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1. Introduction  
Across the globe, issues related to energy, its sources, uses, and impacts on climate change are at the forefront 
of political and environmental debates (e.g., the 2012 United Nations Climate Change Conference at Doha, 
http://unfccc.int).  Currently, transportation accounts for approximately one third of greenhouse gas (GHG) 
emissions in the U.S., and is its fastest growing source [1].  Plug-in hybrid electric vehicles (PHEVs) offer 
advantages to both the environment and the consumer. By powering more transportation through the electric 
grid, PHEVs may significantly reduce GHG emissions [2-4]. The degree to which this can occur depends on 
current regional sources of electric power generation [5, 6], the ability of Smart Grid technologies to improve 
grid efficiency and reduce peak demands[7-9], and shifts in power generation from coal to cleaner sources, 
including natural gas and renewables (e.g., wind, solar)[10,11]. Potential vehicle-to-grid technologies could 
further reduce peak demands [12, 13] and therefore have a positive feedback on the grid efficiency. In addition, 
PHEVs and all-electric vehicles (EVs) have projected lifecycle costs that are much lower than either 
hydrogen fuel-cell or internal combustion engines [14].  From the consumer perspective, PHEVs can provide 
large savings in fuel costs without the range limitations of EVs; the EPA/DOT sticker data for the 2013 
Chevy Volt states that the vehicle “will save $6850 in fuel costs over 5 years compared to the average new 
vehicle”.  
 
Despite the potential benefits of PHEVs, realization of these benefits ultimately falls on the consumers’ 
willingness to purchase the new technology. In a 2008 survey, 69% of U.S. consumers surveyed had little or 
no familiarity with PHEV technology [15] and there are a wide range of concerns related to the batteries of 
electric drive vehicles (including EVs, PHEVs, and hybrid-electric vehicles), and the potential inconvenience 
of recharging [16-22].  While previous work indicates consumers are willing to pay a premium for greater fuel 
efficiency [19, 23], initial Volt sales have fallen short of projections [24], and are outcompeted by the otherwise 
similar gas-powered Cruze [25]. 
 
A wide variety of governmental regulations and incentives have been proposed or implemented to accelerate 
market penetration of PHEVs (www.afdc.energy.gov/afdc). Morrow et al. [26] discuss the effects of fuel taxes, 
increases in fuel economy standards, and purchase tax credits for fuel-efficient vehicles. They examine the 
sensitivity of fuel-efficient vehicle purchases using these approaches and predictions of the U.S. Energy 
Information Administration’s National Energy Modeling System. They find that, in general, purchase tax 
credits are expensive and ineffective at reducing emissions, whereas the most effective approach for 
increasing fuel efficiency is to increase gasoline costs. Skerlos and Winebrake [27] examined the impact of 
tax credits for PHEV purchase, which were introduced in 2009 by the U.S. government and are available to 
all consumers equally in all parts of the country. The authors argue these tax credits would be more effective 
if targeted in certain geographic locations where PHEV technology offers maximum benefit, and if they were 
dependent on consumer income. Diamond [28] examined the relationship between hybrid adoption rates and 
governmental incentive policies in different U.S. states. His findings similarly indicate a strong relationship 
between hybrid adoption and gasoline price, but a much weaker relationship between hybrid adoption and 
government incentives.  
 
While studies based on past data trends for HEVs and other fuel-efficient vehicles provide relevant insight, 
they are of limited applicability for estimating consumer response to the very different conditions associated 
with current-day adoption of PHEV technology. The plug-in technology offers new challenges to market 
penetration, and environmental attitudes and awareness are also very different than in past decades. While 
awareness of the role of vehicle emissions in global climate change is high in many parts of the world, it is 
not clear how consumers will weigh a vehicle’s heuristically perceived benefits against rational financial 
considerations when making a vehicle purchasing decision. Consumer choices are not necessarily based on 
financially accurate assessments of alternatives [23], and values that affect consumer choices are often 
influenced by media and social networks [29-31]. Traditional discrete choice models assume a static distribution 
of decision strategies and do not support consumer behavior changes in response to social or other external 
pressures. However, recent variations of discrete-choice models have been proposed that demonstrate the 
importance of social or psychological factors [32] and ‘neighbor effects’ on consumer attitudes as the market 
share of a given vehicle type grows [33]. 
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With this background in mind, the research goals of this project were as follows: 
(i) To create a model to study potential PHEV market penetration in the personal transportation 

sector; 
(ii) To assemble data to properly inform the model; 
(iii) To develop methods for efficient up-scaling of model behavior; 
(iv) To use the model to assess the sensitivities of system behavior to various policies and market 

conditions; and 
(v) To understand the regulatory regime necessary to support widespread adoption of PHEVs. 

 
We used various complex systems modeling approaches to tackle these goals.  An agent-based model (ABM) 
of vehicle consumer choice was developed and used to explore sensitivities and nonlinear interactions 
between various potential influences on PHEV market penetration. By modeling individual vehicle 
consumers as agents, the model was able to account for a variety of internal feedbacks and spatial and social 
effects, including decision threshold effects, homophily, conformity, and media influences.  Several different 
types of artificial neural networks (ANNs) were developed and employed for this project. We developed and 
compared a spiking neural network, with weights trained using an Evolution Strategies approach, to a 
generalized regression neural network for efficient up-scaling of model behavior. We also modified an ANN 
for visualization of clusters in high-dimensional data by adding a new cluster reinforcement phase to 
Kohonen self-organizing maps (SOMs) and applied this to a database we assembled regarding fuel efficiency 
in the Vermont passenger fleet.  These new ANN methods have since proved useful in other engineering 
applications. To inform the ABM, we assembled data from the U.S. Census, the NHTS Travel survey, EPA, 
and many other sources and also developed and applied automated methods for scraping relevant data from 
websites including the New York Times, Cars.com, and a variety of other locations.  Despite this massive 
search for data, we found that we were still lacking critical data regarding consumer attitudes towards PHEVs 
and underlying correlations and cross-correlations between consumer attributes and attitudes. To address this, 
we leveraged additional funds afforded by a UVM-Sandia National Laboratories collaboration and designed 
and conducted a large consumer survey on PHEVs through the Amazon Mechanical Turk crowd-sourcing 
platform, and are currently updating the ABM to incorporate this new information. We also partnered with 
the Vermont Law School (via subcontract) to explore ways in which governmental policies and electricity 
regulation may impact PHEV adoption. 
 
The results of this research have been communicated professionally through a variety of ways, including 
refereed journal publications in top-tier journals (3 published [34,35,36] and 1 currently in review[37]), 3 refereed 
conference papers in top-tier conferences (3 published[38,39,40] and 1 in preparation), graduate degrees awarded 
(1 PhD dissertation[41] and 2 MS theses[42,43]), 3 white papers, and at least 14 additional presentations 
(including posters, seminars, published abstracts, and invited talks). At least 3 additional projects have been 
funded, based in part on work completed for this project, including a prestigious NSF IGERT. 
 
The remainder of this report is organized around summaries and major findings of the primary publications 
resulting from this work. In Chapter 2 we summarize the agent-based model and its use in studying PHEV 
market penetration. In Chapter 3 we describe the ANN approaches we used for up-scaling the ABM. In 
Chapter 4 we describe data assembly, curation, and visualization of fuel efficiency of the Vermont passenger 
fleet and a new method for automated visualization of clusters in high-dimensional data sets using Cluster 
Reinforcement in SOMs. In Chapter 5 we discuss the regulatory regime surrounding PHEV market 
penetration. In Chapter 6 we describe the PHEV survey we conducted. Finally, in Chapter 7 we offer some 
conclusions and briefly discuss ongoing and future work. 
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2. Agent-Based Model of PHEV Market Penetration 
This chapter summarizes work published in the following references: 
[35] Eppstein, M.J., Grover, D.K., Marshall, J.S., and Rizzo, D.M. “An agent-based model to study market 

penetration of plug-in hybrid electric vehicles”, Energy Policy, Vo. 39 (2011), pp. 3789-3802. 
[39] Pellon, M.B, Eppstein, M.J., Besaw, L.E., Grover, D.K., Rizzo, D.M., and Marshall, J.S., “An Agent-

Based Model for Estimating Consumer Adoption of PHEV Technology”, Transportation Research 
Board (TRB), Washington, D.C. (2010), 10-3303. 

 
We developed an agent-based model (ABM) to study how the potential market penetration of PHEVs may 
be influenced by policy and market conditions.  It is worth noting that Eppstein et al. [35] has already garnered 
24 non-self citations in its first two years since publication. Figure 2-1 illustrates a flowchart of agent 
decision-making in this ABM. 
 

 
 
Figure 2-1. Flowchart of annual agent vehicle updates.  See [35] for details. 



UVM TRC Report # 13-004 

  

 4

Each consumer agent in the ABM has several associated attributes including age, annual salary, residential 
location, typical years of car ownership (Y), annual vehicle miles traveled (VMT), and vehicle age, fuel type, 
and fuel economy of their current vehicle, including all-electric range (if any) and miles per gallon (MPG) 
when not in all-electric mode. In addition, each agent has an associated “spatial neighborhood”, a “social 
network”, a threshold (T) of perceived PHEV market share over which they are willing to consider adopting 
the PHEV technology, and a level of rationality (R) of how (if at all) they estimate projected fuel costs. 
Surveys indicate that many consumers express a willingness to pay a price premium for a more fuel efficient 
vehicle [19, 23], may irrationally overestimate potential fuel savings [19], and that non-financial reasons related 
to the environment, energy, and attraction to new technology can play a large role in consumer willingness 
to purchase an HEV [23], EV, or PHEV [19]. We model this through an agent attribute (G), which indicates 
how much weight the agent places on heuristically perceived benefits related to saving gasoline that are 
independent of rationally estimated financial benefits (i.e., G can be interpreted to account for a desire to 
reduce greenhouse gas emissions, oil spills, or dependence foreign oil, as well as irrationally estimated 
savings in fuel costs).  The only agent attributes that can change during a simulation are (a) the heuristic 
weight G, which can change dynamically due to social and media influences (although agent susceptibilities 
to such influences are heterogeneous) and (b) current vehicle ownership (and associated vehicle attributes, 
including vehicle age).  External forces modeled as dynamic (time-series) data are the intensity of media 
coverage related to the need to reduce gasoline consumption, gasoline prices, and electricity prices.  In this 
implementation of the model, agents are limited to compact car owners who choose between a gasoline 
vehicle (GV), a hybrid-electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV).  These three 
vehicles are intended to represent realistic similarly sized cars that differ largely in their fuel type, fuel 
efficiency, and purchase price. 
 
Although we do not currently have sufficiently accurate or complete input data to yield quantitatively 
accurate predictions, or to warrant a more complex model, the model can still be used to explore potential 
nonlinear interactions between various influences that will impact PHEV market penetration, provide insight 
into what combinations of policies and procedures may be the most effective, and inform us as to what 
additional data may be most useful to gather.  The spatially-explicit nature of our model may help policy-
makers to explore the combined impacts of regionally variant policies and procedures (e.g., at the city, state, 
regional, and federal levels) on attaining a more fuel efficient transportation economy. 
 
Assuming there are sufficient potential early adopters, our model results indicate that providing consumers 
with readily accessible estimates of lifetime vehicle fuel costs, such as on vehicle stickers, could be very 
important for promoting PHEV market penetration.  As vehicle consumers learn to consider the actual 
financial benefits of fuel savings, increasing gasoline prices (whether through market forces or a gasoline 
tax) could non-linearly magnify PHEV market penetration and resulting increases in fleet efficiency.  Our 
results also indicated that temporary incentive programs, such as the $2,500 to $7,500 PHEV tax credit 
currently offered by the U.S. government (see http://www.afdc.energy.gov/afdc), are not likely to have 
lasting effects on long-term fuel efficiency of the fleet, unless manufacturers are able to lower sticker prices 
after the rebates are discontinued. Such programs will have virtually no effect if consumer discomfort with 
the PHEV technology is high.  Increasing PHEV battery range is found to be another important leverage 
point, and longer-range batteries amplify the impacts of PHEV sticker price. Thus, synergistic effects could 
be achieved, for example, by imposing a gasoline tax and using the proceeds used to fund research into lower-
cost, longer-range PHEV batteries.   
 
One conclusion of this study was that further research was needed to understand correlations and cross-
correlations in consumer demographics and attitudes that may impact their willingness to consider a PHEV. 
In particular, we need to determine what proportion of consumers are comfortable enough with the concept 
of PHEV technology to be willing to consider becoming new adopters, and how far PHEVs would have to 
penetrate the market to become acceptable to those currently more hesitant.  This dearth of available data 
motivated us to conduct the PHEV consumer survey described in Chapter 6. 
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3. Up-Scaling the ABM using Artificial Neural Networks 
This chapter summarizes work published in the following references: 
[40] Besaw, L.E., Rizzo, D.M., Eppstein, M.J., Pellon, M.B., Grover, D.K, Marshall, J.S., “Up-scaling Agent-

Based Discrete-Choice Transportation Models using Artificial Neural Networks”, Transportation 
Research Board (TRB), Washington, D.C. (2010), 10-3130. 

[41] Besaw, Lance “Advances in Artificial Neural Networks with Applications in Surface and Subsurface 
Hydrology” PhD Dissertation, Chapter 5, (2009), UVM. 

 
The ABM described in Chapter 2 was developed to simulate the consumer discrete-choice decision processes 
influencing potential PHEV market penetration for a given demographic region, with given socioeconomic 
characteristics. While ABMs have proven useful for modeling behavior in complex social systems 
incorporating various feedbacks and social influences, they can require large amounts of computation when 
implementing complicated decisions with numerous agents. As a result, at large-scales, the application of 
ABMs may be computationally prohibitive (e.g., for millions of agents).  In this portion of our study, our 
goal was to see if an ANN trained at the regional scale could operate as a “fast function approximator” to 
estimate nonlinear dynamic response functions (e.g., fleet distribution, environmental attitudes, etc.) based 
on socio-economic distributions over a much larger scale.  To this end, we developed two types of recurrent 
ANNs (a spiking ANN and a generalized regression ANN) to test as alternative modeling strategies to 
replicate the behavior of the ABM when considering regulatory policies across larger regions with very 
heterogeneous demographics. 
 
Spiking Neural Networks (SNNs) represent a new and more advanced class of ANNs.  They attempt to model 
biological neural networks more accurately in that the individual processing units, or neurons, communicate 
by sending and receiving pulse or spike trains (more similar to biological brains) [44]. SNNs have been shown 
to transmit vast amounts of information given only a few spikes [45, 46]. This makes these algorithms 
advantageous in applications requiring fast and efficient computation (e.g., event detection, reactive control 
in robotics) and when the timing of input signals contains important information (e.g., signal-processing 
applications such as speech recognition). In addition, spiking neurons have been shown to be more 
computationally powerful than perceptions and sigmoidal gates [47]. The ability of SNNs to extract nonlinear 
relationships from temporal data made them an initially attractive candidate for up-scaling our ABM. 
Although heralded as more computationally powerful than 1st and 2nd generation ANNs, the SNN algorithm 
is very challenging to: 1) define the internal states of the neurons, 2) keep track of pre- and post-synaptic 
firing times and 3) update the weights from all neurons converging to all other neurons.  We coded a variation 
of the SNN algorithm using an evolution strategy (ES) [48] to train the weights. Before applying this to our 
ABM problem, however, we initially tested it on a simpler problem, that of predicting precipitation-
streamflow relationships. Although we were able to show that our SNN-ES had the ability to generalize and 
make accurate predictions using data on which it was not trained, the accuracy of these predictions was still 
not quite as high as the more traditional ANNs commonly used to predict precipitation-streamflow patterns 
[41].  Consequently, we ultimately decided that the SNN was not the most appropriate way to up-scale our 
ABM of PHEV market penetration. 
 
As an alternative, we implemented a generalized regression neural network (GRNN) [49] to forecast the 
discrete consumer choices of our ABM under a variety of socioeconomic, social influence, and market 
conditions. In transportation studies, the GRNN has been used to forecast daily trip flows [50], predict the 
hazardousness of intersection approaches [51], model travel mode choice [52], predict CO2 fluxes [53], predict 
real-time driver fatigue [54] and real-time video traffic modeling [55,56]. Unlike traditional parametric statistical 
methods, the GRNN does not require assumptions of multivariate normality and allows binary or categorical 
data. And in contrast to the more commonly used traditional feed-forward backpropagation ANNs, the 
GRNN has rapid one-pass training and guaranteed convergence.  Recurrent connections were added to the 
GRNN to incorporate feedbacks based on the temporal history of the simulations. For training and validation 
of the GRNN, we used our ABM to produce a large dataset that exhibited a variety of spatio-temporal 
dynamics for a variety of population sizes and initial and input conditions.   
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Our results showed the recurrent GRNN to be capable of learning the spatio-temporal dynamics of the 
discrete-choice ABM for different agent populations of different sizes, with different demographics, and with 
different levels of susceptibility to social influence (example results are shown in Figure 3-1). These 
predictions show that the GRNN was able to predict PHEV-fleet proportion as well as changes in attitudes 
due to social influence (as represented by the weighting factor G described in Chapter 2).  

 
Although it takes significant amounts of time to generate the training and validation datasets and optimize 
the GRNN’s smoothing parameter, once trained, it is capable of operating as a fast function approximator of 
the ABM behavior.  For this proof-of-concept study, it took approximately 24 hours to produce the training 
and validation dataset (4,320 scenarios).  However once these datasets were developed, the GRNN took only 
4 hours to fully train. Once trained, it took very little time to actually run a simulation (~1.7 seconds in this 
work), no matter how large the region being simulated.  The combined effects of accurate approximation and 
dramatic speedup permit GRNN simulation of much larger-scale dynamics than is computationally practical 
with an ABM. 

 
 

  

 
Figure 3-1. Representative GRNN predictions of up-scaled ABM behavior.  (a)-(c) 
GRNN predictions of PHEV fleet proportion versus time for 3 regions;  (d)-(f) GRNN 
predictions of dynamic changes in greenness (G) caused by social influences for the 
same 3 regions. 



UVM TRC Report # 13-004 

  

 7

4. Visualization of VT fleet efficiency and Cluster 
Reinforcement in SOMs 
This chapter summarizes work published in the following references: 
[34] Manukyan, N., Eppstein, M.J., and Rizzo, D.M., “Data-Driven Cluster Reinforcement and Visualization 

in Sparsely-Matched Self-Organizing Maps”, IEEE Transactions on Neural Networks, Vol. 23, No. 
5, (2012), pp. 846-852. 

[42] Manukyan, Narine “Improved methods for cluster identification and visualization in high-dimensional 
data using self-organizing maps”, MS Thesis, (2011), UVM. 

 
 We assembled a dataset of the locations and fuel efficiencies of vehicles in the Vermont passenger fleet. 
This dataset was collected from several sources, starting with the VT Department of Motor Vehicles (DMV) 
database of vehicles titled in Vermont obtained in summer 2011. This database originally contained 600,000 
records of the registered address, make, model and year of each registered vehicle titled in the state of 
Vermont. After the elimination of large trucks, boats, snowmobiles, vehicles with addresses given as P.O. 
Boxes, and vehicles that were registered in other states, we were left with 321,487 data records, which is 
78.5% of all passenger vehicles currently titled in Vermont. We then converted addresses of the form <street, 
apt, state, zip code> to the form <latitude, longitude> using a combination the 911 Building data from the 
Vermont Center for Geographic Information (VCGI), ARC GIS, and Web GPS visualizer 
(http://www.gpsvisualizer.com/), and used the VCGI and TRC to obtain elevations corresponding to each 
GPS coordinate. Makes and models of vehicles in the database were reported with inconsistent abbreviations 
(for example, “Toyota” was often reported as “Toyt”, “Toy”), so we used regular expressions to map each of 
these abbreviations to full names of make and model. We then wrote Ruby code to scrape the website 
cars.com (with permission) to retrieve mileage information for each make, model and year of vehicle that 
exists on this web site, and used this data to look up the fuel efficiency of the VT passenger vehicles stored 
in our database. In Figure 4-1 we show heat maps of the density of registered vehicle locations, the average 
fuel efficiency (city mpg), and the proportion of hybrid vehicles in VT. This data provides useful guidance 
regarding spatial correlation in the fuel efficiency of vehicles that can be used to inform the ABM described 
in Chapter 2. 

We had hoped to obtain spatially explicit data on other relevant socio-political attributes that may shed some 
light on consumer vehicle choices, but we have not yet had the time to do this. Given that we were not able 
to assemble sociopolitical data, it is not surprising that we were not able to find any obvious linear correlations 
between the limited attributes available (vehicle density, elevation, and fuel efficiency). However, in order 
to see if there were possible nonlinear correlations between these variables, we developed a method to 
automatically find clusters in high-dimensional data and used this to visualize the VT fleet data. 
Unfortunately, due to the limited nature of this dataset, we were not able to find any interesting patterns with 
this non-linear method, either. However, the method we developed proved to be a valuable contribution in 

 
Figure 4-1. Spatial visualization of VT passenger fleet. (a) Density of registered vehicles, 
(b) city mpg of registered vehicles, and (c) proportion of registered vehicles that are 
hybrids. 
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and of itself, and has since been successfully applied in other engineering applications. Below, we briefly 
describe this new cluster visualization method and one successful engineering application of it. 
 
A Kohonen self-organizing map (SOM) [57] is a self-organized projection of high-dimensional data onto a 
two-dimensional (2-D) feature grid. Each data vector is associated with exactly one grid-point (the so-called 
“winning neuron”), such that similarity in the high-dimensional data vectors is translated into topological 
proximity in the 2-D projection. When there are more grid-points (neurons) than data vectors, the neurons 
between winning neurons essentially interpolate between the data vectors. However, this interpolation means 
that boundaries between clusters of similar data vectors become diffuse, making it difficult to identify clusters 
of data vectors and/or to assess distances between clusters. To address this, we created a new Cluster 
Reinforcement (CR) phase for sparsely-matched SOMs, described as follows.   
 
In an SOM, each neuron is randomly initialized to a vector of the same dimension as the data vectors. These 
neurons are then iteratively updated by looping through for each data vector, finding the winning neuron that 
most closely matches it, and then updating all of the neurons in the neighborhood of the winning neuron to 
move closer to the data vector, where the magnitude of the update is strongest for the winning neuron and 
declines with topological distance from the winning neuron.  After all the data vectors have been applied, the 
size of the neighborhood function is decreased and the process repeated. This continues until the neuron 
values stabilize. After self-organization has occurred, we apply the new CR phase. In the CR phase, we do a 
similar iterative updating process, but here the magnitude of the neuron updates is proportional to the 
Euclidean distance between the data vector and the neuron, rather than the topological distance to the winning 
neuron. The result is that the map is altered away from one that smoothly interpolates the data vectors into 
one with stepwise discontinuities between self-organized clusters of similar data vectors. We then visualize 
the boundaries between clusters as grid lines of varying thicknesses based on the magnitude of the stepwise 
discontinuities (we store these boundary magnitudes in a so-called B-matrix).  
 
We used the SOM with the new CR phase to visualize a hierarchy of clustering high-dimensional microbial 
data obtained from 22 monitoring wells around the leaking Schuyler Falls landfill in Clinton, NY. Figure 4-
2a shows two clusters that correspond to clean and contaminated wells, Figure 4-2b shows three clusters 
corresponding to clean, fringe, and highly contaminated wells, and in Figure 4-2c the fringe cluster is shown 
to be the most heterogeneous as the cluster rapidly breaks apart when lower B-matrix values are shown.  The 
spatial locations of the wells around the landfill are illustrated in Figure 4-2d, where the colors of the dots 
indicate cluster membership as identified from Figure 4-2b.  See Manukyan et al. [34] for more details of the 
method and this application. 

 
Figure 4-2. Results on SOM + CR on the landfill data. The backgrounds are heatmaps of 
the first principle component of the neurons in the SOM, the numbered dots show the 
locations of the winning neurons best matching the values at 22 wells shown in Figure 4-
3. Black lines indicate cluster boundary values above (a) 0.92, (b) 0.88, and (c) 0.60. (d) 
Locations of numbered wells (colored by contamination level) relative to landfill (gray 
square) and plume of contamination (contour lines). The wells are colored to show the 
three clusters identified in Figure 4-2b, where yellow is clean, orange in fringe, and dark 
red is highly contaminated. 
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5. Legal Regime of Widespread PHEV Market Penetration 
 
This chapter summarizes work published in the following references: 
[36] Changala, D. and Foley, P., “The Legal Regime of Widespread Plug-In Hybrid Electric Vehicle 

Adoption: A Vermont Case Study”, Energy Law Journal, Vol. 32, No. 1 (2011), pp. 99-124. 
 
Now that PHEVs are in the marketplace (the Chevy Volt was introduced into the market in 2010), there is an 
urgent need for an on-the-ground legal analysis of how these vehicles can be integrated into the existing legal 
regimes for the regulation of electricity. Key legal issues need to be resolved for widespread fleet penetration 
of PHEVs to be achieved. In addition, to maximize the benefits of widespread PHEV market penetration, 
infrastructure and regulations must be put into place that encourage off-peak charging and vehicle-to-grid 
technologies that enable the PHEV fleet to provide short-term electric storage capacity to the grid that can 
facilitate the incorporation of more stochastic renewable power sources, such as wind and solar. 
Consequently, we subcontracted with collaborators at the Vermont Law School to perform an extensive case 
study of the how the legal regime would need to change to accommodate widespread PHEV adoption in 
Vermont. The findings of that study are summarized below. 
 
The relative cleanliness of Vermont’s existing energy mix means that PHEVs will reduce greenhouse gas 
emissions in Vermont at a higher rate than n more carbon-dependent areas of the United States. However, 
the extent of the role that PHEVs will play in a low-carbon future for Vermont depends in significant part on 
how this new technology will be integrated into Vermont’s pre-existing legal regime for the regulation of 
electricity.  Based on an extensive analysis of the current regulatory regime, the following five key 
recommendations made below are paraphrased from Changala and Foley [36]. 
 
1. The Legislature should enact PHEV tax incentives.  Currently, PHEVs qualify for up to $7500 in U.S. 

federal tax credits and many U.S. states offer additional financial (as well as other) incentives for plug-
in vehicles, ranging from sales tax exemptions to an additional $7500 tax credit 
(www.pluginamerica.org/incentives). However, Vermont currently offers no additional incentives for 
PHEV purchase. At present, PHEVs are not cost-competitive with conventional automobiles, even after 
the $7500 federal tax credit. This does not imply that the subsidy offered can or should make PHEVs 
equal in price to conventional automobiles, but it does imply that an additional incentive may be 
necessary to encourage a viable commercial market for PHEVs in Vermont. 

2. The Vermont Public Service Board (PSB) should initiate a proceeding on PHEV local infrastructure 
requirements and proactively addresses some of the legal questions that public PHEV recharging 
facilities will invariably raise. While many PHEV owners may do the majority of charging at home, 
widespread public recharging facilities will be needed to accommodate PHEV owners who live in multi-
family dwellings or otherwise do not have a private parking space with charging capabilities, to recharge 
PHEVs of those with long commutes, or to capitalize on incorporation of PHEVs into the Smart Grid 
using vehicle-to-grid technologies. Some of the issues that must be resolved are whether public charging 
providers must be legally regulated by the PSB; whether approvals for new charging stations should be 
streamlined; whether electric vehicles should be separately metered; and whether utilities should be 
allowed to make infrastructure improvements for PHEVs which are recoverable by ratepayers. 

3. The PSB should require utility Integrated Resource Plans (IRPs) to address PHEVs.  All regulated 
utilities in Vermont are required to implement IRPs for efficiently meeting projected energy demands.  
However, PHEVs have yet to be incorporated into Vermont Utility IRPs. As PHEVs penetrate the 
Vermont market, IRPs will have to quantify PHEV costs and benefits, including potential benefits to the 
grid from bi-directional flows. PHEVs should thus not be examined in isolation, but should be assessed 
in relation to their impact on other renewable technologies and methods of demand side management, 
including energy efficiency programs.  

4. The PSB should initiate a smart grid proceeding. PHEVs can serve as an integral component of smart 
grid deployment by providing storage capacity to the grid, which can be utilized during times of high-
peak demand, assuming the vehicles can be plugged in during these times.  Moreover, since most PHEVs 
will likely be charged at night during off-peak hours, generators will have an incentive to shift nighttime 
production from lower efficiency to higher efficiency combined-cycle base load units, thereby producing 
more electricity with less fuel. Furthermore, the addition of nighttime charging demand decreases the 
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amount of times that generation units must be turned off at night and restarted in the morning; this levels 
out the plant’s generation and reduces the need for additional energy needed for restarting [58]. 

5. The PSB should adopt uniform rates to incentivize off-peak PHEV charging. Rate design structures 
present a powerful tool that the PSB should utilize to regulate PHEV charging and storage on the grid. 
In particular, for each regulated utility, the PSB should approve rates that incentivize off-peak charging 
by charging higher rates during daytime and peak use hours. The PSB should also modify block tariffs 
so that the increase in electricity use from residential customers charging vehicles at home, or at public 
charging facilities, reflects both the marginal cost of the electricity used and the social and economic 
benefits of electric vehicles. Finally, the PSB should adopt a statewide rate design infrastructure; this 
would prevent a particular utility service area from receiving a favorable rate structure and thereby 
attracting a disproportionate number of PHEV charging customers. 

 
Vermont now has the opportunity to affirmatively address the legal issues that PHEVs will precipitate. PHEV 
technology should not be allowed to merely stumble into Vermont’s regulatory framework, but should be 
allowed to succeed or fail based on its own merits, without first encountering unnecessary obstacles to its 
integration into the State’s legal and regulatory regimes. 
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6. PHEV Consumer Survey 
This chapter summarizes work published or in review in the following references: 
[37] Krupa, J.S., Rizzo, D.M., Eppstein, M.J., Lanute, D.B., Gaalema, D.E., Lakkaraju, K., and Warrender, 

C.E., “Analysis of a consumer survey on plug-in hybrid electric vehicles”, Transportation Research 
Part A: Policy and Practice, (2013), in review. 

[38] Krupa, J.S., Chatterjee, S., Eldridge, E., Rizzo, D.M., and Eppstein, M.J. “Evolutionary Feature 
Selection for Classification: A Plug-In Hybrid Vehicle Adoption Application”, Proceedings of the 
2012 Genetic and Evolutionary Computation Conference (GECCO), Philadelphia, PA (2012), pp. 
1111-1118. 

[43] Krupa, Jo “Plug-in Hybrid Electric Vehicle Consumer Survey Analysis”, MS Thesis, (2013), UVM. 
 
In developing the ABM described in Chapter 2, the need for additional data to properly inform both 
the decision-making model and agent initialization became apparent.  To address this, a joint 
collaboration between the University of Vermont and Sandia National Laboratories initiated an 
extensive online survey of 1000 stated adult U.S. residents using the Amazon Mechanical Turk 
(AMT) crowd-sourcing platform (https://www.mturk.com).  Our goals were to gather data to (i) 
identify consumer characteristics (if any) that differentiate between those willing and those not 
willing to consider adopting PHEV technology, (ii) identify possible factors that could positively 
influence consumers’ willingness to consider adopting the new PHEV technology, (iii) assess how 
much extra consumers might be willing to pay up front to purchase a vehicle with the expectation 
of fuel savings in the future, and (iv) construct and analyze distributions and correlations between 
consumer demographics and attitudes.  In short, this AMT consumer survey was designed to better 
understand the attributes associated with, and the influences that might affect a person’s decision 
to buy a PHEV, and how consumers weigh the tradeoffs between short and long-term financial, 
convenience, and environmental priorities and concerns. 
 
AMT is a crowd-sourcing service provided by Amazon where users may either post or complete 
tasks for compensation.  Interest in AMT as a tool for inexpensive data collection has grown 
considerably in recent years, and its potential as a survey tool has been assessed across a variety of 
domains [59-63].  These studies show AMT data to be reliable and comparatively less expensive than 
more traditional survey collection methods (e.g., college surveys, on-site store surveys, or phone 
surveys).  Research in psychology and the social sciences [59,60] shows that, although the level of 
“Turker” participation is affected by compensation and the time required to complete tasks, the 
data quality remains relatively unaffected.  
 
The survey was posted to AMT in July 2011, and was terminated when 1000 participants, all of 
whom stated U.S. residency and a minimum age of 18 years, had completed the survey.  To 
encourage completion, the survey was administered in four parts, with a bonus provided as an 
incentive for completion of the entire survey, for a total of $2 per participant. The AMT survey 
comprised 105 questions divided into six sections, 77 of which were Likert-scale (i.e., ordinal, 
interval-based, multiple-choice style). The six sections were as follows: 
 

I. Participant Demographics: age, income, gender, education, state of residence, region of 
residence (i.e., urban, suburban, rural), location on political spectrum, home ownership, 
estimated average daily drive, frequency of recycling, and whether they consider 
themselves an early adopter of technology in general;  

II. Purchasing Decisions: stated influence of advertising and social factors on purchasing 
decisions, such as the importance of whether others like their chosen products and brands;  

III. Vehicle Acquisition: number of cars owned and the importance of certain factors 
influencing their most recent and future vehicle purchases (e.g., vehicle price, class, 
financing);  
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IV. Environment and Energy: attitudes/concerns toward climate change and U.S. energy 
independence;  

V. PHEV Technology: importance of concerns or incentives influencing their willingness to 
consider purchasing a PHEV; and  

VI. Discounting Questions: assessed how much a participant might be willing to pay upfront 
for a vehicle (not necessarily a PHEV) that provides future benefits, framed in terms of 
gallons of gasoline saved, dollars on fuel saved, and degree of locality of reduced impacts 
of climate change; 

 
It is important to note that participants were not aware the survey was about PHEVs until Section 
V, to ensure this did not bias early responses, and that PHEV-related questions were phrased so as 
to deliberately disentangle concerns about sticker price from other attributes of PHEV technology.   
 
In general, the stated demographics of participants were fairly representative of U.S. demographics; 
that, and other internal quality control checks, gave us some confidence that survey respondents 
were providing honest answers. We performed extensive analysis of the survey results, including 
using a genetic algorithm to identify sets of non-linearly interacting features that can be used to 
predict stated willingness to consider purchasing a PHEV, using single and multiple ordinal logistic 
regression to build predictive models of stated willingness to consider a PHEV, and identifying and 
exploring cross-correlations in the data. While the results of the survey are far too extensive to 
reproduce here, some highlights are listed below. 
 
In the ABM described in Chapter 2, we assumed that consumer agents would not even consider 
purchasing a PHEV unless they saw more than a certain percentage of PHEVs in the fleet around 
them (their “threshold”), independent of financial considerations.  Heterogeneous agent thresholds 
were drawn from a truncated Gaussian distribution.  Our survey results validated that a truncated 
Gaussian distribution reasonably approximates the distributions of such thresholds in our AMT 
participants (Figure 6-1). However, in Eppstein et al. [35], with no data to guide the parameterization 
of this Gaussian, a standard deviation of only 20% was assumed. In our AMT survey population, 
the standard deviation was observed to be much higher (48%). This is an important finding, because 
a higher standard deviation results in a greater proportion of early adopters, rendering ultimate 
PHEV market penetration less sensitive to the mean of this distribution.   
 
In general, environmental benefits of PHEV adoption were less often rated important than were 
financial or battery-related factors.  However, respondents who felt most strongly about reducing 
U.S. transportation energy consumption and cutting greenhouse gas emissions had, respectively, 
71 and 44 times greater odds of saying they would consider purchasing a compact PHEV than those 
who felt least strongly about these issues. Another interesting finding was that consumers stated a 
willingness to pay more for a vehicle that would save them in fuel costs when the savings were 
framed in terms of gallons saved rather than dollars saved.  Unfortunately, we found that the 
relatively high sticker price premium of current PHEVs is outside the amount that most survey 
participants state they would be willing to spend for a more fuel efficient vehicle, regardless of how 
strong their environmental attitudes were. However, we also found that the combination of 
currently available financial incentives combined with savings in fuel and other operating costs 
could be sufficient to incentivize consumers to purchase PHEVs, if manufacturers and dealerships 
were to make personalized life-cycle cost estimates more readily available. 
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The most predictive model we have found to date is an ordinal multiple logistic regression model 
using the top questions (i.e., those with the highest Spearman rank correlation to stated willingness 
to consider a PHEV) in each of seven qualitatively distinct and complementary categories.  
Specifically, these 7 questions were (i) where participants saw themselves on the political spectrum, 
(ii) the importance of the potential for PHEVs to reduce greenhouse gas emissions, (iii) the 
importance of the need for the U.S. to reduce energy consumption related to transportation, (iv) the 
importance of the potential for PHEVs to create financial savings in fuel costs, (v) their level of 
concern regarding the potential inconvenience of recharging, (vi)  the importance of projecting a 
strong environmental image by owning a PHEV, and (vii) the current vehicle size class of their 
primary vehicle (recognizing that PHEVs are currently only available in compact models).  Using 
a 5-fold cross-validation method, we found that this statistical model had a misclassification rate 
of only 16.4% on the training sets and 20.2% on the testing sets.   
 
The results of this analysis will enable us to improve our ABM of potential PHEV consumers and 
will also provide valuable information for vehicle manufacturers, marketers, and policy makers 
seeking to promote PHEV adoption.   The manuscript regarding the survey analysis is currently in 
review; when accepted for publication, we will post the actual survey and all survey responses on 
the web for public access. 
 
 
 
 
 

 
  

 
Figure 6-1. Histogram of AMT participants’ stated thresholds. These indicate the 
percentage of PHEVs they would need to see on the road before they would consider 
adopting one, shown along with a truncated Gaussian distribution mean and standard 
deviation of 25% and 48%, respectively. 
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7. Conclusions  
In summary, the work conducted under the purview of this award has advanced the field in several 
ways. We developed several useful complex systems computational methods, including an agent-
based model (ABM) of potential PHEV market penetration, an artificial neural network based 
approach for efficient up-scaling of the non-linear systems behaviors of agent-based models to 
much larger systems, and a new method of automatically identifying clusters in high-dimension 
non-linear data sets based on self-organizing maps.  Some of these methods have much broader 
applicability than this PHEV study, and have already proven useful in other engineering domains. 
We have also looked at specific questions regarding potential market penetration of PHEVs, both 
by studying the sensitivities our agent-based model to various market and policy forces and by 
studying and making recommendations regarding the legal regime that will affect PHEVs.  To fill 
identified gaps in the data, we designed, conducted, and analyzed an extensive survey on consumer 
attitudes towards PHEVs using the Amazon Mechanical Turk crowd-sourcing platform. Our 
findings have been widely disseminated through top-tier journal publications, conference 
publications, poster presentations, seminars, and invited talks. We are currently using the results of 
the PHEV survey to improve both the decision-making rules and distributions and correlations 
between agent attributes in our ABM. Inspired by this research, one of us (MJE) directly contributed to 

increasing PHEV market penetration by purchasing a 2013 Chevy Volt.  
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