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Abstract

The research objective of the proposed dissertation is to make best use of available
distributed energy resources to meet dynamic market opportunities while accounting
for AC physics of unbalanced distribution networks and the uncertainty of distributed
solar photovoltaics (PV). With ever increasing levels of renewable generation, distri-
bution system operations must shift from a mindset of static unidirectional power
flows to dynamic, unpredictable bidirectional flows. To manage this variability, dis-
tributed energy resources (DERs; e.g.,solar PV inverters, inverter-based batteries,
electric vehicles, water heaters, A/Cs) need to be coordinated for reliable and re-
silient operation. This introduces the challenge of coordinating such resources at
scale and within confines of the existing distribution system. It also becomes impor-
tant to develop efficient and accurate models of the distribution system to achieve
desired operating objectives such as tracking a market reference, reduction in op-
eration cost or voltage regulation. This work surveys, discusses the challenges and
proposes solutions to the modeling and optimization of realistic distribution systems
with significant penetration of renewables and controllable DERs, including energy
storage. To contain this increase in system complexity as result of the large num-
ber of controllable DERs available, the distribution system has to be adapted from
a passive Volt-Var focused operator to a more active manager of resources. To ap-
proach this challenge, in this work, we propose two main approaches. The first is a
utility centric approach, where the utility controls the dispatch of flexible resources
based on solving an optimization problem. This approach would require the utility
to have all the network and resource data and also the control over customer devices.
Another approach is a more aggregator centric approach, where an aggregator is an
entity that represents an aggregation of many diverse DERs or a Virtual Battery
(VB). In this approach, it is the role of the aggregator to dispatch DERs, whereas the
utility provides certain bounds and limits (calculated offline), which the aggregator
(which dispatches resources in real-time) must operate under. The benefits of such
an approach lie in improved data-privacy and real-time dispatch. We present simula-
tion results validating the proposed methods on various standard IEEE and realistic
distribution feeders.
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Chapter 1

Introduction

The goal of this work is to dispatch energy-constrained resources within limits of

realistic distribution networks, i.e., grid-aware dispatch of DERs. One of the routes

to solve this problem, which makes sense under a utility-centric scenaio, is to develop

efficient and scalable receding horizon optimal power flow (OPF) formulations. In

this regard I have focused on developing convex relaxations of OPF that can man-

age energy-constrained grid resources, while providing guarantees on feasibility and

optimality of solution. Through such techniques OPF can be scaled, but in order to

achieve real-time operation (milliseconds), a convex inner approximation (CIA) of the

OPF is presented, that implicitly embeds grid physics into resource bounds, enabling

realtime grid-aware dispatch. The motivations for pursuing this work are presented

next.

1



1.1 Motivation

Mitigating climate change is one of the greatest challenge of our time and will require

a transition to cleaner sources of energy [12]. This will require massive integration

of terawatts (TWs) of renewable generation into the electric grid, as the electricity

sector represents a significant contributor towards greenhouse gas emissions. In order

to manage with the intermittent nature of renewable generation, batteries can play a

pivotal role in supporting this increased renewable generation. Batteries are already

replacing natural gas backup generators as the cost of batteries keeps decreasing [13].

Apart from physical batteries, distributed energy resources (DERs), such as solar

PV inverters and demand-side appliances (such as electric water heaters and air-

conditioners) can also provide the required flexibility and improve system reliability.

In particular, flexible demand is projected to exceed by more than 200 GW in the

United States by 2030 [14]. DERs have the potential to enable significantly more

renewable generation and furthermore reduce duck-curve ramping effects [15]. In

order to tap into this huge flexibility potential, millions of devices at the distribution

level would need to be coordinated. However, recruiting individual customers to

DER programs and deploying this technology to individual customer devices remains

a challenge and a major hurdle in the widespread adoption of DER technologies.

In recent years, the ubiquitous connectivity with low-cost IoT (Internet of things)

devices has made large-scale adoption of DER programs possible. As a result costs

for sensing and actuation have significantly declined paving the way for cost-effective

control of DERs [16]. An illustration on the adoption of renewable energy as a result

of increased connectivity of DERs is shown in Fig. 1.1. The figure also shows how
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convergence of electric networks with other networks such as cyber, social media and

financial markets, can lead to increased value creation for customers. The challenges

introduced due to renewable energy and DERs will be discussed in detail in the

succeeding section.

Figure 1.1: Summary of the process of using flexibility of DERs together with the improved
communication and connectivity and convergence of networks, to enable large scale integra-
tion of renewables in the energy grid.

1.2 Reliability challenges introduced due

to increased renewable generation

Traditionally in energy systems power flows from large generators in transmission sys-

tem to the loads in distribution system. Load changes at the distribution utility level

were slow and predictable through a daily load profile and hence could be easily man-

aged. However, due to decreasing costs in renewable energy generation (such as solar

PV) and climate change concerns, the amount of renewable energy in the distribution

grid is increasing. Some states in the U.S. like California, Hawaii and Vermont have
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very ambitious renewable energy targets which include having >50% of their energy

demand met through renewable generation. This will make reliability in distribution

networks a challenge due to the highly volatile nature of renewable generation such

as solar PV as depicted by the 10 sec resolution of solar power output in Fig. 1.2a.

Furthermore, the slow and predictable variation in loads will be replaced by the fast

and uncertain variability in renewable generation. Such volatility in generation can

result in violation of network limits, affecting system reliability metrics [17]. With

ever-increasing levels of renewable generation, distribution system operations must

shift from a mindset of static unidirectional flows to dynamic, unpredictable bidi-

rectional flows. This bidirectional flow of power introduces many challenges in the

operation of distribution systems, including requirements on steep ramping. This is

illustrated through the California duck curve in Fig. 1.2b showing the large variability

in net-load over the same day for different years and the steep ramping requirements

introduced due to increased solar generation. This bidirectional flow can also lead

to voltage violations harming system reliability. The availability of flexible grid re-

sources, however, has the potential to provide solutions to these challenges. This will

require fast timescale control and coordination of distribution grid resources in order

to maintain system reliability.

1.3 Role of flexibility in mitigating chal-

lenges

To maintain reliability under significant renewable (and intermittent) generation, the

utility grid operators can leverage the power and energy flexibility inherent to DERs.
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(a) (b)

Figure 1.2: (a) Figure showing the highly variable nature of solar generation over a day
at 10 second resolution [1]. (b) California duck curve showing a snapshot of a 24-hour
period in California during springtime, illustrating the difference in electricity demand and
the amount of available solar energy throughout the day. Source: California Independent
System Operator (CAISO).

This has prompted significant interests and investments in demonstration of substa-

tion automation technology, DERs, such as energy storage and smart inverters, and

autonomous demand response [18,19]. However, unlike traditional generation, DERs,

such as batteries are energy constrained, which give rise to the need for multi-period

decision making and predictive optimization. When interacting with wholesale mar-

kets, it is useful to coordinate DERs in aggregate. Previous work in literature has

shown that these DERs such as water heaters, thermostatically controlled loads, elec-

tric vehicles, etc, can be aggregated together. Since the aggregation is dispatched

as a single entity by a centralized coordinator, and is subject to power and energy

limits, the aggregate is often referred to as a “virtual battery” (VB) [20,21]. In such

a manner, each neighbourhood or feeder can be represented as a VB, as depicted by

the illustration in Fig. 1.3 [2]. However, flexible demand needs to consider the human

in the loop, i.e., quality of service should always be maintained. This is further high-
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lighted by the work in [22], which employed data-driven methods to identify behavior

of customers, showing that a large proportion of thermostat users would often over-

ride large deviations away from quality service (e.g., temperature). The quality of

service (QoS) shows up in the VB model as the state of charge (SoC) and it becomes

important to manage and satisfy the SoC constraints of VBs [20] and also physical

batteries. To tackle some of these issues, previous works in [21, 23] have developed

techniques to identify the parameters of such VB models, whereas the work in [2]

has illustrated a full scale validation of power balancing services provided from VBs.

Furthermore, the role of the distribution network is also important to consider and

will be discussed next.

Figure 1.3: Aggregation of distributed energy resources (DERs) like physical batteries, elec-
tric vehicles and flexible demand such as water heaters, into a aggregate virtual battery [2]

1.4 Role of the grid/network

An important question in distribution grid management is the role the grid or the

network should play in the coordinated dispatch of DERs. As of now the Distribution

System Operator (DSO) is a passive Volt-Var focused operator that uses Transform-
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ers and Capacitor banks (usually 10s-100s) in the distribution system to maintain

voltages within acceptable limits. These mechanical devices are mostly scheduled

and set manually. But with extreme distributed solar PV, wind and smart inverters

in the distribution system and the requirement to provide dynamic energy services,

more controllable devices (10,000s smart devices) would need to be scheduled. This

would increase the complexity of the distribution system operation by a factor of

more than 100. The goal then is to contain this complexity through optimization

algorithms. The optimal power flow (OPF) is a useful tool to coordinate the grid

resources subject to the grid and device constraints. The power flow equations, based

on the Kirchhoff’s current and voltage laws, relate voltages in the system to power

injections. The non-convexity of 3-phase AC OPF, however, generally complicates

gradient-based optimization solvers. Furthermore, the addition of storage leads to

the coupling of different time-steps, which further complicates the OPF models. Also

with increased behind the meter solar PVs, customers will become so called “Pro-

sumers”, with the ability to supply power back to the grid in times of need. Hence,

the distribution system can act as an energy service provider with the ability to pro-

vide market services to the energy grid. In order to overcome these challenges, the

DSO will need to evolve from passive/reactive management, to a more active man-

agement of grid resources [24] with the ability to dispatch flexibility located across

a network as depicted in Fig. 1.4. Future distribution networks will have to adapt

in order to increase value through interaction of intelligent devices on the grid and

prosumerization of customers [25]. In lieu of these challenges and possible direction

of solutions, the goal of this work is to present a framework for the best utilization of

available grid resources to meet dynamic energy market opportunities while account-
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ing for AC physics of the network and the uncertainty of renewables. In achieving

these goals, I rely on a number of key terms and concepts that are described next.

Figure 1.4: Virtual batteries (VBs) placed across a distribution network.

1.5 Key terms and concepts

• Distributed energy resources (DERs): For the purpose of this work, DERs

are defined as any resource on the distribution system that either produces

electricity or has flexibility in consuming electricity, but is not included as part of

the Bulk electric system (BES). According to this definition, DERs can include

flexible resources such as solar PV inverters, battery energy storage system

(BESS) and vehicle-to-grid (V2G), and also flexible demands-side resources such
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as water heaters and A/Cs, since they can also be dispatched similar to battery

storage. This is in line with NERC’s recent recommendation that demand-side

management of aggregated resources be included in the definition of a DER [17].

• Virtual batteries (VBs): In this work, a VB is considered an energy-based

abstraction of a group of a relatively small number of directly controlled loads

(e.g., 100-200 distributed loads like air-conditioners, electric water heaters). A

VB, via direct manipulation of appliance statuses, can intelligently shift loads

in time (i.e., defer demand) to achieve a desired active power set-point. Since

comfort/device constraints limit the duration of the shift, the VB is akin to a

simple energy storage system. It is assumed that the flexible loads reside in the

low-voltage secondary network, while the local VB coordination (computation

and control) takes place at the primary service transformer level.

• Distribution system operator (DSO): In this work, we assume that the

DSO, or the distribution utility, acts as the coordinator and aggregator of DERs

and manages the entire scheme. It is the DSO that manages grid resources by

solving an OPF, in order to achieve certain distribution network objectives. In

this regard, it is reasonable to assume that the DSO has access to SCADA data

and is aware of the grid topology to solve the AC OPF.

• Transmission system operator (TSO): In this work, TSO is an entity sim-

ilar to an Independent system operator (ISO) and is responsible for managing

the bulk electricity markets. In this regard, the TSO provides pricing signals

to the DSO, which in-turn manages the distribution grid resources accordingly.

• AC admissible: The original AC OPF problem in distribution systems is
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non-convex, making it NP-hard to solve. In this works, relaxations and ap-

proximations of the original AC OPF are presented, which lead to a scalable

solution. However, it is important that the solution obtained from the modi-

fied formulation, not violate any constraints in the original model. A solution

of a modified (either through relxations or approximations) OPF is said to be

AC admissible, if the solution applied to the original, non-convex AC OPF, is

feasible, i.e., does not violate any constraints.

1.6 Comprehensive literature review

To manage the variability in renewable generation, distributed energy resources (DERs;

e.g. inverter-based batteries, water heater, A/Cs) need to be coordinated for reliable

and resilient operation. This introduces the challenge of coordinating DERs at scale

and within confines of the existing distribution system.

The variability introduced by renewable resources necessitates the detailed anal-

ysis of distribution systems for optimal operation of the grid. It becomes important

to develop efficient and accurate models of the distribution system to achieve de-

sired operating objectives such as reduction in operation cost, network loss reduction

or voltage regulation. This can be accomplished through receding horizon OPF of

distribution systems with energy-constrained DERs. The inclusion of energy storage

distinguishes this work from the state of science in distribution system OPF [26]. This

section surveys and discusses the challenges with and proposes methods for model-

ing and optimizing a three-phase distribution system with significant penetration of

renewables and controllable DERs, including energy storage.
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1.6.1 Objectives of distribution system OPF

The aim of the optimal power flow (OPF) problem is to attain certain distribution

system objectives while satisfying all the network and device constraints. This objec-

tive can take on a variety of forms such as the optimal sizing of capacitor banks to

reduce voltage deviation [27], reduction in line losses [28] or the use of various reactive

power sources to improve voltage regulation in the system [29].

With the increase in renewable power generation on the distribution level, there has

been an increased coupling of transmission and distribution systems wherein the ag-

gregation of distributed energy resources (DERs) can provide regulation services to

the transmission system [30]. In this situation, the OPF problem is used to track

a reference grid power request. Another outcome of increased DER penetration has

been the use of DERs in voltage droop control [31, 32]. Furthermore, some recent

works [33], [34], have considered the coupling between the economic dispatch and

frequency regulation problems and their joint optimization in transmission system.

This method represents an interesting avenue for distribution system market design

(objective) and dynamic load balancing. These recent developments highlight the

importance of the OPF problem to distribution systems and related state-of-the-art

techniques for OPF.
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1.6.2 Co-optimization of continuous and discrete

assets

The distribution grid is made of many different types of flexible (such as solar PV,

EVs) and mechanical assets (such as transformers) as depicted by the illustration

in Fig. 1.5. With increasing penetration of solar PV, some distribution feeders are

experiencing highly variable net-load flows and even reverse flows. The intermittent

nature of solar energy can cause under and over-voltages in the system [35–38] leading

to unacceptable operation. To optimize distribution systems under such conditions,

the scheduling of mechanical devices, such as OLTCs and capacitor banks, needs

to take into account forecasted solar PV and actual grid conditions. These discrete

mechanical assets are subject to physical wear and tear and, thus, are usually only

operated a few times during the day with heuristic open-loop policies [39]. However,

with increasing solar PV penetration, it becomes important to optimize the schedule

for the mechanical assets against bidirectional and variable power flows [40]. Heuris-

tics have been proposed to solve this problem, but given the large number of devices

encountered in practical systems, they represent a computational challenge [41].

Due to the discrete state of these devices, including them into an optimization

problem renders the problem NP-hard [42]. These discrete decision variables take

the problem outside the realm of convex optimization and hence mixed-integer pro-

gramming tools are used with a convex integer relaxation. To incorporate discrete

devices into convex OPF formulations, the McCormick relaxations [43] and lineariza-

tion techniques have been used to incorporate these devices [44, 45]. In [42], the

authors use SDPs (semi-definite programs) to capture the transformer ratios and
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then the solutions are rounded to the nearest discrete tap values, whereas in [46] the

load tap changers and shunt capacitors are both modeled by linear constraints us-

ing discrete variables, facilitating the linearly constrained mixed-integer formulation.

However, this rounding can cause infeasibility issues, which are analyzed in [47] and

the authors provide an MISOCP formulation, which is computationally tractable and

converges to a feasible optimal solution. In [48], the authors propose a technique to

use variable McCormick bounds for improved accuracy and reduction in computa-

tion time. In [49], a distributed algorithm for solving mixed-integer linear programs

(MILPs) is proposed.

Computationally efficient and provably feasible algorithms that consider both the

switching mechanical assets and continuous inverter-based assets are still an open

problem. This work builds upon the papers discussed in this section, but leverages

the notion that discrete devices and continuous resources can offer their flexibility

at different time-scales, which gives rise to a natural prioritization of reactive power

resources.

Figure 1.5: Complexity of distribution systems due to the different types of resources to be
controlled [3]
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1.6.3 Nonconvexity of OPF

The optimal power flow (OPF) is a useful tool to coordinate the grid resources subject

to the nonlinear power flow equations and network constraints [50]. For constant

power loads, the AC power flow equations relate the voltages in the network with the

power injections. However, the non-convexity of the power flow equations generally

complicates gradient-based optimization solvers unless simplifying assumptions are

made to the model. An example of the non-convex nature of the power flow feasible

space is shown in Fig. 1.6. Furthermore, the assumption of constant power loads is

generally not valid in distribution systems due to voltage dependencies. Instead, the

loads should be modeled as a ZIP model which further complicates the modeling [51,

52].

Traditionally, DistFlow algorithms based on branch flow power models, which is

an exact nonlinear formulation of the distribution network power flow equations, are

used to solve the OPF problem in distribution networks [27]. The full ACOPF model

represents an NP-hard, non-convex problem. Recently, there have been efforts to

use convex relaxation techniques to solve the OPF problem [53, 54]. Previous works

in literature have shown that for certain (e.g. radial) network toplogies, the convex

relaxations, such as second order cone programs (SOCP) and semi-definite programs

(SDP) can be exact [55, 56].

In [53], an SDP formulation of the OPF problem is given, which is the dual of the

original problem. It gives the necessary and sufficient conditions for a zero duality

gap, i.e., the primal and dual solutions have the same optimal value. It is shown that

the zero duality gap holds for many practical IEEE systems after adding resistance to
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every transformer and when load over-satisfaction is allowed. However, the method

only accounts for the balanced single phase equivalent case. Furthermore, SDP solvers

are still not numerically robust [57].

In [54], the authors investigate the geometry of the injection regions and its re-

lationship to the optimization of power flows in radial distribution networks. It is

shown that under the assumption that the phase angle difference across each line is

small, the Pareto-optimal points of the injection region remain unchanged by taking

the convex hull. In [58] and [59], the application of conic relaxations and SDP re-

laxations is extended to meshed networks. However, SDP relaxation techniques have

their drawbacks, as described in [60] and [61]. Some of these issues can be overcome

by using moment-based relaxations [62], which improves accuracy at the cost of sig-

nificant computational overhead. Some recent work has also used the QC (quadratic

constraint) based convex relaxations due to their advantage over SDP and SOCP

relaxations [63].

Linear approximate models can also be powerful when they are sufficiently accu-

rate. One particular approximation is the simplification of the DistFlow model [27] to

LinDistFlow, which is a linear formulation of the branch flow model obtained by ne-

glecting the line losses. In [64], a novel linear approximation of the implicit relation

between nodal voltages and nodal power injections is considered around a generic

solution of the power flow equations for a balanced network. A method to obtain

an analytical solution to the non-linear power flow equations is presented in [65]. It

gives sufficient conditions for the existence of such a solution to the power flow prob-

lem (again, for a balanced network). It also obtains a bound on the approximation

error based on the grid parameters. Linear models, even though simple and compu-
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tationally efficient, do not provide guarantees on optimality and feasibility, which are

important for scheduling/dispatch problems, such as battery dispatch.

In this work, we develop an SOCP-NLP coupled algorithm that provides a near

optimal but guaranteed feasible solution. The optimized solutions obtained from the

relaxed SOCP model, are used to initialize a nonlinear program (NLP) of the actual

AC power flow to obtain a physically realizable solution.

Figure 1.6: Figure showing the non-convexity of the feasible space of the optimal power flow
problem [4].

1.6.4 Three-phase OPF models

The assumption of a single-phase balanced network fails to hold when analyzing three-

phase unbalanced distribution networks. Many works in literature such as [66] have

shown the importance of considering the imbalances in a distribution network for ac-

curate analysis. It has been shown in [67] that the solution space of the three-phase

OPF is non-convex and the solution space of the OPF problem and its convex hull
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are different. The full ACOPF model represents an NP-hard, non-convex problem.

DistFlow algorithms, which are traditinally used to solve the OPF, only consider

balanced single phase equivalent models. Distribution networks are inherently un-

balanced which makes it important to study the full three-phase models of these

networks [68].

Linear approximate models have also been developed for three-phase distribution

networks. One particular approximation is an extension of the DistFlow model [27] to

unbalanced power flows, Dist3Flow, which is obtained by linearization and assump-

tions of fixed per-phase imbalances [69,70]. These linear models again do not provide

guarantees on optimality and feasibility.

In [71,72] the authors use SDP rank constraint relaxation to the three phase model

of a distribution network, however, SDP solvers are still not numerically robust [57].

In [72], the authors propose two SDP relaxations (with branch injection and branch

flow models) of the three-phase OPF problem and a linear approximation of the power

flow (LPF). It is found that the LPF is accurate when line loss is small compared

with power flow and voltages are nearly balanced. In [73], the Feasible Point Pur-

suit - Successive convex approximations algorithm - a powerful approach for general

non-convex quadratically constrained quadratic programs to solve the three-phase AC

OPF problem is leveraged.

These three-phase OPF techniques either involve linearization, which introduces mod-

eling (and prediction) errors or are based on SDP relaxations, which are numerically

sensitive and suffer when LMPs are negative. Development of a provably feasible con-

vex model for 3-phase distribution systems remains an open problem. In this work,

we develop an SOCP-NLP algorithm that provides a near optimal but guaranteed
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feasible solution. The optimized solutions obtained from the relaxed SOCP model,

are used to initialize a nonlinear program (NLP) of the actual AC power flow to

obtain a physically realizable solution. Furthermore, the active-power solutions that

form the energy trajectory and are obtained from the SOCP are fixed in the NLP,

leading to a decoupling of the different time-steps. As a result, the NLP solves each

time-step separately (and possibly in parallel), leading to a scalable framework.

1.6.5 Multi-period OPF

To maintain grid operating conditions under significant renewable (and intermittent)

generation, the utility grid operators can leverage the power and energy flexibility

inherent to many DERs. However, unlike traditional generation, DERs, such as

batteries are energy constrained, which give rise to the need for multi-period decision-

making and predictive optimization.

In [74,75], the authors have used multi-period SDP relaxation techniques to solve

this problem for transmission networks, however, SDP solvers are still not numer-

ically robust [57]. In [76], the authors have utilized a single phase OPF AC-QP

algorithm that is initialized with an SOCP relaxation. However, this multi-period

OPF formulation neglects the non-unity charge and discharge efficiency of the bat-

tery, which can create solutions to the OPF problem that are physically unrealizable

due to simultaneous charging and discharging of batteries. In order to avoid solutions

involving simultaneous charge and discharge of batteries in the system, complemen-

tarity constraints have to be added to the models. These complementarity constraints

ensure that the batteries in the system do not simultaneously charge and discharge.

But these constraints involve the use of integers and make the problem non-convex.
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One solution to this problem would be the use of mixed-integer formulation but this

would increase the computation time substantially. Thus, the approach is to relax

these constraints and analyze under which conditions the optimal solution satisfies

the complementarity constraint. In [7,77], the authors provide conditions under which

simultaneous charging and discharging can be avoided in the optimal solution for an

economic dispatch problem. In [77], Karush-Kuhn-Tucker (KKT) conditions are an-

alyzed for a linear DC model of the economic dispatch problem and show that, under

reasonable economic assumptions, simultaneous charging and discharging is avoided.

Optimal consideration for storage in the OPF problem is still an open problem.

The sufficient conditions provided for mitigating simultaneous charge and discharge

in [7], [77] need to be adapted for distribution networks since many of the conditions

(such as positive LMPs) may not hold in practice [78].

In this work, we develop a three-phase convex SOCP relaxation of the multi-period

OPF problem. We also provided sufficient conditions to avoid simultaneous charging

and discharging of batteries in distribution networks with non-unity charging and

discharging efficiencies.

1.6.6 Coordination and aggregation of DERs

Coordinated control of demand-side, distributed energy resources (DERs), such as

grid-tied PV inverters, distributed battery storage, and thermostatically controlled

loads (TCLs; e.g., water heaters and air conditioners) is part of the solution that

supports a renewable energy future [14, 79–81]. Much of the recent literature on the

coordination of DERs has focused on distributed control methodologies to turn large-

scale aggregations of DERs into dispatchable grid assets as depicted in Fig. 1.7 (similar
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to [82–84]). To control and dispatch the DERs, much of the literature has also focused

on optimizing the energy storage operation over ISO/TSO market signals, but this

does not directly consider the underlying AC network and the distribution system

operator (DSO) constraints (e.g., voltage or power limits), see for example [85,86].

To avoid violating operational limits of the grid and to ensure system reliability

with DERs at scale, coordination between a DSO and DER owners and aggrega-

tors will become critical. This has spurred a multitude of concepts and models for

how DSOs can interact with DERs, aggregators, and whole-sale (transmission) mar-

kets [87–89]. In this work, we focus on the so-called “Market DSO” model, e.g.,

see [87], where the DSO performs coordination and aggregation of DERs to deliver

grid services. While such a setup could preclude independent DER aggregators (i.e.,

increases regulatory complexity), the model simplifies the interaction between whole-

sale market signals and the DSO and the ideas herein can be adapted further to enable

independent “grid-aware” DER aggregators [90]. For other market-based DER coor-

dination schemes, “transactive energy” can engender holistic TSO-DSO-Aggregator

participation of DERs [91]. Some of these schemes focus on broadcasting prices di-

rectly to devices. However, with large-scale participation of DERs, transactive energy

is susceptible to harmful load synchronization effects, power oscillations, and volatile

prices, as shown in [92].

Other grid-aware approaches include optimization-based methods to account for

AC network constraints [93], where DER control is achieved by solving an opti-

mization problem based on AC network models and tracking a Karush-Kuhn-Tucker

(KKT) point that satisfies the KKT optimality conditions. However, for non-convex

AC OPF, the KKT conditions may not be sufficient to guarantee global optimal-
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ity. Other optimization schemes can provide market services with DERs without

exact grid models nor real-time measurements [94]. However, these methods do not

directly incorporate multi-period energy constraints and the KKT point can be sensi-

tive to exogenous disturbances. Formulations based on convex relaxations can provide

guarantees on feasibility and optimality of solutions when the cost function is mono-

tonic [95]. However, optimal tracking of a power reference signal has a non-monotonic

cost function, which means that one cannot guarantee that the predicted solutions

are network-admissible.

To address these challenges concerning real-time, optimal, and network-admissible

coordination of DERs, this work presents a hierarchical (multi-layer) framework for

coordinating demand-side flexibility in the form of DERs. The hierarchical coordina-

tion consists of a novel, convex OPF relaxation, which is provably tight at optimality

under realistic conditions and generates grid-aware, feasible set-points for the DERs.

Prior work on hierarchical control of DERs in microgrids (e.g. [96]) has mainly consid-

ered using frequency and voltage droop characteristics to generate active and reactive

power set-points for DERs using local measurements of frequency and voltage and

compensating for the deviations, but in this work, we compensate for the deviation

in the head node power of the feeder from the economic set-point, thus taking into

account the economic trajectory.

1.6.7 Convex inner approximation of OPF

Since Carpentier’s original OPF formulation [50] and subsequent improvements in

optimization solvers, the OPF problem has become a powerful methodology for op-

timizing the dispatch of various grid resources. This is because OPF-based methods
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Figure 1.7: Figure showing aggregation of flexibility at the secondary and primary level of
a feeder in order to bid the flexibility into the ISO market.

can account for the underlying grid physics, static network constraints on voltages

and apparent branch flows, and resource limitations. However, it was also recognized

early on that the nonlinear AC power flow equations that model the underlying grid

physics render the AC OPF non-convex [97].

To overcome the computational challenges associated with non-convex AC network

models, many recent techniques involve using linear or convex approximations [98].

Traditional optimization techniques for dispatching resources include linear OPF-

based LinDist models [27]. These models work well close to the expected conditions

of the system (e.g., low losses). The authors in [99] quantified the errors associated

with more general linear power flow approximations. Recently, improved linear ap-

proximations of the power flow equations have been proposed that provide improved

accuracy over a wider range of operation [64, 100]. However, the solution space of

the AC power flow equations is highly non-convex, which means that such methods

cannot guarantee network-admissible solutions under all net-load conditions.

Beyond linear approximations, recent attention in literature has focused on convex
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relaxations of the AC power flow equations, including second-order cone programs,

semi-definite programs, and quadratic relaxations [101]. Several works in literature

such as [102] have shown that, under certain analytical conditions, these relaxations

can be exact and the solution of the relaxed convex problem then represents the global

optimum of the original non-convex AC OPF problem. However, these conditions

fail to hold under extreme solar PV injections when the network experiences reverse

power flows, which engenders a non-zero duality gap solution that may not be network

admissible, i.e., not feasible in the original AC OPF formulation [103].

However, in many practical applications, guaranteeing network admissibility is

more critical than finding the globally optimal solution. For such applications, find-

ing an inner approximation of the non-convex power flow space can result in efficient

and network admissible dispatch of flexibility. An illustration of the concept of con-

vex inner approximation is shown in Fig. 1.8. The authors in [104], develop an

optimization-based method to certify whether a DER dispatch scheme can result in

constraint violations. However, they do not discuss the network-admissible range of

DER dispatch. The authors in [105] provide a convex restriction technique that guar-

antees an admissible solution, which they utilize in [106] to determine a feasible path

from a known initial operating point to a desired final operating point. In [107], the

convex OPF formulation is based on an augmented second-order cone relaxation. The

authors in [108] solve a large number of non-convex OPF problems to determine nodal

injection bounds. However, these methods either rely on non-convex techniques or

they cannot ensure that the full range of DER dispatch is network-admissible, which

is the main focus herein.

The work herein presents a computationally tractable convex inner approximation
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for the optimal power flow (OPF) problem that characterizes a feeders aggregate

DERs hosting capacity and enables a realtime, grid-aware dispatch of DERs for radial

distribution networks. From this approach, we achieve an OPF formulation that

exhibits computational solve times similar to that of linear formulations with the

added (and crucial benefit) that the formulation guarantees admissible solutions.

Figure 1.8: Figure illustrating the idea of convex inner approximation in relation to the
original non-convex feasible space χ and its convex relaxation.

1.6.8 Stochastic Optimal power flow

Renewable energy sources, such as solar PV, are inherently stochastic in nature and

the corresponding variability poses a challenge to grid operators [109]. The severity

of the problem is illustrated in Fig. 1.9, which is from a recent Velco load profile [5],

showing the large difference in net-load between a sunny day and a cloudy day. To

overcome these challenges, grid operators can leverage responsive DERs to provide

demand-side flexibility. The inclusion of flexible demand from energy-constrained

DERs, such as battery storage, couples the time-steps, which requires multi-period
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decision-making and predictive optimization.

In addition, accounting for the uncertainties in solar generation and demand fore-

casts calls for a robust dispatch of flexible DERs. Choosing an acceptable violation

probability is perceived as an intuitive and transparent way of determining a proba-

bilistic security level [110]. Chance-constraint-based optimization is one such tool that

is employed to robustly dispatch flexible resources in order to satisfy AC power flow

constraints. The nonlinearities associated with the AC physics, however, renders the

chance-constrained optimization problem challenging to solve due to non-convexities.

Thus, to certify reliable operation of distribution systems under high penetrations of

solar PV, techniques are desired that take into account both the AC nonlinearities

and the uncertainty from solar PV forecasts.

The non-convexity of the solution space of the three-phase AC OPF [67], means

that a direct application of chance-constraints to the non-convex optimization prob-

lem is not possible. Previous works on chance constraint formulations have consid-

ered a linear power flow model, which under chance constraint formulation becomes a

second-order cone program (SOCP) that can be solved in a computationally-efficient

manner [111, 112]. In [113] the authors utilize a scenario-based approach with an

AC-QP formulation to provide a-posteriori probabilistic guarantees. However, the

single-phase equivalent, linearized DC OPF models utilized in these works can be

inaccurate for distribution feeders. The authors in [114] implement a formulation of

chance constraints using an affine policy, which allows them to include corrective con-

trol policies. They utilize convex relaxations to reformulate the chance constrained

AC OPF problem as a semi-definite program (SDP). However, they do not consider

the multi-period coupling and the reformulation only holds for Gaussian distribu-
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tions. Futhermore, SDPs can be numerically sensitivie [57]. The authors in [115]

present an algorithm which alternates between solving a deterministic AC optimal

power flow problem and assessing the impact of uncertainty. The authors developed

a two-stage approach where the full AC load flow is solved based on a forecast and in

the second step the uncertainty is accounted for through chance-constraints applied

to the network linearized at the operating point obtained in step one. However, they

only consider a single-phase equivalent model and ignore multi-period coupling. Fur-

thermore, the non-convex AC OPF problem is not guaranteed to converge to a global

optimum and the solve time increases exponentially with system size for NLPs.

Figure 1.9: Velco load curve showing the large variability in net-demand between a sunny
day versus an overcast day [5]. This figure illustrates the large variability that can result
from increased volatile solar penetration in distribution systems.

In this work, we build upon the work on chance constraint formulation in [115]

by decoupling the solution to the deterministic multi-period AC OPF problem and

the linearized chance constraint problem. This work presents a convex, multi-period,

AC-feasible Optimal Power Flow (OPF) framework that robustly dispatches flexi-

ble demand-side resources in unbalanced distribution feeders against uncertainty in

very-short timescale solar Photo-Voltaic (PV) forecasts. The novel, robust OPF for-
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mulation accounts for both the nonlinear power flow constraints and the uncertainty

in forecasts. This is achieved by linearizing an optimal trajectory and using first-order

methods to systematically tighten voltage bounds.

1.6.9 Conclusions

This section presented a survey of the recent developments in solving the Optimal

power flow problem for unbalanced distribution systems. Particular emphasis was

given to the case of three-phase distribution models with both mechanical switching

assets and continuously operated renewable and storage assets. Recent developments

in the field of multi-period OPF are presented, which highlight the need for the

development of fast and efficient algorithms for these applications.

1.7 Open problems tackled in this work

• Lack of computationally efficient algorithms for co-optimization of discrete and

continuous controllable assets in distribution systems.

• Lack of AC admissible convex models for general 3-phase multi-period OPF in

distribution systems under solar PV uncertainty.

• Lack of convex formulations for coordinated control of distributed energy re-

sources in order to track grid reference signals, subject to grid constraints.

• Lack of convex inner approximation methods that guarantee admissibility of

solutions.
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• Lack of tools that can assist in dynamic hosting capacity studies and enable

real-time grid-aware control of DERs.

1.8 Original contributions and papers

The main contribution of this work is to transform the distribution system from a

passive Volt-Var focused operator to a more active manager of distributed energy

resources (DERs). In this work we tackle the major challenges that arise as a result

of this transformation, namely with respect to feasibility and optimality guarantees

and coordinating large number of resources at scale. These contributions can lead

to a more robust and resilient operation of the electric grid even under very high

penetration of variable renewable generation and uncertain forecasts. The work in

this document is grouped into two overarching contributions:

• Making OPF scalable for different distribution systems operational

objectives: The non-convexity of the AC OPF together with the multi-period

coupling introduced due to energy-constrained DERs, make the OPF problem

hard to scale, especially under the stochasticity introduced due to highly vari-

able and uncertain renewable generation. To improve the scalability of AC OPF

in distribution networks and help manage the forecast uncertainty, a number of

methods are proposed in this work.

One of the main challenges in distribution system AC OPF is to manage the

co-optimization of continuous and discrete assets. In this work, we consider

the natural timescale-separation between (slow) mechanical and (fast) inverter-

based controllable grid assets. Mechanical resources on slow time-scale act as a
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form of reactive reserve, allowing the DERs to fully participate in valuable mar-

ket services on a fast timescale. This way mechanical assets maximize margins

and optimize value of DERs. This effectively prioritizes the responsive reactive

resources for the faster time-scales to counter variability in net-load (demand

minus solar PV).

To account for the three-phase multi-period nature of OPF in distribution sys-

tems, which represents an NP-hard non-convex problem, this work develops a

multi-period three-phase SOCP-NLP algorithm that provides near optimal but

guaranteed feasible solution. The optimized solutions obtained from the convex

relaxed SOCP model, are used to initialize a nonlinear program (NLP) of the

actual AC power flow to obtain a physically realizable solution. Furthermore,

the active-power solutions that form the energy trajectory and are obtained

from the SOCP are fixed in the NLP, leading to a de-coupling of the different

time-steps. As a result, the NLP solves each time-step separately (and possibly

in parallel), leading to a scalable framework. We also provide sufficient condi-

tions to avoid simultaneous charging and discharging of batteries in distribution

networks with non-unity charging and discharging efficiencies.

To approach the challenge of coordination and aggregation of DERs in order

to track grid reference signals and hence provide grid market services, this

work presents a hierarchical framework for network-admissible coordination of

aggregated DERs. The coordination is achieved by solving an optimization

problem to disaggregate a feeder’s desired reference trajectory into constraint-

aware set-points for the DERs. Specifically, a novel, provably-tight, convex

relaxation of the optimal power flow (OPF) problem is presented to optimally
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dispatch the DERs to track the feeders desired power trajectory.

To certify reliable operation of distribution systems under high penetrations of

solar PV, techniques are desired that take into account both the AC nonlineari-

ties and the uncertainty from solar PV forecasts. In this work, we decouple the

solution to the deterministic multi-period AC OPF problem and the linearized

chance constraint problem. A deterministic, multi-period, SOCP+NLP prob-

lem is solved to obtain a three-phase, AC feasible optimized state (voltage, cur-

rent) trajectory. Based on the trajectory, Taylor series expansions of the power

flow equations are computed around the operating points from each time-step.

The sensitivity of the network constraints (voltage and branch flows) to the

uncertain injections (demand and solar PV) can be computed. From these sen-

sitivity factors, the uncertainty determines the degree of constraint tightening,

which robustifies the SOCP and NLP formulations.

To verify the efficacy of the developed OPF tools, we also conducted large-scale

hierarchical simulation of feeders with significant penetration of renewables and

DERs. In this work, DERs were used to optimize system operations with re-

spect to economic signals from wholesale energy and ancillary service markets.

We present a novel hierarchical scheme that actively controls behind-the-meter

DERs to reliably manage each unbalanced distribution feeder and exploits the

available flexibility to ensure reliable operation and economically optimize the

entire distribution network. Each layer of the scheme employs advanced op-

timization methods at different timescales to ensure that the system operates

within both grid and device limits. The hierarchy is validated in a large-scale

realistic simulation based on data from the industry.
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The following publications resulted from this contribution on making OPF scal-

able:

− Nawaf Nazir, Mads Almassalkhi, “Receding-horizon optimization of un-

balanced distribution systems with time-scale separation for discrete and

continuous control devices”, Power System Computation Conference (PSCC),

Dublin, Ireland, June, 2018

− Nawaf Nazir, Pavan Racherla and Mads Almassalkhi, “Optimal multi-

period dispatch of distributed energy resources in unbalanced distribution

feeders”, IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2683-

2692, July 2020.

− Sarnaduti Brahma,Nawaf Nazir, Hamid Ossareh and Mads Almassalkhi,

“Optimal and resilient coordination of virtual batteries in distribution feed-

ers”, IEEE Transactions on Power Systems.

− Nawaf Nazir and Mads Almassalkhi, “Stochastic multi-period optimal

dispatch of energy storage in unbalanced distribution feeders”, Power Sys-

tems Computations Conference (PSCC), Porto, Portugal, June, 2020.

− Mads Almassalkhi, Sarnaduti Brahma, Nawaf Nazir, Hamid Ossareh,

Pavan Racherla, Soumya Kundu, Sai Pushpak Nandanoori, Thiagarajan

Ramachandran, Ankit Singhal, Dennice Gayme, Chengda Ji, Enrique Mal-

lada, Yue Shen, and Pengcheng You, Dhananjay Anand, "Hierarchical,

Grid-Aware, and Economically Optimal Coordination of Distributed En-

ergy Resources in Realistic Distribution Systems", Energies Journal, Spe-

cial Issue on Building-to-Grid Integration through Intelligent Optimization
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and Control.

• Realtime grid-aware dispatch through convex inner approximation:

The linear OPF and the convex relaxation based OPF can improve the scalabil-

ity of AC OPF in distribution systems, however, in order to solve a large OPF

problem in realtime (order to milliseconds), a different approach is required. In

many applications, feasibility guarantees at optimality are more valuable than

solving to a globally optimal solution. This work proposes a convex inner ap-

proximation of the power flow equations that results in a network-admissible

solution, i.e., all physical network limits are respected at (global) optimality,

while solving in polynomial time. Hence, the method is robust against modeling

errors introduced from approximations of the non-linear power flow equations.

This convex inner approximation method is also applied to control discrete

assets. An voltage positioning optimization (VPO) method is presented that

utilizes mechanical resources to position the predicted voltages close to nominal

values, while minimizing the use of inverter-based resources (i.e., DERs), making

them available for control at a faster time-scale (after the uncertainty reveals

itself). The convex, inner approximation of the OPF problem is adapted to a

mixed-integer linear program that minimizes voltage deviations from nominal

(i.e., maximizes voltage margins). The resulting OPF solution respects all the

network constraints and is, hence, robust against modeling simplifications.

The developed convex inner approximation method is then applied to develop

grid-aware aggregation and realtime disaggregation of flexibility. This is useful

in many applications, such as to determine the admissible range for dispatching

distributed energy resources (DERs), i.e., the DER hosting capacity. Another
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application is that of disaggregating the dispatch of a large, aggregated Virtual

battery (VB) resource into the dispatch of multiple smaller nodal resources that

are distributed spatially across a network. Such a method overcomes the inher-

ent scalability issues of receding horizon OPF and engenders realtime grid-aware

control of DERs. The following publication resulted from this contribution on

developing a convex inner approximation and its application to realtime grid-

aware DER dispatch:

− Nawaf Nazir and Mads Almassalkhi, “Convex inner approximation of the

feeder hosting capacity limits on dispatchable demand”, IEEE Conference

on Decision and Control (CDC) 2019, Nice, France.

− Nawaf Nazir and Mads Almassalkhi, “Voltage positioning using co-optimization

of controllable grid assets in radial networks”, IEEE Transactions on Power

Systems.

− Nawaf Nazir and Mads Almassalkhi, "Grid-aware aggregation and re-

altime disaggregation of distributed energy resources in radial networks",

under review, IEEE Transactions on Power Systems.

1.9 Organisation of document

The rest of this document is organized as follows: Section 2 describes the model-

ing of distribution systems. Within section 2, section 2.1 describes the modeling of

unbalanced three-phase distribution networks, whereas section 2.2 provides the mod-

eling of balanced single phase equivalent distribution networks. Section 2.3 describes

the modeling of discrete assets such as OLTCs and capacitor banks in distribution
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systems, section 2.4 describes the operational objectives in distribution systems and

section 2.5 provides an overview of network reduction in distribution systems and

how it improves scalability. In section 3, we provide a DSO centric approach to

the dispatch of flexibility through receding horizon OPF solutions, with section 3.1

providing a method for the optimal dispatch of discrete assets in three-phase distri-

bution networks and section 3.2 provides a method for the dispatch of energy storage

in three-phase distribution networks. Section 3.3 describes a method to account for

uncertainty of solar PV when dispatching flexibility and finally section 3.4 presents

a hierarchical scheme for the coordination of DERs in order to provide grid market

services. In section 4, we present an DSO-aggregator hybrid approach for the coordi-

nation of flexibility, with section section 4.1 introducing the concept of convex inner

approximation and its advantage over other optimal power flow techniques. Using

this convex inner approximation methods, section 4.2 presents a method that man-

ages the discrete assets such as OLTCs and capacitor banks to position the voltage

close to nominal, whereas section 4.3 develops a method to embed grid physics into

aggregate feeder flexibility and enables a real-time disaggregation in response to mar-

ket signals. This document is finally concluded with section 5 providing the final

remarks and outlining the scope for future research in this area.

34



Chapter 2

Modeling of distribution systems

This section presents an overview of the modeling techniques utilized in distribu-

tion systems. Section 2.1 presents the modeling of three-phase distribution networks,

whereas section 2.2 presents the modeling of balanced single phase equivalent distri-

bution networks. Both of these models can be useful depending upon the details of

the application [116]. Next section 2.3 provides the modeling of discrete devices such

as transformers and capacitor banks. Section 2.4 describes the operational objectives

in distribution system OPF and finally section 2.5 introduces the network reduction

techniques utilized in this work.

2.1 Modeling three-phase distribution

feeders

The power flow equations relate the voltages in the network with the power injections.

Traditionally, DistFlow method is used to model the power flow equations in distribu-
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tion networks [27]. However, these methods assume a balanced network model, which

is not the case when 3-phase distribution networks with significant small-scale renew-

able generation are considered. Distribution systems are often unbalanced and it

becomes necessary to study the three-phase model of the system for accurate analysis

and control [68].

Thus, the aim of this section is to develop an AC power flow model of an unbal-

anced distribution feeder that relates the feeder’s voltage and current signals with

power injections. Specifically, we employ a branch flow model (BFM) to represent

the AC physics in the unbalanced feeder [117].

In modeling 3-phase AC power flows, we need to leverage mathematical operators

|.|, ◦, (.)∗ and diag(.) to represent the cardinality of a set, the Hadamard product

of matrices, the complex conjugate operator, and the diagonal operator, respectively.

Then, given a radial, 3-phase feeder with N nodes, denote N = {1, 2, . . . , N} as the

set of all nodes, φ = {a, b, c} as the set of phases at each node, L = {1, 2, . . . , L} =

{(m,n)} ⊂ (N × N ) as the set of L branches, and G = {1, 2, . . . , G} ⊆ N as the

set of all nodes with DERs. Let vector Vn(t) ∈ C|φ| be the complex voltage at

node n and time t, with Wn(t) = Vn(t)Vn(t)∗, il(t) ∈ C|φ| be the current in branch

l at time t, with Il(t) = il(t)il(t)∗, Sl(t) = Vn(t)il(t)∗ be the apparent power in

branch l at time t. Further, let Zl = Rl + jXl ∈ C|φ|×|φ| be the impedance matrix

of branch l. Let Snet
n (t) ∈ C|φ| be the complex net power injection at node n at

time t and is based on complex solar PV inverter injections and electric demand,

SS
n(t), SL

n(t) ∈ C|φ|, respectively. In addition, let P b
n (t) = P d

n (t)− P c
n(t) ∈ R|φ| be the

active power delivered from a battery at node n at time t, with P d
n (t) ∈ R|φ| being

the battery discharge power and P c
n(t) ∈ R|φ| being the battery charging power. Also
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let qb
n(t) ∈ R|φ| be the reactive power delivered from the battery inverter. Herein,

we assume that each resources is connected to a single phase. Based on the above

notation, the physics of 3-phase AC power flows are given by the following equations:

0 =Wn(t)−Wm(t) + (Sl(t)Z∗l + ZlSl(t))− ZlIl(t)Z∗l ∀l ∈ L (2.1a)

0 =diag(Sl(t)− ZlIl(t)−
∑
p

Sp(t)) + Snet
n (t) ∀l ∈ L (2.1b)Wn(t) Sl(t)

Sl(t)∗ Il(t)

 =

Vn(t)

il(t)


Vn(t)

il(t)


∗

∀l ∈ L (2.1c)

0 =real{Snet
n (t)− SS

n(t) + SL
n(t)} − P b

n (t) ∀n ∈ G (2.1d)

0 =imag{Snet
n (t)− SS

n(t) + SL
n(t)} − qb

n(t) ∀n ∈ G (2.1e)

In (2.1), (2.1a) relates the voltage drop in the network with the branch power

flows, (2.1b) represents the power balance equation at each node which ensures that

the power entering a node equals the power leaving, and (2.1c) is the non-linear power

flow constraint that relates voltages and currents to new matrix variables Wn(t), Il(t)

and Sl(t). In (2.1d) and (2.1e), the active and reactive nodal power balance equations

are defined.
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2.2 Modeling balanced distribution feed-

ers

Balanced equivalent models can be sufficiently accurate depending upon the appli-

cation and the distribution network under consideration [116]. Consider a radial,

balanced distribution network as a graph G = {N , E}, where N is the set of nodes

and E is the set of branches, such that (i, j) ∈ E , if nodes i, j ∈ N are connected,

and |E| = n, |N | = n + 1. Node 0 is assumed to be the head-node (i.e., substation)

node with a fixed voltage V0 and define N+ := N \{0}. Let Vi be the voltage phasor

at node i and Iij the current phasor in branch (i, j) ∈ E . Then, we define vi := |Vi|2

and lij := |Iij|2. Let Sij = Pij + jQij denote the sending end power flow from bus i

to bus j where Pij and Qij denote the active and reactive power flows respectively

and let si = pi + jqi denote the power injection into bus i where pi and qi denote

the active and reactive power injections, respectively. Next, denote rij and xij as the

resistance and reactance of the branch (i, j) ∈ E , respectively, which gives complex

branch impedance zij = rij + jxij.

Then, based on theDistFlow model for radial networks [27], the variables (s, S, v, l, s0)

at any time-step k are described by the following equations:

Sij[k] =si[k] +
∑
h:h→i

(Shi[k]− zhilhi[k]), ∀(i, j) ∈ E (2.2)

0 =s0[k] +
∑
h:h→0

(Sh0[k]− zh0lh0[k]) (2.3)

vi[k]− vj[k] =2Re(zijSij[k])− |zij|2lij[k], ∀(i, j) ∈ E (2.4)
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lij[k] = |Sij[k]|2
vi[k] , ∀(i, j) ∈ E (2.5)

Apart from the nonlinear relation (2.5) of l to S and v, (2.2)-(2.4) represent a linear

relationship between the nodal power injections s, the branch power flows S, and the

nodal voltages v. Thus, in an AC OPF optimization formulation, (2.5) would be a

non-convex equality constraint, which begets a non-convex formulation.

2.2.1 Matrix notation for modeling balanced dis-

tribution feeders

Figure 2.1: Diagram of a radial distribution network from [6].

Clearly, the line losses in (2.5) are nonlinear, and since it is an equality constraint,

this makes the DistFlow model non convex. In the remainder of this section, we

develop a mathematical model of the radial network that expresses the constrained

variables as a linear function of the power injections and the branch currents. Through

this approach, we are able to separate the model into linear and nonlinear components.

From the incidence matrix B of the radial network and following the method

adopted in [6], (2.2) and (2.3) can be expressed through the following matrix equa-
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tions:

P = p+ AP − ARl Q = q + AQ− AXl, (2.6)

where P = [Pij](i,j)∈E , Q = [Qij](i,j)∈E , p = [pi]i∈N+ , q = [qi]i∈N+ , R = diag{rij}(i,j)∈E ,

X = diag{xij}(i,j)∈E , l = [lij](i,j)∈E and A = [0n In]B − In, where In is the n × n

identity matrix and 0n is a column vector of n rows.

Defining C = (In − A)−1, DR = (In − A)−1AR, and DX = (In − A)−1AX, allows

us to simplify (2.6) to:

P = Cp−DRl Q = Cq −DXl, (2.7)

Remark 1. The matrix (In − A) is nonsingular since In − A = 2In − [0n In]B =

2In−Bn, where Bn := [0n In]B is the n×n matrix obtained by removing the first row

of B. For a radial network, the vertices and edges can always be ordered in such a way

that B and Bn are upper triangular with diag(Bn) = 1n, which implies that 2In −Bn

is also upper triangular and diag(2In − Bn) = 1n. Thus, det(2In − B
′) = 1 > 0 and

In − A is non-singular.

Similarly, (2.4) can be applied recursively to the distribution network in Fig. 2.1

to get the matrix equation:

[vi − vj](i,j)∈E = 2(RP +XQ)− Z2l (2.8)

where Z2 := diag{z2
ij}(i,j)∈E . Based on the incidence matrix B, the left hand side of
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(2.8) can be formulated in terms of the fixed head node voltage as:

C>[vi − vj](i,j)∈E = V − v01n (2.9)

where V := [vi]i∈N+ . Based on (2.9), (2.8) can be expressed as:

V = v01n + 2(C>RP + C>XQ)− C>Z2l (2.10)

Substituting (2.7) into (2.10), we obtain a compact relation between voltage and

power injections shown below.

V = v01n +Mpp+Mqq −Hl (2.11)

where Mp = 2C>RC, Mq = 2C>XC and

H = C>(2(RDR +XDX) + Z2)

Remark 2. The matrix H is non-negative, when the underlying distribution network

is either inductive (X is non-negative), capacitive (X is non-positive) or purely resis-

tive (X is zero matrix). This fact helps in obtaining the convex inner approximation

described later in the paper in section 4.2. Substituting the values of C, DR and DX

into the expression of H, gives:

H = (In − A)−>[2(R(In − A)−1AR +X(In − A)−1AX) + Z2].

To show H is non-negative, we just need to focus on A and (In − A)−1. Due to the

definition, A is non-negative and In−A has positive diagonal entries and non-positive
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off-diagonal entries and is, hence, a Z-matrix. Also, In−A = 2In−Bn and 2In−Bn

is an upper triangular matrix. Hence its eigenvalues are positive, so it is also a non-

singular M-matrix (i.e., a Z-matrix whose eigenvalues have non-negative real part).

Non-singular M-matrices are a subset of a class of inverse-positive matrices, i.e.,

matrices with inverses belonging to the class of non-negative matrices (all the elements

are either equal to or greater than zeros) [118, Corollary 3.2]. Hence, (In − A)−1 is

a non-negative matrix. As A is also a non-negative matrix, then H is clearly non-

negative whenever matrix R is non-negative and either X is non-negative (i.e., all

lines are inductive), X is non-positive (i.e., all lines are capacitive) or X is zero (i.e.,

all lines are purely resistive).

Apart from the nonlinear relation (2.5) of l to P , Q and V , (2.7) and (2.11)

is a linear relationship between the nodal power injections p, q, the branch power

flows P ,Q and node voltages V . The nonlinearity in the network is represented

by (2.5), as the current term l is related to the power injections and node voltages

in a nonlinear fashion. Including this term into the optimization model would render

the optimization problem non-convex, however, neglecting this term could result in

an inadmissible linear OPF solution. In the next section, we model the discrete grid

resources such as OLTCs and capacitor banks.
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2.3 Modeling discrete assets in distri-

bution feeders

2.3.1 Discrete device nomenclature

Consider the distribution grid defined in Section 2.2, where C ⊆ N+ represent the

sets of nodes with capacitor banks, and T ⊆ E is the set of branches with on-

load tap change transformers (OLTC) or voltage regulators. The tap-ratio for the

OLTC/regulator at branch m ∈ T is denoted by tm with the tap position defined by

ntr
m ∈ Z, e.g. ntr

m ∈ {−16, . . . , 0, . . . ,+16}. The number of capacitor bank units is

ncp
i ∈ Z at node i ∈ C and bi as the capacitor bank admittance at node i ∈ C.

2.3.2 OLTC and capacitor bank modeling

The voltage relation between the nodes across an OLTC is given by:

0 =vi − t2mvj ∀m ∈ T (2.12)

0 =tm − (1 + τmn
tr
m) ∀m ∈ T (2.13)

The constraints (2.12) and (2.13) define the relation between the tap ratio and the

tap position with τm ∈ R being the tap step. Note that the equality constraint (2.12)

represents a non-convex constraint and makes the OPF problem NP-hard. The non-

linearity related to the OLTC taps is approximated with piecewise linear (PWL) con-

straints in (2.15a)-(2.15d) to obtain an accurate representation as described in [46]
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and summarized next. The coupling between vi, vj, tm can be expressed as:

vi = t2mvj ≈ t2m,0vj +
ntr

m−ntr
m+1∑

p=1
∆tm,pvj, (2.14)

where ∆tm,p = t2m,p − t2m,p−1, {tm,0, tm,1, tm,2, . . . , tm,K} represent the fixed tap ratio

settings of the OLTC connected at branch m and ntr
m − ntr

m + 1 is the index of tap

position ntr
m. Next, we use binary variables {sm1 , sm2 , . . . , smK} with adjacency conditions

smp ≥ smp+1, p = 1, 2, . . . , K − 1 to represent the operating status of the OLTC branch

and the following group of mixed-integer linear constraints exactly describe the OLTC

connected at branch m in (2.14):

vi = t2m,0vj +
K∑
p=1

∆vmp (2.15a)

0 ≤ ∆vmp ≤ smp v∆tm,p (2.15b)

∆tm,p(vj − (1− smp )v̄) ≤ ∆vmp ≤ ∆tm,pvj (2.15c)

smp+1 ≤ smp , p = 1, 2, . . . , K − 1. (2.15d)

The relation between capacitor bank admittance (bi) and reactive power injected

by capacitor banks (Qcp
i ) is given by (2.16), whereas the relation between capaci-

tor bank admittance and number of capacitor bank units with yc,i ∈ R being the

admittance of a single capacitor bank unit is given by (2.17)

0 =Qcp
i − vibi ∀i ∈ C (2.16)

0 =bi − yc,in
cp
i ∀i ∈ C (2.17)
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If Qcp
i represents the reactive power injection from capacitor banks at node i, then:

Qcp
i = vibi =

ncp
i∑

p=1
(vibi,p) (2.18)

represents the bilinearity, where {bi,1, bi,2, . . . , bi,K} are the admissible admittance

values of controllable capacitor banks at node i. Similar to the formulation in (2.15a)-

(2.15d), for the capacitor bank at node i, (2.18) can be equivalently expressed by the

following set of linear constraints [46]:

Qcp
i =

K∑
p=1

Qs
i,p (2.19a)

0 ≤Qs
i,p ≤ uipvbi,p (2.19b)

bi,p(vi − (1− uip)v̄) ≤Qs
i,p ≤ vibi,p (2.19c)

uip+1 ≤uip, p = 1, 2, . . . , K − 1. (2.19d)

where binary {ui1, ui2, . . . , uiK} represent the operating status of the capacitor bank

units on node i.

2.4 Operational Objectives in distribu-

tion system OPF

The general distribution system OPF problem can be expressed as:

min
x
f(x) (2.20a)
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s.t. g(x) ≤ 0 (2.20b)

h(x) = 0 (2.20c)

where f(x) is the objective or the cost to be minimized. A review on the different

objectives in distribution systems operations is provided in section 1.6.1. Specifically,

the following practical objectives are common in three-phase distribution networks:

• f(W ) = ∑
i(Wi −W nom)2 (e.g., minimizing voltage deviation from nominal)

• f(I) = ∑
l(diag(Rl ◦ Il)) (e.g., minimizing network line loss)

• f(P0)=(P0 − P ref)2 (i.e., tracking a grid/head-node reference power set-point)

• f(P d + P c) = ∑
i(P d

i + P c
i ) (e.g., minimizing battery degradation)

• f(P d − P c) = (P d − P c − P ref)2 (i.e., tracking VB reference trajectory)

Furthermore, (2.20c) represents the power flow equations which form an equal-

ity constraint and (2.20b) represents the network constraints (e.g., voltage, current,

power flow limits). For (2.20) to be a convex optimization problem, f(x) and g(x)

have to be convex functions and in the equality constraint, h(x) has to be affine [119].

However, the power flow equations represented by h(x) = 0 in (2.20) are non-linear,

making the OPF problem non-convex. A major contribution of this work is to propose

relaxations to these non-linear equations, in order to achieve a convex formulation.

The reasoning behind this approach is that convex optimization problems can be

solved very efficiently and reliably and they scale as a polynomial with the increase

in problem size, as compared to non-convex problems that in general scale exponen-

tially. Due to this reason, convexity is a key issue when setting up any optimization
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problem [120].

Energy systems especially are an important area for the application of various

optimization techniques. This is due to the challenging nature of the optimization

in energy systems due to: (a) their non-convexity( which results from the non-linear

power flow equations, the discrete nature of switching assets and nonlinearity of sev-

eral other devices), (b) the large scale of the problem (due to the possibly hundreds

of thousands of controllable set-points) and (c) due the requirements on solve-time

(which can range from seconds to minutes to hours to several days depending on the

particular application). Due to all the above mentioned challenges, energy systems

are an ideal candidate for testing the applicability, reliability and performance of

various convex and non-convex optimization techniques. In this work, we compare

and leverage several convex optimization methods such as linear programs (LPs),

quadratic programs (QPs), second order conic programs (SOCPs) and semi-definite

programs (SDP) for continuous optimization. For discrete optimization, we utilize

several mixed-integer programming (MIP) methods, such as mixed-integer linear pro-

gram (MILP) and mixed-integer second order cone program (MISOCP). We also

illustrate the benefits and drawbacks of these methods when applied to various opti-

mization problems in distribution networks.

2.5 Network reduction

A distribution feeder may be made up of several thousands of nodes, with each node

having possibly hundreds of controllable DERs. With the non-linearity of the power

flow equations and the large scale of these networks, scalability becomes an issue. In
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order to maintain the scalability of the algorithms, network reduction is employed on

the large-scale three-phase feeders. This network reduction is accomplished through

Kron reduction [121]. The Kron reduction is based on creating clusters of proximal

nodes with similar voltage sensitivities to current injections [122]. Within each cluster,

a “super-node” is designated to represent the cluster in the reduced network [123].

The maximum absolute percent error (Max-APE) in intra-cluster voltage magnitudes

compares how representative the super node voltages in the reduced network are of

the cluster’s voltages under AC load flow analysis. It is shown in [124] that the

Max-APE is smaller than the 2% RMSE Furthermore, this error can be considered

as a model mismatch in a stochastic formulation to make the solution robust against

modeling errors. Within each cluster, solar PV and demand are also aggregated up to

the corresponding super-node. The aggregate of flexible devices within a super-node

then represents a VB, which in this work is made up of less than 200 flexible DERs.

Figure 2.2 shows the process of network reduction in electrical circuits by partitioning

the network into clusters and then representing each cluster as a super-node, with

aggregate flexible VBs and aggregate demand.

Figure 2.2: Process for network reduction of electrical circuits by partitioning the network
into clusters of similar nodes with the same color. The largest nodes in each cluster is the
designated super-node.

48



Chapter 3

Receding horizon OPF in distribu-

tion systems

This section presents a utility-centric approach, where the utility controls the dispatch

of flexible resources based on solving a receding horizon optimal power flow (OPF)

problem. This approach assumes that the utility or DSO has all the required network

and resource data and also control over flexible customer devices. Based on these

assumptions, section 3.1 presents a three-phase OPF for the dispatch of discrete

assets, whereas section 3.2 presents a three-phase multi-period OPF for the dispatch

of flexible energy storage. Section 3.3 considers the uncertainty in the solar PV when

solving the OPF problem and finally section 3.4 presents a hierarchical framework

for the coordination and control of distributed energy resources (DERs) in order to

provide grid market services.
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3.1 Three-phase multi-period OPF of dis-

crete assets

This section presents a method for the co-optimization of discrete and continuous

devices in an unbalanced three-phase distribution network with significant renewable

generation, focusing on the dispatch of discrete devices. To overcome the challenge of

dispatching both slower mechanically-actuated grid assets and flexible and response

VBs, a hierarchical control scheme is presented where the discrete mechanical assets

are dispatched at a slow time-scale (called the outer loop or OL) as a mixed-integer

program (MIP) and a fast inner loop or IL for the dispatch of flexible VBs. The

optimization programs for discrete and continuous devices are assumed to operate

at two different time scales as they manage controllable grid resources with different

levels of responsiveness and flexibility. The outer loop utilizes a linearized three-

phase model of the distribution network to dispatch mechanical assets with the goal

of maximizing voltage margins. The aim is to position the nodal voltages within a

“nominal range”, while minimizing the use of flexible reactive power resources, which

can then be made available to the inner loop when the uncertainty reveals itself. The

set-points of mechanical assets obtained from the outer loop are then adopted in the

inner loop for the dispatch of flexible VBs.

3.1.1 Introduction

The distribution grid is also made up of many different types of discrete and con-

tinuous operated devices. Discrete devices like the capacitor/reactor banks and line
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regulators (ON/OFF) and load-tap-changing (LTC) transformers are an integral part

of the distribution management system. These devices operate at different time scales

(hourly) as compared to the flexible VBs, which necessitates the use of a separate

optimization loop to coordinate them. Furthermore, the mechanical assets also have

operational constraints on tap changes per hour to limit wear and tear, which neces-

sitates separation. Heuristics have been proposed to solve this problem, but given

the large number of devices encountered in practical systems, they represent a com-

putational challenge [41].

Due to the non-convexity of three-phase OPF, linear approximate models are often

used to solve OPF problem. One particular approximation is an extension of the

DistFlow model to three-phase unbalanced power flows, Dist3Flow, that is obtained

by linearization and certain assumptions on the per-phase imbalances [69, 70]. Also,

due to the discrete nature of mechanical devices, including them into an optimization

problem renders the problem NP-hard [42]. Previously, McCormick relaxation and

linearization techniques have been used to incorporate these devices into the OPF

problem for a balanced network [45]. This paper builds upon these works but lever-

ages the notion that discrete devices and continuous VBs can offer their flexibility at

different time-scales and, hence, can be optimized in separate loops. This is further

illustrated in Fig. 3.1a which shows the hierarchical framework for the dispatch of

grid assets and Fig. 3.1b which illustrates the concept of voltage margins.

The main contributions of this work are as follows:

• In this work, the authors present a novel hierarchical OPF scheme for distri-

bution systems operations that separates out the slow mechanical (called the
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(a) (b)

Figure 3.1: Voltage positioning in a distribution network. (a) The outer-loop (OL) is cast
as a voltage positioning (VP) problem, which employs a convex model to maximize voltage
margins and validated with GridLab-D (GLD). (b) Voltage margins are represented as the
minimum distance from a nominal range [V , V ] to Vmin and Vmax.

outer loop scheme) and a fast flexible VB (called the inner loop scheme) grid

assets on two different timescales.

• For the dispatch of slow discrete devices such as OLTCs and capacitor banks,

a linearized three-phase OPF model (Dist3Flow) is used to position voltage

robustly against uncertain net-load, i.e., position nodal voltages within a nom-

inal range. It is shown through simulation results that the voltage positioning

performs the role of robust dispatch under uncertainty.

The rest of this section is organised as follows. Section 3.1.2 provides the MIP formu-

lation of the outer loop to optimize the operation of mechanical assets. Simulation

results on realistic feeders are presented in Section 3.1.3 and finally the conclusions

are presented in Section 3.1.4.
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3.1.2 Formulation of the voltage positioning op-

timization

In this optimization problem, we schedule the discrete assets by solving a multi-period

(12-24 hourly periods) mechanical asset scheduling problem for a three-phase feeder

model to position the voltage close to nominal values. In addition to scheduling

mechanical assets, this optimization problem also positions energy of the batteries

(i.e., schedules active power exchanges) to take into account the variability of solar PV

generation and forecast energy demands (and, possibly, energy market interactions).

Note that the reactive capability of the flexible resources like solar PV is reserved

(minimized in the optimization) for corrective control in the inner loop dispatch.

Since discrete decision variables only take integer values, this optimization problem

turns into a mixed-integer problem, which is NP-hard. Branch and bound techniques

can be effective on mixed-integer programs if their continuous versions are convex.

In order to reduce the computational complexity of the outer loop, a three-phase

linearized model of the network is used and the problem is reduced to a mixed-

integer linear program (MILP) [69]. A linear power flow model is suitable due to the

longer prediction horizon and slower (hourly) timescale. This problem is solved in

a receding horizon fashion where the solar and load forecasts are used to obtain the

operation of discrete assets.

In order to formulate the optimization problem, we utilize the three-phase distri-

bution network model presented in section 2.1 with the simplification of neglecting

the non-linear terms in order to obtain a simplified three-phase linear model.

Define the prediction horizon as T = {0, 1, . . . , T − 1}, then the optimization
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problem is formulated as:

min
∑
t∈T

∑
n

(1TqS
n(t))2 + (1Tqb

n(t))2 + ρv1TVv,n(t) (3.1a)

s.t. 0 =Wn(t)−Wm(t) + (Sl(t)Z∗l + ZlSl(t)) ∀l ∈ L (3.1b)

0 =diag(Sl(t)− ZlIl(t)−
∑
p

Sp(t)) + Snet
n (t) ∀l ∈ L (3.1c)

0 =real{Snet
n (t)− SS

n(t) + SL
n(t)} − P b

n (t) ∀n ∈ G (3.1d)

0 =imag{Snet
n (t)− SS

n(t) + SL
n(t)− qb

n(t)−Qcp
n (t)} ∀n ∈ G (3.1e)

|diag(Sl(t))| ≤ Smax,l ∀l ∈ L (3.1f)

− Vv,n(t) + Vn
2 ≤ diag(Wn(t)) ≤ Vn

2 + Vv,n(t) ∀n ∈ N (3.1g)

V 2
min,n ≤ diag(Wn(t)) ≤ V 2

max,n ∀n ∈ N (3.1h)

|SS
n(t)| ≤ Gmax,n ∀n ∈ G (3.1i)

Bn(t+ 1) = Bn(t)− P b
n (t)∆t ∀n ∈ G (3.1j)

(P b
n (t))2 + (qb

n(t))2 ≤ H2
max,n ∀n ∈ G (3.1k)

Bmin,n ≤ Bn(t) ≤ Bmax,n ∀n ∈ G (3.1l)

Pmin,n ≤ P b
n (t) ≤ Pmax,n ∀n ∈ G (3.1m)

(2.15a)− (2.15d), (2.19a)− (2.19d) (3.1n)

for t ∈ T . The objective function in (3.1a) minimizes the use of reactive power from

flexible VBs and solar PV inverters where qS
n = imag{SS

n} and Vv,n being the voltage

slack that is penalized in order to position the voltage Wn within the tighter voltage

bounds Vn and Vn as shown in (3.1h). The parameter ρv is the trade-off parameter
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to determine penalty on voltage slack compared to flexible reactive power utilization,

e.g., a small value of ρv would minimize the reactive power from flexible VBs while

allowing the nodal voltages to vary beyond the tighter voltage bounds through the

voltage slack, whereas a large value of ρv would penalize the voltage slack resulting

in the nodal voltages lying within the tighter voltage bounds, but in the process

utilizing flexible reactive power. Further, (3.1b)-(3.1e) represent the linear power

flow equations for the three-phase network, obtained by neglecting the non-linear loss

term in (3.1b). The term Qcp
n in (3.1e) represents the reactive power injection from

capacitor banks. Inequality (3.1f) bounds the line power flow below apparent power

limit Smax,l ∈ R|φ|, while (3.1g) captures the voltage bounds with Vmin,n ∈ R|φ| and

Vmax,n ∈ R|φ| as the lower and upper voltage limits and inequality (3.1i) bounds the

apparent power of the solar inverter. Inequalities (3.1k)-(3.1m) define bounds on

VB apparent power, state of charge (SoC), and active power dispatch, respectively.

Specifically, Hmax,n ∈ R|φ| defines the apparent power limit of the corresponding VB’s

complex power injection and Bmin,n, Bmax,n ∈ R|φ| and Pmin,n, Pmax,n ∈ R|φ| are the

VB’s lower and upper energy and power bounds, respectively. The relation between

the battery SoC and battery power is given by (3.1j), where ∆t is the width of

the discrete timesteps. In this work, we employ the simplifying assumption that

VBs have unity charge/discharge efficiencies, which avoids the technicalities around

simultaneous charging and discharging, which is reasonable for VBs as explained

in [9] and represents ongoing work [125]. Analysis on storage with non-unity charge

and discharge efficiency will be presented in the section 3.2. Finally, (2.15a)-(2.15d)

represent modeling of capacitor and (2.19a)-(2.19d) represent the transformer model,

both presented in section 2.3.
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The optimization problem in (3.1) represents a MISOCP problem which can be

efficiently solved through commercial solvers such as Gurobi [126]. The next sec-

tion presents simulation results on practical distribution systems utilizing the voltage

positioning formulation presented here.

3.1.3 Simulation Results

For the validation of the proposed voltage positioning (VP) scheme we consider a

realistic 1200 three-phase Orange and Rockland utility (ORU) feeder. Through net-

work reduction technique presented in section 2.5, this feeder is reduced to a 131

node three-phase network. In this formulation the aim is to prevent deviations from

nominal (1.0 pu in this case) by having a pre-defined narrow range (± 0.02 pu in

this case) and penalize solutions that are beyond this level through the voltage slack.

This way the voltage margin is now a priced resource in the outer loop VP problem.

The simulation setup is depicted in Fig. 3.2. Since the reactive power from flexible

Figure 3.2: Setup for the stochastic simulation of outer loop with validation of the results
done in GridLab-D (GLD).

VBs also helps manage voltages, there is a natural trade-off between voltage devia-
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tions from nominal and the use of flexible reactive power, so we can price reactive

power resources as well. We capture this trade-off in the VP problem by consider-

ing the sensitivity of voltage deviations and reactive power injections in designing a

“narrow-enough” range of acceptable deviations. The simulation results show that

the MISOCP solves in less than 90 seconds with 0% constraint violations and with

less than 5% optimality gap. The optimality gap and solve time results are depicted

in Fig. 3.4a and Fig. 3.4b respectively. The VP formulation is also robustified by

considering the uncertainty in solar PV and demand. A chance constrained problem

is formulated and its results are compared with the deterministic VP problem. As

shown in Fig. 3.3, the VP alone can manage stochastic conditions and ensure robust

optimized dispatch of mechanical assets. This case study shows the inbuilt robustness

in the VP formulation to account for uncertainty in forecast.

Figure 3.3: Comparing the deterministic VP formulation (on left) against two different
robust formulations (Gaussian in the middle; unimodular Chebyshev on the right) for a
131-node reduced ORU (Orange and Rockland utility) network for a full day with peak solar
PV generation around noon. Clearly, all are robust to the uncertainty. So there is no reason
to further robustify the deterministic VP formulation.
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(a) (b)

Figure 3.4: (a) MIP gap of the MISOCP formulation showing a worst case of 5% (b) Solve
time of the VP problem with a worst case of 90 seconds.

3.1.4 Conclusions

This work presents a technique to optimally solve an unbalanced three-phase distri-

bution network by co-optimizing the slow and fast control assets using multi-period

optimal power flow techniques. A multi-period mixed-integer linear program solves

the OPF for the slow mechanical assets as a voltage positioning (VP) problem that

aims to utilize the mechanical assets in positioning the voltage close to nominal val-

ues, while at the same time minimizes the use of flexible reactive power resources.

Validation of the proposed scheme is demonstrated through GridLab-D on a realistic

reduced ORU network and the results illustrate the robustness of the VP problem and

show that it achieves the objective of minimizing voltage deviations under uncertainty.
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3.2 Three-phase multi-period OPF of flex-

ible energy resources

This section presents an efficient algorithm for the multi-period optimal dispatch of

flexible energy storage in an unbalanced distribution feeder with significant solar PV

penetration. The three-phase, non-convex optimal power flow (OPF) problem is for-

mulated as a convex second-order cone program (SOCP) for the dispatch of batteries

in a receding-horizon fashion in order to counter against the variable, renewable gen-

eration. The solution of the SOCP is used to initialize a nonlinear program (NLP)

in order to ensure a physically realizable solution. The phenomenon of simultaneous

charging and discharging of batteries is rigorously analyzed and conditions are derived

that guarantee it is avoided. Simulation scenarios are implemented with GridLab-D

for the IEEE-13, IEEE-123 test feeders and several Orange and Rockland (ORU)

feeders that illustrate not only AC feasibility of the solution, but also near-optimal

performance and solve-times within a minute.

3.2.1 Introduction

The rapid growth in distributed solar PV generation over the past decade has prompted

significant interests and investments in demonstration of substation automation tech-

nology, distributed energy resources or DERs, such as energy storage and smart in-

verters, and autonomous demand response [19, 127]. To maintain grid operating

conditions under significant renewable (and intermittent) generation, the utility grid

operators can leverage the power and energy flexibility inherent to many DERs. How-
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ever, unlike traditional generation, DERs, such as batteries are energy constrained,

which give rise to the need for multi-period decision-making and predictive optimiza-

tion.

The optimal power flow (OPF) is a useful tool to coordinate the grid resources

subject to the nonlinear power flow equations and network constraints [50]. For

constant power loads, the AC power flow equations relate the voltages in the network

with the power injections. It has been shown in [67] that the solution space of the

three-phase OPF is non-convex and the solution space of the OPF problem and

its convex hull are different. The full ACOPF model represents an NP-hard, non-

convex problem. Distribution networks are also inherently unbalanced which makes

it important to study the full three-phase models of these networks [68].

In this section, we develop a multi-period SOCP-NLP algorithm that provides a

near optimal but guaranteed feasible solution. We also present analysis on simulta-

neous charging and discharging to different objective functions and provide compre-

hensive simulation results on 100+ node feeder systems to illustrate computational

effectiveness of the proposed optimization algorithms. The optimized solutions ob-

tained from the relaxed SOCP model, are used to initialize a nonlinear program (NLP)

of the actual AC power flow to obtain a physically realizable solution. Furthermore,

the real-power solutions that form the energy trajectory and are obtained from the

SOCP are fixed in the NLP, leading to a decoupling of the different time-steps. As

a result, the NLP solves each time-step separately (and possibly in parallel), leading

to a scalable framework. Validation is performed with GridLab-D [128].

Thus, main contributions of this work are as follows:

1. A novel approach to obtain a near-optimal feasible solution by temporal de-
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coupling of the NLP initialized with the solution from a multi-period three-phase

SOCP convex relaxation is presented. By fixing the active-power solutions, the

time-steps of the NLP are decoupled leading to a scalable framework

2. Rigorous analysis is performed on the convex formulation and general conditions

are derived that guarantee that the phenomenon of simultaneous charging and

discharging of batteries is avoided for different types of network objectives.

The rest of this section is organized as follows. Section 3.2.2 develops the three-

phase OPF problem and the convex formulation for the dispatch of batteries to at-

tain network objectives. The role of the objective function on the conditions for

which simultaneous charging and discharging of batteries is avoided are analyzed in

Section 3.2.3. Section 3.2.4 guarantees a physically realizable battery multi-period

dispatch by coupling the relaxed SOCP with the exact NLP formulation. Simulation-

based analysis and validation results are discussed in Section 3.2.5 for the IEEE-123

node system, realistic utility systems and GridLab-D. Conclusions are presented in

Section 3.2.6.

3.2.2 Convex formulation of Multi-period 3-phase

OPF

The aim of this section is to develop a convex formulation of the multi-period optimal

power flow in three-phase distribution networks that can be used for the dispatch of

DERs in the network. Figure 3.5 illustrates the types of DERs available to the

optimizer at each node and the corresponding notation. A common objective in

distribution networks is to minimize the real power losses, while keeping the system
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within its operational grid constraints [129]. Another common objective is to track

some reference grid signal at the feeder head-node. This program optimizes the

batteries (i.e., the real and reactive powers) in the network, whose architecture is

shown in figure 3.5, over the minute-to-minute time-scale. Such fast solution times for

large networks requires formulation that can be solved in polynomial time. Thus, we

focus on the following convex formulation. A three-phase second order cone program

Figure 3.5: Distributed storage architecture. The batteries are controlled through a four
quadrant control scheme and can supply and consume both real and reactive power. Each
distributed storage is composed of a renewable source of energy such as solar power and a
battery bank, each with its own inverter.

(SOCP) is developed to solve the multi-period optimization problem.

If x = {P d
n (t), P c

n(t), qb
n(t), SS

n(t)} be the set of independent optimization variables

∀ t ∈ T , n ∈ N , then the problem of optimally dispatching the batteries to minimize

objective function f(x) can be formulated as:

min
P d
n (t), P c

n(t), qb
n(t), SS

n(t)
f(x) (3.2a)

s.t.Wn(t) Sl(t)

Sl(t)∗ Il(t)

 =

Vn(t)

il(t)


Vn(t)

il(t)


∗

∀l ∈ L, (3.2b)

0 = Wn(t)−Wm(t) + (Sl(t)Z∗l + ZlSl(t))− ZlIl(t)Z∗l ∀l ∈ L, (3.2c)
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0 = diag(Sl(t)− ZlIl(t)−
∑
p

Sp(t)) + Snet
n (t) ∀l ∈ L, (3.2d)

0 = real(Snet
n (t)− SS

n(t) + SL
n(t))− P d

n (t) + P c
n(t) ∀n ∈ G, (3.2e)

0 = imag(Snet
n (t)− SS

n(t) + SL
n(t))− qb

n(t) ∀n ∈ G, (3.2f)

|diag(Sl(t))| ≤ Smax,l ∀l ∈ L, (3.2g)

V 2
min,n ≤ diag(Wn(t)) ≤ V 2

max,n ∀n ∈ N , (3.2h)

|SS
n(t)| ≤ Gmax,n ∀n ∈ G, (3.2i)

(P d
n (t)− P c

n(t))2 + (qb
n(t))2 ≤ H2

max,n, ∀n ∈ G, (3.2j)

0 = Bn(t+ 1)−Bn(t)− ηc,nP
c
n(t)∆t+ P d

n (t)
ηd,n

∆t ∀n ∈ G, (3.2k)

Bmin,n ≤ Bn(t) ≤ Bmax,n ∀n ∈ G, (3.2l)

0 ≤ P d
n (t) ≤ Pmax,n ∀n ∈ G, (3.2m)

0 ≤ P c
n(t) ≤ Pmax,n ∀n ∈ G, (3.2n)

P d
n (t) ◦ P c

n(t) = 0 ∀n ∈ G (3.2o)

where the above equations hold ∀t ∈ T . In the optimization problem (3.2a)-(3.2o),

(3.2a) represents the objective function, which, e.g., can be to minimize line losses,

i.e., f(x) = ∑L
l=1

∑T
t=t0

∑|φ|
φ=1(diag(Rl◦Il(t))). The constraint that relates the voltages

and currents in the network to the variables Wn(t), Il(t) and Sl(t) are in (3.2b) while

(3.2c) is the power flow equation relating the voltage drop in the network with the

branch power flows. Constraint (3.2d) represents the power balance equation at each

node which makes sure that the power coming into a node equals power going out,

(3.2e) and (3.2f) are the real and reactive nodal power balance equations, (3.2g) is the

line power flow constraint with Smax,l ∈ R|φ| being the apparent power limit of line l,
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Table 3.1: Variables used in the model formulation.

Variable type Variables

Decision P d
n (t), P c

n(t), qb
n(t), SS

n(t)
Dependent Wn(t), Sl(t), Il(t), Snet

n (t), Bn(t)
Constant parameters Zl, SL

n(t), Smax,l, Vmin,n, Vmax,n, Gmax,n, ηc,n,
ηd,n, Hmax,n, ∆t, Bmin,n, Bmax,n, Pmax,n

(3.2h) is the voltage limit constraint at each node with Vmin,n ∈ R|φ| and Vmax,n ∈ R|φ|

the lower and upper voltage limit respectively at node n, and (3.2i) represents the ap-

parent power limit of the solar inverter at node n. Constraints (3.2j)-(3.2o) describe

the battery power, state of charge (SoC) and charge/discharge complementarity con-

straints with Hmax,n ∈ R|φ| as the apparent power limit of the battery inverter at

node n and Bmin,n ∈ R|φ| and Bmax,n ∈ R|φ| as the lower and upper state of charge

limit of the battery respectively at node n and ∆t is the prediction horizon step. The

variable types used in the formulation are presented in Table 3.1.

The optimization model from (3.2a)-(3.2o) is nonlinear due to the equality con-

straints in (3.2b) and (3.2o), which can also be equivalently expressed as an inte-

ger constraint using binary variables as shown in [44]. These constraints make the

problem NP-hard. The nonlinear equality constraint in (3.2b) can equivalently be

expressed by the following two constraints [72]:

Wn(t) Sl(t)

Sl(t)∗ Il(t)

 � 0, rank

Wn(t) Sl(t)

Sl(t)∗ Il(t)

 = 1 (3.3)

The inequality constraint in equation (3.3) is an positive semi-definte (PSD) convex

constraint, whereas the rank constraint is non-convex. Removing the rank constraint

in (3.3) leads to a convex SDP formulation, however, it is desirable to find a second
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order cone relaxation that can be solved with numerically robust solvers such as

GUROBI [126]. SOCP relaxation can be applied to the PSD constraint in equation

(3.3) as in [130,131] to obtain the following relaxed SOC constraints:,

∥∥∥∥∥ 2Wn(t)(i, j)
Wn(t)(i, i)−Wn(t)(j, j)

∥∥∥∥∥
2
≤ Wn(t)(i, i) +Wn(t)(j, j) (3.4)∥∥∥∥∥ 2Il(t)(i, j)

Il(t)(i, i)− Il(t)(j, j)

∥∥∥∥∥
2
≤ Il(t)(i, i) + Il(t)(j, j) (3.5)∥∥∥∥∥ 2Sl(t)(i, j)

Wn(t)(i, i)− Il(t)(j, j)

∥∥∥∥∥
2
≤ Wn(t)(i, i) + Il(t)(j, j) (3.6)

If the complementarity constraint given in equation (3.2o) is also relaxed, the

optimization model becomes convex and can be solved with GUROBI (as a QCQP)

or MOSEK (as an SOCP). However, the reader will notice that removing (3.2o)

means that a feasible solution may charge and discharge a battery simultaneously,

which is not physically realizable. Therefore, we need to analyze conditions under

which the complementarity condition is satisfied at optimality. Section 3.2.3 provides

conditions for avoiding simultaneous charging and discharging in batteries which are

not dependent on the size of inverters.

3.2.3 Relaxing battery complementarity constraint

This section focuses on the phenomenon of simultaneous charging and discharging

(SCD) of batteries in (3.2). As detailed in [44] and [7, Appendix] and illustrated

in Fig. 3.6, SCD begets a family of battery dispatch solutions (P d
n (t), P c

n(t)) whose

nodal net-injections, P d
n (t) − P c

n(t), are identical but whose effect on the battery’s
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predicted state of charge introduces a undesirable prediction error proportional to∑
t∈T P

d
n (t)P c

n(t). To avoid SCD, one can enforce complementarity condition (3.2o)

between charging and discharging decision variables of each battery. However, (3.2o)

renders the SOCP problem non-convex. One approach to eliminate the challenging

constraint is to introduce a binary (charge/discharge) variable to formulate an equiv-

alent mixed-integer SOCP (MISOCP) problem. However, despite recent advances in

MIP solvers, the MISOCP is computationally challenging as the number of batter-

ies or the time-horizon increases. Instead, this work omits (3.2o) entirely and then

analyzes under which conditions the optimal solution satisfies the complementarity

constraint. This ensures that a (near) globally optimal solution can be achieved in a

computationally efficient manner.

In this section, we provide general conditions that provably guarantee no SCD and

hold for different practical optimization objectives and use-cases. Specific operating

conditions are identified where SCD is provably optimal (which is undesired) and

explicit methods are then presented that enforce complementarity.

The approach herein first augments the objective function to reduce the effects

of SCD’s fictitious energy losses, i.e., fictitious in the sense that the predicted state

of charge will be different from the actual state of charge since the battery cannot

operate with SCD (e.g., see Fig. 3.6), and is as follows:

f(x) + α
T∑
t=t0

|G|∑
n=1

|φ|∑
φ=1

P d
n (t)

(
1
ηd,n
− ηc,n

)
, (3.7)

where f(x) is given in (3.2a).

Loss-minimization on the IEEE-13 node network with network parameters pro-

vided in [132], Fig. 3.7 illustrates the effects of SCD with a single battery. Without
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the complementarity constraint imposed, the optimizer may waste energy through

charge/discharge inefficiencies to achieve a lower state of charge of the battery as

shown in Fig. 3.8a

Figure 3.6: Illustration of simultaneous charging and discharging (SCD) from relaxing the
battery’s complementarity constraint. (Left) SCD is enforced, so any net injection value,
P d − P c, gives rise to only one solution. (Right) the same net injection value gives rise to
a family of solutions shown in blue where the battery’s state of charge (SoC) are different
due to SCD’s so-called “fictitious energy losses.”

The addition of the battery power term in the objective function avoids SCD

as shown in Fig. 3.7 with a negligible effect on the original objective function as

illustrated with Fig. 3.8b, where a comparison is presented with the exact mixed

integer formulation. The solutions have the same optimized line losses as shown in

Fig. 3.8b and the addition of battery power term incentivizes the solution to points

that satisfy the complementarity constraint.

To formalize this result, Theorem 1 below provides specific conditions under which

the convex formulation with a differentiable objective function, f(x) can avoid SCD

with (3.7). Specifically, the result holds for the following practical objectives in dis-

tribution networks:

• f(W ) = ∑
i(Wi −W nom)2 (e.g., minimizing voltage deviation from nominal)
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Figure 3.7: Comparison of simultaneous charge and discharge in battery at node 680, phase
B for IEEE-13 node system between the cases with battery power term in objective, the 1st
and 2nd run of the two-step algorithm presented in [7] and the mixed integer formulation.
The reason for simultaneous occurrence of charge and discharge is that the objective function
only has terms for the losses in the distribution lines and does not take into account the
fictitious energy loss in the battery due to charging and discharging. Thus, all solutions
with the same value for P d − P c, are equivalent in the optimization solution, which begets
simultaneous charging and discharging.

• f(I) = ∑
l(diag(Rl ◦ Il)) (e.g., minimizing network line loss)

• f(P0)=(P0 − P ref)2 (i.e., tracking a grid/head-node reference power set-point)

• f(P d + P c) = ∑
i(P d

i + P c
i ) (e.g., minimizing battery degradation)

• f(P d − P c) = (P d − P c − P ref)2 (i.e., tracking VB reference trajectory)

Theorem 1. For the SOCP optimization problem (3.2a)-(3.2n) with modified objec-

tive function (3.7), the SCD relaxation is exact if the following conditions hold at

each node n and phase φ:

C1: ∂f(x)
∂P c + ∂f(x)

∂P d ≥ 0,

C2: α in (3.7) is strictly positive (> 0),
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(a) (b)

Figure 3.8: (a) Comparison of state of charge of battery at node 680, phase B for IEEE-13
node system with and without battery power term in objective. Due to the occurrence of
simultaneous charge and discharge, energy is fictitiously consumed in the battery leading to
a lower net state of charge. (b) Comparison of objective value (line loss) between the convex
formulation and mixed integer formulation over a prediction horizon. The figure shows that
the addition of battery power term to the objective of the convex formulation has negligible
effect on the objective value of minimizing line losses.

C3: Γ(t) := ∑T
τ=t(β1,n,φ(τ) − β2,n,φ(τ)) ≥ −α, β1,n,φ(τ), β2,n,φ(τ) ∈ R+ be Lagrange

multipliers for the upper and lower bounds of inequality (3.2l), respectively.

The proof of Theorem 1 is provided in Appendix 5.A. Theorem 1 showed that

with the modified objective function given by (3.7), SCD can be avoided under certain

conditions in order to obtain a physically realizable solution from the optimizer.

The addition of the battery power term in the objective does, however, modify

the objective function resulting in a sub-optimal solutions compared to the original

objective. When the battery is charging, i.e., P d = 0, the modified objective is the

same as the original objective resulting in the same optimal value. When the battery

is discharging, i.e., P d > 0, the modified objective is different from the original

objective, however, as α can be chosen to be small the effect on the optimal value is
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negligible.

Figure 3.7 shows the comparison between the solution (P d, P c) obtained from the

convex formulation and the mixed-integer formulation and shows that the solutions

match. This is also shown in Fig. 3.8b which compares the optimal value (line loss)

between the two formulations and shows that the objective values match.

Remark 3. Theorem 1 holds for the given objectives when conditions C1, C2 and C3

are satisfied. However, condition C3 can be restrictive, especially under a high pene-

tration of renewable generation. Furthermore, certain objective functions like tracking

battery state of charge require stricter conditions as shown in Corollary 1 in Ap-

pendix 5.B. For such cases, the following methods are proposed to obtain a physically

realizable solution that avoids simultaneous charging and discharging of batteries.

• Large α: In the case where Γ(t) < 0, α can be chosen large enough to ensure

that condition C1 is satisfied. The value of Γ(t) may be estimated based upon

the solar and load conditions. However, the drawback of this approach is that a

large value of α would clearly shift the optimal solution.

• Two-step battery dispatch: as presented in [7], the first run permits SCD and

the the second enforces complimentarity based on the net-effect of the first solu-

tion to obtain a physically realizable solution. This method can provide a near

optimal feasible solution as shown in Fig. 3.7 but doubles the run-time. Future

work will further explore how this two-step technique can provide optimality cer-

tificates and will improve its implementation to avoid the doubling of the solve

time.

• Simplified battery model: In this method, the battery model in (3.2k) is replaced
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by an approximated battery model that uses a single standing-loss efficiency ηeq

instead as shown below:

Bn(t+ 1) = ηeqBn(t)−∆tP b
n(t)

where P b
n(t) ∈ R|φ| is the net battery power injection. The value of ηeq can

be estimated based upon expected battery schedule and the values of ηd and ηc.

Future work will explore a mapping between the two battery models as a way

to estimate ηeq to minimize modeling error over the horizon with respect to the

actual battery model in (3.2k).

Based on the results of this section, a convex formulation of the multi-period three-

phase OPF can be obtained that satisfies the complementarity condition between

charging and discharging of batteries under certain conditions. When the conditions

are not satisfied, this work proposes techniques to obtain a near optimal solution that

enforces complementarity. However, the second order cone relaxation of the nonlinear

power flow equations may engender solutions that are not physically realizable. To

guarantee realizability, the next section presents a nonlinear programming (NLP)

formulation of the OPF problem that is initialized with the relaxed SOCP solution.

Note that the NLP initialization goes beyond just a warm-start and includes a novel

mechanism to account for the multi-period formulation inherent to an energy storage

trajectory.
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3.2.4 Multi-period coupling of SOCP with NLP

The original OPF formulation given by (3.2a)-(3.2o) is non-convex because of the

nonlinear power flow constraint in (3.2b) and the SCD complementarity constraint

in (3.2o). The two constraints are relaxed to obtain an SOCP formulation of the OPF

problem. The non-convex constraint (3.2o) is relaxed as explained in section 3.2.3,

which provides conditions under which the SOCP solution is tight (with respect to

the complementarity condition). However, the relaxation of the nonlinear power flow

model in (3.2b) with the second-order cone constraints (3.4)-(3.6) can result in non-

physical solutions to the OPF problem as has recently been shown in [67].

Thus, if we seek a physically realizable solution for a general objective function,

we need a nonlinear programming (NLP) formulation. Thus, we seek to leverage

the multi-period solution available from the SOCP. However, NLPs are not scalable

and the solve time increases dramatically with the increase in problem size (and

coupling) [119]

To overcome this challenge, we propose a time-decoupled approach by fixing the

battery’s active power set-points in the NLP based on the solution obtained from the

SOCP. This allows the NLP to focus on reactive power set-points and voltage limits,

which aligns with recent analysis [97]. In [97], it is shown how reactive power and

voltage limits lead to disconnections in the power flow solution space resulting in a

non-zero duality gap for the relaxed OPF. Based on these observations, an SOCP-

NLP coupled algorithm is developed as shown in Fig. 3.9, where the solution obtained

from the SOCP is passed to the NLP solver. Prior work in literature, such as [130],

have proposed the idea of using the solution of a convex relaxation as an initial
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starting point for solving the full, nonlinear ACOPF. However, herein we extend the

notion of a “warm start” to the multi-period domain. Specifically, we decouple the

multi-period NLP by fixing the active power set-points of the batteries to the solution

of the convex relaxation (SOCP). Keeping the active power solutions constant leads

to fixing the state of charge of the batteries and, as a result, results in a decoupling

of the time-steps of the prediction horizon in the NLP. Thus, each time-step can be

solved independently and in parallel (as independent NLPs), which leads to a scalable

implementation compared to solving the multi-period NLP.

Figure 3.9: Coupling of SOCP with NLP by fixing real power solutions from SOCP and
hence decoupling the NLP to obtain a feasible solution.

This is further explained through Fig. 3.10 where for each time-step of the pre-

diction, the reactive power range available to the NLP is constrained by the SOCP’s

solution. That is, Figure 3.10 illustrates the decomposition approach presented herein

by showing the effect of the SOCP’s optimized active power trajectory on the feasible

set of the reactive power of the NLP problem.

Remark 4. The decoupling of the time-steps reduces the feasible set of the optimiza-

tion problem and, hence, increases the optimal value. Thus, the decoupled problem

represents an upper bound on the time-coupled nonlinear problem, which in turn is
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Figure 3.10: Available reactive power variation range for NLP across multiple time steps
based on the active power trajectory provided by the SOCP.

lower bounded by the SOCP as shown below:

SOCPopt ≤ NLPopt ≤ DNLPopt (3.8)

where NLPopt represents the optimal value of the time-coupled nonlinear program and

DNLPopt the optimal value of the time-decoupled nonlinear program (DNLP).

The DNLP problem at each time-step t of the prediction horizon can then be

expressed as:

min
x

L∑
l=1

|φ|∑
φ=1

diag(Rl ◦ Il(t)) (3.9a)

s.t : (3.2b)− (3.2j) (3.9b)

P d
n (t) = P d∗ (3.9c)

P c
n(t) = P c∗ (3.9d)

where P c∗ ∈ R|φ| and P d∗ ∈ R|φ| are the charge and discharge power of the battery
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obtained from the SOCP at node n and time t, such that P ∗ = P d∗ − P c∗. The NLP

given by equations (3.9a)-(3.9d) is solved separately at each step of the prediction

horizon to obtain a feasible plus (near) optimal solution with guaranteed feasibility

and a bound on the optimality, as the relaxed SOCP provides a lower bound on

the optimal value of the original nonlinear problem [119]. Utilizing this SOCP-NLP

coupled optimization framework, a scalable solution of three-phase OPF problem can

be obtained rapidly, plus the framework provides bounds and guarantees on feasibility

and optimality of the solution, where the upper-bound on the global optimality gap

is computed from

% optimality gap ≤ DNLPopt − SOCPopt
DNLPopt

× 100. (3.10)

In the next section, simulation tests are conducted on unbalanced IEEE test feeders

and realistic distribution feeders to verify the feasibility of the proposed formulation

and investigate the global optimality gap. The validation is conducted by using

forward-backward sweep in GridLab-D.

3.2.5 Test case results and validation

3.2.5.1 Case study description

Simulation-based analysis of the multiperiod SOCP-NLP algorithm presented above

is first conducted on the unbalanced 123-node IEEE test feeder with a base volt-

age of 2.4kV and base apparent power of 1 MVA. The algorithm is implemented in

receding-horizon fashion. That is, the SOCP results in an open-loop, optimal battery

and inverter control schedule, which is used by the NLP to calculate a physically
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realizable schedule that is implemented by GridLab-D (i.e., the “plant”) to determine

the resulting AC power flows. The forecasts of demand and renewable generation

are then updated and the SOCP-NLP implementation repeats. A sample forecast of

aggregate solar, demand and net-demand over a prediction horizon is shown in Fig.

3.11a.

Distributed storage and solar PV units are added at random to 16 nodes in the

network which can supply active and reactive power through four quadrant operation.

Each storage unit has an energy capacity of 40 kWh and an apparent power rating

of 50 kVA, whereas each solar PV unit has a rating of 100 kVA. The solar and load

profile over the 30-step prediction horizon, with each step being 1 minute duration,

are constructed from the minutely forecast data available [133]. The choice of the

length of prediction horizon is based on a trade-off between objective function value

(performance) versus solve time. As illustrated in Fig. 3.11b, as the prediction horizon

is increased, the objective value reduces, i.e., the performance increases. This is due

to the fact that considering the multi-time step optimization results in predicted

set-points over the horizon which lead to improved system performance. Let mean

load, µl, be the base load of the IEEE-123 node system and µs be the mean solar

and equal to 100kW Discrete control devices such as switches, capacitor banks and

transformers are fixed at their nominal value for this study. A three phase OPF is

run in a receding horizon fashion with a prediction horizon of 30 time-steps, for the

dispatch of controllable assets of the network to minimize the network losses. The

set-points provided by the solution of the SOCP are used to initialize an NLP to

provide a feasible solution. The SOCP is modeled in JuMP [134], with Julia and

solved using GUROBI [126]. The multi-period SOCP has 108,000 variables, 48,000
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(a) (b)

Figure 3.11: (a) Aggregate solar, demand and net-demand profile over a prediction horizon.
(b) Trade-off between performance (optimal value) versus solve-time (length of prediction
horizon.

linear constraints and 81,000 SOC constraints. The NLP is also modeled in JuMP,

but solved with IPOPT [135] using HSL_MA86 solver [136]. The single-period NLP has

3,600 variables, 1,600 linear constraints, 700 SOC constraints and 2,000 non-linear

constraints.

3.2.5.2 Data management

To enable the presented framework, it is assumed that the minutely PV production

forecast data and the demand profile data over the 30 minute horizon, as shown in

Fig. 3.11a, is available to the central dispatcher. In this work, we assume a perfect

forecast, whereas section 3.3 will investigate the role of uncertainty and robustness

to forecast error. Such minutely solar PV forecasts are available today at minutely

forecasts with a 60-minute prediction horizon [133]. It is also assumed that the

dispatcher knows about the power rating and capacity of the available PV units

and the updated state of charge of the distributed storage units. This dispatcher

77



Table 3.2: Different solar and load cases.

Low load: 50% load High load: 100% load
Low solar: 50% Solar Case LL Case HL

High solar: 100% Solar Case LH Case HH

could be a distribution system operator (DSO; e.g., NY REV’s DSIP [89]), so it is

reasonable to assume that such system information is available. Furthermore, it is

assumed that the DSO knows the network topology, so it can formulate and solve the

optimization problem based on network parameters and dispatch available flexible

resources accordingly.

3.2.5.3 Test case results on IEEE-123 node network

The results obtained under four different solar and load cases as shown in Table 3.2,

where high load and high solar corresponds to the base values and low load and low

solar corresponds to a mean value of 50% of base. These cases are utilized to show

the feasibility, optimality, gap and solve time of the formulated algorithms.

The result in Table 3.3 show that the optimality gap of the obtained solution is

always less than 3%, as the SOCP solution provides the lower bound to the global

optimum. The RMSE and worst case values are calculated based on the optimal values

of the SOCP and the NLP run in a receding horizon fashion through simulations over

a horizon of one hour. To further investigate the optimality gap, Fig. 3.12a shows

the optimality gap as the solar penetration level in the system is varied for the base

load case. From the figure it can be seen that the optimality gap is always below 3%

for the different solar penetration levels.

The feasiblity of the NLP solution is tested against GridLab-D and the validation
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is given in Fig. 3.12b for case HH, which shows that the voltages obtained from the

NLP match closely with those obtained through a power flow performed in GridLab-

D using backward-forward sweep. NLPs are not scalable and the solve time increases

dramatically with the increase in problem size (and coupling) as can be seen from

Fig. 3.14a for case HH, which shows the increase in solve time as the length of the

prediction horizon increases. The computation time of the decoupled algorithm is

illustrated in Table 3.4 showing that the mean total solve time at each time step for

SOCP+NLP is always under 45 seconds, providing sufficient time for communication

delays in order to guarantee a solve time of under one minute for the dispatch of

distributed storage to counter the fast-time variation in renewable generation. The

SOCP time is the time it takes to solve the multi-period optimization with a time-

horizon of 30 steps, whereas the NLP time is the time it takes to solve each time-

instant in a decoupled and parallel form. Figures 3.13a-3.13d shows the worst case

difference in DER reactive power generation over the prediction horizon between the

SOCP and the NLP, whereas Fig. 3.14b shows the variation in SOCP solve time as

the size of the receding horizon is increased for case HH. In the figure, the edges of

the box represent the 25th and 75th percentile of data, whereas the + sign represents

the most extreme value in the dataset. It can be seen from Fig. 3.14b that the SOCP

algorithm scales well with the increase in horizon size.

Table 3.3: Comparison of optimality gap values of SOCP and NLP.

Case RMSE Worst case
LL 0.43 1.25
HL 0.83 0.91
LH 1.14 1.33
HH 0.88 2.10
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(a) (b)

Figure 3.12: (a) Variation of optimality gap with change in % solar penetration. (b)Worst
case voltage error between NLP and power flow (PF) in GridLab-D over the time horizon
showing the feasibility of the NLP solution.

Table 3.4: Comparing solver times for the SOCP-NLP algorithm.

Solver time (s) Case LL Case HL Case LH Case HH
(µ, σ)SOCP (42.4, 6.3) (17.9, 1.5) (31.4, 9.6) (24.1, 2.2)
(µ, σ)NLP (1.8, 0.3) (2.2, 0.8) (1.9, 0.2) (2.1, 0.7)
(µ, σ)total (44.2, 6.4) (20.1, 1.6) (33.3, 9.6) (26.3, 2.5)

3.2.5.4 Tracking results on ORU network

Further simulation results are conducted on reduced Orange and rockland utility

(ORU) feeders. In this study, we consider two ORU networks with 900 and 600 three-

phase nodes that are reduced through the network reduction technique presented in

section 2.5 to 90 and 60 node three-phase networks respectively. These two reduced

networks are used to show the tracking performance of the SOCP-NLP algorithm

developed in this section. Figure 3.15a shows the head-node tracking performance

of the 90 node reduced network, whereas Fig. 3.15b shows the head-node tracking

performance of the 60 node reduced network. From the results in Fig. 3.15, it can
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(c) (d)

Figure 3.13: Comparison of reactive power generation obtained from NLP and SOCP for
IEEE-123 node system under the following cases: (a) low load, low solar (b) high load, low
solar (c) low load, high solar (d) high load, high solar.
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(a) (b)

Figure 3.14: (a) Solve time for the full-scale NLP for different prediction horizons. For
prediction horizons > 6 time-steps, the solver did not converge. (b) SOCP solve time vs.
length of prediction horizon.

be seen that the presented SOCP-NLP formulation has the desired grid-reference

tracking ability.

3.2.6 Conclusions

This section presented a method for the optimal dispatch of batteries in an unbalanced

three-phase distribution network. A second order cone relaxation is used to convert

the non-convex power flow equation into a convex formulation that can be solved

in polynomial time. As the solution obtained from the relaxed problem may not be

feasible, an NLP is solved at each time-step by fixing the real power set-points and

decoupling the time-steps to obtain a physically realizable solution. Furthermore,

the phenomenon of simultaneous charging and discharging of batteries is analyzed

and sufficient conditions are provided for different objective functions that provably

avoid this phenomenon to obtain a feasible solution. Simulation tests are conducted
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Figure 3.15: Tracking the grid economic signal by the feeder head-node through the de-
terministic SOCP-NLP OPF problem for (a) ORU feeder with 90 reduced nodes (b) ORU
feeder with 60 reduced nodes. The results show that the SOCP-NLP optimization is able to
achieve desired tracking for these feeders.

on IEEE-13, IEEE-123 node and realistic ORU distribution feeders showing the fea-

sibility of the obtained solution. The optimality gap is found to be within 3%. The

approach is computationally tractable and solves in less than 45 seconds, which en-

sures that enough time is available for realistic communication delays. This permits

an implementation of the optimization scheme on the minute timescale.
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3.3 Stochastic multi-period OPF in un-

balanced feeders

This section presents a convex, multi-period, AC-feasible Optimal Power Flow (OPF)

framework that robustly dispatches flexible demand-side resources in unbalanced dis-

tribution feeders against uncertainty in very-short timescale solar Photo-Voltaic (PV)

forecasts. This is valuable for power systems with significant behind-the-meter solar

PV generation as their operation is affected by uncertainty from forecasts of demand

and solar PV generation. The aim of this work is then to ensure the feasibility and

reliability of distribution system operation under high solar PV penetration. We

develop and present a novel, robust OPF formulation that accounts for both the

nonlinear power flow constraints and the uncertainty in forecasts. This is achieved

by linearizing an optimal trajectory and using first-order methods to systematically

tighten voltage bounds. Case studies on a realistic distribution feeder shows the

effectiveness of a receding-horizon implementation.

3.3.1 Introduction

Renewable energy sources, such as solar PV, are inherently stochastic in nature and

the corresponding variability poses a challenge to grid operators [109]. To overcome

these challenges, grid operators can leverage responsive DERs to provide demand-side

flexibility. The inclusion of flexible demand from energy-constrained DERs, such as

battery storage, couples the time-steps, which requires multi-period decision-making

and predictive optimization.
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In addition, accounting for the uncertainties in solar generation and demand fore-

casts calls for a robust dispatch of flexible DERs. Choosing an acceptable violation

probability is perceived as an intuitive and transparent way of determining a proba-

bilistic security level [110]. Chance-constraint-based optimization is one such tool that

is employed to robustly dispatch flexible resources in order to satisfy AC power flow

constraints. The nonlinearities associated with the AC physics, however, renders the

chance-constrained optimization problem challenging to solve due to non-convexities.

Thus, to certify reliable operation of distribution systems under high penetrations of

solar PV, techniques are desired that take into account both the AC nonlinearities

and the uncertainty from solar PV forecasts.

In this work, we build upon the work on chance constraint in the literature by

decoupling the solution to the deterministic multi-period AC OPF problem and a

linearized chance constraint problem. As shown in Fig. 3.16, a deterministic, multi-

period, SOCP+NLP problem is solved by an centralized grid operator to obtain an

optimal, three-phase, AC-feasible state (voltage and current) trajectory. Based on the

trajectory, Taylor series expansions of the power flow equations are computed around

the operating points from each time-step. The sensitivity of the network constraints

(voltage and branch flows) to the uncertain injections (demand and solar PV) can be

computed. From these sensitivity factors, the uncertainty determines the degree of

constraint tightening, which robustifies the SOCP and NLP formulations. Validation

of the presented robust optimization framework is completed in GridLab-D, where an

AC load flow is solved based on actual, realized demand and solar PV injections. An

illustration of the relative root-mean-square error (RMSE) in the solar PV forecasts

is shown in Fig. 3.17a along with an illustration of the range of uncertainty around
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the expected solar PV generation over the prediction horizon in Fig. 3.17b. The

forecast error is meant to be representative of the state-of-the-science in solar PV

forecasts today [137, 138].The RMSE error in Fig. 3.17a showcases how the error in

solar forecast grows over the prediction horizon (60 minutes in this case). Further,

every 30 minutes a new solar forecast is available that follows a similar forecast error.

Corresponding to the RMSE values in Fig. 3.17a, Fig. 3.17b shows the range of error

in predicted forecast of solar PV over the prediction horizon.

Figure 3.16: Block diagram showing the components of the complete robust version of the
SOCP+NLP optimization problem together with three-phase, AC load flow “plant model” in
GridLab-D (GLD). The The SOCP block performs multi-period optimization and fixes the
active power set-points in the NLP to temporally decouple the NLP’s ACOPF formulation
and compute optimal reactive power set-points that are AC feasible.

Thus, the two key contributions of this work are as follows:

1. A novel approach to robustify a stochastic, multi-period feasible ACOPF opti-

mization problem by leveraging the solution of the deterministic problem with

a linearized chance-constrained tightening procedure based on the operating

points determined by the NLP’s optimal trajectory. Hence, the uncertainty in
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(a) (b)

Figure 3.17: Left: (a) Relative-RMSE over the forecast horizon from minutely solar PV
forecasts. The forecasts are updated every 30 minutes and provide a 60-minute preview
window. Right: (b) Error in predicted forecast of solar PV over the prediction horizon for
the considered test network from 12:00 noon to 1:00 pm.

forecasted values determine the first-order tightening of constraints. The cal-

culated change in these variables at each time-step due to the uncertainty is

then added as safety buffer to the constraints in the deterministic SOCP+NLP

scheme.

2. Simulation-based analysis employs a state-of-the-art solar PV forecasting scheme

to validate the proposed robust ACOPF approach.

In the remainder of this section, a method to ensure a network-admissible, multi-

period battery dispatch by coupling the convex, multi-period SOCP with an exact,

time-decoupled NLP formulation together with the linearized chance-constrained for-

mulation is presented in Section 3.3.2. Simulation-based analysis and validation re-

sults obtained with GridLab-D are discussed in Section 3.3.3 for a realistic distribution

feeder. Finally, conclusions are discussed in Section 3.3.5.
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In the next section, the physically realizable solution obtained from the SOCP-

NLP formulation presented in section 3.2 is used to linearize the network model at

the operating point. Based on the obtained linear model at each operating point over

the prediction horizon, the uncertainty in demand and solar PV is used to calculate

the predicted changes in voltage magnitudes and line power flows in the network.

These values are then used to systematically tighten the limits to robustly solve the

AC OPF at the next instant.

3.3.2 Robustify constraints

In this section, we describe the chance constraint method that is implemented to

obtain the robust bounds on network constraints. In this work, we consider the

uncertainty in demand and solar PV forecast. Other sources of uncertainty include

the capacity and ratings of DERs, which is inherent due to the nature of aggregation

of different energy resources to form a DER resource. However, the method presented

in this work can also be extended to these types of uncertainties. A detailed analysis

on accounting for uncertainty in DERs can be found in [139].

Based on the Taylor series expansion of the power flow equations around the

operating point (determined previously from the deterministic optimization presented

in section 3.2), sensitivity factors, similar to the ones in [140], can be obtained. These

sensitivity factors then determine the fluctuations in the variables to the uncertainty

Ω (which could represent either solar or demand uncertainty). For a constrained

variable Y , the sensitivity with respect to the random variable Ω can be expressed

as: ΓY = ∂Y
∂Ω

∣∣∣
Ω=0,Y=Y ∗

The sensitivity factors allow us to approximate the constrained variables as linear
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functions of the random variable Ω, as a result the constraints in stochastic form can

be expressed as:,

P(Y + ΓY Ω ≤ Ymax) ≥ 1− αY (3.11)

P(Y + ΓY Ω ≥ Ymin) ≥ 1− αY (3.12)

where αY represents the acceptable violation probability. The linear dependence of

Ω enables the use of an analytical chance constraint reformulation [115]. Assuming

that the uncertainty Ω is any general zero mean distribution (operating point is

determined by the expected forecast) with covariance matrix Σ, then (3.11)-(3.12)

can be expressed in a deterministic form as:

Y + f−1(1− αY)||ΓY Σ1/2||2 ≤ Ymax (3.13)

Y − f−1(1− αY)||ΓY Σ1/2||2 ≥ Ymin (3.14)

where f−1(1 − αY) represents the safety factor function evaluated at 1 − αv, which

prescribes the desired probabilistic guarantee. Thus, robustness against the uncer-

tainties naturally begets an uncertainty margin that is product of the safety factor

function and the variances and defines how much the constraint is tightened.1 It can

be observed from (3.13)-(3.14), that the uncertainty margin can be calculated before

solving the optimization problem at the forecast value and then utilizing the margins

obtained from chance-constraints to tighten the constraints on the deterministic prob-

lem. If we denote by λY the uncertainty margin in the constraint, then (3.13)-(3.14)
1Note that this method can be extended beyond normal distributions to consider more general

distributions with only knowledge of mean and variance of the distribution. However, the results
obtained are more conservative in that case, e.g., with a Chebyshev approximation.

89



can be expressed as:

Y ≤ Ymax − λY(αY,Σ, Y ∗) =: Yb (3.15)

Y ≥ Ymin + λY(αY,Σ, Y ∗) =: Yb, (3.16)

where Yb and Yb represent the updated upper and lower robust bounds and λY(αY,Σ, Y ∗) :=

f−1(1−αY)||ΓY Σ1/2||2 represents the uncertainty margin which depends on both the

operating point and the acceptable violation probability factor αY.

From the tightened constraints on voltage and power limits, we ensure that any

dispatch of DERs is robust against desired uncertainty levels. However, the tightened

bounds may lead to infeasible dispatch, so to guarantee persistent feasibility in the

scheme, we introduce slack variables Y +
v and Y −v which guarantee feasibility of solution

to the deterministic AC OPF with the tighter bounds under very high uncertainty.

Based on these updates, the optimization problem under the tightened bounds can

be expressed as:

min
P d
n (t), P c

n(t), qb
n(t), SS

n(t)
f1(x) (3.17a)

s.t.

0 = Wn(t)−Wm(t) + (Sl(t)Z∗l + ZlSl(t))− ZlIl(t)Z∗l ∀l ∈ L, (3.17b)

0 = diag(Sl(t)− ZlIl(t)−
∑
p

Sp(t)) + Snet
n (t) ∀l ∈ L, (3.17c)

0 = real(Snet
n (t)− SS

n(t) + SL
n(t))− P d

n (t) + P c
n(t) ∀n ∈ G, (3.17d)

0 = imag(Snet
n (t)− SS

n(t) + SL
n(t))− qb

n(t) ∀n ∈ G, (3.17e)
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∥∥∥∥∥ 2Wn(t)(i, j)
Wn(t)(i, i)−Wn(t)(j, j)

∥∥∥∥∥
2
≤ Wn(t)(i, i) +Wn(t)(j, j), (3.17f)∥∥∥∥∥ 2Il(t)(i, j)

Il(t)(i, i)− Il(t)(j, j)

∥∥∥∥∥
2
≤ Il(t)(i, i) + Il(t)(j, j), (3.17g)∥∥∥∥∥ 2Sl(t)(i, j)

Wn(t)(i, i)− Il(t)(j, j)

∥∥∥∥∥
2
≤ Wn(t)(i, i) + Il(t)(j, j), (3.17h)

|diag(Sl(t))| ≤ Lb,l(t, αL,Σ) ∀l ∈ L, (3.17i)

V b,n(t, αv,Σ)− V −v,n(t) ≤ diag(Wn(t)) ≤ V b,n(t, αv,Σ) + V +
v,n(t) ∀n ∈ N , (3.17j)

|SS
n(t)| ≤ Sb,n(t, αs,Σ) ∀n ∈ G, (3.17k)

(P d
n (t)− P c

n(t))2 + (qb
n(t))2 ≤ H2

max,n, ∀n ∈ G, (3.17l)

0 = Bn(t+ 1)−Bn(t)− ηc,nP
c
n(t)∆t+ P d

n (t)
ηd,n

∆t ∀n ∈ G, (3.17m)

Bmin,n ≤ Bn(t) ≤ Bmax,n ∀n ∈ G, (3.17n)

0 ≤ P d
n (t) ≤ Pmax,n ∀n ∈ G, (3.17o)

0 ≤ P c
n(t) ≤ Pmax,n ∀n ∈ G (3.17p)

where the above equations hold ∀t ∈ T and Lb,l(t, αL,Σ) := Smax,l−λL(αL,Σ, Sl(t)∗),

V b,n(t, αv,Σ) := V 2
max,n−λv(αv,Σ,Wn(t)∗), V b,n(t, αv,Σ) := V 2

min,n+λv(αv,Σ,Wn(t)∗),

Sb,n(t, αs,Σ) := Gmax,n − λs(αs,Σ, SS∗
n (t)). In the above problem the objective is to

minimize line losses and voltage slack, i.e., f1(x) := ∑T
t=t0(∑L

l=1(1Tdiag(Rl ◦ Il(t))) +

γ
∑N
n=1 1T(Vv,n(t)+ + Vv,n(t)−) + α

∑|G|
n=1 1TP d

n (t)
(

1
ηd,n
− ηc,n

)
), where Vv,n(t)+ and

Vv,n(t)− represents the upper and lower voltage slack that is added to ensure feasi-

bility. The parameter γ is chosen to be large in order to discourage the activation

of the slack variables and only employ them when a solution would not be feasible.

The parameter γ can be thought of as a trade-off parameter between risk and perfor-

mance. If γ << 1 then the solution is close to the deterministic solution, whereas for
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γ >> 1 we sacrifice performance for robustness. In-between these two extremes, the

trade-off parameter γ represents a “price” on risk (i.e., cost of risk), which has been

studied extensively in [9]. Simulation-based analysis can help inform grid operators

on an appropriate value of γ for a specific system. Similarly, the NLP optimization

is updated with the bounds obtained from the chance constraints, which comes next:

min
x

f2(x) (3.18a)

0 =Wn(t)−Wm(t) + (Sl(t)Z∗l + ZlSl(t))− ZlIl(t)Z∗l ∀l ∈ L (3.18b)

0 =diag(Sl(t)− ZlIl(t)−
∑
p

Sp(t)) + Snet
n (t) ∀l ∈ L (3.18c)Wn(t) Sl(t)

Sl(t)∗ Il(t)

 =

Vn(t)

il(t)


Vn(t)

il(t)


∗

∀l ∈ L (3.18d)

0 =imag{Snet
n (t)− SS

n(t) + SL
n(t)} − qb

n(t) ∀n ∈ G (3.18e)

(P d∗
n (t)− P c∗

n (t))2 + (qb
n(t))2 ≤ H2

max,n, ∀n ∈ G (3.18f)

|diag(Sl(t))| ≤ Lb,l(t, αL,Σ) ∀l ∈ L (3.18g)

V b,n(t, αv,Σ)− V −v,n(t) ≤ diag(Wn(t) ≤ V b,n(t, αv,Σ) + V +
v,n(t) ∀n ∈ N (3.18h)

|SS
n(t)| ≤ Sb,n(t, αs,Σ) ∀n ∈ G (3.18i)

where f2(x) := ∑L
l=1 1T(diag(Rl ◦ Il(t))) +γ

∑N
n=1 1T(Vv,n(t)+ +Vv,n(t)−), (3.18b)-

(3.18e) respresent the nonlinear power flow equations and (3.18f) represents the VB

apparent power constraint with P d∗
n (t) ∈ R|φ| and P c∗

n (t) ∈ R|φ| being the optimal

discharge and charge power of the VB at node n obtained from the solution of the

robust SOCP given in (3.17a)-(3.17p). Thus the algorithm is a combination of robust,
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multi-period SOCP formulation in (3.17a)-(3.17p) and the robust, time-decoupled

NLP in (3.18)

In this work, the forecast errors for solar PV and demand are assumed to per-

tain to uniform (unimodal) distributions. Due to this assumption, the conventional

Gaussian safety factor function may not guarantee robust performance for the given

αY. A Chebyshev approximation can be used, which guarantees robustness for any

distribution of forecast errors with a given mean and covariance matrix, but the ap-

proximation is often very conservative [8]. In addition, it is reasonable to assume

that intra-hour forecast errors will come from a unimodal distribution, which allows

for a less conservative unimodal Chebyshev approximation, which still guarantees

robust performance against any unimodal distribution (e.g., uniform distribution).

The safety-factor function for the unimodal distribution presented herein is a simple

analytical approximation based on the exact numerical solution from [8] and is given

by:

f−1(1− αY) ≈
(1− αY

eαY

)1/1.95
(3.19)

This approximation is an inner approximation of f−1(1 − αY) (i.e., no less conser-

vative) with a coefficient of determination, R2, of 0.997 for αY < 0.50 and relative

approximation errors of less than 5% for αY < 0.10. The effect of probabalistic

violation level on the safety factor for different distributions is shown in Fig. 3.18,

illustrating the conservativeness of Chebyshev safety factor in comparison to the Uni-

modal Chebyshev and Gaussian safety factor. The updated SOCP-NLP optimization

problem can then be implemented in receding-horizon fashion together with the up-

dated bound tightening. Numerical results are presented next.
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Figure 3.18: Effect of different information on safety factor function [8,9]

3.3.3 Simulation Results

In this section, we illustrate the effectiveness of the approach with simulation-based

analysis on a realistic three-phase distribution feeder.

3.3.3.1 Case study description

Simulations are conducted on a reduced 131-node three-phase distribution feeder with

a base voltage of 7.6kV and base apparent power rating of 1 MVA. The 131-node radial

network is obtained through Kron-based network reduction from the full 1200 node

circuit. Frrom the network reduction process, the reduced network consists of 130

representative “super nodes” with each connected to a “super net-load” (with demand

minus solar PV injection) and the head-node represents the 0th super node.

The robust SOCP-NLP algorithm is implemented in a receding-horizon fashion

with an optimization horizon of 30 time-steps with each time-step being 1 minute

(i.e., 30 min prediction horizon). That is, the SOCP results in an open-loop, opti-

mal battery and inverter control trajectory, which is used by the time-decoupled NLP

instances to calculate an AC-feasible dispatch trajectory. The resulting operating tra-
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jectory is used to calculate the operating points from which a sensitivity-based bound

tightening is performed on the network constraints as described in section 3.3.2. Dis-

crete control devices such as switches, capacitor banks, and tap-changing transformers

are fixed at their nominal value for this study. Analysis on the control of such discrete

devices is provided in [44,141].

3.3.3.2 Required data management

In the presented framework, the minutely PV production forecast data and demand

profile data are available over the 30 minute optimization horizon to the central

dispatcher. Such minutely solar PV forecasts are available for purchase by utilities

and updated every 30 minutes with a 60-minute forecast [133]. A sample forecast of

aggregated solar PV over one hour from 12:00 noon to 1:00 pm is shown in Fig. 3.17b,

together with the uncertainty in solar PV generation based on the assumed uniform

error distribution. From Fig. 3.17b, it can be seen how the error in forecast grows

over the prediction horizon. Furthermore, the uncertainty in demand and solar PV

forecast is assumed to be from a uniform distribution, which is unimodal. It is too

strong an assumption to claim that forecast errors come from a Gaussian distribution,

so instead, we employ the unimodal Chebyshev approximation above to generalize the

result. Further details about the relative conservativeness of different distributions

can be found in [9]. For the chance constraints, the acceptable voltage violation

parameter αv is chosen to be 0.10. The results presented here only consider the voltage

constraint, however, the framework readily allows for tightening other constraints,

such as current and power flow limits. In addition, it is reasonable to assume that the

system operator or utility knows about the power rating and capacity of the available
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PV units and the ratings and updated SoC of the DERs. The dispatcher could be

a distribution system operator (DSO; e.g., NY REV’s DSIP [89]), so it is reasonable

to assume that such system information is available. Furthermore, we assume that

the DSO is provided updated feeder topology, so they can formulate and solve the

optimization problem based on network parameters and dispatch available flexible

resources.

As the proposed method employs convex optimization formulations, the solution

time is expected to be polynomial in the system size. In section 3.2, it was shown

that the SOCP-NLP formulation can be solved in under a minute for a similar sized

network. In fact, herein, the average solve time of the minutely implementations is

≈ 50 seconds, which allows sufficient time for communication delays. All simulations

were conducted on a MacBook Pro with 2.2 GHz processor and 16 GB RAM.

(a) (b)

Figure 3.19: (a) Error in predicted forecast of solar PV over the prediction horizon for the
considered test network from noon to 1:00 pm, (b) Tightened voltage bounds obtained from
chance constraint over the prediction horizon for Gaussian assumption (red) and Unimodal
Chebyshev assumption (blue)
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3.3.3.3 Test case results

The high solar penetration results in large variability in the net-demand, which, in

a deterministic setting, can lead to violations of network constraints. Validation

of the proposed stochastic framework is achieved by comparing the deterministic

SOCP+NLP scheme, which does not account for uncertainty, against the one with

the robustified constraints. The multi-period SOCP is solved using GUROBI [126],

whereas the NLP is solved with IPOPT [135] with the HSL_MA86 solver [136]. Based on

the optimal dispatch (p∗, q∗∗), three-phase, AC load flows are computed in GridLab-

D [128] with the realized (actual) demand and solar PV values. We illustrate the

effectiveness of the robustified scheme by analyzing the voltage magnitudes from

Gridlab-D over the 60-minute receding horizon from 12:00 noon to 1:00pm.

The resulting network voltages over the hour obtained from the deterministic

method are depicted in the histogram shown in Fig. 3.20a, illustrating that voltage

violations due to the uncertainty are significant and beyond the acceptable limit. The

histogram of the voltages obtained through the stochastic formulation are shown in

Fig. 3.20b, from where it can be seen that the violations are less than αv = 10%. This

is due to the robust voltage bounds in the stochastic formulation, which account for

the uncertainty in solar PV. Figure 3.19b shows how the voltage bounds are tightened

over the prediction horizon depending upon the accuracy of forecast. Recall that the

forecasts are updated only every 30 minutes, which explains the sudden changes at

minute 30 in the simulation.

Further differences between the deterministic and stochastic formulation is shown

through the comparison of the control variables. Fig. 3.21a shows the comparison

in the aggregate dispatch of batteries, whereas Fig. 3.21b shows the comparison in

97



(a) (b)

Figure 3.20: Histogram of the voltages obtained from: (a) the deterministic AC OPF show-
ing violation of voltage limits; (b) from the stochastic AC OPF showing acceptable voltages.

the aggregate state of charge. From these plots it can be seen that the stochastic

formulation forces the batteries to dispatch their resources much differently in order

to ensure that the voltage constraints are not violated under uncertainty. This is fur-

ther illustrated in Fig. 3.22a, which shows how the stochastic formulation dispatches

more reactive resources in order to counter the effect of the expected variability from

the forecasts. However, the robust formulation is clearly more conservative which ex-

plains the increased utilization of flexible resources to ensure robust operation. This is

illustrated in Fig. 3.22b and Fig. 3.23b, where in Fig. 3.22b a comparison of the objec-

tive function (i.e., total network losses) between the deterministic and the stochastic

methods is provided, whereas in Fig. 3.23b a comparison of the net demand, i.e.,

demand plus losses is provided. Clearly, the stochastic approach results in reduced

performance (i.e., increased losses). The worst case increase in net demand is found

to be less than 3% in this case, with an RMSE of .0538 MW between the determin-

istic and stochastic method. However, unlike the deterministic approach, the robust

implementation satisfies voltage magnitude constraints despite the uncertainty and
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(a) (b)

Figure 3.21: Comparing deterministic and robust optimal solutions: (a) Aggregate battery
dispatch; (b) Aggregate battery state of charge

within acceptable violation limit, αv. This trade-off can be designed by choosing αv

appropriately. Furthermore, the stochastic method results in reduced network volt-

age imbalance as shown in Fig. 3.23a. Future work will look into the reasons for this

improved performance in network imbalance.

3.3.3.4 Tracking simulation results

Next we utilize the stochastic formulation developed to track a grid reference similar

to the tracking results presented in section 3.2. Figure 3.24a shows tracking of the

grid signal at the head-node of the feeder under uncertain solar PV and demand,

whereas Fig. 3.24b shows the histogram of the voltages over the tracking period.

From Fig. 3.24 it can be seen that the stochastic formulation is able to maintain de-

sired tracking while satisfying the network constraints (nodal violations) to be within

the specified allowable violation levels. Furthermore, for the tracking formulation,

Fig. 3.25a shows that the optimality gap for the SOCP-NLP formulation is no worse

than 4%, with the solve time being under 30 seconds. Finally, Fig. 3.26 shows that the
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(a) (b)

Figure 3.22: Comparing deterministic and robust optimal solutions: (c) Aggregate reactive
power dispatch; (d) Feeder network line losses (objective value)

(a) (b)

Figure 3.23: Comparing deterministic and robust optimal solutions: (e) Average nodal volt-
age imbalance; (f) Total feeder demand with optimized losses. The stochastic implementa-
tion is more conservative and leads to a root-mean-square demand-plus-loss increase of just
0.054MW (less than 1.4%).
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(a) (b)

Figure 3.24: Left: (a) Tracking of the reference grid head-node power by the feeder through
the control of VBs showing acceptable tracking performance for the period 1:00-2:00 pm
Right: (b) Histogram of the voltages obtained from the stochastic AC OPF. Clearly, the
voltages are within the ANSI limits given by the red dashed vertical lines.

difference in the objective (head-node tracking) in this case between the determinis-

tic and stochastic formulation, which shows that robustness is achieved by sacrificing

tracking performance, as expected. However, the overall difference between the two

is still reasonable.

3.3.4 Sensitivity analysis

The above formulation and analysis is based on the assumption that the network pa-

rameters such as line impedance values are known and are also accurate. However, in

practical distribution systems this may not be the case. Often these parameter values

are unknown or mis-recorded. Hence, it is important to consider the system behaviour

when there is error in the provided line impedance values. To accomplish this task, in

this section we perform sensitivity analysis of the distribution system optimal power

flow solution to the changes in line impedance. The aim of this sensitivity analysis
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(a) (b)

Figure 3.25: Left: (a) Optimality gap of the SOCP-NLP formulation under stochasticity
Right: (b) Solve time for the stochastic formulation over the prediction horizon.

is to determine the relative change in optimal solution as the parameters values are

varied over a uniform distribution. Through such an analysis, we aim to determine a

range of impedance values that provide satisfactory optimization solutions, i.e., the

change in optimal solution is minimal over the distribution set.

To achieve this, we perform simulation based sensitivity analysis on the reduced

131-node three-phase ORU distribution feeder. We conduct four case studies where

the impedance values are varied over a uniform distribution of 1%, 5%, 10% and 20%.

The histogram of the distribution of the change in resistance and reactance values

resulting from this is shown in Fig. 3.27. For each of these uniform distribution cases,

we calculate % change in the battery dispatch from the base case (exact impedance

values) as:

%battery dispatch change(i) = 100(Buni,i −Bbase,i)
Bbase,i

(3.20)

where Buni,i represents the dispatch of battery i obtained when variation the line
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Figure 3.26: Case 4: Comparison of the objective value between the formulation without
and with stochastic implementation. The objective function represents tracking objectives,
which implies that robustness is achieved by sacrificing tracking performance, as expected.
In this example, tracking reference was made very large, which means that small deviations
away from the tracking reference signal leads to large changes in the objective function.

impedance over the uniform distribution and Bbase represents the dispatch of battery

i in the base case. The histogram of the distribution of the % change in battery

dispatches is shown in Fig. 3.28, with Fig. 3.28a showing the distribution of change in

battery dispatches when the impedance values are varied over a uniform distribution

error of 1%, Fig. 3.28b for 5% error, Fig. 3.28c for 10% error and finally Fig. 3.28d

for 20% error. The mean and standard deviation of the battery dispatch change in all

the four cases is shown in Table 3.5. These results suggest that the sensitivity of the

optimal solution to the impedance values is within manageable range and as a rule

of thumb if x% is the change in impedance values, then that results in a standard

deviation in battery dispatch of roughly x
4 %.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.27: Histograms of the change in resistance and reactance from the base value from
variation in line impedance in a uniform distribution of : (a), (b) 1%; (c), (d) 5%; (e), (f)
10%; (g), (h) 20%.
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(a) (b)

(c) (d)

Figure 3.28: Histograms of the change in battery dispatch from the base value from variation
in line impedance in a uniform distribution of : (a) 1%; (b) 5%; (c) 10%; (d) 20%.

Table 3.5: Mean and standard deviation of battery dispatch change under variation in
impedance values.

Change in impedance Mean (%) Standard deviation (%)
1% -0.04 0.29
5% -0.04 0.88
10% -0.09 1.87
20% -0.31 4.26

3.3.5 Conclusions

This work presented an efficient method for the optimal dispatch of DERs in an unbal-

anced distribution network while considering the uncertainty in demand and solar PV

forecast. A two-stage technique is developed that accounts for both the non-linearity

of power flow equations and the uncertainty in forecast. A deterministic multi-period
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AC OPF is solved based on the forecast of demand and solar PV, whereas the lin-

earized model obtained at the operating point of the NLP is used to calculate the

tighter bounds on network constraints for the deterministic AC OPF. The simula-

tion results and comparison with deterministic approach show the effectiveness of the

proposed method in dealing with uncertainty.
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3.4 Coordination of DERs for grid ref-

erence tracking

This section presents a novel method for network-admissible coordination of respon-

sive grid resources aggregated to provide market services. Such responsive grid re-

sources can be either physical batteries or virtual batteries (VBs). In this context, a

VB represents a local aggregation of directly controlled loads, such as smart inverters,

electric water heaters, and air-conditioners. The coordination is achieved by solving

an optimization problem to disaggregate a feeder’s desired reference trajectory into

constraint-aware set-points for the energy resources. Specifically, a novel, provably-

tight, convex relaxation of the AC optimal power flow (OPF) problem is presented

to optimally dispatch the energy resources to track the feeder’s desired power trajec-

tory. Simulation results conducted on a modified IEEE test system demonstrate the

effectiveness of the proposed energy resource coordination method.

3.4.1 Introduction

3.4.1.1 Background and Motivation

Coordinated control of demand-side, distributed energy resources (DERs), such as

grid-tied PV inverters, distributed battery storage, and thermostatically controlled

loads (TCLs; e.g., water heaters and air conditioners) is part of the solution that

supports a renewable energy future [14, 79–81]. Much of the recent literature on the

coordination of DERs has focused on distributed control methodologies to turn large-
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scale aggregations of DERs into dispatchable grid assets (similar to [82–84]). Since

the aggregation of DERs is dispatched as a single entity by a centralized coordinator

and is subject to power and energy limits, the DER fleet is often referred to as a

“virtual battery” (VB) [20,21,142].

To avoid violating operational limits of the grid and to ensure system reliability

with DERs at scale, coordination between a DSO and DER owners and aggrega-

tors will become critical. This has spurred a multitude of concepts and models for

how DSOs can interact with DERs, aggregators, and whole-sale (transmission) mar-

kets [87–89].In this section, we focus on the so-called “Market DSO” model, e.g.,

see [87], where the DSO performs coordination and aggregation of DERs to deliver

grid services. While such a setup could preclude independent DER aggregators (i.e.,

increases regulatory complexity), the model simplifies the interaction between whole-

sale market signals and the DSO and the ideas herein can be adapted further to

enable independent “grid-aware” DER aggregators [90].

To address challenges concerning optimal, and network-admissible coordination of

VBs and physical batteries, this section presents a method for coordinating demand-

side flexibility in the form of VBs or physical batteries, which can be a part of a

hierarchical multi-layer DSO framework (please see Fig. 3.29). The coordination

method consists of a novel, convex OPF relaxation, which is provably tight at op-

timality under realistic conditions and generates grid-aware, feasible set-points for

the VBs plus physical batteries. The optimization method is represented by the box

“Optimal VB set-point dispatcher" in Fig. 3.29.

Unlike most of the existing literature, the presented method explicitly and ef-

fectively accounts for AC (radial) networks and energy-constrained VB resources.
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Figure 3.29: The multi-layer VB coordination framework. The optimal VB dispatcher forms
the focus of this section, whereas the blocks with the inter- and intra-feeder controllers deal
with grid disturbance and are discussed in detail in [10]. The DSO runs an AC OPF about
every minute to dispatch VBs with optimal set-points.

Similar to [21, 143], we consider VBs at the scale of 100-200 DERs per VB that are

managed locally (e.g., from the same neighborhood) via load control (with full state

information) and subject to lags from device dispatch and communications.

Prior work on hierarchical control of DERs in microgrids (e.g. [96]) has mainly

considered using frequency and voltage droop characteristics to generate active and

reactive power set-points for DERs using local measurements of frequency and volt-

age and compensating for the deviations, but in this work, we compensate for the

deviation in the head node power of the feeder from the economic set-point, thus

taking into account the economic trajectory.

To be more specific, the “optimal VB set-point dispatcher" in Fig. 3.29 considers

a convex relaxation of the (balanced) AC network model. Furthermore, the convex
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OPF formulation is proven tight at optimality, which guarantees that the prediction

of future physical operating states of the grid and the VBs are accurate. This is

achieved by decomposing the feeder head-node (i.e., substation) economic reference

into the aggregate VB dispatch, net-demand, and approximated total feeder line

losses. The key feature here is the use of a first-order prediction model for the line

losses to simplify the problem. It is shown through analysis and with simulations

that this VB-plus-losses reference can achieve a tight optimal solution under practical

conditions. To provide the formulation with updated estimates of feeder losses and

network topology, it is assumed that a distribution system state estimator (DSSE) is

available [144] (not considered in this work).

3.4.1.2 Original Contributions

In summary, the main contributions of this work are as follows:

• A novel second-order conic AC OPF formulation of a multi-period optimization

of VBs designed for tracking the desired power reference at the head-node of the

feeder. In this formulation, the feeder structure is taken into account and the

second-order cone relaxation is proven to be exact even under significant reverse

power flow and with a non-monotonic cost function, which is an improvement

over the present state-of-science in radial network OPF presented in [102].

• Systematic, simulation-based analysis on IEEE distribution feeders is performed,

illustrating the validity of the approach.

3.4.1.3 Practical implementation and Data management

In this subsection, we explain how the presented OPF formulation (shown as a block

in Fig. 3.29) can be feasibly implemented in a practical scheme. In the proposed
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DSO-centric methodology, we assume that the Market DSO acts as the coordinator

and aggregator of DERs and manages the entire scheme. The DSO may also use

technology services to manage the DERs via a software interface (e.g., the VB-DER

interface in Fig. 3.29), but this is to help the DSO reduce costs and manage con-

straints. The DSO runs an OPF every minute or so for each feeder based on the

economic head node power reference. In this regard, it is reasonable to assume that

the DSO has access to SCADA data and is aware of the grid topology and receives VB

state of charge (SoC) estimates from the VB-DER interface to run the AC OPF. For

the VB interface, the only information required is the corrected VB power set-point.

Apart from this, the VB interface does not require any other information and it is

not involved in solving an OPF.

3.4.2 Convex OPF formulation for reference

tracking

3.4.2.1 Mathematical Notation

In this section, we consider a radial, balanced distribution network as modeled by the

DistFlow equations for radial networks and shown in section 2.2.

3.4.2.2 Virtual battery model

In this work, a VB is considered an energy-based model of a dispatchable aggregation

of a relatively small number of controllable DERs (e.g., 100-200 distributed loads

like ACs). This representation of DERs as an aggregate VB is adequate, based on

several works in the literature (e.g., [20, 21, 145]). Moreover, while doing this aggre-
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gation, it is important to consider the human-in-the-loop in these flexible demand

resources, which manifests itself in the form of State-of-Charge (SoC) of VBs [22],

based on Quality of Service (QoS) constraints (e.g., temperature/comfort limits). It

is assumed that the DERs reside in the low-voltage secondary network, while the

local VB coordination (computation and control) takes place at a nearby primary

service transformer node. Owing to the small scale of aggregation, the DERs that

make up a VB are controlled directly via utility Gigabit ethernet (e.g., IEC 61850)

or wireless cellular/Wi-Fi connection. From literature, it has been shown that a VB

endowed with a DER control policy, such as a priority-based switching of DERs [146],

can be well-described by a first-order dynamic model of the VB’s energy state, (e.g.,

see [20, 21,23]):

Ḃi(t) = −αb,iBi(t)− pb,i(t) (3.21)

τiṗb,i(t) = −pb,i(t) + pin,i(t− Td,i) (3.22)

Bi ≤ Bi(t) ≤ Bi (3.23)

pb,i ≤ pin,i(t) ≤ pb,i, (3.24)

where at node i ∈ N+, Bi(t) is the VB’s state of charge (SoC), pb,i(t) its active power

output, and pin,i(t) its desired total active power. The upper (lower) bound of the

SoC is given by Bi (Bi) while the VB’s upper (lower) power limits are denoted pb,i

(pb,i). Note that (3.21) captures the SoC dynamics with αb,i as the energy dissipation

rate. The coupling between the VB’s ability to change output power and the VB’s

control and communication of DERs and their response is generalized with (3.22)

as a lag-and-delay model. In that model, Td,i is the time delay associated with
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communicating with the ith VB and τi is the time constant of the first-order model

(similar to [147] for example). Specifically, (3.22) was formed by taking note of the

following facts: i) The DERs that compose a VB turn on/off (possibly) sequentially,

and there are power electronic components present inside each VB, both of which

contribute to a net lag τi; ii) There are communication delays (generally of the order

of 200 ms) between the head node of the feeder and each VB [148, 149], and delays

associated with disaggregating the control signal into device-level signals [146]. The

delays we consider in the VB model are in fact both these types of delays lumped

together. For this work, the battery charge and discharge efficiencies are assumed

to be unity. Inclusion of non-unity battery efficiency requires binary variables to

avoid simultaneous charging and discharging. A detailed description of the battery

model with non-unity efficiency and analysis on avoiding simultaneous charging and

discharging is provided in [7, 150]. For the optimal dispatch, we optimize the VB

set-points on a minutely timescale and αb,i ≈ 0 in realistic settings, it is reasonable to

consider a simplified, discretized VB model for set-point optimization. This reduced,

predictive model is below:

Bi[k + 1] =Bi[k]−∆tpb,i[k] (3.25)

Bi ≤ Bi[k] ≤ Bi, pb,i ≤ pb,i[k] ≤ pb,i (3.26)

valid for any k and where ∆t is the discretization timestep. Next, we augment the

discrete-time VB model with the AC network model to formulate the feeder head-node

reference power tracking OPF problem.
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3.4.2.3 Conventional convex formulation

Convex relaxation techniques have gained popularity recently due to the existence

of global optimality guarantees for AC OPF problems [53, 102]. In this subsection,

we present a traditional second-order cone programming (SOCP) relaxation of the

AC power flow equations to formulate a convex, multi-period reference tracking OPF

problem, (P1). Decoupling the cost function in the form: ∑i∈N fi(pi[k]) = (p0[k] −

pecon
0 [k])2 + (pecon

VB [k]−∑i∈N+ pb,i[k])2, the optimization problem can be expressed as:

(P1) min
pb,i[k]

∑
i∈N

fi(pi[k]) (3.27a)

s.t. : (3.25)− (3.26) (3.27b)

Sij[k] =si[k] +
∑
h:h→i

(Shi[k]− zhilhi[k]), ∀(i, j) ∈ E (3.27c)

0 =s0[k] +
∑
h:h→0

(Sh0[k]− zh0lh0[k]) (3.27d)

vi[k]− vj[k] =2Re(zijSij[k])− |zij|2lij[k], ∀(i, j) ∈ E (3.27e)

pi[k] = pb,i[k]− PL,i[k] + PS,i[k], ∀i ∈ N+ (3.27f)

qi[k] = −QL,i[k], ∀i ∈ N+ (3.27g)

lij[k] ≥ |Sij[k]|2
vi[k] , ∀(i, j) ∈ E (3.27h)

si[k] ∈ Si, i ∈ N+ (3.27i)

vi ≤ vi[k] ≤ vi, i ∈ N+ (3.27j)

for discrete time-step k ∈ T over a prediction horizon T := {0, . . . , T − 1} and where

the power injection si at a node i ∈ N+ is constrained to be in a pre-specified,
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compact, convex set Si ∈ C. The prediction horizon length T is chosen subject

to availability of forecasts and depending upon the dynamics of VBs [20]. In our

formulation, we choose T = 10. The set Si ∈ C depends upon the VB constraints,

e.g., in case of inverters this set is given by: {(pi, qi)|p2
i + q2

i ≤ S2
i }, where Si is the

apparent power limit of the inverter. In (3.27), the cost function (3.27a) minimizes the

deviation of the head-node power p0[k] ∈ R from the economic head-node reference

trajectory pecon
0 [k] ∈ R, which is composed of: i) desired economic aggregate VB

dispatch, pecon
VB [k] ∈ R; ii) total predicted losses, L[k] := ∑

(i,j)∈E rijlij[k]; and iii)

total forecasted net-demand, ∑i∈N+(PL,i[k]− PS,i[k]), where PL,i[k] ∈ R is the active

power demand at node i ∈ N+, and PS,i[k] ∈ R+ is the solar PV generation at

node i ∈ N+. We are optimizing over the VB dispatch, pb,i[k] ∈ R ∀i ∈ N+, which

appears in power balance constraint (3.27f) while reactive power demand, QL,i[k] ∈ R,

is used in (3.27g). The second-order cone relaxation of the nonlinear equation (2.5)

is given in (3.27h); (3.27i) and (3.27j) provide constraints on power injection and

voltage magnitudes.

Several works in literature such as [102] provide conditions under which the second-

order cone relaxation is exact for distribution networks. If an optimal solution of

(P1) w∗ = (s∗, S∗, v∗, l∗, s∗0) is feasible for OPF, i.e., w∗ satisfies (2.5), then w∗ is

global optimum of OPF and (P1) is said to be exact. Theorem 1 in [102] provides

conditions for the SOCP problem in (P1) to be exact, however, it requires the part of

cost function f0(p0) = (p0−pecon
0 )2 to be strictly increasing, which is not the case when

tracking a reference power signal. Thus, even under the conditions provided in [102],

(P1) may not be exact. To overcome these shortcomings of (P1), we propose a novel

method for convexifying the AC OPF while ensuring an exact solution at optimality.
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Specifically, we utilize a linearized approximation of line losses and through this obtain

a cost function that is strictly increasing in p0 in order to satisfy the conditions in [102].

3.4.2.4 Reformulated convex formulation

To reformulate (P1), we consider each piece of the two-part composition of feeder’s

predicted head-node power, p0[k] ≈ −∑i∈N+ pi[k] + L1[k]. Specifically, we employ a

first-order approximation of total predicted line losses, L1[k], in the cost function (via

pi-to-loss sensitivity factors, which we denote by ζi), and prove that with approxi-

mated losses, the solution is tight at optimality. Thus, the predicted grid response

to an optimized VB dispatch is AC feasible. To achieve the above, we use pecon
VB and

pecon
0 mentioned earlier. This leads to a multi-objective reference tracking problem,

similar to the form of a linear quadratic regulator (LQR) from optimal control [151]:

(P2) min
pb,i[k]

T∑
k=1

fHN[k]2 + αfVB[k]2 + εp0[k] (3.28a)

subject to:

fHN[k] =
∑
i∈N+

(pb,i[k] + PS,i[k]− PL,i[k])− L1[k]− pecon
0 [k] (3.28b)

fVB[k] = pecon
VB [k]−

∑
i∈N+

pb,i[k] (3.28c)

L1[k] = L0,k +
∑
i∈N+

ζi∆pi[k] (3.28d)

(3.27c)-(3.27e), (3.25), (3.26), and (3.27f)-(3.27j), (3.28e)

for discrete time-step k ∈ T over a prediction horizon T := {0, . . . , T − 1}. The

parameters α, ε ∈ R+ are chosen appropriately with ε � 1; L1[k] ∈ R is the first-
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order estimate of the total feeder line losses at time-step k and L0,k ∈ R+ is the loss

estimated for the operating point at time k. The term εp0 results in a tight relaxation

as will be shown next in Theorem 2, whereas the term ζi∆pi[k] = ζi(pi[k] − pi[0])

represents the change in network loss due to change in active power injection at node

i ∈ N+, with pi[0] being the nominal injection. The factors ζi ∈ R provide the first-

order change in feeder losses due to changes in VB power injections. Similar power

transfer distribution factors are often used in transmission system analysis but have

recently been adapted for distribution networks [152].

Remark 5. The formulation in (P2) can easily be extended to account for solar

curtailment as a control variable resulting in a more general formulation. If P econ
C ∈

R+ represents the curtailment reference trajectory and PC,i ∈ R+ represents the solar

curtailment at node i ∈ N+, then ∑
i∈N+(PS,i − PC,i) is the net solar output and∑

i∈N+ PC,i − P econ
C is the error in tracking the curtailment trajectory.

In the next section, Theorem 2 proves that under practical conditions, the (P2)

has a zero duality gap.

3.4.2.5 Exactness of reformulation

In order to explain the notation in Theorem 2, consider L := {l ∈ N| 6 ∃k ∈

N such that k → l}, which denotes the collection of leaf nodes in the network.

For a leaf node l ∈ L, let nl + 1 denote the number of nodes on path Pl, and suppose

Pl = {lnl
→ lnl−1 → . . . l1 → l0}

with lnl
= l and l0 = 0.
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Also, define a+ := max{a, 0} for a ∈ R and let I2 denote the 2×2 identity matrix,

and define vectors ui := col{rij, xij} and matrices

Ai := I2 −
2
vi

rij
xij

 [P̂+
ij (p) Q̂+

ij(q)
]

for (i, j) ∈ E where P̂+
ij (p) and Q̂+

ij(q) are upper bounds on Pij and Qij and are chosen

so that Ai only depends on the SOCP parameters (r, x, p, q, v).

Furthermore, let (Ŝ, v̂) denote the solution of the Linear DistFlow model, then

Ŝij(s) =
∑

h:i∈Ph

sh, ∀(i, j) ∈ E (3.29)

v̂i(s) :=v0 + 2
∑

(j,k)∈Pi

Re(zjkŜjk(s)), ∀i ∈ N+ (3.30)

where Pi denotes the unique path from node i to node 0. Since the network is radial,

the path Pi exists and is unique. Physically, Ŝij(s) denotes the sum of power injections

sh towards node 0 that go through line (i, j). Note that (Ŝ(s), v̂(s)) is affine in s,

and equals (S, v) if and only if line loss zijlij is 0 for (i, j) ∈ E . Then based on the

DistFlow model define:

Svolt := {s ∈ Cn|v̂i(s) ≤ vi ∀i ∈ N+} (3.31)

which denotes the power injection region where v̂(s) is upper bounded by v. Since

v(s) ≤ v̂(s) (Lemma 1 in [102]), the set Svolt is a power injection region where voltage

upper bounds do not bind. Then based on this notation, Theorem 2 below proves

the exactness of (P2).
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Theorem 2. The SOCP problem (P2) is exact if the C1 and C2 conditions given in

Theorem 1 of [102] are satisfied:

C1: AlsAls+1 . . . Alt−1ult > 0 for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl;

C2: Every optimal solution w∗ = (s∗, S∗, v∗, l∗, s∗0) satisfies s∗ ∈ Svolt

Proof. The cost function of the optimization problem (P2) can be expressed as:

f0(p0) =εp0 (3.32)

fi(pi) =f 2
HN + αf 2

VB ∀i ∈ N+ (3.33)

As f0 in the cost function in (3.28a) is strictly increasing, the SOCP formulation

satisfies all the conditions provided in Theorem 1 of [102] and hence the proof is a

direct application of Theorem 1 in [102] under conditions C1 and C2. This concludes

the proof. 222

The term εp0 is added to satisfy the additional condition in Theorem 1 of [102],

where the cost function must be increasing with respect to p0. Note that the inclusion

of this term in the cost function affects the optimal solution. However, ε > 0 can

now be made arbitrarily small (per the proof of Theorem 2), which ensures that the

impact on the optimal solution is negligible.

C1 can be checked apriori and efficiently since A and u are simple function of

(r, x, p, q, v) that can be computed in O(n) time and there are no more than n(n+1)/2

inequalities in C1. For practical parameters ranges of (r, x, p, q, v), line resistance and

reactance rij, xij << 1 per unit for (i, j) ∈ E , line flow P̂ij(p), Q̂ij(q) are on the order

of 1 per unit for (i, j) ∈ E and voltage lower bound vi ≈ 1 per unit for i ∈ N+. Hence,
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Ai is close to I for i ∈ N+, and therefore C1 is likely to hold. As has been shown

in [102], C1 holds for several test networks, including those with high penetration of

renewables. This is further illustrated by results in Fig. 3.30a that shows the condition

C1 holds even for extremely large VB injections (nearly 40 times the demand).

To show the practical restriction of condition C2, Fig. 3.30b shows the increase in

v̂ with increase in reverse power flow due to increased VB injections. From the figure,

it can be seen that the condition is valid for VB injections up to more than 400% of

demand, compared to the base case of 20%. It can also be seen from Fig. 3.30b that

v̂ matches the actual voltage v very closely due to the low impedance of the IEEE-37

node system resulting in small loss term zijlij. However, with solar PV penetration

and an increase in impedance values, the maximum VB injection limit will reduce.

To check the sensitivity of these conditions to network parameters, we have provide

checks on conditions C1 and C2 under different (r, x) values. Figure 3.31a shows

the VB injections for which C1 holds for different (r, x) values, whereas Fig. 3.31b

shows the VB injections for which C2 holds for different (r, x) values. These results

show that conditions C1 and C2 (especially C1) are expected to hold for a practical

distribution system over a wide range of VB injections. Furthermore, condition C2

seems to be a more relevant condition to consider as it will be the first to be violated

under large reverse power flows.

The next section presents simulation results that illustrate the effectiveness of

(P2).
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(a) (b)

Figure 3.30: Conditions C1 and C2 for exactness of (P2): (a) Conditions C1 holds under
large reverse power flow from VB injections, (b) Condition C2 holds under large reverse
power flow from VB injections up to around 400% of demand.

3.4.2.6 Optimal VB dispatch and head node tracking simulation

Simulation tests for the optimal reference tracking with VBs were conducted on the

balanced version of the IEEE-37 node test feeder [132] to compare the conventional

(P1) and the proposed (P2) formulations against the actual AC load flow from Mat-

power [153]. Simulation results in Fig. 3.32a show the reference tracking results in

Matpower achieved through the flexibility of VBs using (P1) and (P2). The figure

shows that (P2) can track the reference trajectory whereas (P1) cannot. For (P2),

the error in tracking at each step change in the reference trajectory is due to the

first-order loss approximation used in (P2). Since the loss approximation is updated

every time-step, the effect on tracking error is small and corrected quickly as shown

in Fig. 3.32a, which means that (P2) represents a reference-tracking OPF formulation

that can effectively dispatch VBs while guaranteeing network admissibility. On the

other hand, for the convex (P1), the non-zero duality gap creates a mismatch between

the predicted power flow values and the actual AC power flow, which results in the
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(a) (b)

Figure 3.31: (a) Condition C1 holds under large reverse power flow for different (r, x)
values, (b) Condition C2 holds under large reverse power flow for different (r, x) values.

sub-par tracking illustrated in Fig. 3.32a. Specifically, (P1) predicts perfect tracking,

but the realized AC head node power does not match the grid reference, which results

in suboptimal use of VB resources. The comparison of the aggregate State of Charge

(SoC) obtained through (P1) and (P2) is shown in Fig. 3.32b. Clearly, (P1) predicts

a different SoC trajectory than (P2) due to the non-physical solution of (P1).

Remark 6 (High voltage conditions). The voltage condition in Theorem 2 (C2) is

not restrictive for practical distribution networks as can be seen from Fig. 3.30b. Im-

portantly, condition (C2) can still be satisfied under large reverse power flows, which

occurs in feeders with significant penetrations of batteries or solar PV generation. To

illustrate the effect of reverse power flows, we present simulation results in Fig. 3.33.

For example, in Figs. 3.33a and 3.33b, it is shown that the predicted active head-node

power matches the actual power while satisfying the voltage constraints. Of course,

reverse power flows and high voltage conditions are related, which means that we are

assuming that appropriate DER hosting capacity studies have been conducted to in-

form operations and avoid high voltage conditions. Nonetheless, theoretically, there
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(a) (b)

Figure 3.32: Comparing the tracking performance of (P1) vs (P2); (b) Comparison of
predicted SoC between (P1) and (P2) over the prediction horizon.

are reverse power flows for which condition (C2) is violated at optimality, which means

that the convex relaxation in (P2) may not be tight. Figs. 3.33c and 3.33d illustrate

the effects of a non-tight solution and show that the mismatch between the predicted

and actual head-node power can lead to voltage violations due to predicted (relaxed,

fictitious) losses that ensure a feasible solution in (P2), but are not realized in the

physical feeder and, thus, reduce the head-node power further. To guarantee an exact

solution that is always physically meaningful, we could include additional constraints

to (P2) that capture condition (C2) implicitly (e.g., augment (P2) with the LinDist

formulation’s voltage variables, v̂i, and v̂i’s upper voltage bound), which ensures that

v < v̄i, if (P2) is feasible [102]. Alternatively, we could just project (P2)’s optimal

solution onto the AC feasible set and accept the loss of optimality.

Note that the solve time for the above optimization problem is typically less than

a second for a feeder with 37 nodes. Our prior work on large scale three-phase systems

has shown that the OPF scales well and can be solved in under a minute [150].
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(a) (b)

(c) (d)
Figure 3.33: Reverse power flow studies on (P2): (a) Comparison between predicted and
actual head-node power under reverse power flow when C2 holds which leads to an exact
solution, (b) Admissible voltages under reverse power flow when C2 holds, (c) Comparison
between predicted and actual head-node power when C2 does not hold (C2 limit shown by
black dotted line), leading to a solution that is non-exact, (d) Voltage violation due to the
solution being non-exact when C2 does not hold.
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3.4.3 Conclusions

In this section, analysis and simulation results have been presented in support of a

novel framework for large-scale coordination of DERs to support deep penetration

of renewable energy. The explicit consideration of (temporal) energy and (spatial)

grid constraints and the economic and reference-tracking (techno-economic) objectives

have been achieved via a spatio-temporal decomposition approach that leverages in-

formation on demand-side flexibility to disaggregate grid economic trajectory into

reference control signals for virtual batteries in distribution feeders. A convex opti-

mal power flow (OPF) formulation has been presented that ensures a provably tight

optimal dispatch of virtual batteries (VBs) to track an economic power trajectory. To

show the effectiveness of the decomposition approach, simulation results have been

conducted on a modified IEEE-37 test system.
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3.5 Future work on optimal power flow

in distribution systems

Future work on three-phase multi-period OPF will focus on reducing the optimality

gap by using stronger relaxations of the power flow equations. We will also try and

provide guarantees for a feasible solution to the decoupled NLP given an initialized

SOCP solution. Extending the work to different grid objectives and including me-

chanical voltage control devices such as transformers and capacitor banks is another

scope for improvement. Providing bounds on the gap between voltages obtained from

the SOCP solver and a power flow solution is also an avenue for future work. Further

analysis on the phenomenon of simultaneous charging and discharging is required as

described in Section 3.2.3

Future work on Stochastic OPF will study the trade-off between performance

and security in chance-constrained problems. Studying the uncertainty associated

with demand and solar forecast and developing accurate distributions to represent

the forecast errors leading to improved performance is another important area of

research. The reasons behind a reduction in network imbalance in the stochastic

method over the deterministic methods will also be analyzed.

Future work with reference to coordination of VBs will incorporate reactive power

control of VBs and extend the regulation of voltage with inverters. Further, the

market economic problem will be considered explicitly [154] to study the coupling

between the market layer economic problem and the feeder constraint aware dispatch.

Future work will also try to extend this approach to the three-phase unbalanced
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system operation [150]. Finally, we are interested in extending the multi-period OPF

to a robust formulation to trade off conservativeness of dispatch and the probability

of voltage and VB violations [155].
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Chapter 4

Towards real-time OPF with con-

vex inner approximations

In this section, a more aggregator-centric approach is followed, where an aggregator is

an entity that represents an aggregation of many diverse DERs or a Virtual Battery

(VB). In this approach, it is the role of the aggregator to dispatch DERs, whereas the

utility provides certain bounds and limits (calculated offline), which the aggregator

(which dispatches resources in real-time) must operate under. The benefits of such an

approach lie in improved data-privacy and real-time admissible dispatch. In order to

realise such a formulation, in section 4.1 we introduce the convex inner approximation

method and show its advantages in comparison to linear OPF and convex relaxation

based OPF. Then in section 4.2 we utilize the devised convex inner approximation

for the dispatch of discrete devices such as OLTCs and capacitor banks in order to

position the voltages close to nominal. Finally in section 4.3 we employ the convex

inner approximation method in order to achieve network admissible aggregation and

disaggregation of flexibility, paving the way for real-time dispatch of DERs.
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4.1 Introduction to convex-inner approx-

imation

This work presents a method to obtain a convex inner approximation that aims to

improve the feasibility of optimal power flow (OPF) models in distribution feeders.

For a resistive distribution network, both real and reactive power effect the node

voltages and this makes it necessary to consider both when formulating the OPF

problem. Inaccuracy in linearized OPF models may lead to under and over voltages

when dispatching flexible demand, at scale, in response to whole-sale market or grid

conditions. In order to guarantee feasibility, this work obtains an inner convex set in

which the dispatchable resources can operate, based on their real and reactive power

capabilities, that guarantees network voltages to be feasible. Test simulations are

conducted on a standard IEEE distribution test network to validate the approach.

4.1.1 Introduction

With the increasing penetration of renewable generation and demand side flexibility

in distribution networks, network constraints such as voltage limits could be vio-

lated. Traditional optimization techniques for dispatching resources include linear

OPF based on LinDist models [27]. However, these linear models only work well

close to the operating point and as the system is stressed to its extremes due to

increasing penetration of DERs, they break down.

In order to improve the feasibility of OPF solutions in distribution systems with

extreme penetration of renewables, this work aims to develop a method that guar-
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antees the feasibility of optimized solutions. In order to achieve this, a convex inner

approximation is developed to determine the feasible operating region for the dis-

patchable resources in the distribution network. Previous works in literature such

as [6, 99] have developed techniques to determine error bounds in linear power flow

approximations. This paper builds upon these works but develops a convex inner

approximation for determining the operating region of dispachable resources that

guarantees feasibility of solution.

As the proportion of dispatchable demand-side resources increases in the distribu-

tion network, they are expected to provide flexibility to the grid in the form of valuable

energy services [88]. These flexible resources could be a fleet of DERs that constitute

a virtual battery (VB), solar PV arrays, or advanced distribution feeders schemes act

as a VB resource. In either case, these resources in aggregate are expected to provide

certain energy services and participate in ISO markets, such as real-time or ancillary

market services. However, the resulting ISO market-based dispatch signal does not

consider the underlying distribution network and nodal constraints. Disaggregating

the market-based dispatch signal at a nodal resource level, in real time, to account

for local constraints and grid conditions represents a challenging problem. The key

contribution of this paper is a convex formulation that provides an aggregator with

the ability to disaggregate a fleet-wide dispatch signal into a feasible nodal dispatch

across a distribution network as depicted in Fig. 4.1. Specifically, this paper develops

a technique to determine a feasible operating region of these dispatchable resources

which does not violate local network constraints. This is achieved by developing a

provable convex inner approximation of the feasible region. Simulation tests are con-

ducted on IEEE-13 node system [132] to show the effectiveness and validity of the
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Figure 4.1: A schematic representation of the network model. The physical layer represents
the circuit that connects the different DER groups into an aggregate virtual battery, whereas
the cyber layer represents the disaggregation of the virtual battery market signal to the DER
groups based on the feasible nodal bounds that are determined offline.

approach. The main contributions of this work are follows:

1. Through a motivating example, this paper explains the shortcomings of linear

OPF approximations and how they can violate network constraints.

2. The problem of determining the feasible operating region of dispactchable re-

sources is re-formulated as an inner convex optimization that respects network

constraints.

The rest of this section is organized as follows: Section 4.1.2 illustrates the shortcom-

ings of linear OPF under high renewable penetration in distribution networks. Section

4.1.3 develops the mathematical model for the optimization problem of determining

the operating region of dispatchable resources, whereas section 4.1.4 provides the

convex inner approximation of the feasible space. Simulation results showing the va-
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lidity of the approach are given in section 4.1.5 and finally conclusions are provided

in section 4.1.6.

4.1.2 Shortcomings of linear OPF

This section presents the shortcomings of linear OPF approximations under certain

conditions in distribution networks. Simulations are run on the modified IEEE-13

node test case to check the effect of real and reactive power variation on nodal voltages.

The IEEE-13 node test case with a DER at node 6 capable of four-quadrant operation

is shown in Fig. 4.2. For the purpose of this study, the switching devices in the network

(switches, capacitor banks, transformers) are assumed to be fixed at their nominal

values. The real and reactive power injections of the DER are varied independently to

observe the effect on node voltages. The results are shown in Fig. 4.3a and Fig. 4.3b.

From the figures it can be observed that changes in real and reactive power injections

at one node have significant effect on voltages at other nodes, especially the nodes

which are "down-hill" from the injection node. Unlike transmission systems, where the

coupling between real power and voltage is minimal, in distribution systems, changes

in real power injection can cause significant( if not as much as reactive power) change

in node voltages. From these results it becomes clear that the effect of both real

and reactive power needs to be considered in order to correctly control voltages in

distribution systems. However, in most linear power flow approximations, the affect

of real power variations on the nodal voltages is often neglected, which could result

in violation of voltage constraints.

To further illustrate this point, a two node model with DERs, solar and demand,

as shown in Fig. 4.4 and parameters given in Table 4.1 is considered. For this system,
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Figure 4.2: Modified IEEE-13 node test system with DER capable of four-quadrant operation
at node 6. The switch between nodes 6 and 7 is assumed to be closed and the transformer
between nodes 2 and 3 is assumed to be ideal with unity turns ratio

the net power injection at node j, pj, which represents the net effect of DERs, solar

and demand, is varied over a range to find the corresponding voltages obtained from

LinDist and DistFlow. From Fig. 4.5a it can be seen that the linear model and

nonlinear DistFlow model do not match and this could lead to operating the system

at set-points that violate the voltage constraints as can be seen from Fig. 4.5a, where

the voltage violation occurs when the system is operated at the lower voltage limit.

This implies that when formulating an OPF model, it is important to consider the

effect of the non-linear terms in the power flow equations in order to ensure feasibility.

The proposed approach in this paper, takes a worst case of the non-linear terms in

the power flow equations and develops a feasible model for determining the real power

limit bounds on the net power injections, which in turn can be used to determine the

bounds on the flexible resources assuming demand and solar forecast are known. This

means that the technique guarantees node voltages to be within their limits for the
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(a) (b)

Figure 4.3: (a) Variation of node voltage with change in real power injection at node 6, (b)
Variation of node voltage with change in reactive power injection at node 6.

Figure 4.4: Two node model with demand side power source.

determined power bounds, while at the same time keeping the convex form of the

formulation.

4.1.3 Formulation of the optimization problem

The aim of this work is to formulate an optimization scheme to provide feasible

operating limits to the dispatchable resources based on the real and reactive power

capabilities of the network, in order to satisfy the nodal voltage constraints. The

input to this allocation problem is the real and reactive power capabilities of each
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(a) (b)

Figure 4.5: (a) Comparison in change in node voltage with change in real power set-points
between DistFlow and LinDist for two node system. The two models result in different
voltages and if design is based on linear model then network voltages limit will be violated
if pj is operated at its lower limit, (b) Comparison of feasible region obtained from LinDist
and DistFlow models for two node model.

Table 4.1: Parameters of the 2-node, 1-line system

Symbol Type Bounds/Values
lij Variable [0,0.5] p.u
Vj Variable [0.95,1.05] p.u
Pij Variable [-5,5] MW
Qij Variable [-5,5] MVar
pj Variable [-1,1] MW
Vi Data 1 p.u

rij + jxij Data 10+j15 ohm
Vbase Data 4.16 kV
Sbase Data 1 MVA

node and the output is the real power operating region where each node can operate

while satisfying the network constraints. In order to increase the operating region

of the resources, the optimization scheme is posed as a power bound maximization

problem. DistFlow equations as given in [27] are used to solve the optimization
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problem. However, DistFlow equations are non-linear which takes the problem outside

the realm of convex optimization. Linearized LinDist models are often used, but they

are accurate only close to the operating point voltages. As the system starts operating

away from the nominal voltage, the errors could become large [156]. In this work we

develop a feasible convex formulation by modifying the LinDist equations. However,

the techniques presented here can easily be extended to other single phase and multi-

phase linearized power flow models in literature such as [157,158].

4.1.3.1 Mathematical model

In this section we consider a radial distribution network modeled using the matrix

notation as shown in section 2.2.1. Based on this modeling, the power flow equations

can be represented as:

P =p+ AP − ARl (4.1)

Q =q + AQ− AXl (4.2)

V =v01n +Mpp+Mqq −Hl (4.3)

lij[k] = |Sij[k]|2
vi[k] , ∀(i, j) ∈ E (4.4)

where the matrices C,DR, DX,Mp,Mq andH depend upon the network impedance

and incidence matrix and are defined in section 2.2.1.

Apart from the nonlinear relation (4.4) of l to P,Q and V , (4.3) is a linear relation-

ship between the nodal power injections p, q and node voltages V . The nonlinearity

in the network is represented by (4.4), as the current term l is related to the power
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Figure 4.6: Diagram of a radial distribution network [6].

injections and node voltages in a nonlinear fashion. Including this term into the opti-

mization model would render the optimization problem NP hard, however, neglecting

this term could result in infeasible solutions from the linearized OPF model.

4.1.3.2 Optimization problem formulation

The problem being addressed in this paper is to determine the convex feasible oper-

ating region of dispatchable resources that respects the network voltage constraints.

Let ∆p := p+ − p− be the feasible operating region of the net power injections. If

the feasible region of the net power injections is found, then the feasible operating

region of the flexible resources can be easily determined assuming the demand and

solar power forecast are known. Based on these assumptions, (4.3) can be applied at

p+ and p− as:

V + =v01 +Mpp
+ +Mqq

+ −Hl+ (4.5)

V − =v01 +Mpp
− +Mqq

− −Hl− (4.6)

where V + := V (p+), q+ := q(p+), and l+ := l(p+) are the respective variable

values at p+, and, V − := V (p−), q− := q(p−), l− := l(p−) are the values of the

variables at p−. Next, we modify (4.5) and (4.6) to obtain the feasible operating
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region as:

Mpp
+ =V + − v01−Mqq

+ +Hl+ (4.7)

Mpp
− =V − − v01−Mqq

− +Hl− (4.8)

Based on (4.7) and (4.8), the optimization problem to determine the maximum

feasible operating region of the network can be obtained from the solution of the two

optimization problems shown below for p+ and p−:

(P1) max
V +,p+,q+,l+

n∑
i=1

log(p+
i ) (4.9a)

subject to : (4.7), (4.4) (4.9b)

Si ≤ f(p+
i , q

+
i ) ≤ Si∀i ∈ N (4.9c)

V ≤ V + ≤ V (4.9d)

l ≤ l+ ≤ l (4.9e)

where f(p+
i , q

+
i ) represents the type of apparent power constraint on the nodal injec-

tions that is required to satisfy the bounds Si ∈ R and Si ∈ R at node i. f(p+
i , q

+
i )

could represent box constraints on active and reactive power or it could represent a

quadratic apparent power constraint in the case of an inverter. V ∈ Rn and V ∈ Rn

are the voltage magnitude square lower and upper limits, l ∈ Rn and l ∈ Rn are the

current magnitude square lower and upper limits. The optimization problem (4.9)

determines the maximum power that can be supplied by the dispatchable resources

in the distribution network. The optimization problem to find the minimum power
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that can be supplied can similarly be determined based on (P2).

(P2) max
V −,p−,q−,l−

n∑
i=1

log(−p−i ) (4.10a)

subject to : (4.8), (4.4) (4.10b)

Si ≤ f(p−i , q−i ) ≤ Si ∀i ∈ N (4.10c)

V ≤ V − ≤ V (4.10d)

l ≤ l− ≤ l (4.10e)

It is assumed that p−i < 0,∀i ∈ N . Optimization problems (P1) and (P2) are non-

convex due to the constraint (4.4) which is a nonlinear relationship. In the next section

we will provide a formulation for these problems that is a linear inner approximation.

4.1.4 Convex inner approximation formulation

In order to obtain a convex inner approximation of (P1) and (P2), we need to approx-

imate the nonlinear relationship in (4.4). This is obtained by considering the worst

case of l in order to obtain a conservative estimate of ∆p (i.e., lmin in (P1) and lmax in

(P2)). Based on this approximation, a conservative estimate of ∆p, ∆pc = p+
c − p−c

can be obtained, where p+
c , p

−
c are the inner approximations of p+, p−.

Mpp
+ ≥V + − v01−Mqq

+ +Hlmin = Mpp
+
c (4.11)

Mpp
− ≤V − − v01−Mqq

− +Hlmax = Mpp
−
c (4.12)

Based on the above inner approximations, (P1) and (P2) can now be modified to a

convex inner approximation model shown below, if lmin, lmax can be found a-priori
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based on the network capacity.

(P3) max
V +,p+

c ,q+

n∑
i=1

log(p+
i,c) (4.13a)

subject to : (4.11), (4.9c)− (4.9d) (4.13b)

(P4) max
V −,p−c ,q−

n∑
i=1

log(−p−i,c) (4.14a)

subject to : (4.12), (4.10c)− (4.10d) (4.14b)

The optimization problems (P3) and (P4) are convex and determine an inner ap-

proximation of the feasible operating region of the nodal injections that satisfy the

network constraints. The problem then is to determine the the worst cases of l, i.e.,

lmin and lmax, which is discussed in the next section.

4.1.4.1 Determining the worst-case bounds for l

In this section we present a method to calculate the worst case of l, i.e., lmin and lmax,

which results in a feasible convex inner approximation. lmin and lmax are calculated

based on the real and reactive power capacity of the nodal injections, which in turn is

determined based on the demand and solar profile and DER capacities at a particular

node. Before solving the optimization problems P3 and P4, we determine lmin and

lmax by solving a power flow based on the real and reactive power capacity of the

nodal injections as depicted by the block diagram in Fig. 4.7 that outlines the steps

to solve the optimization problem. For simplicity, in this paper we set lmin to zero,

which reduces P3 to the LinDist model. lmax is obtained by solving a power flow
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where the dispatchable resources are set to their capacity to determine the worst case

of l. Based on this lmax, (P4) is solved to obtain a value of p−c that respects network

constraints, which could be violated if LinDist model was used instead. Based on

these results, a ∆pc which represents a feasible operating region of the network can

be obtained. Simulation results are presented in the next section to show the validity

of the proposed approach.

Figure 4.7: Block diagram of the optimization problem to obtain the maximum dispatchable
operating region.

4.1.5 Simulation Results

In this section, simulation results on a standard IEEE-test network will be presented

to show the the efficacy of the proposed approach. A comparison between the results

of the convex inner approximation and the linearized OPF (LinDist) is presented.

However, the techniques presented here can be extended to improve any linearized

OPF model. It is shown that the convex inner approximation results in a feasible solu-

tion when the LinDist model may result in an infeasible solution. Simulation tests are

conducted on the IEEE-13 node test case [132] using optimization solver SDPT3 [159]

in CVX, with validation of the results performed through Matpower [153]. The block

diagram in Fig. 4.7 shows the steps to determine the feasible operating region from
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the proposed inner convex approximation.

For the purpose of comparison between the convex inner approximation and the

linearized OPF model, three test scenarios are considered as shown in Table 4.2. In

each of the three test scenarios, the operating regions obtained from the LinDist OPF

model and the convex inner approximation are obtained and then the feasibility of

the operating regions is compared through powerflow solutions.

Table 4.2: Types of apparent power constraints

Case no. Case description Bounds (f(pi, qi))
1 Unity power factor qi = γipi
2 Box constraint qi ≤ qi ≤ qi
3 Quadratic constraint p2

i + q2
i ≤ Si

Figure 4.8: Comparison of the feasible operating regions for Case 1 (unity power factor)
between LinDist and convex inner approximation showing the conservativeness of the inner
convex approximation over LinDist. Based on this, the feasible operating region of flexible
dispatchable resources can be obtained by subtracting solar and demand forecast.
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(a) (b)

Figure 4.9: (a) Comparison of the Voltages (V +) for Case 1 (unity power factor) obtained
through Matpower for the optimized set-points from LinDist and convex inner approximation
showing that the voltages match (as lmin = 0 and are within the bounds, (b) Comparison
of the Voltages (V −) for Case 1 (unity power factor) obtained through Matpower for the
optimized set-points from LinDist and convex inner approximation showing that the voltages
violate the bounds when using LinDist model, which is avoided when using the convex inner
approximation.

4.1.5.1 Case 1: Constant power factor

In this case, the relation between real and reactive power injection for the flexible

resource is given by a constant power factor, PFi := cos(φi), at node i:

qi =γipi ∀i ∈ N (4.15)

where γi :=
√

(1− PF 2
i )/PF 2

i . For this test case, we consider the flexible resource to

be an aggregation of resistive water heaters, which results in unity power factor, i.e.,

cos(φi) = 1,∀i ∈ N .

Figure 4.8 shows the comparison of the feasible region obtained from LinDist

model and from the proposed convex inner approximation for the constant power
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(a) (b)

Figure 4.10: (a) Comparison of the feasible operating regions for Case 2 (box constraints)
between LinDist and convex inner approximation showing the conservativeness of the inner
convex approximation over LinDist, (b) Reactive power injection (blue bars) in LinDist for
Case 2 (box constraints) showing that the reactive power is at its limit (black lines) and
hence the voltage infeasibility cannot be improved through more injection of reactive power,
highlighting the need for a conservative estimate of ∆p.

factor case. It can be seen from Fig. 4.8 that the convex inner approximation provides

conservative lower bounds on the feasible region. Figure 4.9a and Fig. 4.9b show the

comparison of the voltages obtained through Matpower for the set-points shown in

Fig. 4.8. As can be clearly seen from Fig. 4.9b, in case of the LinDist model the

voltages obtained when determining the lower limit of the operating region violate

network bounds, whereas the convex inner approximation due to its conservative

approach is able to obtain a feasible solution.
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(a) (b)

Figure 4.11: (a) Comparison of the Voltages (V +) for Case 2 (box constraints) obtained
through Matpower for the optimized set-points from LinDist and convex inner approxima-
tion, (b) Comparison of the Voltages (V −) for Case 2 (box constraints) obtained through
Matpower for the optimized set-points from LinDist and convex inner approximation show-
ing that the voltage bounds are violated when using the LinDist model, which is avoided
when using the convex inner approximation.

4.1.5.2 Case 2: Box constraints on reactive power

In this case, simulation results are conducted with box constraints on reactive power

as shown below:

qi ≤ qi ≤ qi ∀i ∈ N (4.16)

where q ∈ R is the lower limit of the reactive power injection and q ∈ R is the upper

limit, at node i. From Fig. 4.10a it can be seen that the convex inner approximation

provides a conservative estimate to the feasible region. Figure 4.11a shows the com-

parison of the voltages at the upper limit of the feasible region, whereas Fig. 4.11b

shows the comparison of the voltages at the lower limit of the feasible region. As

can be seen the figures, the convex inner approximation is able to provide a feasible
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(a) (b)

Figure 4.12: (a) Comparison of the feasible operating regions for Case 3 (quadratic apparent
power constraint) between LinDist and convex inner approximation showing the conserva-
tiveness of the inner convex approximation over LinDist, (b) Apparent power injection in
LinDist (blue bars) for Case 3 (quadratic apparent power constraint) shows that the apparent
power is at its limit (black line) and hence a voltage infeasibility cannot be improved through
additional injection of reactive power, highlighting the need for a conservative estimate of
∆p.

solution, while the LinDist model results in violation of constraints. Figure 4.10b

shows that the violation of voltage constraints in LinDist model is due to the oper-

ating region of real power injection ∆p, as the reactive power injection is at its limit

and cannot provide any further voltage support. This is also proved in Theorem 5 in

Appendix 5.C that shows for the LinDist model the reactive power at optimality is

always at the boundary of the constraint.
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(a) (b)

Figure 4.13: (a) Comparison of the Voltages (V +) for Case 3 (quadratic apparent power
constraint) obtained through Matpower for the optimized set-points from LinDist and convex
inner approximation, (b) Comparison of the Voltages (V −) for Case 3 (quadratic apparent
power constraint) obtained through Matpower for the optimized set-points from LinDist and
convex inner approximation showing that the voltage bounds are violated when using the
LinDist model, which is avoided when using the convex inner approximation.

4.1.5.3 Case 3: Apparent power constraint

In this case the real and reactive power injections at each node are bound by the

following quadratic apparent power constraint:

p2
i + q2

i ≤ Si ∀i ∈ N (4.17)

This is the case when flexible resources are connected to the grid through inverters.

From Fig. 4.12a it can be seen that the convex inner approximation provides a con-

servative estimate of the feasible region. The comparison of the voltages in Fig. 4.13a

and Fig. 4.13b shows that at the lower limit of the feasible region, the LinDist model

does not result in a feasible solution, which on the other hand is provided by the con-

vex inner approximation. Furthermore, Fig. 4.12b shows that the nodal injections are
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at their apparent power limits without any margin to provide reactive power support.

Theorem 5 in Appendix 5.C presents a formal proof that shows that this condition

always holds.

These simulation results illustrate how the convex inner approximation compares

against the linearized OPF models with respect to modeling errors, and hence en-

suring robust and resilient operation of distribution feeders. To verify the feasibility

guarantee of the convex inner approximation, Monte Carlo methods are employed to

sample 10,000 different combinations of the DER operating regions and simulate the

resulting AC load flow with Matpower to determine nodal voltages with distribution

as shown in Fig. 4.14. From the figure, it is clear that voltages are within limits for

all combinations.

Figure 4.14: Violin plot of the voltage magnitudes from 10,000 Monte-Carlo simulations
using the operation regions obtained from the convex inner approximation.
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4.1.6 Conclusions

This paper presents a convex inner approximation of the optimal power flow prob-

lem that determines the feasible operating region of the dispatchable resources while

respecting the network constraints. Through illustrative examples, the shortcomings

of linear OPF techniques is explained. The mathematical formulation of the convex

inner approximation is developed and through simulations on an IEEE test network,

the advantage of using this formulation is presented.
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4.2 Voltage positioning of discret de-

vices through convex inner approx-

imation

With increasing penetration of solar PV, some distribution feeders are experiencing

highly variable net-load flows and even reverse flows. To optimize distribution sys-

tems under such conditions, the scheduling of mechanical devices, such as OLTCs

and capacitor banks, needs to take into account forecasted solar PV and actual

grid conditions. However, these legacy switching assets are operated on a daily or

hourly timescale, due to the wear and tear associated with mechanical switching,

which makes them unsuitable for real-time control. Therefore, there is a natural

timescale-separation between these slower mechanical assets and the responsive na-

ture of inverter-based resources. In this work, we present a network admissible con-

vex formulation for holistically scheduling controllable grid assets to position voltage

optimally against solar PV. An optimal hourly schedule is presented that utilizes me-

chanical resources to position the predicted voltages close to nominal values, while

minimizing the use of inverter-based resources (i.e., DERs), making them available

for control at a faster time-scale (after the uncertainty reveals itself). A convex, in-

ner approximation of the OPF problem is adapted to a mixed-integer linear program

that minimizes voltage deviations from nominal (i.e., maximizes voltage margins).

The resulting OPF solution respects all the network constraints and is, hence, robust

against modeling simplifications. Simulation based analysis on IEEE distribution

feeders validates the approach.
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4.2.1 Introduction

With the increasing penetration of renewable resources in the distribution grid, main-

taining system voltages within acceptable limits (i.e., minimizing voltage deviations),

is a major challenge [109,160]. The intermittent nature of solar energy can cause under

and over-voltages in the system [35–38] leading to unacceptable operation. However,

solar PV resources are inverter interfaced and can provide responsive reactive power

resources, which can be used in active network management [161]. Besides these

inverter-interfaced resources, the distribution grid also includes traditional mechani-

cal devices, such as on-load tap changing (OLTC) transformers, cap banks, reactors,

etc. These discrete mechanical assets are subject to physical wear and tear and,

thus, are usually only operated a few times during the day with heuristic open-loop

policies [39]. However, with increasing solar PV penetration, it becomes important

to optimize the schedule for the mechanical assets against bidirectional and variable

power flows [40]. However, the mechanical switching is not suitable for real-time

conditions and control and should, therefore, be utilized on slower timescales to po-

sition the predicted voltage profile (i.e., increase voltage margins) against predicted

solar PV generation. In fact, inverter-interfaced assets, such as solar PV generation

and battery storage, can effectively supply controllable reactive resources appropri-

ate for these faster time-scales. Therefore, there is a natural timescale-separation

between (slow) mechanical and (fast) inverter-based controllable grid assets. DER

resources on slow time-scale act as a form of reactive reserve, allowing the DERs to

fully participate in valuable market services on a fast timescale. This way mechanical

assets maximize margins and optimize value of DERs. This leads to the challenge
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of co-optimization of different types of controllable reactive power resources. Thus,

for the scheduling on slower time-scales, it is desirable to maximize utilization of the

mechanical assets to keep voltages close to desirable nominal values while using as

little as possible of the responsive inverter-interfaced reactive resources. This effec-

tively prioritizes the responsive reactive resources for the faster time-scales to counter

variability in net-load (demand minus solar PV).

The aim of this work is then to present a convex OPF formulation where the

objective function seeks to minimize the deviation of the predicted nodal voltages from

their nominal values. The nonlinear power flow equations relate the voltages in the

network with the complex power injections. This work uses a convex approximation of

the power flow equations that results in a network-admissible solution, i.e., all physical

network limits are respected at (global) optimality, while solving in polynominal time.

Hence, the method is robust against modeling errors introduced from approximations

of the non-linear power flow equations.

Discrete devices like the capacitor/reactor banks and line regulators (ON/OFF)

and load-tap-changing (LTC) transformers are an integral part of distribution system

operations. Due to the discrete nature of these devices, including them into an opti-

mization problem renders the problem NP-hard [42]. This work leverages the notion

that discrete devices and continuous resources can offer their flexibility at different

time-scales, which gives rise to a natural prioritization of reactive power resources.

This section focuses on optimizing discrete control assets in the grid to maxi-

mize both the voltage margins and the availability of reactive reserves for the faster

timescales. This maximization of voltage margins1 is illustrated in Fig. 4.15 which
1Minimizing voltage deviations from nominal can be viewed as maximizing voltage margins.
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depicts larger voltage margins as we move closer to the nominal. Recent works in

literature such as [11,29,162] have developed control schemes that achieve voltage reg-

ulation through dispatch of flexible resources in real-time. The work in this section

could provide prediction schedules for voltage control at faster timescales.

Figure 4.15: Illustrating the relationship between voltage margin, nominal voltage and volt-
age bounds. Lighter colors represent larger margins.

In general, employing convex relaxations with an objective that minimizes voltage

deviations will lead to a non-zero duality gap [163], due to being non-monotonic. More

general conditions for the exactness of the convex relaxation are shown in [95, 102].

This makes it challenging to use convex relaxations to formulate the optimization

problem. In many applications, providing network admissibility guarantees are more

valuable than solving to a globally optimal solution [164]. This work uses the convex

inner approximation method of the OPF problem that exhibits computational solve

times similar to that of linear formulations with the added and crucial benefit that

the formulation guarantees admissible solutions. Furthermore, the utilization of re-

active power from flexible inverter-interfaced DERs should be minimized, so that this

resource can be better utilized at the faster time-scale. Previous work on minimiz-
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ing both voltage deviations and reactive power use has been shown in [165], where

a trade-off parameter is used between the two competing objectives. Unlike [165],

this work considers control scheme for the integration of existing discrete mechanical

assets and flexible inverters and provides a systematic method to select the trade-off

parameter. To summarize, main contributions of this work are the following:

• A convex inner OPF formulation is developed for the problem of minimizing

voltage deviations from nominal in a distribution system with guarantees on

admissiblility and scalability.

• A voltage positioning optimization (VPO) method is developed that holisti-

cally optimizes the schedule of discrete mechanical assets while systematically

minimizing the need for continuous inverter-interfaced reactive DERs.

• Simulation based analysis is leveraged to select trade-off parameters between

the use of continuous reactive resources and voltage margins, which are then

utilized to validate the performance on IEEE test feeders.

The rest of the section is organized as follows: Section 4.2.2 develops the voltage

positioning optimization (VPO) formulation to include discrete mechanical assets as a

mixed integer program in order to position the nodal voltages. Section 4.2.3 develops

the mathematical formulation of the convex inner approximation OPF problem that

is then used in the VPO problem to obtain a MILP based VPO. Simulation results on

IEEE test feeders are discussed in Section 4.2.4 and finally conclusions are summarized

in Section 4.2.5.
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4.2.2 Voltage Positioning Optimization

This section develops the voltage positioning optimization problem as a mixed integer

program (MIP). The nonlinearity associated with modeling discrete mechanical de-

vices, such as On-load tap changers (OLTCs) and capacitor banks (CBs), is expressed

with an equivalent piece-wise linear formulation to engender the MIP.

4.2.2.1 Distribution Grid Model

In this section we consider a radial distribution network modeled using the matrix

notation as shown in section 2.2.1. Based on this modeling, the power flow equations

can be represented as:

P =p+ AP − ARl (4.18)

Q =q + AQ− AXl (4.19)

V =v01n +Mpp+Mqq −Hl (4.20)

lij[k] = |Sij[k]|2
vi[k] , ∀(i, j) ∈ E (4.21)

where the matrices C,DR, DX,Mp,Mq andH depend upon the network impedance

and incidence matrix and are defined in section 2.2.1.

Figure 4.16: Diagram of a radial distribution network from [6].
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Apart from the nonlinear relation (4.21) of l to P , Q and V , (4.18), (4.19) and

(4.20) is a linear relationship between the nodal power injections p, q, the branch

power flows P ,Q and node voltages V . The nonlinearity in the network is represented

by (4.21), as the current term l is related to the power injections and node voltages

in a nonlinear fashion. Including this term into the optimization model would render

the optimization problem non-convex, however, neglecting this term could result in

an inadmissible linear OPF solution. In the next section, we model the discrete grid

resources such as OLTCs and capacitor banks, which will then be used to formulate

the voltage positioning optimiazation problem.

4.2.2.2 Discrete device nomenclature

For this work we utilize the discrete device models of OLTCs and capacitor banks

derived and explained in section 2.3.

4.2.2.3 Voltage positioning optimization formulation

The focus of this work is to maximize both the voltage margins and the availability of

reactive reserves for the faster timescales i.e., position voltages within tighter bounds

V and V , and prioritize the use of mechanical (discrete) assets over more flexible

reactive resources, qg. Hence the objective minimizes a function of qg and the voltage

deviation terms for the upper and lower bounds, V +
v and V −v , respectively. The VPO

formulation is described next.

Given a radial, balanced, and single-phase equivalent representation of a distribu-

tion feeder, denote the VPO problem as (P1), which is expressed as a mixed-integer

nonlinear program (MINLP) as follows:
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(P1) min
qg,i,ntr

m,n
cp
i

n∑
i=1

q2
g,i + αi(V +

v,i + V −v,i) (4.22a)

subject to:

V =v01n +Mpp+Mqq −Hl (4.22b)

lijvi =P 2
ij +Q2

ij ∀(i, j) ∈ E (4.22c)

q =qg −QL +Qcp (4.22d)

0 =vi − t2mvj ∀m ∈ T (4.22e)

0 =tm − (1 + τmn
tr
m) ∀m ∈ T (4.22f)

0 =Qcp
i − vibi ∀i ∈ C (4.22g)

0 =bi − yc,in
cp
i ∀i ∈ C (4.22h)

Vmin ≤V ≤ Vmax (4.22i)

V − V −v ≤V ≤ V + V +
v (4.22j)

V +
v ≥0, V −v ≥ 0 (4.22k)

qg,i ≤qg,i ≤ qg,i ∀i ∈ D (4.22l)

ntr
m ≤ntr

m ≤ ntr
m ∀m ∈ T (4.22m)

ncp
i ≤n

cp
i ≤ ncp

i ∀i ∈ C (4.22n)

ntr
m, n

cp
i ∈ Z ∀m ∈ T ,∀i ∈ C (4.22o)

where qg,i is the DER reactive power generation at node i and V +
v,i and V −v,i repre-

sents the voltage violation terms for the upper and lower bound respectively, at node
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i. The parameter α is chosen to trade-off between the use of flexible reactive resources

and maximizing voltage margins. The equality constraints (4.20) and (4.21) repre-

sent the power flow equations relating the voltages and currents in the network to the

power injections, whereas (4.22d) represents the nodal reactive power balance, with

QL being the reactive net-demand and p = −PL with PL being the active net-demand.

The constraints (4.22e) and (4.22f) define the relation between the tap ratio and the

tap position with τm ∈ R being the tap step, whereas the limits in (4.22m) define

bounds on OLTC tap position with ntr
m and ntr

m being the lower and upper tap posi-

tion limit. The relation between capacitor bank admittance (bi) and reactive power

injected by capacitor banks (Qcp
i ) is given by (4.22g), whereas the relation between

capacitor bank admittance and number of capacitor bank units with yc,i ∈ R being

the admittance of a single capacitor bank unit is given by (4.22h) and (4.22n) gives

bounds on the capacitor bank units with ncp
i and ncp

i being the lower and upper bound

on number of capacitor bank units. The box constraints in (4.22i) are the network

voltage limits with Vmin and Vmax being the lower and upper network voltage limit.

The constraint in (4.22j) represents the tighter voltage bound constraints that seek

to position the voltage close to nominal using the tighter inner voltage bounds V and

V . This ensures that the reactive power resources are utilized to position the voltage

within the tighter voltage bounds. The box constraints (4.22l) represents the DER

reactive power generation limits for each generator node with qg,i and qg,i being the

lower and upper limit on generation and finally, (4.22o) constrains the transformer

tap positions and the number of capacitor bank units to be discrete set of integers.

(P1) represents the VPO problem for a radial distribution network. Note that

nonlinear equality constraints (4.4), (4.22e) and (4.22g) and the integer constraint
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(4.22o) represent non-convex constraints and make the OPF problem NP-hard. The

nonlinearity related to the transformer taps and the bilinear term for the capacitor

banks are approximated with piecewise linear (PWL) constraints as shown in the next

section, whereas the nonlinearity due to the powerflow equations represented by (4.21)

is dealt with through convex inner approximation illustrated in section 4.2.3

4.2.2.4 OLTC and capacitor bank modeling

Based on the transformer modeling in section 2.3.2, the voltage relation between the

nodes across an OLTC is given by:

vi = t2m,0vj +
K∑
p=1

∆vmp (4.23a)

0 ≤ ∆vmp ≤ smp v∆tm,p (4.23b)

∆tm,p(vj − (1− smp )v̄) ≤ ∆vmp ≤ ∆tm,pvj (4.23c)

smp+1 ≤ smp , p = 1, 2, . . . , K − 1. (4.23d)

Similarly, the realtion between capacitor bank admittance(bi) and reactive power

injected by capacitor banks (Qcp
i ) is given by:

Qcp
i =

K∑
p=1

Qs
i,p (4.24a)

0 ≤Qs
i,p ≤ uipvbi,p (4.24b)

bi,p(vi − (1− uip)v̄) ≤Qs
i,p ≤ vibi,p (4.24c)

uip+1 ≤uip, p = 1, 2, . . . , K − 1. (4.24d)

Details about this OLTC and capacitor bank modeling can be found in sec-

159



tion 2.3.2.

Based on the linear modeling of OLTCs and capacitor banks in this section, we

now present the mixed-integer program to solve the voltage positioning problem with

the piecewise linear formulation of OLTCs and capacitor banks as shown in (P2).

(P2) min
qg,i,sp,up

n∑
i=1

q2
g,i + αi(V +

v,i + V −v,i) (4.25a)

subject to: (4.22b)− (4.22d), (4.22i)− (4.22o) (4.25b)

(4.23a)− (4.23d), (4.24a)− (4.24d) (4.25c)

The VPO problem presented in (P2) is convex in the continuous variables except

for the nonlinear constraint in (4.22c). One possible solution is to employ convex

relaxation techniques to the nonlinear constraints and obtain an SDP or SOCP for-

mulation. However, several works in literature such as [163], have shown that em-

ploying convex relaxations with an objective that minimizes voltage deviations will

lead to a non-zero duality gap. On the other hand, linearized OPF techniques, even

though computationally efficient, do not provide guarantees on feasibility or bounds

on optimality.

To overcome these challenges associated with the nonlinearity of the power flow

equations, the next section describes the convex inner approximation method of the

OPF problem.
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4.2.3 Formulation of the Convex Inner Approx-

imation

To obtain the convex inner approximation, the approach presented bounds the non-

linear terms in the power flow equations and develops an admissible model that is

robust against modeling errors due to the nonlinearity. This means that the technique

ensures that nodal voltages, branch power flows, and current magnitudes are within

their limits at optimality.

The optimization problem (P2) is non-convex due to the constraint (4.21). In

order to obtain an inner convex approximation of (P2), we bound the nonlinearity

introduced due to (4.21). Let lmin ∈ Rn and lmax ∈ Rn be the lower and upper bound

on l ∈ Rn, respectively. Then based on these values and provided that the matrices

DR, DX , Mp ,Mq and H are positive for an inductive radial network [166], define:

V + :=v01n +Mpp+Mqq −Hlmin (4.26)

V − :=v01n +Mpp+Mqq −Hlmax. (4.27)

If lmin and lmax are known, then the optimization problem (P2) can be modified

to a convex inner approximation of the OPF problem. In the proceeding analysis

we will provide a method to obtain an accurate representation of these bounds. In

section 4.1, we provided conservative bounds on the nonlinearity based on worst case

net-demand forecasts. In this section, we present rigorous analysis to obtain tighter

lower and upper bounds on the nonlinearity using local bounds.

Consider the nonlinear term in the power flow equations given by (4.21). From
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the second-order Taylor series expansion, lij can be expressed as:

lij ≈ l0ij + J>ijδij + 1
2δ
>
ij He,ijδij (4.28)

where l0ij is the value of lij at the forecast net-demand and δij, the Jacobian Jij and

the Hessian He,ij are defined below.

δij :=


Pij − P 0

ij

Qij −Q0
ij

vi − v0
i

 Jij :=


2P 0

ij

v0
i

2Q0
ij

v0
i

− (P 0
ij)2+(Q0

ij)2

(v0
i )2

 (4.29)

He,ij :=


2
v0

i
0 −2P 0

ij

(v0
i )2

0 2
v0

i

−2Q0
ij

(v0
i )2

−2P 0
ij

(v0
i )2

−2Q0
ij

(v0
i )2 2 (P 0

ij)2+(Q0
ij)2

(v0
i )3

 (4.30)

where the superscript 0, (.)0, denotes the nominal values at the forecasted net demand

for all variables (.) in (4.29) and (4.30). The eigenvalues of the Hessian He,ij are all

non-negative, with two of the eigenvalues being strictly positive and one is zero. As

the Hessian is positive semi-definite, the nonlinear function lij is convex. If a function

is convex then the linear approximation underbounds the nonlinear function [119],

i.e.,

lij ≥ l0ij + J>ijδij =: lmin,ij ∀(i, j) ∈ L (4.31)

The upper bound on the nonlinearity is obtained next and the convex inner ap-
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proximation based on these bounds is presented. Applying Taylor’s theorem to the

expansion, the upper bound on the nonlinear function lij is given by:

|lij| ≈ |l0ij + J>ijδij + 1
2δ
>
ij He,ijδij| (4.32)

≤ |l0ij|+ |J>ijδij|+ |
1
2δ
>
ij He,ijδij| (4.33)

≤ l0ij + max{2|J>ijδij|, |δ>ij He,ijδij|} =: lmax,ij (4.34)

The conditions for the upper bound hold if we can neglect the third order term

in (4.28), i.e., the expression is cubic order accurate or the order of accuracy is

O(||δ||3∞). A comparison of the actual expression of l (calculated using (4.21)) with

its second order Taylor approximation (calculated using (4.28)) in Fig. 4.17. From the

figure, it is clear that the second-order Taylor approximation is sufficiently accurate

over a wide range of DER operation (from -1000 kVAr to +1000 kVAr), which is much

larger than the actual DER operation range used herein (i.e., from -100 kVAr to +100

kVAr).

Based on this upper and lower bound determined, we can now formulate the

complete convex inner approximation VPO problem by modifying (P2) as:

(P3) min
qg,i,sp,up

n∑
i=1

q2
g,i + αi(V +

v,i + V −v,i) (4.35a)

subject to: (4.26), (4.27), (4.31), (4.34) (4.35b)

(4.23a)− (4.23d), (4.24a)− (4.24d) (4.35c)
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Figure 4.17: Comparison of the second-order Taylor series (T.S.) approximation
from (4.28) of the updated manuscript with the original (nonlinear) expression of l in (4.21)
of the updated manuscript. In this experiment, the reactive power of DER at node 2 of the
IEEE-13 node system is varied from -1000 to +1000 kVAr and the accuracy of the second-
order approximation of lij branch (1, 2) is illustrated.

Vmin ≤ V −;V + ≤ Vmax (4.35d)

V − V −v ≤ V −;V + ≤ V + V +
v (4.35e)

(4.22d), (4.22k)− (4.22o) (4.35f)

The optimization problem (P3) represents the convex inner approximation of the

VPO problem that provides a network admissible solution. This formulation includes

discrete mechanical assets resulting in mixed-integer linear program (MILP) Voltage

Positioning Optimization problem.

4.2.3.1 Iterative algorithm for improving solution

In this section, we present an iterative algorithm that achieves tighter bounds on

the non-linearity. The lower and upper bounds obtained in previous section can be
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conservative depending upon the initial net-demand forecast. Without Algorithm 1, if

we only solved (P3) once, it could result in a conservative inner approximation, which

would lead to reduced performance. This is because the operating point x0 could be

close to the no-load condition, i.e., P 0
ij = Q0

ij ≈ 0, which means that the Jacobian

would be close to zero per (4.29) and the first-order estimate of lmin and lmax would

be close to l0 per (4.31) and (4.34). This results in conservative feasible set for (P3)

and Algorithm 1 overcomes this by successively enhancing the feasible solutions by

updating the operating point and the Jacobian (and the Hessian) with the optimized

decision variables, sometimes called the convex-concave procedure [119]. Algorithm 1

shows the steps involved in the proposed iterative scheme, where q∗g(k) and Qcp∗(k)

represent the solution of (P3) for the kth iteration of Algorithm 1, whereas q(k)

represents the net-reactive power injection at iteration k. It is assumed that the

initial operating point satisfies qg and Qcp both being zero and, hence, q(0) = −QL.

Finally the result of Algorithm 1 is given by the cumulative sum of the iterates, i.e.,

qg = ∑k−1
i=1 q

∗
g(i), Qcp = ∑k−1

i=1 Q
cp∗(i).

Algorithm 1: Successive feasible solution enhancement
Result: qg, Qcp, ntr

1 Input: QL, f(x0), ε
2 Run AC load flow with q(0) = −QL ⇒ J(0),He(0)
3 Initialize k = 1, error(0) =∞
4 while error(k − 1) > ε do
5 Solve (P3) ⇒ q∗g(k), Qcp∗(k), ntr∗(k), f(x∗k)
6 Update ∑k

i=1(q∗g(i) +Qcp∗(i))−QL ⇒ q(k)
7 Run AC load flow with q(k) ⇒ J(k),He(k)
8 Update error(k) = ||f(x∗k)− f(x∗k−1)||∞
9 k := k + 1

10 end
11 qg = ∑k−1

i=1 q
∗
g(i), Qcp = ∑k−1

i=1 Q
cp∗(i), ntr = ntr∗(k − 1)
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Theorem 3 proves the feasibility and convergence of solutions obtained through

Algorithm 1.

Theorem 3. Every iterate of Algorithm 1 is AC feasible and the iterates converge to

a locally optimal solution.

Proof. Let χ be the feasible set of the underlying, nonconvex ACOPF from (P1) with

convex objective function f(.) given in (11a) and let

x0 =
[
P (p, q) Q(p, q) V (p, q) l(p, q)

]>
be a feasible AC operating point, i.e., x0 ∈

χ, that depends on (p, q) injections. Also, define the feasible set of the convex inner

approximation (P3) based on x0 as Ψ0(x0). Now, let x∗1 be the optimal solution of

(P3), then x∗1 ∈ Ψ0(x0) and x0 ∈ Ψ0(x0) and by definition of inner approximation

Ψ0(x0) ⊆ χ. Also since x∗1 is the optimal solution, then f(x∗1) ≤ f(x0). This pro-

cess can be repeated so that, for the kth iteration (k ∈ N+), Ψk−1(x∗k−1) ⊆ χ is

the feasible set of (P3) and x∗k ∈ Ψk−1(x∗k−1) is the optimal solution of (P3) with

f(x∗k) ≤ f(x∗k−1). This implies that each iterate is an improved solution that is fea-

sible and continuing this process yields a non-increasing sequence: {f(x∗k)}k∈N+ that

is bounded below by zero (since f(x) ≥ 0 ∀x ∈ χ). Thus, by the greatest-lower-

bound property of real numbers, we know infk∈N+{f(x∗k)} ∈ [0, f(x0)] exists. Since

{f(x∗k)}k∈N+ is non-increasing and bounded below, by the monotone convergence the-

orem [167], error(k) := ||f(x∗k) − f(x∗k−1)||∞ → 0 as k → ∞. Thus, we have proven

that application of Algorithm 1 converges to an AC feasible, locally optimal solution,

x∗, through a sequence of successively improved AC-feasible iterates, x∗k, and that x∗

improves on the original objective by ||f(x∗1)− f(x∗)||∞. 222

Since the above problem is convex in the continuous variables, the MILP can

be solved effectively and provide good feasible solutions [168]. The formulation (P3)
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minimizes the utilization of reactive power from flexible DERs, prioritizing mechanical

assets as a result. The formulation positions the voltage within the tighter voltage

bounds, close to nominal, while the voltage violation terms V +
v V −v ensure feasibility

of the solution.

In Section 4.2.4, simulations involving standard IEEE test networks, e.g., see [132],

show that the results of this analysis holds for these radial distribution network.

Simulation-based analysis is conducted on IEEE-13 node and IEEE-37 node system

to check the validity of the approach on standard networks and analyze how tighter

voltage bounds affect the utilization of DER reactive power at optimality.

4.2.4 Simulation Results

In this section, simulation tests are conducted on IEEE test cases and validation of

the results is performed with Matpower [153] on a standard MacBook Pro laptop

with 2.2 GHz of processor speed and 16 GB RAM. Simulation results illustrate the

validity of the VPO problem (P3). The optimization problem is solved using GUROBI

8.0 [126], whereas the simulation is performed with AC load flows in Matpower. In

all the simulation results, the system was solved to a MIP gap of under 0.01%.

For the IEEE-13 node shown in Fig. 4.18 and IEEE-37 node test case shown in

Fig. 4.23, optimal reactive dispatch schedules from (P3) are fed to an AC load flow

in Matpower. The IEEE-13 node test case is modified to include capacitor banks at

nodes 7 and 11, besides having an OLTC connecting nodes 3 and 12. Each capacitor

bank operates with 10 increments with each increment being 50 kVAr. Apart from

these mechanical resources, DERs are placed at leaf nodes 5, 7, 8, 10, 11 and 12 with

each DER qg,i at node i having a range of -100 to +100 kVAr. In all the test cases
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Figure 4.18: IEEE-13 node distribution network with added DERs at leaf nodes.

the value of α is chosen to be .001.

The comparison of the output voltages of the optimizer (upper and lower bounds)

and the AC power flow solver over two iterations are shown in Fig. 4.19a and 4.19b

respectively. The optimal value changes from 3.6414×10−6 (pu) to 3.196×10−6 (pu),

while the OLTC tap position stays fixed at position 2. From the figures, it is shown

that the actual voltages are within the determined bounds and the voltage bounds

converge to the AC power flow solution.

In another simulation conducted on the IEEE-13 node system, we study the sen-

sitivity on the reactive power utilization and the voltage violation term. Fig. 4.20a

shows the variation in the total flexible reactive power consumption as the parameter

α is varied, with the nominal value of α being highlighted. Similarly, Fig. 4.20b shows

the change in the total voltage violation term as we sweep across α, illustrating that

as α increases the voltage violation term reduces as expected.

Fig. 4.21a shows the variation of the total flexible reactive power as the lower
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(a) (b)

Figure 4.19: (a) Comparison of the actual nodal voltage with the upper and lower bound
voltages for the first iteration. (b) Comparison of the actual nodal voltage with the upper and
lower bound voltages for the second iteration. The objective value changed from 3.614×10−6
to 3.196 ×10−6 with a value of α chosen being 0.001 and the OLTC tap position at tap
position 2 in both iterations.

(a) (b)

Figure 4.20: (a) Variation in the total flexible reactive power consumption with change in
α, (b) Variation in the total lower voltage violation term with change in α.
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(a) (b)

Figure 4.21: (a) Variation in the total flexible reactive power consumption with change in
V , (b) Variation in the total lower voltage violation term with change in V .

voltage bound is increased, showing the trade off between positioning voltage closer

to nominal and the utilization of flexible reactive power resources, with the nominal

value of V used being highlighted. Similarly, Fig. 4.21b shows the variation in the

total voltage violation with the increase in the lower voltage bound, showing a similar

trend.

Simulations are also conducted by considering a daily predicted 24-hour load pro-

file shown in Fig. 4.22a obtained from real load data measured from feeders near

Sacramento, CA during the month of August, 2012 [169]. Figure 4.22b shows the

predicted aggregated reactive power supply from DERs over the horizon, whereas

Fig. 4.22c shows the predicted aggregate cap bank reactive power supply, illustrates

that as the load in the system increases, the aggregate utilization of reactive power

from capacitor banks also increases and follows a similar trend. Figure 4.22d shows

the optimal OLTC tap positions over the prediction horizon.

Fig. 4.24a shows the comparison between the reactive power supply between the
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(a) (b)

(c) (d)

Figure 4.22: (a) Predicted 24-hour normalized load profile, (b) optimized schedule of aggre-
gate reactive power from DERs utilized over the 24-hour horizon for IEEE-13 node system,
(c) optimized schedule of the total reactive power from capacitor banks (at 1 p.u voltage)
over the 24-hour horizon, (d) optimized OLTC tap position for IEEE-13 node system over
the 24-hour horizon.
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case using capacitor banks and the case without the use of capacitor banks, showing

that capacitor banks supply part of the reactive power reducing the burden on DERs.

Fig. 4.24b shows the comparison between the voltage violation terms between the case

using capacitor banks and the case without capacitor banks, showing that the voltage

violations are very small and hence the system violations are within the specified

tighter voltage bounds.

Figure 4.23: IEEE-37 node distribution network [11].

Further simulations are conducted on IEEE-37 node system shown in Fig. 4.23.

In this case cap banks are positioned at nodes 724, 725, 728, 732, 736 and 741,

whereas flexible DERs are placed at leaf nodes 714, 731, 734, 744 and 775 and the

load profile shown in Fig. 4.22a is used. For the IEEE-37 node system also, each

capacitor bank operates with 10 increments with each increment being 10 kVAr and

each DER has a range of -100 to +100 kVAr. Similar results are observed with

regards to the reduction in reactive power utilization from flexible resources with the
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(a) (b)

Figure 4.24: (a) Comparison of reactive power supply between the case using capacitor banks
and without capacitor banks for IEEE-13 node system. The figure compares the total reactive
power supply from DERs and cap banks (Total DER+CB (w/ CB)) with the reactive power
supply only from DERs when cap banks are utilized (Total DER only (w/ CB)) and with
DER reactive power supply when cap banks are not utilized (Total DER only (w/o CB)) ,
(b) Comparison of total voltage violation over time between the case using capacitor banks
and without capacitor banks for IEEE-13 node system.

inclusion of capacitor banks as shown in Fig. 4.25a. Similarly, Fig. 4.25b shows the

comparison of the voltage violation terms illustrating that the tighter voltage bounds

are maintained. Further, Fig. 4.26a shows the optimal OLTC tap positions over

the prediction horizon, whereas Fig. 4.26b shows the comparison between voltages

obtained from the optimzer (upper and lower bound) and Matpower at node 775 of

the IEEE-37 node system over the prediction horizon.

Finally, Fig. 4.27 shows the increase in solve time (over one iteration) as the

number of devices increases in the network. It can be seen that the convex formulation

scales well with the increase in problem size.

Through these simulation results, it is observed that the voltage positioning al-

gorithm results in a network admissible solution that prioritizes the utilization of
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(a) (b)

Figure 4.25: (a) Comparison of reactive power supply between the case using capacitor banks
and without capacitor banks for IEEE-37 node system. The figure compares the total reactive
power supply from DERs and cap banks (Total DER+CB (w/ CB)) with the reactive power
supply only from DERs when cap banks are utilized (Total DER only (w/ CB)) and with
DER reactive power supply when cap banks are not utilized (Total DER only (w/o CB)) ,
(b) Comparison of total voltage violation over time between the case using capacitor banks
and without capacitor banks for IEEE-37 node system.

(a) (b)

Figure 4.26: (a) Predicted OLTC tap position for IEEE-37 node system over the 24-hour
horizon. (b) Comparison of the actual nodal voltage at node 775 with the upper and lower
bounds over a 24-hour horizon for IEEE-37 node system

174



Figure 4.27: Solve time for IEEE-37 node system with number of devices (capacitor banks)
in the network over one iteration.

mechanical assets over flexible resources to position the voltage close to nominal and

hence could be utilized for voltage control of mechanical assets in distribution net-

works.

4.2.5 Conclusions

This section introduces a holistic voltage positioning algorithm to optimally schedule

mechanical switching devices, such as on-load tap changing transformers and capaci-

tor banks, together with more responsive DERs in a distribution grid. The optimiza-

tion program makes maximum use of mechanical resources to position the voltage

close to nominal using tighter inner voltage bounds to counter the predicted hourly

variation of renewable generation. At the same time, the scheduling of responsive

reactive resources from DERs is reduced, making them available at the faster time-

scale to counter fast minute-to-minute variation inherent to renewable generation.

The optimization problem is formulated as a MILP through an convex inner approxi-
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mation of the OPF ensuring network admissible solutions. The optimization problem

is validated via simulations on the IEEE-13 node and IEEE-37 node test feeders and

the results are compared with AC load flows from Matpower. The results validate

the approach.
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4.3 Grid-aware aggregation and disag-

gregation of flexibility

Dispatching a large fleet of distributed energy resources (DERs) in response to whole-

sale energy market or regional grid signals requires solving a challenging disaggrega-

tion problem when the DERs are located within a distribution network. This work

presents a computationally tractable convex inner approximation for the optimal

power flow (OPF) problem that characterizes a feeders aggregate DERs hosting ca-

pacity and enables a realtime, grid-aware dispatch of DERs for radial distribution

networks. The inner approximation is derived by considering convex envelopes on

the nonlinear terms in the AC power flow equations. The resulting convex formula-

tion is then used to derive provable nodal injection limits, such that any combination

of DER dispatches within their respective nodal limits is guaranteed to be AC admis-

sible. These nodal injection limits are then used to construct a realtime, open-loop

control policy for dispatching DERs at each location in the network to collectively de-

liver grid services. The IEEE-37 distribution network is used to validate the technical

results and highlight various use-cases.

4.3.1 Introduction

The distribution system was engineered under the assumption that residential and

commercial customers would only have power directed to them from the bulk grid.

However, the increasing penetration of solar PV in distribution feeders has created

so-called “prosumers” who (at times) can supply the grid with energy rather than
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just consume it. This leads to reverse power flows that can result in unexpected

violations of voltage and transformer constraints, which may negatively impact sys-

tem reliability [109]. Furthermore, the significant variability inherent to solar PV

generation challenges traditional distribution system operating paradigms. Further-

more, with ubiquitous connectivity, smart appliances and DERs behind the meter

(BTM) will soon underpin a demand that becomes inherently flexible. The optimal

power flow (OPF) represents an opportunity for algorithms to improve reliability and

responsiveness of the grid and the dispatch of flexible resources (e.g., batteries, PV in-

verters). However, due to the sub-minutely timescale of the solar PV variability, these

algorithms must be computationally tractable and, yet, representative of the physics.

That is, grid optimization algorithms can ensure admissible network operations [88].

Since Carpentier’s original OPF formulation [50] and subsequent improvements

in optimization solvers, the OPF problem has become a powerful methodology for

optimizing the dispatch of various grid resources. This is because OPF-based methods

can account for the underlying grid physics, static network constraints on voltages and

apparent branch flows, and resource limitations. However, it was also recognized early

on that the nonlinear AC power flow equations that model the underlying grid physics

render the AC OPF non-convex [97]. In many practical applications, guaranteeing

network admissibility is more critical than finding the globally optimal solution.

The work herein presents a novel convex approximation of the AC OPF prob-

lem to quantify the network-admissible range of DER nodal injections. In general,

obtaining a convex inner approximation is NP-hard [170], however, the work herein

uses the nonlinear branch-flow model (BFM) formulation of the AC power flow equa-

tions to define a convex envelope on the nonlinear terms relating the branch current,
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Figure 4.28: A schematic representation of the network model. The physical layer repre-
sents the circuit that connects the different DER groups into an aggregate virtual battery,
whereas the cyber layer represents the disaggregation of the virtual battery market signal to
the DER groups based on the nodal hosting capacities that are determined offline. VB image
source: https://esdnews.com.au/

nodal voltages, and apparent power flows that is combined with the remaining linear

relationships of the BFM to form a convex inner approximation. This convex inner

approximation ensures that all feasible (and, hence, optimal) solutions in the convex

OPF are also feasible in the non-convex AC OPF formulation. We denote such a

solution as network admissible or AC admissible. From this approach, we achieve an

OPF formulation that exhibits computational solve times similar to that of linear

formulations with the added (and crucial benefit) that the formulation guarantees

admissible solutions. This convex inner approximation is then utilized to determine

the admissible DER dispatch ranges for nodes over a network, i.e., any combination of

dispatching nodes across the network is admissible as long as each node is dispatched

within its provided DER capacigy. This methodology represents a major shift in how

to dispatch networked grid assets in distribution feeders and it overcomes practical
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limitations of methods that rely on repeatedly solving full, centralized AC OPFs at

each time-step [171] or require extensive, realtime communication, grid data, and

DER data [26].

The main contributions of this work are as follows:

• This work improves over section 4.2 to generalize a convex inner approximation

of the AC OPF problem that is applicable to any radial, balanced distribution

feeder, such as those with a mix of inductive and capacitive branches and with

branch current and nodal voltage constraints.

• The generalized convex inner approximation is employed to optimize the feeder’s

DER nodal capacities, which represent the ranges of admissible injections for

DERs at each node in the network such that all branch flows and nodal volt-

ages are within limits (i.e., network admissible). Thus, the optimized DER

nodal capacities can then be trivially aggregated to form the network’s range

of admissible flexibility. Provable guarantees are provided for admissibility over

the entire range of DER nodal dispatch.

• Different reactive power DER control strategies are investigated to enlarge the

range of a feeder’s aggregate DER nodal capacity.

• The admissible DER nodal capacities are used within an open-loop, realtime

disaggregation policy to account for network constraints while providing fast

grid services.

The remainder of the section is organized as follows. Section 4.3.2 develops the

mathematical formulation of the convex inner approximation for the OPF problem

using the robust bounds on nonlinear terms. Section 4.3.3 provides admissibility

180



guarantees for the obtained DER nodal capacity and proposes an iterative algorithm

that enlarges the admissible range. In Section 4.3.4, we present and analyze the effect

of different nodal reactive power control policies to enlarge the range of admissible

flexibility for the feeder, whereas Section 4.3.5 describes a realtime dispatch policy

that disaggregates flexibility over a network in an admissible manner using the DER

nodal capacity obtained through the convex inner approximation. Finally, section

4.3.7 provides the conclusions.

4.3.2 Formulating the Convex Inner Approxima-

tion

The nonlinear DistFlow model is often used to represent the underlying physics for

a radial, balanced AC distribution network [27]. However, embedding this model

within an AC OPF setting results in a non-convex formulation due to the nonlinear

equations that map branch currents to branch power flows and nodal voltages. Com-

mon techniques that employ linear or convex relaxations are only valid under certain

technical assumptions or near a pre-defined operating point. In this section, we de-

velop a novel convex inner approximation of the AC OPF that is used to compute the

range of allowable nodal net injections, such that any combination of nodal injections

within those ranges are guaranteed to satisfy AC limits for voltages and branch flows.

4.3.2.1 Mathematical model

In this section we consider a radial distribution network modeled using the matrix

notation as shown in section 2.2.1.
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Figure 4.29: Nomenclature for a radial distribution network [6].

The goal of this work is to maximize the range of active power DER injections,

pg, from a given feasible operating point with pg,j = 0, qg,j = 0 ∀j ∈ N , such that all

voltages vj and currents lij are within their respective limits (i.e., vj ∈ [vj, vj] ∀j ∈ N

and lij ∈ [lij, lij] ∀(i, j) ∈ L).

However, finding such a range is challenging due to the non-linear nature of (4.36c).

For clarity, we provide definitions of the following key terms used in the manuscript.

Definition 1 (AC Admissibility). A solution of a convex OPF problem is AC admissi-

ble, if the solution applied to the original, non-convex AC OPF, which uses DistFlow,

is feasible.

Definition 2 (Nodal capacity). Nodal capacity is the range of AC admissible active

power injections ∆pg,j := [p−g,j, p+
g,j] ∀j ∈ N with lower and upper bounds p−g,j ≤ 0

and p+
g,j ≥ 0, respectively. That is, for all nodes j, all injections pg,j ∈ ∆pg,j are AC

admissible.

In the next section we use a simple 3-node system to motivate the need for ana-

lyzing nodal capacity in distribution systems.

4.3.2.2 Motivating example on nodal capacity

Consider the 3-node system shown in Fig. 4.30. Each branch of the system has

an impedance of z = 0.55 + 1.33jpu. Node 2 has a load injection sL,2 = −0.02 +
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Figure 4.30: The 3-node network used as a motivating example.

0.005jpu and node 3 has a load injection sL,3 = −0.015+0.001jpu. Flexible resources

pg,2 and pg,3 are assumed to be located at nodes 2 and 3. Only the active power

of resources at nodes 2 and 3 is assumed to be controllable. Based on the sweep

of power flow solutions obtained through Matpower [153], by varying pg,2 and pg,3,

Fig. 4.31 shows the set of the AC OPF for the 3-node system. As can be seen

from Fig. 4.31, the admissible set is non-convex and contains “holes”. Hence, it is

important when dispatching pg,2 and pg,3, to choose the right trajectory in order to

maintain AC admissibility. Fig. 4.31 shows that trajectory A is within the admissible

set and, hence, the network voltages obtained as we traverse this dispatch trajectory,

whereas Path B passes through a “hole” and results in voltage violations. Even though

trajectory A is AC admissible it requires pg,2 and pg,3 to be coordinated (i.e., stay on

the trajectory) to ensure admissibility, so they cannot be manipulated independently.

This means that any changes in either requires a change in the other and, thus, they

are not nodal capacities. This simple example shows the need to develop tools that

determines nodal capacities for any radial, balanced network. Towards that objective,

the next section develops a convex inner approximation of the non-convex DistFlow

formulation.
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Figure 4.31: Analysis of 3-node motivating example. (Bottom) The set of admissible injec-
tions is non-convex with trajectories A and B showing admissible (green) and inadmissible
(red) dispatch, respectively. (Top) Voltage profiles from sweeping (pg,2, pg,3) along admissible
trajectory A and inadmissible trajectory B.

4.3.2.3 Convex Inner Approximation Preliminaries

In this section, we first present a compact matrix representation of the linear compo-

nents as given in section 2.2.1. Then, we bound the nonlinear branch current terms,

lij(Pij, Qij, vj), by a convex envelope, which leads to a convex inner approximation of

the DistFlow model.

First, define vectors P := [Pij](i,j)∈L ∈ RN , Q := [Qij](i,j)∈L ∈ RN , V := [vi]i∈N ∈

RN , p := [pi]i∈N ∈ RN , pg := [pg,i]i∈N ∈ RN , PL := [PL,i]i∈N ∈ RN , q := [qi]i∈N ∈ RN ,

QL := [QL,i]i∈N ∈ RN , and l := [lij](i,j)∈L ∈ RN and matrices R := diag{rij}(i,j)∈L ∈

RN×N , X := diag{xij}(i,j)∈L ∈ RN×N , Z2 := diag{z2
ij}(i,j)∈L ∈ RN×N , and A :=
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[0N IN ]B − IN , where IN is the N × N identity matrix and 0N is a column vector

of N rows. Then, directly applying [6], we get the following expression for P , Q, V :

V =v01N +Mpp+Mqq −Hl, (4.36a)

P =Cp−DRl, Q = Cq −DXl, (4.36b)

lij[k] = |Sij[k]|2
vi[k] , ∀(i, j) ∈ E (4.36c)

where matrices Mp := 2CTRC, Mq := 2CTXC, H := CT (2(RDR +XDX) +Z2)

and C := (IN −A)−1, DR := (IN −A)−1AR, and DX := (IN −A)−1AX describe the

network topology and impedance parameters. Note that it is shown in section 2.2.1

that the matrix (IN−A) is non-singular for radial and balanced distribution networks.

Furthermore, the convex inner approximation in section 4.2 is valid only for purely

inductive, radial, and balanced networks. In the current manuscript, we extend the

convex formulation to any radial and balanced network, including those with mixed

inductive and capacitive branches.

Clearly, (4.36a) and (4.36b) represent linear relationships between the nodal power

injections, (p, q), the branch power flows, (P,Q), and node voltages V . However,

setting l = 0 and neglecting (4.36c), as done with the commonly used LinDist ap-

proximation, can result in overestimating the nodal capacities [166]. Next, we present

methods for bounding the nonlinearity lij(Pij, Qij, vj) from above and below.

Based on the description of voltages in (4.36a) and branch flows in (4.36b), denote

llb and lub as lower and upper bounds on l. Then, we can define the corresponding
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upper (.)+ and lower (.)− bounds of P , Q and V as follows:

P+ :=Cp−DRllb (4.37a)

P− :=Cp−DRlub (4.37b)

Q+ :=Cq −DX+llb −DX−lub (4.37c)

Q− :=Cq −DX+lub −DX−llb (4.37d)

V + :=v01n +Mpp+Mqq −H+llb −H−lub (4.37e)

V − :=v01n +Mpp+Mqq −H+lub −H−llb, (4.37f)

where DX+ and H+ include the non-negative elements of DX and H, respectively,

and DX− and H− are the corresponding negative elements. For example, if the net-

work is purely inductive, then DX− = H− = 0 and the formulation reduces to the one

presented in [141]. These upper and lower bounds in (4.37) satisfy P− ≤ P ≤ P+,

Q− ≤ Q ≤ Q+ and V − ≤ V ≤ V +. Note that the bounds llb, lub in (4.37) effectively

allow us to neglect the nonlinear (4.36c). Thus, if we can find convex representa-

tions of these bounds, the corresponding OPF formulation will be a convex inner

approximation. This is described next.

Equation (4.37) provides a linear formulation for bounding the AC power flow

equations in terms of bounds llb, lub and controllable injections. This was first pre-

sented in [141], where bounds llb, lub were derived based on a nominal operating point

and used to maximize voltage margins with mechanical grid assets (e.g., LTCs and

capacitor-banks). Next, we summarize the derivation of these bounds and leverage

them to formulate a novel convex inner approximation of the AC OPF to determine

the nodal capacities for any radial, balanced network.
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Based on any nominal or predicted operating point x0
ij := col{P 0

ij, Q
0
ij, v

0
j} ∈ R3,

the second-order Taylor series approximation for (4.36c) can be expressed as:

lij ≈ l0ij + J>ijδij + 1
2δ
>
ij He,ijδij (4.38)

where l0ij := lij(P 0
ij, Q

0
ij, v

0
j ) are branch current flows at the operating point and

δij(Pij, Qij, vj, x
0
ij) := col{Pij, Qij, vj} − x0

ij and the Jacobian Jij and the Hessian

He,ij are defined accordingly and detailed in [141]. Specifically, [141] shows that He,ij

is positive semi-definite, which, together with (4.38), means that the lower and upper

bounds of lij for all (i, j) ∈ L are given by:

lij ≥ l0ij + Jij+
>δ−ij + Jij−

>δ+
ij =: llb,ij (4.39)

lij ≤ l0ij + max{2|Jij+
>δ+

ij + Jij−
>δ−ij |, ψij} =: lub,ij, (4.40)

where Jij+ and Jij− includes the positive and negative elements of Jij, δ+
ij := δij(P+

ij , Q
+
ij, v

+
j , x

0
ij)

and δ−ij := δij(P−ij , Q−ij, v−j , x0
ij), and ψij := max{(δij

+,−)>He,ij(δij
+,−)}, which repre-

sents the largest of eight possible combinations of P/Q/v terms in δij with mixed

+,− superscripts. Note that from (4.39), the lower bound llb,ij may become negative,

however, we know from physics that lij ≥ 0, which means the llb,ij may be overly

conservative. To alleviate this shortcoming, Algorithm 1 in Section 4.3.3.2 presents

an iterative approach that improves the nodal capacity. Thus, from (4.37), (4.39)

and (4.40) we have a convex inner approximation of DistFlow that can be used to

determine the nodal capacities.
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4.3.2.4 Optimizing DER nodal capacity

The bounds from (4.39) and (4.40) allow us to omit (4.36c) entirely and replace the

original variables P , Q, and V with their corresponding upper and lower bounds (.)+

and (.)− in (4.37). Since (.)+ and (.)− are outer approximations, using them in an

OPF formulation results in a feasible set that is contained in the original, non-convex

AC OPF, which means that (P1) below represents a convex inner approximation and

can be used to determine nodal hosting capacities:

(P1) min
pg,i,qg,i

N∑
i=1

fi(pg,i) (4.41)

s.t. (4.37a)− (4.37f), (4.39),(4.40) (4.42)

p = pg − PL q = qg −QL, (4.43)

V ≤ V −(p, q) V +(p, q) ≤V (4.44)

lub ≤ l qg ≤ qg ≤ qg (4.45)

where (4.44) and (4.45) ensure that any feasible dispatch pg from (P1) satisfies

nodal voltages and branch flows in the original AC OPF based on DistFlow model.

To determine the nodal capacity (i.e., the range [p−g,i, p+
g,i] of admissible net injections

at each node i), we must solve (P1) once for the lower range, p−g , and once for the

upper range, p+
g . Thus, the objective function components, fi(pg,i), must be designed

to engender p−g,i and p+
g,i. For example, to compute p−g,i, we can choose fi(pg,i) := αipg,i

and, for p+
g,i, we can designate fi(pg,i) := −αipg,i, where αi is the relative priority of

nodal capacity at node i. Clearly, the choice of objective function determines how
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flexibility is allocated over the network nodes, e.g., choosing objective function such as

±αi log(pg,i) could result in a different allocation of nodal capacity over the nodes as

compared with ±αipg,i . The design of the objective function represents an interesting

future extension into energy policy and incentive mechanism and rate design [172].

While (P1) ensures AC admissibility at the nodal capacity values, it is natural to

consider what happens when the nodal flexibility is below the rated capacity. That

is, are all injections within the hosting capacity range guaranteed to be admissible

across all the nodes? The next section answers this question by providing analytical

guarantees of admissibility for the nodal hosting capacity, ∆pg, and then presents an

iterative algorithm to successively improve ∆pg.

4.3.3 Analysis of convex inner approximation

In this section, we analyze (P1) and prove that any pg ∈ ∆pg is network admissible.

4.3.3.1 Admissibility guarantees

To prove admissibility claims below, we only present nodal voltages (as the case of

branch flows is similar). Theorem 4 shows that the range ∆pg obtained through (P1)

results in an AC admissible load flow solution.

Theorem 4. Under conditions C1) ∂V +

∂pg,i
≥ 0, C2) ∂V −

∂pg,i
≥ 0, ∀i ∈ N , if ∆pg is the

DER nodal capacity obtained via (P1), then ∀pg ∈ ∆pg and p(pg) = pg − PL, we have

V ≤ V −(p) ≤ V (p) ≤ V +(p) ≤ V ,

where V (p) represents the actual nodal voltages from DistFlow model.
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Proof. Consider two cases: Case 1: 0 ≤ pg ≤ p+
g ; and Case 2: 0 ≥ pg ≥ p−g .

Proof of Case 1: Using (4.37e) at p+
g yields:

V +(p+) = v01n +Mpp
+ +Mqq

+ −H+llb −H−lub ≤ V (4.46)

where p+ = p+
g − PL and q+ = q+

g − QL. Now, consider any pg ∈ ∆pg such that

0 ≤ pg ≤ p+
g and using C1, then

V +(p) = v01n +Mpp+Mqq
+ −H+llb(p)−H−lub(p) ≤ V (4.47)

where p = pg − PL. The actual voltage according to (4.36a) at p is

V (p) = v01n +Mpp+Mqq
+ −H+l(p)−H−l(p) (4.48)

Then, subtracting (4.47) from (4.48) gives:

V +(p)− V (p) = H+ (l(p)− llb(p)) +H− (l(p)− lub(p)) (4.49)

Using (4.39) and (4.40) we get, llb(p) ≤ l(p) ≤ lub(p) and that V +(p)−V (p) ≥ 0 =⇒

V (p) ≤ V +(p) ≤ V .

Proof of Case 2: Using (4.37f) at p−g yields:

V −(p−) = v01n +Mpp
− +Mqq

− −H+lub −H−llb ≥ V (4.50)

where p− = p−g − PL and q− = q−g − QL. Now, consider any pg ∈ ∆pg such that
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0 ≥ pg ≥ p−g and C2, then

V −(p) = v01n +Mpp+Mqq
− −H+lub(p)−H−llb(p) ≥ V (4.51)

where p = pg − PL. The actual voltage according to (4.36a) at p is

V (p) = v01n +Mpp+Mqq
− −H+l(p)−H−l(p) (4.52)

Then, subtracting (4.51) from (4.52) gives:

V −(p)− V (p) = H+ (l(p)− lub(p)) +H− (l(p)− llb(p)) (4.53)

Using (4.39) and (4.40) we get, llb(p) ≤ l(p) ≤ lub(p), and that V −(p)−V (p) ≤ 0 =⇒

V (p) ≥ V −(p) ≥ V . Case 1 and Case 2 complete the proof. 222

Theorem 4 significantly improves over the result provided in [141], since it guar-

antees that the full range, ∆pg, is admissible rather than just the solutions, p+
g and

p−g . Importantly, this is exactly why ∆pg can be used to represents the nodal hosting

capacity. As with any convex inner approximation, the results can be conservative.

Thus, in the next section, a new iterative algorithm is presented that successively

increases the nodal capacity.

4.3.3.2 Iterative Algorithm for nodal capacity improvement

The lower and upper bounds obtained in section 4.3.2.3 can be conservative initially

depending upon the nominal operating point, x0. Without Algorithm 2, when we solve

(P1) to determine p+
g and p−g , the nodal capacities can be significantly underestimated.
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This is because the operating point x0 in certain situations could be such that, P 0
ij =

Q0
ij ≈ 0, which means that the Jacobian would be close to zero and the first-order

estimate of llb,ij and lub,ij would be close to l0ij per (4.39) and (4.40). Algorithm 2

overcomes this by successively improving the operating point and the Jacobian (and

Hessian) based on each optimal solution. This successive approach is related to

the convex-concave procedure [173]. Algorithm 2 outlines the steps involved in the

proposed scheme.

Algorithm 2: Successive enhancement of DER nodal capacity ∆pg (unity
power factor case)
Result: Admissible range ∆pg = [p−g , p+

g ]
1 Input: PL, QL ∈ RN , convex fi(pg,i) ∀i ∈ N , and ε > 0
2 Run Load flow w/ PL, QL, pg(0) = 0 ⇒ J(0),He(0)
3 for m = 1 : 2 do
4 if m = 1 then
5 pg,i → p+

g,i, Cond(i)→ Check ∂V +

∂pg,i
≥ 0 ∀i ∈ N

6 else
7 pg,i → p−g,i, Cond(i)→ Check ∂V −

∂pg,i
≥ 0 ∀i ∈ N

8 end
9 Initialize k = 1, error(0) =∞

10 while ∃i, s.t. Cond(i) holds ∧ error(k − 1) > ε do
11 for i = 1 : N do
12 if Cond(i) does not hold then
13 Set pg,i(k) = 0
14 end
15 end
16 Solve (P1) ⇒ pg,i(k), fi(pg,i(k)), ∀i ∈ N
17 Run load flow w/ PL − pg(k), QL ⇒ J(k),He(k)
18 Update Cond(i) ∀i ∈ N
19 Update error:
20 error(k) = maxi∈N |fi(pg,i(k))− fi(pg,i(k − 1))|
21 k → k + 1
22 end
23 end
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Next, we apply Algorithm 2 to the motivating example from Fig. 4.30 to present

how the nodal capacity is improved. Note that reactive power net injections, qg,i, are

decision variables in (P1), however, in the proceeding analysis and simulations, we

set qg,i = 0.2 Later in Section 4.3.4, we analyze the role of reactive power strategies

in enabling greater DER nodal capacities. For the sake of simplicity, we neglect the

branch limit constraint (4.45) in (P1) and assume an oversized substation transformer,

which is a common practice in the US. The focus is on voltage because that is often

the primary concern of utilities in the US [174]. However, the formulation in (P1)

and the analysis therein hold for branch limit constraints as well. Future work will

analyze and provide simulation results on this extension.

If Algorithm 2 is applied to determine p+
g and p−g without considering C1 and C2

(i.e, omit lines 12-14 in Algorithm 2), then the admissible set for pg,2 and pg,3 is shown

by the blue region in Fig. 4.32. When the conditions C1 and C2 are considered in

Algorithm 2, then the green region in Fig. 4.32 is the admissible set. As can be seen

from the figure, the green region is a convex set that is contained in the blue set as

expected from being a convex inner approximation. The successive iterative solutions

obtained through Algorithm 2 are also marked in Fig. 4.32. It is clear from the non-

convex nature of the blue set that operating in that region would require coordination

between different nodes in order to ensure AC admissibility (i.e., to stay on the piece-

wise linear trajectory provided by the iterates with the black dotted line in Fig. 4.32).

On the other hand, since the green set is a hypercube, no coordination between nodes

is necessary in order to guarantee AC admissibility. Due to these reasons, further

analysis in this work will consider this hypercube AC admissible region only. The
2For this manuscript, any mechanical devices such as tap-changers, capacitor banks and switches

are assumed to be fixed at their nominal values and are not part of the optimization problem.

193



Figure 4.32: The set of admissible injections for the 3-node network is non-convex (blue).
Algorithm 2 can find maximal admissible injections via iterations (red dots), but monotonic-
ity conditions C1 and C2 in Theorem 4 define the convex inner approximation (green), which
gives nodal capacity ∆pg.

analysis shown here provides a mechanism to update the operating point to achieve

larger DER nodal capacity.

Remark 7. AC power flow solvability: The analysis presented herein assumes

that the AC power flow equations for radial networks are solvable, i.e., there exists a

unique solution. Previous works in literature such as [175] and [176] have studied the

conditions for the existence and uniqueness of solutions to AC power flow equations in

radial networks. The solvability of the AC power flow equations is also closely related

to the voltage collapse phenomenon [177] and thus has great theoretical and practical

significance. Incorporating the power flow solvability into convex inner approximation

formulation is an important extension that will be considered in future works.

Next, we present Case Study 1, which employs Algorithm 2 to determine the solar

PV hosting capacity for a distribution network.
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Figure 4.33: Single-phase version of the IEEE-37 node distribution network from [11].

Case study 1

Algorithm 2 is applied to the IEEE-37 node distribution feeder shown in Fig. 4.33

for three different scenarios to determine p+
g,i. In this context, p+

g,i can effectively be

considered the solar PV hosting capacity.

The three different scenarios are specified in Table 4.3. In scenarios A (linear

objective) and B (logarithmic objective), the solar PV units may be installed at the

leaf nodes with the largest demand, whereas in scenario C (linear objective), solar

PV is only allowed at node 702 (e.g., utility-scale solar PV array). The optimization

problem (P1) is solved with Gurobi 9.1 in Julia 1.1 in less than 1 sec and the solution

is validated with Matpower [153] on a standard MacBook Pro laptop with 2.2GHz
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Table 4.3: PV hosting capacity scenarios

Scenario Nodes with PVs Objective function
A {5, 9, 12, 15, 20, 25, 31, 34} fi(pg,i) = −pg,i
B {5, 9, 12, 15, 20, 25, 31, 34} fi(pg,i) = − log(pg,i)
C {2} fi(pg,i) = −pg,i

CPU and 16GB RAM. The comparison of the resulting solar PV hosting capacity from

each scenario using Algorithm 2 is shown in Fig. 4.34a, with the stacked bars showing

the hosting capacity at the different nodes with DERs in the system. It can be seen

that having a single centralized solar unit allows greater total solar PV capacity as

compared to the distributed cases. The reason for this is that Scenario C has fewer

network limit constraints to consider than the distributed case. This can be seen from

Fig. 4.34b which shows voltages obtained for the three scenarios at the first iteration

PV hosting capacity and after repeated iterations through Algorithm 2. As can be

seen from the figure, voltages are at their upper limit at multiple nodes for scenarios A

and B, but only at the head-node (node 2) for scenario C. As a result, the distributed

case (case A and B) has more active constraints and hence more conservative solution

as compared to the case with a single central PV (case C). Furthermore, scenario B

favors a more equitable allocation (log objective) that results in smaller net solar PV

capacity (∑i pg,i), leading to reduced overall performance as compared to scenario A.

The results show the admissibility of the PV hosting capacity solution both by using

(P1) once or repeatedly through Algorithm 2.

Remark 8 (Adapting analysis to distribution planning). It is important to note

that the nodal capacity in this network can incorporate both generation (p+
g > 0)

and flexible demand (p−g < 0), but that ∆p is with respect to a particular operating
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.
(a) (b)

Figure 4.34: Case study 1 on IEEE-37 node network for the three PV scenarios. (a) Shows
the feeder’s solar PV hosting capacity with Algorithm 2. (b) illustrates admissibility of
PV hosting capacity via voltage profiles, where V 1

A, V
1

B , V
1

C results from first iteration and
V 2

A, V
2

B , V
2

C are from final iteration of Algorithm 2.

point, (PL, QL). This is different from conventional PV hosting capacity studies that

consider a representative annual, hourly demand profile [174]. In future work, we will

adapt (P1) and Algorithm 2 for multi-hour planning problems and incorporate battery

storage and flexible demand to determine the “dynamic hosting capacity” of a feeder

from quasi-static timeseries (QSTS) demand profiles.

The analysis and simulation results presented in case study 1 have used qg =

0, e.g., unity power factor solar PV arrays. However, the role of reactive power

management in optimizing DER nodal capacities is important and the focus of the

next section.

4.3.4 Role of reactive power

Reactive power, qg, can be utilized to increase the nodal capacity, [p−g , p+
g ]. Different

reactive power control schemes are analyzed in this section. Specifically, we will
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compare between DERs that are operated at unity power factor, fixed power factor,

and those with reactive power control capability, where the power factor is allowed to

vary according to advanced inverter capabilities, such as IEEE Standard 1547 [178].

The different reactive power schemes along with the relevant relations between qg

and pg are provided in Table 4.4. For each particular scheme, the corresponding

constraints are added to (P1) when determining the nodal capacity.

Fig. 4.35a compares the feeder’s solar PV hosting capacities, ∑i p
+
g,i, resulting

from the different reactive power schemes applied to Scenario A of Case Study 1.

The stacked bar chart in Fig. 4.35a also shows the hosting capacity at the different

nodes with DERs in this system. Scheme UPF represents the hosting capacity with

unity power factor, which matches the result from Scenario A in Fig. 4.34a and serves

as the base-case for comparison. Scheme LAG employs a lagging power factor of 0.95

(γi = −0.33), while LEAD uses a leading power factor of 0.95 (γi = +0.33). Scheme

QVP employs a common volt-VAr policy with β0
i = 0 and β1

i = −0.073, while QCON

represents advanced inverter capability with quadratic constraints and S̄g,i = 2MVA

and a minimum power factor of 0.95. The results show that for scheme LEAD, the

hosting capacity is reduced while schemes LAG, QCON and QVP increase hosting

capacity. In LEAD, this is due to reactive power injections increasing with active

power injections resulting in larger v and, hence, reduces p+
g . The opposite occurs in

the other schemes. Interestingly, QCON achieves the same nodal capacity as LAG

at minimum power factor (0.95). This shows that reactive power scheme in QCON

chooses the minimum power factor injection in order to maximize nodal capacity.

The voltage profiles at the hosting capacities for the different schemes are compared

in Fig. 4.35b and are clearly AC admissible.
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Table 4.4: DER reactive power schemes

Scheme Description Constraint (gi(pg,i, qg,i, vi))
UPF Unity power factor qg,i = 0
LAG Lagging power factor qg,i = −γipg,i

LEAD Leading power factor qg,i = γipg,i
QVP Volt-VAr policy qg,i = β0

i + β1
i vi

QCON Quadratic constraint p2
g,i + q2

g,i ≤ S
2
g,i

(a) (b)

Figure 4.35: Reactive power schemes for case Study 1 (Scenario A) on the IEEE-37 node
network for five different reactive power schemes: (a) Solar PV hosting capacity for each
reactive power scheme after employing Algorithm 2 (b) Illustrating admissibility with voltage
profiles for the final iterate from Algorithm 2.

The next section employs the nodal capacities, ∆pg,i, to develop a simple, open-

loop, decentralized DER control policy for the realtime, grid-aware disaggregation of

a (net) demand reference signal. This turns the whole feeder into a responsive grid

resource with a-priori AC admissibility guarantees that can provide fast grid services

in wholesale markets.
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Figure 4.36: Realtime open-loop, proportional nature of disaggregation of flexibility at an
aggregator. The aggregator only requires the market signal to be tracked from the ISO
and does not need to coordinate with other aggregators in order to ensure network AC
admissibility. This is achieved through the saturation block that ensures the nodal flexibility
within the admissible range p+

g,i and p
−
g,i.

4.3.5 Realtime grid-aware disaggregation

Dispatching a set of networked DERs in response to a fast, time-varying wholesale

market signal while guaranteeing admissible operations is challenging. However, it

is necessary to solve this problem before aggregators can safely coordinate millions

of behind-the-meter DERs without jeopardizing reliability of the grid. Thus, after

computing the available nodal capacity (offline), as shown in Fig. 4.28, this section

proposes a simple, grid-aware controller to allocate the required flexibility among the

available resources in the network (i.e., disaggregate the signal) in realtime. The

realtime disaggregation mechanism is shown in Fig. 4.36.

The necessary parameters to execute the realtime, grid-aware disaggregation in

Fig. 4.36 are p+
g,i and p−g,i and can be updated every 15-60 minutes by the grid op-

erator running Algorithm 2, which is the timescale of the baseline of the aggregate

uncontrollable net-demand.

The realtime disaggregation can then be solved as shown in Fig. 4.36 by a DER

aggregator to provide fast grid service without the need to include any information
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about the underlying grid parameters. That is, the nodal capacities embed the AC

OPF constraints to simplify the aggregator’s dispatch. The next case study shows

the effectiveness of the proposed disaggregation technique in having DERs collectively

respond to grid service signals while guaranteeing AC admissibility.

Case study 2

The effectiveness of the offline Algorithm 2 and the online disaggregation shown in

Fig. 4.36 is illustrated in a second case study with the IEEE-37 node system where

we use the nodal capacities defined by Scenario A. The case study shows that the

feeder is being managed within its limits at all times despite providing a large range

of flexibility from the responsive DERs. Fig. 4.37a shows a reference grid service

signal and the aggregate response from dispatching the DERs. It can be seen that

the reference market signal is tracked well when the reference is within the admissible

range and the grid-aware dispatch is AC-admissible as shown in Fig. 4.37b. In a

practical setting, the DER aggregator should only offer what can be delivered, but

the case study is meant to illustrate how the realtime dispatch is grid-aware and

how the nodal capacities can be used to easily define the admissible range. Clearly,

if the aggregator was not grid aware and just coordinated DERs to ensure perfect

tracking, then such a “greedy” version of the realtime DER control leads to violations

in network voltages, as seen by the blue dots in Fig. 4.37b. Thus, the proposed

open-loop control scheme is grid-aware and scalable across a network of DERs by

just broadcasting a single scalar grid service reference.
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(a) (b)

Figure 4.37: Case study 2: (a) tracking performance of the realtime disaggregation pol-
icy shown in Fig. 4.36 for IEEE-37 node system (b) Voltage profile of the IEEE-37 node
network over the time steps showing the admissibility of the solution when following the
disaggregation policy (red) and voltage violations when following the greedy approach (blue).
The greedy approach results in a maximum voltage violation of 0.03 pu at time-step 60.

4.3.6 Sensitivity analysis

The above analysis on hosting capacity is based on the assumption that the system

parameters such as the line impedance and uncontrollable demand are accurate and

known to the distribution system operator (DSO). However, in practice, often times

these parameter values are either not known or are mis-recorded. Hence, in practice,

an estimate of these parameter values is used to solve the optimization problem.

For the 3-node network shown in Fig. 4.30, the changes in the admissible set as the

uncontrollable demand is reduced is depicted in Fig. 4.38. It shows how the admissible

set changes with changes in uncontrollable demand. Similar results are obtained for

the case when the impedance values are varied as depicted in Fig. 4.39 for increase

in impedance values of 1%, 5%, 10% and 20%.

As depicted by the changing admissible set and the fact that these estimated
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(a) (b)

(c) (d)

Figure 4.38: Admissible set for 3-node system when demand is reduced by: (a) +1%; (b)
+5%; (c) +10%; (d) +20%.

parameter values can be inaccurate, it is important to determine the sensitivity of

the hosting capacity results to changes in system parameters (line impedances and

uncontrollable demand). To achieve this, we vary the demand and impdedance values

over a uniform distribution of 1%, 5%, 10% and 20%. Sampling over this distribution,

we calculate the changes in hosting capacity at node i as:

% hosting capacity change (i) = HCuni,i −HCbase,i

HCbase,i
× 100 (4.54)

where HCuni,i is the hosting capacity at node i obtained when the system parameter

values are sampled from a uniform distribution and HCbase,i is the base case hosting

capacity at node i.

Simulation results for the sensitivity analysis are conducted on the IEEE-37 node
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(a) (b)

(c) (d)

Figure 4.39: Admissible set for 3-node system when impedance is increased by: (a) +1%;
(b) +5%; (c) +10%; (d) +20%.

system shown in Fig. 4.33 under Scenario A with PV units having unity power factor

placed at leaf nodes only. Figure 4.40 shows the histogram of the distribution of

change in uncontrollable active and reactive demand, illustrating that it belongs to

a uniform distribution. Corresponding to this distribution in uncontrollable demand,

Fig. 4.41 shows the histogram of percentage change in nodal hosting capacities re-

sulting from the change in demand. We also plot the distribution of the aggregate

change in hosting capacity, calculated as:

% hosting capacity change = HCuni −HCbase

HCbase
× 100 (4.55)

where HCuni is the aggregate hosting capacity obtained when the system parameter

values are sampled from a uniform distribution and HCbase is the base case host-
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ing capacity. The histogram of the aggregate hosting capacity change is shown in

Fig. 4.42.

Next we also conduct sensitivity analysis for the hosting capacity problem to the

changes in line impedance values. Figure 4.43 shows the histogram of the change in

resistance and reactance values of the IEEE-37 node system, illustrating that they

belong to a uniform distribution. Sampling from this distribution, Fig. 4.44 shows

the histogram of the percentage change in nodal hosting capacities resulting from the

variation in the line impedance values, whereas Fig. 4.45 shows the histogram of the

change in aggregate hosting capacities.

The mean and standard deviation of the changes in nodal hosting capacities is

shown in Table 4.5, whereas these values for changes in aggregate hosting capacity

is given in Table 4.6. From these values we can obtain a rule of thumb metric for

changes in nodal hosting capacity, e.g., a background demand change of x% results

in nodal hosting capacity change with standard deviation of x
10%. In case of change

in impedance, this metric is around x
2 %. Similar metrics can be calculated for the

aggregate hosting capacity.

Remark 9. From the results in Table 4.5 and 4.6, it can be seen that the nodal

hosting capacity is not super-sensitive to the changes in background demand. This

implies that we do not need to update the nodal hosting capacities at a fast timescale.

An update every 5 minutes would be reasonable. Future work will further investigate

the relationship between input and output uncertainty in distribution networks through

uncertainty quantification.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.40: Histograms of the percentage change in active and reactance demand values
resulting from variation in demand in a uniform distribution of : (a), (b) 1% error; (c),
(d) 5% error; (e), (f) 10% error; (g), (h) 20% error.
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(a) (b)

(c) (d)

Figure 4.41: Histograms of the change in nodal hosting capacity from variation in demand
belonging to a uniform distribution of : (a) 1%; (b) 5%; (c) 10%; (d) 20%.

(a) (b)

(c) (d)

Figure 4.42: Histograms of the change in aggregate hosting capacity from variation in de-
mand belonging to a uniform distribution of : (a) 1%; (b) 5%; (c) 10%; (d) 20%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.43: Histograms of the percentage change in resistance and reactance values resulting
from variation in the line impedance values belonging to a uniform distribution of : (a) 1%
error; (b) 5% error; (c) 10% error; (d) 20% error.
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(a) (b)

(c) (d)

Figure 4.44: Histograms of the change in nodal hosting capacity from variation in line
impedance belonging to a uniform distribution of : (a) 1%; (b) 5%; (c) 10%; (d) 20%.

(a) (b)

(c) (d)

Figure 4.45: Histograms of the change in aggregate hosting capacity from variation in line
impedance belonging to a uniform distribution of : (a) 1%; (b) 5%; (c) 10%; (d) 20%.
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Table 4.5: Mean and standard deviation (S.D.) of the percent changes in nodal hosting
capacities resulting from uniformly distributed deviations in demand and line parameter
values (R,X).

% change Mean (demand) S.D. (demand) Mean (line) S.D. (line)
1% 0.00 0.09 -0.01 0.44
5% -0.04 0.46 -0.03 2.17
10% 0.03 0.96 0.37 4.26
20% 0.02 1.86 -0.53 9.20

Table 4.6: Mean and standard deviation (S.D.) of the percent changes in aggregate feeder
hosting capacities resulting from uniformly distributed deviations in nodal demand and line
parameter values (R,X).

% change Mean (demand) S.D. (demand) Mean (line) S.D (line)
1% 0.00 0.03 -0.01 0.24
5% 0.01 0.13 0.11 1.22
10% 0.06 0.31 -0.30 2.45
20% -0.01 0.56 -0.74 5.10

4.3.7 Conclusions

This manuscript presents a convex inner approximation of the AC OPF problem.

Leveraging convex lower and upper bounds on the nonlinear branch flow terms in the

AC formulation, the inner approximation ensures an AC admissible optimal solution.

A novel algorithm is presented to successively improve the nodal capacity values of a

feeder. Reactive power control schemes are then presented and volt-VAr and smart

inverter schemes are shown to further improve the nodal capacity. Finally, a realtime

disaggregation scheme is presented for dispatching flexible demand in realtime across

the network, while respecting the grid constraints and providing fast grid services.
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Chapter 5

Future work

5.1 Extension of convex inner approxi-

mation to other applications

The convex inner approximation technique presented in section 4 implicitly embeds

the grid physics into the nodal capacity limits and thus enables real-time grid-aware

control of DERs, without having to solve a computationally costly multi-period OPF

at every market update. This has the potential to solve many challenging problems

in energy systems. An immediate extension of the work on CIA, would be to include

complex network topologies such as meshed networks and three-phase networks within

the this framework. Furthermore, there could also be applications in specific domains

such as wind farms and other radial distribution networks. Similar to determining the

DER flexibility bounds, CIA can also be utilized to provide reactive power flexibility

bounds in certain applications.

With the proliferation of flexible energy storage across distribution networks in
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the form of either physical batteries, thermostatically controlled loads (TCLs) or elec-

tric vehicles (EVs), it is also important for the distribution system operator (DSO)

to be aware of the aggregate system level available energy storage. Knowledge of

the aggregate level energy storage is critical in the ability of feeders to participate in

energy markets. For this application, convex inner approximation can be extended

to the multi-period domain in order to determine network aggregate energy storage.

Extension to multi-period domain will also consider the challenging problem of dis-

aggregating a reference trajectory over time across energy-constrained nodes on a

network. Furthermore, while we focus on feasible disaggregation at the nodal level

(to ensure constraints are not violated), we also need to consider an optimal disaggre-

gation policy that allows an aggregator to steer the system response along an (online)

OPF solution.

Future work on the Voltage positioning optimization (VPO) will focus on the

multi-period extension by considering the time-coupling introduced due to energy

storage and ramp-rate limits. Of particular interest is the problem of restricting the

frequent tap changes of OLTCs in distribution networks that has been previously

highlighted in [40]. The VPO formulation is well-suited for limiting the switching of

tap-changers by introducing tap change rate constraints in the multi-period optimiza-

tion formulation. Furthermore, we are seeking to extend the results to consider the

effects of uncertainty in the VPO. It is important to note that the VPO work considers

radial, balanced, and inductive distribution feeders. However, realistic distribution

feeders are sometimes meshed, often unbalanced, and usually a mix of inductive and

capacitative lines, which means that extending this work to a full, three-phase AC

formulation is valuable towards utility practice.
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Traditional approach in accounting for forecast uncertainty involve transformation

of the uncertainty in generation over a nonlinear network in order satisfy network

constraints such as voltage limits and line power flow limits. Due to the nonlinearity

of the network, reformulating this stochastic problem into a determinstic form is a

challenge [179]. Through the formulation of convex inner approximation, we are able

to transform the network constraints (such as voltage and line power flow constraints),

into nodal level generation and flexibility constraints. As a result, we only require

nodal level uncertainty constraints, which are linear and do not need to transform

the uncertainty distribution over a nonlinear network. Hence, reformulation to a

deterministic form ( through techniques such as chance constraints) is simple and

does not require any simplifying assumption (such as linearization).

Apart from the above mentioned applications, convex inner approximation also

opens up many avenues in real-time control of DERs. Solving DER dispatch within

milliseconds enables their use for frequency response. Hence, through CIA frequency

response can be made grid-aware in distribution systems. Furthermore, CIA can also

be extended to determine dynamic hosting capacity and thus enable larger penetration

of renewable generation, which as of now is limited by the hosting capacity determined

based on the worst case over a year. Such advancements will greatly help the planning,

sizing and siting of new renewable generation and grid-size energy storage.
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5.2 Physics based machine learning for

DER dispatch

Ensuring acceptable performance of energy systems involves optimizing a large num-

ber of controllable inputs efficiently at different timescales, while respecting the op-

erational and solve time limit constraints of the system. This requires solving a

challenging non-convex optimal power flow problem. This problem is further exac-

erbated by the fact that the distribution system topology is either complex (such

as meshed and multi-phase) or unknown to the system operator due to changes in

system topology and outdated records of an aging infrastructure [180]. Furthermore,

the system parameters (such as impedance values and energy resource parameters

such as power and energy limits) are often unknown or misrecorded and the system

topology is often times subject to change due to various plug-and-play devices such

as electric vehicles (EVs) [181]. Often times the optimization models developed, end

up being non-convex which due to the large number of controllable inputs, increases

the complexity and solve-time of the problem to such an extent that traditional op-

timization techniques become intractable [182]. As a result, we might have to limit

the growth of resources, not take advantage of their full capabilities, or will need to

overbuild the system to handle more extreme operating conditions [183].

All these challenges highlight the shortcomings of traditional model-based opti-

mization techniques and pave the way for the development of data-driven methods

to leverage an increasingly large number of measurements. With the advent of “Big

Data”, recent literature has shown the benefit of applying machine learning to many
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fields, including energy systems [184]. However, due to the safety critical nature

of such systems, these methods have failed to receive support in industry applica-

tions as of yet. Many open problems remain when it comes to the application of

machine learning to such complex systems [185]. Providing performance guarantees

using these methods is one such important challenge. To overcome these practical

challenges and given the availability of historical data and a growing set of mea-

surements from smart meters, such as AMI and inverters, many works in literature

have proposed machine learning methods to solve optimization problems [186–188].

Furthermore, recent works leveraging machine learning have incorporated the system

physics into their formulation thereby providing a more interpretable and physics-

based solution [189,190].

Machine learning methods can find application in planning and design of distri-

bution systems, such as the sizing and siting of solar PV units and energy storage

units, by solving hosting capacity problems. The methods developed in this work in

section 4.1, 4.2 and 4.3 rely on precise system models, which might not be available

in practice. Utilizing data-driven methods, can be used to estimate hosting capacity

in cases where system models may be unreliable, often changing or highly complex.
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Appendix

5.A Proof of Theorem 1

Proof. Since the SOCP optimization problem is convex and Slater’s condition holds

trivially, the KKT optimality conditions are both necessary and sufficient. Thus, for

the KKT conditions, let

• L be the Lagrangian.

• λp ∈ R be the Lagrange multiplier for (3.2e).

• λs ∈ R+ be the Lagrange multiplier for inequality (3.2j).

• λd, λd ∈ R+ be Lagrange multipliers associated with the lower bound and upper

bound of inequality (3.2m), respectively.

• λc, λc ∈ R+ be Lagrange multipliers for the lower and upper bounds of inequal-

ity (3.2n), respectively.

Note that P c and P d are the charging and discharging rates for the battery at node

n, phase φ at time t and represent primal variables and ηc, ηd ∈ (0, 1] are the charging

and discharging efficiencies.
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From the KKT optimality conditions, the following relation is obtained from the

Lagrangian with respect to P c, i.e., ∂L
∂P c ≡ 0:

∂f(x)
∂P c − λc + λc − ηcΓ(t)∆t+ λp − 2λs(P d − P c) = 0. (5.1)

With respect to P d, KKT conditions give ∂L
∂Pd ≡ 0:

∂f(x)
∂P d + α( 1

ηd
− ηc)− λd + λd + Γ(t)∆t

ηd
− λp + 2λs(P d − P c) = 0. (5.2)

Adding (5.1) and (5.2) gives:

λc + λd = λc + λd + (α + Γ(t)∆t)
(

1
ηd
− ηc

)
+ ∂f(x)

∂P c + ∂f(x)
∂P d (5.3)

In order to avoid SCD, the right hand side of equation (5.3) needs to be strictly

positive. In the above equation λc ≥ 0 and λd ≥ 0, which changes (5.3) to the

following inequality:

λc + λd ≥ (α + Γ(t)∆t)
(

1
ηd
− ηc

)
+ ∂f(x)

∂P c + ∂f(x)
∂P d (5.4)

It can be seen that condition C1 is satisfied by the given objective functions, e.g.

for objective (P d−P c−P ref)2, ∂f(x)
∂P c + ∂f(x)

∂Pd = −2(P d−P c−P ref)+2(P d−P c−P ref) = 0.

Based on these facts, (5.4) gives:

λc + λd ≥ (α + Γ(t)∆t)
(

1
ηd
− ηc

)
(5.5)

Based on the value of Γ(t), the problem is divided into two cases:

235



1. Γ(t) ≥ 0: This is the case where the battery does not hit its upper capacity limit

which makes Γ(t) ≥ 0 and as a result, the right hand side of (5.5) is strictly

positive due to condition C2. Hence, if efficiencies are non-unity, simultaneous

charging and discharging is avoided in this case. If efficiencies are unity, SCD

fictitious losses are zero, so it is always exact.

2. Γ(t) < 0: this implies that the battery must hit its upper limit of state of charge

at least once over the prediction horizon. In this case, the battery may waste

energy through SCD in order to lower its state of charge. Parameter α is added

to discourage SCD in the battery. When battery is at its lower limit, SCD may

occur at optimality to consume more power. The α term acts as a penalty to

discourage SCD. In this case, α would have to be chosen in such a way that

condition C3 is satisfied. Hence, conditions C1, C2, and C3 represent sufficient

conditions for avoiding SCD.

222

5.B Avoiding SCD when tracking a de-

sired battery state of charge

For the objective function: f(Bn,T ) =
(
Bn,T −Bd

)2
, where

Bn,T = Bn,t + ∆t∑T−1
τ=t

(
ηc,nP

c
n,τ − 1

ηd,n
P d
n,τ

)
, Corollary 1 provides conditions for the

relaxation to be exact. These conditions are more restrictive than the ones required

in Theorem 1.
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Corollary 1. For the objective function f(Bn,T ), the relaxation is exact under the

following conditions:

A1: λp ≥ 0.

A2: α > 0

Proof. Let P c ≥ P d, then using KKT conditions, λc = 0, λc ≥ 0 and the following

equation is obtained from the Lagrangian with respect to P c:

Γ(t)∆t ≥ 1
ηc

(λp + ∂f(Bn,T )
∂P c − 2λs(P d − P c)) (5.6)

Since λd ≥ 0, with respect to P d, the following KKT condition results:

Γ(t)∆t ≤ ηd(λp − α( 1
ηd
− ηc) + λd −

∂f(Bn,T )
∂P d − 2λs(P d − P c)) (5.7)

Comparing (5.6) and (5.7) gives:

ηdλd ≥ α(1− ηdηc) + λp( 1
ηc
− ηd) + 2λs(

1
ηc
− ηd)(P c − P d)

+ ηd
∂f(Bn,T )
∂P d + 1

ηc

∂f(Bn,T )
∂P c (5.8)

Using conditions A1, A2 and the fact that ∂f(Bn,T )
∂P c = 2ηc(Bn,T − Bd), ∂f(Bn,T )

∂Pd =

− 2
ηd

(Bn,T−Bd) and λs ≥ 0 in (5.8) gives λd > 0 and hence P d = 0, provided ηc, ηd < 1

and P c ≥ P d. A similar procedure can be used to show that when P c < P d, then

P c = 0. Hence, P dP c ≡ 0 is enforced. 222
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5.C LinDist model at optimality

Based on the mathematical modeling presented in section 4.1.3.1, the optimization

problem to determine the operating region of dispatchable resources using LinDist

model can be expressed as:

(P5) max
V,p,q

n∑
i=1

log(pi) (5.9a)

subject to : Mpp = V − v01−Mqq (5.9b)

Si ≤ f(pi, qi) ≤ Si ∀i ∈ N (5.9c)

V ≤ V ≤ V (5.9d)

Theorem 5. With the LinDist model applied to a radial, inductive distribution feeder,

the constraints related to reactive power injections from the dispatchable demand-side

resources are all active (i.e., f(pi, qi) = Si or f(pi, qi) = Si for all i).

Proof. (by contradiction): Assume that at optimality the reactive power is not at its

constraint (i.e., ∃ i, s.t Si < f(pi, qi) < Si). Then, the Lagrange multiplier associated

with (5.9c) is zero and, hence, this constraint will not show up in the KKT conditions.

The voltage constraint in (5.9d) can be expressed as:

V ≤Mpp+Mqq + v01 ≤ V (5.10)

Let λ ∈ Rn and λ ∈ Rn be the Lagrange multipliers associated with (5.9d) and let L
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be the Lagrangian. From the KKT conditions, the following relations are obtained:

∂L
∂pi

= 1
pi
− λi[Mp]i + λ

i[Mp]i = 0 (5.11)

∂L
∂qi

=− λi[Mq]i + λ
i[Mq]i = 0 (5.12)

where [Mp]i and [Mq]i are the sums of the ith columns of Mp and Mq, respectively.

From (5.12), since [Mq]i > 0 for inductive networks, we have that αiλ
i − βiλi = 0 for

some αi, βi > 0, which implies that λi = λi = 0. Substituting this result in (5.11),

gives 1
pi

= 0, which is not possible for pi finite. Thus, we reach a contradiction. Hence,

constraint (5.9c) must be active. In other words, the reactive power at optimality is

always at the boundary of its constraint. 222
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