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1 Introduction and Objectives 
Encouraging travelers to walk and bicycle in lieu of motorized modes of travel 
benefits both the traveler and the community at large. The traveler benefits from 
health improvements that have been shown to accompany increases in physical 
activity that can in turn reduce health-care costs on a larger scale. The community 
benefits from the reduced congestion and emissions associated with automobile 
travel. Even so-called recreational walking and bicycling can provide the same 
benefits for the individual and if they replaced recreation that involved driving 
provide transportation system benefits as well.  Bicycling and walking have also 
been associated with economic development, including but not limited to tourism.  
Maximizing these system benefits is critically important for the state and 
municipalities, especially when funding for transportation is scarce. 

In order to make better funding decisions for non-motorized transportation 
infrastructure, it is first necessary to understand comprehensively the walking and 
bicycling behavior of a region’s inhabitants. With this understanding, current 
walking and bicycling behavior can be estimated throughout the region, programs to 
increase levels of non-motorized travel can be pursued and the return on investment 
in non-motorized infrastructure can be assessed. A comprehensive understanding of 
non-motorized travel behavior requires an understanding of its relationship to the 
built environment. Many researchers have focused their attention on improving our 
understanding of the relationship between the built environment and non-motorized 
travel. However, few of these studies support this connection in a region with a 
spectrum of urban to rural communities, where the effects of spatial dependency 
and land-use impacts are poorly understood.  Bicycling and walking are typically 
assumed to be urban modes of travel and moreover, existing research has focused on 
these modes in urban settings. 

Estimates of vehicle-miles of travel (VMT) are used extensively in transportation 
planning, policy and research.  These estimates are used for infrastructure 
planning, for funding-allocation decisions, as measures of crash and incident 
exposure, access and economic activity, and to calculate vehicle emissions and 
energy use. The lack of comparable estimates of bicycle and pedestrian miles of 
travel (BPMT) creates a lack of information for policymakers to use for funding, 
planning and managing non-motorized travel. The Bureau of Transportation 
Statistics (BTS) has identified the systematic, methodologically consistent collection 
of non-motorized travel data, including estimation of annual average daily bicycle 
and pedestrian volume (AADBPV) and total bicycle and pedestrian miles of travel 
(BPMT), as a priority for improving infrastructure and safety analysis (BTS, 2000).  
The overall objective of this project is to advance these non-motorized travel data 
methods and procedures focusing on a study area in Chittenden County (Burlington) 
VT.  

The first results of this study examined the hourly distributions of non-motorized 
traffic data along shared-use paths in Chittenden County, Vermont and 
investigated the probable linkage between daily totals, hourly distribution 
signatures, and surrounding land-use. The goal was to pursue more robust data 
collection and methods to generate county-wide shared-use path BPMT. 
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Subsequent analysis focused on estimating county-wide BPMT with the existing 
shared-use path counts as well as new count data on roads.  We proceeded to fill 
data gaps using video data collection which is described in detail and to test a 
variety of link-classification methods and temporal-aggregation methods for 
calculating total BPMTs based on sources of data collected from throughout the 
study area.  

The outcome of the project are 16 separate annualized BPMT estimates for 
Chittenden County, Vermont calculated using the Traffic Monitoring Guide 
standard AADT calculation methodology (FHWA, 2001). These BPMT estimates 
were calculated using eight different methods for categorizing network links, two 
different methods of categorizing days of the week, and two different methods of 
representing the seasons of the year. There is considerable uncertainty regarding 
the best methods for grouping network links so using eight different classification 
systems helps illuminate the impact that these groupings have on regional BPMT 
estimates. Finally, these count-based BPMT estimates are compared to a survey-
based BPMT estimate calculated from the 2009 National Household Travel Survey 
(NHTS) (FHWA, 2009). The total BPMT in Chittenden County from the NHTS was 
calculated to be 31.3 million miles per year. 
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2 Background  
A critical goal of studies related to New Urbanism and Smart Growth is to increase 
levels of non-motorized travel (walking and bicycling) in neighborhoods and 
communities (Katz, 2004). Encouragement of non-motorized travel is critical not 
only for its own sake, but to reinforce the use of transit systems, since most transit 
trips include a walking or bicycling trip at both ends. In addition to serving as an 
alternative to motorized traffic and its environmental, energy and social costs, non-
motorized travel has also been at the center stage for promoting healthy living. In a 
recent cycling and walking study (Zahran et. al., 2008) utilizing nationwide county-
based data, the authors pointed out the spatial distribution of cycling and walking 
commute trips is positively associated with population density, natural amenities, 
education, wealth and estimates of local civic concerns.  

Other studies have focused on the association between land-use, including zoning 
and physical characteristics, and non-motorized travel. Rodriguez and Joo (2004) 
examined the connection between non-motorized mode choices and built-
environment-based variables, while considering typical modal characteristics. Local 
topography and sidewalk availability have been demonstrated as important to the 
attractiveness of non-motorized modes. Guo et. al. (2007) assessed the effects of the 
built environment on motorized and non-motorized trip-making. They concluded 
that very few built-environment factors would successfully lead to substitution of 
motorized travel by non-motorized modes. However, they argued that increases in 
bikeway density and the connectivity of the street network would have the best 
potential for doing so. Cervero and Kockelman (1997) found that density, land-use 
diversity, and pedestrian-oriented design significantly encourage non-motorized 
travel, although the impacts appeared fairly marginal. Frank and Engelke (2001) 
showed that grid street networks can promote bicycling and walking activities by 
reducing trip distances, offering alternative pathways, and slowing motorized 
travel. Cervero and Duncan (2003) found that, although personal and household 
factors were most significant, land-use and street connectivity in San Francisco also 
had a moderate effect on promoting short non-motorized trips.  

More studies use the connection between non-motorized travel and improved 
physical health to support their research. Frank et al. (2005) found that measures 
of land-use, residential density, and intersection density in Atlanta were positively 
associated with daily minutes of moderate physical activity. Aytur et al. (2007) 
found that North Carolina communities designed for “active transportation” had the 
strongest influence on non-motorized travel levels among lower-income individuals. 
Cervero et al. (2009) found that street density, connectivity, and proximity to 
cycling lanes are essential to physical activity while land-use mixtures not.  

Other studies attempted to address the relationship between pedestrian travel and 
environmental variables. Liu and Griswold (2007) demonstrated that pedestrian 
volumes can be reasonably estimated by environmental factors given appropriate 
measurement and geographical scale. Aultman-Hall et al. (2009) investigated 
pedestrian counts in Vermont to identify the influential factors for volume 
variability, and their models indicate weather and season diminish aggregate 
walking levels by a moderate amount.   
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Fewer researchers have been able to use location-specific counts to yield progress in 
non-motorized travel estimation at a microscopic scale. Pulugurtha and Pepaka 
(2008) studied the pedestrian counts collected at 176 intersections in the City of 
Charlotte, North Carolina and developed models predicting pedestrian activity 
using factors ranging from demographic characteristics to land-use characteristics. 
Their study results showed that urban residential density has the most significant 
impact on pedestrian activity at intersections. Using pedestrian crossing volumes at 
intersections, Schneider et al. (2009) created a pilot model that shows that number 
of jobs, number of retail properties, total population, and presence of a regional 
transit station close to an intersection are significant factors.  Pucher et al. (2011) 
reviewed trends in bicycling levels, safety, and policies in North America, using 
national aggregate and city-specific data. They found a high degree of spatial 
variation and socioeconomic inequality in bicycling rates.  While it is generally 
accepted that non-motorized travel varies with location, land-use, time-of-day, and 
season, robust patterns have not been characterized. Moreover, the range of land-
use and spatial characteristics is often overlooked or over-simplified when selecting 
locations for the non-motorized traffic counts. Instead, researchers and planners 
often default to collecting data in the most traveled locations. The relationships 
between temporal patterns and spatial patterns have not fully been studied and the 
full range of data to consider these relationships has not been collected.   

In spite of the growing recognition of the importance of non-motorized travel, 
estimates of BPMT are rarely calculated. One of the primary obstacles to 
calculating BPMT values is the expense of collecting bicycle and pedestrian (BP) 
counts (Hocherman et. al., 1988; Greene-Roesel et. al., 2007).  Because pedestrian 
movement is less restricted than vehicle movement and because pedestrians may 
move in closely overlapping groups, the counting process is more difficult to 
automate then it is for vehicles (Hocherman et. al., 1988).  Newer pneumatic and 
infrared equipment works well in some settings but is not well suited to all outdoor 
environments (Greene-Roesel et. al., 2008).  Consequently, BP counts remain more 
dependent on expensive manual data collection and continuous count data is scarce.  
Continuous counts that are available tend to focus on more highly traveled paths in 
more bicycle- and pedestrian-friendly towns, biasing volumes high and leaving 
significant spatial gaps, as found in this study.  

These temporal and spatial shortcomings present two distinct challenges for BPMT 
calculations.  First, in the absence of continuous count data, it is difficult to develop 
adjustment-factors that accurately account for season and weather-related 
variations in non-motorized traffic.  While researchers have developed extrapolation 
techniques based on short-duration counts, these extrapolation measures generally 
focus on converting hourly counts to daily (Schneider et. al., 2009; Soot, 1991; Davis 
et. al., 1988) or weekly BP volumes (Schneider et. al., 2009) and most do not provide 
annual BPMT estimates. Second, the lack of diversity in count locations makes it 
difficult to create link classifications that accurately reflect BP patterns over a 
whole region, especially in more rural regions. As a result, researchers often assume 
negligible or even no non-motorized traffic in outlying areas and the defensibility of 
region-wide estimates is compromised (Hammond and Elliott, 2011). 
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3 Study Area 
The study area for this project is Chittenden County, Vermont, the planning region 
for the Chittenden County Regional Planning Commission (CCRPC) (see Figure 1).  
The CCRPC area includes a 62-square-mile urban area that contains Burlington, 
the largest city in Vermont. It is bounded to the west by Lake Champlain and to the 
east by public lands in the Green Mountains. Chittenden County has the largest 
population and employment in the state, with approximately 150,000 residents (of 
approximately 620,000 in Vermont) and more than 100,000 jobs. Like most regions 
in the country, the urban core has spread into neighboring municipalities and now 
includes a suburban development pattern around the outskirts of Burlington.  
Vermont ranks high for its prevalence of walking and bicycling as a mode of 
transportation for commuting (http://www.bikewalkalliance.org/news/350-people-
are-healthier-in-states-where-more-people-bike-and-walk-to-work), with a 12% 
overall mode share (Conger at. al., 2013) and Chittenden County’s rate of walking 
bicycling is amongst the highest in the state, at nearly 17% of its daily person-trips 
per household (FHWA, 2009).  
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Figure 1  Project Study Area 



UVM TRC Report # 13-014 
 

 

 

 

11

4 Data 

4.1 Link-Based Non-Motorized Traffic Counts 
This project utilized bicycle and pedestrian counts collected between 2007 and 2013 
from shared-use paths and road shoulders at a total of 62 locations throughout the 
County using pyroelectric infrared sensors (collected by CCRPC) and closed-circuit 
digital video camera (collected by the research team)(see Figure 2).  Details of the 
video data collection procedures are described in Appendix A through C.   

 

Figure 2  Link-Based Bicycle and Pedestrian Counts Used in this Study, 2007 – 2013 
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The pyroelectric sensors detect the infrared emitted by the human body allowing 
multiple people to be counted individually even if they are close together. An 
infrared sensor by EcoCounter was employed at all stations to collect combined 
pedestrian and bicycle count data. The device was capable of collecting bi-
directional bicycle and pedestrian traffic, although only total counts (bicycle + 
pedestrian volume) were used in this study. The device's sensor detects the infrared 
radiation emitted by each person who passes by it, and the sensor's narrow profile 
further enables it to count two or more people following closely to one another (Bell, 
2006). A previous study (Aultman-Hall et. al., 2009) utilizing counts collected by 
this type of counter indicated an accuracy level of 98% when compared to manual 
counts.   

At the start of the project for the link-based hourly distribution analysis, infrared 
counts from 9 locations along paths in the Burlington area were used, because those 
were the only long-term counts available at the time.  This existing count data 
(before 2009) was more plentiful (Figure 3) and was counted over multiple days and 
months (Table 1).   Count stations were located on the shared-use paths with biases 
toward (1) locations with anecdotally higher non-motorized travel, and (2) locations 
with higher maintenance costs such as bridges.  However, the relatively large 
dataset allowed travel on weekdays, Saturdays, and Sundays to be considered 
separately for shared-use paths. Table 1 lists the nine shared-use path count-
stations used in the first part of this study, with the number of weekday, Saturday, 
and Sunday counts that were available at the time.  In total, 265 days of non-
motorized traffic volumes were used in analysis of hourly distributions on shared-
use paths in section 6.1. All of these counts included at least 7 consecutive days. 

The later digital video data was collected over periods of 1 to 3 days and manually 
reviewed at a desktop computer to count cyclists and pedestrians . The use of 
motion sensitivity and high-speed playback limited the amount of time needed to 
review the video data. 
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Figure 3  Count Locations Used in Burlington 
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Table 1 Shared-Use-Path Count Stations 

Path Name 
MPO 

ID Count Duration Weekdays Saturday Sunday Holiday

Island 
Line 

COLC 
03 

June 11 – 
August 18, 2008 36 7 7 1 

BURL 
07 

July 3 - July 31, 
2007 20 4 4 1 

BURL 
04 

August 20 - 
September 23, 

2008 
24 5 5 1 

BURL 
01 

May 3 - May 20, 
2007 12 3 3 0 

BURL 
11 

August 5 - 
September 1, 

2008 
19 4 4 1 

UVM SOBR 
04 

July 26 – August 
3, 2008 5 2 2 0 

Kennedy 
Drive  

SOBR 
06 

Sep 2 – Sep 30, 
2008; May 1 - 
May 26, 2009 

38 8 8 1 

SOBR 
08 

July 12 - July 
24, 2008 

9 2 2 0 

Downtown BURL 
02 

April 26 -  May 
27, 2007 18 4 4 1 

 For the ultimate calculation of BPMT, count locations shown in Figure 2 were used.  
This included the original 9 shared-use path stations as well as additional infrared 
locations counted by the CCRPC during the first stage of the project. However, the 
team collected digital video data at 23 road shoulder locations selected based on the 
spatial distribution and representativeness of the infrared count locations.  The 
supplemental set of count locations filled critical missing data gaps needed to 
calculate reliable BPMTs in the study region. Locations with full-year counts 
(N=14) were required to create seasonal adjustment factors using the methodology 
recommended by the FHWA (2001) for calculating BPMTs.  
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4.2 Land-Use Data 
In order to assess the relationship between surrounding land use and non-motorized 
traffic volumes, several types of land use data were used. Parcel-level data is 
available from the CCRPC, and each parcel is associated with a Land-Based 
Classification Standard (LBCS) Activity Dimension provided by the American 
Planning Association: 

 1000 Residential activities 

 2000 Shopping, business, or trade activities 

 3000 Industrial, manufacturing, and waste-related activities 

 4000 Social, institutional, or infrastructure-related activities 

 5000 Travel or movement activities 

 6000 Mass assembly of people 

 7000 Leisure activities 

 8000 Natural resources-related activities 

 9000 No human activity or unclassifiable activity 

The parcel activities were clustered into a smaller group of seven categories:  

 Residential (includes residence and accommodation) 

 Agricultural (includes agriculture, forestry, fishing and hunting) 

 Recreational (includes arts, entertainment, and recreation) 

 Commercial (includes general sales and services) 

 Public institutional (includes public administration and education) 

 Transportation (includes transportation, communication, information, and 
utilities) 

 Others (includes all other land-uses) 

The residential and agricultural clusters occupy the highest proportion of area in 
Chittenden County, both exceeding 30 percent. The next highest categories are 
public institutional and recreational, together comprising 20 percent of the total. 
Commercial land use types were concentrated in the Burlington urban area. 

Household density and the presence of other destinations were deemed relevant 
measures of bicycle and pedestrian origins and destinations near count sites.  
Housing/dwelling unit information from the CCRPC was developed in 2005 from the 
residential parcel records for Chittenden County. Each housing point in this dataset 
represents a housing structure in Chittenden County. For each housing structure, 
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attributes indicating the type of structure are included, along with the number of 
dwelling units (DUs) represented at the point. The dataset is intended to identify 
the location and type of dwelling unit for land-use and transportation forecasting 
efforts.  Residential density is used at the Census-block level from the 2010 US 
Census by dividing the number of households in each block by the area of the block.  

Other destinations in the study area were taken from the Vermont E911 database 
and geographical information system (GIS), which consists of the location and 
functional classification of each habitable structure in the state. The Vermont E911 
data includes residential locations (single-family, multi-family, seasonal, and 
mobile homes) and non-residential locations (commercial, industrial, educational, 
governmental, health-care and public gathering). Vermont is unique in that this 
E911 database is publicly available to support emergency-response personnel 
statewide via the Vermont Center for Geographic Information (VCGI). 

4.3 The Non-Motorized Travel Network of Streets, Shared-Use 
Paths, and Sidewalks 

One of the most complete sources of street mapping for the entire United States is 
the US Census Topologically Integrated Geographic Encoding and Referencing 
system (TIGER) line layer. The 2012 TIGER layer for Chittenden County was used 
in this research. The TIGER data includes the following Census Feature Class 
Codes: 

• Above A49: Vehicular trails and minor streets 

• A41, A43, A45, A49: Local, neighborhood, and rural roads 

• A31, A33, A35, A39: Secondary and connecting roads 

• A21, A23, A25, A29: Primary roads without limited access 

• A11, A15, A17, A19: Primary highways with limited access 

GIS layers showing the line locations of shared-use paths and sidewalks throughout 
Chittenden County were received from the CCRPC. Original locations of paths and 
sidewalks were provided to the CCRPC by the individual municipalities in 
Chittenden County. 

Speed limits were used to develop the link attractiveness index for the BPMT 
procedure (section 6.3). Speed limits were taken from the CCRPC Regional Travel 
Model or estimated based on Census feature class for roadways not in the Model. 
Total roadway widths were taken from the Highway Performance Monitoring 
System (HPMS) for Vermont. The HPMS is a national-level highway information 
system that includes data on the extent, condition, performance, use and operating 
characteristics of the nation’s highways. The HPMS contains administrative and 
extent-of-system information on all public roads in each state. 
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Figure 4  Shared-Use Paths in Chittenden County 

The shared-use path network in the vicinity of the original 9 count locations is 
shown in Figure 4. The Island Line Trail runs through Burlington and to the north 
and south along the Lake Champlain shoreline. It traverses primarily residential 
and recreational land-use areas, including count locations BURL11, BURL01, 
BURL04, BURL07, and COLC03. The UVM Trail goes from Route 7, a major 
multilane arterial which serves as a critical link for north-south motorized traffic, 
along the eastern edge off the UVM campus parallel to I-89. This trail includes 
count location SOBR04 and is surrounded by tree-cover and farm areas on the UVM 
campus. The Kennedy Drive Trail runs parallel and adjacent to the entire length of 
the 4-lane arterial Kennedy Drive. It includes count location SOBR 06 and SOBR08 
and is separated from the road by a 5-foot-wide green-strip. The fourth path is a 
short pedestrian and bicycle path that connects large downtown residential and 
hotel buildings to the Burlington’s commercial center where BURL02 is located.  
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Critical to considering land use and its relationship to count volumes is the imposed 
lack of entry/exit points in some of the path corridors. The entry/exits to/from the 
paths were identified with the assistance of aerial photos and on-site visits. The 
majority of the access points along the paths are at their intersections with local 
roads. These “access points” along the shared use paths were critical to the accurate 
assessment of the land-uses associated with non-motorized travel, since access to 
land-use is controlled by these points. Note that path corridors like the Island Line 
Trail and the UVM Trail have fewer access points than paths in road corridors that 
parallel adjacent roadways such as the Kennedy Drive Trail.  

The network of shared-use paths was merged with the network of all streets and 
roadways in Chittenden County in order to provide network for non-motorized 
travel. Highways and ramps where non-motorized travel is prohibited were removed 
from the merged network, as were streets that are accompanied by a shared-use 
path. Other line segments in the 2012 TIGER layer with feature class A50 and 
higher were also removed from the network. These segments consisted of access 
ramps, vehicular trails and minor streets where non-motorized travel is either 
prohibited or the streets are privately owned. In addition, streets with a sidewalk 
on at least one side of the road were flagged to indicate their increased 
attractiveness for non-motorized travelers. 

Shared-use paths in the County were re-categorized for this study as road corridors 
paths and path corridors. Path corridors are those that are not adjoining and 
parallel to a roadway. Road corridor paths are those that run alongside a roadway, 
thereby providing an alternative to the traditional sidewalk. This new 
categorization recognizes potential differences in travel behavior on shared-use 
paths that run alongside a roadway and those that do not. Presumably, shared-use 
paths that run alongside a roadway are meant to replace the traditional sidewalk 
for pedestrians, but to also provide an alternative place for cyclists. However, 
cyclists may still have the option of travelling on the roadway. On a recreational 
shared-use path, both cyclists and pedestrians are travelling only on the path itself, 
and they are likely to encounter fewer motor vehicles. Therefore, making this 
distinction is critical to the calculation of BPMTs. 

4.4 Weather Data 
Weather information was used to categorize days of the week and to represent 
seasons of the year in the study area. For estimation of BPMT, the research team 
intended to test use of a day-of-week categorization that distinguished between days 
when it was raining or snowing and days when it was not. In order to make this 
distinction, precipitation data for every count-day to be used in the BPMT 
calculation was needed.  

To obtain daily precipitation data, the team queried the Global Historical 
Climatology Network‐Daily (GHCN-D) database. GHCN‐Daily is a composite of 
climate records from numerous sources that were merged and then subjected to 
quality assurance reviews. The archive includes over 40 meteorological elements 
including temperature daily maximum/minimum temperature, temperature at 
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observation time, precipitation, snowfall, snow depth, evaporation, wind movement, 
wind maximums, soil temperature, and cloudiness. Containing observations of one 
or more of the above elements at more than 40,000 stations that are distributed 
across all continents, the dataset is the world's largest collection of daily 
climatological data. The GHCN-D was accessed through the National Climatic Data 
Center’s query tool for each of the land-based weather stations in Chittenden 
County, which are shown in Table 2. 

Table 2  Land-Based Weather Stations in Chittenden County, Vermont 

ID Town Start End Coverage 
US1VTCH0020 Burlington 2012-01-17 2013-06-11 83% 
US1VTCH0005 Burlington 2009-04-17 2013-06-11 74% 
USW00014742 Burlington 1940-12-01 2013-06-10 100% 
US1VTCH0003 Charlotte 2009-04-01 2013-06-11 71% 
USC00432843 Essex Junction 1971-11-01 2013-06-11 68% 
USR0000VESS Essex Junction 1999-05-21 2013-06-11 88% 
US1VTCH0015 Huntington 2010-08-22 2013-06-11 92% 
US1VTCH0007 Huntington 2009-04-04 2012-12-30 16% 
US1VTCH0012 Huntington 2009-08-12 2013-06-11 13% 
US1VTCH0019 Jericho 2011-09-13 2013-06-11 95% 
US1VTCH0013 Richmond 2009-01-21 2013-06-11 90% 
US1VTCH0006 South Burlington 2009-05-02 2012-05-16 65% 
US1VTCH0004 Underhill 2009-03-27 2013-06-11 100% 
US1VTCH0011 Underhill 2009-06-18 2013-06-11 62% 
US1VTCH0009 Underhill Center 2009-05-01 2012-12-12 38% 

The precipitation data (in inches of rain or snow per day) was extracted for every 
link-based count-day in this study, at every monitoring station for which the count-
day was available. In order to represent the seasons of the year, daily average 
values were used for the Burlington International Airport monitoring station for 
temperature (degrees F), rainfall (inches of rainfall per day), snowfall (inches of 
snowfall per day), and wind speed (mph). 

The precipitation data (in inches of rainfall or snowfall per day) extracted for the 
third objective of this study was initially reduced to a binary variable identifying 
whether significant precipitation had occurred or not. A significant precipitation 
day was determined to be any day when more than 0.1 inches of precipitation (in 
rainfall equivalent) was measured. Next, each count-day was assigned a binary 
value (a rainy/snowy day or not), by first checking to see if the nearest weather 
station to the count location included data for the count-day. Note in Table 2 that 
only the weather station at Burlington International Airport covers the entire range 
of count-days in this study. If the nearest weather station included data for the 
count-day, the binary assignment for that weather station was assigned to the 
count-day at its location. If the nearest weather station to the count location did not 
have data for the count-day, then the binary assignment for the weather station at 
the Burlington International Airport (which includes every count-day in the data 
set) was assigned to the count-day at that location. This method ensured that the 
best possible rainfall information was used to assign each count-day a binary 
designation as a rainy day or not. 
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In order to represent the seasons of the year, daily average values were used for the 
Burlington International Airport monitoring station for temperature (degrees F), 
rainfall (inches of rainfall per day), snowfall (inches of snowfall per day), and wind 
speed (mph). The daily data was aggregated to the week for all 52 weeks of the 
average year in Burlington. A k-means cluster analysis was used with the weekly 
averages to identify clustered-season aggregation periods as characterized by 
clustered weather patterns. 

Before performing the cluster analysis, the annual distributions of these weekly 
total counts were plotted and reviewed to identify any obvious patterns.  This plot is 
in Figure 5.  The solid lines on the chart were added to qualitatively identify 
temporal sequences that appeared to trend with the data.  As expected, these 
divisions seem to coincide with significant climate changes throughout the year in 
Chittenden County. 

 

Figure 5  Patterns in Weekly Counts at Full-Year Count Sites 

The four-cluster analysis resulted in a total of six “breaks” in the year, where 
significant shifts took place, and the cluster assignment shifted accordingly. 
Therefore, the analysis was repeated using six clusters, once again resulting in six 
seasonal shifts four of which corresponded with the breaks identified in the four-
cluster analysis. These results suggest that there are actually six significant 
changes in climate throughout an average year in Burlington, Vermont. These 
cluster-seasons are summarized in Table 3. 
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Table 3  Cluster-Seasons Found for Burlington, Vermont 

Cluster 

Week of the Year 

Months IncludedStart End 

1 48 12 Part of November, December  January, February,  and 
most of March

2 13 17 Part of March and April 
3 18 21 Most of May 
4 22 39 Part of May, June, July, August, and September 
5 40 43 Most of October 
6 44 47 Part of October and most of November 

Each of the qualitative separations shown in Figure 5 coincided with a cluster 
transition found. Two additional separations created by the six clusters summarized 
in Table 3 are shown in Figure 5 as dashed lines. These clustered-seasons represent 
an alternative temporal period for calculating adjustment-factors to the traditional 
monthly period prescribed in the TMG (FHWA, 2001). 
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5 Data Preparation 

5.1 Link-Based Non-Motorized Traffic Counts 
Of primary interest in the first part of this study was not only the total daily 
volumes of non-motorized users on shared-use paths, but also the hourly 
distribution throughout the day. In a study assessing impact of weather and season 
on pedestrian volume conducted by Aultman-Hall et. al. (2009) utilizing year-round 
continuous hourly pedestrian counts at a sidewalk in downtown Montpelier, 
Vermont, the authors found consistency in some types of daily distributions. 
Aultman-Hall et. al. (2009) also found that during winter time the overall 
pedestrian volume reduced by 16%. To avoid any discrepancy caused by these 
seasonal impacts, this study includes only travel in milder-weather months of May 
through September. Holidays were removed from the data unless they occurred on 
weekends, in which case they were included as a weekend day. Ultimately, all link-
based counts that exceeded 24 continuous hours were considered part of the data 
set. The CCRPC also collects partial-day link-based counts at other locations 
throughout the County. However, to avoid the need to make time-of-day 
adjustments, these partial-day counts were not used in this study. Figure 6 shows 
daily BP volumes for each day of the year for each of the full-year count sites before 
the removal of outliers.  In the figure, the counts have been normalized so that the 
AADBPV at each site is equal to one. Counts at the same sites on the same day of 
the year, e.g. January1, 2009 and January 1, 2010 at SOBR06, were averaged prior 
to normalization.   
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Figure 6  Normalized Daily BP Volumes for Full-Year Count Locations 

Full-year counts are required to create seasonal adjustment factors using the 
methodology recommended in the TMG (FHWA, 2001). While the TMG recommends 
using count data only from the year for which total miles of travel are being 
calculated, that requirement is infeasible for BP counts. Others suggest that 
temporal adjustment factors in areas with relatively little development can be 
applied over multiple-year periods (Greene-Roesel et. al., 2007). 

Ideally these full-year continuous counts would be available for each link type in 
the study area and for the entire year when the miles of travel are being calculated, 
these levels of spatial and temporal coverage are infeasible. So a single set of 
adjustment factors was created from the three sites available and applied to all 
count sites regardless of link type for all of the years used in the study.  This 
aggregation is supported by the yearly patterns for all full-year sites shown in 
Figure 9. On this basis, we assumed that count data from all years (2007 to 2013) at 
the full-year sites could be used to calculate adjustment factors for the entire study 
area. 

5.2 Link and Count Site Classification 
Given a representative set of BP count locations with an equal number of counts at 
each location, the average of the AADBPVs from each count location would provide 
an unbiased estimate of the true AADBPV across the study area.  Multiplying this 
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average AADBPV value by the total miles in the BP network and by 365 days of the 
year would yield an unbiased estimate of the annual BPMT. However, if the number 
of counts is unequal across the count locations or if these locations are not 
representative, this process will produce a biased (and inaccurate) BPMT estimate.  
 
Bias can be reduced if count locations are classified such that sites with similar BP 
volumes are grouped together and separate BPMT estimates are calculated for each 
portion of the BP network that falls into each category in the classification system 
(FHWA, 2001). Because roadway type, residential density (Greene-Roesel et. al., 
2007) and land-use (Schneider et. al., 2009; Greene-Roesel et. al., 2007) have been 
identified by other researchers as drivers of variation in BP volumes, this study 
used classification systems based on these characteristics. BPMT values were also 
calculated without any classification of the count sites to show the effect of the 
biases described above. 

5.2.1 ROADWAY  TYPE  ‐ FUNCTIONAL  CLASS 

The first classification system categorized count locations based on the Census 
Feature Class Code of the road link adjacent to the count location or as “path 
corridor” for those count locations that are not adjoining a roadway. This system 
included four categories:  

 Path corridor  

 Local, neighborhood, and rural roads 

 Secondary and connecting roads 

 Primary roads without limited access 

The path corridor category consisted of all shared-use paths that do not run 
alongside any portion of the roadway network.  Path corridors make up less than 
two percent of the BP network but have the highest AADBPV of any category in the 
system and therefore contribute disproportionately to the BPMT total. The number 
of counts taken in each of these four categories and the total BP network miles in 
each category are shown in Table 4.  

Table 4  BP Network Classification by Roadway Functional Class 

Category 
No. of Count 

Locations 
No. of Count-

Days 
BP Network 

Miles 
Path Corridors  10 996 29.5 
Local, neighborhood, and 
rural roads 15 827 61.7 

Secondary and connecting 
roads 1 11 90.2 

Primary roads without 
limited access 2 416 1393.2 

Totals 28 2,250 1595.3 
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5.2.2 RESIDENTIAL  DENSITY  – DWELLING  UNITS  IN  THE  GRID  CELL 

The next classification system categorized links and count locations based on the 
residential density within the grid cell where it was situated. Residential and 
commercial densities are two of the factor grouping methods recommended in 
(Greene-Roesel et. al., 2007). Residential densities were determined by the number 
of DUs in each of the 0.3-mile grid cells used to cluster land-uses described below. 
Low residential density links were defined as those links in grid cells with fewer 
than 100 dwelling units per square mile.  Links in grid cells with between 100 and 
500 dwelling units per square mile were defined as medium density while those 
with more than 500 dwelling units per square mile were defined as high density 
links.  The number of counts taken in each of these categories and the total the BP 
network miles in each category are shown in Table 5. 

Table 5  BP Network Classification by Residential Density 

Category 
No. of Count 

Locations 
No. of Count-

Days 
BP Network 

Miles 
Low Residential Density 12 778 810.5 
Medium Residential 
Density 5 129 374.6 

High Residential Density 11 1,343 410.2 
Totals 28 2,250 1595.3 

5.2.3 LAND‐USE  –LAND  USE  OF  THE  GRID  CELL  AND SHARED‐USE  PATH  

AVAILABILITY  

For the first land-use-based classification system, count locations were categorized 
based on a combination of the clustered land-use category of the grid cell and 
whether BP infrastructure available at the location. Because of the high number of 
counts on shared-use paths and the relatively high BP volumes on these paths, 
count locations were subdivided into those with a shared-use path available and 
those without.  The number of counts taken and the total BP network miles that are 
in each category in this classification system are shown in Table 6. 

Table 6  BP Network Classification by Clustered Land-Use 

Category 
No. of Count 

Locations 
No. of Count-

Days 
BP Network 

Miles 
Agricultural with shared-use path 1 29 6.4 
Agricultural without shared-use 
path 6 6 380.2 

Mixed-use with shared-use path 7 1,263 25.7 
Mixed-use without shared-use path 1 17 331.0 
Public-institutional with shared-
use path 

2 742 136.8 

Public-institutional without 
shared-use path 

1 9 166.9 

Shared-use path corridor 2 89 5.3 
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Category 
No. of Count 

Locations 
No. of Count-

Days 
BP Network 

Miles 
Recreational without shared-use 
path 1 1 57.9 

Residential with shared-use path 3 90 698.4 
Residential without shared-use 
path 4 4 8.9 

Totals 28 2,250 1595.3 

5.2.4 LAND‐USE  ‐ MODE OF  PROXIMATE LAND‐USE  ACTIVITY  CODE 

Following the initial calculation of BPMTs (Dowds and Sullivan, 2011), a revised 
classification system based on land-use Activity code from the LBCS for parcels 
instead of grid cells was developed. For this system, the distribution of Activity 
codes of parcels within 2,500-feet of the count location were collected and the code 
that was most common (the mode) was assigned to the count location. This initial 
data set included only three Activity codes – 1000, 2000, and 8000. Therefore, the 
Activity codes that could be selected for each of the links in the BP network were 
limited to these three. The most common of these three codes within 2,500 feet was 
assigned to each network link. The number of counts and the total BP network-link 
miles for each category in this classification system are shown in Table 7. 

Table 7  BP Network Classification by Land-Use Activity Code 

Category 
No. of Count 

Locations 
No. of Count-

Days 
BP Network 

Miles 
1000 –Residential activities 37 2,696 1554.8 
2000 - Shopping, business, or trade 
activities 3 755 18.6 

8000 - Natural resources-related 
activities 1 2 18.8 

Totals 41 3,453 1592.2 

Note that the number of count locations and count-days available in the data set 
had increased significantly by the time this second phase of BPMT counts was being 
developed. In addition, a more refined and updated version of the roadway network 
was used, and the BP network was measured at only 1,592 miles (as opposed to 
1,595 miles previously). This discrepancy is not expected to affect the comparison 
classification systems in the results of the BPMT calculations. 

5.2.5 LAND‐USE  – TOTAL  DESTINATIONS 

A land use classification method that took advantage of available destinations was 
developed. For each count location or link, the sum of the number of educational 
buildings within 1000 feet (from the E911 habitable structures layer), the number 
of all buildings within 2,500 feet (from the E911 habitable structures layer), and the 
number of intersections within 2,500 feet (from the topologically-corrected E911 
roads layer) was taken as representative destinations. The distribution of these 
sums for the count locations was binned according to the Fisher-Jenks Algorithm 
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version of the optimal method of irregular class creation. This method is sometimes 
called Natural Breaks. Bins for classification are determined so that each category 
is a cluster of values that minimizes within-group variance. Three bins, 
corresponding to locations with a low, medium, or high number of destinations 
available, were created. Bin intervals and the number of counts and network-link 
miles for each category in this classifications system are shown in Table 8. 

Table 8  BP Network Classification by Total Destinations 

Category 
Bin Interval (No. 
of Destinations) 

No. of 
Count 

Locations 

No. of 
Count-
Days 

BP 
Network 

Miles 
Low no. of destinations 0 500 31 787 1,253.4 
Medium no. of destinations 501 1,700 8 1,911 296.4 
High no. of destinations 1,701 6,315 2 755 42.4 
Totals   41 3,453 1592.2 

5.2.6 RESIDENTIAL  DENSITY  – HOUSEHOLDS  IN  THE  CENSUS  BLOCK  

The determination of residential density used in the first phase of the classification 
for the Dowds and Sullivan (2011) paper was improved in the second phase by 
taking advantage of the 2010 Census data that had become available. Household 
densities at the Census block level were assigned to count locations for the block 
where the count was located. For network-links, the density was calculated as an 
average of all the Census block densities adjoining the link. Three bins 
encompassing the range of household densities among the count locations were 
determined using the Natural Breaks method and both count locations and network-
links were assigned to these bins. Bin intervals and the number of counts and 
network-link miles for each category in this classifications system are shown in 
Table 9. 

Table 9  BP Network Classification by Census-Based Residential Density 

Category 
Bin Interval 

(HHs per sq. mi.)

No. of 
Count 

Locations 

No. of 
Count-
Days 

BP 
Network 

Miles 
Low density 0 900 34 1,769 1,287.9 
Medium density 901 2,000 4 915 176.1 
High density 2,001 49,654 3 769 128.2 
Totals   41 3,453 1592.2 
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5.2.7 ROADWAY  TYPE  ‐ NON‐MOTORIZED  TRAVEL  LINK‐ATTRACTIVENESS  INDEX 

A new index, the link-attractiveness index (LAI) was developed to estimate the 
relative perceived safety and appeal of a roadway for walking and bicycling. The 
research team collecting video counts in more rural locations hypothesized that the 
experience of walking and bicycling was greatly affected by two factors, the total 
width of the roadway (shoulders plus lane widths) and the speeds of motorized 
vehicles on the roadway. Wider roads with wider shoulders were more appealing 
where no walking and bicycling infrastructure was available, and roadways where 
automobiles travelled faster were less appealing. In addition, team members felt 
that roadways where little or no shoulders or sidewalks were present were very 
unsafe. Based on these experiences, we proposed the LAI. 

For count locations, the LAI was measured using the total roadway width (all lanes 
plus shoulders) and the speed limit. Speed limits were taken from the CCRPC 
Regional Travel Model or estimated based on road class. Total roadway widths were 
taken from the HPMS for Vermont. Total roadway width (in feet) was divided by the 
speed limit (in mph), then normalized so that the resulting values fell between 0 
and 1. Shared-use paths in path corridor were given LAI of “1”. 

For line segments, total roadway width was not available for every road. Therefore, 
the LAI was calculated as described previously for all roadways that had a total 
roadway width in the HPMS. For roadways adjoined by a shared-use path or a 
sidewalk, the roadway width was doubled before the LAI was calculated, to reflect 
the increased attractiveness of roadways with dedicated walking and bicycling 
infrastructure. LAIs for roadways without HPMS widths were calculated as an 
average of connected roadways that already had an LAI. This process was conducted 
iteratively until more than 80% of the line segments had an LAI. The remaining set 
of links without an LAI and not adjoining any links with an LAI were spot checked 
on aerial photographs, and all of the spot-checked links were found to have an LAI 
between 0.05 and 0.25, based on whether a sidewalk was present. Based on this 
information, the remaining links were given a LAI of 0.05 if they did not have a 
sidewalk and a LAI of 0.25 if they did. 

Three bins encompassing the range of LAIs among the count locations were 
determined using the Natural Breaks method and both count locations and network-
links were assigned to these bins. Bin intervals and the number of counts and 
network-link miles for each category in this classification system are shown in 
Table 10. 

Table 10  BP Network Classification by Link-Attractiveness Index 

Category 
Bin Interval 

(HHs per sq. mi.)

No. of 
Count 

Locations 

No. of 
Count-
Days 

BP 
Network 

Miles 
Low LAI 0 0.30 15 30 1,478.2 
Medium LAI 0.31 0.99 10 375 83.7 
High LAI 1.00 1.00 16 3,048 30.3 
Totals   41 3,453 1592.2 
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6 Methodology and Results 

6.1 Land-Use as a Factor Impacting Traffic Volume along 
Shared-Use Paths Corridors 

In this part of the study, the research team was interested in the land-use types 
around the nine shared-use path count-stations being considered, how the land-use 
types affected the daily pattern in hourly non-motorized traffic volumes, and 
whether the land-use type was distinct from the range of land-use combinations 
found in the whole County.  

Many shared-use paths in Chittenden County do not have open access continuously 
along the trail. Therefore, users might be unaffected by the immediate surrounding 
land-use, but would instead be interested in the land-use at the access points. This 
assumption was made at all count stations except those in the Burlington downtown 
area, where access is more open. For example, a path used mainly for exercise or 
commuting which passes large agricultural lands is less related to that land-use 
type than shopping traffic in a downtown retail area. To account for these factors, 
at each non-motorized count location, the team identified the land-use at the 
nearest access points within a 1.5-km distance along the path from the count 
location. The probable connection between the hourly distribution at the count 
station and this land-use characteristic at the proximate access point was 
investigated. For each proximate access point, a 0.5-km square buffer was 
generated. The area for each land-use category in the buffer was assigned to the 
access point. Table 11 shows, for each count station, the total number of proximate 
access points, and the percentages of each land-use category represented in the 
buffer area.  

Table 11  County-Wide Representation of Land-Use for Each Count Station Used in 
Shared-use Path Analysis 

 Island Line UVM 
Kennedy 

Drive 
Down 
town 

Station no. 1 2 3 4 5 6 7 8 9 
No. of access 
points 4 4 4 3 4 5 12 8 2 

Land-Use  

Residential 40% 40% 41% 9% 15% 19% 37% 38% 11% 

Commercial 0% 0% 0% 12% 8% 19% 7% 9% 34% 

Recreational 12% 12% 20% 17% 23% 5% 6% 1% 7% 
Public 
institutional 0% 0% 19% 2% 2% 5% 12% 5% 15% 

Agricultural 13% 13% 4% 2% 3% 20% 19% 30% 1% 

Transp. 8% 8% 10% 28% 16% 20% 5% 6% 25% 

Other 27% 27% 6% 30% 33% 12% 18% 11% 7% 
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As suggested previously, stations 7 and 8 on the Kennedy Drive Trail, have more 
access points than the rest of stations. Five (1, 2, 3, 7 and 8) of the stations have 
relatively high surrounding residential land-use. Others include a more balanced 
mix of land uses. 

Using the counts at each station, we developed average daily distributions of non-
motorized traffic for Saturdays, Sundays, and an average weekday. For any of the 
distribution types (Saturday, Sunday, or weekday) at a particular count station, the 
hourly percentages were computed based on average hourly volumes for that day-
type normalized over the duration of counts: 

        (1) 

Where pik stands for the average hourly percentage at hour k for day-of-week type i, 
hikn stands for hourly volume of hour k on day n for day-of-week type i, Din stands 
for daily volume on day n for day-of-week type i, and N is the count duration.  

The results of these calculations are illustrated in Figures 7a through 7i. To 
illustrate the strength of the distribution, the total daily counts are also provided. 

 
Figure 7a  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 1 
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Figure 7b  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 2 

 
Figure 7c  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 3 

 
Figure 7d  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 4 
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Figure 7e  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 5 

 
Figure 7f  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 6 

 
Figure 7g  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 7 
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Figure 7h  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 8 

 
Figure 7i  Daily Distribution of Non-Motorized Travel for a Saturday, a Sunday, and an 
Average Weekday at Station No. 9 

While the nine sets of graphs show some differences in hourly non-motorized traffic 
patterns between weekdays and weekends, the differences are less than expected. In 
addition, a significant impact of accessible land-uses on non-motorized travel is not 
evident. Some evidence of distributional differences are evident when the number of 
access points is considered. The paths with fewer access points (stations 1 through 
5) exhibit univariate distributions which are flattened on weekdays and more 
peaked on weekends. The paths with more access points (stations 6 though 8) have 
much more variable volume distributions throughout the day. However, the lack of 
a relationship between daily distributions and proximate land-uses may be an 
indication that a stronger and more robust measure of accessible land-use is 
needed.  

A new framework was developed which allowed us to consider the overall land-use 
patterns in the entire County in relation to the land-uses around the shared-use 
path count locations. A grid system was created dividing the entire County into 0.5-
km square polygons. The total length of links in the non-motorized travel street-
path network was then computed for every each grid cell. Only the cells with non-
zero length of links in the street-path network were carried forward. These grid 
cells covered 60% of the area of the county. A K-means clustering method was then 
adopted to categorize those non-zero cells into homogenous groups based on the land 
use categories within each. 
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K-means clustering method has been a popular data-mining tool in various fields 
after it was first introduced in 1967 (MacQueen, 1967). The non-zero cells each 
include a percentage of their cell area occupied by the different land-use categories 
in Table 2. The K-means cluster analysis was conducted to group cells by the 
relationship between their land-use category distributions. In the cluster analysis, 
the non-zero cells were partitioned into five clusters such that elements in the same 
cluster tends to be more similar than elements in different clusters. The aim of the 
K-means cluster algorithm is to classify a set of data points into K categories 
through the clusters defined a priori (MacQueen, 1967). 

The main idea is to define K initial cluster-centroids and then to relate the rest of 
the cells to these centroids depending on their Euclidean separation. First, the 
method assigns each data point to the nearest cluster center according to the 
Euclidean distance:  

  

Once all points have been assigned to a cluster, the cluster-centroids are 
recalculated based on their assigned data points: 

          (2) 

Where C is the set of clusters c, d (x, ij) is the Euclidean distance between x and 
ij, |cij| is the number of points in cluster j after the ith iteration, and ij is the 
centroid of cluster j after the ith iteration.  

The iterations continue until the cluster-centroids do not move. Following this 
procedure, the set of non-zero cells were grouped into five clusters based on the 
distributions of their six land-use percentages. The five clusters were named 
according to the mix of land-use categories they contained – mixed-use, public 
institutional, residential, recreational, and agricultural. Table 12 contains a 
summary of the distribution of cluster-cells in the County, and the land-use mix 
that characterizes each cluster. 

Table 12 Summary of the Distribution of Land-Use Clusters 

Land-Use Category 

Cluster Name and Mix of Land-Uses by % 

Mixed 
Pub. 
Inst. Res. Rec. Agr. 

Residential 23 9 75 17 17 

Commercial  8 1 1 1 0 

Recreation  4 2 2 63 1 

Public institution 3 80 1 0 0 

Transportation  16 3 5 5 4 

Agriculture 16 3 16 9 75 
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Land-Use Category 

Cluster Name and Mix of Land-Uses by % 

Mixed 
Pub. 
Inst. Res. Rec. Agr. 

Others  30 2 2 6 2 
No. of Grid Cells in 
Cluster 518 101 1451 140 1242 

No. of Stations in 
Cluster 1 1 6 1 0 

The bottom row of Table 12 shows the clusters for the 9 shared-use path count 
stations analyzed in this part. The iniquity in the cluster-representation indicated 
by this row may explain the similarity in the daily distribution patterns. Figure 8 
illustrates the distribution of these cluster types in the vicinity of the shared-use 
paths. 

 

Figure 8  Grid-Cell Cluster Analysis Results near Shared-Use Paths 

Mixed-use clusters possess a relatively high concentration in the urbanized area 
which is more developed and economically active than the rest of the County. The 
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mixed-use cluster has the highest levels of commercial and transportation land-uses 
but also includes significant residential land-use. The public institutional cluster is 
represented by a high-level of public institution land-use, including school and 
government campuses. Similarly, residential, recreational and agricultural clusters, 
respectively, have their highest representative land-use categories as residential, 
recreational, and agricultural. Recalling that grids without any roads or trails have 
been excluded, one might expect there are additional agricultural and residential 
grids in the county with fewer institutional and recreational cluster. There are also 
a reasonable number of mixed-use areas. 

For ease of classification, the network-mileage within each grid-cell was grouped as 
either low (< 0.30 mile), medium (> 0.30, < 0.50 mile) or high (> 0.50 mile). A 
description of the new land-use cluster classification and the level of network-
mileage for each count station is provided in Table 13. 

Table 13 Shared-Use-Path Count Station, Land-Use and Network Mileage Representation 

Path Name MPO ID 
Stn 

# 
Number of Access 

Points 
Network 
Mileage 

Land-Use 
Cluster 

Island Line 

COLC03 1 4 High Recreational 

BURL07 2 4 Medium Agricultural 

BURL04 3 4 High Recreational 

BURL01 4 3 High Mixed-Use 

BURL11 5 4 Low Mixed-Use 

UVM SOBR04 6 5 High Mixed-Use 

Kennedy 
Drive  

SOBR06 7 12 High Public Inst. 

SOBR08 8 8 High Mixed-Use 

Downtown BURL02 9 2 High Mixed-Use 

Still, the land-use cluster does not appear to have a relationship with the 
distribution of hourly non-motorized traffic shown in Figures 4a to 4i. The network-
mileage represented by each count station is somewhat related to the hourly 
distributions, but not as much as the number of access points are. These results 
indicate that either (1) proximate land-use is not significantly relevant to the 
hourly distribution of non-motorized travel, or (2) the land-use cluster analysis is 
not an effective method of classifying proximate land-use. In fact, the hourly 
distribution may be most closely related to the total daily volume at each count 
station, indicating that an analysis which focuses on hourly distribution may need a 
minimum count volume for comparative statistical analyses. 

6.2 Regional Calculation of Bicycle and Pedestrian Miles of 
Travel 
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The ultimate goal of the project was to create a robust data set of link-based non-
motorized traffic counts that would yield a robust calculation of total annual bicycle 
and pedestrian miles of travel in the study area. 

6.2.1 RECOMMENDATION  OF  SAMPLE  LOCATIONS  FOR  NON‐MOTORIZED  TRAFFIC 

In order to calculate reliable estimates of BPMT, the research team was no longer 
only concerned with the hourly distributions of the data. Instead, this section of the 
analysis began with an assessment of temporal and spatial gaps in the entire 
existing set of multi-day counts of non-motorized travel in the County. The grid-cell 
clusters developed during the analysis of shared-use path count locations (section 
6.1) were used to initiate the calculation of BPMT. However, due to the limited 
effectiveness of the land-use clusters a quality check of the grid-cell method 
considering specific origins and destinations of bicycle and pedestrian travel 
(instead of land uses) was necessary to ensure robust results for this analysis.  

To assess spatial gaps in the data, a cross-classification table was developed to 
group all of the non-zero grid-cells in the County by cluster-type and miles of walk-
bicycle network in the cell, as shown in the first three columns in Table 14. The 
representation of the 14 samples already collected is shown in the next three 
columns, and the number of samples remaining to be collected in order to improve 
spatial representation is shown in the last three columns. 

Table 14 Link-Based Count Locations Spatial-Gap Assessment 

In all, 18 new samples were proposed to improve spatial representation in the 
County. Grid-cells corresponding to each cluster-type / miles of network 
classification were selected at random from all of the grid-cells where samples do 
not already exist. The specific sample location within each selected grid-cell was 
positioned adjacent to the most central or primary street in the grid. A summary of 
the proposed new count locations is provided in Table 15. 

Cluster Type 

Existing Classification 
Classification of 

Existing Samples 

Remaining Samples 
Needed to Match 

Existing Classification 
Miles of Walk-

Bicycle 
Miles of Walk-

Bicycle 
Miles of Walk-

Bicycle 

low med high low med high Low med high 
Residential 13% 14% 15%   1 3 3 3 
Mixed-Use 4% 3% 8% 1  7**  1  
Agricultural 15% 14% 6%  1  4 2 1 
Public-
Institutional 1% 1% 2%   2*    

Recreational 2% 1% 1%   2 1   

*Includes a full-year sample. 
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Table 15  Proposed New Link-Based Count Locations 

ID Street Name Town Classification Longitude Latitude 

TRC01 Colchester Point 
Road Colchester Mixed-Use / 

Medium -73301543 44550665 

TRC02 Crosswind Drive Charlotte Agricultural / Low -73239999 44349154 

TRC03 Bean Road Colchester Residential / High -73241711 44532617 

TRC04 Lion Heart Drive Milton Agricultural / Low -73177904 44642337 

TRC05 Schillhammer 
Road 

Jericho Residential / Low -72989863 44480272 

TRC06 Mount Pritchard 
Lane St. George Residential / Low -73102245 44369522 

TRC07 McClellan Farm 
Road Underhill Residential / Low -72915401 44544568 

TRC08 Poker Hill Road Underhill Residential / 
Medium 

-72925235 44568883 

TRC09 Sawmill Road Essex Residential / 
Medium -72985519 44532629 

TRC10 Middle Road Colchester Residential / 
Medium -73140967 44585425 

TRC11 Lake Road Milton Residential / High -73116022 44652545 

TRC12 Greenbriar Drive Essex Residential / High -73055462 44485977 

TRC13 South Brownell 
Road 

Williston Agricultural / Low -73134139 44426231 

TRC14 West Main Street Richmond Agricultural / Low -73007732 44422804 

TRC15 Main Road Huntington Agricultural / 
Medium -72987698 44312290 

TRC16 
Bolton Valley 
Access Road Bolton 

Agricultural / 
Medium -72874547 44383042 

TRC17 Mountain View 
Blvd 

South 
Burlington 

Agricultural / 
High -73148322 44481260 

TRC18 McGee Road Essex Recreational / Low -73108126 44534435 

These randomly-selected new count locations are shown in Figure 9.  
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Figure 9  Proposed New Non-Motorized Travel Count Locations 

To ensure adequate temporal representation, the full-year count set was also to be 
supplemented with new samples. Therefore, three of the 18 new locations were 
chosen for full-year counts. The remaining 15 locations were to be multi-day counts 
which include at least a full week, preferably two (to ensure that both weekend-days 
are represented). The three full-year counts were to be chosen from locations with 
the following classifications: 

 Residential / Medium: TRC08, TRC09, or TRC10 
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 Residential / High: TRC03, TRC11, or TRC12 

 Agricultural / Low: TRC02, TRC04, TRC13, or TRC14 

These supplemental full-year counts would ensure that the four most common grid-
cell classifications (Residential / Medium, Residential / High, Agricultural / Low, 
and Mixed-Use / High) in the County are represented by full-year counts, and that a 
defensible seasonal assessment of non-motorized travel is possible. Currently, only 
one of these four classifications (Mixed-Use / High) is represented seasonally. 

The grid-cell method was validated by considering origins and destinations of 
bicycle and pedestrian travel. Appropriately-sized travel buffers were drawn around 
the existing multi-day count locations, and the expanded set of existing and 
proposed locations. Based on the findings of Jinyong et. al. (2009), walk and bicycle 
buffers of 0.62 miles and 2.50 miles, respectively, were used. Origins and 
destinations were collected from the E911 database. Using the E911 database, it is 
possible to aggregate the buildings within Chittenden County into a collection of 
eight land-use classes, as shown in the first column of Table 16. 

Table 16  Aggregation of Land-Uses from Origins and Destinations for Existing Multi-Day 
Counts 

Land-Use Class 

Existing Total in 
the County 

Existing Multi-Day Counts Represent:
Within Walking 

Buffer 
Within Bicycling 

Buffer 

No. 
% of 
total No. 

% of 
total No. 

% of 
total 

Residential 50,005 92.22% 8,500 88.41% 24,540 89.87% 
Commercial 3,223 5.94% 922 9.59% 2,171 7.95% 
Farm 106 0.20% 1 0.01% 29 0.11% 
Lodging 108 0.20% 16 0.17% 78 0.29% 
Industrial 168 0.31% 16 0.17% 81 0.30% 
Educational 270 0.50% 37 0.38% 199 0.73% 
Health Care 60 0.11% 34 0.35% 50 0.18% 
Recreation/Culture 282 0.52% 88 0.92% 157 0.57% 

An assessment of the potential origins and destination represented by the existing 
multi-day counts was made by counting the number of buildings within the buffers 
that fall into each land-use class. These totals are shown in the last four columns of 
Table 16. This assessment was repeated with buffers around the expanded set of 
existing and new count locations. The results of this assessment are shown in Table 
17. 
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Table 17  Aggregations of Land-Uses from Origins and Destinations for Existing and 
Proposed Multi-Day Counts 

Land-Use Class 

Existing Total in 
the County 

Existing and Proposed Multi-Day 
Counts Represent: 

Within Walking 
Buffer 

Within Bicycling 
Buffer 

No. 
% of 
total No. 

% of 
total No. 

% of 
total 

Residential 50,005 92.22% 10,418 89.38% 42,622 91.51% 
Commercial 3,223 5.94% 1,022 8.77% 3,043 6.53% 
Farm 106 0.20% 9 0.08% 80 0.17% 
Lodging 108 0.20% 27 0.23% 106 0.23% 
Industrial 168 0.31% 17 0.15% 167 0.36% 
Educational 270 0.50% 37 0.32% 259 0.56% 
Health Care 60 0.11% 35 0.30% 60 0.13% 
Recreation/Culture 282 0.52% 91 0.78% 239 0.51% 

Comparing the percentages represented by each land-use class from Table 16 to 
Table 17, it is clear that a substantial improvement in the coverage of origin- and 
destination-classes will be achieved with the addition of the new proposed count 
locations. In particular, representation of walking and bicycling activity around 
residential buildings improved more than 1%. Commercial origins and destinations, 
which are over-represented in the existing counts, are brought down to a level of 
representation that is much closer to that of the rest of the County. Representation 
of buildings in other land-use classes is improved as well.  

A final measure of the representation-error was calculated for this validation. By 
finding the average difference between the “% of total” columns for the Existing 
Total in the County, and each of the representations assessed, we can determine 
more precisely how the addition of the new count locations will fill spatial gaps in 
the data set. Overall, the average difference improved from 1.07% to 0.83% for 
walking, and from 0.61% to 0.19% for bicycling. These are substantial 
improvements, and will allow more defensible conclusions to be drawn about non-
motorized travel trend in the County. Once these new samples are collected, the 
result will be a more robust, heterogeneous data set for non-motorized travel 
modeling and exposure estimation. 

6.2.2 RECOMMENDED  COUNT  DATA  COLLECTION PROCEDURE  FOR  RURAL  SAMPLE  

LOCATIONS 

The need for count data at rural sample locations was challenged by the lack of 
infrastructure at many of the locations selected - no sidewalks, narrow or absent 
shoulders, heavy, tall vegetation, and high vehicle speeds. Methods considered for 
collection of counts at these locations included the pyroelectric sensor, a pavement-
loop counter, a video camera in a parked vehicle, and a video camera mounted on a 
power pole. Given the limited shoulder width at several of the proposed location, the 



UVM TRC Report # 13-014 
 

 

 

 

42

video camera mounted on the power 
pole was determined to be most 
feasible method to provide 
consistency at all of the proposed 
locations.  

A closed-circuit digital video camera 
was purchased for obtaining rural 
BP counts. The camera featured 
motion sensitive activation, color 
infrared LEDs for night vision, a 
weatherproof metal housing, and 
amounting bracket (see Figure 10). 

The following guidelines were used 
to optimize the positioning of the 
camera relative to the roadway being 
counted: 

 Orient the camera orthogonally to the roadway travel direction. 

 Avoid obstructions in the foreground of the image 

 Attach the camera to a power pole or tree that is far enough from the road so 
that objects on both sides of the road appear to move at a similar speed. 

 Avoid intersections in the image 

 Avoid locations where sunlight or reflective surfaces are directed into the 
camera 

Use of a video camera for data collection imposed a number of constraints on the 
data. In particular, due to the limited storage capacity and battery power of the 
camera system, full-week counts were not feasible. In lieu of full-week counts, 48-
hour count periods were used but each location was counted for a 48-hour period 
including weekdays, and for a second 48-hour period including the weekend. 

The video camera, 
however, was also not 
feasible for the collection 
of counts at sites selected 
for full-year counts, due to 
the limitations on battery 
life and equipment 
security. The use of the 
pyroelectric sensor seemed 
impossible without also 
picking up the motorized 
vehicles on the roadway, 
since a separated path for 
motorized and non-

Figure 10  Closed-Circuit Digital Video Camera 
Used for Video Counts 

Figure 11  Pyroelectric Sensor Functional Diagrams 
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motorized travelers is required between the sensor and the edge of the BP travel 
lane for these sensors to work effectively (see Figure 11).  

The team considered allowing the sensor to pick up motorized travel in the 
background (on the roadway), while picking up non-motorized travel in the 
foreground (on the shoulder), then subtracting counts of motorized travel for a final 
count of non-motorized travel. However, the need for discrete, directional motorized 
traffic counts for the counting period was not feasible. Next, the team considered 
orienting the counters so that the sensor pointed at a 45-degree angle, from its 
mounted point down to the edge of the road shoulder. This method was tested 
extensively but found to inconsistently either miss non-motorized travelers who 
were inadvertently traveling in the roadway, or include motorized vehicles that 
drifted onto the shoulder and triggered the sensor. A rigorous comparison was made 
of the counts collected in this fashion, and companion counts collected using digital 
video. The counts collected from the sensor were found to be in error, and the errors 
did not follow a consistent pattern. Therefore, the collection of full-year counts at 
locations without non-motorized infrastructure was not possible.  

A thorough description of the final set of locations where counts were collected is 
provided in Section 4.1. 

6.2.3 CREATION  OF  ADJUSTMENT‐FACTORS  

In order to estimate AADBPV from single-day counts using the methodology 
recommend in the TMG (FHWA, 2001), a series of adjustment factors were 
developed based on data from the full-year count sites available. For Phase A, three 
full-year count sites were available. For Phase B, five full-year count sites were 
available, making the adjustment-factors generally more robust. 

6.2.3.1 PHASE A 

Adjustment factors were developed for each day of the week in each seasonal 
aggregation period (either a month or a cluster-season) by finding the ratio between 
the AADBPV and the average pedestrian volume for each day of the week in each 
aggregation period.  Equation 9 shows the calculation for the period average day-of-
week BP volume (PADoWBPV) for day-of-week d at a given site s in aggregation 
period p.  In this equation, Cd is the BP count for a given day of the week (Sunday, 
Monday, Tuesday, etc.) and nD is the number of counts collected on that day of the 
week in that aggregation period, e.g. the four Mondays in January.  Equation 10 
shows the AADBPV for site s, using the AASHTO “average of averages” method 
recommended in the TMG.   The equation averages the PADoWBPV for each of nP 
aggregation periods and then for each of the seven days of the week.  Finally, 
Equation 11 shows the calculation of the adjustment factor (AF) for day-of-week d 
at a given site s in aggregation period p. 

1
  (9) 
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1

7

1
	 	   (10) 

	 		 
(11) 

For each of the three full-year sites, adjustment factors were calculated for each day 
of the week and each aggregation period.  This produced 84 adjustment factors 
using the monthly aggregation method (seven days of the week for each of 12 
months) and 42 adjustment-factors using the clustered-season aggregation period. 
The variance and standard deviation for each adjustment-factor for each method 
were calculated using a formula for the variance of the quotient of two variables 
which themselves have a given variance (NRC, 1980). In the absence of a good 
estimate for the covariance term between dividend and divisor, this term was 
omitted from the variance calculation. Calculating the variance associated with 
each adjustment-factor made it possible to determine if the precision of the monthly 
aggregation procedure differs throughout the year, and if the monthly aggregation 
period improves upon the seasonal aggregation period. 

As an example, the adjustment factors for converting Tuesday counts to AADBPV 
derived from link-based count site BURL02B is shown for each aggregation period 
in Table 18.  
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Table 18  Tuesday Adjustment Factors for BURL02B 

Weeks 
of the 
Year Month  

Cluster
-Season

Monthly 
Aggregation

Clustered-
Season 

Aggregation Difference 
between 

Adj.Factors 
Adj. 

Factor σ 
Adj. 

Factor σ 
1 – 4 January 

1 
1.20 0.11

1.11 0.33 
0.09  

5 – 8 February 1.21 0.09 0.10 *
9 – 12 March 0.89 0.30 -0.22  
13 March 

2 
0.89 0.30

1.01 0.34 
-0.12  

14 – 17 April 1.00 0.34 -0.01  
18 – 21 May 3 0.83 0.10 0.86 0.12 -0.03  
22 May 

4 

0.83 0.10

0.84 0.15 

-0.01  
23 – 26 June 0.78 0.11 -0.05  
27 – 31 July 0.85 0.16 0.01  
32 – 35 August 0.81 0.17 -0.02  
36 – 39 September 0.78 0.07 -0.05  
40 – 43 October 5 0.77 0.09 0.81 0.11 -0.04  
44 October 

6 
0.77 0.09

0.99 0.13 
-0.21 *

45 – 47 November 0.95 0.10 -0.03  
48 November 

1 
0.95 0.10

1.11 0.33 
-0.15 *

49 – 52 December 1.04 0.35 -0.07  
Notes: 
σ – standard deviation of the adjustment factor 
* - indicates that the difference is statistically significant at the 0.90 level. 

The overlap between the 12 monthly and the six cluster-season aggregation periods 
is such that there are 16 unique pairings of monthly and cluster-seasonal 
adjustment factors over the course of a year.  The differences in the adjustment 
factors for each aggregation period for each of these 16 occurrences are shown in the 
last column of Table 24. In general, the standard deviations were larger for the 
cluster-season-based factors than for the monthly factors. However, the differences 
were only statistically significant at the 0.90 confidence level for 3 of the 16 
pairings. These findings can be weighed against the cost of representing each 
individual month of the year with continuous counts, particularly for the winter 
months, when collection of continuous counts can be particularly challenging. For 
cluster-season 1, an adjustment factor of 1.11 was calculated at BURL 02B. The 
average adjustment-factor for the monthly aggregation period was similar (1.06), 
and the average standard deviation improved over the cluster-season method (0.19 
versus 0.33), but the improvement may not justify the expense of monthly 
representation for winter BP counts. 

Once the adjustment factors were calculated for each of the three full-year count 
sites available in Phase A, they were averaged across these sites to create final 
adjustment factors for each aggregation-period and day-of-week.  

6.2.3.2 PHASE B 
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For Phase B, the research team decided to use the monthly aggregation period since 
all of the full-year count sites had complete data for the entire year, so gaining the 
improved accuracy of the monthly aggregation would not require any additional 
data collection. However, a new day-of-week distinction was made in an effort to 
reduce the data set by aggregating over the week, instead of over the seasonal. 
Since previous studies had shown a significant effect on BP volumes from daily 
precipitation as well as season, the team decided to test the effects of daily 
precipitation on the calculation of BPMTs. For this phase, the 5 weekdays were 
aggregated into 2, and the 2 weekend days were adjusted to 2 different types of 
weekend days. Using the binary rain variable as a new distinction, a total of four 
day-of-week types were created from the original seven: 

 Weekday with precipitation 

 Weekday without precipitation 

 Weekend-day with precipitation 

 Weekend-day without precipitation  

This day-of-week aggregation was expected to better represent the effects of 
precipitation on daily BP volumes, enough to allow individual days of the week to be 
aggregated into two classes – the weekday and the weekend-day. 

6.2.4 RESULTS 

In order to arrive at BPMT estimates for each classification system, the adjustment 
factors were applied to all of the unique single-day counts across all sites resulting 
in 2,250 estimates of the AADBPV for Phase A and 3,453 estimate of AADBPV for 
Phase B. For each classification system, AADBPV estimates within each 
classification category were averaged, resulting in a single AADBPV for each link 
category. This AADBPV value was then multiplied by the total miles in that 
category and by 365 days of the year to yield the annual BPMT for that category.  
Summing the category-level BPMT estimates provided the total, county-wide BPMT 
for Chittenden County. 

As a comparison to these estimates, the total BPMT in Chittenden County in the 
NHTS (FHWA, 2009) was also calculated, and revealed to be 31.3 million miles per 
year. This value is an annual estimate which incorporates the person-trip weights 
in the NHTS data, which are intended to correct for bias in the 502 randomly 
selected households in the survey. Table 19 shows the final BPMT values for 
Chittenden County for each of the link-classification systems and for the different 
approaches to calculating temporal adjustment-factors.  
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Table 19  Annual BPMT Calculated for All Link-Classification and Temporal-Aggregation 
Systems 

  Temporal Adjustment-Factor Approach 

Phase 

Spatial Link-Classification 

Using Monthly / 
Day-of-Week Adj. 

Factors (Both 
Phases) 

Using Cluster-Season / 
Day-of-Week (Phase A) 

or Monthly / 
Precipitation-Day 

(Phase B) Adj. Factors 

Type System BPMT σ BPMT σ 

A 

NA None 288.0 NA 295.8 NA 

Res. 
Density 

Dwelling 
Units in the 
Grid Cell 

252.8 NA 260.5 NA 

Roadway 
Type 

Functional 
Class 89.9 NA 93.7 NA 

Land-Use 

Land-Use of 
the Grid Cell 
and path 
Availability 

73.9 NA 76.5 NA 

B 

Land-Use 

Mode of 
Proximate 
Land-Use 
Activity Code 

211.2 7.9 207.7 9.0 

Land-Use Total 
Destinations 149.4 5.8 146.2 5.8 

Res. 
Density 

HHs in the 
Census Block 268.3 9.9 264.2 11.4 

Roadway 
Type 

Link 
Attractiveness 
Index 

46.1 9.5 47.6 10.5 

Note: All values are in millions of miles. 

Of particular note in the results is the variation between temporal adjustment-
factor approaches and spatial link-classification systems.  For all of the temporal 
adjustments, very little variation was seen when the spatial classification systems 
are held constant. The differences do not appear to be statistically significant, 
although this was not tested. However, the changes in link-classification systems 
produced dramatically different results, ranging from 46.1 million BPMTs to a 295.8 
million BPMTs. The estimate resulting from the link-classification system which 
produced the lowest standard deviation is also the closest to the mean of all of the 
estimates, 173.2 million. 
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7 Conclusions 
In the first part of this study, the research team focused on hourly distributions of 
non-motorized traffic data at nine locations along shared-use paths in Chittenden 
County, Vermont. Two methods, a direct spatial-buffer method and a k-means 
clustering method, were used to investigate the relationship between the land-use 
proximate to each count station and the hourly distributions of non-motorized 
traffic. The analysis failed to reveal significant variations in the hourly 
distributions relative to the land-use proximate to the count location, even when 
access points to shared-use paths were considered. The land-use clustering method 
implemented in this part proved useful later in the study. 

In the second larger part of the study, the k-means clustering method was again 
used to assess the existing data (14 total locations) was assessed for temporal and 
spatial gaps. Significant spatial and temporal gaps were revealed and a plan for 
multi-day and year-long counts of non-motorized travel was prescribed to diversify 
count locations. The collection of additional samples was expected to create a more 
robust, heterogeneous data set for non-motorized travel modeling and exposure 
estimation. New proposed sample locations were selected to fill these gaps and a 
separate method was used to validate the new locations. The separate method took 
advantage of the E911 occupied-structures dataset to aggregate the total possible 
origins and destinations for non-motorized travel around the proposed multi-day 
count locations. The origin-destination method demonstrated that the clustering 
method was effective at classifying the count locations according to their proximate 
land-use. It also confirmed that the supplementation of the count dataset with the 
new count locations would improve its representation considerably. 

An important finding in this part of the study was that BP activity occurs along 
almost every link in the public roadway network. Therefore, robust BP counting of 
rural roadways is essential to accurately compute regional BPMT estimates. More 
effective counting systems are needed for roadways without BP infrastructure – no 
sidewalks, no shoulders, no shared-use paths. More widespread counts will help 
focus the need for infrastructure in areas where current BP activity and help 
identify safety relationships. The classification system and grouping of BP network 
links for aggregation is critical to the estimation of BPMT when the count sites are 
not widely and representatively distributed. More effective classification systems 
will lead to better precision, as measured by the standard deviation. This 
improvement is evident when comparing the extremely high unclassified BPMT 
estimates with the more moderate results when links are classified systematically 
by roadway class, land use, or residential density.   

Another finding in this study collaborates the assertion that travel surveys of BP 
activity may underestimate the actual miles of travel on the roadway network, 
putting funding allocations for non-motorized infrastructure at an inherent 
disadvantage. Researchers suspect that survey-based estimates of BPMT from 
sources like the NHTS may systematically underestimate BPMTs for two reasons. 
The first is that respondents may not include all non-motorized trips when a travel-
diary is recorded; trips initiated independently by youth, those which are relatively 
frequent but very short, and those which have not particular destination are 
particularly likely to be omitted. The second potential source of underestimation is 
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an inherent bias toward denser areas that a random household-based survey incurs. 
Rural locations are not as well represented in raw trip counts in the NHTS, so rural 
households with a higher tendency toward non-motorized travel may not be well 
represented. These potential shortcomings establish the importance of non-
motorized traffic counts in more rural areas for accurate estimate of regional 
BPMTs.   

These results also demonstrated that challenges remain in the calculation of 
reliable BPMT estimates.  These challenges arise primarily from the continued 
scarcity and lack of spatial diversity in BP count data.  Even in areas with a fairly 
long history of BP counts, like Chittenden County, there may be insufficient data to 
create defensible BPMT estimates. This conclusion is demonstrated by the wide 
variation in the estimates that resulted from the different classification systems 
used in this study. Temporal representation was not nearly as important as spatial. 

The study results can facilitate better estimation of bicycling and walking volumes 
at intersections across Chittenden County, which is conducive to local 
transportation planning, facility design, safety improvement, and operational 
analysis. Given the count-type dependent variable that cannot be measured 
continuously in spatial area, it is worthwhile to perform similar investigation via 
other geospatial methods such as point pattern analysis (Upton and Fingleton, 
1985). Kriging is another method by which a model surface can be estimated so that 
non-motorized traffic volumes can be estimated at unsampled locations. 

Future research can also explore the effect of buffer areas on the level of spatial 
dependency in the data, and on the model results. This exploration could be 
accomplished by testing a larger range of buffer areas between the typical distance 
of a walking trip (1 km) and the typical size of one of the towns in our study area 
(10 km). Examining the changes in the model results with each buffer area will 
provide a dual indication of the effect of buffer area on spatial dependency and the 
effect of buffer area on the model results. These models can be critical in the 
consideration of the optimal scale at which to make funding decisions regarding 
non-motorized travel infrastructure. 

Further should explore the benefits offered by creating separate adjustment factors 
for cyclists and pedestrians.  Because bicyclists and pedestrians are likely to 
respond to seasonal variations differently, using separate adjustment factors for 
each would be expected to improve the accuracy of both the AADBPV and BPMT 
estimates. Further research could also separate BP activity by travel purpose, 
particularly for rural activity, where BP activity seems to be dominantly 
recreational, with no specific destination. The characteristics of these trips and the 
effects of the built environment on them will likely be different from those that are 
more affected by the proximity of land-uses and destinations. 
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