained in greater detail in [72]. In the next section, we briefly review this approach.

Peak Detection

In general, the peak identification task is to determine the domains, di, within which the local

maxima of the data sequence C = {c1, c2, · · · , cn} are located. In other words, the goal is to

identify di’s such that ∃ci ∈ di,∀c ∈ di, ci > c. We build our algorithm on the basis of a naïve

assumption that it is enough for each data point to be compared only with its adjacent points in

the sequence, meaning that for a local maximum ci, the domain would be di = {ci−1, ci, ci+1}. If

ci satisfies the condition, we consider it a candidate peak. Then we pass the candidate peaks to a

three–fold filtering process to pick only the most significant ones. At each step, we check one of

the user–defined criteria, namely the threshold, t, the minimum distance, d, and the maximum

number of peaks, n. First, we remove all candidate peaks which lie below the threshold t. The

peaks which are too close to a dominant one will be removed in the next step. Starting from the

identified peaks with greater values we simply remove their neighbors within the radius of d.

And finally, just to provide a control tool for the cases where a certain count of the peaks is of

interest, we keep the top n peaks and drop the rest.

The proposed algorithm, in spite of its simplicity, provides a flexible tool to determine the

significance of the dominant peaks in a data–driven fashion. Using this algorithm, tuning of this

parameter is bound to the three above-mentioned variables of the peak detection method.

2.4.4 Summary of Settings

In Summary, for each image parameter we managed to identify the variables and their domains,

that play a role in tuning of that parameter. We use these variables to find the best settings for the
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image parameters to obtain the highest accuracy in prediction of the solar events. The variables

of interest for each of the four image parameters are summarized below:

1. Uniformity: the number of bins, n,

2. Entropy: the number of bins, n,

3. Fractal dimension: the Gaussian smoothing parameter used in Canny edge detector, σ,

4. Tamura directionality: the threshold, t, the minimum distance, d, and the maximum num-

ber of peaks, n, used in our peak detection method.

2.5 Experimental Analysis

In this section we discuss the tuning process of the image parameters listed in Table 2.1. We

start with explaining our methodology as our general approach towards tuning the parameters,

and then we elaborate on the details of the task for each of the four image parameters separately.

Finally, we report the performance of each of the parameters in classification of active region,

coronal hole and quiet sun event instances.

2.5.1 Methodology

Among the ten image parameters, the descriptive statistics (i.e., µ, σ, µ3, µ4) depend only on

the intensity value of the pixels. On the basis of these statistics, relative smoothness and Tamura

contrast can be then calculated. None of these six parameters have any constraints, thus not

tunable. For the remaining four parameters, we run a univariate parameter tuning process on

their constraints which we identified in Section 2.4.

For each parameter, first, we find the set of n key constraints (or variables), and identify

appropriate numeric domains, di, for each constraint i ∈ {1, 2, . . . ,n}. As a result, we will have

a feature space of dimension |d1|× |d2|× · · · × |dn|, for that particular image parameter, where

|di| is the cardinality of the domain set di. In addition, to describe a particular event, a region
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of interest must be processed that spans over a variable number of grid cells. This presents the

problem of comparing variable sized regions of interest in order to find the optimal setting for

the various parameter variables. For instance, if the region spans over k grid cells, it will then be

represented by a vector of length k, for each image parameter.

So, in order to compare the variable sized regions of interest that produce different-length

vectors, we use a seven-number statistical summary on the resultant vectors. This process will

map each variable sized parameter vector that is computed on a region to a consistent length

vector of seven different values. These vectors are computed independently for each of the

9 ultraviolet (UV) and extreme ultraviolet (EUV) wavelength channels from the AIA that we

include in our investigations. Since these channels produce significantly different images of the

Sun, we expect that each channel will require individual tuning of the parameter calculation

variables in order to take such differences into consideration and produce the best results for

each wavelength.

Clearly, even for a very small domain for the constraints of any one parameter, a high-dimensional

space will be generated by this statistical summary method and therefore, dimensionality reduc-

tion is necessary to minimize the effect of the well-known curse of dimensionality. To this end,

we use the F-test statistic to rank each of the settings and then select the best ones per wavelength.

We use only the best settings to produce our final feature space, which is then utilized to provide

a comparison of the three different input image types through a supervised classification of solar

events. The ranking process in F-test relies on grouping of the data and measuring the ratio of

between-group variability and within-group variability.

Our methodology can be summarized in the following five steps:

1. Determining the dimension of the feature space (i.e., identifying the constraints and their

domains),

2. Building the feature space for the period of one month (i.e., January 2012),

3. Reducing the dimensionality of the feature space using F-test (i.e., finding the best settings

per wavelength),

4. Building the (reduced) feature space for the period of one year (i.e., 2012),
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5. Measuring the quality of the parameter using supervised learning.

In the following sections, after we talk about the dataset we used for our experiments, we explain

the specific details of our methodology for each parameter.

2.5.2 Dataset for Supervised Learning

For the learning and classification phase, we employed the same methodology in collection of

data that was used by [32] to collect one year worth of AIA images over the entire 2012 calendar

year and the spatiotemporal data related to the solar events reported in this period. Here, we

only briefly explain the data acquisition process and refer the interested reader to the article

where the entire process is explained in great detail.

We target two solar event types, namely active region (AR) and coronal hole (CH), which are in

particular of interest for heliophysicists and also because of their similar reporting characteristics

that make region identification easier. As our ground truth, we rely on the AR and CH catalogs

of the HEK (Heliophysics Events Knowledgebase) which are detected by SPoCA (Spatial Possi-

bilistic Clustering Algorithm) [26]. In year 2012, HEK reported 13, 518 AR and 10, 780 CH event

instances, at approximately a four hour cadence. Since there are more AR instances, we first

collect all of those instances and then we look for CH instances within a time window of ±60

minutes from each report of an AR instance. Those AR instances that could not be paired with

a temporally close CH instance are dropped. The report of each event contains both temporal

and spatial information. We use the time stamps of the reports to retrieve the corresponding

AIA images (in JP2 and FITS format). The spatial data of each instance consists of a center point

for the reported event, its bounding box, and polygonal outline. We use the bounding boxes to

extract the image parameters on the region corresponding to each event instance in our training

and test phase. With such constraints, we managed to retrieve 2, 116 unique pairs of AR and CH

instances. As our supervised learning model requires a control class, an event type that points to

a region of solar disk with no report of any other solar events, an artificial event called quiet sun

(QS) is introduced. To collect a set of such instances temporally linked to our AR-CH collection,
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for each report of an AR event, the bounding box of that event is used to randomly search for

regions that have no intersection with any reports of AR or CH events.

2.5.3 Determining the Feature Space

Generally, in the machine learning discipline, a feature is a measurable property of a data point

being observed. For instance, for AIA images as the data points in our study, entropy of the

pixel intensities of an image is a feature derived from that image. Given d different features, a

feature space, is a d-dimensional space where each of its dimensions corresponds to one of the

features. Here, we are trying to tune our image parameters one by one, and we may have one or

more variables for each image parameter. So, instead of having multiple features, we are dealing

with multiple variations of a single feature. In other words, we derive multiple features from one

single parameter and consider them as different features. Therefore, the feature space defined

by an image parameter with one variable that takes |d| different values, is a d-dimensional space.

Similarly, for an image parameter with two variables, a (|d1|× |d2|)-dimensional space will be

generated, where |di| is the cardinality of the domain set for the i-th variable.

Feature Space for Entropy and Uniformity

The admissible feature space suggested by entropy or uniformity parameter is a d-dimensional

space, where d is the cardinality of the candidate set for the number of bins. The evaluation of

both entropy and uniformity is therefore defined as a search over a uniformly distributed number

of bins to find the best performing set for our classification task. For the original images in both

JP2 and FITS format, the pixel intensities vary within a fixed range, and therefore, the general

form of the candidate set can be formulated by the following formula:

{
k ·
⌊max−min

l

⌋
; l ∈N,k ∈ {1, 2, 3, · · · , l}

}

where l is the bin size, and k is a scalar.

For JP2 images (min = 0, max = 255), our visual experiments show that l = 20, letting

the number of bins be chosen from the set NJP2 = {12, 24, 36, · · · , 255}, gives us a comprehen-
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sive enough candidate set for creating the feature space. Using such a set, 21 different entropy

(similarly uniformity) parameters will be generated, with bin widths ranging from 1 to 21 units.

Similarly, for L1.5 FITS images, (min = 0, max = 16383), the number of bins will be chosen from

the candidate set NFITS = {780, 1560, 2340, · · · , 16383}.

For the clipped FITS images, however, since the max values differ from one wavelength to

another, the candidate set should also adapt to the corresponding range. As the new maxima are

much smaller than the global maximum, due to the transformation of the pixel values (discussed

in Section 2.3.3), the above model results in bagging of most of the pixel intensities in one single

bin and leaving the other bins empty. To avoid such an overly smoothed histogram, in addition

to substituting the after-clipping maxima instead of the global maximum, we downsize the bins

by a factor of 10. This is of course meaningful since for the clipped images, the pixel intensities

are real numbers, as opposed to the integer intensities in the L1.5 FITS images. For example, for

AIA images from 94–Å channel, since the after-clipping range of the pixel intensities is [0, 44], the

candidate set for the number of bins would be {20, 41, 62, · · · , 440}, where in the most extreme

case, the bin size will be as small as one tenth of a unit (i.e., 440 bins for the interval 0 to 44). In

general, regardless of the wavelength, |NJP2| = |NFITS| = |NcFITS| = 21.

Feature Space for Fractal Dimension

Our experiments in Section 2.4.2 concludes that the feature space formed by this image parameter

will be determined only by the domain of the variable σ in Canny edge detection method. They

also show that for σ greater than 5 (when lt = 0.02 and ht = 0.08) the results are very similar to

one another and they all maintain only the very strong edges. Observing the amount of changes

in the output as σ increases, suggests that the candidate set S = {0.0, 0.5, 1.0, · · · , 5.0} generates

an admissible space.

Feature Space for Tamura Directionality

As our analysis in Section 2.4.3 shows, the variables in our peak detection method, i.e., t and d, de-

termine the feature space for Tamura directionality. As for the threshold on the frequency domain

of the peak detection method, we consider the first, second, and third quartiles of the frequency,
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(a) JP2 (b) d = 1 (c) d = 7 (d) d = 20

Figure 2.8: An AIA image in JP2 format from 171–Å channel, and the heat-maps of Tamura directionality
with different values for the variable d, where t = 90%.

below which the peaks would be ignored, as our candidates. We also add the 90-th percentile

to allow observing the results for the cases that only the significantly dominant peaks are to be

taken into account. The domain for this variable is therefore the set T = {0.25, 0.50, 0.75, 0.90}.

To determine the domain for d, the minimum distance between the peaks, we should take a

look at the histogram of angles. With n bins, such a histogram can be generated as follows:

hD =
{ Nθ(k)∑n−1

i=0 Nθ(i)
; 0 6 k 6 2n− 1

}
(2.6)

where Nθ(x) is the frequency of the angles within the interval
[
k π2n , (k + 1) π2n

)
. Since what

Tamura directionality targets is not the angle but the direction of the lines, the resultant histogram

will be symmetric around θ = 0◦. To avoid redundant computation, we consider only the angles

within the interval [0, 180◦). Setting n to 90 gives us a histogram with the breaks at 0◦, 2◦, 4◦, · · · ,

and 180◦. For this domain of angles, the set D = {1, 3, 5, · · · , 29} is an admissible domain for the

minimum distance between two peak. Note that those values indicate the minimum distance (in

number of bins) for a peak to have from an already identified peak, to be considered a dominant

peak. In Fig. 2.8, the heat-maps of Tamura directionality for three different settings of d are

shown.
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2.5.4 Building the Feature Space

For each of the four image parameters, we compute its feature space by calculating all different

variations of that parameter on one month worth of 4k AIA images (January, 2012). This is done

on JP2, FITS, and clipped FITS images, separately.

2.5.5 Dimensionality Reduction

To reduce the dimensionality of the computed feature spaces, the F-test in one-way analysis of

variance (ANOVA) is used to pick the feature (per wavelength) which has the highest rank in

separation of the three solar event-types, active region, coronal holes, and quiet sun. The score of

each feature is computed as the ratio of between-group variability and within-group variability,

where all the instances of each solar event type form a single group. The ranking procedure is

as follows: for each feature, or setting, all the instances of the three event-types reported by HEK

will be collected. Using random undersampling, we make sure that the number of instances in

all three categories is the same to remedy the class-imbalance problem. After computing the

features of interest on the image cells spanning the bounding boxes of events, the results will be

summarized using the seven-number summary. With a ten-fold sampling, we use the F-test to

rank the settings. We then aggregate the scores per setting on its seven-number summary, and

finally sort the settings by their scores and report the highest per wavelength. As an example, the

parameter Tamura directionality on JP2 AIA images in 94–Å wavelength channel, with t = 25 and

d = 1, was ranked the best compared to any other variation of that image parameter. Table 2.4

summarizes the best setting per wavelength channel, for each of the three image formats.

To help understand how the best setting for an image parameter provides a better distinction

between the instances of different event-types, an example is illustrated in Fig. 2.9. In this vi-

sualization, the image parameter is Tamura directionality, and the chosen statistics is Q1 (first

quartile). The difference between the distribution of Q1 of this parameter with the best setting

as opposed to an arbitrary setting, on the three event types is shown. Note how in plot A, where
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A

B

Figure 2.9: This plot illustrates the difference between the distribution of statistics of the best setting for an
image parameter (A) and an arbitrary setting (B), on one month worth of 4K AIA images. The three colors
distinguish the distributions of different solar event types (active region, coronal hole, and quit sun), and
the dotted lines indicate the mean values of the distributions. Note how in A the three distributions are
more distinguishable. In this example, the image parameter is Tamura directionality, the wavelength is
94–Å, and the statistics is the first quartile.

the best setting is used, the three distributions are much more distinguishable compared to B

where an arbitrary setting is used.

After this step, for each of the four image parameters, the dimensionality of the defined space

shrinks down significantly, from several thousands to 63 (for 9 wavelength channels and 7 sum-

mary statistics).

2.5.6 Building the Reduced Feature Space

After reducing the dimensionality, the best setting for each image parameter is used to form the

reduced feature space. This new feature space will then be generated based on one year (Jan 1

through Dec 31, 2012) worth of AIA images, for JP2, L1.5 FITS, and Clipped FITS images, with

the cadence of 6 minutes.
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2.5.7 Classification

To measure the performance of the four image parameters after finding the best setting for each

of them, we employ two classifiers, namely Naïve Bayes and Random Forest7. Naïve Bayes

classifier [73] is a simple statistical model that learns by applying the Bayes’ theorem with strong

independence assumption, on the labeled data and classifies based on the maximum a posteriori

rule. In the context of our data points, for an event instance et reported at time t, which can be of

type AR, CH, or QS, it calculates the feature vector vt = {x1, · · · , xn}, where n is the dimension

of the defined feature space, and then classifies et’s event type, denoted by ŷt, as follows :

ŷt = argmax
Ck∈{AR,CH,QS}

p(Ck)

n∏
i=1

p(xi|Ck) (2.7)

Since Naïve Bayes classifier relies only on the probability of the occurrences of the events, the

model is expected to perform poorly in classification of the less trivial cases. For the sake of com-

pleteness, we also employ Random Forest classifier [74] for evaluation of the image parameters.

This is an ensemble learning model that builds the decision trees on samples of data (a process

called bootstrap aggregating) and classifies the class label by taking the majority vote of the trees

classifying each data point. For our data, we generate a forest of 60 different trees, each of which

classifying the event types of the instances and at the end, the ensemble model makes the final

decision by taking the majority vote of the trees.

For both classification models, we perform a k-fold cross-validation by sampling the events’

instances on all combinations of any group of 4 months in the year 2012, resulting in
(
12
4

)
= 495

different trials. This allows having the test sets unbiased to the potential patterns in occurrence of

solar events. Using repetitive random undersampling, we avoid the negative effect of imbalanced

datasets as well.

For reporting the performance of these models we choose f1-score measure (also known as

F-Score or F-Measure) which is the harmonic average of the precision and recall. Given preci-

sion p be the number of correct positive classification divided by the total number of (correct

or incorrect) positive results returned by the model, and recall r be the number of correct pos-

7 We use the Statistical Machine Intelligence and Learning Engine (smile) Java library: http://haifengl.github.io/
smile/.
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itive classifications divided by the total number of instances of positive class, f1-score can be

formulated as follows:

f1-score = 2 · (p× r
p+ r

). (2.8)

Since we have three classes (AR, CH, and QS) for our classification models, f1-score should

be reported for each class separately. To measure p and r for our ternary model, we use the

one-against-all strategy which aims to classify an object of one type compared to the other two,

whereas the one-against-one strategy would consider all pairs of classes and report the classifi-

cation performance separately, which is unnecessary for our task. Furthermore, it is important

to note that the undersampling step employed in the k-fold cross-validation provides balanced

data for the models. Therefore, our choice of the performance measure does not need to be

class-imbalance resistant, e.g., True Skill Score.

The results of our experiments, using both Naïve Bayes and Random Forest models, are illus-

trated in Fig. 2.10a. The key points about the results are enumerated below:

• The performance of the two models is based on single image parameters and not their

combinations. Random Forest, as we predicted before, performs significantly better. Using

this model, one can observe that each of the four image parameters can individually classify

active region instances fairly well (f1-score > 0.8) regardless of the image format. For the

coronal hole instances, the results are only slightly lower but consistent (≈ 0.7 when JP2

images are used). The fact that such high confidence levels are reached using a set of very

basic image parameters that are not domain specific (i.e., not tailored for classification of

phenomena such as solar events) should stress the importance of our choices.

• Note that the relatively poor performance of both of the models in classification of QS is

not a large concern, since it is just a synthesized event and some other event types that are

reported to HEK but not used in this study could be adding noise to the instances labeled

as QS, resulting lower purity in the class labels. However, the results are still above those

expected if the samples were simply assigned a random label and therefore indicate the

possibility that these parameters can transfer to other event type classification.
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Image Types:

Comparison of Image Parameters in Classification of Solar Events
on Different Image Formats

Active Region Coronal Hole Quiet Sun

Image Parameters

Naïve Bayes

Active Region Coronal Hole Quiet Sun
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(a) The classification results on the three event types (active region, coronal hole, and quiet
sun) using Naïve Bayes (first row) and Random Forest (second row) classifiers are illustrated
here, separately for each event type using the f1-score measure. Each reported measure is
averaged over 495 trials of a 10-fold cross validation sampling. Each trial was executed on a
random sample of events’ instances from 13, 518 AR, 10, 780 CH, and 13, 518 QS event instances,
within the period of 01-01-2012 through 31-12-2012. For each bar, the number on the bottom
represents the f1-score value and the error interval shows the standard deviation of the f1-score.
The image parameters are entropy (EN), uniformity (UN), Fractal Dimension (FD), and Tamura
Directionality (TD).
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Comparison of Image Parameters Before and After Tuning

in Classification of Solar Events

Active Region Coronal Hole Quiet Sun
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Random Forest

(b) The illustration compares performances of Random Forest classifier in classification of three
solar event types using each of the four image parameters, before and after tuning. The image
parameters are entropy (EN), uniformity (UN), Fractal Dimension (FD), and Tamura Direction-
ality (TD).

Figure 2.10: Classification performance after optimization of parameters.
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• Another very important aspect of the results is in the comparison of the classification on

different image formats, as the plots depict. For Random Forest classifier, in almost all

cases, JP2 format is shown to be the better input for the model, compared to both FITS and

clipped FITS. Even for Naïve Bayes classifier which did not perform as well as Random

Forest did, there is no consistent superiority when FITS or clipped FITS images were used

compared to the JP2 format. This is despite the fact that FITS format theoretically contains

more information than the compressed JP2, and therefore produces much larger files. In

fact, an image in FITS format is 5 to 14 times larger than its JP2 version, depending on the

wavelength channel used. With such understanding, we can now make our entire image

repository ≈ 10 times smaller in size, with even some improvement in classification of solar

events.

As one of our main contributions was to provide a dataset of tuned image parameters, we

compare the classification of the solar events before and after the tuning steps on the image

parameters. As shown in Fig. 2.10b, our tuning results in significant improvement for all of

the four image parameters across the event types. Note that the performance on the image

parameters without tuning is only slightly above the random guess which is 0.33. This is simply

because the previous computation of the image parameters lack the thorough analysis of the

individual parameters, and the tailored tuning steps.

Of course, the scope of this study is limited to tuning the image parameters, and the results in

Fig. 2.10a and 2.10b reflect only the impact of the obtained image parameters, while better models

(with higher performance or more robustness) can potentially be trained by exploring different

classifiers, such as SVM or even deep neural networks, and tuning their hyper-parameters in a

data-driven fashion.

Having demonstrated the effectiveness of utilizing tuned parameter settings for JP2 format AIA

images, we then set out to produce a dataset (≈ 1TiB/year) that is easily accessible for researchers

wishing to utilize this data. The dataset we have created contains the ten image parameters listed

in Table 2.1, which are processed from images captured by the SDO spacecraft, and are extracted

from the AIA images at a six-minute cadence for each wavelength we process. As previously

mentioned, the original images are high resolution (4096× 4096 pixel), full-disk snapshots of the
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Sun, taken in ten extreme ultraviolet channels (the nine channels that we utilize in this work are

94Å, 131Å, 171Å, 193Å, 211Å, 304Å, 335Å, 1600Å, and 1700Å) [25]. The original high resolution

images are accessible upon request from the Joint Science Operations Center, but our dataset is

processed from the the JP2 compressed images available through the random access API at the

Helioviewer repository8.

2.6 Data API

We have created an API9 that allows for the random access of the produced image parameter

data. The processed dataset starts with observations from January 1, 2011 00:00:00 UTC and our

intent is to continue to keep the dataset updated with the current observations for as long as the

source of our data continues to provide new observations. The methods used for calculating the

parameter values are released as part of our Open Source library DMLabLib10. The settings for

each of the parameter calculation methods that require some sort of setting value are listed in

Table 2.4 of 2.8. Note that each of the nine waveband channels that we process has its own set of

settings for each of the parameter calculation methods.

2.7 Data Use Cases

One already established use case for this dataset is tracking solar events that have been reported

to the HEK [35, 37] where the parameters are used to perform visual comparisons of detections

forming different possible paths a tracked event could take. Another is the use of the parameters

to perform whole image comparisons for similarity search in the context of content based image

retrieval [75]. Similarly, the parameters have also been used to perform region comparison for

similarity search in the context of region based content based image retrieval [32]. These are just

a few of the possible use cases that we know have utilized a smaller and un-optimized previous

8 https://api.helioviewer.org
9 http://dmlab.cs.gsu.edu/dmlabapi/

10 https://bitbucket.org/gsudmlab/dmlablib
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version of this dataset. 2.8 provides some additional analysis of the dataset produced by this

work.

2.8 Statistical Analysis of Dataset

In this section, we present more statistical insight about the prepared dataset through a number

of figures. Fig. 2.11 illustrates the changes in the distribution of pixel intensities of FITS images

for the month of September 2012, with the cadence of 2 hours. We use this to support our

argument for the cut-off point used in clipping of the FITS files in every wavelength channel

(see Section 2.3.2). Observing the changes of the 99.5-th percentile of the pixel intensities in FITS

images, knowing that several pixels with the maximum intensity value (i.e., 16383) are present

within this period, tells us that clipping at the highest point reached by this percentile while

reducing the range of the intensities significantly, only affects 0.5% of the pixels.

As an example, for images in 94–Å (see the first plot at the top of this figure), the highest

value reached by the 99.5-th percentile of the pixel values is equal to 44 while pixels as bright

as 16383 are present. Among the five different percentiles, the one with the minimum effect on

the images, i.e., 99.5-th, is chosen for clipping of the FITS images to generate the new set of

images that we referred to as clipped FITS. The few sudden changes of the pixel intensities in

Fig. 2.11 as we investigated, are mainly due to the several C– and M– class flares reported in this

period. In some cases, the magnetically charged particles reaching the CCD detectors of the AIA

instrument, also result in overexposed images, hence the spikes.

To present a big picture of the flow of data in the dataset, we show the mean value of each

of the ten image parameters after they are extracted from the AIA images, for the entire month

of January 2012 (Fig. 2.12). The ten image parameters for this plot are computed on the entire

full-disk images and the mean statistics is then extracted from the resultant matrix. To present

the continuity of the collected and computed data, we present the time differences between the

image data points of our dataset, for the entire calendar year of 2012, with the cadence of 6

minutes, in Fig. 2.13 and for one month, across nine wavelength bands in Fig. 2.14.
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The small periods where the values go to zero in Fig. 2.12 are artifacts of missing input data

and/or corrupted images that are uniformly black. Similarly, the periods where the time between

reports peaks for some period is another indication of missing input data. This can be caused

by any of numerous possible reasons that could cause a step in the processing pipeline to fail to

receive an image from the previous step in the pipeline. These can range from the satellite not

transmitting the data in the first place, to an error at any one of the processing steps prior to our

processing of the JP2 image from Helioviewer. The missing data can also be caused, as found

in [34], by the moon or earth itself occluding the view of the sun from the satellite on almost a

daily basis, as seen in March 2012 in Fig. 2.13. In all, this does not represent a significant portion

of the dataset given that the data corresponding to a few months in 2012 are missing the largest

portion compared to other years.

At the end, the best settings derived and used to generate this dataset is presented in Table. 2.4.

The numeric values mentioned in this table are mostly useful for the purpose of reproducibility

of the dataset, since this is possible for those who find the creation steps of the dataset interesting,

thanks to our open source library, DMLabLib11.

2.9 Impact of Non-zero Quality Observations

In this section, we address the specific concern regarding the impact of the AIA instrument

degradation, as well as usage of the “low quality” images, on our dataset. By “low quality” we

mean images whose QUALITY flag in their header is set to a non-zero value [58]. This value

is an integer whose 32-bit binary representation describes 32 different issues, such as missing

flat-field data, missing orbit data, and the like.

2.9.1 Impact of CCD Degradation

The CCDs (charge coupled device) of the AIA instrument, like any electronic devices, are subject

to degradation. The impact of CCD degradation was known prior to the launch of SDO [59],

11 https://bitbucket.org/gsudmlab/dmlablib
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Figure 2.11: Different percentiles of pixel intensities for ≈ 3240 AIA FITS images (i.e., approximately 360
images per wavelength channel). Each of the nine plots corresponds to one wavelength channel of the AIA
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Figure 2.12: Mean of the ten image parameters extracted from images queried for a period of one month
(2012 − 01). With the cadence of 6 minutes, the plot represents 7440 AIA images from the wavelength
channel 171–Å.
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Figure 2.13: The time differences (in minutes) between image parameter files for AIA images, from the
wavelength channel 171–Å, over the entire period of the year 2012.
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Figure 2.14: The time differences (in minutes) between image parameter files for AIA images, from the 9
different wavelength channels, over the month of January 2012.
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Table 2.4: The best settings per wavelength, for the four image parameters across three image formats are
listed here. In this table, n indicates the number of bins used to compute entropy or uniformity, t are d
are the threshold and peak-to-peak distance, respectively, used to measure directionality, and finally the
variable σ stands for the Gaussian smoothing parameter required in computing fractal dimension. For
more details about these variables, see Section 2.4.4.

Wavelength Uniformity Fractal Dimension Tamura Directionality Entropy

(Å) n sigma t d n

JP
2

94 12 2.0 25 1 12

131 36 1.0 25 1 60

171 60 4.5 75 1 12

193 97 1.0 25 1 24

211 84 1.5 25 1 12

304 36 3.5 75 1 12

335 97 2.0 25 1 12

1600 109 2.5 90 1 12

1700 48 4.0 90 3 12

C
lip

pe
d

FI
TS

94 62 4.5 7 5 104

131 1230 4.0 7 4 175

171 3717 4.5 9 3 1239

193 1889 5.0 6 2 1889

211 796 2.0 9 4 796

304 615 5.0 9 4 615

335 1888 4.0 7 4 435

1600 5090 4.5 7 4 2666

1700 1970 3.0 4 3 1970

L1
.5

FI
TS

94 12 4.0 25 21 3900

131 36 5.0 90 1 780

171 60 0.0 25 23 780

193 97 1.0 75 1 780

211 84 1.0 75 1 780

304 36 5.0 75 1 780

335 97 4.0 25 21 2340

1600 109 5.0 90 3 780

1700 48 3.5 25 23 780
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and has been studied ever since (e.g., [76]). The effect of instrument degradation is a secular

decrease over time in the data counts of the FITS files, which results in a gradual decrease in the

pixel intensities of the AIA images. This trend, although is very subtle and only visible when the

average data counts of FITS files are monitored over the course of several years, can potentially

impact many pixel-based analyses of solar events (to the best of our knowledge, no study has

provided sufficient evidence for such impact, and the characteristics of the tasks impacted are

not clearly known). To this end, a periodic re-calibration of the instrument was planned prior to

the launch of SDO and has been and will continue to be carried out periodically to ensure the

quality of the data. The details of such calibration process is described in [59]. Our dataset is

based on the level 1.5 data utilized by Helioviewer, whose gains are adjusted to use the above

mentioned calibration so that there is a consistent “zero level” in the images.

In case the above procedure does not fully resolve the degradation impact, we still believe that

the effect should be negligible to our dataset. This is mainly because of the different nature of our

data points and the applications this dataset is meant to be used for. Specifically, the data points

in our dataset are extracted image parameters, and not the raw pixel values. Furthermore, in this

study, we were able to show that the extreme high end of the range of values in the recorded

L1.5 FITS images are actually detrimental to results in our analysis, and therefore we are clipping

these values. The clipping was done either in our pre-processing phase when we used the FITS

files, or by Helioviewer’s JP2GEN project that provided the JP2 images for our analyses. So, the

dynamic range compression in the images that is introduced by having to turn up the gain as the

CCD deteriorates will most likely not have a noticeable impact, if at all, on our work.

Additionally, the extracted parameters used in this study are minimally affected by the long-

term global changes in image intensities, especially when applied to the clipped images. As

an example, consider the standard deviation parameter from our dataset. This is computed in

local regions of a processed image and the subtle changes of the overall dynamic range of the

brightness of source images, caused by a drifting “zero level”, will have minimal effect on the

results when applied to images that are pre-processed using a clipping method to reduce the

dynamic range of the intensity values. Another example would be fractal dimension, which is

computed on the detected edges. As discussed in subsection 2.2.1, the edge detection is carried

out based on the local gradients within images, and therefore, mild long-term changes such
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as the one imposed by CCD degradation, will not have a significant impact on the computed

dimension, if at all. Among the ten image parameters, only mean parameter is susceptible to the

degradation. The magnitude of the impact can be determined by the degree of degradation that

could not be completely resolved in the AIA level 1.5 data products.

2.9.2 Impact of Instrument Anomalies

Based on our empirical study of hundreds of AIA images with non-zero QUALITY values (i.e.,

low quality images), these images fall into two main groups. One comprises the images which

are visually no different than any zero QUALITY AIA images. In fact, in some cases the missing

information does not affect the pixel values of the images at all. The other group, however,

contains images in which the Sun’s disk is rotated, shifted, or blocked due to eclipse, or because

of some instrumental artifacts, large patches of black squares appear on the images. These are

certainly not proper inputs for any analyses.

To the best of our knowledge, the frequency of the 32 different quality flags has not been

studied on AIA images yet. Our brief study on several (non-consecutive) months worth of AIA

images, with the cadence of 36 seconds, shows presence of ≈ 4.2% of non-zero QUALITY images

(both group one and two). Of course to achieve a reliable statistics as the fraction of low quality

images on the entire AIA data collection, a much larger sample should be processed. But unfor-

tunately, lack of proper documentation on the FITS keywords and absence of a publicly available

database of the header information, makes it difficult to obtain a more thorough analysis on this

topic. Therefore, we will leave the computation of a more comprehensive statistic on the fraction

of images with fundamental quality issues (i.e., the second group), to the original AIA image

data providers. Since we computed the ten image parameters on all AIA images that fell into our

sampling cadence, regardless of their quality flag, we added the QUALITY value of images to

our database, and provided the user with the corresponding requests to retrieve the QUALITY

values from the API, as well as some other basic spatial header information which are needed for

labeling of the solar events. It is up to the interested researchers to decide whether they prefer to

keep the low quality images for their study or not.
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It is worth noting that, regarding the first group of images, lack of some pieces of information

may disqualify such images for some specific scientific analyses, however, we believe that ma-

chine learning models built on the extracted image parameters (i.e., our dataset) would not be

effected by such unnoticeable differences. Preprocessing the raw data and achieving a cleaned

dataset are indeed critical steps in any data-related analyses. This is, in fact, the premise of

the current study. Having that said, machine learning models are designed to have a degree of

resistance against noise. As they learn the global patterns and structures of the data by fitting

mathematical models against a very large number of data points, and very often in a high-

dimensional vector space, having a few data points with some additional noise in just a few

dimensions, would not impact the overall performance of the models. This is our reasoning for

not excluding the low-quality images. But users of the dataset can decide on this based on their

understanding of the impact of low-quality images on their desired models.

2.10 Impact of Heterogeneous Exposure Time

AIA is equipped with an automatic exposure control (AEC) which adjusts the length of time the

cameras’ sensors are exposed to light. This adjustment takes into account the overall brightness

of the Sun. During occurrence of some solar activities such as large flares, some regions on the

Sun are significantly brighter. In such cases, a shorter exposure time could produce an image of

a higher quality. The exposure time used for each image is recorded in their header information.

We use this information to normalize the pixel intensities of each image before we compute the

image parameters.

2.11 Conclusion and Future Work

We presented the background information about the AIA images produced by the SDO mission

and compared the FITS and JP2 image formats and the distribution of the pixel intensities in each

of them. We also reviewed different aspects of each of the ten image parameters that we have

59



selected to extract the important features of those images and then explained how we designed

several different experiments to find the best settings for each of the features on different wave-

length channels and the different image formats. After we obtained the best settings for each of

the image parameters, we processed one year worth of data and extracted those features from

the images queried with the cadence of 4 hours. Finally, we presented our public dataset as an

API by running several statistical analysis to illustrate a more accurate picture of the ready-to-use

dataset.

We hope that our public dataset interests more researchers of different backgrounds and at-

tracts more interdisciplinary studies to solar images. While we aim to keep our API data up-to-

date with the stream of data coming from the SDO, we would like to expand it by adding more

interesting image parameters, specifically computed for different solar events, which could lead

to a better understanding of solar phenomena and higher classification accuracy.
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3
S E G M E N TAT I O N A N D I D E N T I F I C AT I O N

O F S O L A R E V E N T S : F I L A M E N T S

3.1 Introduction

Our Sun has an extensive and complex magnetic field which has been studied for a century ever

since George Ellery Hale [77] discovered magnetic field in light coming from sunspots. This

magnetic structure of the Sun is evident in many large-scale, as well as small-scale, features of

the Sun because of the tendency of superheated ionized plasma to get trapped around strong

magnetic field lines. One category of such large-scale features is solar filaments.

Filaments are accumulation of colder, denser plasma suspended in the solar corona along large-

scale magnetic field lines in which the weight of the plasma is believed to be balanced by forces

of magnetic origin. They are most clearly visible in Hydrogen and Helium (Lyman and Balmer)

spectral lines. The availability of full disk H-α (a Balmer line) images of the Sun on a regular

basis in which filaments appear as long dark threads against the solar disk facilitates their long-

term studies. One such long-term collection of H-α images is available from the Big Bear Solar

Observatory (1997-2019) [78] which is now a part of the Global High Resolution H-α network.

These images are captured by filtering all light except the specific spectral line of H-α which

is a deep-red visible spectral line with the wavelength of 656.28nm. H-α images do not single

out filaments as they also show sunspots. It is, however, easy to visually differentiate between

sunspots and filaments because sunspots have a round shape whereas filaments predominantly

have an elongated, thread-like structure. Even though filaments constitute of plasma suspended

in the solar corona, they are invariably found to be aligned with polarity inversion lines (PILs)

over the solar surface (photosphere). PILs separate regions with opposite polarity large-scale

magnetic flux on the photosphere. Filaments in the Corona have barbs (feet) extending down to

the chromosphere and possibly connecting to the photosphere.
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2016.02.29 18:09:022016.02.19 18:40:02

Filaments

Sunspots

Figure 3.1: Several instances of filaments and sunspots, with very different shape structures, in two H-α
images.

The prominent visual difference between filaments and sunspots is illustrated in Fig. 3.1. While

this fundamental difference makes the classification of events fairly straightforward from the

point of view of image processing algorithms, the background texture in H-α images is what

serves as the most challenging part in segmentation problem. Presence of dark granularities in

the background of H-α images makes it difficult, and sometimes impossible, even for human

experts, to correctly differentiate between what is known as filaments’ barbs and the background.

This is specially important because one expectation from a reliable filament detection module is

to characterize the shape and structure of the detected filaments and this can only be achieved

in a high resolution segmentation of filaments that creates a pixel-level mask for each filament.

In other words, determining an approximate vicinity of an event instance would not provide

enough information for the scientific analysis of filaments. In this preliminary work, we exclude

sunspot instances from our detection module, as we would like to start building a system from

a single segmentation component, being filament detection, and upscale to more event instances,

in the future.

The automatic detection and characterization of solar filaments on a regular basis and for long

term is performed by Bernasconi’s [79] Advanced Automatic Filament Detection and Characteri-

zation (AAFDC) code which was a product of NASA’s Feature Finding Team (FFT). This module

finds one H-α image from BBSO every day and detects solar filaments in it using thresholding

and image processing techniques based on visual features. A bounding box and a polygon which

details the boundary of a filament detected by this module is reported to the Heliophysics Events

Knowledgebase (HEK).
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In 2010, the Global High Resolution H-α network started capturing full disk H-α images of

the Sun with a one minute cadence which is useful to study the dynamics of solar filaments

including filament oscillations in order to study the processes which induct energy into filaments

and to investigate triggering mechanisms which may be responsible for the sudden eruption

of filaments. When filaments erupt, they may cause Coronal Mass Ejections (CMEs), which if

directed towards the Earth can cause geomagnetic storms in polar regions on Earth, interfere

with satellite communication, pose a threat to astronauts in space and induce currents in large-

scale electrical grids on Earth.

It is therefore important to develop a framework which can identify and characterize filaments

in H-α images from observatories around the world at a cadence higher than a day. We in

this paper present a step in this direction as we explore the use of deep neural networks (Mask

R-CNN) for the segmentation (i.e. identification) of filaments.

3.2 Data

3.2.1 Data Sources

A large-scale analysis of solar events often requires two types of data: the observations, i.e.,

images, and the spatiotemporal metadata of the events of interest. Depending on the event-

type of interest, there are a variety of instruments that provide images in different wavelength

channels or with different filters that are more appropriate for some specific tasks. In addition

to the needed image-types, the required resolution and the observation cadence can determine

which telescope or instrument provides the most relevant data product.

Full disk H-α images of the Sun are captured by multiple telescopes across the globe: the

Big Bear Solar Observatory (BBSO) in California, the Kanzelhöhe Solar Observatory (KSO)1 in

Austria, the Catania Astrophysical Observatory (CAO)2 in Italy, Meudon3 and Pic du Midi Obser-

vatories4 in France, the Huairou Solar Observing Station (HSOS) and the Yunnan Astronomical

1 http://www.solobskh.ac.at
2 http://woac.ct.astro.it/
3 http://bass2000.obspm.fr
4 http://www.obs-mip.fr
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Observatory (YNAO)5 in China. In this preliminary work, we rely solely on the images provided

by BBSO. The public archive of BBSO provides full-disk snapshots of the Sun in H-α filter, since

1997, on a daily basis. BBSO provides 2048×2048-pixel images which are the highest in resolution

compared to all other instruments producing a similar product. Since 6th of July 2000, images

in FITS format [80] have also been added to the archive, in addition to the JPG format. This data

format, in extension to the actual image in a 16-bit format, provides a vector of metadata such as

the descriptive statistics derived from the pixel intensity distribution, the exact center and radius

of the Sun corresponding to that image, the telescope configuration along with exposure time

and wavelength filter used, quality of the image which for ground-based telescopes depends on

the atmospheric seeing, and some further information which may be useful for accurate scientific

use of the data.

The spatiotemporal metadata of filaments (along with several other solar phenomena) detected

by the Feature Finding Team (FFT) [4, 79], are reported to the Heliophysics Events Knowledge-

base (HEK) system [26] and can be accessed publicly through their API6. Among the numerous

pieces of information accompanying each detected filament instance, in preparation for our seg-

mentation task, we use the time of occurrences and the bounding boxes and polygons of the

detected regions. A combination of the metadata and the actual images provides us with the

information needed for training our filament-detection module.

3.2.2 Data Acquisition

The full-disk H-α images were retrieved from the BBSO archive for the period of 2012 through

2016. For each day during this period, there exist multiple images available in both JPG and FITS

formats. For this work the JPG format images would suffice, however, we still need the FITS

files since their header information are needed for obtaining the best alignment of spatial objects

with the events visible on the solar disk. Among these images, there are two variations: the raw

images and those which have gone through flat field correction, dark subtraction and correction

for limb darkening [78]. These corrections standardize most images taken on clear days. The

5 http://www.ynao.ac.cn/
6 https://www.lmsal.com/hek/api.html

64

http://www.ynao.ac.cn/
https://www.lmsal.com/hek/api.html


Images (JPG)HEK Batch Report

C
o
u
n
t

100

150

200

250

2010 2011 2012 2013 2014 2015 2016
Year

PolygonsBounding Box

2010 2011 2012 2013 2014 2015 2016

Year

C
o
u
n
t

2000

4000

6000

0

Figure 3.2: Comparison of the number of BBSO’s H-α images and the HEK reports of filaments corre-
sponding to those images (upper plot), and comparison of the number of filament bounding boxes and
boundary polygons reported yearly to HEK (lower plot).

day-to-day weather, however, is the dominant factor in the determination of the availability and

the quality of images as even the presence of thin clouds in the sky can degrade the quality of

observations well beyond the scope of corrections. Using these post-processed images reduces

the computational load of our work and provides cleaner data for our neural networks.

Since the existing filament detection module (see Sec. 3.3 for more details about this module)

attempts to detect all filaments present in each snapshot of the Sun at once, there is only one

timestamp associated to all filaments present in one image. This timestamp does not represent

any specific moment in the life-time of the filaments, such as the beginning of their formation,

or when they are at their largest size during their evolution. And because this detection module

uses the same data source (i.e., BBSO archive) for detection, the capture time of the images and

the filaments’ report time provided to HEK should match. To verify this, we first retrieve all

filaments that are reported to HEK for a period of one year, and then search for the image in the

archive that is temporally closest to this timestamp. With a tolerance of 3 minutes, we confirm

that, except in a few cases during each year, the reports are spatially and temporally in line with

the BBSO images. This is shown in Fig. 3.2 (top plot).
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Similarly, we conduct a brief investigation on the correspondence of the reported bounding

box of filaments and their corresponding boundary polygon. We noticed that in some cases

the detected filaments are missing boundary polygons. The reverse situation, however, was not

observed as all filaments had a bounding box. The overall analysis of such comparison is also

depicted in Fig. 3.2 (bottom plot).

How many filaments are there for which neither a bounding box nor a polygon is generated

by the existing module? This is a question that only a perfect filament detection module could

answer. There are other questions of this nature as well that unfortunately we cannot confidently

answer through an automated analysis. For instance, for how many filaments more than one

polygons are generated? Or how often two spatially close filaments are identified as one single

filament (or a filament channel)? Nonetheless, in the final section of our work, we compare the

imperfection of our segmentation with the existing one’s.

3.2.3 Data Integration

The data integration process for filaments is the process of mapping BBSO’s image data to the

spatiotemporal meta data about filaments provided to HEK. In other words, all filaments re-

ported to HEK at time t must be mapped to the image with the capture time t± τ where τ is the

allowed time difference. We consider τ = 3 minutes to be an acceptable temporal tolerance rate

given that the solar rotation period at the equator is ≈ 24 days, and a 3-minute rotation of the

Sun is a relatively negligible shift, i.e., ≈ 0.5 pixel and not even easily visible.

The above spatiotemporal mapping allows us to build a dataset that is made of three parts:

the H-α images in the JPG format, the image-specific meta data retrieved from the FITS’s header,

and the filament-specific spatiotemporal data. We’ve already discussed the first component. The

header information, i.e., the second component, consists of the coordinates of the center of the

solar disk, the apparent solar radius in pixels and the plate scale of each image7. Taking these

values into account is crucial for the correct conversion of the spatial information down to the

scale of the image. Filaments’ bounding boxes and polygons are reported to HEK in arcseconds,

7 These values can be found in the header of BBSO’s images, associated to the following keys: CRPIX1, CRPIX2, IMAGE_R0,
CDELT1, and CDELT2.
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considering the Sun’s center as the origin of the space. To transform such information onto the

pixel grid of the image with the origin being at the top-left corner of each image, the center of the

Sun’s disk and its radius are required at the image scale. Even though the Sun’s radius does not

physically change significantly, due to changes in the Sun-Earth distance, the apparent size of the

Sun in these images and the physical size of one pixel in the image mapped onto the Sun changes

throughout a year. If these changes are not taken into account, the alignment of the bounding

boxes and filament boundary polygons will be significantly off on many occasions when they

are overlaid on the actual filaments. The third component of our dataset is the filament-specific

spatial data, i.e., the bounding boxes and polygons. For every image, a list of bounding boxes,

each corresponding to one filament, is collected. These boxes are Minimum Bounding Boxes

(MBR) enclosing the boundary polygons. They are defined with 5 points, starting and ending at

the bottom-left corner of the box, ordered in the counter-clockwise fashion. A polygon is defined

with a list of n points, ordered similarly.

In this study these spatial objects will be treated as the ground-truth data for our filament

detection task since there is no sizable dataset of filaments available at this time, that is carefully

annotated by the experts. Having said that, we are aware of the issues with the existing module,

and we are not considering it as a perfect detection module. We are simply experimenting the

extent to which a deep neural network can learn from the current detection methods with all

evident strengths and weaknesses.

3.2.4 Alignment Verification

After the integration of all these three components is done, it is important to visually verify the

alignment of the spatiotemporal data with the filaments visible in H-α images. A typical visual

alignment verification analysis is shown in Fig. 3.3. This verification is crucial as simple mistakes

in the integration process may result in arbitrary localization of filaments, that could render the

dataset entirely useless. The primary causes for these mistakes are as follows:
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2012.01.03 18:27:22

Figure 3.3: Visual verification of alignment of filaments as they appear in BBSO’s H-α images, with their
spatial bounding box (blue) and boundary polygon (red) information reported to HEK.

• Temporal mismatch of the reports: this could happen for a variety of reasons including

the use of incorrect time zones when working with date-times from different databases with

different assumptions in their design choices.

• Incorrect conversion from arcseconds to image pixel unit: mistakes such as incorrect as-

sumption about where the origin is, or the order of x and y coordinates for each point, and

also the order in which the polygon points form a shape, are some of the major causes of

such potential misalignments.

3.3 The Current State-of-the-art Approach

In 2005, a software for automation of detection and characterization of filaments was introduced

by Bernasconi et al. [79], and became part of the solar event detection suite managed by the

FFT. All pieces of data derived by this software from BBSO’s H-α images are reported to the

HEK system and therefore publicly accessible. The software is composed of four main compo-

nents: image acquisition, image processing, filament detection and characterization, and filament

tracking. In the first and second components, images are collected and then standardized by com-

paring the pixel intensity histogram of each image with a reference image. An image with good

atmospheric seeing on a cloudless day is used as the reference. The third component is ma-
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jorly responsible for creating the filament metadata. During this phase, a routine of classical

image processing techniques with a sequence of thresholding filters is utilized to filter out the

non-filament objects (both sunspots and some background noise) and create masks for objects

which look like filaments. To get rid of some spurious pixels and small areas that are still among

the objects flagged as potential filaments, eight morphological filtering operations are used to

locate the small areas which are most certainly within the filaments’ perimeter. These regions

are then used as seeds to start a threshold-based clustering method for determining the filament

masks. From this point on, a sequence of other techniques are used to build a profile for each

filament. The profile describes each filament’s unique structure, namely the main spine, the left

and right barbs, and eventually the chilarity of the flux rope in which the filament is embedded.

And finally, filaments individually and independently detected in sequential images are tracked

in time while they travel across the visible solar disk.

Bernasconi’s algorithm for detection of filaments is diligent and in many cases, specially when

the observations are very clear, has an overall good performance; the filaments are often spotted

with an acceptable estimation and the chilarity corresponding to each filament that is calculated

based on the detected characteristics of the barbs agrees with the experts’ labels with a 72%

accuracy. Having said that, there is still a huge gap between the expected results and what the

current module offers. While below we categorize the challenges present in the HEK’s reports,

we neither believe that these are necessarily the imperfections in Bernasconi’s work (as in some

cases, it is simply a design choice) nor we claim that our current work has overcome all these

shortcomings. It is important, however, that we have a record of all potential defects as reported

to HEK that we monitored. This work is motivated in this direction by these issues and we hope

that such examples highlight the existing challenges.

A few examples of such cases are illustrated in Fig. 3.4. The first case, depicts a behavior that

is clearly a design choice: artificial bridges generated for filaments that are spatially close to

each other, to report a filament channel, instead of multiple small filaments found in the same

filament channel. Although, this decision is certainly of value for several queries, we believe that

a filament detection module should remain independent of how different research objectives are

defined. That is, it should only report what is observed, and leave the aggregation of filaments,

if necessary, to the data-cleaning and pre-processing specific to each study. Having a data-driven
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Figure 3.4: Three categories of typical misleading segmentations retrieved from HEK: artificial bridges,
missing filaments, and non-existing filaments. The timestamps of these images, from top to bottom, left
to right, is as follows: 20140113193340, 20140223182451, 20140113193340, 20140211192301, 20140319175729,
20140322190141, 20140220190008, 20140225195954, and 20140310180912.
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model, as opposed to a task-driven model, is in particular important since different experts

may have a slight disagreement on the pre-set proximity threshold that determines how nearby

filaments could form a filament channel.

The second case represents a few examples of where Bernasconi’s model misses some fila-

ments. Without a thorough investigation of every component of the software, it is not possible

to confidently spot the issue, however, it seems that a combination of some extra constraints may

have prevented such detections. There are many examples of such cases, present in almost every

image, and it does not seem that reasons such as low contrast, corrupt images, or difficulties

on detection closer to the limb of the Sun, could justify the majority of such examples. Having

said that, the emphasized granularities in the background texture sometimes make it nearly im-

possible to spot small filaments, even manually. Another possible cause for such misses, might

be rooted in the threshold-based filtering process used in the software, to get rid of the dark

regions that are not filaments. As a result, some of the filaments might have been labeled as

non-filaments by mistake, and thus removed from the remaining process.

The third case is perhaps more interesting. Less often than the previous case, regions are

annotated as filaments that are clearly not. The fact that in such cases, there are usually several

other segmentations, eliminates the hypothesis of a general shift of segmentations due to time

differences between the report and the timestamp of the image. It is more likely that, this is

caused by incorrect choices of seeds in the process of threshold-based clustering. That is, small

regions that are identified to be within filaments’ regions, and then used as seeds, might have

been chosen incorrectly because of a “bad” pre-defined threshold. The presence of thin clouds in

the atmosphere at the time of the observation also interferes with the threshold based procedure

for determining the seeds for filament masks.

Of course, there could be a host of other reasons for such false negatives and false positives

which are not revealed to us. Nonetheless, we use the same set of examples to show the differ-

ences and similarities between Mask R-CNN’s segmentations and Bernasconi’s, to avoid bias in

our comparative analysis.

Before we continue, let us clarify that all points made about Bernasconi’s software and all com-

parisons presented here only concern the segmentation (i.e. identification) of filaments. Other

components of the algorithm, such as profiling filaments based on their spines, spotting their left
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and right bearing barbs, and determining the chilarity of the filaments, are beyond the scope of

this study and the presented model does not introduce any alternative for those functionalities,

as we believe chilarity detection could be a different problem and requires a different approach.

3.4 Neural Network Architecture

Our filament detection problem stands as a specific application of the overarching object detec-

tion task which has been completely dominated by different deep neural network architectures,

since 2009. AlexNet (2012) [81], R-CNN (2014) [82], ResNet (2016) [83], and YOLO (2016) [84]

are four of the most known models among many. In this work, we employ one of the improved

versions of R-CNN, called Mask R-CNN (2017) [19], with ResNet-50-FPN backbone architecture.

Mask R-CNN improves upon Faster R-CNN (2015) [85] by adding a branch for predicting seg-

mentation masks on each RoI, which itself is a small Fully Convolutional Network (FCN). This

results in a significant improvement on the main drawback of R-CNN, which is the inefficiency

of the architecture that expects each image to be processed ≈ 2000 times. This is due to the use

of the Selective Search algorithm [86] to obtain the region proposals and the fact that each pro-

posed region should have been processed individually in the earlier models. Furthermore, they

observed that the convolutional feature map can also be used for region proposal generation,

which would make the entire system a single FCN.

3.5 Evaluation Metrics and Methodologies

Since the launch of ImageNet8 dataset in 2009 [87], with more than 14 million labeled images and

more than 20, 000 categories, numerous detection models have been introduced. Following the

ImageNet, competitions introduced their own challenges and for a consistent and fair comparison

of different models, they each provided their own evaluation frameworks. After several years

of exciting advancements in this area, the appropriate evaluation metrics for a general-purpose

8 http://www.image-net.org/
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object detection model have become better understood and they generally converged to the metric

set provided by Microsoft [88]. It was released as an API called cocoapi9 along with a dataset

and a series of competitions called Common Objects in Context (COCO)10.

Nonetheless, the objectives in a general-purpose object detection, and in particular segmenta-

tion, might be different than that in a specific domain such as the one we are pursuing in this

work. In the former, a certain percentage of intersection between the ground-truth segmentation

and the detected one could be considered as satisfactory. For instance, this is the case for spotting

objects like Humans and Cars in images for the purpose of a real-time object tracking system.

However, the goals might be set differently in other domains where geographical, medical, or

astronomical images are the subject of study. In filament detection, as a relevant example, one of

the segmentation applications would be to determine the chilarity of each filament based on the

angle of their barbs against the main spine of the filaments [89]. This is simply not possible with

a coarse segmentation. To this end, in addition to the well-known evaluation metrics provided

by COCO API, we run our own analysis as well.

3.5.1 Average Precision and Average Recall

All metrics11 introduced by COCO API are derived from a measure called Intersection-over-Union

(IoU)12, which is simply a normalized intersection of the ground-truth and the detected seg-

mentation. More specifically, given gti and dti to be the ground-truth and detected segmentation,

respectively, then IoUi =
area(gti∩dti)
area(gti∪dti) quantifies the similarity or alignment of these two seg-

mentations. In addition, a set of predefined thresholds over IoU is required for determining

true-positives and false-positives. This set is defined as T = [0.5 : 0.05 : 0.95] which results in 10

different values for IoU of each object. For instance, when the threshold is set to 0.8, for each

detection i that IoUi > 0.8, the detection counts as a true positive.

Average Precision, or AP, is an approximation of the area under the curve of precision (P =

TP
TP+FP ) against recall (R = TP

TP+FN ). Since as the model progress in its classification of objects,

9 https://github.com/cocodataset/cocoapi
10 http://cocodataset.org/
11 See a list of all COCO’s metrics and their definition at http://cocodataset.org/#detection-eval
12 IoU is more generally known as Jaccard Index, or Jaccard Similarity Coefficient.
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recall always increases by occasional incorrect classifications, setting recall as the x-axis and

monitoring the relative changes of precision could be summarized by the area under the curve.

This value should be then averaged over all categories and depending on the chosen threshold

t ∈ T , it can be denoted by APIoU=t. Following COCO’s notation, AP, without any superscript,

is also averaged over all 10 thresholds as well. In all COCO challenges, it is AP, averaged across

all ten IoU thresholds and all 80 categories, that determines the winner.

Average Recall, or AR, is the maximum achieved recall given a fixed number of detections per

image, averaged over all categories and all IoUs. This is similar to what was proposed in [90],

except that in COCO it is averaged over all categories.

3.5.2 IoU Comparisons

For a more rigorous comparison of the detected and ground-truth segmentations, we should

keep away from single quantities such as AP, and instead narrow down to a per-image analysis.

To this end, we analyze IoU of all pairs of (gti, dtj) in each image and look at the descriptive

statistics. In this comparison, i ∈ {1, 2, · · · ,g} and j ∈ {1, 2, · · · ,d}, where g and d are the total

number of gt and dt segmentations, respectively, corresponding to that image. It is important

to take into account only those pairs with non-zero intersections. The non-zero intersection

constraint guarantees that only spatially relevant objects would be paired up. This is a helpful

constraint based on the premise that the chances of gtr ∩ dtr = 0, for the filament r, present

in both detected and ground-truth sets, is very low. This is due to the fact that there is only

one category (i.e., filaments) in our dataset and also owing to the flat nature of our images that

filaments are not stacked over one another. In other words, if an annotated filament is detected,

it will have some intersection with the ground-truth segmentation. In addition, this approach

is insensitive to the missed objects. That is, neither a dt with no matching gt, nor a gt with

no corresponding dt segmentation would impact this metric. This is in particular important

because the segmentations we considered as ground-truth are in fact another model’s detection

output and of course prone to minor or major mistakes. We refer to this methodology as pairwise

comparison, denoted by IoUpairwise.

74



Io
U

H-alpha Image Time stamp

median(IoUpairwise) outliersmean(IoUpairwise) IoUbatch

Figure 3.5: Box-plots of IoUpairwise for all filaments present on a collection of 30 images, as well as
IoUbatch. The yellow squares show the mean value for pairwise comparisons of all filaments in each image,
that can be compared with the yellow crosses representing the batch comparisons.

Having mentioned the advantages of this approach, it is important to understand its short-

comings as well. The main bias of this comparison is that it would be negatively impacted by

the segmentations that may spatially agree with the ground-truth, but they differ in the number

of pieces. In other words, a filament i segmented as one piece, could be represented as the set

G = {gti}, while this might be detected in m smaller pieces, represented as D = {dti1, · · · ,dtim}.

Even if the area defined by D and G perfectly match (i.e., IoU(D,G) = 1), the above pair-wise

comparison would result in multiple IoUs, one for each pair in G×D. Each of those IoUs, how-

ever, are misleading quantities as they indicate a significant difference between smaller pieces

in D and G which is a much larger area. This is in contrast to the fact that D and G perfectly

match when compared collectively. This motivates us to aid our analyses with another approach

that compensates for the above-mentioned bias. In this second approach, we group all gt seg-

mentations in one image, and form a single mask, denoted by Mgt. Similarly, using the dt

segmentations we create another mask, Mdt. Treating these masks as two objects, we can now

compute IoU(Mgt,Mdt) which represents the quality of detection in each image. We refer to

this comparison as batch comparison, denoted by IoUbatch. While this approach perfectly avoids

the above issue of the incorrect comparison of multi-piece segmentations, it would be directly

affected by the missing segmentations in either the ground-truth or the detected sets. Looking

at both of these measures together could give us a better insight into how similar our results are

when compared to Bernasconi’s detections.
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Table 3.1: Average Precision (AP) and Average Recall (AR) reports for filament detection and segmentation
achieved by Mask R-CNN on BBSO H-α images.

2014 2015 2016

metric bbox segm bbox segm bbox segm

AP 0.355 0.229 0.391 0.245 0.461 0.340

APIoU=.5
0.599 0.568 0.662 0.626 0.719 0.743

APIoU=.75
0.387 0.135 0.425 0.130 0.531 0.246

AR,max = 1 0.027 0.020 0.031 0.022 0.060 0.046

AR,max = 10 0.234 0.170 0.272 0.194 0.457 0.350

AR,max = 100 0.462 0.320 0.506 0.343 0.565 0.425

3.6 Results

In this section, we analyze performance of Mask R-CNN on filament detection, in juxtaposition

with Bernasconi’s segmentations reported to HEK, using the metrics and methodologies dis-

cussed in Sec˙ 3.5. As the reader is looking at the results in this section, it is important to bear

in mind a few key points in our experiments: (1) Mask R-CNN is employed as an off-the-shelf

software without any hyper-parameter tuning necessary for approaching the best possible perfor-

mance by the model on this specific dataset. We leave the tuning for our future work. However,

(2) we do not use any pre-trained models. That is, all the weights are learned directly from

the annotated filaments in BBSO images and no pre-trained model is used. Using pre-trained

weights is a common practice, known as “transfer learning” [91], that is in particular useful for

general-purpose data such as Twitter text, Google images, etc. or the cases where there is some

level of similarity, in terms of the patterns and structures, between the data used for learning

and the data of interest. Most importantly, (3) the detection model employed in this study is

intended to learn only from what is reported to HEK and no real ground-truth dataset, which

is manually annotated by experts, is provided to it. In other words, we consider Bernasconi’s

segmentations on BBSO’s H-α images as the “ground-truth” data to our training process. Al-

though this limitation will impact the performance of the model, due to inheritance of at least

some of the imperfections and weaknesses from the previous detection module, the extent of this

impact should not be presumed without proper experiments. We investigate this impact in this

section. Regardless, it is crucial to note that the model itself is completely independent from any

detection module. That is, the utilized annotated data can be effortlessly replaced with any other

and possibly less erroneously annotated data at any time, if provided.
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Mask R-CNN

HEK's Reports

Figure 3.6: HEK’s reports of filaments (top) and Mask R-CNN’s segmentations (bottom), on a BBSO’s
image with timestamp 2014.02.14 18:45:22, corresponding to the box-plot with id ‘20140214184522’ in
Fig. 3.5

.

Regarding the reported results in this section, we used one year worth of data for training

(2012), another year for validation (2013), and three other years of data (2014, 2015, and 2016)

for testing. In all these three phases, we try detection with either bounding boxes or polygons

reported to HEK. See Fig. 3.2 for the exact number of objects and images used in each phase.

Table. 3.1 summarizes different AP and AR measures both for bounding box and segmentation

detection. The results are reported for all BBSO’s observations since 2014 through 2016. To better

understand the numbers in the table, let us take the second row as an example and elaborate

on it. The reported AP indicates that the alignment of the detected segmentations with those

annotated by Bernasconi’s code, averaged over all images in 2016, with IoU threshold fixed at

0.5, is 0.743. In other words, on average ≈ 74% of all detected segmentations in this period have
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Mask R-CNNHEK's Reports

Figure 3.7: Impact of a highly defected observation on the segmentation task, with the timestamp
2014.02.01 19:17:00, corresponding to the box-plot with id ‘20140201191700’ in Fig. 3.5. This justifies the
extremely low IoUbatch.

.

a relative overlap of 50% or more with the ground-truth segmentations. To put this number

in context, one could compare it with the best AP achieved by a relatively similar architecture

of Mask R-CNN trained and tested on COCO dataset, which is 58% [19]. Needless to say that

our task, from the perspective of AP and AR, is significantly simpler than the one put forward

by COCO. For one, here we are dealing with one category, i.e., filaments, as opposed to the 80

categories in COCO. However, the main challenge in our task, as we discussed in Sec. 3.5, is the

resolution of the segmentation and not distinction between different categories. This aspect of

our problem is completely absent in tasks similar to COCO. This leads us to the other comparison

methodologies as discussed in Sec. 3.5.

In Fig. 3.5, we present the box-plots of IoUpairwise for 30 images, as well as IoUbatch, for each

image. These images are selected randomly and the limited number of images allows a more vis-

ible visualization. While the degree of similarity to the Bernasconi’s detection should not be

considered as the objective, the plot shows that our model is overall in agreement with HEK’s

reports, with IoUpairwise averaging at 0.67, slightly above the average of IoUbatch at 0.59. To

obtain a better insight into these results, let us look into a few specific cases. One interesting case

is the box-plot corresponding to the image id ending with ‘4522’, that shows a relatively large

interquartile range for IoUpariwise. As both HEK’s reports and our segmentations on this partic-

ular image are shown in Fig. 3.6, there are several small dark regions that in HEK’s reports are all

connected with artificial bridges to form a filament channel, whereas in our segmentations, this
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Figure 3.8: Comparison of HEK’s reports (top row, highlighted in blue) versus Mask R-CNN’s segmenta-
tions (bottom row, highlighted in red) on the same event instances discussed before in Fig. 3.4. The middle
row, showing the actual filaments, are kept for references.

is avoided. Although, this is simply a design choice, in our box-plot comparison this is reflected

as high variance of IoU, but it should not be interpreted as an inaccurate segmentation. Another

interesting case corresponds to the image id ending with ‘1700’, where IoUbatch is significantly

low (i.e., less than 0.2). Tracking down the corresponding observation, shown in Fig. 3.7, reveals

the reason; the original BBSO’s observation had produced a defected image based on which, any

segmentation is spurious, hence very low alignment of segmentations. Our investigation shows

that, Bernasconi’s algorithm, due to a pre-set temporal requirement to observe the Sun at its high-

est elevation (lowest air mass) in order to maximize the quality of observations, used this corrupt

image for segmentation while non-corrupt observations were available on that day. Other cases

with very high IoU and low variance, such as ‘3357’ and ‘0221’, are cases where the filaments are

spotted against the less noisy background, and therefore the discrepancies are significantly less

compared to some other cases. The outliers, shown as black circles in this plot, seem to be pre-

dominantly pointing out the comparison of a large, one-piece gt segmentation with a relatively

very small island in a multi-piece dt segmentation.
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3.7 Conclusion and Future Work

We have employed deep neural networks, in particular Mask R-CNN, for segmentation of fila-

ments based on BBSO’s full-disk H-α images and HEK’s reports of filaments and their spatial

information. We collected the data from BBSO’s archive and integrated them with the spatiotem-

poral data retrieved from HEK to build our dataset in a way that it conforms to the COCO dataset

format. We trained and validated our model on BBSO’s observations during years 2012 and 2013,

respectively, and tested it on three years worth of BBSO’s archive, namely 2014, 2015, and 2016.

We highlighted some typical and reoccurring segmentation characteristics of the existing detec-

tion module, and compared our findings with HEK’s reports. Our case-by-case macroscopic

study and the overall comparison of the two models show that (only in terms of segmentation of

filaments) Mask R-CNN can clearly compete with the existing module and in some cases even

performs better. This is an interesting outcome given that our model has only learned from what

the existing module had detected and no actual ground-truth, i.e., data annotated by experts,

were exposed to it.

Our trained model, although still far from being robust and an operational software, encour-

ages us to explore using deep neural networks for the detection of solar features. This argument

is based on (1) As the model learned the important features, it has now become an indepen-

dent tool that can function on any other observatories’ data that has not been processed and

annotated before. Given that the GONG full disk H-α network [92] provides images from obser-

vatories around the world (including BBSO). (2) The cadence of filament reports in HEK is daily

as Bernasconi’s code is designed to analyze one image per day. Due to our model being com-

putationally inexpensive compared to Bernasconi’s we can now provide filament reports with a

cadence of one minute. Also, (3) such an automated system can be scaled up to cover all the

solar events, instead of having one detection module specifically designed for each solar event.

Moreover, (4) the performance of such a system is only bound to the amount of data provided

to it. This is a well-known advantage of deep neural networks, as opposed to the classical image

processing techniques or even shallow learning models whose performance is tied to the power

of the features that are already selected.
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One of the avenues toward our future work, is to test this model on data from other observato-

ries in the GONG full disk H-alpha network. We would like to see how different the performance

of Mask R-CNN will be compared to segmentation on BBSO images, given that different instru-

ments produce slightly different but comparable observations. In parallel, we plan to investigate

on the possibility of increasing the resolution of segmentation taking into account the trade-off

between adding more noise to the detected regions and the possibility of characterizing the fil-

aments structure, i.e., the barbs and the spine, with a granularity comparable to the size of a

pixel.
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4

E VA L U AT I O N O F S A L I E N T O B J E C T

D E T E C T I O N W I T H F I N E S T R U C T U R E S : A

N E W M E T R I C

4.1 Introduction

The object-detection problem has been one of the primary targets of the computer vision field

with a large variety of applications. During the past decade, with the hardware’s power catch-

ing up with the need of compute-intensive deep neural networks (and some other reasons [93])

the computer vision field flourished at an unprecedented speed. In 2012, the classification per-

formance exhibited by AlexNet [81] in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [94] outperformed humans and paved the road for more advanced algorithms [95, 96].

In the course of only six years (2012-2017) researchers managed to push the limits from highly

accurate image classification to real-time localization of objects, and even better, to pixel-level

region annotation (see [97] and the references therein). The achieved success has been made

possible, at least partially, by the exuberant and popular competitions such as PASCAL VOC

(2005-2012) [98], ILSVRC (2010-2016), COCO (2015-present) [88], and RVC (2018-present), and

the excitement and directions they brought to the community.

One side effect of such a fast growth, however, is the underlying assumption these general-

purpose competitions impose to the object-detection task; that although the objective is to accu-

rately localize (and classify) each object, a pixel-level precise detection is not of high priority. Each

of the three components of a competition, i.e., dataset, ground-truth annotations, and evaluation

metrics, enforces this assumption: (1) datasets often contain everyday objects (e.g., cars, pedes-

trians, ships, dogs), (2) objects are annotated coarsely (polygons used instead of drawing tools),

and most importantly, (3) area-based metrics, e.g., Intersection over Union (IoU), are chosen for

evaluating the algorithms. This intrinsic assumption is important for being able to easily rank

the competing algorithms, as more complex methods may put many algorithms in gray areas. It
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gt dt1 dt2

barbs

gt dt1 dt2

ground truth: gt

estimated region: dt1 estimated region: dt2

ground truth: gt

Figure 4.1: Examples from different domains showing the metrics IoU, Precision, Recall, and F1-score fail
to capture prominent differences between the proposed regions, dt1 and dt2, when compared with the
ground-truth region, gt. Example A, depicts the issue in its simplest form. Example B and C illustrate
the same issue using the mask of a solar filament and the mask of a leaf sample of the Metasequoia
Glyptostroboides tree.

is also critical that the chosen metric be able to handle the general purposes well, e.g., be effec-

tive even when only coarse annotations are available. That being said, as a consequence of such

settings, the new algorithms manage to optimize their cost functions without a precise spatial

estimate of objects, and become less sensitive to the fine boundary structures. Such an objective

may not be relevant or even appropriate for many real-world problems. This realization is the

first step in closing the gap between competitions’ objective and the real challenges. We wish to

contribute to this realization by introducing an alternative evaluation metric for general-purpose

object-detection algorithms.

Many of the object-detection evaluation metrics are borrowed from the segmentation evalua-

tion task. They either are very task-specific or have a large tolerance for the discrepancies between

the ground-truth and detected regions’ boundary. IoU is arguably the most popular measure in

the second category. It quantifies the degree of which the ground-truth region is detected, i.e.,

intersection, relative to the area occupied by both of the ground-truth and detected regions, i.e.,

union. It is a simple, intuitive, and effective metric, but insensitive to details that should not be

overlooked in many cases. In its simplest form, this undesirable tolerance is depicted in Fig. 4.1-

A, where two very different proposed regions, dt1 and dt2, are compared against a ground-truth

region, gt. According to IoU (as well as Precision, Recall, and F1-score), dt1 and dt2 are equally

good estimates for gt, notwithstanding the evident fundamental differences; dt2 perfectly cap-

tures the jagged structure of gt’s boundary, whereas dt1 only gives a bounding box for gt. We
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will introduce our proposed metric (MIoU) in Section 4.3, and explain how it can capture this

discrepancy and puts dt2 above dt1 in its ranked list.

IoU is just one of the metrics in the family of pixel-level errors. Others examples include false-

alarm and missing-rate pixel percentages [99] which are inspired by the concept of contingency

table. Similarly, Precision and Recall are used in many studies, e.g., in benchmarking of image

segmentation algorithms [100]. Whether computed on the regions’ area or boundary, their binary

view of ‘match or no-match’ of pixels does not adequately quantify fine structural differences.

Dice Similarity Coefficient (DSC) is yet another area-based measure, that is only slightly different

than IoU (by one intersection). But DSC easily approaches its upper bound [101], and to remedy

this, Logit Transformation of DSC (LTD) is often used instead. Inherently, LTD does not work well

to quantify fine structural differences either. There are two other metrics which are also very

popular, especially in medical image analyses, namely Global and Local Consistency Errors (GCE,

LCE). They were used in preparation of the Berkeley Segmentation Dataset [102]. But they are

designed to judge between human-made segmentations, based on the needed refinements, which

is automated in recent salient object detection algorithms, such as Mask R-CNN [19].

There exist a number of other metrics that solely focus on the boundary structure of regions. A

popular example of such class is LB_Keogh Shape Indexing, [103]; a contour mapping measure that

utilizes Dynamic Time Warping distance function. Despite its proven application, it cannot be

used for evaluation of general-purpose object-detection algorithms because it disregards the area

of objects, and moreover, it is a rotation invariant metric, which is not an appropriate assumption

for all object detection problems. While many of these metrics have their strengths in specific use

cases, we find two metrics most relevant to this study: IoU; because our metric is inspired by it,

and F1-score; because it summarizes Precision and Recall which are the basics of any area-based

metrics.

4.2 Real-World Applications

In heliophysics, the spatial information of solar filaments can be used to determine the magnetic

field orientation in a potentially associated coronal mass ejection (CME). This orientation under-
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standing is critical, as this can help predict its impact on Earth’s magnetic field and consequently

our technology-dependant lives. The key information in the observed filaments is inferred from

the angle of their ‘barbs’ against filament’s spine. The example illustrated in Fig. 4.1-B shows

a filament (captured by the Big Bear Solar Observatory [78] at ‘2012-02-21 19:12:50 (UTC)’) and

two proposed regions; one with the barbs and the other without any. If one were to evaluate

the proposed regions with any of the previously listed metrics, only our proposed metric (MIoU)

would provide a preference towards the example with barbs over the example with none.

Our second example is from botany in the form of a plant species identification problem. It

can be tedious and error-prone to use the classic method of manually parsing a (binary) tree of

species, following a list of written features. Computer vision has made it much simpler these

days to a degree that a mobile app can automatically extract the visual features of an arbitrary

leaf sample and retrieve the most similar species [104]. One of the key features that is needed for

construction of such a content-based image retrieval system is the leaves’ shapes. Fig 4.1-C gives

an example of a leaf’s shape, gt, (from LeafSnap dataset [104], with ID ‘ny1041-04-1’), and two

proposed shapes, dt1 and dt2. As the plot shows, similar to the previous examples, none of the

listed metrics (except MIoU) differentiate between dt1 and dt2, and they fail to see the similarity

that dt1 exhibits to the ground-truth region, relative to dt2.

4.3 Multiscale IoU (MIoU)

The object-detection evaluation metric that we propose is the marriage of two concepts: IoU and

fractal dimension. The former is a similarity measure discussed in Section 4.1. The latter is a

classic measure that quantifies the complexity of fractals’ structure and their lacunarity. In the

following, we first review fractal dimension and a method for computing it, and then introduce

our metric.

Fractal Dimension and Box Counting Method. Introduced in Fractal Geometry, fractal dimen-

sion gives a more general definition of ‘dimension’, that quantifies the complexity of self-similar

shapes, i.e., fractals. A number of different methods have been proposed to compute fractal

dimension [105–107] among which box counting is the most popular because it can be easily cal-

85



culated on digital images. Using this method, fractal dimension (DBox(o)) of an object o, can be

calculated by the limit limδ→0
log(n(o,δ))

log(1/δ) , where δ is the cell size of an evenly spaced grid, and

n(o, δ) is the number of grid cells that overlap with the shape o. In practice, the fractal dimension

of the object o is calculated in three steps: (1) superimpose o on a grid of square cells of side

length δi. (2) For each δi, using box counting method, count the number of grid cells that overlap

with o (or its contour). (3) Estimate the slope of the regression line of log(n(o, δi)) versus log(δi),

as δi decreases and produces finer grids, i.e., higher resolution. The estimated slope is the fractal

dimension of o, that depending on the subject of study, can be computed on either its area or

contour.

MIoU. To fuse the multi-resolution concept of fractal dimension with IoU, we need a few defi-

nitions. Let ∆ ⊂ N be the set of all needed cell sizes, and O be the set of all regions (of salient

objects). Given an arbitrary region o ∈ O, and a cell size δi ∈∆, we define s, s :O×N→O, to

be a function that reduces the resolution of o by replacing each δi-by-δi cell with a single binary

value b, and returns a new (lower resolution) region. The value of b is 1, if its corresponding cell

overlaps with o, and is 0, otherwise. For every δi, this process can be carried out on both of the

ground-truth (o) and detected (õ∈O) regions. Furthermore, let n, n :O→N, be another function

that simply counts the number of cells a region spans over. This is equivalent to the number of

pixels that form the given region after it is downsampled by s. Therefore, it does not depend on

δi.

With the above tools, we can now define the intersection ratio denoted by r, r :O2×∆→ [0, 1],

as shown in Eq. 4.1. For a given ground-truth region o, a detected region õ, and a cell size δi, r

measures the ratio of the number of cells o and õ have in common, over the number of cells they

should have in common if they perfectly align.

r(o, õ, δi) =
n
(
s(o, δi)∩ s(õ, δi)

)
n
(
s(o, δi)

) (4.1)

Note that for a given pair of regions, r is a function of cell size, δi. That is, intersection

ratio can measure the alignment at any desired resolution level determined by δi. In other

words, if two regions of interest are well-aligned, i.e., their area and boundary pixels almost
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perfectly match, their subtle miss-alignment can still be captured in higher resolution levels.

And if they are not well-aligned, either spatially or structurally, their slight alignments (if at

all) can still be captured in lower resolution levels. Therefore, a proper similarity assessment

can be made with a multiscale comparison. This observation explains our final step in defining

MIoU. Given two detected regions, õ and õ ′, for the ground-truth region o, assuming that õ

is a much better estimate for o, than õ ′, it is expected that, on average, r(o, õ, δi) > r(o, õ ′, δi),

for all δi ∈ ∆. Therefore, we propose the area under the curve of r(o, õ, δ) for all δ ∈ ∆ as a

measure of alignment for two arbitrary regions, o and õ. This can be formulated by the integral

MIoU(o, õ) =
∫1
0 r(o, õ, δ) dδ. By choosing dδ = 1

|∆|−1 and transforming δ to the range of [0, 1],

the metric MIoU will also be limited to the interval [0, 1], where 1 implies the perfect alignment

of o and õ, and 0 indicates the opposite.

Although MIoU can technically be computed on either of the regions’ areas or boundaries,

we find the use of boundaries more appropriate. This is simply due to the fact that objects’

area grows faster than their perimeter. Therefore, the dissimilarities between objects’ boundaries

can be overshadowed by the large number of pixels their areas span over. This renders the

intersection ratio r ineffective. To avoid this, we only take into account the contour of objects in

all of the above-mentioned definitions. Our implementation of MIoU, as well as all experiments

in Section 4.4, are made publicly available1.

4.4 Experiments and Results

In this section, we present three experiments to verify the advantage of MIoU over IoU, and its

reliability. The first experiment is conducted on a set of synthetic samples, and the two other

ones utilize a larger set of everyday objects.

On Synthetic Regions. In order to evaluate the sensitivity of MIoU, compared to other metrics,

we need to control for the confounding factors, i.e., the random misalignments of the detected

regions with respect to the ground-truth regions. Therefore, we generate sets of synthetic regions,

as follows: each set corresponds to one ground-truth object, and contains several proposed re-

1 Code: https://bitbucket.org/gsudmlab/multiscale_iou/
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gions and one region that perfectly aligns with the ground-truth region. For brevity, from several

experiments that we ran, we present only one here. In this experiment, as illustrated in Fig.

4.2, a table of 28 proposed regions are generated resulting from a systematic deviation from

the ground-truth region, by means of linear scaling (mid-to-tail rows), translation (mid-to-head

rows), and smoothing (left to right). The goal is to examine the sensitivity of IoU and MIoU to the

jagged patterns, in the presence of different transformations. Comparing each of these regions

with the ground-truth region, i.e., mask 3-1, the measured similarity is expected to decrease from

left to right (in the table of samples), as the proposed regions lose their jagged structure. Follow-

ing this expectation, a metric that is sensitive to the boundary structure of regions must show a

periodically decreasing pattern, peaking at the beginning of each row. As the line plot shows,

although all other metrics capture the between-row differences (periodically plateaued), only

MIoU is sensitive enough to reflect the within-row differences, hence the periodically decreasing

pattern.

On Real Regions. To compare the distribution of MIoU with that of IoU, on real objects, we

randomly sample a total of 2500 instances of COCO dataset [88], equally collected from five cat-

egories (cars, bicycles, boats, dogs, and persons). We then apply some minimal manipulations to

the ground-truth regions to generate two groups of proposed regions: The first group contains

copies of the ground-truth regions which are randomly rotated (±10 deg.) and/or translated

(±10 px). The second group is made of the smoothened duplicates of the ground-truth regions,

using Gaussian smoothing followed by thresholding to obtain binary masks. In both experi-

ments we set ∆ = {2n,n < 10}. The box plots of the results are shown in Fig. 4.3, where plot

A corresponds to the first group, and plot B, to the second group. Overall, despite the funda-

mental differences between the two metrics’ definitions, their reported quantities agree with each

other. We observed this in several other experiments, which makes MIoU a reliable alternative.

Moreover, in plot A, MIoU’s distributions are centered at the median, across categories, with a

significantly smaller variance than that of IoU. This is, we believe, the result of MIoU’s intended

sensitivity to the regions’ boundary structure, rather than just the area of intersection. The pairs

of distributions in plot B are also very similar while MIoU’s median remains slightly below IoU’s

across all five categories. This consistent difference confirms the sensitivity of MIoU to the details

that were smoothened out in this experiment.
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4.5 Conclusion

For the general-purpose object-detection algorithms to be utilized on scientific computer vision

tasks, fine segmentation of objects is needed. In this work, we highlighted the insensitivity of

popular evaluation metrics to fine structure of the detected objects, and proposed a new metric

to alleviate this issue. Our experiments showed that not only this is a reliable metric with a

distribution consistent with IoU, but also exhibits sensitivity to the fine boundary structure of

regions. We hope this study opens up the door for similar efforts to readjust our research horizon

towards a smaller gap between the competitions’ objectives and real-world challenges.
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Figure 4.2: Comparison of area-based metrics on the 28 estimates (shown on top) for the ground-truth
region, indexed 3-1.
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Figure 4.3: Comparison of distributions of IoU and MIoU on 2500 masks obtained from five categories of
COCO dataset.
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5 C O N C L U S I O N A N D F U T U R E W O R K

This dissertation presented the challenges of automatic detection, segmentation, and classifica-

tion of scientific events. First, classical machine learning algorithms were utilized, in which

the optimization of the extracted features played an important role. A series of optimization

processes, each unique to a particular image parameter, yielded a significant improvement in

the classification performance of two solar events, namely Active Regions and Coronal Holes.

Second, I employed deep neural networks for detection and segmentation of another type of

solar events, namely filaments. Comparing the outcome of this model with that of the existing

automated segmentation module which was built using classical image processing techniques,

revealed noticeable improvements in the quality of our segmentations. In the evaluation pro-

cess of the trained object detection module, I noticed that the popular similarity metrics do not

take into account the fine structures of filaments while measuring the similarities between the

detected and ground-truth regions. But the primary goal of such detection was to learn about

filaments from these pixel-level details such as filaments’ barbs. To fill this gap, I introduced

a novel object-detection evaluation metric that is tailored for salient objects with fine structures.

Through several experiments I showed the success of this new metric in capturing such details

which were disregarded entirely by other metrics.

The filament detection module discussed in Chapter 3 lays out the foundation for a comple-

mentary study, i.e., identification of filaments’ magnetic patterns of “handedness”, called the

chirality of filaments. The filament detection module, in addition to the segmentation masks, re-

turns the detected boundary boxes of filaments. These spacial data, coupled with the manually

labeled filaments [108], are enough for training a CNN model in order to examine whether or

not the magnetic signatures of filaments can be automatically identified on H-α images with an

acceptable error rate. This study has already been initiated and has shown some promissing

results.
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Another challenge in evaluation of solar events is the scarcity of data, which results in skewed

data, also known as class-imbalance data. While the class imbalance and its impact have been

studied extensively before, to understand its direct effect on the solar weather prediction I con-

duced several domain-specific studies [109–112]. Although the experiments in those studies were

carried out on a multivariate time series dataset, called SWAN-SF [113], several pitfalls can be

avoided using same general remedies when processing filaments, or any other solar events. The

common denominator in all of the studied cases turned out to be the challenge in choosing an

appropriate performance evaluation metric. This metric needs to satisfy two conditions: first, it

must take into account the class-imbalance ratio, and second, its values must be comparable as

the class-imbalance ratio varies from one experiment to another. To address this challenge, I am

currently working on a new evaluation methodology that supplements the classical approach

where one or more metrics are used to evaluate a model’s performance, and each metric summa-

rizes the confusion matrix, one way or the other. Furthermore, using this metric, the bias of a

performance metric can also be quantified and then compared with other metrics’ biases. This is

of particular importance because despite decades of discussions on the topic of class imbalance,

and introducing many remedies to alleviate its impact, there is still no measure to quantify this

sensitivity to the imbalance.

The automatic classification and detection of solar events in this dissertation was limited to

active regions, coronal holes (visible in AIA images), and filaments (visible in H-α images). One

of the interesting avenues to expand this research on would be to include other events such

as flares and sigmoids. It is important to note that the same model architecture used for the

detection of filaments could be utilized for other events. It is only required to provide the model

with the relevant image data in which the events of interest are annotated. Currently, these

events are being detected through the 16 modules implemented by the SDO Feature Finding

Team [4]. These modules are built following the classical image processing techniques. The

above approach, however, would centralize the detection process by one single module with all

the benefits of using Deep Neural Networks as discussed in Chapter 3.

The similarity metric introduced in Chapter 4 has an interesting characteristic; it quantifies the

similarity between two regions by looking at the boundaries of regions in a multi-scale fashion,

instead of the area of overlap. This makes it a potentially good metric for time series as well.
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The existing similarity metrics that are used for time series are often computationally expensive

as they try to match values of the two time series. This requires an optimization which is costly.

Our proposed metric, however, only measures the degree of overlap of regions (or time series)

which is a geometric operation and much less expensive. Moreover, if applied on time series, it

runs a multi-scale comparison which makes the found similarities more robust than what is the

outcome of a (elastic or static) pair-wise matching of values, as the metrics based on the dynamics

time warping distance do. Investigation of these possibilities is another lane of research that I

plan to pursue.
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