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Abstract

The Jacobian group (also known as the critical group or sandpile group) is an impor-
tant invariant of a graph X; it is a finite abelian group whose cardinality is equal to
the number of spanning trees of X (Kirchhoff’s Matrix Tree Theorem). This disser-
tation proves results about the Jacobians of certain families of covering graphs, Y , of
a base graph X, that are constructed from an assignment of elements from a group
G to the edges of X (G is called the voltage group and Y is called the derived graph).
The principal aim is to relate the Jacobian of Y to that of X.

We develop the basic theory of derived graphs, including computational methods
for determining their Jacobians in terms of X. Of particular interest is when the
voltage assignment is given by mapping a generator of the cyclic group of order d to
a single edge of X (all other edges are assigned the identity), called a single voltage
assignment.

We show that, in general, the voltage group G acts as graph automorphisms of
the derived graph Y , that the group of divisors of Y becomes a module over the
group ring Z[G], and that the Laplacian endomorphism on the group of divisors of
Y—which is used to compute the Jacobian of Y—can be described by a matrix with
entries from Z[G], called the voltage Laplacian. Using this and matrix computations,
we determine both the order and abelian group structure of the Jacobian of single
voltage assignment derived graphs when the base graph X is the complete graph on
n vertices, for every n and d.

When G is abelian, the determinant of the voltage Laplacian matrix is called the
reduced Stickelberger element; and it is shown to be a power of two times the graph
Stickelberger element defined in the literature in terms of Ihara zeta-functions. Also
using zeta-functions, we develop some general product formulas that relate the order
of the Jacobian of Y to that of X; these formulas, that involve the reduced Stickel-
berger element, become very simple and explicit in the special case of single voltage
covers of X.

We adapt aspects of classical Iwasawa Theory (from number theory) to the study
of towers of derived graphs. We obtain formulas for the orders of the Sylow p-
subgroups of Jacobians in an infinite voltage p-tower, for any prime p, in terms of
classical µ and λ invariants by using the decomposition of a finitely generated module
over the Iwasawa Algebra.
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Chapter 1

Introduction and Basic Results from

Graph Theory

We begin Section 1.1 by introducing the Jacobian. We discuss the many contexts in

which it arises, such as physics, algebraic geometry, combinatorics, and cryptography.

We then present motivating factors that support the results of this dissertation.

In Section 1.2, we present elementary definitions in graph theory, as well as Kirch-

hoff’s foundational Matrix Tree Theorem. In Section 1.3, we introduce the dollar

game, which is a sort of chip-firing game, where vertices of a finite graph trade dollars

across edges in an effort to eliminate debt. This leads to the definition of the Divisor,

Jacobian and Picard group. We show how the dollar game can be interpreted in

terms of the Laplacian operator that is defined on Z-valued functions on the vertices

of the base graph X. We then describe a practical method of computing the Picard

and Jacobian groups using the Smith Normal Form of the Laplacian.
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Finally, in Section 1.5 we state the main results of the dissertation. For excellent

references on topics presented in this dissertation, see [CP18], [Kli18], and [Ter11].

1.1 The Jacobian: Introduction and Mo-

tivation

The Jacobian is an algebraic invariant of a graph1 X in the form of a finite abelian

group whose size is equal to the number of spanning trees of X (this is well-known

as the Matrix Tree Theorem). The Jacobian arises in contexts such as arithmetic

geometry, statistical physics, combinatorics, and discrete dynamics (see [Lor08]). Be-

cause of the many contexts in which it arises, the Jacobian is often also referred to

as the critical group, the sandpile group, the Picard group, or the group of compo-

nents. In 1990, Dhar, who studied it in the realm of physics, referred to it as the

sandpile group [Dha90]. In the context of algebraic curves, Bacher, de la Harpe and

Nagnibeda referred to it as the Picard group or Jacobian group in 1997 [BHN97].

Biggs, who studied this group in the context of chip-firing as in [Big99], called it the

critical group. Then more recently in 2007, Biggs discusses the uses of the critical

group in cryptography [Big06]. In [RT13], Reiner and Tseng study the interaction

between critical groups and graph coverings. More recently in 2017, Backman, Baker

and Yuen study the Jacobian in the context of matroid theory in [BBY17], in which

they give a bijection between the Jacobian of a regular matroid and the set of bases
1In this dissertation the term graph will mean simple graph (see Section 1.2) unless otherwise

explicitly noted.
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of the matroid.

The exact structure of the Jacobian is known for only a few classes of graphs. Some

well-known families of graphs that the Jacobian is known for include the complete

graph on n vertices, Kn [Hop14], the complete bipartite graph on m + n vertices,

Km,n [Mac11], and the generalized Petersen graph, GP (n, k) ( [KMM17]). We list

some other papers containing calculations of Jacobians for families of graphs: Bai

verifies the structure of the Jacobian of an n-cube in [Bai03], which was initially con-

jectured by Reiner. Jacobson computes the Jacobian of threshold graphs in [Jac03],

which completed work that was started by Christianson and Reiner in [CR02]. Ja-

cobson, Niedermaier and Reiner describe the Jacobian group structure for complete

multipartite graphs, as well as the cartesian product of complete graphs (which gen-

eralizes results of Bai) in [JNR03]. Ducey and Jalil explain how, for various matrices

associated to the Cayley graph, the spectrum can be used to give information on

the Smith Normal Form in [DJ13]. In doing so, they re-prove results from [Bai03]

and [JNR03]. Chandler, Sin and Xiang compute the Smith Normal Forms of the

adjacency matrix and Laplacian matrix of Payley graphs in [CSX14]. Sin then goes

on to add another class of computed examples, by applying some of the ideas used

for Paley graphs to the Peisert graphs in [Sin16]. He obtains a complete description

of the structure of the Jacobian of the Peisert graphs. Ducey, Hill and Sin determine

the structure of the Kneser graph KG(n, 2) in [DHS18]. In [DDE+19], Ducey et. al.

give conditions that force the Sylow p-subgroup of the Jacobian of a strongly regular

graph to take a specific form.

3



Overall, however, there are very few families of graphs for which the Jacobian has

been found. Thus it is of some interest to compute the Jacobian of some well-known

graph families. In this thesis we focus primarily on voltage graphs, especially ones in

which the voltage assignment is the single voltage assignment and the voltage group is

the cyclic group of order d. Even more specifically, we look at single voltage covers of

the particular well-known graph families mentioned above. In doing so, we establish

the structure and the order of the Jacobian for some of these families of graphs. Many

of the results in Chapter 3 were obtained by first computing extensive tables via Sage

and Mathematica, from which conjectures were formulated. Some of the conjectures,

such as Conjecture 1, were then proven via lengthy matrix manipulations. A general

formula for the order of the Jacobian of a single voltage cover is proven in Chapter

4, thereby other conjectures that were made in Chapter 3. In Chapter 5, we obtain

growth formulas for the finite p-Jacobians of a cyclic voltage p-tower of graphs that

is analogous to the results that Iwasawa established for the order formulas of class

groups in a Zp-extension. The ideas in [HMSV19] and [Val20], as well as Dr. Sands’

advice to pursue Iwasawa Theory for graphs, which is the foundation for the proofs,

impelled the research that culminates in Chapter 5. More precise statements of the

main results of this dissertation are given in Section 1.5. The contents of [Val20], by

Daniel Vallières, are compared in greater detail with our results in Section 5.2.

For related results of interest, but tangential to this work, see: [LZ21], [DKM12],

[GM13], [Woo17], [NW18].
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1.2 Basic Definitions and Foundational

Results in Graph Theory

In this section we present some basic definitions and foundational results from Graph

Theory, such as Kirchhoff’s Matrix Tree Theorem that pertain to this dissertation.

Basic graph theory definitions, terminology, and results can be found in standard

references such as [Wes00]—we include some of these here for completeness and con-

venience.

Definition 1 (Undirected Graph). A graph (not necessarily finite) is a pair X =

(V,E), where V = V (X) is the set whose elements are called vertices, and E = E(X)

is a set of unordered pairs of vertices, whose elements are called edges. We depict

these by

u v

Figure 1.1: An edge in a graph X with endpoints u and v

where u, v ∈ V (X) and {u, v} ∈ E(X). We call u and v the endpoints of edge {u, v}.

We may also think of a graph as a topological space contained in Euclidean n-space

which consists of a collection of points, called vertices (and where n is the number of

vertices), and a collection of edges. Each edge is either homeomorphic to [0, 1] and

joins two distinct vertices, or it is homeomorphic to a circle and a joins a given vertex

to itself (i.e. is a loop).

In an undirected graph, the edges indicate a two-way relationship in that each edge

can be traversed in both directions.

5



Definition 2 (Multigraph). A multigraph is a graph which is permitted to have mul-

tiple edges (i.e. edges that are incident to the same two vertices).

u
v...

en

e1

e2

Figure 1.2: A multigraph

Definition 3. Let X = (V,E) be a graph (not necessarily finite).

• Loop A loop is an edge whose endpoints are equal.

• Adjacent Vertices Adjacent vertices are vertices that are endpoints of an edge.

• Simple or Strict Graph A graph is said to be simple if it contains no loops or

multiple edges.

For this dissertation the term “graph” will always mean “simple graph.”

• Walk A walk is a sequence of vertices v0, v1, · · · , vn and edges e0, · · · , en−1 such

that for i = 0, · · · , n− 1, the edge ei has endpoints vi and vi+1.

• Path A path is a walk in which all vertices are distinct.

• Cycle A cycle is a path which begins and ends at the same vertex (so the only

repeated vertices are the first and last).

• Connected A graph is (undirected) connected if and only if ∀u, v ∈ V (X), there

exists a path from u to v.

6



• Degree of a Vertex In a loopless graph, the degree of a vertex is the number

of edges adjacent to the vertex.

• Subgraph H is a subgraph of X if V (H) ⊂ V (X) and E(H) ⊆ E(X).

• Graph Isomorphism A graph isomorphism from a graph G to a graph H is a bi-

jection f : V (G)→ V (H) such that {u, v} ∈ E(G) if and only if {f(u), f(v)} ∈

E(H).

• Forest A forest is a graph with no cycles.

• Tree A tree is a connected forest.

• Spanning Tree A spanning tree T of a graph X is a subgraph of X such that

V (T ) = V (G).

Definition 4. Let V (X) = {v1, · · · , vn} denote the vertex set of a finite graph X.

• Adjacency Matrix The adjacency matrix of X, denoted by AX , is an n × n

matrix with i, j-entry

ai,j =


1 if vi is adjacent to vj

0 otherwise

• Degree Matrix The degree matrix DX of X is the n × n diagonal matrix with

i, i-entry equal to the degree of vi, 1 ≤ i ≤ n.

• Laplacian Matrix The Laplacian matrix is the n× n matrix

LX = DX − AX

7



where DX is the degree matrix of X and AX is the adjacency matrix of X.

• Reduced Laplacian Matrix A reduced Laplacian matrix, L̃X , is obtained by

deleting row i and column i corresponding to vertex vi of the Laplacian matrix,

LX , where LX is as above.

Theorem 1 (Kirchhoff’s Matrix Tree Theorem). The determinant of any reduced

Laplacian matrix is equal to the number of spanning trees of X, where X is a finite

graph. In particular, the determinant is the same for all reduced Laplacians, and is

nonzero if and only if X is connected.

In the next section, we introduce the dollar game, which ultimately leads to the

definition of the Jacobian group. We then supply further details on the Laplacian

and reduced Laplacian. Finally, we discuss a computational method of computing

the Picard and Jacobian groups using the Smith Normal Form of the Laplacian.

1.3 The Dollar Game

Chip-firing processes, defined by a commodity being exchanged between sites of a

network according to simple local rules, have been introduced into the literature a

number of times from various communities. One of many chip-firing games that has

been explored by various authors in the literature is called the dollar game. It was

introduced by Baker and Norine in [BN07], as a variant of an earlier version due to

Biggs in [Big99]. Baker and Norine study the analogy between finite graphs and Rie-

mann surfaces in the context of linear equivalence of divisors (i.e. the Picard group).

As an application of their results, they characterize a winning (or non-winning) strat-

egy for the dollar game. A great overview of the dollar game can be found in [Bak10].

8



Essentially, vertices of a finite graph trade dollars across edges in an effort to elimi-

nate debt. We explain this in greater detail next.

We may think of vertices V (X) as individuals, edges E(X) as relationships between

individuals, and the entire graph X as a community. As with most communities, the

individuals represented in X are not equally wealthy. To record their varying degrees

of wealth, we place an integer value next to each vertex, interpreting negative values

as debt. Then we represent such a distribution as a formal sum of integer multiplies

of vertices. To redistribute wealth, each individual v ∈ V (X) may choose to lend or

borrow a dollar along each edge incident to v (which allows for the possibility that

either v or someone incident to v goes into debt). Note that v never lends along some

edges, while borrowing along others (i.e., v either lends to all vertices it is adjacent

to or borrows from all vertices it is adjacent to).

The goal of this game is to find a sequence of lending or borrowing moves so that

everyone in the community X is debt-free. This is called the dollar game on X. If

such a sequence exists, we say that the game is winnable.

1.3.1 The Divisor, Picard, and Jacobian Group

We now present ideas of the dollar game more formally. Further details can be found

in both [CP18] and [Jen16].

Definition 5. A divisor on a graph X (possibly infinite) is an element of the free

9



abelian group on the vertices V = V (X):

Div(X) = {
∑

v∈V (X)
avv | av ∈ Z}

where each ∑
v∈V (X) avv is a formal linear combination of the vertices of X with

integer coefficients, where only finitely many av are nonzero (in the case when X is

an infinite graph). When V (X) = {v1, . . . , vn}, we may write the elements of Div(X)

as a1v1 + a2v2 + · · ·+ anvn, where each ai ∈ Z.

Divisors represent distributions of wealth on X, where each person (i.e., vertex) v has

av dollars (or debt, when av < 0).

The degree homomorphism is defined to be

deg : Div(X) −→ Z by deg(
∑

v∈V (X)
avv) =

∑
v∈V (X)

av

or, in the finite case, deg (a1v1 + · · ·+ anvn) = a1 + · · ·+an; in either case it is a finite

sum.

Note that there are two uses of the word “degree”—it will always be clear from

the context which usage is meant.

We are interested in equivalence classes of divisors on graphs, where the equivalence

is given by firing moves (lending moves). Starting with a divisor D, we may fire a

vertex which results in that vertex giving a dollar to each of its neighbors. We state

this more formally in the following definition:
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Definition 6. A firing move based at a vertex v takes a divisor D to D′, denoted

D
v−→ D′ where for all w ∈ V (X), the coefficient (dollar amount) corresponding to

vertex w is equal to

aw =



av − deg(v) if w = v

av + 1 if w is adjacent to v

0 if w is not adjacent to v

Definition 7. Let D,D′ ∈ Div(X). Then we say D is linearly equivalent to D′ if D′

may be obtained from D by a sequence of firing moves for various vertices v ∈ V (X).

In this case, we write D ∼ D′.

The next Proposition can be found in [Jen16] as Lemma 1.4.

Proposition 1. Linear Equivalence of divisors is an equivalence relation. Moreover,

if D1 ∼ D2 and F1 ∼ F2, then D1 + F1 ∼ D2 + F2.

Definition 8. The divisor class determined by D ∈ Div(X) is

[D] = {D′ ∈ Div(X) | D′ ∼ D}.

We may think of a divisor class as a closed economy, where we begin with an ini-

tial distribution of wealth D, and through a sequence of firing moves, we arrive at

the distributionD′. The collection of all possible distributions is the divisor class ofD.

The next proposition can be found in [CP18], Section 1.2 (or it is an easy exercise

from the definition of chip-firing).
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Proposition 2. Let D,D′ ∈ Div(X). If D ∼ D′ then deg(D) = deg(D′).

Thus, the degree map, which was initially defined on divisors, is also a well-defined

map on the set of equivalence classes of divisors.

Now let D,F ∈ Div(X). Then, by definition of a free abelian group, the sum of di-

visors D and F is defined vertex-wise. Moreover, this sum respects linear equivalence.

The degree map deg : Div(X)→ Z, is a surjective group homomorphism with kernel

equal to the subgroup of Div(X) of divisors of degree 0, denoted as Div0(X):

Div0(X) = {D ∈ Div(X) | degD = 0}.

Let O denote the divisor whose vertex coefficients are all zero (i.e., the zero of the

additive group Div(X)). The divisors that are equivalent to O are called the principal

divisors on X and we denote this set by Pr(X). It is an exercise that Pr(X) is closed

under addition and subtraction. So by Proposition 2, Pr(X) is a subgroup of Div0(X).

From this, we get the following groups:

Definition 9. The Picard group of X is the set of linear equivalence classes of divisors

on X, i.e.,

Pic(X) = Div(X)/Pr(X).

The Jacobian group of X is the subgroup of Pic(X) consisting of divisor classes of

degree 0 on X, i.e.,

J (X) = Div0(X)/Pr(X).
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The next proposition can be found in [CP18] as Proposition 1.20.

Proposition 3. Fix v ∈ V (X). There is an isomorphism of groups

Pic(X)→ Z⊕ J (X) given by [D] 7→ (deg(D), [D − deg(D)v]).

Thus, we see that

Pic(X) = Div(X)/Pr(X) ∼= Z⊕ J (X).

We now state the following important theorem.

Theorem 2. If X is connected, then J (X) is a finite abelian group.

1.3.2 The Laplacian and Reduced Laplacian

Firing moves may be expressed compactly via the graph Laplacian.

Definition 10. Let G = (V,E) be a graph with vertices {v1, · · · , vn}. The graph

Laplacian L = LX is the n× n matrix given by

Li,j =



deg(vi) if i = j

−1 if vi is adjacent to vj

0 if i 6= j and vi is not adjacent to vj

By Definition 6, we see that the Laplacian matrix encodes all of the firing moves for

X since a firing move by vertex vj corresponds to subtracting the jth column of L

from a divisor.
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The Laplacian is also the matrix representation of the following group homomor-

phism L defined below. For each fixed vi define the principal divisor pi based at vi

by

pi = deg(vi)vi −
n∑
j=1
j 6=i

δi,jvj

where δi,j = 1 if vj is adjacent to vi and 0 otherwise. Then

L : Div(X)→ Div(X) where L(vi) = pi.

When extended by Z-linearity to all of Div(X), this is a Z-linear homomorphism from

Div(X) to itself, whose image is Pr(X), the group of principal divisors. From this,

we get the following important fact:

Pic(X) = Div(X)/im(L) = coker(L),

where, by definition, the cokernel of a homomorphism f : A→ B is B/f(A).

So it follows that the Picard group may be computed as the cokernel of the Laplacian.

(For further details on this, see [CP18], Section 2.1.)

We now relate this to the Jacobian and the reduced Laplacian. Evidently, the matrix

representation for L with respect to the basis of vertices is L, the Laplacian matrix.

A reduced Laplacian L̃ is the (n− 1)× (n− 1) integer matrix obtained by removing

the row and column corresponding to any vertex v from the Laplacian matrix L. So
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the Jacobian group can be computed as the cokernel of the reduced Laplacian matrix

J (X) ∼= Zn−1/im(L̃) = coker(L̃),

where Zn−1 denotes the free Z-module on the set V (X)− {v} of rank n− 1.

1.3.3 Computing the Jacobian

In this section, we give a computationally effective method for computing the Jacobian

of a graph. We first begin by stating the Structure Theorem for Finitely Generated

Abelian Groups, which can be found in [CP18] as Proposition 2.23.

Theorem 3. [Structure Theorem for Finitely Generated Abelian Groups] A group is

a finitely generated abelian group if and only if it is isomorphic to

Z/d1Z⊕ · · · ⊕ Z/dkZ⊕ Zr (1.1)

for some unique integers d1, · · · , dk with di > 1 for all i and some integer r ≥ 0 that

satisfy the following condition: di | di+1 ∀i. The di are the invariant factors of the

group and r is called the free rank of the group.

Let A be a finitely generated abelian group as in (1.1). Then Z/d1Z⊕ · · · ⊕Z/dkZ is

called the torsion subgroup of A, denoted Ator (it consists of all the torsion elements—

elements of finite order—in A) and A/Ator ∼= Zr. Hence, by the Structure Theorem,

we have

A ∼= Ator ⊕ A/Ator.

Now we describe a computational method for computing the free rank and invariant
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factors of a finitely generated abelian group. Let {a1, · · · , am} be any set of generators

of A. Define the group homomorphism

Φ : Zm → A by ei 7→ ai,

where ei is the ith standard basis vector of the Cartesian product of Z with itself

m times, and extend by Z-linearity. Since the ai generate A, it follows that Φ is

surjective and so

Zm/ ker Φ ∼= A.

Now since every subgroup of Zm is finitely generated, there exists a finite set of

generators for the kernel of Φ, say {b1, · · · , bs}. Define

M : Zs → Zm,

where M is the m × s matrix whose columns are b1, · · · , bs. Putting these maps

together, we get

coker(M) = Zm/im(M) ∼= A.

So A is determined by the single matrixM , called a “relations matrix” for A. So every

finitely generated abelian group is the cokernel of an integer matrix. Conversely, each

integer matrix determines a finitely generated abelian group, namely, its cokernel.

However, the construction of M depends on arbitrary choices for generators of A and

ker Φ. Changing the choice of generators corresponds to integer changes of coordinates

for the codomain and domain of M , or equivalently, to performing invertible integer

row and column operations on M .
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Definition 11. The elementary integer row (and column, respectively) operations on

an integer matrix consist of the following:

(i) interchanging two rows (or columns),

(ii) negating a row (or column), and

(iii) adding one row (or column) to a different row (or column).

If a matrix M may be obtained from a matrix N through a sequence of elementary

integer row and column operations, we writeM ∼ N. Note that ∼ is clearly an equiv-

alence relation.

Suppose M is an m× n integer matrix with M ∼ N. Start with the identity matrix

P = Im and Q = In. Whenever a row operation is performed as part of a sequence

to transform M to N , apply this same row operation to the P in that sequence.

Likewise, whenever a column operation is performed to transformM to N , apply this

same operation to the Q in that sequence. It follows that P and Q are invertible over

Z and PMQ = N.

Conversely, given any integer matrices P and Q that are invertible over Z such that

PMQ = N, it follows that M ∼ N. (The proof of this converse requires the existence

of the Smith Normal Form).

The next proposition can be found in [CP18] as Proposition 2.28.

Proposition 4. LetM and N be m×n integer matrices. IfM ∼ N , then coker(M) ∼=

coker(N).
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Definition 12. An m×n integer matrix M is in Smith Normal Form (SNF) if M =

diag(d1, · · · dk, 0, · · · , 0), a diagonal matrix, where d1, · · · , dk are positive integers such

that di | di+1 ∀i. The di with di ≥ 2 are called the invariant factors of M.

We now illustrate the relevance of the Structure Theorem and Smith Normal Form

in computing the Jacobian of graph. The next proposition can be found in [Kli18] as

Proposition 4.5.2.

Proposition 5. If M is a non-singular n × n integer matrix and the Smith normal

form of M is diag(d1, · · · , dk) then

coker(M) ∼=
k⊕
i=1

Z/diZ.

So for any finite connected graph X with reduced Laplacian L̃ (with respect to any

vertex), since J (X) = coker(L̃), it follows that the invariant factors of J (X) are

determined by the invariant factors of L̃. Since L̃ is invertible, none of its invariant

factors are 0. So the free rank of J (X) is 0. The SNF factors of L̃ equal to 1 have

no effect on the isomorphism class of coker(L̃). Suppose d1 · · · , dk are the invariant

factors of L̃ (the SNF factors that are greater than 1). The di are the same as the

invariant factors of the finite abelian group A = J (X) as in Theorem 3, and hence,

J (X) ∼= Z/d1Z⊕ · · · ⊕ Z/dkZ.

The structure of Pic(X) is then determined since Pic(X) ∼= Z⊕J (X) : the free rank

of Pic(X) is 1 and

Pic(X) ∼= Z⊕ Z/d1Z⊕ · · · ⊕ Z/dkZ.
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The next proposition can be found in [CP18] as Proposition 2.37.

Proposition 6. For X a connected graph, the order of the Jacobian of X is

|J (X)| = det(L̃).

for any (hence every) reduced Laplacian L̃ of X.

1.4 Voltage Graphs and Derived Graphs

in a Nutshell

Fundamental concepts in this dissertation are the notions of a voltage graph and its

associated derived graph, so we describe these, with slightly simplified restrictions for

expository purposes. Precise general definitions are given in Chapter 2; and excellent

books containing some information about them are [Ter11] and [GT87]. The termi-

nology “voltage graph” comes from the origins of these concepts in electrical circuit

theory (see [GT87]).

We start with a fixed, finite, connected graph X, with vertex set v1, v2, . . . , vn, and

any group G (which could be infinite). The graph X is called the base graph and G

is called the voltage group. For every edge joining vi to vj with i < j we assign a

group element αi,j from G to that edge. (One can imagine that the “circuit voltage

‘increases’ by the amount αi,j” if the edge is traversed going from vi to vj.) We adopt

the rule that we assign the inverse group element, α−1
i,j , to the edge from vi to vj if

the edge is traversed backwards, namely from vj to vi, i.e., αj,i = α−1
i,j (so the “reverse
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voltage decreases by the same amount.”) The graph X together with a choice of group

element voltages along its (oriented) edges is called a voltage graph.

A useful way of codifying (and defining more precisely) a voltage graph is by taking

the ordinary adjacency matrix, AX , of X and, wherever there is a 1 in entry i, j

with i < j (i.e., there is an edge between vi and vj) we assign some group element

αi,j from G; we then implement the rule that α−1
i,j must be placed in the j, i-entry.

This results in the voltage adjacency matrix, Aα, where α denotes a specific choice of

voltage assignments to every edge. (Now one sees that changing the orientation on

one or more of the edges, simply amounts to flipping the i, j and j, i entries of Aα,

which codifies a different voltage assignment.)

Given a voltage graph as above, we now construct its derived graph, Y , as follows.

Take |G | copies of X, where these are indexed by the elements of G as “sheets” or

“layers” that can be thought of as lying above each other. For each fixed g in G, the

sheet for g has vertices labeled as v1,g, v2,g, . . . , vn,g. These are the vertices of Y , and

so there are n|G | vertices in the derived graph.

Now create the edges of Y by the following rule. First erase all the edges in all

the sheets that were initially taken as copies of X. Then, whenever there is an edge

from vi to vj in the base graph X with assigned voltage αi,j, create edges that go

from vi,g to vj,gαi,j in Y , for every g ∈ G, where gαi,j is the group-product of these

two group elements in G. So for fixed i, j this creates exactly one edge from each

vertex vi,g to the vertex in the sheet that is “αi,j volts above it”, i.e., in the sheet

20



indexed by gαi,j (or in the sheet g+αi,j if the group operation is addition). The rule

for constructing edges describes each (same, undirected) edge of Y twice: once going

“upward” from vi,g to vj,h, where (by the edge-voltage rule) h = gαi,j, and again going

“downward” from this vj,h to the original vi,g = vi,hαj,i ; this is because of the “inverse

rule:” namely, αj,i = α−1
i,j .

As mentioned, voltage graphs and their associated derived graphs are the main subject

of this dissertation. The basic aim is to relate the invariants of X—more specifically

the Jacobian of X, its order and its invariant factors—to those of Y . One can imagine

that if the Jacobian of X is already both computationally and theoretically difficult

to determine, then Jacobians of derived graphs—which are ostensibly much larger,

depending on the size of G—are even more challenging. Also, there are many param-

eters that tend to make a completely general study intractable: a choice of any base

graph X, a choice of any group G (possibly infinite, non-abelian, etc.), and any volt-

age assignment from G on edges of X, resulting in potentially arbitrarily complicated

derived graphs Y . Nonetheless we make substantial inroads for important and quite

general configurations.

In Chapter 2 we lay the foundations of the theory of voltage graphs, voltage ad-

jacency matrices, voltage Laplacians, and, when G is abelian, the determinant of

the voltage Laplacian, that we call the reduced Stickelberger element (for reasons ex-

plained later); the commutativity of G is only needed in order for the determinant

to be well-defined, since the entries of the voltage Laplacian are from the integral

group ring Z[G], which is a commutative ring if and only if G is an abelian group.
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In particular, we determine various conditions under which the derived graph is con-

nected. (For example, if all edge-voltages are assigned to be the identity element of

G, the derived graph Y is just |G | disjoint copies of X itself, which is certainly not

connected when |G | > 1 even if X itself is connected.) Also in Chapter 2 we develop

a method for writing out the ordinary adjacency matrix, AY , for the derived graph

Y for any voltage assignment. (This was done independently, but later discovered to

be in the literature in a more complicated form.) A powerful tool here is that G acts

as graph automorphisms of the derived graph Y , and so Div(Y ) becomes a module

over the group ring Z[G]. We exploit this Z[G]-action to great advantage throughout

the dissertation.

In Chapter 3 we carry out many matrix computations, both by computer and by

hand, to determine the Jacobians and reduced Stickelberger elements for various

base graphs X (families of X already mentioned, where we explicitly know J (X)).

We restrict the types of voltage assignments to ones that seem to result in derived

graphs that are most closely related to the base graph. In particular, one such volt-

age assignment is what we call a single voltage assignment: where X has an edge

between v1 and v2, G is the cyclic group of order d generated by τ , and v1 → v2

is assigned voltage τ (so v2 → v1 has voltage τ−1); all other edges are assigned the

identity element voltage. (Figure 2.7 is a picture of a single voltage derived graph.)

For single voltage covers of certain X, such as complete graphs, we are able (by a

lengthy hand computation) to work out all invariant factors of the Jacobians of all

resulting derived graphs for every d. For other base graphs, however, we arrive at

only conjectured order formulas and invariant factors.
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In Chapter 4 we develop some general methods for relating the order of J (Y ) to

J (X), using Ihara zeta-functions. This is the “Fourier analysis” chapter of the dis-

sertation. These formulas result in explicit (closed form) formulas for general (con-

nected) base graphs X and arbitrary (connected) single voltage derived graphs Y in

terms of the reduced Stickelberger element. This verifies many of the order formulas

that were conjectured in Chapter 3.

Finally, in Chapter 5 we consider “Iwasawa Theory” for towers of voltage graphs,

X = X0 ← X1 ← X2 ← · · · · · · ← Xm ← · · · · · ·

where each Xm is the derived graph of a voltage assignment on X from the cyclic

group of order pm, for some prime p (here p is fixed but the voltage groups and re-

sulting derived graphs vary with m). The indicated maps are the “covering maps”

between successive derived graphs, given explicitly by “reducing” the group elements

indexing the sheets “modulo appropriate powers of p”. For such towers we obtain

order formulas for the order of the Jacobians J (Xm) in terms of the order of J (X)

and certain “µ and λ invariants” that are completely analogous to the classical order

formulas that Iwasawa established for class groups of Galois extensions of number

fields in a Zp tower. In hindsight we see that there is an “Iwasawa Decomposition of

the p-adic completion of the Laplacian” of the given tower that is closely analogous

to the Smith Normal Form decomposition for ordinary Laplacians of graphs, and so

gives new insight into the theory of graph towers.
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In the next section we single out the major results of each chapter in greater pre-

cision.

1.5 Statements of Main Results of the

Dissertation

Following up on the preceding discussion, we collect the main results of the disserta-

tion here. The numbering scheme uses the numbers in the body of this work.

Chapter 2: Covering Graphs and Voltage Graphs

In Theorem 9, we show that given an intermediate covering graph X̃ corresponding

to H E G, it follows that X̃/X is always a voltage cover. This theorem plays a vital

role in the theory of towers of voltage graphs in Section 5.1. Then in Theorem 10, for

Y/X a single voltage cover, we show that there exists a choice of coset representatives

of H in G such that Y/X̃ is single a voltage cover.

Theorems 9 and 10:

Let (X,G, α) be a voltage graph with derived graph Y such that Y is connected. If

X̃ is an intermediate cover of Y/X corresponding to the normal subgroup H of G,

then X̃/X is a voltage graph, whose voltage adjacency matrix is the voltage adja-

cency matrix of Y/X, but with nonzero entries reduced modulo H (thus has entries

in Z[G/H]). Furthermore, if Y/X is a single voltage cover, then there exists a choice

of coset representatives of H in G such that Y/X̃ is a voltage graph with single volt-

age assignment.
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Theorem 11 gives that the reduced Stickelberger element, which is defined as the

determinant of the matrix corresponding to the voltage Laplacian map on the divi-

sors of Y , annihilates the Picard group. This theorem is pivotal in proving the main

theorem in Chapter 5, Theorem 27, where we must construct a finitely generated

torsion module over a complete p-adic group ring Λ.

Theorem 11:

Let G be any group. The voltage Laplacian Lα : Div(Y ) −→ Div(Y ) is a Z[G]-

module homomorphism whose image is equal to the group of principal divisors and

whose cokernel is equal to the Picard group, and its n×n matrix with respect to the

Z[G]-basis v1,τ0 , . . . , vn,τ0 is equal to DX − Aα, where τ0 is the identity of G, DX is

the degree matrix for the base graph X and Aα is the voltage adjacency matrix of X.

Furthermore, if G is abelian, then ΘY/X = det(DX − Aα), the reduced Stickelberger

element, annihilates the Picard group of any derived graph, hence it also annihilates

the Jacobian (both as Z and Z[G]-modules).

Chapter 2 also contains various results about connectedness of derived graphs that

are not listed here.

Chapter 3: Covers of Complete Graphs and Other Graphs

Chapter 3 contains numerous conjectures regarding families of derived graphs that

are computationally verified for small values.

Theorem 14 gives the exact structure of the Jacobian of single voltage cyclic cov-

ers of Kn. This gives a computationally effective method for computing the Smith
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Normal Form of the Laplacian of Y . We first do elementary row and column op-

erations on the voltage Laplacian, and then we tensor the entries with the regular

representation of the group G to obtain the ordinary Laplacian for the derived graph

Y . We further reduce by row and column operations over Z to obtain the Smith

Normal Form for the Laplacian of Y .

Theorem 14:

Let Y be a single voltage cover of the complete graph Kn by the cyclic group of order

d, where n ≥ 4 and d ≥ 3. Then

J(Y ) ∼= (Z/nZ)(n−4)d+2 ⊕ (Z/n(n− 2)Z)d−2 ⊕ Z/dn(n− 2)Z,

where the exponents indicate the multiplicities of the (distinct) invariant factors.

(The small cases when n < 4 or d = 2 are also classified.)

Theorem 18 gives partial results on the Jacobian of single voltage cyclic covers of

Kn,n. To obtain Theorem 18, we first do elementary row and column operations on

the voltage Laplacian matrix (and then on the ordinary Laplacian matrix) over Z(p),

the integers localized at p. This gives the primes p that divide the order of the Jaco-

bian of the derived graph Y .

Theorem 18:

Let Y be a single voltage cover of the complete bipartite graph Kn,n by the cyclic

group of order d, where n, d ≥ 3. For any prime p with p - n, the Sylow p-subgroup,

Jp(Y ), of J (Y ) has the following (elementary divisor) decomposition:

Jp(Y ) ∼= (Z/p2aZ)d−2 ⊕ (Z/p2a+bZ)1
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where pa is the largest power of p dividing n − 1 and pb is the largest power of p

dividing d. In particular, |Jp(Y )| = p2a(d−1)+b, and the p-rank of J (Y ) is d− 1.

Chapter 4: Zeta Functions of Voltage Graphs

Theorem 22 gives the order of the Jacobian of a derived graph Y in terms of the

order of the Jacobian of the base graph X. From this, we are able to verify Conjec-

tures 1-4(iii) from Chapter 3.

Theorem 22:

Let (X,G, α) be a voltage graph such that X is connected with |E(X) | 6= |V (X) |,

G is abelian and the derived graph Y is connected. Then the order of the Jacobian

of the derived graph Y is

|J (Y )| = 1
d
· |J (X)|

∏
χt 6=χ0

χt(ΘY/X),

where the product is over all irreducible characters χt of G except the principal char-

acter χ0, and ΘY/X is the reduced Stickelberger element (the determinant of the

voltage Laplacian, which is an element of Z[G], so we may apply each χt to it).

In Theorem 23, we show that the reduced Stickelberger element is always of a specific

form when the voltage assignment is given by the single voltage assignment. This

result also proves Theorem 25 of Chapter 5, which we state below.

Theorem 23 and Corollary 13:

Assume X is connected with |E(X) | 6= |V (X) |, G is abelian and Y is a single voltage
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cover of X by the cyclic group Zd = 〈τ〉 such that Y is connected. Then the reduced

Stickelberger element may be written in the following form:

ΘY/X = K(τ − 1)2τ−1, for some nonzero integer K independent of d.

In addition, we have

|J (Y )| = |J (X)||K|d−1d.

Chapter 5: Towers of Voltage Graphs and Iwasawa Theory

Theorem 25, which is a direct consequence of the preceding result, says that given

a single voltage cyclic p-tower of derived graphs, we get an order formula for the

Jacobian of each derived graph in the tower. Furthermore, this order formula is in-

dependent of the single voltage generator chosen.

Theorem 25:

Let X = X0 ← X1 ← X2 ← · · · ← Xm ← · · · be a cyclic single voltage p-tower of

derived graphs over base graph X, where all Xm are assumed to be connected. Then

we have that

|J (Xm)| = |J (X)||K|pm−1pm

where K is as in Theorem 23.

The main result of Chapter 5—which is the culmination of this dissertation—is The-

orem 27, which establishes the order of the Sylow p-subgroups of the finite Jacobians

of a cyclic voltage p-tower of graphs. It is analogous to the classical result in Iwasawa

Theory which establishes the order of the Sylow p-subgroups of the class groups in

28



towers of certain infinite extensions of a number field.

Theorem 27:

Let X = X0 ← X1 ← X2 ← · · · ← Xm ← · · · be a cyclic voltage p-tower, where all

Xm are connected. Let Jp(Xm) be the Sylow p-subgroup of J (Xm). Then there are

nonnegative integers µ and λ and an integer ν such that

|Jp(Xm)| = pem where em = µpm + λm+ ν

for all m ≥ m0 for some m0 ≥ 0.

All Theorems are original to this dissertation unless explicitly stated (and cited) oth-

erwise.
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Chapter 2

Covering Graphs and Voltage Graphs

We begin Section 2.1 by defining a covering graph in general. In Section 2.2 we then

go on to describe a specific type of covering graph, called a derived graph, that arises

from what is called a voltage graph—where elements from a group (which may be

finite or infinite) are assigned to the edges of a fixed base graph X. We then give a

computationally effective way of constructing the adjacency matrix, hence Laplacian

matrix, of a derived graph. We briefly describe a generalization of voltage graphs

called permutation voltage graphs. We then remark on how graphs will be oriented

for the remainder of this dissertation.

In Section 2.3, we determine conditions for when a derived graph is connected. We

put this in terms of the voltage adjacency matrix. In Section 2.2.3, we define two

important voltage assignments—the constant voltage assignment and the single volt-

age assignment. In Section 2.4, we give the definition of an intermediate covering

graph X̃ and then state the Fundamental Theorem of Galois Theory for graphs. We

then show that given a voltage graph with derived graph Y such that Y is connected,
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Y/X is a normal (i.e., Galois) extension, and conversely, if Y/X is a normal extension

with Galois group G, then there exists a voltage assignment such that (X,G, α) is a

voltage graph with derived graph Y . Lastly, we show that when X̃ is an intermedi-

ate covering graph corresponding to H E G, then X̃/X is always a voltage graph.

Furthermore, we show that when Y/X is a single voltage cover, there exists a choice

of coset representatives of H in G such that Y/X̃ is a single voltage cover.

Finally, in Section 2.5, for Y a derived graph (which may be infinite), we consider the

group of divisors of Y , the group of principal divisors of Y , the Picard group of Y ,

and the Laplacian of Y , all as Z and Z[G] modules, where G is any finite or infinite

group. This leads to the definition of the reduced Stickelberger element, which we then

relate to the Stickelberger element in [HMSV19].

2.1 Basic Theory of Covering Graphs

and Voltage Graphs

We begin this section with some basic definitions.

Definition 13 (Neighborhood of a Vertex). Viewing X as a topological space, a

neighborhood of a vertex v in a directed graph X is obtained by taking ε = 1
3 of each

edge at v, where each edge is assigned a length of 1. (Note here that ε was arbitrarily

chosen to be 1
3 , but any 0 < ε < 1

2 will suffice.)

Looking at a neighborhood of a vertex, v, is essentially “zooming” in on v—looking

at what edges are coming into v and what edges are going out of v.
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Definition 14 (Covering Graph). An undirected graph Y is a covering of an undi-

rected graph X if, after arbitrarily directing the edges of X, there is an assignment of

directions to the edges of Y and an onto graph homomorphism π : Y → X sending

neighborhoods of Y one-to-one onto neighborhoods of X which preserve directions.

We call such π a covering map.

So a covering of X takes vertices and edges of Y to vertices and edges of X, while also

preserving directions. We call π−1(x) the fiber of π above x. It is all of the vertices

in Y that “lie above” x ∈ X, i.e.

π−1(x) = {y ∈ Y | π(y) = x}.

Definition 15 (d-Sheeted Covering). A d-sheeted covering means every fiber contains

exactly d elements, i.e.,

|π−1(x)| = d ∀x ∈ V (X).

One way to construct a covering map is to first start with an undirected, connected

graph X. Next, fix an orientation of X (i.e. direct the edges of X). Now pick a

spanning tree T of X. For a d-sheeted covering, make d copies of T . This gives the

vertices of Y . So we can view Y as the set of points (x, i) where x ∈ V (X) and

i = 0, · · · , d − 1. Note, we could also take d = ∞ (any infinite cardinal). Lastly, we

lift the edges of X left out of T to get the edges of Y (but in a way that preserves

adjacency and direction).

Example 1. Let X be the triangle in Figure 2.1 below. We will construct a 2-sheeted

covering of X. First orient the edges as in Figure 2.2 below. Next pick a spanning

tree T of X (indicated in red), as shown in Figure 2.3. Now we make two copies of
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T as shown in Figure 2.4. So we have that π−1(u) = {u′, u′′}, π−1(w) = {w′, w′′} and

π−1(v) = {v′, v′′}. Lastly, we lift the edges of X left out of T to get the remaining

edges in Y , but in a way that preserves direction and adjacency. So we have two

choices: either we draw an edge from w′ to u′ (and so also from w′′ to u′′), which

would result in two copies of X. Or we draw an edge from w′ to u′′ and hence an

edge from w′′ to u′ as shown in Figure 2.5.

w v

u

Figure 2.1: Base graph X

w v

u

Figure 2.2: Base graph X with oriented edges
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w v

u

Figure 2.3: Spanning tree T of base graph X

w′ v′

u′

w′′ v′′

u′′

Figure 2.4: Two copies of tree T

w′ v′

u′

w′′ v′′

u′′

Figure 2.5: A 2-Sheeted Covering Y of X
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We now give the definition of a deck transformation, which relates directly to Section

2.4, where we discuss Galois coverings.

Definition 16 (Deck Transformation). A deck transformation of a covering π : Y →

X is a graph isomorphism σ : Y → Y such that π ◦ σ = π. The set of all deck

transformations of π forms a group under composition, called the deck transformation

group Deck(Y/X), also known as Aut(Y/X).

We will now look at a specific type of covering graph, called a derived graph.

2.2 Construction of Voltage Graphs and

Examples

We first start with an undirected, finite and connected graph X and a group G

(which may be finite or infinite). We assume, for convenience that X has no loops

and no multiple edges; but the discussion easily generalizes to multigraphs. Next,

we arbitrarily orient the edges of X. Then we label the forward-directed edges of

X with elements from the group G. (Note: the edges of X do not have to labeled

with different group elements. For instance, each edge could be assigned the group

identity element.) These labels are referred to as the voltages and the assignment

itself is called the voltage assignment. Furthermore, if we have a directed edge which

goes from u to v labeled with the group element τ , then label the edge which goes

from v to u by the group element’s inverse, namely τ−1 :

u v
τ
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u v
τ−1

Definition 17. Let X be a graph whose edges have been oriented, and let G be a

group (finite or infinite). For a fixed orientation of the edges of X, let E(X)+ denote

the set of forward-directed edges of X; and let E(X)− denote the same edges but each

with the reverse orientation (so each undirected edge of X becomes two edges in the

disjoint union of E(X)+ and E(X)−). An (ordinary) voltage assignment is a map

α : E(X)+ ∪ E(X)− → G

such that if ei,j ∈ E(X)+ and α(ei,j) = αi,j ∈ G, then ej,i ∈ E(X)− and α(ej,i) = α−1
i,j

(the inverse group element), where ei,j denotes the directed edge from vi to vj.

The triple (X,G, α) is called an ordinary voltage graph. The values of α are called

the voltages and G is called the voltage group.

Note that a voltage assignment α is uniquely determined by its values on E(X)+,

so we will henceforth only specify α on the forward-directed edges of X.

Any such voltage assignment can be codified by its n× n voltage adjacency matrix:

Aα =
(
αi,j

)

where the i, j entry is zero if there is no edge between vi and vj; and the diagonal

entries (for our graphs) are zero. (Note that the voltage adjacency matrix is also

defined in [DZZ19] as Definition 2.14.)
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The entries of Aα are from the integral group ring Z[G], and Aα is “inverse sym-

metric” in the sense that its transpose, Atα, is the same as Aα, but with all group

elements in nonzero entries inverted. (As usual, we identify the integer k with the

group ring element kτ0, where, for formality, τ0 is the identity of G.) Changing the

orientation of X simply results in a voltage assignment where some αi,j are inverted.

(See Section 2.2.2 for more on orientation).

The purpose of assigning voltages to the graph X, called the base graph, is to ob-

tain an object called the derived graph, which we will call Y here. To get the ver-

tices of Y , we simply make d = |G| copies of each vertex x ∈ V (X) labeling them

as xτ0 , xτ1 , xτ2 , · · · , xτd−1where τ0, τ1, τ2, · · · , τd−1 ∈ G (again, we may take d = ∞,

where the same formal construction works even if |G| is uncountable). So this gives

us |G| · |V (X)| vertices in Y . Now to construct the edges, the voltage assignment

comes into play. Suppose x→ u is a directed edge with voltage α(ex,u) = τ ∈ G. So

in X, we have the following:

x u
τ

By definition, for each τi ∈ G we have the following edge in Y :

xτi uτi·τ
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Thus we define the edges in Y to be (illustrated for |G | finite):

xτd−1 uτd−1·τ

...

xτ1 uτ1·τ

xτ0 uτ0·τ

We do this for every fiber above x ∈ V (X) to get the derived graph Y . If |G| = d,

then π : Y → X is a d-sheeted covering map (where again, we allow d to be any

infinite cardinal too). The sheets are indexed by the τ ∈ G.

For every vertex u ∈ V (X) the set of vertices u × G is called the fiber over u,

where we denote the vertex (u, τ) in u×G by uτ , for each τ ∈ G. Similarly for every

edge e between x and u in X, the set of edges, as constructed above, between any

xτ in the fiber over x and adjacent uσ in the fiber over u in Y is called the fiber over e.

Note that the degree (valence) of each vertex vτ = (v, τ) of Y is the same as the

degree of v = π(vτ ) in X. Also, no two vertices in the same fiber of π are adjacent

in Y .

Reiterating the informal description of voltage and derived graphs, we may think

of a voltage graph as taking |G| copies of X, stacked vertically above each other.

Then for each directed edge vi → vj with voltage τ , we do the following: for each
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sheet, indexed by σ ∈ G, we join the vertex vi,σ to the vertex vj,σ·τ . So if we “look at

the layer of sheets from above” we see vertex vi joined to vertex vj exactly |G| times;

and if vi is not adjacent to vj in X, then there are no edges “from above” between

these two fibers. “Horizontally speaking,” the edges in the derived graph Y between

vertices in the fiber over vi to vertices in the fiber over vj are all “parallel” — they all

“shift upward by the same τ.” (However, some may “loop around” to “lower sheets”

when τ may have finite order). This is illustrated in the following example.

Example 2. Let (K4, Z3, α) be such that Z3 = 〈τ〉 and α : E(X)+ → Z3 assigns the

edge e1,2 with voltage τ and with all other edges ei,p with voltage 1 (i < p), as shown

in Figure 2.6.

v4 v3

v1 v2

1

τ

1

1

11

Figure 2.6: The Complete Graph on 4 vertices with voltage assignment α(e1,2) = τ and all
other edges labeled with the identity

To get the derived graph Y , we make 3 copies ofK4. Then we remove edges v1,τi → v2,τi

and add the edges in red, as shown in Figure 2.7.
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v4,1

(τ 2 sheet)

(τ sheet)

(identity sheet)

v3,1

v1,1 v2,1

v4,τ v3,τ

v4,τ2 v3,τ2

v1,τ v2,τ

v1,τ2 v2,τ2

Figure 2.7: Derived graph Y corresponding to the voltage graph (K4, Z4, α) where α is
defined above

2.2.1 Constructing the Laplacian for a Derived

Graph Y

This subsection describes a computationally effective way of constructing the adja-

cency matrix, and hence, Laplacian for the derived graph Y from a given voltage

graph (X,G, α). This construction is described in the language of Z[G]-modules in

Section 2.5. Note that G may be any finite group, not necessarily abelian.

40



Since group-voltages “multiply on the right” on vertices of Y , we view the Lapla-

cian operator as acting on the right on divisors, ~aL, and so we compute the Laplacian

matrix from this perspective. Fix a listing of the vertices of X as v1, · · · , vn and let

G = {τ0, τ1, . . . , τd−1}. The right regular representation of G is the homomorphism

ρ : G → GLd(Q), where for each g ∈ G the d × d matrix ρ(g) has a 1 in position

i, j if and only if τig = τj; all other entries are 0. Note that if G is abelian then the

left and right regular representations are the same, and so ρ is just called the regular

representation.

Fix any ordering of the group elements as τ0, · · · , τd−1. Next, for each i list the vertices

of Y in the fiber over vi as

vi,τ0 , vi,τ1 , · · · , vi,τd−1 .

Finally, list all the vertices of Y “lexicographically” with vi,τj before vp,τq if i < p or

if i = p with j < q.

With respect to this ordering, the adjacency matrix of Y is the “tensor product”

of Aα and ρ as follows: Create the nd× nd (block) matrix by replacing each nonzero

entry αi,j in Aα by the d×d matrix ρ(αi,j); replace each zero entry in Aα by the d×d

zero matrix. Denote this matrix by AY . The fact that AY is an adjacency matrix for

Y is the observation that, by definition of the derived graph, the adjacency matrix

for Y can be written as an n× n matrix whose entries are |G | × |G | block matrices.

When vi is not adjacent to vj, the i, j block is identically zero. When vi is adjacent

to vj, i.e., there is a 1 in the i, j entry of AX , then vi,τ is adjacent to vj,ταi,j , for every
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τ ∈ G; thus, with respect to the above labeling of the elements of G, (which we chose

to be the same for all blocks) the i, j block of an adjacency matrix for Y is a matrix

for ρ(αi,j) (again, keeping in mind that the matrix acts on the right on row vectors).

This method is discussed briefly in [MS93], as well as in [FKL04].

Since each vertex vσ in Y has the same degree as v in X, to create the nd × nd

degree matrix of Y , likewise replace each entry ni,j of the degree matrix of X by the

scalar matrix ni,jId, where Id is the d× d identity matrix (noting that all off diagonal

entries are thus replaced by the zero matrix). Denote this (diagonal) matrix by DY .

The Laplacian of Y is then DY −AY ; and the reduced Laplacian, L̃Y , is obtained from

it by deleting the ith row and column for any i (but not the ith block row and column!).

Example 3. Let (X,G, α) where X is K3, G = Z3 = {1, τ, τ 2} and α : E(X)+ → G

as shown below in Figure 2.8. We compute the Laplacian matrix of the derived graph

Y via the process described above. Then computing the Smith Normal Form of the

Laplacian yields the Jacobian of Y .

v3 v2

v1

τ

1

1

Figure 2.8: Voltage graph (K3, Z3, α)
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Then we have that the voltage adjacency matrix is

Aα =


0 τ 1

τ−1 0 1

1 1 0



Now fix a listing of the elements of G as τ 2, τ, 1. Then we get that following matrices

that correspond to the regular representation of G, ρ : G→ GL3(Q):

ρ(1) =


1 0 0

0 1 0

0 0 1



ρ(τ) =


0 0 1

1 0 0

0 1 0



ρ(τ 2) =


0 1 0

0 0 1

1 0 0



Next, list the vertices of Y as

v1,τ2 , v1,τ , v1,1, v2,τ2 , v2,τ , v2,1, v3,τ2 , v3,τ , v3,1
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Then the adjacency matrix of the derived graph, Y , is

AY = Aα ⊗ ρ

=


03 ρ(τ) ρ(1)

ρ(τ−1) 03 ρ(1)

ρ(1) ρ(1) 03



(where 03 denotes the 3 × 3 zero matrix). The degree matrix of the derived graph,

Y , is

DY =


2I3 03 03

03 2I3 03

03 03 2I3


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From this, we get that the Laplacian of Y to be

LY = DY − AY

=


2I3 −ρ(τ) −ρ(1)

−ρ(τ−1) 2I3 −ρ(1)

−ρ(1) −ρ(1) 2I3



=



2 0 0 0 0 −1 −1 0 0

0 2 0 −1 0 0 0 −1 0

0 0 2 0 −1 −0 0 0 −1

0 −1 0 2 0 0 −1 0 0

0 0 −1 0 2 0 0 −1 0

−1 0 0 0 0 2 0 0 −1

−1 0 0 −1 0 0 2 0 0

0 −1 0 0 −1 0 0 2 0

0 0 −1 0 0 −1 0 0 2



Computing the Smith Normal form via SAGE of L̃Y , the reduced Laplacian, (where,

recall, this means deleting a row and its corresponding column), we get

J (Y ) = Z/9Z.

We describe a generalization of voltage graphs; however this generalization is not used

in our dissertation.
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A permutation voltage assignment for X is a function φ from the forward-directed

edges of X into a symmetric group Sd, for any d (where d =∞ also works). To each

such permutation voltage graph there is associated a permutation derived graph Y ,

whose vertex set is V (X)× {1, · · · , d} and whose edge set is E(X)× {1, · · · , d}. For

each u in X, label the vertices above as ui in Y for i = 1, · · · , d. If the edge e of the

base graph X goes from u to v and if the voltage on e is the permutation σ, then for

i = 1, · · · , d the edge ei of the derived graph Y is defined to go from the vertex ui

to the vertex vσ(i). Note that the cardinality of each fiber in the permutation derived

graph is d, the number of permuted objects.

Although we observed this independently, we subsequently found this generalization

in [GT87]. In this dissertation we will primarily deal with derived graphs where the

group generated by all voltages acts transitively on the sheets and is abelian. Since

any transitive permutation representation of an abelian group is equivalent to the

regular representation, this generalization reduces to ordinary derived graphs in this

case.

2.2.2 Orienting Graphs

At the outset we chose some labeling of the vertices of the base graph X as v1, . . . , vn.

This already imposes a natural lexicographic orientation on X, namely whenever

there is an edge between vi and vj, orient the edge vi → vj if i < j. (Not all orienta-

tions are obtained this way, because X may have cycles.) With respect to the chosen

labeling of vertices, the adjacency matrix, A, of the undirected graph X is uniquely
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determined. Any voltage assignment with respect to the lexicographic orientation

α is now obtained by choosing group elements αi,j to insert in the nonzero strictly

upper triangular entries of A; the lower triangular entries are then forced to be the

respective inverse group elements. For this fixed labeling of the vertices, but with

any other orientation, a voltage is chosen for the oriented edge vp → vq and inserted

in the p, q entry of Aα when p < q or the q, p entry when q < p. So different orien-

tations simply constitute whether one chooses to fill entry p, q or entry q, p (and the

transpose entry is then forced). Thus, given a fixed labeling of the vertices of X, it is

more systematic to describe how to fill the upper triangular portion of Aα. In other

words, the notion of orientation can be dispensed with entirety, once one chooses an

integer labeling of the vertices of the base graph. (Any other labeling of the vertices

of X corresponds to a permutation of the rows and columns of A, namely PAP−1,

for some permutation matrix P .).

Any derived graph Y over X inherits a natural orientation from X. Namely, be-

cause no two vertices of Y in the same fiber of the covering map are adjacent in Y ,

any edge uσ ∼ vτ in Y may be oriented uσ → vτ if u→ v is an edge in X (or uσ ← vτ

if u ← v is an edge in X). This is also compatible with π in the sense that π maps

oriented edges of Y to edges of X with the same orientation.

The labeling of vertices in each fiber may be chosen, as we did above, in any way

that is compatible with constructing d×dmatrices for the regular representation of G.

For chains of coverings, adopting these consistencies are important for construct-
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ing examples, as we will see in Section 5.1.

We now go on to define two important voltage assignments in the next two sections.

2.2.3 The Constant and Single Voltage Assign-

ments

Definition 18. Let X be a connected base graph with vertices v1, · · · , vn and put

the natural lexicographic resulting orientation on it, namely, vi → vj when i < j as

described in Section 2.2.2. Take G to be a cyclic group of order d generated by τ .

Define the constant voltage assignment to be the one whose adjacency matrix puts τ

in entry i, j for all i < j whenever there is an edge between vi and vj (i.e. put τ in

the upper triangular portion of the matrix whenever such an edge exists). Then put

τ−1 in all entries of the lower triangular portion of the matrix, again whenever vi is

adjacent to vj.

Intuitively speaking, for constant voltage assignments, we are taking |G| copies of the

base graph X, but “rerouting” each edge by erasing it and connecting it to the “next

sheet up”. So for instance, if vi → vj in X, then vi,τ goes to vj,τ2 in Y .

We now define the single voltage assignment.

Definition 19. Take a connected base graph X with vertices v1, · · · , vn and put the

natural lexicographic resulting orientation on it, namely, vi → vj when i < j as in

Section 2.2.2. Take G to be a cyclic group of order d generated by τ . Define the single

voltage assignment to be the one whose voltage adjacency matrix has τ in entry 1, 2,
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τ−1 in entry 2, 1, and all other off-diagonal entries the identity.

Intuitively speaking, for single voltage assignments, we are taking |G| copies of the

base graph X, but only “rerouting” the one edge v1 → v2 by erasing it and connecting

v1,τ i in sheet τ i to v2,τ i+1 in the “next layer up indexed by τ .” The d − 1st vertex

v1,τd−1 “loops back” to be adjacent to v1,τ0 in the identity sheet.

The choice of putting the single non-identity voltage τ on edge v1 → v2 is for conve-

nience, and allows arbitrary n and d. The Jacobians will, however, depend on which

(directed) edge has the non-identity voltage. Note that Figure 2.7 is an example of a

single voltage assignment derived graph. We will see more examples of this voltage

assignment in Section 2.5.1.

2.3 Connectivity of Derived Graphs

Given a connected, undirected base graph X and a group G, we wish to determine

when Y , the derived graph, will be connected. We will describe this in the case where

|G| < ∞ only. Fix an orientation on X (as discussed in 2.2.2). We first define the

following:

Definition 20. Given a walk W on a voltage graph (X,G, α)

W : w1
γ1−→ w2

γ2−→ · · · γm−→ wm+1,

where wi are arbitrary (not necessarily distinct) vertices in X and γi ∈ G are the
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voltages, the net voltage on W is defined to be the product of the voltages on the edges

of W in the order and direction of the walk, denoted (by extending the definition of

α) by

α(W ) = γ1γ2 · · · γm.

Definition 21. A lift of W to Y is any walk

W̃ : w1,σ1 → w2,σ2 · · · → wm,σm

such that π(wi,σi) = wi ∈ V (X) (where π : Y → X is the covering map).

For each walk W in X (as above) and each wi,σ ∈ π−1(wi) there is a unique lift W̃

of W to Y as follows: w1,σ is adjacent to exactly one vertex in Y above w2, namely

w2,σγ1 . Inductively, each wi,σγ1···γi−1 is adjacent to a unique vertex over wi+1 in X,

namely wi+1,σγ1···γi . Continue this way to obtain W̃ .

This proves the special case of the following result for arbitrary coverings π : Y → X

(not necessarily voltage coverings):

Proposition 7. Suppose Y is a covering of X. Let W be a walk in X. Then W has

a unique lift to W̃ , a walk in Y once the initial vertex of W̃ is fixed.

Proof. [Ter11] Proposition 13.1.

Now let g ∈ G and σ ∈ G be a sheet index. If wi is a vertex in X, then

g : wi,σ 7→ wi,gσ
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defines a left group action on the set of vertices in each fiber of π.

Remarks:

(i) This action by each g ∈ G simultaneously on all fibers sends edges of Y to edges

of Y .

(ii) This gives a (faithful) homomorphism

G→ Deck(Y/X),

where we consider G acting trivially on X.

(iii) G acts as the left regular representation on each fiber (i.e., acts transitively and

the stabilizer of any vertex is the identity subgroup of G).

The expression “regular representation” will mean “permutation isomorphic to

the regular representation.

(iv) G permutes (transitively) the set of all lifts of W to walks W̃ in Y .

Note that the preceding remarks are valid for |G| =∞ too.

We now give the following definition, which leads to the conditions for when a derived

graph Y is connected. For all w ∈ V (X), define

Gw = 〈α(Cw) | Cw is a cycle in X starting and ending at w〉 ≤ G.
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In [GT87], this is called the local voltage group.

Observe that if W is a walk from w = w1 to wm+1, as above, and t = α(W ) then

Gwm+1 = tGwt
−1.

Although the next Theorem was proven independently, it can be found in [GT87] as

Corollary 2 on page 88.

Theorem 4. Let (X,G, α) be a voltage graph where X is connected and let Y be the

derived graph. Then Y is connected if and only if Gw = G. (This does not depend on

the choice of w or the orientation of X.)

Proof. Since X is connected there is a path between any two vertices. Such paths

can be lifted to Y , so there is a path in Y between any two fibers. If follows that Y is

connected if and only if for any (hence every) fixed w ∈ X and any σ, µ ∈ G there is

a path in Y from wσ to wµ (i.e., the vertices in the same fiber π−1(w) are connected

in Y ). Such paths are lifts to Y by closed walks in X. Let Cw be a closed walk in X

starting at w.

Cw : w = w1
γ1−→ w2

γ2−→ · · · γm−→ wm+1 = w

where wi ∈ V (X) and γi ∈ G represent the voltages. Then in Y we have

C̃w : wσ = w1,σ → w2,σγ1 → w3,σγ1γ2 → · · · → wm+1,σγ1···γm = wσγ1···γm

where C̃w is the unique lift of Cw starting on sheet σ, wi+1,σγ1···γi is in the fiber over

wi+1 and σγ1 · · · γi indicates the sheet.

52



Now let t = α(Cw) = γ1 · · · γm be the product of all of the voltages taken over

the closed walk, Cw, i.e. the net voltage. Letting µ = σt, we see that there is a path

from wσ to wµ ∈ Y.

We do this for every closed walk Cw starting at w, where w is fixed but arbitrary.

Then we see that there exists a path from wσ to wµ ∀σ, µ ∈ G if and only if the

subgroup generated by all of the net voltages for every closed path in X is G itself,

i.e.

Gw = 〈α(Cw) | Cw is a cycle in X starting and ending at w〉 = G.

Note that this does not depend on the choice of w by the above observation.

Corollary 1. Fix any w ∈ X. Then Y is connected if and only if for every µ ∈ G

there is a closed walk starting and ending at w whose net voltage is equals µ.

Proof. By Theorem 4, Y is connected if and only if for every µ ∈ G, we can write

µ = α(C1) · · ·α(Ck)

for some walks Ci starting and ending at w. Since the latter product is seen to equal

α(C1 · · · , Ck) (the walks taken in succession) we get µ = α(Cw) for some closed walk

Cw. This gives the corollary (the converse being trivial).

Exercises (these can be found in [GT87]): For X connected,

(i) The number of connected components of Y is |G : Gw| for any w ∈ V (X).
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(ii) G acting on the left on Y as above permutes transitively the connected compo-

nents of Y .

2.3.1 Connectedness and the Voltage Adjacency

Matrix

Now we relate connectivity to the voltage adjacency matrix, Aα. First note the fol-

lowing

Proposition 8. The number of walks of length k in X from vi to vj is the entry in

position (i, j) of the matrix Ak.

Proof. Refer to Lemma 2.5 in [Big93]

We now relate this to the voltage adjacency matrix, where the elements of this ma-

trix lie in the integral group ring Z[G]. Raising the voltage adjacency matrix to the

kth power, (Aα)k, gives the number of walks of length k as well as the net voltage

associated to each of these walks, starting at vi and ending a vj.

Theorem 5. Let Aα be a voltage adjacency matrix and let k be a positive integer.

Suppose the i, j entry of Akα is the group ring element

κi,j(k) = a0τ0 + a1τ1 + · · ·+ ad−1τd−1 (2.1)

where the ai are nonnegative integers (that depend on k) and G = {τ0, ..., τd−1}. Then

for each t with 0 ≤ t ≤ d − 1 there are exactly at distinct walks of length k from vi

to vj that have net voltage τt. Thus the total number of walks of length k (of any net

voltage) is a0 + a1 + · · ·+ ad−1.
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Proof. When k = 1, the result follows since A1
α = Aα. Now assume it holds for k = L.

There is a bijection between the number of walks of length L + 1 from vi to vj and

the number of walks of length L from vi to vh, where vh is adjacent (or equal) to vj.

We have that ∑
vh∼vj

κi,h(L) = κi,1(L) + κi,2(L) + · · ·+ κi,n(L)

is the sum of all net voltages over walks from vi to vh for all h. This gives the total

number of walks from vi to vh, as well as the net voltage associated to each walk.

Multiplying this sum on the right by αh,j, where this denotes the voltage on X going

from vertex vh to vertex vj, we get

∑
vh∼vj

κi,h(L)αh,j = κi,j(L+ 1).

This completes the induction proof.

Corollary 2. Let AY be the adjacency matrix for Y as in Section 2.2.1 (AY =

AX ⊗ ρ). In the notation of that construction, the number of walks of length k from

vi,τp to vj,τq is equal to the (vi,τp , vj,τq)-entry in AkY .

Proof. Since substitution with block matrices commutes with raising Aα to the kth

power, the result follows immediately.

Next, for any group ring element κi,j(k) as in (2.1) define the group 〈κi,j(k)〉 to be the

subgroup of G generated by all τt that have at 6= 0 in expression (2.1). (Adopt the

convention that this subgroup is the identity if all at = 0.) So 〈κi,j(k)〉 is the subgroup

generated by all net voltages over all walks of length k from vi to vj. In particular,

〈κi,i(k)〉 is the subgroup generated by the net voltages of all cycles of length k from

vi to itself.
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Corollary 3. The voltage graph Y is connected if and only if for any (hence every)

i, G is generated by the collection of all subgroups 〈κi,i(k)〉, as k runs over all positive

integers. (Note, the latter is just the subgroup we denoted as Gv, which again, [GT87]

calls the Local Voltage Group).

2.3.2 Covers of Kn

In this section, we now fix the base graph to be X = Kn, the complete graph on n

vertices.

We have that every closed walk can be written as a walk over successive triangles

since for any closed walk C in Kn,

w1
e1,2−−→ w2

e2,3−−→ · · ·wm
em,1−−→ w1

we can rewrite it as

w1
e1,2−−→ w2

e2,3−−→ w3
e−1

1,3−−→ w1
e1,3−−→ w3

e3,4−−→ w4
e−1

1,4−−→ w1
e1,4−−→ · · · em−1,m−−−−→ wm

em,1−−→ w1

This yields the following Corollary to Theorem 4:

Corollary 4. For X = Kn and G any (finite) group, Y is connected if and only if

the subgroup generated by all net voltages over all triangles in Kn is all of G.

Now we fix the voltage group to be G = Zd, the cyclic group of order d.

Corollary 5. Let (Kn, Zd, α) be a voltage graph where α : E(Kn)+ → Zd and d is

prime. We have that Y is disconnected if and only if α assigns every triangle net
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voltage 1.

More generally,

Corollary 6. Let d = pβ1
1 · · · pβrr be the unique factorization of d into distinct prime

powers. Then Y is connected if and only if for each i there is a triangle Ci in X

containing w, such that pβii divides the order of α(Ci).

Proof. Y is connected if and only if the subgroup generated by the net voltage ele-

ments over all triangles in X starting and ending at a fixed w equals G. But the cyclic

group Zd is generated by τ1, · · · , τr if and only if for each prime pi dividing d, the Sy-

low pi-subgroup of Zd is generated by the set of Sylow pi subgroups of 〈τ1〉, · · · , 〈τr〉.

Since Zd has a unique subgroup of order k for every k|d, the latter collection of Sylow

pi-subgroups generates the Sylow pi-subgroup of Zd if and only if one of them contains

the full Sylow pi-subgroup of Zd, but this is if and only if one τj has order divisible

by pβii , as claimed.

Corollary 7. In the notation of Section 2.3.1, for X a complete graph, a derived

graph Y is connected if and only if 〈κ1,1(3)〉 = G. In particular, if d is a prime, Y is

connected if and only if κ1,1(3) is nonzero.

Example 4. (a) Let (K5, Zd, α) be a voltage graph where α : E(K5)+ → Zd is the
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constant voltage assignment. Then its voltage adjacency matrix is

Aα =



0 τ τ τ τ

τ−1 0 τ τ τ

τ−1 τ−1 0 τ τ

τ−1 τ−1 τ−1 0 τ

τ−1 τ−1 τ−1 τ−1 0



and so

A3
α =



6τ + 6τ−1 10τ + 3τ−1 12τ + τ−1 τ 3 + 12τ 3τ 3 + 10τ

3τ + 10τ−1 6τ + 6τ−1 10τ + 3τ−1 12τ + τ−1 τ 3 + 12τ

τ + 12τ−1 3τ + 10τ−1 6τ + 6τ−1 10τ + 3τ−1 12τ + τ−1

τ−3 + 12τ−1 τ + 12τ−1 3τ + 10τ−1 6τ + 6τ−1 10τ + 3τ−1

3τ−3 + 10τ−1 τ−3 + 12τ−1 τ + 12τ−1 3τ + 10τ−1 6τ + 6τ−1


.

So in K5 there are 12 walks of length 3 from v1 to v1: 6 with net voltage τ

and 6 with net voltage τ−1. There are 3 walks of length 3 from v1 to v2 with

net voltage τ−1 and 10 walks with net voltage τ. In particular, we see that Y is

connected by Corollary 4.

(b) Let (K4, Z4, α) be a voltage graph with Z4 = {1, τ, τ 2, τ 3} and α : E(X)+ → Z4

is shown as in Figure 2.9.
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v4 v3

v1 v2

1

τ 2

τ

τ

τ 2τ 3

Figure 2.9: Voltage graph (K4, Z4, α)

Now the voltage adjacency matrix is equal to

Aα =



0 τ 2 τ 3 1

τ 2 0 τ τ 2

τ τ 3 0 τ

1 τ 2 τ 3 0



and so

A3
α =



6 7τ 2 7τ 3 7

7τ 2 6 7τ 7τ 2

7τ 7τ 3 6 7τ

7 7τ 2 7τ 3 6



Now because there are a total of 6 walks from vi to vi, for i = 1, · · · , 4 all with

net voltage 1G (the identity element in G), it follows that Y is disconnected by

Corollary 3.
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(c) We now construct a voltage graph (Kn, Zd, α) where the derived graph Y is

disconnected. We then count the number of such voltage graphs. Fix the usual

lexicographic orientation on Kn. Label the edges v1 → v2 → v3 → · · · → vn−1

with elements from Zd. This uniquely determines the remaining edge labels in

such a way so that all triangles have net voltage equal to 1 as follows. Since

the edge labels for v1 → v2 → v3 → · · · → vn−1 are chosen, this uniquely

determines the edge label for v1 → vn, namely it is α(C), where C denotes the

walk v1 → v2 → v3 → · · · → vn−1 . Similarly, the edge v1 → v3 is labeled with

the net voltage for the walk v1 → v2 → v3. From this, the edge label for v1 → v4

is determined by looking at the net voltage of the walk v1 → v3 → v4. We

continue this process for v1 → v5, · · · , v1 → vn−1 in the same manner. Lastly,

we get the remaining edge labels for

vn−2 → vn

vn−3 → vn

...

v2 → vn

by looking at the net voltage of the walks

v1 → vn−2 → vn

v1 → vn−3 → vn

...

v1 → v2 → vn
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respectively.

There are d · d · · · · · d · d = dn−1 of these such graphs, including the case

where all voltages are the identity.

2.4 Galois Theory of Covering Graphs

and Voltage Graphs

We begin this section by first giving the definition of an intermediate covering graph

and then state the Fundamental Theorem of Galois Theory for graphs. The following

Theorems can be found in Chapter 13 and 14 of [Ter11].

Throughout this section, assume that X and all coverings of X are connected and

finite.

Definition 22. Suppose Y is a covering of X with projection map π. A graph X̃ is

an intermediate covering to Y/X if Y/X̃ is a covering, X̃/X is a covering and the

projection maps π1 : X̃ → X and π2 : Y → X̃ have the property that π = π1 ◦ π2.

If Y/X is a d-sheeted covering with projection map π : Y → X, then it is normal or

Galois if there are exactly d graph automorphisms σ : Y → Y such that π ◦ σ = π.

The Galois group is G = Gal(Y/X) = {σ : Y → Y | π ◦ σ = π}.

Observe that Y/X is Galois if and only if |Aut(Y/X)| = d = |G|. By graph auto-
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morphism, we mean a one-to-one onto map of vertices and edges of Y that preserves

adjacency.

Recall from Section 2.1 after Definition 15, the design of a general covering graph.

Then for Y/X a normal covering graph with Galois group G, we choose one of the

sheets of Y and call it sheet 1. The image of sheet 1 under an element g in G will

be called sheet g. Any vertex x̃ in Y can then be uniquely denoted x̃ = (x, g), where

x = π(x̃) and g is the sheet containing x̃. By [Ter11], the vertices of Y can also be

simultaneously labeled in every fiber of π in this way so that if u→ v is any directed

edge in X and (u, g1)→ (v, g2) is an edge lying over it in Y , then (u, gg1)→ (v, gg2)

is an edge in Y , for every g ∈ G (hence these are all the edges in Y lying over u→ v).

By the remarks after Proposition 7, we have that for Y/X a normal covering, the

Galois group G = Gal(Y/X) acts transitively on the sheets of the covering and the

stabilizer of any vertex is the identity of G. There are correspondences between the

subgroups H of G and the intermediate graphs X̃ to Y/X defined as follows.

Let H ≤ G. The vertices of Y are of the form (x, g) where x ∈ X and g ∈ G

indexes the sheets. The vertices of X̃ are then defined to be (x,Hg). Create an edge

from (a,Hr) to (b,Hs) for a, b ∈ X and r, s ∈ G if and only if there are h, h′ ∈ H

such that there is an edge from (a, hr) to (b, h′s) in Y . The edge between (a,Hr)

and (b,Hs) in X̃ is given the direction of the projected edge between a and b in X.

Check that X̃ is well-defined, intermediate to Y/X and connected.
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Conversely, let X̃ be intermediate to Y/X, with projections π : Y → X, π2 : Y → X̃

and π1 : X̃ → X, as in Definition 22. Let (x, 1) ∈ π−1(x), where 1 indicates the

1st sheet. Then define H = {h ∈ G | π2(x, h) = π2(x, 1)}. Check that H is a sub-

group of G.

The next result describes the Galois theory of (finite) Galois covers (it can be found

in [Ter11] as Theorem 14.3).

Theorem 6 (Fundamental Theorem of Galois Theory for Graphs). Suppose Y/X is

a normal covering with Galois group G and with covering map π : Y → X.

(i) Given a subgroup H of G, there exists a graph X̃ intermediate to Y/X such

that H = Gal(Y/X̃).

(ii) Suppose that X̃ is intermediate to Y/X. Then there is a subgroup H of G that

equals Gal(Y/X̃).

(iii) Two intermediate graphs X̃ and X̃ ′ are equal if and only if Gal(Y/X̃) = Gal(Y/X̃ ′).

(iv) We write X̃ ↔ H for the above correspondences (which are inverses of each

other) between graphs X̃ intermediate to Y/X and subgroups H of the Galois

group G = Gal(Y/X).

(v) If X̃1 ↔ H1 and X̃2 ↔ H2 then X̃1 is intermediate to Y/X̃2 if and only if

H1 ⊂ H2.

Definition 23. Suppose we have

X̃ ↔ H ⊂ G
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X̃ ′ ↔ gHg−1 for some g ∈ G

then we say X̃ and X̃ ′ are conjugate.

Theorem 7. Suppose Y/X is a normal covering with Galois group G and X̃ an

intermediate covering corresponding to the subgroup H of G. Then X̃ itself is a

normal covering of X if and only if H is a normal subgroup of G, in which case

Gal(X̃/X) ∼= G/H.

X

X̃

Y

G

H

1

π1

π2

E

Figure 2.10: Normal covering Y/X with Galois group G and intermediate covering X̃ cor-
responding to H E G

Note that if G is abelian, then all intermediate covers are normal.

Now we put this in terms of voltage graphs.

Theorem 8. Let (X,G, α) be a voltage graph with Y the derived graph. If Y is

connected, then Y/X is a normal cover with Gal(Y/X) ∼= G. Conversely, given a

normal (Galois) cover Y/X, with G = Gal(Y/X), then Y/X is a voltage cover with

the voltage group equal to Gal(Y/X).
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Proof. Let (X,G, α) be a voltage graph and let Y be its derived graph. Assume Y is

connected. We show that Y/X is Galois. Because G acts as automorphisms of Y that

fix the fibers of π, |Aut(Y/X)| ≥ |G|. Thus, we need only to show that there are not

more automorphisms of Y/X. Suppose by way of contradiction that λ ∈ Aut(Y/X).

Then there exists σ ∈ G such that λ ◦ σ fixes some vµ in the fiber over v ∈ X. By

Proposition 7, λ ◦ σ fixes all paths that start at vµ, hence fixes the vertex at the end

of each such path. Since Y is connected λ ◦σ fixes all vertices of Y , so λ ◦σ = id and

so λ = σ−1 ∈ G.

Conversely, let Y/X ne a normal cover with G = Gal(Y/X) of order d. As above,

we may write the vertices of Y as (x, g) where x ∈ X and g ∈ G. Suppose u → v

is a directed edge in X. Then there are exactly d edges (u, g1) → (v, g2) in Y that

map to the above edge in X under π. Since G acts transitively on the sheets of the

covering, each vertex (u, g1) ∈ π−1(u) is adjacent to a unique vertex (v, g2) ∈ π−1(v).

So for the base graph X, let G be the voltage group and define the voltage assignment

by α(eu,v) = g−1
1 g2. Note that α(eu,v) does not depend on the choice of edge above

u → v because every edge is of the form (u, gg1) → (v, gg2) for some g ∈ G and

(gg1)−1(gg2) = g−1
1 g2. Do this for every edge in X. This yields the derived graph Y .

(The element g−1
1 g2 is called the Frobenius element.)

For any Galois cover π : Y → X of a connected base graph X, the graph Y is

necessarily connected except in the case where G = Gal(Y/X) is the cyclic group of

order 2 and Y is two disjoint isomorphic copies of X interchanged by G. To see this,

suppose Y1, . . . , Yk are the connected components of Y , and let Hi be the subgroup of

G stabilizing Yi for every i. Since G acts transitively on the vertices in each fiber of
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π, it likewise transitively permutes the Yi; and so all Yi are isomorphic graphs and all

Hi are isomorphic groups. Furthermore, by the transitive action, k = |G : H1|. But

then we may let the subgroups Hi act independently (with commuting actions) on

Y , hence H1 × · · · ×Hk acts as automorphisms of Y ; and we may let the symmetric

group of degree k permute the Yi, and hence correspondingly permute the component

entries in the direct product group. All of these actions may be chosen to preserve

the fibers of π as well. In other words the wreath product group, H1 oSk, is a subgroup

of Aut(Y/X) ∼= G. This means

k|H1 | = |G | = |Aut(Y/X) | ≥ |H1 o Sk | = |H1 |k · k!

If k > 1, we must have k = 2 and |H1 | = 1, which is the degenerate case described

at the outset. Note that this degenerate case is also a derived cover for any X, by

taking the voltage group to be the cyclic group of order 2 and all edge-voltages to be

the identity element.

We choose to use “voltage cover” rather than Galois cover (when Y is connected)

to emphasize the “voltage-assignment nature” of the cover.

We now show that for an intermediate covering X̃ of Y/X, that corresponds to

H E G, it follows that X̃/X is always a voltage cover. We then show that for Y/X

a single voltage cover, there exists a choice of coset representatives of H in G such

that Y/X̃ is single a voltage cover.

Theorem 9. Let (X,G, α) be a voltage graph with derived graph Y such that Y
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is connected. If X̃ is an intermediate cover of Y/X corresponding to the normal

subgroup H of G, then X̃/X is a voltage graph, whose voltage adjacency matrix is the

voltage adjacency matrix of Y/X, but with nonzero entries reduced modulo H (thus

has entries in Z[G/H]).

Proof. Let X̃ be an intermediate cover of Y/X that corresponds to the normal sub-

group H of G. So we have that Y/X̃ and X̃/X are normal coverings with projection

maps π1 : X̃ → X and π2 : Y → X̃ such that π2 ◦ π1 = π.

Let Aα,Y be the voltage adjacency matrix for X corresponding to the derived graph

Y . So Aα,Y has entries in Z[G]. Now reduce the entries of Aα,Y modulo H, and de-

note this matrix Aα1 , which has entries in Z[G/H]. This encodes the voltage graph

(X,G/H, α1), where α1 : E(X)+ → G/H. Since Gal(X̃/X) ∼= G/H by Theorem 7,

it follows that the derived graph of (X,G/H, α̃) is X̃ by the Fundamental Theorem

of Galois Theory for Graphs.

Corollary 8. Let (X,G, α) be a voltage graph with α : E(X)+ → G the single volt-

age assignment. If X̃ is an intermediate cover of Y/X corresponding to the normal

subgroup H of G, then X̃/X is a voltage graph with single voltage assignment.

Proof. This follows immediately from Theorem 9.

Theorem 10. Let (X,G, α) be a voltage graph with X connected, α : E(X)+ → G

the single voltage assignment, G ∼= 〈τ〉 the cyclic group of order d. If X̃ is an in-

termediate cover of Y/X corresponding to the normal subgroup H of G, then there

exists a choice of coset representatives of H in G such that Y/X̃ is a voltage graph
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with single voltage assignment.

Proof. Let H = 〈τ e〉 where 1 < e < d, e|d and d
e

= f. Fix a choice of coset represen-

tatives of H E G to be

1, τ, · · · , τ e−1.

Label the elements of H as

1, τ e, τ 2e, · · · , τ (f−1)e

So G = {τ iτ je = τ i+je | i = 0, 1 · · · , e− 1 and j = 0, 1, · · · , f − 1}.

Now suppose X has vertices v1, · · · , vn. We then describe the vertices of Y (in the

ordinary way) as

vk,τ i+je k = 1, · · · , n i = 0, · · · , e− 1 and j = 0, 1, · · · , f − 1.

Let X̃ be an intermediate cover of Y/X that corresponds to H. Then the vertices of

X̃ can be described as

vk,τ i k = 1, · · · , n and i = 0, 1 · · · , e− 1.

We next define a voltage assignment α̃ : E(X̃)+ → H in order to construct a derived

graph Ỹ , that we show is isomorphic to Y .

Fixing the vertex vk,τ i ∈ V (X̃), we have that the vertices in the fiber over this vertex
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in Ỹ are of the form

v(k,τ i),τ je k = 1, · · · , n i = 0, · · · , e− 1 and j = 0, 1, · · · , f − 1.

Now suppose that in X, we have the directed edge

v1 v2
τ

(with all other edges labeled with the identity element in G).

Therefore in X̃, we have the directed edge

v1,τ i v2,τ i+1

for i = 0, 1, · · · , e− 2, and the directed edge

v1,τe−1 v2,1.

Now we assign voltages from H to these edges in such a way that Y ∼= Ỹ . First assign

the identity voltage to the first e− 1 directed edges as listed above; then assign τ e to

the last directed edge in X̃

v1,τe−1 v2,1.τ e
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So for the first e− 1 edges in X̃, we get the edges in the derived graph Ỹ ,

v(1,τ i),τ je v(2,τ i+1),τ je .

Then for the “last” directed edge in X̃, we get the following in Ỹ for j = 0, 1, · · · , f−2

v(1,τe−1),τ je v(2,1),τ (j+1)e

and for the “last” edge in Ỹ , we get

v(1,τe−1),τ (f−1)e v(2,1),1.

Now for all other edges in X we have

vk vl.1

So in X̃ we have
vk, τ i vl, τ i.

Assigning these edges in X̃ with the voltage 1 ∈ G/H, we get the following edges in

the derived graph Ỹ

v(k,τ i),τ je v(l,τ i),τ je .

Using the correspondence

vk,τ i+je ∈ V (Y ) ←→ v(k,τ i),τ je ∈ V (Ỹ ),
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we see that Y ∼= Ỹ , as desired.

2.5 The Voltage Laplacian and Reduced

Stickelberger Element

We next clarify the relationship between the Z-module of all divisors on Y (where

G, hence also Y may be infinite) and its structure as a Z[G]-module. In each of the

subsections below we describe the “Z structure” as item (1) and the “Z[G] structure”

of the same object(s) as item (2). From this, we define the reduced Stickelberger

element, and describe how it relates to the Stickelberger element defined in [HMSV19].

The group of divisors of Y :

1. By definition, the divisor group of Y , denoted as Div(Y ), is the free Z-module

on the vertices of Y . Since the vertices are {vi,σ | 1 ≤ i ≤ n, σ ∈ G}, these form

a Z-basis of Z-rank n|G|.

2. Now let g ∈ G, vi ∈ V (X) and let σ ∈ G be a sheet index. Then

g : vi,σ 7→ vi,gσ

defines a left group action on the set of vertices in each fiber of π. These disjoint

orbits are π−1(vi) = {vi,τ | τ ∈ G} for 1 ≤ i ≤ n. Since G acts as the left regular

representation on each fiber, the Z-span of each one is a free Z[G]-module of

rank 1; and Div(Y ) is then a direct sum of these: a free Z[G]-module of rank n,
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i.e.

Div(Y ) = Z[G]v1,τ0 ⊕ Z[G]v2,τ0 ⊕ · · · ⊕ Z[G]vn,τ0 (2.2)

where we, for simplicity, choose the identity representative from each orbit.

The group of principal divisors of Y :

1. To consider principal divisors in Y we need to find what vertices are adjacent to

a given vi,τ in Y . As in Section 2.3, vi,τ is adjacent to vj,δ in Y if and only if vi

is adjacent to vj in X and one of the following holds: vi
αi,j−−→ vj with ταi,j = δ,

or vj
αj,i−−→ vi with δαj,i = τ. Since α−1

j,i = αi,j in G, in both cases δ = ταi,j.

This says (independent of the orientation on edges):

• the unoriented degree of each vertex vi,τ in Y is the same as the unoriented

degree of vi in X (call it ni), and

• the principal divisor “based at vi,τ” is, by definition,

pi,τ = nivi,τ −
n∑
j=1
vi∼vj

vj,ταi,j .

Then, by definition, the Z-module of principal divisors, denoted by Pr(Y )

is

Pr(Y ) = SpanZ{pi,τ | 1 ≤ i ≤ n, τ ∈ G}.

Note that these principal generators are not necessarily a Z-basis of Pr(Y ).

2. Any graph automorphism permutes principal divisors, so Pr(Y ) is a Z[G]-

module (not generally a free module). The left action of G partitions the above
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set of principal divisors into orbits Oi = {pi,τ | τ ∈ G}, for i = 1, 2, . . . , n, and

again G acts as the regular permutation representation on each Oi (it acts by

left multiplication on the subscript τ for τ ∈ G). Thus if we pick a representa-

tive of each orbit, say for convenience pi,τ0 , where τ0 is the identity of G, then

we get that

Pr(Y ) = SpanZ[G]{pi,τ0 | 1 ≤ i ≤ n}.

The Picard group of Y :

The Picard group is Pic(Y ) = Div(Y )/Pr(Y ). All these terms are both Z and Z[G]-

modules, as described above.

The Laplacian of Y :

1. By definition, if AY is the (ordinary) adjacency matrix for Y and DY is the

degree matrix, then the Laplacian is LY = DY − AY , which, when |G| = d is

finite, is an nd× nd matrix with entries from Z. By definition, LY can also be

written as a Z-module endomorphism of DivZ(Y ) (even when |G| =∞):

LY (vi,τ ) = pi,τ , for all 1 ≤ i ≤ n and τ ∈ G

and this is extended by Z-linearity to all of Div(Y ). In particular, the Z-

module image of Div(Y ) under the Z-module homomorphism LY is Pr(Y ), and

its cokernel is Pic(Y ) = Div(Y )/Pr(Y ).

2. Consider the Z[G]-module homomorphism which is defined on the above Z[G]-
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basis in (2.2) of Div(Y ) by

Lα : Div(Y ) −→ Div(Y ) by Lα(vi,τ0) = pi,τ0 , 1 ≤ i ≤ n.

This map is now extended by Z[G]-linearity to all of Div(Y ), namely for all

τ ∈ G by

Lα(τ · vi,τ0) = τ · Lα(vi,τ0) = τ · pi,τ0 = pi,τ ·τ0 = pi,τ

and likewise for sums and differences of these.

Definition 24. The Z[G]-module homomorphism Lα is called the voltage Lapla-

cian of Y .

Thus by the action of G we have

Lα(vi,τ ) = pi,τ for all τ ∈ G.

Since G acts transitively on the ith G-orbit of both the vertices and the principal

divisors in Div(Y ) we see that

the image of the Z[G]-module homomorphism Lα is the Z[G]-submodule Pr(Y ).

Finally, we compute the n×n matrix of Lα with respect to the above Z[G]-basis

of Div(Y ). In the jth column of a matrix and ith row we put the coefficient of vi,τ0

in the expansion of Lα(vj,τ0). By the above, this i, j-entry equals ni if i = j and

−αj,i if i 6= j (and zero if vi is not adjacent to vj in X). Now this results in the

i, j-entry of the transpose of DX − Aα. However, since the voltage “multiplies”
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on the right on divisors, we should be computing a matrix M representing Lα

where ~aM = ~b (i.e., a row vector ×M = a row vector). SuchM is the transpose

of the matrix we just computed (i.e., the matrix we computed acts on the left

on column vectors).

This discussion shows that the voltage Laplacian endomorphism of Div(Y ) is

exactly the same as the ordinary Laplacian when we consider Div(Y ) as a Z-

module rather than a Z[G]-module. But note that the voltage Laplacian is

always represented by an n×n matrix (with entries from Z[G]), even when G is

an infinite group; whereas the ordinary Laplacian of Y has a matrix represen-

tation (of degree n|G |) only when G is finite, as described explicitly in Section

2.2. We summarize this discussion by the following theorem.

Theorem 11. Let G be any group. The voltage Laplacian Lα : Div(Y ) −→ Div(Y )

is a Z[G]-module homomorphism whose image is Pr(Y ) and cokernel is Pic(Y ), and

its n × n matrix with respect to the Z[G]-basis v1,τ0 , . . . , vn,τ0 is equal to DX − Aα,

where τ0 is the identity of G, DX is the degree matrix for the base graph X and Aα

is the voltage adjacency matrix of X.

Definition 25. Assume G is abelian. We call ΘY/X = det(DX − Aα) the reduced

Stickelberger element.

Note that ΘY/X is an element of the integral group ring Z[G]. We need G to be com-

mutative only for the determinant to be well-defined (over a commutative ring).

In [HMSV19], their Stickelberger element is denoted by θ∗Y/X(1)e. By their Theo-

rem 4.5, since their map φ is seen to be the same as our map Lα, their Stickelberger
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element relates to ours by

θ∗Y/X(1)e = 2rX−1ΘY/X ,

so our version of the Stickelberger element eliminates a 2-power factor (with nonneg-

ative exponent). This leads to a stronger annihilation statement than their Theorem

4.7 (and explains the terminology “reduced”). To be more precise, a careful reading

of the proof of their annihilation result (Theorem 4.7), which relies only on exactly the

same (adjoint matrix) result that we use, reveals that they too actually achieve the

same as the following corollary; however it is stated in that paper with the power of

2 still in place. Again, we use the expression “reduced Stickelberger element” merely

to distinguish it from the version in [HMSV19].

Corollary 9. For G abelian, ΘY/X annihilates the Picard group Pic(Y ) of any derived

graph (viewed as a Z-module or a Z[G]-module), hence it also annihilates J (Y ).

Proof. This is immediate from Exercise 3 in Section 11.4 of [DF04] applied to Lα,

viewing Pic(Y ) as a module over the commutative ring Z[G].

In Section 3.2.2, we will see examples where the Jacobian is annihilated by a larger

ideal in Z[G] than the one generated by the reduced Stickelberger element.

2.5.1 Example: Kn with an edge removed

Using SAGE, we calculate the reduced Stickelberger element of the voltage graph

(X,Zd, α) where X = Kn − ei,j, (i.e., the complete graph Kn with an edge removed)

and α is the single voltage assignment (but we let the edge on which τ is placed vary).

We first let X = K4 − e2,4, as shown in Figure 2.11.
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v4 v3

v1 v2

Figure 2.11: Base graph K4 − e2,4

We have the following data:

Table 2.1 The reduced Stickelberger element corresponding to base graph K4 − e2,4

τ label ΘY/X deg(vi, vj), i < j
v1 → v2 −3(τ − 1)2τ−1 (3, 2)
v1 → v3 −4(τ − 1)2τ−1 (3, 3)
v1 → v4 −3(τ − 1)2τ−1 (3, 2)
v2 → v3 −3(τ − 1)2τ−1 (2, 3)
v3 → v4 −3(τ − 1)2τ−1 (3, 2)

Now we let X = K5 − e2,4. We have the following data:

Table 2.2 The reduced Stickelberger element corresponding to base graph K5 − e2,4

τ label ΘY/X deg(vi, vj), i < j
v1 → v2 −40(τ − 1)2τ−1 (4, 3)
v1 → v3 −45(τ − 1)2τ−1 (4, 4)
v1 → v4 −40(τ − 1)2τ−1 (4, 3)
v1 → v5 −45(τ − 1)2τ−1 (4, 4)
v2 → v3 −40(τ − 1)2τ−1 (3, 4)
v2 → v5 −40(τ − 1)2τ−1 (3, 4)
v3 → v4 −40(τ − 1)2τ−1 (4, 3)
v3 → v5 −45(τ − 1)2τ−1 (4, 4)
v4 → v5 −40(τ − 1)2τ−1 (3, 4)

Now let X = K6 − e2,4. We have the following data:
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Table 2.3 The reduced Stickelberger element corresponding to base graph K6 − e2,4

τ label ΘY/X deg(vi, vj), i < j
v1 → v2 −540(τ − 1)2τ−1 (5, 4)
v1 → v3 −576(τ − 1)2τ−1 (5, 5)
v1 → v4 −540(τ − 1)2τ−1 (5, 4)
v1 → v5 −576(τ − 1)2τ−1 (5, 5)
v1 → v6 −576(τ − 1)2τ−1 (4, 5)
v2 → v3 −540(τ − 1)2τ−1 (4, 5)
v2 → v5 −540(τ − 1)2τ−1 (4, 5)
v2 → v6 −540(τ − 1)2τ−1 (4, 5)
v3 → v4 −540(τ − 1)2τ−1 (5, 4)
v3 → v5 −576(τ − 1)2τ−1 (5, 5)
v3 → v6 −576(τ − 1)2τ−1 (5, 5)
v4 → v5 −540(τ − 1)2τ−1 (4, 5)
v4 → v6 −540(τ − 1)2τ−1 (4, 5)
v5 → v6 −576(τ − 1)2τ−1 (5, 5)

As noted in Section 2.2.3, we see that the reduced Stickelberger element, (and hence

Jacobian) depends on the edge in which τ is placed.
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Chapter 3

Covers of Complete Graphs and

Other Graphs

In this chapter, we examine voltage graphs where the base graph is given the con-

stant voltage assignment and the single voltage assignment. Furthermore, we consider

when the base graph is Kn, the complete graph on n vertices, Kn,n, the complete bi-

partite graph on 2n vertices, Kn,2, the complete bipartite graph on n + 2 vertices,

and the Petersen graph. The reason for focusing on such base graphs is because it

is known that the Jacobian of each of these base graphs has at most two distinct

invariant factors (IFs): the Jacobian of Kn is (Z/nZ)n−2 ( [Hop14] Theorem 1.0.6),

which has one distinct IF, the Jacobian of Kn,n and Kn,2 is (Z/nZ)2n−4⊕Z/n2Z and

Z/2Zn−2 ⊕ Z/2nZ, respectively ( [Mac11] Example 8), which each have two distinct

IFs, and the Jacobian of the Petersen Graph is Z/2Z ⊕ (Z/10Z)3 ( [KMM17] Table

1), which also has two distinct IFs. Thus, we anticipate that derived graphs based on

voltages assigned to such graphs with few invariant factors will likewise be simpler

than general graphs. In addition to this, given the connectivity and symmetry of
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these graphs, they are relatively easy to work with, both theoretically and computa-

tionally. Much of the work in this chapter is computational in nature, either by hand

or by computer calculations (and computations done by hand were also checked on

a computer). They lead to both results of independent interest and conjectures that

motivate work in Chapters 4 and 5. So in hindsight, the choice of these base graphs

work as good “test cases.”

We first consider the case when the base graph is Kn. In Sections 3.1 and 3.2, we

gather data on the Jacobian of cyclic voltage covers of Kn with both the constant

voltage assignment and the single voltage assignment. Then based on the data for

single voltage cyclic covers, a conjecture is formulated for the rank, invariant factors,

and order of the Jacobian. In Section 3.2.2, we determine what the reduced Stickel-

berger element is corresponding to this voltage graph. We then obtain a Z[G]-module

presentation of Pic(Y ). Furthermore, we show that Pic(Y ) is annihilated by a larger

ideal in Z[G] than the one generated by the reduced Stickelberger element. We then

prove the conjecture formulated in Section 3.2.1 via lengthy matrix manipulations.

In Section 3.3, we gather data on the Jacobian of cyclic voltage covers of Kn,n with

the single voltage assignment. Then a conjecture is again formulated for the rank,

invariant factors, and order of the Jacobian. We obtain partial results for this con-

jecture in Section 3.4. In particular, we obtain the primes p (and their powers) that

divide the order of the Jacobian of the derived graph Y , for p not dividing n.

Finally, in Sections 3.5 and 3.6, we gather data on the Jacobian of cyclic voltage
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covers of Kn,2 and the Petersen graph both with the single voltage assignment. Con-

jectures are again formulated for the rank, invariant factors, and order of the Jacobian.

Lastly, we compute the reduced Stickelberger element for each of the derived graphs

corresponding to these voltage graphs.

We briefly describe the general approach that is used to compute the Jacobian of a

derived graph in this chapter. Recall, the Laplacian matrix is the relations matrix for

the cokernel of the Laplacian map, viewed as a quotient of Div(Y ). Viewing Div(Y )

as a Z[G]-module, elementary row and column operations on the voltage Laplacian

changes the bases of Div(Y ) in the domain and range as a Z[G]-module (hence, a for-

tiori, they are also changes-of-bases as a Z-module) — such computations are often

easier to carry out because the voltage Laplacian is smaller in size, and independent

of the size of G. Also, in the midst of manipulations of the voltage Laplacian, after

reducing it to nearly diagonal (or nearly upper-triangular) form, it is often possible to

compute the reduced Stickelberger element by hand. We sometimes divert to do so.

(That determinant can be computed by row and column operations over the larger

ring Q[G], unlike the need to work over Z[G] to obtain the invariant factors) Finally,

once the voltage Laplacian has been sufficiently reduced, one may “tensor” its entries

with the regular representation of G to obtain the ordinary Laplacian for the derived

graph Y (as in Section 2.2.1). That matrix is then further reduced by row and column

operations over Z to obtain the Smith Normal Form, which gives the invariant factors

of J (Y ).
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3.1 The Constant Voltage Assignment

on Kn

Let X = Kn in Definition 18. Observe that the triangle v1
τ−→ v2

τ−→ v3
τ−1
−−→ v1 has net

voltage τ. By Corollary 4, this immediately gives:

Proposition 9. If (Kn, Zd, α) is a voltage graph, where α : E(X)+ → Zd is the

constant voltage assignment, then the derived graph Y is connected.

We now go on to gather data on the Jacobian and reduced Stickelberger element of

the derived graph Y corresponding to such voltage graphs.

Using Sage, we compute the following table, which gives the rank, invariant factors,

and order of the Jacobian of the derived graph corresponding to the voltage graph

(K4, Zd, α), where α is the constant voltage assignment and d = 1, · · · , 20. In this

case, there are at most three distinct invariant factors (IFs), ignoring multiplicities,

for every derived graph.
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Table 3.1 Jacobian of K4 with Constant Voltage Cover by Zd (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 1 42 24

2 14 2 8 24 27 · 3
3 19 52 156 24 · 3 · 132

4 112 4 112 336 210 · 3 · 72

5 117 724 3620 24 · 5 · 1812

6 120 6 1560 4680 27 · 34 · 52 · 132

7 125 10084 70588 24 · 7 · 25212

8 128 8 21728 65184 213 · 3 · 72 · 972

9 133 140452 1264068 24 · 32 · 132 · 372 · 732

10 136 2 302632 4539480 27 · 3 · 5 · 112 · 192 · 1812

11 141 1956244 21518684 24 · 11 · 4890612

12 144 12 4215120 12645360 210 · 34 · 52 · 72 · 132 · 1932

13 149 27246964 354210532 24 · 13 · 68117412

14 152 2 58709048 1232890008 27 · 3 · 7 · 412 · 712 · 25212

15 157 379501252 5692518780 24 ·3·5·132 ·612 ·1812 ·6612

16 160 16 817711552 2453134656 216 · 3 · 72 · 312 · 972 · 6072

17 165 5285770564 89858099588 24 · 17 · 13214426412

18 168 18 11389252680 34167758040 27 · 37 · 52 · 132 · 172 · 372 ·
532 · 732

19 173 73621286644 1398804446236 24 · 19 · 184053216612

20 176 4 158631825968 2379477389520 210 · 3 · 5 · 72 · 112 · 192 ·
1812 · 374412

Based on this data, no conjectures have yet been formulated for the rank, invariant

factors, and order of the Jacobian.

Now using Mathematica we compute the reduced Stickelberger element for constant

voltage cyclic covers of Kn for 3 ≤ n ≤ 7.
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Table 3.2 Reduced Stickelberger element of cyclic covers of Kn with constant voltage
assignment
n ΘY/X

3 −(τ − 1)2τ−1

4 −(τ − 1)2 (τ2 + 14τ + 1
)
τ−2

5 −(τ − 1)2 (τ4 + 22τ3 + 204τ2 + 22τ + 1
)
τ−3

6 −(τ − 1)2 (τ6 + 32τ5 + 439τ4 + 3376τ3 + 439τ2 + 32τ + 1
)
τ−4

7 −(τ−1)2 (τ8 + 44τ7 + 844τ6 + 9246τ5 + 63765τ4 + 9246τ3 + 844τ2 + 44τ + 1
)
τ−5

From the above data, it appears that constant voltage covers give complicated derived

graphs. Hence, we will now focus our attention on single voltage cyclic covers for the

remainder of Chapter 3. Note that the reduced Stickelberger element will play an

important role in Chapters 4 and 5.

We now go on to gather data on the Jacobian of cyclic voltage covers of Kn with

the single voltage assignment.

3.2 Single Voltage Assignment on Kn

Now let X = Kn in Definition 19.

By symmetry, the Jacobians will not depend on which (directed) edge has the non-

identity voltage assignment. Putting the single non-identity voltage τ on edge v1 → v2

is, again, for convenience. (Recall for general base graphs, the choice of the single

voltage edge does depend on the edge chosen, as shown in Section 2.5.1.)

Observe that triangle v1
τ−→ v2

1−→ v3
1−→ v1 has net voltage τ. By Corollary 4, this

immediately gives:
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Proposition 10. If (Kn, Zd, α) is a voltage graph, where α : E(X)+ → Zd is the

single voltage assignment, then the derived graph Y is connected.

We now go on to gather data on the Jacobian of the derived graph Y corresponding

to such voltage graphs.

3.2.1 Conjecture on the Jacobian of Single Volt-

age Cyclic Covers of Kn

Using Sage, we compute the following tables, which yields the rank, invariant factors,

and order of the Jacobian of the derived graph corresponding to (Kn, Zd, α), where

α is the single voltage assignment and n = 4, 5, 6, respectively. Using this data, we

make the following observations. We then go on to formulate Conjecture 1.
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Table 3.3 Jacobian of K4 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 1 42 24

2 14 42 16 28

3 17 42 8 24 210 · 3
4 110 42 82 32 215

5 113 42 83 40 216 · 5
6 116 42 84 48 220 · 3
7 119 42 85 56 222 · 7
8 122 42 86 64 228

9 125 42 87 72 228 · 32

10 128 42 88 80 232 · 5
11 131 42 89 88 234 · 11
12 134 42 810 96 239 · 3
13 137 42 811 104 240 · 13
14 140 42 812 112 244 · 7
15 143 42 813 120 246 · 3 · 5
16 146 42 814 128 253

17 149 42 815 136 252 · 17
18 152 42 816 144 256 · 32

19 155 42 817 152 258 · 19
20 158 42 818 160 263 · 5

For d ≤ 20, we observe the following from Table 3.3:

(i) For d ≥ 1, the rank is d+ 1.

(ii) For d > 2, there are 3 distinct invariant factors: the first invariant factor is 4

with multiplicity 2, the second invariant factor is 8 with multiplicity d− 2 and

the third invariant factor is d · 8 with multiplicity 1.

(iii) |J (Y )| = 4d+1 · 2d−1 · d.
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Table 3.4 Jacobian of K5 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 1 53 53

2 14 54 30 2 · 3 · 55

3 17 55 15 45 33 · 57

4 110 56 152 60 22 · 33 · 59

5 113 57 153 75 34 · 512

6 116 58 154 90 2 · 36 · 513

7 119 59 155 105 36 · 515 · 7
8 122 510 156 120 23 · 37 · 517

9 125 511 157 135 310 · 519

10 128 512 158 150 2 · 39 · 522

For d ≤ 10 we observe the following from Table 3.4:

(i) For d ≥ 1, the rank is 2d+ 1.

(ii) For d > 2, there are 3 distinct invariant factors: the first invariant factor is 5

with multiplicity d+ 2, the second invariant factor is 15 with multiplicity d− 2

and the third invariant factor is d · 15 with multiplicity 1.

(iii) |J (Y )| = 52d+1 · 3d−1 · d.
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Table 3.5 Jacobian of K6 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 1 64 64

2 14 66 48 210 · 37

3 17 68 24 72 214 · 311

4 110 610 242 96 221 · 313

5 113 612 243 120 224 · 316 · 5
6 116 614 244 144 230 · 320

7 119 616 245 168 234 · 322 · 7
8 122 618 246 192 242 · 325

9 125 620 247 216 244 · 330

10 128 622 248 240 250 · 331 · 5

For d ≤ 10 we observe the following from Table 3.5:

(i) For d ≥ 1, the rank is 3d+ 1.

(ii) For d > 2, there are 3 distinct invariant factors: the first invariant factor is 6

with multiplicity 2d+2, the second invariant factor is 24 with multiplicity d−2

and the third invariant factor is d · 24 with multiplicity 1.

(iii) |J (X)| = 63d+1 · 4d−1 · d.

Using the above observations, we formulate the following conjecture:

Conjecture 1. For Kn the complete graph on n vertices with single voltage cover by

Zd, we have the following:

1. For d ≥ 1, the rank is (n− 3)d+ 1.

2. For d > 2, there are 3 distinct invariant factors: the first invariant factor is

n with multiplicity (n − 4)d + 2, the second invariant factor is n(n − 2) with
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multiplicity d− 2 and the third invariant factor is d · n(n− 2) with multiplicity

1.

3. |J (Y )| = n(n−3)d+1 · (n− 2)d−1 · d.

We prove this conjecture in the next section.

3.2.2 The Jacobian of Single Voltage Cyclic Cov-

ers of Kn

In this section, we prove Conjecture 1, which gives the rank, invariant factors, and

order of the Jacobian of single voltage cyclic covers of Kn. We first determine what

the reduced Stickelberger element is of the derived graph Y that corresponds to this

voltage graph. We then obtain a Z[G]-module presentation of Pic(Y ). Moreover, we

show that Pic(Y ) is annihilated by a larger ideal in Z[G] than the one generated by

the reduced Stickelberger element.

We begin with two examples: letting X = K3 and X = K4. We then prove it in

all generality.

Example 5. Let (X,G, α) be the voltage graph with X equal to K3, G = Zd =

{1, τ, · · · , τ d−1} and α : E(X)+ → G such that the directed edge from v1 to v2 is

labeled with τ (hence the directed edge from v2 to v1 must be labeled with τ−1).

Label all other edges with the identity, as shown below in 3.1.
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v3 v2

v1

τ

1

1

Figure 3.1: Voltage graph (K3, Zd, α) where α is the single voltage assignment

Then the reduced Stickelberger element of Y/X is

ΘY/X = det


2 −τ −1

−τ−1 2 −1

−1 −1 2


= −τ−1(τ − 1)2

We now prove this in general, with X = Kn.

Theorem 12. Let (Kn, Zd, α) be as in Definition 19. Then the reduced Stickelberger

element is

ΘY/X = −(n− 2)nn−3(τ − 1)2τ−1.

Proof. For X = Kn with single voltage assignment by Zd, we have the voltage Lapla-

cian matrix with n − 1 down the diagonal, −τ in entry (1, 2), −τ−1 in entry (2, 1)
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and −1 elsewhere:

Lα =



n− 1 −τ −1 −1 · · · −1

−τ−1 n− 1 −1 −1 · · · −1

−1 −1 n− 1 −1 · · · −1
... ... ... ... · · · ...

−1 −1 −1 −1 · · · n− 1



We will now use row and column operations in Q[τ ] to put the matrix in essentially

upper triangular form. We denote row i and column j of the voltage Laplacian by Ci

and Rj, respectively.

First replace C1 by C1 + C3 + · · ·+ Cn to get



1 −τ −1 −1 · · · −1

−τ−1 − n+ 2 n− 1 −1 −1 · · · −1

1 −1 n− 1 −1 · · · −1
... ... ... ... · · · ...

1 −1 −1 −1 · · · n− 1


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Now replace C2, · · · , Cn with C1 + C2, C1 + C3, · · · , C1 + Cn, respectively.



1 −τ + 1 0 0 · · · 0

−τ−1 − n+ 2 −τ−1 + 1 −τ−1 − n+ 1 −τ−1 − n+ 1 · · · −τ−1 − n+ 1

1 0 n 0 · · · 0
... ... ... ... · · · ...

1 0 0 0 · · · n


(†)

Now replace C1 with C1 − 1
n
(C3 + C4 + · · ·+ Cn) and simplify to obtain



1 −τ + 1 0 0 · · · 0
−2τ−1−n+2

n
−τ−1 + 1 −τ−1 − n+ 1 −τ−1 − n+ 1 · · · −τ−1 − n+ 1

0 0 n 0 · · · 0
... ... ... ... · · · ...

0 0 0 0 · · · n



Let L′ be the preceding matrix. Now use cofactor expansion along the first row of L′

to get

ΘY/X = detLα = detL′ = 1 · detL′1,1 − (1− τ) detL′1,2

where L′i,j is the i, j minor of L′. To compute each of the minor determinants, use

cofactor expansion along its first column (which has only one nonzero entry), to get:

detL′ = 1(1− τ−1)nn−2 − (1− τ)(−2τ−1 − n+ 2)
n

nn−2.

By elementary algebra this simplifies to the stated conclusion.
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Corollary 10. Under the hypothesis of the Theorem 12, (n− 2)nn−3(τ − 1)2 annihi-

lates the Picard group of Y , Pic(Y ) = Div(Y )/Pr(Y ), hence annihilates its subgroup

J (Y ) = Div0(Y )/Pr(Y ).

Proof. By Corollary 9 the reduced Stickelberger element ΘY/X annihilates the quo-

tient as a Z[G]-module. Since −τ−1 is a unit in the ring, the product of the remaining

terms effects the annihilation.

We will now do further operations on (†) from above to get a Z[G]-module presenta-

tion of Pic(Y ). We show that Pic(Y ) is annihilated by a larger ideal in Z[G] than the

one generated by the reduced Stickelberger element.

All of our row and column operations will now be in Z[τ ] (note that to compute

the reduced Stickelberger element above, all of the row and column operations were

in Z[τ ] until the final step). We begin with the matrix (†):



1 −τ + 1 0 0 · · · 0

−τ−1 − n+ 2 −τ−1 + 1 −τ−1 − n+ 1 −τ−1 − n+ 1 · · · −τ−1 − n+ 1

1 0 n 0 · · · 0
... ... ... ... · · · ...

1 0 0 0 · · · n


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Replace R2 with (R3 + · · ·+Rn) +R2 to get the matrix



1 −τ + 1 0 0 · · · 0

−τ−1 −τ−1 + 1 −τ−1 + 1 −τ−1 + 1 · · · −τ−1 + 1

1 0 n 0 · · · 0
... ... ... ... · · · ...

1 0 0 0 · · · n



Next multiply R2 by −τ and simplify to get



1 −τ + 1 0 0 · · · 0

1 −τ + 1 −τ + 1 −τ + 1 · · · −τ + 1

1 0 n 0 · · · 0
... ... ... ... · · · ...

1 0 0 0 · · · n



Now replace R2 with R2 −R1 to get



1 −τ + 1 0 0 · · · 0

0 0 −τ + 1 −τ + 1 · · · −τ + 1

1 0 n 0 · · · 0
... ... ... ... · · · ...

1 0 0 0 · · · n



Denote this matrix by M . Then we have

Zn/Lα(Zn) = Zn/M(Zn).
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For G = Zd, let e1, e2, ...., en be the standard Z[G]-basis vectors. So ei has a 1 in

row i and zeros elsewhere. Then the relations that define the cokernel of M as a

Z[G]-module are

(i) e1 + e3 + e4 + ....+ en = 0,

(ii) (1− τ)e1 = 0, and

(iii) (1− τ)e2 + nei = 0, for 3 ≤ i ≤ n.

Now (i) can be rewritten as

e1 = −(e3 + e4 + ...+ en)

and so e1 is in the module spanned by e3, ...., en, and therefore, the cokernel of M is

generated by just e2, e3, ...., en. So the cokernel ofM is the free Z[G]-module generated

by e2, e3, ...., en subject to the relations (via reduction of the above relations):

(i) (1− τ)(e3 + e4 + ....+ en) = 0, and

(ii) (1− τ)e2 + nei = 0, for 3 ≤ i ≤ n

Indeed these give a Z[G]-module presentation of Pic(Y ).

Adding (ii) together for all i, we get

(n− 2)(1− τ)e2 = −n(e3 + ...+ en).
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Multiplying both sides by (1− τ) and using relation (i), we get

(n− 2)(1− τ)2e2 = n(1− τ)(e3 + ...+ en) = 0,

hence (n− 2)(1− τ)2 annihilates e2. For i ≥ 3 we have

nei = −(1− τ)e2.

Multiplying both sides by (n− 2)(1− τ), we get

n(n− 2)(1− τ)ei = −(n− 2)(1− τ)2e2 = 0.

So n(n− 2)(1− τ) annihilates ei for i = 3, · · · , n. This yields the following:

Theorem 13. Under the hypothesis of the Theorem 12, n(n− 2)(τ − 1)2 annihilates

Pic(Y ) = Div(Y )/Pr(Y ). More specifically, (n− 2)(1− τ)2 annihilates e2 and n(n−

2)(1− τ) annihilates ei for i = 3, · · · , d where e2, · · · , en generate the cokernel of Lα.

Using these relations for Pic(Y ), our goal is now to compute the Jacobian of Y .

We will now assume n ≥ 4. We will rewrite our matrix relations by changing each ei

96



to ei−1. This yields the following (n− 1)× (n− 1) relations matrix



0 1− τ 1− τ · · · 1− τ

1− τ n 0 · · · 0

1− τ 0 n · · · 0
... ... ... . . . ...

1− τ 0 0 · · · n



We will put this matrix in block-diagonal form as follows. First replace R3, · · · , Rn−1

by R3 −R2, · · · , Rn−1 −R2, respectively, to get



0 1− τ 1− τ · · · 1− τ

1− τ n 0 · · · 0

0 −n n · · · 0
... ... ... . . . ...

0 −n 0 · · · n



Now replace C2 with C2 + C3 + · · ·+ Cn−1 to get



0 (n− 2)(1− τ) 1− τ · · · 1− τ

1− τ n 0 · · · 0

0 0 n · · · 0
... ... ... . . . ...

0 0 0 · · · n


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Now replace C4, · · · , Cn−1 with C4 − C3, · · · , Cn−1 − C3, respectively, to get



0 (n− 2)(1− τ) 1− τ 0 · · · 0

1− τ n 0 0 · · · 0

0 0 n −n · · · −n
... ... ... ... · · · ...

0 0 0 0 · · · n



Lastly, replace R3 with R3 + · · ·+Rn−1 to get



0 (n− 2)(1− τ) 1− τ 0 · · · 0

1− τ n 0 0 · · · 0

0 0 n 0 · · · 0
... ... ... ... · · · ...

0 0 0 0 · · · n


(∗)

From this, we get a 3× 3 block matrix in the upper left and a (n− 4)× (n− 4) scalar

matrix with n on the diagonal on the lower right. Since the lower block is diagonal over

Z[G], it remains to further reduce the upper submatrix. Do the following operations

on the 3× 3 matrix. Replace C2 with −(n− 2)C3 + C2 to get


0 0 1− τ

1− τ n 0

0 n(2− n) n


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Now interchange the columns to get


1− τ 0 0

0 1− τ n

n 0 n(2− n)



This appears to be the simplest Z[G]-module relations matrix for Pic(Y ).

Note that doing elementary row and column operations on the voltage Laplacian

is the same as changing generators in the domain and range of the Z[G]-module

coker(Lα). In particular, these also just change generators of its Z-module structure.

So in order to compute the Smith Normal Form of the Laplacian of Y , we may begin

with the already reduced voltage Laplacian above. Thus, we will now tensor this

matrix with ρ (as in Section 2.2.1) to get d× d block matrices in each entry, i.e.


ρ(1− τ) 0d 0d

0d ρ(1− τ) nId

nId 0d n(2− n)Id



where Id denotes the d × d identity matrix and 0d denotes the d × d zero matrix.

The resulting integer matrix is equivalent to the “upper left 3 × 3” portion of the
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Z-module Laplacian matrix. This yields the following 3d× 3d matrix.



1 0 · · · 0 −1 0 0 · · · 0 0 0 0 · · · 0

−1 1 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0
... ... · · · ... ... ... ... . . . ... ... ... ... . . . ...

0 0 · · · −1 1 0 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 1 0 · · · 0 −1 n 0 · · · 0

0 0 · · · 0 0 −1 1 · · · 0 0 0 n · · · 0
... ... . . . ... ... ... ... · · · ... ... ... ... . . . ...

0 0 · · · 0 0 0 0 · · · −1 1 0 0 · · · n

n 0 · · · 0 0 0 0 · · · 0 0 n(2− n) 0 · · · 0

0 n · · · 0 0 0 0 · · · 0 0 0 n(2− n) · · · 0
... ... · · · ... ... ... ... . . . ... ... ... · · · . . . ...

0 0 · · · 0 n 0 0 · · · 0 0 0 0 · · · n(2− n)



(1)

We first do row and column operations that put the 1 − τ block in Smith Normal

Form, where ρ(1− τ) is the matrix



1 0 0 · · · 0 −1

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
... ... ... · · · ... ...

0 0 0 · · · −1 1


(∗∗)

in the upper left corner and middle. Do so by first replacing R1 and Rd+1 with

R1 +R2 + · · ·+Rd and Rd+1 +Rd+2 + · · ·+R2d, respectively to get the first row to be
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all zeros. Then replace C1 and Cd+1 with C1+C2+· · ·+Cd and Cd+1+Cd+2+· · ·+C2d,

respectively to get the d+ 1-st column to be all zeros.

Then to zero out all of the −1′s on the subdiagonal, replace R3, · · · , Rd with R2 +

R3, · · · , Rd−1 +Rd, respectively. Similarly, replace Rd+3, · · · , R2d with

Rd+2 +Rd+3, · · · , R2d−1 +R2d, respectively. This yields the following matrix,



0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0
... ... · · · ... ... ... ... . . . ... ... ... ... ... . . . ...

0 0 · · · 0 1 0 0 · · · 0 0 0 0 0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 n n n · · · n

0 0 · · · 0 0 0 1 · · · 0 0 0 n 0 · · · 0
... ... . . . ... ... ... ... · · · ... ... ... ... ... · · · ...

0 0 · · · 0 0 0 0 · · · 0 1 0 n n · · · n

n 0 · · · 0 0 0 0 · · · 0 0 n(2− n) 0 0 · · · 0

n n · · · 0 0 0 0 · · · 0 0 0 n(2− n) 0 · · · 0
... ... · · · ... ... ... ... . . . ... ... ... ... ... · · · ...

n 0 · · · 0 n 0 0 · · · 0 0 0 0 0 · · · n(2− n)



(2)

a (d−1)×(d−1) identity block in the upper left corner and in the middle. We also get

a (d−1)×(d−1) lower triangular block in the middle right with all entries equal to n.
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Now interchange C1 with Cd+1 to get,



0 0 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0
... ... · · · ... ... ... ... . . . ... ... ... ... ... . . . ...

0 0 · · · 0 1 0 0 · · · 0 0 0 0 0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 n n n · · · n

0 0 · · · 0 0 0 1 · · · 0 0 0 n 0 · · · 0
... ... . . . ... ... ... ... · · · ... ... ... ... ... · · · ...

0 0 · · · 0 0 0 0 · · · 0 1 0 n n · · · n

0 0 · · · 0 0 n 0 · · · 0 0 n(2− n) 0 0 · · · 0

0 n · · · 0 0 n 0 · · · 0 0 0 n(2− n) 0 · · · 0
... ... · · · ... ... ... ... . . . ... ... ... ... ... · · · ...

0 0 · · · 0 n n 0 · · · 0 0 0 0 0 · · · n(2− n)



(3)

We will now remove the first row and column of this matrix, leaving us with a

(3d − 1) × (3d − 1) matrix. By doing this, we are simply eliminating the invari-

ant factor that is equal to zero.

Now we will zero out the nId−1 matrix in the lower left corner by doing the fol-

lowing:
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replace R2d+i with −nRi +R2d+i for all i = 2, · · · , d to get



1 · · · 0 0 0 0 · · · 0 0 0 0 0 · · · 0
... · · · ... ... ... ... . . . ... ... ... ... ... . . . ...

0 · · · 0 1 0 0 · · · 0 0 0 0 0 · · · 0

0 · · · 0 0 0 0 · · · 0 0 n n n · · · n

0 · · · 0 0 0 1 · · · 0 0 0 n 0 · · · 0
... . . . ... ... ... ... · · · ... ... ... ... ... · · · ...

0 · · · 0 0 0 0 · · · 0 1 0 n n · · · n

0 · · · 0 0 n 0 · · · 0 0 n(2− n) 0 0 · · · 0

0 · · · 0 0 n 0 · · · 0 0 0 n(2− n) 0 · · · 0
... . . . ... ... ... ... . . . ... ... ... ... ... · · · ...

0 · · · 0 0 n 0 · · · 0 0 0 0 0 · · · n(2− n)



(4)

This gives a matrix a (d− 1)× (d− 1) and 2d× 2d block.

From here on out, we will compute the Smith Normal Form of the 2d × 2d block.

Since the (d− 1)× (d− 1) block is an identity matrix, the invariant factors of the full
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matrix are the same as those of the lower right hand block.



0 0 0 · · · 0 n n n · · · n

0 1 0 · · · 0 0 n 0 · · · 0

0 0 1 · · · 0 0 n n · · · 0
... ... ... . . . ... ... ... ... . . . ...

0 0 0 · · · 1 0 n n · · · n

n 0 0 · · · 0 n(2− n) 0 0 · · · 0

n 0 0 · · · 0 0 n(2− n) 0 · · · 0
... ... . . . ... ... ... ... ... · · · ...

n 0 0 · · · 0 0 0 0 · · · n(2− n)



(5)

To zero out the (d− 1)× (d− 1) lower triangular submatrix in rows 2 to d (with all

entries equal to n), replace Cd+j with −nCi + Cd+j for all i = 2, · · · , d and for all

j = 2, · · · , i. This yields the following matrix



0 0 0 · · · 0 n n n · · · n

0 1 0 · · · 0 0 0 0 · · · 0

0 0 1 · · · 0 0 0 0 · · · 0
... ... ... . . . ... ... ... ... . . . ...

0 0 0 · · · 1 0 0 0 · · · 0

n 0 0 · · · 0 n(2− n) 0 0 · · · 0

n 0 0 · · · 0 0 n(2− n) 0 · · · 0
... ... ... . . . ... ... ... ... · · · ...

n 0 0 · · · 0 0 0 0 · · · n(2− n)



(6)
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Now move R1 to be the last row and move C1 to be the last column, i.e.,



1 0 · · · 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 · · · 0 0
... ... . . . ... ... ... ... . . . ... ...

0 0 · · · 1 0 0 0 · · · 0 0

0 0 · · · 0 n(2− n) 0 0 · · · 0 n

0 0 · · · 0 0 n(2− n) 0 · · · 0 n

... ... . . . ... ... ... ... · · · ... ...

0 0 · · · 0 0 0 0 · · · n(2− n) n

0 0 · · · 0 n n n · · · n 0



(7)

From this we have a (d−1)×(d−1) identity block in the upper left and a (d+1)×(d+1)

block in the lower right (all other entries zero). From here, we will remove the

(d− 1)× (d− 1) identity block for the same reasoning as above to obtain



n(2− n) 0 0 · · · 0 n

0 n(2− n) 0 · · · 0 n

... ... ... · · · ... ...

0 0 0 · · · n(2− n) n

n n n · · · n 0


(8)

One way to reduce this to Smith Normal Form is as follows. Replace R1 with (n −
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2)Rd+1 +R1 to get



0 n(n− 2) n(n− 2) · · · n(n− 2) n

0 n(2− n) 0 · · · 0 n

... ... ... · · · ... ...

0 0 0 · · · n(2− n) n

n n n · · · n 0


(9)

Now replace R2, R3, · · · , Rd with R1 −R2, R1 −R3, · · · , R1 −Rd, respectively, to get



0 n(n− 2) n(n− 2) · · · n(n− 2) n

0 2n(n− 2) n(n− 2) · · · n(n− 2) 0
... ... ... · · · ... ...

0 n(n− 2) 0 · · · 2n(n− 2) 0

n n n · · · n 0


(10)

where the (d− 1)× (d− 1) sub-matrix in the middle has all diagonal entries equal to

2n(n− 2) and all other entries equal to n(n− 2).

Now replace R3 with R2 +R3. Then replace R4 with R3 +R4. Continue this process
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until we have replaced Rd with Rd−1 +Rd.



0 n(n− 2) n(n− 2) · · · n(n− 2) n

0 2n(n− 2) n(n− 2) · · · n(n− 2) 0

0 3n(n− 2) 3n(n− 2) · · · 2n(n− 2) 0
... ... ... · · · ... ...

0 nd(n− 2) nd(n− 2) · · · nd(n− 2) 0

n n n · · · n 0



(11)

where the (d−1)×(d−1) block in the middle has the following property: Ri has entry

i(n − 2) in the first (i − 1)-st columns and (i − 1)(n − 2) in the remaining columns,

for i = 2, · · · , d.

Now replace Ci for i = 3, · · · , d with C2 − Ci to get



0 n(n− 2) 0 · · · 0 n

0 2n(n− 2) n(n− 2) · · · n(n− 2) 0

0 3n(n− 2) 0 · · · n(n− 2) 0
... ... ... . . . ... ...

0 n(d− 1)(n− 2) 0 · · · n(n− 2) 0

0 nd(n− 2) 0 · · · 0 0

n n 0 · · · 0 0



(12)

This gives us a (d− 2)× (d− 2) upper triangular sub-matrix with all entries equal to

n(n− 2).
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Now use C3 to zero out the remaining n(n − 2) entries in row 2, columns Ci for

i = 4, · · · , d by replacing Ci with Ci − C3.



0 n(n− 2) 0 · · · 0 n

0 2n(n− 2) n(n− 2) · · · 0 0

0 3n(n− 2) 0 · · · n(n− 2) 0
... ... ... . . . ... ...

0 n(d− 1)(n− 2) 0 · · · n(n− 2) 0

0 nd(n− 2) 0 · · · 0 0

n n 0 · · · 0 0



(13)

Now use C4 to zero out the remaining n(n− 2) in row 3, columns Ci for i = 5, · · · , d

by replacing Ci with Ci − C4.



0 n(n− 2) 0 · · · 0 n

0 2n(n− 2) n(n− 2) · · · 0 0

0 3n(n− 2) 0 · · · 0 0
... ... ... . . . ... ...

0 n(d− 1)(n− 2) 0 · · · n(n− 2) 0

0 nd(n− 2) 0 · · · 0 0

n n 0 · · · 0 0



(14)

Continue this process until only n(n−2) is left on the diagonal of this (d−2)×(d−2)

block and all other entries are equal to zero.

We will now zero out all the entries from R2 to Rd−1 in C2. First replace C2 with
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−2C3 + C2. Then replace C2 with −3C4 + C2. Continue this process until we have



0 n(n− 2) 0 · · · 0 n

0 0 n(n− 2) · · · 0 0

0 0 0 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · n(n− 2) 0

0 nd(n− 2) 0 · · · 0 0

n n 0 · · · 0 0



(15)

Lastly, replace C2 with −C1 + C2 and replace C2 with −(n− 2)Cd+1 + C2.



0 0 0 · · · 0 n

0 0 n(n− 2) · · · 0 0

0 0 0 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · n(n− 2) 0

0 nd(n− 2) 0 · · · 0 0

n 0 0 · · · 0 0



(16)

Permute the columns to obtain a diagonal matrix with the following entries on the

diagonal: n with multiplicity 2, n(n− 2) with multiplicity d− 2 and nd(n− 2) with

multiplicity 1.

Finally, returning to the (n − 1) × (n − 1) reduced voltage Laplacian (∗), when we

tensor (again, as in Section 2.2.1) the (n− 4)× (n− 4) matrix in the lower right with
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ρ, 

0 (n− 2)(1− τ) 1− τ 0 · · · 0

1− τ n 0 0 · · · 0

0 0 n 0 · · · 0
... ... ... ... · · · ...

0 0 0 0 · · · n


we get the entry n on the diagonal with multiplicity (n − 4)d. Putting these two

matrices together yields the following result:

Theorem 14. Let Y be a single voltage cover of the complete graph Kn by the cyclic

group of order d, where n ≥ 4 and d ≥ 3. Then

J(Y ) ∼= (Z/nZ)(n−4)d+2 ⊕ (Z/n(n− 2)Z)d−2 ⊕ Z/dn(n− 2)Z,

where the exponents indicate the multiplicities of the (distinct) invariant factors. In

particular, the order of the Jacobian of Y is n(n−3)d+1 · (n − 2)d−1 · d and its rank is

(n− 3)d+ 1.

Corollary 11. For Y as above, the number of spanning trees of Y is n(n−3)d+1 · (n−

2)d−1 · d

Theorem 15. For Y as above, but with d = 2, we have that

J(Y ) ∼= (Z/nZ)2(n−4)+2 ⊕ (Z/2n(n− 2)Z)

where, again, the exponents indicate the multiplicities of the (distinct) invariant fac-
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tors. When n = 3 and d ≥ 1, we have that

J(Y ) ∼= Z/3dZ.

Proof. For d = 2, the same steps apply for matrices (1) through (10). For matrix

(10), we have 
0 n(n− 2) n

0 2n(n− 2) 0

n n 0


Now apply the same step as above to get matrix (16)


0 0 n

0 2n(n− 2) 0

n 0 0



From (∗), we get n on the diagonal with multiplicity 2(n − 4). Putting together (∗)

and (16) yields the desired result.

Now when n = 3, X is a triangle and Y is a cycle of length 3d. This case follows from

the familiar Jacobian of a cycle. Alternatively, this can be done independently by

corresponding (albeit easier) steps for the n > 3 reduction above, but starting with

the 2× 2 reduced voltage Laplacian

1− τ 0

3 1− τ


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Follow the same reductions that we did above to get (2) and (3). This yields the

following (2d− 1)× (2d− 1) matrix



1 0 · · · 0 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 0 · · · 0 0
... ... · · · ... ... ... ... ... . . . ... ...

0 0 · · · 0 1 0 0 0 · · · 0 0

3 3 · · · 3 3 3d 0 0 · · · 0 0

3 0 · · · 0 0 3 1 0 · · · 0 0

3 3 · · · 0 0 6 0 1 · · · 0 0
... ... . . . ... ... ... ... ... · · · ... ...

3 3 · · · 3 3 3(d− 1) 0 0 · · · 0 1



We now, as usual, use the (d−1)× (d−1) identity block in the upper left to zero out

all 3’s in columns 1 to d− 1. Then likewise use the (d− 1)× (d− 1) identity block in

the lower right to zero out the entries in column d, rows d+ 1 to 2d− 1. This yields

the following matrix, which is the asserted Smith Normal Form (after permuting rows
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and columns). 

1 0 · · · 0 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 0 · · · 0 0
... ... · · · ... ... ... ... ... . . . ... ...

0 0 · · · 0 1 0 0 0 · · · 0 0

0 0 · · · 0 0 3d 0 0 · · · 0 0

0 0 · · · 0 0 0 1 0 · · · 0 0

0 0 · · · 0 0 0 0 1 · · · 0 0
... ... . . . ... ... ... ... ... · · · ... ...

0 0 · · · 0 0 0 0 0 · · · 0 1



Example 6. These are the corresponding outputs for n = 4 and d = 7. Note that

each labeled matrix in this example is the special case of the correspondingly labeled
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matrix in the proof above, so we do not repeat how these are obtained.



0 2(1− τ) 1− τ 0 0 0

1− τ 4 0 0 0 0

0 0 4 0 0 0

0 0 0 0 4 0

0 0 0 0 0 4


(∗)



1 0 0 0 0 0 −1

−1 1 0 0 0 0 0

0 −1 1 0 0 0 0

0 0 −1 1 0 0 0

0 0 0 −1 1 0 0

0 0 0 0 −1 1 0

0 0 0 0 0 −1 1



(∗∗)

114





1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 −1 4 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 4

4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0

0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8



(1)
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

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 4 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 4 4 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 4 4 4 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 4 4 4 4 4

4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0

4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0

4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0

4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0

4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0

4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0

4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8



(2)
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

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 4 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 4 4 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 4 4 4 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 4 4 4 4 4

0 0 0 0 0 0 0 4 0 0 0 0 0 0 −8 0 0 0 0 0 0

0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 −8 0 0 0 0 0

0 0 4 0 0 0 0 4 0 0 0 0 0 0 0 0 −8 0 0 0 0

0 0 0 4 0 0 0 4 0 0 0 0 0 0 0 0 0 −8 0 0 0

0 0 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 −8 0 0

0 0 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 −8 0

0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 −8



(3)
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4

0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 4 4 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 4 4 4 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 4 4 4 4 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 4 4 4 4 4

0 0 0 0 0 0 4 0 0 0 0 0 0 −8 0 0 0 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 −8 0 0 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 −8 0 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 −8 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 −8 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 −8 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 −8



(4)
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

0 0 0 0 0 0 0 4 4 4 4 4 4 4

0 1 0 0 0 0 0 0 4 0 0 0 0 0

0 0 1 0 0 0 0 0 4 4 0 0 0 0

0 0 0 1 0 0 0 0 4 4 4 0 0 0

0 0 0 0 1 0 0 0 4 4 4 4 0 0

0 0 0 0 0 1 0 0 4 4 4 4 4 0

0 0 0 0 0 0 1 0 4 4 4 4 4 4

4 0 0 0 0 0 0 −8 0 0 0 0 0 0

4 0 0 0 0 0 0 0 −8 0 0 0 0 0

4 0 0 0 0 0 0 0 0 −8 0 0 0 0

4 0 0 0 0 0 0 0 0 0 −8 0 0 0

4 0 0 0 0 0 0 0 0 0 0 −8 0 0

4 0 0 0 0 0 0 0 0 0 0 0 −8 0

4 0 0 0 0 0 0 0 0 0 0 0 0 −8



(5)
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

0 0 0 0 0 0 0 4 4 4 4 4 4 4

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

4 0 0 0 0 0 0 −8 0 0 0 0 0 0

4 0 0 0 0 0 0 0 −8 0 0 0 0 0

4 0 0 0 0 0 0 0 0 −8 0 0 0 0

4 0 0 0 0 0 0 0 0 0 −8 0 0 0

4 0 0 0 0 0 0 0 0 0 0 −8 0 0

4 0 0 0 0 0 0 0 0 0 0 0 −8 0

4 0 0 0 0 0 0 0 0 0 0 0 0 −8



(6)
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −8 0 0 0 0 0 0 4

0 0 0 0 0 0 0 −8 0 0 0 0 0 4

0 0 0 0 0 0 0 0 −8 0 0 0 0 4

0 0 0 0 0 0 0 0 0 −8 0 0 0 4

0 0 0 0 0 0 0 0 0 0 −8 0 0 4

0 0 0 0 0 0 0 0 0 0 0 −8 0 4

0 0 0 0 0 0 0 0 0 0 0 0 −8 4

0 0 0 0 0 0 4 4 4 4 4 4 4 0



(7)



−8 0 0 0 0 0 0 4

0 −8 0 0 0 0 0 4

0 0 −8 0 0 0 0 4

0 0 0 −8 0 0 0 4

0 0 0 0 −8 0 0 4

0 0 0 0 0 −8 0 4

0 0 0 0 0 0 −8 4

4 4 4 4 4 4 4 0



(8)
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

0 8 8 8 8 8 8 4

0 −8 0 0 0 0 0 4

0 0 −8 0 0 0 0 4

0 0 0 −8 0 0 0 4

0 0 0 0 −8 0 0 4

0 0 0 0 0 −8 0 4

0 0 0 0 0 0 −8 4

4 4 4 4 4 4 4 0



(9)



0 8 8 8 8 8 8 4

0 16 8 8 8 8 8 0

0 8 16 8 8 8 8 0

0 8 8 16 8 8 8 0

0 8 8 8 16 8 8 0

0 8 8 8 8 16 8 0

0 8 8 8 8 8 16 0

4 4 4 4 4 4 4 0



(10)
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

0 8 8 8 8 8 8 4

0 16 8 8 8 8 8 0

0 24 24 16 16 16 16 0

0 32 32 32 24 24 24 0

0 40 40 40 40 32 32 0

0 48 48 48 48 48 40 0

0 56 56 56 56 56 56 0

4 4 4 4 4 4 4 0



(11)



0 8 0 0 0 0 0 4

0 16 8 8 8 8 8 0

0 24 0 8 8 8 8 0

0 32 0 0 8 8 8 0

0 40 0 0 0 8 8 0

0 48 0 0 0 0 8 0

0 56 0 0 0 0 0 0

4 4 0 0 0 0 0 0



(12)
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

0 8 0 0 0 0 0 4

0 16 8 0 0 0 0 0

0 24 0 8 8 8 8 0

0 32 0 0 8 8 8 0

0 40 0 0 0 8 8 0

0 48 0 0 0 0 8 0

0 56 0 0 0 0 0 0

4 4 0 0 0 0 0 0



(13)



0 8 0 0 0 0 0 4

0 16 8 0 0 0 0 0

0 24 0 8 0 0 0 0

0 32 0 0 8 8 8 0

0 40 0 0 0 8 8 0

0 48 0 0 0 0 8 0

0 56 0 0 0 0 0 0

4 4 0 0 0 0 0 0



(14)
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

0 8 0 0 0 0 0 4

0 0 8 0 0 0 0 0

0 0 0 8 0 0 0 0

0 0 0 0 8 0 0 0

0 0 0 0 0 8 0 0

0 0 0 0 0 0 8 0

0 56 0 0 0 0 0 0

4 4 0 0 0 0 0 0



(15)



0 0 0 0 0 0 0 4

0 0 8 0 0 0 0 0

0 0 0 8 0 0 0 0

0 0 0 0 8 0 0 0

0 0 0 0 0 8 0 0

0 0 0 0 0 0 8 0

0 56 0 0 0 0 0 0

4 0 0 0 0 0 0 0



(16)
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3.3 Conjecture on the Jacobian of Sin-

gle Voltage Cyclic Covers of Kn,n

We now let X = Kn,n in Definition 19. We partition the 2n vertices by: each vi

for i odd is adjacent to every vj for j even, and vice versa. Note that the Jacobian

does not depend on which edge is assigned the nontrivial voltage τ . However, as in

Definition 19, we label the edge v1 → v2 with voltage τ.

Observe that the closed walk v1
τ−→ v2

1−→ v3
1−→ v4

1−→ v1 has net voltage τ. By

Corollary 4, this immediately gives:

Proposition 11. If (Kn,n, Zd, α) is a voltage graph, where α : E(X)+ → Zd is the

single voltage assignment, then the derived graph Y is connected.

Using Sage, we compute the following tables, which yields the Jacobian of the derived

graph corresponding to the voltage graph (Kn,n, Zd, α), where α is the single voltage

assignment and n = 3, 4, 5, respectively. From this, we formulate Conjecture 2 for

the rank, invariant factors, and order of the Jacobian.
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Table 3.6 Jacobian of K3,3 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 12 32 9 34

2 16 34 72 23 · 36

3 110 35 12 108 24 · 39

4 114 36 122 144 28 · 310

5 118 37 123 180 28 · 312 · 5
6 122 38 124 216 211 · 315

7 126 39 125 252 212 · 316 · 7
8 130 310 126 288 217 · 318

9 134 311 127 324 216 · 322

10 138 312 128 360 219 · 322 · 5

For d ≤ 10, we observe the following from Table 3.6:

(i) For d ≥ 1, the rank is 2d+ 1.

(ii) For d ≥ 3, there are 3 distinct invariant factors: the first IF is 3 with multiplicity

d + 2, the second IF is 12 with multiplicity d− 2. The third IF is 12(3d) with

multiplicity 1.

(iii) |J (Y )| = 32d+2 · 22d−2 · d.
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Table 3.7 Jacobian of K4,4 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 12 44 16 46

2 16 48 288 221 · 32

3 110 411 36 432 228 · 35

4 114 414 362 576 238 · 36

5 118 417 363 720 244 · 38 · 5
6 122 420 364 864 253 · 311

7 126 423 365 1008 260 · 312 · 7
8 130 426 366 1152 271 · 314

9 134 429 367 1296 276 · 318

10 138 432 368 1440 285 · 318 · 5

For d ≤ 10, we observe the following from Table 3.7:

(i) For d ≥ 1, the rank is 4d+ 1.

(ii) For d ≥ 3, there are 3 distinct invariant factors: the first IF is 4 with multiplicity

3d+ 2, the second IF is 36 with multiplicity d− 2. The third IF is 36(4d) with

multiplicity 1.

(iii) |J (Y )| = 44d+2 · 32d−2 · d.
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Table 3.8 Jacobian of K5,5 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 12 56 25 58

2 16 512 800 25 · 514

3 110 517 80 1200 28 · 3 · 520

4 114 522 802 1600 214 · 526

5 118 527 803 2000 216 · 533

6 122 532 804 2400 221 · 3 · 538

7 126 537 805 2800 224 · 544 · 7
8 130 542 806 3200 231 · 550

9 134 547 807 3600 232 · 32 · 566

10 138 552 808 4000 237 · 573

For d ≤ 10, we observe the following from Table 3.8:

(i) For d ≥ 1, the rank is 6d+ 1.

(ii) For d ≥ 3, there are 3 distinct invariant factors: the first IF is 5 with multiplicity

5d+ 2, the second IF is 80 with multiplicity d− 2. The third IF is 80(5d) with

multiplicity 1.

(iii) |J (Y )| = 56d+2 · 42d−2 · d.

Using the above observations, we formulate the following conjecture:

Conjecture 2. For Kn,n the complete bipartite graph on 2n vertices with single volt-

age cover by Zd, we have the following:

(i) For d ≥ 1, the rank is 2(n− 2)d+ 1.

(ii) For d ≥ 3, there are three distinct invariant factors: the first IF is n with

multiplicity (2n− 5)d+ 2, the second IF is n(n− 1)2 with multiplicity d− 2, the

third IF is n(n− 1)2(nd) with multiplicity 1.
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(iii) |J (Y )| = n(2n−4)d+2(n− 1)2d−2d.

In the next section, we obtain partial results for this conjecture.

3.4 Partial Results on the Jacobian of

Single Voltage Cyclic Covers of Kn,n

Again, we let X = Kn,n in Definition 19. We partition the 2n vertices by: each vi for

i odd is adjacent to every vj for j even, and vice versa.

In this section, we compute the Smith Normal Form of the Laplacian matrix for

the single voltage cyclic cover of Kn,n over Z(p), the integers localized at (p), for p not

dividing n. This gives us the primes p (and their powers) that divide |J (Y )|, for p - n.

We first begin by proving what the reduced Stickelberger element is for the derived

graph corresponding to single voltage cyclic covers of Kn,n.

Theorem 16. Let (Kn,n, Zd, α) be as in Definition 19. Then the reduced Stickelberger

element is

ΘY/X = −(n− 1)2n2n−4(τ − 1)2τ−1.

Proof. For X = Kn,n with single voltage assignment by Zd, we have the voltage

Laplacian matrix with n down the diagonal, −τ in entry (1, 2), −τ−1 in entry (2, 1)

and entry i, j equals −1 if i + j is odd, and all other entries are zero. This gives us
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the following 2n× 2n matrix:

Lα =



n −τ 0 −1 0 · · · 0 −1

−τ−1 n −1 0 −1 · · · −1 0

0 −1 n −1 0 · · · 0 −1

−1 0 −1 n −1 · · · −1 0
... ... ... ... ... · · · ... ...

0 −1 0 −1 0 · · · n −1

−1 0 −1 0 −1 · · · −1 n



We will now use row and column operations in Q[τ ] to put the matrix in essentially

upper triangular form. We denote row i and column j of the voltage Laplacian by Ci

and Rj, respectively. First replace C1 by C1 + C3 + · · ·+ C2n to get



1 −τ 0 −1 0 · · · 0 −1

−τ−1 − (n− 1) n −1 0 −1 · · · −1 0

1 −1 n −1 0 · · · 0 −1

0 0 −1 n −1 · · · −1 0
... ... ... ... ... · · · ... ...

1 −1 0 −1 0 · · · n −1

0 0 −1 0 −1 · · · −1 n



Now replace C2, C4, C6, · · · , C2n with C1 +C2, C1 +C4, C1 +C6, · · · , C1 +C2n, respec-

131



tively to get



1 1− τ 0 0 0 · · · 0 0

−τ−1 − (n− 1) −τ−1 + 1 −1 −τ−1 − (n− 1) −1 · · · −1 −τ−1 − (n− 1)

1 0 n 0 0 · · · 0 0

0 0 −1 n −1 · · · −1 0
... ... ... ... ... · · · ... ...

1 0 0 0 0 · · · n 0

0 0 −1 0 −1 · · · −1 n



This eliminates all of the −1’s in all of the even-indexed columns.

We will now eliminate all of the −1’s in all of the odd-indexed columns by doing

the following:

Replace C3, C5, C7, · · · , C2n−1 with 1
n
C2n+C3,

1
n
C2n+C5,

1
n
C2n+C7, · · · , 1

n
C2n+C2n−1,

respectively, to get



1 1− τ 0 0 · · · 0 0

−τ−1 − (n− 1)−τ−1 + 1 −τ−1−2n+1
n

−τ−1 − (n− 1) · · · −τ−1−2n+1
n

−τ−1 − (n− 1)

1 0 n 0 · · · 0 0

0 0 −1 n · · · −1 0
... ... ... ... · · · ... ...

1 0 0 0 · · · n 0

0 0 0 0 · · · 0 n


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This eliminates the −1’s in row 2n

Now replace C3, C5, C7, · · · , C2n−1 with
1
n
C2n−2 + C3,

1
n
C2n−2 + C5,

1
n
C2n−2 + C7, · · · , 1

n
C2n−2 + C2n−1, respectively, to get



1 1− τ 0 0 · · · 0 0

−τ−1 − (n− 1)−τ−1 + 1 −2τ−1−3n+2
n

−τ−1 − (n− 1) · · · −2τ−1−3n+2
n

−τ−1 − (n− 1)

1 0 n 0 · · · 0 0

0 0 −1 n · · · −1 0
... ... ... ... · · · ... ...

1 0 0 0 · · · n 0

0 0 0 0 · · · 0 n



This eliminates the −1’s in row 2n− 2.

Now replace C3, C5, C7, · · · , C2n−1 with
1
n
C2n−4 + C3,

1
n
C2n−4 + C5,

1
n
C2n−4 + C7, · · · , 1

n
C2n−4 + C2n−1, respectively, to get



1 1− τ 0 0 · · · 0 0

−τ−1 − (n− 1)−τ−1 + 1 −3τ−1−4n+3
n

−τ−1 − (n− 1) · · · −3τ−1−4n+3
n

−τ−1 − (n− 1)

1 0 n 0 · · · 0 0

0 0 −1 n · · · −1 0
... ... ... ... · · · ... ...

1 0 0 0 · · · n 0

0 0 0 0 · · · 0 n


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This eliminates the −1’s in row 2n− 4.

Continue this process to zero out the remaining −1’s in R2n−6, · · · , R4 to get the

following



1 1− τ 0 0 · · · 0

−τ−1 − (n− 1) −τ−1 + 1 −(n−1)τ−1−n2+n−1
n

−τ−1 − (n− 1) · · · −τ−1 − (n− 1)

1 0 n 0 · · · 0

0 0 0 n · · · 0
... ... ... ... · · · ...

1 0 0 0 · · · 0

0 0 0 0 · · · n



It only remains to zero out the 1’s in C1 from R3 to R2n−1. To do this, we first replace

C1 with − 1
n
C2n−1 + C1. Then replace C1 with − 1

n
C2n−3 + C1. Continue this process

until we replace C1 with − 1
n
C3+C1. After simplifying, this yields the following matrix



1 1− τ 0 0 · · · 0
(−2n+1)τ−1−(n−1)2

n2 −τ−1 + 1 −(n−1)τ−1−n2+n−1
n

−τ−1 − (n− 1) · · · −τ−1 − (n− 1)

0 0 n 0 · · · 0

0 0 0 n · · · 0
... ... ... ... · · · ...

0 0 0 0 · · · 0

0 0 0 0 · · · n



Let L′ be the preceding matrix. Now use cofactor expansion along the first row of L′
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to get

ΘY/X = detLα = detL′ = 1 · detL′1,1 − (1− τ) detL′1,2

where L′i,j is the i, j minor of L′. To compute each of the minor determinants, use

cofactor expansion along its first column (which has only one nonzero entry), to get:

detL′ = 1(1− τ−1)n2n−2 − (1− τ)(−2n+ 1)τ−1 − (n− 1)2

n2 n2n−2.

By elementary algebra this simplifies to the stated conclusion.

We now present the following Theorem from [Ger76], which we will use to obtain

partial results for the Jacobian.

Theorem 17. Let A,B ∈ Mn(R), where Mn(R) is the ring of n × n matrices with

entries in the ring R. Then A ∼ B if and only if A ∼p B for all p ∈ P (where ∼ and

∼p denotes matrix equivalence over R and R(p), respectively); moreover,

S(A) =
∏
p∈P

Sp(A).

where S(A) and Sp(A) denote the Smith Normal Form of A over R and R(p), respec-

tively.

We will now compute the Smith Normal Form of the previous matrix over Z(p), the

integers localized at (p), for p not dividing n, so n becomes a unit.

Taking the last matrix from above, first replace R2 by n2R2. Then replace R3, · · · , R2n
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by 1
n
R3, · · · , 1

n
R2n, respectively, to get



1 1− τ · · · 0

(−2n+ 1)τ−1 − (n− 1)2 −n2τ−1 + n2 · · · −n2τ−1 − n3 + n2

0 0 · · · 0

0 0 · · · 0
... ... · · · ...

0 0 · · · 0

0 0 · · · 1



Now use the (2n− 2)× (2n− 2) block identity matrix to zero out the entries in row

2 from columns 3 through 2n.

Note that doing elementary row and column operations on the voltage Laplacian

is the same as changing generators in the domain and range of the Z(p)[G]-module

coker(Lα). In particular, these also just change generators of its Z(p)-module struc-

ture. So in order to compute the Smith Normal Form of the Laplacian of Y , we may

begin with the already reduced voltage Laplacian above. Thus, we will now tensor

this matrix with ρ (again, as in Section 2.2.1) to get the d× d block matrices in each

entry.  Id ρ(1− τ)

(−2n+ 1) · ρ(τ−1)− (n− 1)2Id −n2 · ρ(τ−1) + n2 · Id



136



where Id denotes the d× d identity matrix,

ρ(1− τ) =



1 0 · · · 0 −1

−1 1 · · · 0 0

0 −1 · · · 0 0
... ... · · · ... ...

0 0 · · · 1 0

0 0 · · · −1 1



−n2 · ρ(τ−1) + n2 · Id =



n2 −n2 · · · 0 0

0 n2 · · · 0 0

0 0 · · · 0 0
... ... · · · ... ...

0 0 · · · 0 −n2

−n2 0 · · · 0 n2



and lastly,

(−2n+1)·ρ(τ−1)−(n−1)2Id =



−(n− 1)2 −2n+ 1 · · · 0 0

0 −(n− 1)2 · · · 0 0
... ... . . . ... ...

0 0 · · · −(n− 1)2 −2n+ 1

−2n+ 1 0 · · · 0 −(n− 1)2


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Putting these together, we get the following matrix



1 0 · · · 0 1 0 · · · 0 −1

0 1 · · · 0 −1 1 · · · 0 0
... ... . . . ... ... ... · · · ... ...

0 0 · · · 1 0 0 · · · −1 1

−(n− 1)2 −2n+ 1 · · · 0 n2 −n2 · · · 0 0

0 −(n− 1)2 · · · 0 0 n2 · · · 0 0
... ... · · · ... ... ... . . . ... ...

0 0 · · · −2n+ 1 0 0 · · · n2 −n2

−2n+ 1 0 · · · −(n− 1)2 −n2 0 · · · 0 n2



We will now use row and column operations to put this matrix in diagonal form. To

zero out the last column, replace C2d with Cd+1 + Cd+2 + · · ·C2d to get



1 0 · · · 0 1 0 · · · 0 0

0 1 · · · 0 −1 1 · · · 0 0
... ... . . . ... ... ... · · · ... ...

0 0 · · · 1 0 0 · · · −1 0

−(n− 1)2 −2n+ 1 · · · 0 n2 −n2 · · · 0 0

0 −(n− 1)2 · · · 0 0 n2 · · · 0 0
... ... · · · ... ... ... . . . ... ...

0 0 · · · −2n+ 1 0 0 · · · n2 0

−2n+ 1 0 · · · −(n− 1)2 −n2 0 · · · 0 0


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Now replace R2d with Rd+1 +Rd+2 + · · ·+R2d to get



1 0 · · · 0 1 0 · · · 0 0

0 1 · · · 0 −1 1 · · · 0 0
... ... . . . ... ... ... · · · ... ...

0 0 · · · 1 0 0 · · · −1 0

−(n− 1)2 −2n+ 1 · · · 0 n2 −n2 · · · 0 0

0 −(n− 1)2 · · · 0 0 n2 · · · 0 0
... ... · · · ... ... ... . . . ... ...

0 0 · · · −2n+ 1 0 0 · · · n2 0

−n2 −n2 · · · −n2 0 0 · · · 0 0



This gives us a matrix with entry −n2 in R2d, C1 through Cd and 0 from Cd+1 through

C2d.
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Now replace R1 with R1 +R2 + · · ·+Rd to get



1 1 · · · 1 0 0 · · · 0 0

0 1 · · · 0 −1 1 · · · 0 0
... ... . . . ... ... ... · · · ... ...

0 0 · · · 1 0 0 · · · −1 0

−(n− 1)2 −2n+ 1 · · · 0 n2 −n2 · · · 0 0

0 −(n− 1)2 · · · 0 0 n2 · · · 0 0
... ... · · · ... ... ... . . . ... ...

0 0 · · · −2n+ 1 0 0 · · · n2 0

−n2 −n2 · · · −n2 0 0 · · · 0 0



This gives us a matrix with all entries equal to 1 in R1, C1 through Cd and 0 from Cd

to C2d.

To zero out the 1’s in R1, C2 through Cd and to zero out the −n2 in R2d as well

as columns C2 through Cd, replace C2, C3, · · · , Cd with C2−C1, C3−C1, · · · , Cd−C1,
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respectively. This yields the following matrix.



1 0 0 · · · 0 0 0 · · · 0 0

0 1 0 · · · 0 −1 1 · · · 0 0
... ... ... · · · ... ... ... · · · ... ...

0 0 0 · · · 1 0 0 · · · −1 0

−(n− 1)2 n2 − 4n+ 2 (n− 1)2 · · · (n− 1)2 n2 −n2 · · · 0 0

0 −(n− 1)2 −2n+ 1 · · · 0 0 n2 · · · 0 0
... ... ... . . . ... ... ... . . . ... ...

0 0 0 · · · −2n+ 1 0 0 · · · n2 0

−n2 0 0 · · · 0 0 0 · · · 0 0



In Rd, we have −(n− 1)2 in the first column, n2 − 4n+ 2 in the second column, and

(n− 1)2 in columns 3 through d.
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Now use R1 to zero out the remaining entries in C1 to get the matrix



1 0 0 · · · 0 0 0 · · · 0 0

0 1 0 · · · 0 −1 1 · · · 0 0
... ... ... · · · ... ... ... · · · ... ...

0 0 0 · · · 1 0 0 · · · −1 0

0 n2 − 4n+ 2 (n− 1)2 · · · (n− 1)2 n2 −n2 · · · 0 0

0 −(n− 1)2 −2n+ 1 · · · 0 0 n2 · · · 0 0
... ... ... . . . ... ... ... . . . ... ...

0 0 0 · · · −2n+ 1 0 0 · · · n2 0

0 0 0 · · · 0 0 0 · · · 0 0



Now remove C2d and R2d, as they do not contribute any nonzero invariant factors.

This leaves us with a (2d− 1)× (2d− 1) matrix.



1 0 0 · · · 0 0 0 · · · 0

0 1 0 · · · 0 −1 1 · · · 0
... ... ... · · · ... ... ... · · · ...

0 0 0 · · · 1 0 0 · · · −1

0 n2 − 4n+ 2 (n− 1)2 · · · (n− 1)2 n2 −n2 · · · 0

0 −(n− 1)2 −2n+ 1 · · · 0 0 n2 · · · 0
... ... ... . . . ... ... ... . . . ...

0 0 0 · · · −2n+ 1 0 0 · · · n2



142



Now replace C2d−1 with Cd+1 + Cd+2 + · · ·+ C2d−1 to get



1 0 0 · · · 0 0 0 · · · 0

0 1 0 · · · 0 −1 1 · · · 0
... ... ... · · · ... ... ... · · · ...

0 0 0 · · · 1 0 0 · · · −1

0 n2 − 4n+ 2 (n− 1)2 · · · (n− 1)2 n2 −n2 · · · 0

0 −(n− 1)2 −2n+ 1 · · · 0 0 n2 · · · 0
... ... ... . . . ... ... ... . . . ...

0 0 0 · · · −2n+ 1 0 0 · · · n2



(this makes all entries in C2d−1 zero except for the entries in Rd and R2d−1, which are

−1 and n2, respectively).

Now continue this process; replace C2d−2, · · · , Cd+2 with Cd+1+Cd+2+· · ·+C2d−2, · · · , Cd+1+

Cd+2, respectively.



1 0 0 · · · 0 0 0 · · · 0

0 1 0 · · · 0 −1 0 · · · 0
... ... ... · · · ... ... ... · · · ...

0 0 0 · · · 1 0 0 · · · −1

0 n2 − 4n+ 2 (n− 1)2 · · · (n− 1)2 n2 0 · · · 0

0 −(n− 1)2 −2n+ 1 · · · 0 0 n2 · · · 0
... ... ... . . . ... ... ... . . . ...

0 0 0 · · · −2n+ 1 0 0 · · · n2


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This gives us a (d − 1) × (d − 1) diagonal block in the upper right with −1’s down

the diagonal and a (d− 1)× (d− 1) diagonal block in the lower right with n2’s down

the diagonal.

Now to zero out the (d − 1) × (d − 1) block in the upper right with −1’s down the

diagonal, replace Cd+1, Cd+2, · · · , C2d−1 with C2 + Cd+1, C3 + Cd+2, · · · , Cd + C2d−1



1 0 0 · · · 0 0 0 · · · 0

0 1 0 · · · 0 0 0 · · · 0
... ... ... · · · ... ... ... . . . ...

0 0 0 · · · 1 0 0 · · · 0

0 n2 − 4n+ 2 (n− 1)2 · · · 0 2(n− 1)2 (n− 1)2 · · · (n− 1)2

0 −(n− 1)2 −2n+ 1 · · · 0 −(n− 1)2 (n− 1)2 · · · 0
... ... ... . . . ... ... ... . . . ...

0 0 0 · · · −2n+ 1 0 0 · · · (n− 1)2



In the lower right (d− 1)× (d− 1) block, we have entry 2(n− 1)2 in column and row

d + 1, and then entry (n− 1)2 in row d + 1, columns d + 2 through 2d− 1. Then in

columns d + 1 through 2d− 1, row d + 2 through row 2d− 1, we have −(n− 1)2 on

the lower subdiagonal, and (n− 1)2 on the diagonal.

Use the identity d × d block in the upper left to zero out the (d − 1) × (d − 1)
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block in the lower left. This leaves us with the following matrix.



1 0 0 · · · 0 0 0 · · · 0

0 1 0 · · · 0 0 0 · · · 0
... ... ... · · · ... ... ... . . . ...

0 0 0 · · · 1 0 0 · · · 0

0 0 0 · · · 0 2(n− 1)2 (n− 1)2 · · · (n− 1)2

0 0 0 · · · 0 −(n− 1)2 (n− 1)2 · · · 0
... ... ... . . . ... ... ... . . . ...

0 0 0 · · · 0 0 0 · · · (n− 1)2



Since the d× d block in the upper left contributes no nontrivial factors, we will only

consider the (d− 1)× (d− 1) block in the lower right



2(n− 1)2 (n− 1)2 (n− 1)2 · · · (n− 1)2 (n− 1)2

−(n− 1)2 (n− 1)2 0 · · · 0 0

0 −(n− 1)2 (n− 1)2 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · (n− 1)2 0

0 0 0 · · · −(n− 1)2 (n− 1)2


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Now replace Cd−1 with C1 + C2 + · · ·+ Cd−1 to get



2(n− 1)2 (n− 1)2 (n− 1)2 · · · (n− 1)2 d(n− 1)2

−(n− 1)2 (n− 1)2 0 · · · 0 0

0 −(n− 1)2 (n− 1)2 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · (n− 1)2 0

0 0 0 · · · −(n− 1)2 0



Then replace Cd−2 with C1 + C2 + · · ·+ Cd−2 to get



2(n− 1)2 (n− 1)2 · · · (d− 1)(n− 1)2 d(n− 1)2

−(n− 1)2 n2 + 2n− 1 · · · 0 0

0 −(n− 1)2 · · · 0 0
... ... · · · ... ...

0 0 · · · 0 0

0 0 · · · −(n− 1)2 0



Continue this process to zero out the remaining (n− 1)2 terms on the diagonal. This
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yields the following matrix



2(n− 1)2 3(n− 1)2 · · · (d− 1)(n− 1)2 d(n− 1)2

−(n− 1)2 0 · · · 0 0

0 −(n− 1)2 · · · 0 0
... ... · · · ... ...

0 0 · · · 0 0

0 0 · · · −(n− 1)2 0



Now use the (d − 2) × (d − 2) block diagonal matrix with entries −(n − 1)2 to zero

out the entries in row 1, columns 1 through d− 2 to get



0 0 · · · 0 d(n− 1)2

−(n− 1)2 0 · · · 0 0

0 −(n− 1)2 · · · 0 0
... ... · · · ... ...

0 0 · · · 0 0

0 0 · · · −(n− 1)2 0



Now multiply each of C1, · · · , Cd−1 by the unit −1 and also move Cd−1 to be the first

column to get the diagonal matrix:
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

d(n− 1)2 0 0 · · · 0

0 (n− 1)2 0 · · · 0

0 0 (n− 1)2 · · · 0
... ... ... · · · ...

0 0 0 · · · 0

0 0 0 · · · (n− 1)2



This gives us the primes p (and their powers) that divide |J (Y )|, for p - n by Theorem

17. We write this as the following theorem

Theorem 18. Let Y be a single voltage cover of the complete bipartite graph Kn,n

by the cyclic group of order d, where n, d ≥ 3. For any prime p with p - n, the Sylow

p-subgroup, Jp(Y ), of J (Y ) has the following (elementary divisor) decomposition:

Jp(Y ) ∼= (Z/p2aZ)d−2 ⊕ (Z/p2a+bZ)1

where pa is the largest power of p dividing n − 1 and pb is the largest power of p

dividing d. In particular, |Jp(Y )| = p2a(d−1)+b, and the p-rank of J (Y ) is d− 1.
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3.5 Single Voltage Cyclic Covers of Kn,2:

Conjectures and the Reduced Stick-

elberger Element

Now let X = Kn,2. We partition the n + 2 vertices by: each vi for i = 1, 2, 3, · · · , n

is adjacent to vn+j for j = 1, 2 and vice versa. For computational purposes, we break

with the notation in Definition 19 and label the directed edge from v1 to vn+1 with τ

(and so the directed edge from vn+1 to v1 must be labeled with τ−1). Note that, how-

ever, the Jacobian does not depend on which edge is assigned the nontrivial voltage τ.

Observe that the closed walk v1
τ−→ vn+1

1−→ vn
1−→ vn+2

1−→ v1 has net voltage τ.

By Corollary 4, this immediately gives:

Proposition 12. If (Kn,2, Zd, α) is a voltage graph, where α : E(X)+ → Zd is the

single voltage assignment, then the derived graph Y is connected.

Using Sage, we compute the following tables, which yields the Jacobian of the de-

rived graph corresponding to (Kn,2, Zd, α), where α is the single voltage assignment

and n = 3, 4, 5, respectively. From this, we formulate Conjecture 3 for the rank,

invariant factors, and order of the Jacobian. Following this, we compute the reduced

Stickelberger element of such derived graphs.
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Table 3.9 Jacobian of K3,2 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 12 2 6 22 · 3
2 16 22 24 25 · 3
3 110 22 4 36 26 · 32

4 114 22 42 48 210 · 3
5 118 22 43 60 210 · 3 · 5
6 122 22 44 72 213 · 32

7 126 22 45 84 214 · 3 · 7
8 130 22 46 96 219 · 3
9 134 22 47 108 218 · 33

10 138 22 48 120 221 · 3 · 5

For d ≤ 10, we observe the following from Table 3.9:

(i) The rank is d+ 1.

(ii) For d ≥ 3, the Jacobian of Y has three distinct invariant factors: the first

invariant factor is 2 with multiplicity 2, the second invariant factor is 4 with

multiplicity d− 2, and the third invariant factor is d · 12 with multiplicity 1.

(iii) |J (Y )| = 22d · 3 · d.
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Table 3.10 Jacobian of K4,2 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 12 22 8 25

2 16 24 48 28 · 3
3 110 25 6 72 29 · 33

4 114 26 62 96 213 · 33

5 118 27 63 120 213 · 34 · 5
6 122 28 64 144 216 · 36

7 126 29 65 168 217 · 36 · 7
8 130 210 66 192 222 · 37

9 134 211 67 216 221 · 310

10 138 212 68 240 224 · 39 · 5

For d ≤ 10, we observe the following from Table 3.10:

(i) The rank is 2d+ 1.

(ii) For d ≥ 3, the Jacobian of Y has three distinct invariant factors: the first

invariant factor is 2 with multiplicity d+2, the second invariant factor is 6 with

multiplicity d− 2, and the third invariant factor is d · 24 with multiplicity 1.

(iii) |J (Y )| = 22d+3 · 3d−1 · d.
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Table 3.11 Jacobian of K5,2 with Single Voltage Cover by Zd, (exponents represent
multiplicities)
d 1st IF 2nd IF 3rd IF order
1 12 23 10 24 · 5
2 16 26 80 210 · 5
3 110 28 8 120 214 · 3 · 5
4 114 210 82 160 221 · 5
5 118 212 83 200 224 · 52

6 122 214 84 240 230 · 3 · 5
7 126 216 85 280 234 · 5 · 7
8 130 218 86 320 242 · 5
9 134 220 87 360 244 · 32 · 5
10 138 222 88 400 250 · 52

For d ≤ 10, we observe the following from Table 3.11

(i) The rank is 3d+ 1.

(ii) For d ≥ 3, the Jacobian of Y has three distinct invariant factors: the first

invariant factor is 2 with multiplicity 2d + 2, the second invariant factor is 8

with multiplicity d− 2, and the third invariant factor is d · 40 with multiplicity

1.

(iii) |J (Y )| = 25d−1 · 5d.

The above data leads us to the following conjecture:

Conjecture 3. For Kn,2 the complete bipartite graph on n + 2 vertices with single

voltage cover by Zd, we have the following:

(i) For d ≥ 1, the rank is (n− 2)d+ 1.

(ii) For d ≥ 3, there are three distinct invariant factors: the first IF is 2 with

multiplicity (n− 3)d + 2, the second IF is 2(n− 1) with multiplicity d− 2, the
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third IF is 2n(n− 1)d with multiplicity 1.

(iii) |J (Y )| = 2d(n−2)+1(n− 1)d−1nd.

We now state and prove what the reduced Stickelberger element is of such derived

graphs.

Theorem 19. Let (Kn,2, Zd, α) be as described at the outset of this section (i.e., we

label the directed edge from v1 to vn+1 with τ (and so the directed edge from vn+1 to

v1 must be labeled with τ−1). Then the reduced Stickelberger element is

ΘY/X = −2n−2(n− 1)(τ − 1)2τ−1.

Proof. For X = Kn,2 with single voltage assignment by Zd, the voltage Laplacian

matrix is the (n+ 2)× (n+ 2) matrix with an n× n diagonal block in the upper left

with 2’s down the diagonal, a 2 × 2 diagonal block in the lower right with n on the

diagonal, −τ in entry (1, n+ 1), −τ−1 in entry (n+ 1, 1), and −1’s elsewhere:



2 0 0 · · · 0 −τ −1

0 2 0 · · · 0 −1 −1

0 0 2 · · · 0 −1 −1
... ... ... . . . ... ... ...

0 0 0 · · · 2 −1 −1

−τ−1 −1 −1 · · · −1 n 0

−1 −1 −1 · · · −1 0 n



We will now use row and column operations in Q[τ ] to put the matrix in essentially

upper triangular form. We denote row i and column j of the voltage Laplacian by Ci
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and Rj, respectively. First replace C1 by C1 + C2 + · · ·+ Cn + Cn+2 to get



1 0 0 · · · 0 −τ −1

1 2 0 · · · 0 −1 −1

1 0 2 · · · 0 −1 −1
... ... ... . . . ... ... ...

1 0 0 · · · 2 −1 −1

−τ−1 − (n− 1) −1 −1 · · · −1 n 0

0 −1 −1 · · · −1 0 n



Now replace Cn+1 and Cn+2 with C1 + Cn+1 and C1 + Cn+2, respectively, to get



1 0 0 · · · 0 1− τ 0

1 2 0 · · · 0 0 0

1 0 2 · · · 0 0 0
... ... ... . . . ... ... ...

1 0 0 · · · 2 0 0

−τ−1 − (n− 1) −1 −1 · · · −1 1− τ−1 −τ−1 − (n− 1)

0 −1 −1 · · · −1 0 n


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Now permute R2 through Rn+1 to get



1 0 0 · · · 0 1− τ 0

−τ−1 − (n− 1) −1 −1 · · · −1 1− τ−1 −τ−1 − (n− 1)

1 2 0 · · · 0 0 0

1 0 2 · · · 0 0 0
... ... ... . . . ... ... ...

1 0 0 · · · 2 0 0

0 −1 −1 · · · −1 0 n



For i = 2, · · · , n, replace Ci with 1
n
Cn+2 + Ci to get



1 0 0 · · · 0 1− τ 0

−τ−1 − (n− 1) −τ−1−2n+1
n

−τ−1−2n+1
n

· · · −τ−1−2n+1
n

1− τ−1 −τ−1 − (n− 1)

1 2 0 · · · 0 0 0

1 0 2 · · · 0 0 0
... ... ... . . . ... ... ...

1 0 0 · · · 2 0 0

0 0 0 · · · 0 0 n



This zeros out the 1’s in Rn+2.

To zero out the 1’s in column 1, row 3 through n + 1, do the following: replace
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C1 with −1
2(C2 + C3 + · · ·+ Cn) to get



1 0 0 · · · 0 1− τ 0
(−n−1)τ−1−n+1

2n
−τ−1−2n+1

n
−τ−1−2n+1

n
· · · −τ−1−2n+1

n
1− τ−1 −τ−1 − (n− 1)

0 2 0 · · · 0 0 0

0 0 2 · · · 0 0 0
... ... ... . . . ... ... ...

0 0 0 · · · 2 0 0

0 0 0 · · · 0 0 n



Lastly, permute columns 2 through n+ 1 to get



1 1− τ 0 · · · 0 0 0
(−n−1)τ−1−n+1

2n 1− τ−1 −τ−1−2n+1
n

· · · −τ−1−2n+1
n

−τ−1−2n+1
n

−τ−1 − (n− 1)

0 0 2 · · · 0 0 0

0 0 0 · · · 0 0 0
... ... ... . . . ... ... ...

0 0 0 · · · 0 2 0

0 0 0 · · · 0 0 n



Let L′ be the preceding matrix. Now use cofactor expansion along the first row of L′

to get

ΘY/X = detLα = detL′ = 1 · detL′1,1 − (1− τ) detL′1,2

where L′i,j is the i, j minor of L′. To compute each of the minor determinants, use
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cofactor expansion along its first column (which has only one nonzero entry), to get:

detL′ = 1(1− τ−1)2n−1 · n− (1− τ)
(

(−n− 1)τ−1 − n+ 1
2n

)
2n−1 · n

By elementary algebra this simplifies to the stated conclusion.

3.6 Single Voltage Cyclic Covers of the

Petersen Graph: Conjectures and

the Reduced Stickelberger Element

We now let X be the Petersen graph in Definition 19. Then the Petersen graph with

single voltage assignment is shown in Figure 3.2

v4

v5

v1

v2

v3

v9

v10

v6

v7

v8

τ

Figure 3.2: The Petersen graph with single voltage assignment

Using Sage, we compute the following table, which yields the Jacobian of the derived
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graph corresponding to the voltage graph (X,Zd, α), where α is the single voltage

assignment and X is the Petersen graph. From this, we formulate Conjecture 4 for

the rank, invariant factors and order of the Jacobian. Following this, we compute the

reduced Stickelberger element corresponding to such derived graphs.

Table 3.12 Jacobian of the Peterson graph with Single Voltage Cover by Zd, (expo-
nents represent multiplicities)
d 1st IF 2nd IF 3rd IF 4th IF order
1 15 2 103 24 · 53

2 112 22 104 80 210 · 55

3 119 23 105 40 120 214 · 3 · 57

4 126 24 106 402 160 221 · 59

5 133 25 107 403 200 224 · 512

6 140 26 108 404 240 230 · 3 · 513

7 147 27 109 405 280 234 · 515 · 7
8 154 28 1010 406 320 242 · 517

9 161 29 1011 407 360 244 · 32 · 519

10 168 210 1012 408 400 250 · 522

From Table 3.12 we formulate the following conjecture:

Conjecture 4. For the Petersen graph with single voltage cover by Zd, we have the

following:

(i) The rank is 3d+ 1.

(ii) For d ≥ 3, the Jacobian of Y has four distinct invariant factors: the first

invariant factor is 2 with multiplicity d, the second invariant factor is 10 with

multiplicity d + 2, the third invariant factor is 40 with multiplicity d − 2, and

the fourth invariant factor is d · 40 with multiplicity 1.

(iii) |J (Y )| = 25d−1 · 52d+1 · d.
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We now compute the reduced Stickelberger element corresponding to this graph.

Theorem 20. Let (X,G, α) be the voltage graph shown in Figure 3.2. Then the

reduced Stickelberger element is

ΘY/X = −800(τ − 1)2τ−1.

Proof. Compute the determinant of the 10 × 10 voltage Laplacian matrix with 3’s

down the diagonal, −τ in entry (1, 2), −τ−1 in entry (2, 1), and 1’s and 0’s elsewhere:



3 −τ 0 0 −1 −1 0 0 0 0

−τ−1 3 −1 0 0 0 −1 0 0 0

0 −1 3 −1 0 0 0 −1 0 0

0 0 −1 3 −1 0 0 0 −1 0

−1 0 0 −1 3 0 0 0 0 −1

−1 0 0 0 0 3 0 −1 −1 0

0 −1 0 0 0 0 3 0 −1 −1

0 0 −1 0 0 −1 0 3 0 −1

0 0 0 −1 0 −1 −1 0 3 0

0 0 0 0 −1 0 −1 −1 0 3


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Chapter 4

Zeta Functions of Voltage Graphs

In this chapter, all of our base graphs X will be finite and connected. We begin this

chapter by stating definitions that relate to prime paths in a graph X and by stating

the three-term determinant formula–all of which can be found in [Ter11].

In Section 4.1, we come up with a formula that relates the order of the Jacobian

of a derived graph Y to the order of the Jacobian of the base graph X to which it

corresponds. We do so by examining the relation between the zeta function of Y and

the zeta function of X, as in Theorem 3.1 in [HMSV19]. From this, we define the

equivariant L-function and the reduced equivariant L-function, which essentially just

replaces the Artinized adjacency matrix, Aχ, in Theorem 3.1 of [HMSV19] with Aα,

the voltage adjacency matrix. Factoring the equivariant L-function and expanding

each term about u = 1, we find the lowest-degree nonzero coefficient. In doing so,

we find that the lowest nonzero coefficient of the reduced equivariant L-function is in

fact the reduced Stickelberger element. We use this to find the first non-vanishing

Taylor coefficient at u = 1 of the reciprocal zeta function of Y . This, in turn, gives
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us a formula for the order of the Jacobian of the derived graph Y .

Then in 4.1.1, we specify the voltage group G to be the cyclic group of order d.

This yields a more specific formula for the order of the Jacobian of the derived graph

Y . We then go on to show that when the voltage assignment is the single voltage

assignment, the reduced Stickelberger element is always of a specific form. This then

leads to a formula for the order of the Jacobian of a derived graph Y given by the

single voltage assignment. From this, Conjectures 1-4(iii) in Chapter 3 are verified.

We now introduce some terminology. These can also be found in [HMSV19].

Definition 26. A closed path

P : w = w1
e1,2−−→ w2

e2,3−−→ · · · em−1,m−−−−→ wm = w

is called a prime path if it has no backtrack or tail and one may only go around the

path once. For the closed path P , the equivalence class [P ] means the following

[P ] = {e1,2e2,3 · · · em−1,m, e2,3 · · · em−1,me1,2, · · · , em−1,me1,2, · · · em−2,m−1}.

That is, two paths are equivalent if we can get one from the other by changing the

starting vertex. A prime in a graph X is an equivalence class [P ] of prime paths. The

length of P is ν(P ) = m, the number of edges in P .

Definition 27. The Ihara zeta function of a finite connected graph X is defined to
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be

ζX(u) =
∏
[P ]

(1− uν(P ))−1

where the product is over all primes [P ] in X, u ∈ C and |u| is sufficiently small.

The following theorem, which can be found in [Ter11], gives a formula for computing

the zeta function.

Theorem 21 (Three-term determinant formula). Let A be the adjacency matrix of

X and let D be the diagonal matrix of vertex degrees (which is a scalar matrix if X

is a regular graph). Let

rX = r = |E(X)| − |V (X)|+ 1

where E(X) and V (X) denote the edges and vertices of X, respectively. Then we

have the Ihara three-term determinant formula

ζX(u)−1 = (1− u2)r−1 det(I − Au+ (D − I)u2).

4.1 Zeta Functions and the Order of

the Jacobian

Throughout this section, for (X,G, α) a voltage graph, assume

(i) X is connected,

(ii) rX − 1 6= 0,
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(iii) G is abelian, and

(iv) α : E(X)+ → G is such that Y is connected (as in Theorem 4).

By Theorem 2.11 in [HMSV19], we have that

ζ∗X(1) = (−1)r+12r(r − 1)κX ,

where ζ∗X(1) denotes the first non-vanishing Taylor coefficient of ζX(u)−1 at u = 1

and κX is the number of spanning trees in X. Thus, rearranging

ζ∗X(1)/((−1)r+12r(r − 1)) = κX = |J (X)|. (4.1)

We now seek a formula that relates |J (X)| to |J (Y )|. The zeta function of a derived

graph Y of a connected base graph X with voltage assignment by G, where G is

abelian, is by Theorem 3.1 in [HMSV19],

ζY (u) = ζX(u)
∏

χt 6=χ0

L(u, χt) (4.2)

where

L(u, χt)−1 = (1− u2)r−1 det(I − Aχtu+ (D − I)u2)

with the product of the χt over all the irreducible characters of G and where χ0 is

the trivial character, and Aχ (called the Artinized adjacency matrix) is defined to be

Aχ =
∑
σ∈G

χ(σ)A(σ)
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where (because X has no loops or multiple edges) the i, j-entry of A(σ) simplifies to

ai,j(σ) =


1 if vi,1 → vj,σ in Y

0 otherwise

where 1 = τ0 is the identity of G.

Since Y is the derived graph, ai,j(σ) is nonzero if and only if vi τ−→ vj in X and

σ = τ (in which case vj τ−1
−−→ vi and aj,i(σ−1) 6= 0 with σ−1 = τ−1). In other words,

the i, j-entry of A(σ) is nonzero for a unique σ in G, namely when σ equals the voltage

of the edge vi → vj. Thus

∑
σ∈G

σA(σ) = Aα (the voltage adjacency matrix).

Then for every irreducible character χ of G

Aχ = χ(Aα)

where χ(Aα) means evaluating every group element σ of the voltage adjacency matrix

at χ (and χ(0) = 0).

Now using Aα, the voltage adjacency matrix, in place of Aχt in L(u, χt)−1, we define

L(u, α)−1 = (1− u2)r−1 det(I − Aαu+ (D − I)u2) (4.3)
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to be the equivariant L-function. From this, we now define the reduced equivariant L

function

L∗(u, α)−1 = det(I − Aαu+ (D − I)u2). (4.4)

Then evaluate each group element entry in Aα at the degree-one character χt (the zero

entries remain zero). When this matrix is substituted in place of Aα in (4.3)—since

such evaluation is a ring homomorphism from Z[G] to C—the resulting function is

L(u, χt)−1; and likewise when we substitute the same matrix for Aα in (4.4) we get

L∗(u, χt)−1.

Now observe that the equivariant L-function can be factored as

L(u, α)−1 = (1− u)rX−1(1 + u)rX−1 det(I − Aαu+ (D − I)u2).

Expanding each of these terms of (u− 1), we get

(1− u)rX−1 = (−1)rX−1(u− 1)rX−1 and

(1 + u)rX−1 = (2 + (u− 1))rX−1

= 2rX−1 + 2rX−2(rX − 1)(u− 1) + · · ·+ (higher powers of (u− 1)).

The reduced equivariant L-function is of the form

c0 + c1(u− 1) + c2(u− 1)2 + · · · higher powers of (u− 1)
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where the coefficients ci are from the integral group ring Z[G].

So multiplying the above polynomials together, we get the lowest nonzero coeffi-

cient (which corresponds to the (u − 1)rX−1 factor, which we know is nonzero) to

be

(−1)rX−12rX−1c0.

For G 6= 1, letting u = 1 in formula (4.4) for L∗(u, α)−1, we see that c0 is exactly the

reduced Stickelberger element, ΘY/X . We then evaluate the degree-one irreducible

characters χt at the group element ΘY/X , which we denote by χt(ΘY/X), and take the

product to get ∏
χt 6=χ0

L(1, χt) =
∏

χt 6=χ0

(−1)rX−12rX−1χt(ΘY/X).

Lastly, in (4.2) we multiply by the coefficient corresponding to the L-function for X,

i.e., ζX , which equals (−1)(rX+1)2rX (rX−1)|J (X)| to get that the first non-vanishing

Taylor coefficient of ζY (y)−1 at u = 1 is

ζ∗Y (1) = (−1)rX+12rX (rX − 1)|J (X)|
∏

χt 6=χ0

(−1)rX−12rX−1χt(ΘY/X). (4.5)

Now note that for any voltage cover Y of X of degree d, we have rY − 1 = d(rX − 1).

Also, the number of irreducible characters of G (abelian) is d. By formula (4.1)

applied to Y , instead of X, we have

|J (Y )| = ζ∗Y (1)/((−1)rY −12rY (rY − 1)).
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Substituting the value of ζ∗Y (1) from (4.5) into this and simplifying gives the following

general formula.

Theorem 22. Let (X,G, α) be a voltage graph satisfying the hypotheses at the outset

of this subsection. Then the order of the Jacobian of the derived graph Y is

|J (Y )| = 1
d
· |J (X)|

∏
χt 6=χ0

χt(ΘY/X).

Note that the previous definitions of L and L∗ can be made for arbitrary characters

of G abelian, not necessarily irreducible.

In the next section, we let G = Zd be the cyclic group or order d.

4.1.1 Zeta Functions of Cyclic Graph Cover-

ings

Assume throughout this subsection that (X,G, α) is a voltage graph such that

(i) X is connected,

(ii) G = 〈τ〉 is cyclic of order d,

(iii) there is a closed walk in X with net voltage τ , and

(iv) rX − 1 6= 0.
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By Corollary 1, these first three conditions ensure that all covering graphs by Zd = 〈τ〉

are connected.

Fix the primitive dth root of unity λ = e2πi/d. Then every irreducible character of

Zd maps τ to a dth root of unity, i.e.,

χt : τ → λt, 0 ≤ t ≤ d− 1,

where χ0 is again the principal character of G.

Corollary 12. Let X satisfy the hypotheses at the outset of this section, with voltage

assignment by Zd. Then the order of the Jacobian of the derived graph Y is

|J (Y )| = 1
d
· |J (X)|

d−1∏
t=1

χt(ΘY/X),

where χt : τ 7→ λt.

Proof. This follows immediately from Theorem 22.

We now go on to show that when (X,Zd, α) is a voltage graph with α given by the

single voltage assignment, as in Definition 19, then the reduced Stickelberger element,

ΘY/X , is of a specific form. We first prove the following lemma.

Lemma 1. Let L be any symmetric n × n matrix with entries from Z with n ≥ 3,

and let x be an indeterminate over Z. Assume L has 1 in position 1,2 (hence also

in position 2,1) and detL = 0. Let Lx be the same matrix L except with the 1,2

entry replaced by x and the 2,1 entry replaced by 1/x, and let Θ(x) = detLx (so Lx

is a matrix with entries from the localized polynomial ring Z[x, 1/x], and Θ(x) is an
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integer polynomial in the variables x and 1/x). Then

Θ(x) = K(x− 1)2x−1 for some integer K.

Since Θ(x) = K(x− 1)2x−1, we also have K = 2Θ(2).

Note that the conclusions allow for the possibility that Θ is identically zero (i.e.,

K = 0).

Proof. By determinant formulas, it follows that det(Lx) is a linear function in the

variables x and x−1 — this follows, for example, by looking at the individual terms

in the symmetric group sum expansion for a determinant (see [DF04] Theorem 24,

Section 11.4), where only a single factor of x or 1/x or (x)(1/x) can appear in each

term. Thus we may write

Θ(x) = a+ bx+ cx−1 = (x−1)(ax+ bx2 + c) for some integers a, b, c.

Let q(x) be the numerator of the right hand side above. If q(x) = 0 then Θ(x) = 0

and so the lemma is true with K chosen to be zero. So assume q(x) 6= 0. Since

det(L) = 0, it follows that x = 1 is a root of q, and so all roots of q are rational

numbers. Since q is nonzero but has a root, it is not a constant polynomial.

If s is any nonzero root of q, then substituting x = 1/s into the (1,2 and 2,1) entries

of Lx results in the matrix Ltrx (the transpose of Lx) but with x evaluated at s in the

latter. Both evaluated matrices have the same determinant, hence 1/s must be a root

of q as well. Since q has at most two distinct roots, the only possibility for a different

root would be x = −1. But if Θ(x) = K(x2 − 1)/x, then replacing x by 1/x yields
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K(1 − x2)x−1 and so Θ would not satisfy the symmetry condition Θ(x) = Θ(1/x).

If q(x) had degree 1, then we would have Θ(x) = K(x− 1)/x, for some constant K.

But again Θ would not satisfy the aforementioned symmetry (transpose) condition

Θ(x) = Θ(1/x), a contradiction. Thus, Θ(x) = K(x− 1)2x−1 for some integer K.

Theorem 23. Assume X satisfies the hypotheses of this subsection and let Y be the

single voltage cover of X by the cyclic group Zd = 〈τ〉. Then the reduced Stickelberger

element may be written in the following form:

ΘY/X = K(τ − 1)2τ−1, for some nonzero integer K independent of d.

Proof. Let Lτ be the n×n voltage Laplacian matrix for the single voltage cover of X,

so Lτ has entries in the integral group ring Z[τ ]. The latter ring is the homomorphic

image of the polynomial ring Z[x] where the indeterminate x is evaluated at τ . Since

τ is a unit in the group ring, this algebra homomorphism induces a Z-algebra homo-

morphism from the localization Z[x, 1/x] to Z[τ ] which sends 1/x to τ−1 (see [DF04],

Theorem 36 and Examples 1 and 2 in Section 15.4). This further induces a Z-algebra

homomorphism from the n × n matrix ring over Z[x, 1/x] to the n × n matrix ring

over Z[τ ]. Since the determinant function is a polynomial in the entries of a matrix,

determinants over the former ring map to determinants over the group ring by eval-

uating x at τ and 1/x at τ−1. By invoking Lemma 1 and then evaluating x at τ we

obtain that

ΘY/X = K(τ − 1)2τ−1, for some integer K. (4.6)

The entries of Lx depend only on the Laplacian for X. By definition of single voltage
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cyclic cover, the determinant of Lτ likewise depends only on the Laplacian for X

and the choice of generator τ of the covering group. The above argument therefore

shows that the reduced Stickelberger element is either zero or it may be written in a

“canonical form”, where both the form and the integer constant K are independent

of the order, d, of the covering group (although d is inherent in the τ of this formula).

If ΘY/X = 0, then it would follow that |J (Y )| = 0 for all nontrivial (connected)

single voltage covering graphs Y of X by Corollary 12, a contradiction.

Remark:

The reduced Stickelberger element does depend on the choice of generator. Suppose

instead of using generator τ , we use µ = τa, where (a, d) = 1. Then writing the

reduced Stickelberger element in terms of τ , we get a different reduced Stickelberger

element–namely we get the reduced Stickelberger element

K(µ− 1)2µ−1 = K(τa − 1)2τ−a.

Note, however, that K does not depend on the choice of generator since for any single

voltage cyclic cover, we can write ΘY/X uniquely as a Z-linear combination of the

Z[G]−basis elements 1, τ, · · · , τ d−1. Then K is found to be the gcd of all coefficients

of the linear combination (since if you replace τ by τa, the gcd of all the coefficients

remains the same).

Corollary 13. Let X satisfy the hypothesis at the outset of this subsection and assume
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α is the single voltage assignment by Zd. Let K be as in Theorem 23. Then

|J (Y )| = |J (X)| · |K|d−1d.

Proof. By Corollary 12, we have that

|J (Y )| =
|J (X)|∏d−1

t=1
|K|(e2πit/d−1)2

e2πit/d

d

= |J (X)| · |K|d−1d2

d

= |J (X)| · |K|d−1d,

where by the factorization of zd−1
z−1 over C, the product of all (e2πit/d− 1)-terms in the

numerator simplifies to d2 and the product of e2πit/d in the denominator simplifies

to ±1.

The following corollaries verify Conjectures 1-4 part (iii).

Corollary 14. Let X = Kn with n ≥ 3 and with single voltage assignment by Zd.

Then

|J (Y )| = n(n−3)d+1 · (n− 2)d−1 · d.

Proof. As in Section 3.2, the hypotheses at the outset of this subsection are satisfied.

By Theorem 12, we know that the reduced Stickelberger element for these covers is

ΘY/X = (−(n− 2)n(n−3))(τ − 1)2τ−1. We also know that |J (X)| = nn−2. This yields

the desired result (which agrees with Theorem 14).

Corollary 15. Let X = Kn,n with n ≥ 2 and with the single voltage assignment by
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Zd. Then

|J (Y )| = n(2n−4)d+2(n− 1)2d−2d.

Proof. By Theorem 16, we know that the reduced Stickelberger element for these

covers is ΘY/X = −(n − 1)2n2n−4(τ − 1)2τ−1. Since |J (X)| = n2n−2, we get the

desired result.

Corollary 16. Let X = Kn,2 with n ≥ 2 be as in the hypotheses of Theorem 19.

Then

|J (Y )| = 2(n−2)d+1(n− 1)d−1nd.

Proof. By Theorem 19, we have that the reduced Stickelberger element is ΘY/X =

−2n−2(n− 1)(τ − 1)2τ−1. Since |J (X)| = 2n−1n, we get the desired result.

Corollary 17. Let X be the Petersen graph with single voltage assignment by Zd.

Then

|J (Y )| = 25d−1 · 52d+1 · d.

Proof. By Theorem 20, we know that the reduced Stickelberger element is ΘY/X =

−800(τ−1)2τ−1 = −25 ·52(τ−1)2τ−1. Since |J (X)| = 24 ·53, we get the desired result.
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Chapter 5

Towers of Voltage Graphs and Iwa-

sawa Theory

We begin Section 5.1 by defining a cyclic p-tower of graphs. We then extend this def-

inition to a cyclic voltage p-tower of graphs by using Theorems 8 and 9 from Section

2.4. From this, we get a “universal cover” of the tower by an infinite derived graph

that we call Xp∞ ; it is the derived graph obtained from the voltage graph (X,Zp, α),

where the voltage group is the additive p-adic integers and the voltage assignment α

is determined by the cyclic voltage p-tower. We call Xp∞ the completion of the tower.

We show that given a cyclic single voltage p-tower of derived graphs, we obtain

an order formula for the Jacobian of such a derived graph. We are then able to find

the exact power of a prime p that divides the order of the Jacobian of a derived graph

that lies in this tower. Moreover, we can explicitly write this power in terms of the

µ and λ-invariants (the Iwasawa Invariants), where µ is the exact exponent for the

p-power of K, the reduced Stickelberger coefficient, and λ = 1. We then illustrate
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this with some examples where we take the base graph to be Kn, Kn,n, Kn,2 (for some

specific values of n), and the Petersen graph.

We begin Section 5.2 by stating the main result of this chapter, Theorem 27, which

establishes the order of the finite p-Jacobians, Jp(Xm), of a cyclic voltage p-tower

of graphs. Before proving it, we develop the theory of Iwasawa in a graph theoretic

setting.

Sections 5.3 and 5.4 contain the culmination of the dissertation. In Section 5.3,

we present important definitions and results pertaining to Λ-modules. Then in Sub-

section 5.3.1, we specify the Λ-modules be finitely generated. In Subsection 5.3.2

we construct a finitely generated torsion Λ-module, which we call PicΛ. This finitely

generated Λ-module is the cokernel of the voltage Laplacian endomorphism on DivΛ,

that is annihilated by the reduced p-Stickelberger element Θp∞ .

Finally in Section 5.4 we prove the main theorem (Theorem 27) of this chapter;

it gives an Iwasawa growth formula for the orders of the p-Jacobians, Jp(Xm) as

m → ∞. The way in which Theorem 27 is proven is by relating quotients of Λ-

modules to quotients of R-modules, where R is the p-adic group ring of the voltage

group Zp, and where the finite quotients are isomorphic to Jp(Xm). As a corollary

to the main theorem, we show that the ranks of the Sylow p-subgroups, Jp(Xm) are

bounded as m approaches infinity if and only if p does not divide the reduced p-

Stickelberger element. In doing so, we see that the Iwasawa factors are related to the

reduced p-Stickelberger element via the characteristic polynomial of PicΛ. We con-
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clude this chapter with the example: single voltage p-towers over base graph X = Kn.

We determine the exact Iwasawa factors of the Sylow p-subgroup of the Jacobian for

every prime p.

Table 5.5 gives a list of definitions and terminology pertaining to Chapter 5, for

convenience of reference.

5.1 p-Tower Covering Graphs

We begin by defining a cyclic p-tower of graphs (note that this definition can be found

in section 4 of [Val20]). Throughout this section, we assume p is a fixed prime.

Definition 28. A cyclic p-tower of graphs above a base graph X is a sequence of

covering graphs

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

such that for m ≥ 0, the cover Xm/X is normal with Gal(Xm/X) ∼= Z/pmZ.

Note that form ≥ 0, this implies that the coverXm+1/Xm is normal withGal(Xm+1/Xm) ∼=

Z/pZ by the Fundamental Theorem of Galois Theory, along with the Third Isomor-

phism Theorem from [DF04].

We explicitly specify the given covering maps in the above tower (given by composing
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the successive covering maps):

πk,m : Xk −→ Xm for all k ≥ m

where πk,m = πt,m ◦ πk,t for all k ≥ t ≥ m.

For each m ≥ 0 let Gm = Gal(Xm/X0). Then the covering maps above induce

surjective group homomorphisms

Πk,m : Gk −→ Gm for all k ≥ m (5.1)

that are compatible with the Galois permutation actions of each Gi on Xi. This is

illustrated in Figure 5.1.
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X = X0

Xm

Xk

...

...

...

Gal(Xk/Xm)

Gm

Gk

Figure 5.1: Voltage p-tower

Now we specialize Definition 28 to voltage graphs, where we will make all of these

maps explicit.

Definition 29. A cyclic voltage p-tower of graphs above a base graph X, where rX −

1 6= 0, is a sequence of derived graphs

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

such that for m ≥ 0, Xm/X is a voltage graph with Gal(Xm/X) ∼= Z/pmZ.

Note that by Theorem 8, cyclic voltage p-towers are the same as cyclic p-towers in

the case where rX − 1 6= 0 and the Xm are connected for all m.
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Assume now we have a cyclic voltage p-tower as in Definition 29. We show how

Theorems 8 and 9 in Section 2.4 extend to towers, so we may choose notation that

describes the vertices, edges, voltage assignments and Galois actions on the graphs

Xm in compatible ways that are determined by the covering maps. (It suffices to

describe this inductively for just each Xm+1/Xm.) This choice of notation then leads

to a “universal cover” of the tower, by an infinite derived graph that we call Xp∞ .

By Theorems 8 and 9 and Figure 2.10 in Section 2.4, for every m ≥ 0 we have that

Gm is a quotient group of Gm+1, namely Gm = ∏
m+1,m(Gm+1) ∼= Gm+1/H, where

H is the unique subgroup Gal(Xm+1/Xm) of order p in Gm+1, and moreover, the

isomorphism is given by the natural projection map. Thus under the identification

Gm+1 = Z/pm+1Z we have H = pmGm+1 and Gm = Z/pmZ is obtained by reducing

elements g in Z/pm+1Z modulo pm to obtain elements in the group Z/pmZ.

Labeling vertices of Xm in a compatible way:

Theorem 9 has an explicit rendition as follows. Fix any vertex vi of X, and consider

the vertices over vi in the covers by the graphs Xm. For voltage covers of X by any

group G, the vertices in the fiber over vi are {vi,g | g ∈ G}. For each m ≥ 0, label

the elements Am in Gm with the integers from 0 to pm − 1 representing the least

nonnegative residue classes, written in their p-adic expansions:

Am = a0 + a1p+ · · ·+ am−1p
m−1 where all ai ∈ {0, 1, . . . , p− 1}. (5.2)

With this labeling for every index m, the natural projection map from Z/pm+1Z →
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Z/pmZ agrees with the covering map πm+1,m : V (Xm+1) → V (Xm) map on vertices.

Specifically, for a fixed vertex vi,Am ∈ Xm, the vertices vi,Bm+1 7→ vi,Am , where Bm+1

is any of the p residue classes with integer representatives

Bm+1 = Am + bmp
m for 0 ≤ bm ≤ p− 1.

This set of vertices in Xm+1 is the fiber of πm+1,m over vi,Am ∈ Xm.

The Galois group acts on vertices of each Xm in a compatible way:

By Theorem 8, for every m ≥ 0 the Galois action on the covers Xm of X is the

same as the voltage group action on the vertices of Xm, namely the (additive) regular

representation of Z/pmZ: for arbitrary Am as in (5.2)

b : vi,Am 7−→ vi,b+Am for each b ∈ Gm = Z/pmZ,

where b+Am is reduced mod pm. The above action does not depend on the choice of

congruence class representatives. The action of Gm+1 on Xm+1 is thus clearly equal

to the action of Gm on Xm after both the voltage group elements and voltage labels

have been reduced mod pm. (Alternatively, we may view Gm+1 as acting on both

graphs: faithfully on Xm+1 but with kernel equal to H = pmGm+1 on Xm; and this

action commutes with the covering map.)

Note that this explicit labeling can be chosen for any cyclic voltage p-tower. It is the

edges between vertices in each Xm that distinguish the towers from one another.

Compatible voltage assignments to the edges of X determined by the tower cover-
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ing maps:

Since each πm : Xm → X0 is a voltage graph with Galois group Gm = Gal(Xm/X0) ∼=

Z/pmZ, this means there is a voltage assignment

αm : E+(X) −→ Gm

that assigns voltages from Gm to each (oriented) edge of X. There must also be

compatibility of these assignments as described in Section 2.4 (in the proof Theorem

9). So for all k ≥ m the following diagram on the left below commutes:

αm : E+(X)

Xk

XmGm

αk : E+(X) Gk

Πk,m πk,m

This compatibility is most easily described by the voltage adjacency matrix: For each

m ≥ 0 the voltage adjacency matrix Aαm for Xm/X is an n×n matrix with i, j entry

αm(i, j) ∈ Gm ∪ {0}. Then for k ≥ m, the compatibility requires that when vi → vj

in X

Πk,mαk(i, j) = αm(i, j) for all 1 ≤ i, j ≤ n.

In other words, we can reduce the entries of Aαk (mod pm) to get the entries of Aαm .

Thus for each fixed i, j with 1 ≤ i, j ≤ n we get a sequence

α1(i, j)← α2(i, j)← α3(i, j)← · · ·
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where each αm(i, j) ∈ Z/pmZ and the arrows are given by the natural projection

homomorphism. Each of these sequences converges to an element of the additive

group of p-adic integers, Zp. Therefore we may let

α : E(X)+ −→ Zp by α(vi → vj) = lim
m→∞

αm(i, j). (5.3)

Definition 30. Given a cyclic voltage p-tower as in Definition 29, with each Xm

the derived graph for the voltage assignment αm : E(X)+ → Z/pmZ, let Xp∞ be the

derived graph obtained from the voltage graph (X,Zp, α), where the voltage group is

the (additive) p-adic integers and voltage assignment α is determined by the tower as

in (5.3). We call Xp∞ the completion of the tower.

Finally, given the completion, Xp∞ , of the voltage p-tower, define the intermediate

graphs Xm and covering maps Xm
Φm←− Xp∞ as follows. For each integer m ≥ 0, for

clarity let φm be the natural projection of Zp onto Zp/pmZp ∼= Z/pmZ (i.e., φm is

reduction mod pm for Zp). The vertices of Xm are defined to be

V (Xm) = {vi,φm(g) | 1 ≤ i ≤ n and g ∈ Zp},

and the edges of Xm are defined to be

E(Xm) = {vi,φm(g) ∼ vj,φm(g+α(i,j)) | g ∈ Zp and vi ∼ vj in X}.

The (infinite degree) covering maps Φm are now just given by “reduction mod pm”
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on the vertices and edges of Xp∞ as follows. Define

Φm : Xp∞ −→ Xm by Φm(vi,g) = vi,φm(g) 1 ≤ i ≤ m and g ∈ Zp.

When m = 0, the graph X0 is clearly isomorphic to X; and also there are clearly cov-

ering maps that are induced from the natural projections of Zp/pm+1Zp onto Zp/pmZp:

Xm+1 −→ Xm by vi,φm+1(g) 7−→ vi,φm(g) for 1 ≤ i ≤ n and g ∈ Zp.

By construction of α we have that φm+1(α(i, j)) maps to φm(α(i, j)) under the natural

projection homomorphism from Zp/pm+1Zp onto Zp/pmZp; so the displayed maps on

vertices are easily seen to take edges of Xm+1 to edges of Xm; and these maps are all

p-fold covers.

Finally, note that Zp acts (on the left) as graph automorphisms of both Xm and

Xm, for all m ≥ 0, where the kernel of this action is pmZp. The voltage group

Zp/pmZp ∼= Gm acts faithfully equivalent to the regular representation on each of the

fibers of Xm/X and likewise on Xm/X. These actions may be viewed as actions by

Zp, but with kernels equal to pmZp, and as such this Zp action commutes with all

covering maps.

The preceding discussion leads immediately to the following.

Theorem 24. Let X = X0 ← X1 ← X2 ← · · · ← Xm ← · · · be a cyclic voltage

p-tower, let Xp∞ be the completion of the tower, and for each m ≥ 0 let Xm be the

associated intermediate graphs. Then for all m ≥ 0 there are graph isomorphisms
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Xm → Xm, depicted as the horizontal maps in Figure 5.2, such that all the maps in

that figure commute and commute with the action of Zp as automorphisms of each

graph.

X0

Xm

Xk

∼=

∼=

∼=

Xp∞

...

...

...

X0

Xm

Xk

...

...

...

Figure 5.2: Cyclic voltage p-tower with completion Xp∞

Proof. The horizontal maps in Figure 5.2 are the obvious ones. Namely, given the

integer Am in (5.2) representing any residue class in Gm = Z/pmZ, view Am as a

p-adic integer; then define

V (Xm) −→ V (Xm) by vi,Am 7−→ vi,φm(Am), 1 ≤ i ≤ n.
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This does not depend on the choice of representative class for Am in Z/pmZ or the lift

of Am to a p-adic integer because Z/pmZ ∼= Zp/pmZp. The remaining details to check

in the proof, including compatibility of the action of Zp on all graphs with respect to

all these maps, are clear.

There is a partial converse to Theorem 24. Namely, given any voltage assignment

α : E(X)+ −→ Zp

we obtain a “cyclic voltage p-tower” X = X0 ← X1 ← X2 ← · · · by simply taking

Xm to equal Xm as above. However, depending on the choice of voltages, this tower

may not result in Galois (normal) covers, i.e., the graphs Xm may not be connected

(see Theorem 5). For example, if every edge has voltage zero, Xp∞ is evidently |Zp |

disjoint copies of X. The completion graph Xp∞ need not be connected even if all its

“finite homomorphic images” Xm are connected.

Before closing this subsection with some special towers and examples, we specify no-

tation that will be adopted henceforth for the completions. Because we will need to

incorporate the p-adic group ring of Zp in subsequent proofs, namely the ring Zp[Zp],

it would be confusing to have both p-adic coefficients and (additive) p-adic group

elements as well. For this reason we will henceforth write the voltage group Zp as

the multiplicative profinite group Γ, where, as a profinite group, it is cyclic: it is the

closure of an infinite (multiplicative) cyclic group 〈 γ 〉 under the p-adic metric topol-

ogy, for some γ. For example, we may take γ = 1 + p and Γ to be the multiplicative

subgroup 1 + pZp of the ring of p-adic integers. Another advantage of multiplicative

notation voltages is to avoid confusion in voltage Laplacian matrices (whose entries
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lie in the group ring) between a p-adic identity element entry (which would be the

p-adic zero in additive notation for the group Zp) versus a zero (integer) entry that

would appear in position i, j when vi is not adjacent to vj.

Notation:

For fixed γ we may write each element of Γ in the form γA for some p-adic integer A.

(This can be viewed as the usual way of relating additive and multiplicative notation;

or as the p-adic exponential function to “base γ”.) Now we shall write Xp∞ as the

derived graph of the voltage graph (X,Γ, α), but where the vertex indices are written

additively (in the second index) but the multiplicative voltage group Γ acts (on the

left) as automorphisms of the graph by

γA : vi,g 7−→ vi,A+g for all 1 ≤ i ≤ n and g ∈ Zp.

Next, we specialize Definition 29 to single voltage graph towers.

Definition 31. A cyclic single voltage p-tower of graphs above a base graph X, where

rX − 1 6= 0, is a sequence of derived graphs

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

such that for m ≥ 0, Xm/X is a single voltage graph with Gal(Xm/X) ∼= Z/pmZ.

By Definition 19 and Corollary 8, and by connectedness of each Xm we must have

that each αm(1, 2) reduces mod pm to a generator of (the additive group) Z/pmZ;

and so the inverse limit of these elements is some p-adic integer that must generate

Zp as a topologically cyclic group. If we write that p-adic generator for Γ as τ , then
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we have the following edge in X :

v1 v2
τ

where τ projects to a generator for the cyclic group Gm of order pm, for all m. So we

must also have the following edge in X:

v2 v1
τ−1

For each m, since Xm/X is a single voltage cyclic cover, Corollary 8 forces the in-

termediate covering graphs Xi/X for i = 1, 2, · · · ,m to also be single voltage cyclic

covers of X, and so the edge in Xi that has the nontrivial voltage is uniquely deter-

mined by the nontrivial voltage edge in Xm, regardless of the labeling of edges in Xi.

(Since the Xi are all connected, the nontrivial voltage edge in Xm cannot project to

an edge with trivial voltage in Xi, by Corollary 1.)

From this, we get the following theorem:

Theorem 25. Let

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

be a cyclic single voltage p-tower of derived graphs over base graph X, where all Xm

are assumed to be connected. Then we have that

|J (Xm)| = |J (X)||K|pm−1pm
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where K = 2Θ(2) is as in Lemma 1 and Theorem 23.

Proof. By Corollary 13, we have that

|J (Y )| = |J (X)| · |K|d−1d

for all covering graphs Y/X with single voltage assignment by Z/dZ. Then because

Xm/X is a voltage graph for all m by Theorem, 9, we get the desired result.

Corollary 18. For the same hypotheses as in Theorem 25, we have that the exact

power of p dividing |J (Xm)| is given by pem, where

em = µpm + λm+ ν

where µ is the exact exponent for the p-power of K, λ = 1 and ν = β − µ, where β is

the exact exponent for the p-power of |J (X)|.

Proof. Let pβ be the exact power of p dividing |J (X)| and let pµ be the exact power

of p dividing K. Then we have that the exact power of p dividing |J (Xm)| is given by

pem = pβ(pµ)pm−1pm

= pβ+µpm−µ+m

= pµp
m+m+(β−µ)

Note that the definition of single voltage cover allows the possibility that the inverse

limit generator τ , above, may be an irrational p-adic integer; however, the orders
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of the Jacobians are independent of the specific generator itself. Indeed neither the

completion, Xp∞ , nor the p-adic single generator are used at all in the proof of The-

orem 25.

Example 7.

(a) Let X0 = K10 and p = 5. Then we have that the exact p-power in |J (X0)| =

nn−2 is 58. The exact p-power in |K| = (n− 2)nn−3 is 57 (where K is given by

Theorem 12). Thus

em = 7 · 5m +m+ 1

for m = 0, 1, 2, . . . .

(b) Let X0 = K6,6 and p = 3. Then we have that the exact p-power in |J (X0)| =

n2n−2 is 310. The exact p-power in |K| = (n− 1)2n2n−4 is 38 (where K is given

by Theorem 16). Thus

em = 8 · 3m +m+ 2

for m = 0, 1, . . . .

(c) Let X0 = K16,2 and p = 5. Then we have that the exact p-power in |J (X0)| =

2n−1n is 50. The exact p-power in |K| = 2n−2(n− 1) is 51 (where K is given by

Theorem 19). Thus

em = 5m +m− 1

for m = 0, 1, . . . .

(d) Let X0 be the Petersen graph and p = 5. Then we have that the exact p-power

in |J (X0)| = 24 · 53 is 53. The exact p-power in |K| = 25 · 52 is 52 (where K is
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given by Theorem 20). Thus

em = 2 · 5m +m+ 1

for m = 0, 1, . . . . Note for all other odd primes, we have that the exact p-power

in |J (Xm)| is m.

5.2 Iwasawa Theory: The Main Result

and The Iwasawa “Program”

Iwasawa worked with Zp-extensions–infinite extensions K∞ of a number field K with

Galois group isomorphic to the additive p-adic integers, Zp, for some prime p. By using

general theory of Zp[[Γ]]-modules, where Γ = Gal(K∞/K), he was able to unravel

the structure of the inverse limit of the p-Sylow subgroups of the class groups. This

lead to him proving the following theorem, which can be found in [Was82].

Theorem 26. Let K∞/K be a Zp-extension. Let pem be the exact power of p dividing

the order of the class group of Km, where Km is the fixed field of the subgroup Γpm .

Then there exist nonnegative integers λ, µ and an integer ν such that

em = µpm + λm+ ν

for all m ≥ m0 for some m0 ≥ 0.

We prove the analog of this in the graph theory setting:
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Theorem 27. Let

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · ·

be a cyclic voltage p-tower, where all Xm are connected. Let Jp(Xm) be the Sylow

p-subgroup of J (Xm). Then there are nonnegative integers µ and λ and an integer ν

such that

|Jp(Xm)| = pem where em = µpm + λm+ ν

for all m ≥ m0 for some m0 ≥ 0.

This will be proven in Section 5.4.

In contrast with Theorem 27, [Val20] considers a Galois tower over a base graph

X that is allowed to be a multigraph; however, his results also require X to be a reg-

ular multigraph (i.e., every vertex of X has the same valence, so the degree matrix,

DX , is a scalar matrix). Using zeta-function and character-theoretic methods similar

to those in our Chapter 4, he obtains both upper and lower asymptotic bounds for the

orders of the Sylow p-subgroups of the Jacobians in his towers, rather than an exact

asymptotic (Iwasawa-type) formula. [Note: He calls his towers “abelian p-towers”

although they are the same as our cyclic p-towers, since his definition also requires

the Galois group of Xm/X to be cyclic of order pm.] So this work is complementary

to [Val20], and uses different strategies and methodologies.

We now describe the “Iwasawa Program” in a graph theoretic setting. From the
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cyclic voltage p-tower as in Figure 5.2

X = X0 ← X1 ← X2 ← · · · ← Xm ← · · · ← Xp∞ ,

we get an inverse system of corresponding Galois groups

Γ1 ← Γ2 ← Γ3 ← · · · ← Γm ← · · · ← Γ

where the inverse limit, Γ, is the additive p-adic integers, Zp (which may also be

viewed as the multiplicative profinite cyclic p-group, as described above). So we let

Γ = 〈γ〉, where γ ∈ Γ is a fixed topological generator. Then each g ∈ Γ can be written

uniquely as g = γα, where α ∈ Zp. Then under the above isomorphism, we may take

1 ∈ Zp to correspond to γ ∈ Γ since 1 generates Z which is dense in Zp. Now because

closed subgroups of Zp are of the form pmZp, the closed subgroups of Γ are of the

form Γpm . Let Γm = Γ/Γpm ∼= Zp/pmZp ∼= Gal(Xm/X0). So Γm is the cyclic group of

order pm generated by the image of γ. Now because Γm acts on the Jacobian of Xm,

where the action is induced by the natural (left) action on the vertices, it follows that

J (Xm) is a Z[Γm]-module.

The covering map

Xm+1 → Xm

induces the surjective group homomorphism

J (Xm+1)→ J (Xm)
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(surjectivity follows since Xm+1/Xm is a voltage graph and by Theorem 4.10 in

[HMSV19] there is a surjection from J (Xm+1) to J (Xm)). From this, we get an-

other inverse system

J (X0)← J (X1)← J (X2)← · · · ← J (Xm)← · · · ← J∞

where J∞ = lim←−J (Xm).

Since J (Xm) is a finite abelian group for all m, this induces an inverse system on

their Sylow p-subgroups, Jp(Xm), i.e.

Jp(X0)← Jp(X1)← Jp(X2)← · · · ← Jp(Xm)← · · · ← Jp(Xp∞)

where we denote lim←−Jp(Xm) = Jp(Xp∞), which by definition, is a profinite p-group.

Since each of the finite Jp(Xm) is a Zp-module it follows that the inverse limit Jp(Xp∞)

is also a Zp-module. Likewise, since there is a Γ-action on each finite Jp(Xm), there

is a Γ action on the inverse limit, Jp(Xp∞).

Now for m ≥ n ≥ 0 there is a natural map

φm,n : Zp[Γm]→ Zp[Γn]

induced by the map

Γm → Γn.
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For the indeterminate T , we also have that

Zp[Γm] ∼= Zp[T ]/((1 + T )pm − 1)

where this isomorphism is defined by

γ mod Γpm 7→ 1 + T mod ((1 + T )pm − 1).

Since (1 + T )pn − 1 divides (1 + T )pm − 1, there is a natural map in the polynomial

rings corresponding to φm,n. So for the inverse system

Zp[Γ1]← Zp[Γ2]← Zp[Γ3]← · · · ← Zp[Γm]← · · ·

we have that the inverse limit lim←−Zp[Γm] with respect to the maps φm,n is Zp[[Γ]] = Λ,

the profinite group ring of Γ, as shown in [Was82].

Note that the ordinary group ring Zp[Γ] is contained in Λ since an element α ∈ Zp[Γ]

gives a sequence of elements αn ∈ Zp[Γn] such that φm,n(αm) = αn. However, Λ con-

tains more elements. [Was82] shows that Λ is the compactification of Zp[Γ], under the

profinite topology defined by the open subgroups Γm.

The following two useful theorems about Λ = Zp[[Γ]] can be found in [Was82]. These

theorems will referenced in the sections that follow.

Theorem 28. Zp[[Γ]] ∼= Zp[[T ]] with the isomorphism being induced by γ 7→ T + 1.

Theorem 29. Λ = Zp[[Γ]] is a Noetherian local ring.
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Remark:

Zp[Γ] is not Noetherian. Let G = Γ ∼= Zp, the additive group of p-adic integers. Then

G has an infinite strictly increasing chain of subgroups,

H1 < H2 < H3 < · · · ,

which can be seen explicitly by letting Hi = 1
qi
Z, where q is a fixed prime not equal

to p (hence is unit in Zp). Let S = Zp. Then S[G] = Zp[Γ] denotes the usual group

ring over S. Then for all i, there are ring homomorphisms

S[G] −→ S[G/Hi]

obtained by just reducing the elements of G modulo Hi and extending this group

homomorphism by S-linearity to a ring homomorphism on all of S[G].

Let Ki be the kernel of the ith homomorphism above. Then

K1 ⊂ K2 ⊂ K3 ⊂ · · ·

is a strictly increasing chain of ideals, where the containments are proper since the

subgroups Hi are all distinct. Thus, S[G] does not satisfy the A.C.C. on ideals.

We now present the following lemma, which will be used in proving Theorem 27

in Section 5.4.

Lemma 2. If A ∼= Zp as a Zp-module and B is a Zp-submodule of A, then either
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B = 0 or A/B is finite.

Proof. By the Fundamental Theorem of Finitely Generated Modules over a PID (see

[DF04], Section 12.1, Theorem 4) applied to the cyclic module A, there is a generator

a of A and element β ∈ Zp such that βa generates B. Multiplying a and β by the

same unit (= 1/a) we may assume a = 1, so (with the new β) we have B = βZp.

If β = 0 then B = 0. If β 6= 0 then β = upk for some unit u and k ≥ 0; and then

A/B ∼= Zp/pkZp is finite.

If we followed the “Iwasawa program” directly, we would try to show that the Sylow

p-subgroup of J∞ is a finitely generated torsion Λ-module. However, in the next few

sections we take a somewhat different tack. Since our towers are voltage towers, we

can use divisors to create modules over Zp[Γ] and then over Λ to construct a finitely

generated torsion Λ-module that maps onto each finite Jacobian, which we will do in

Subsection 5.3.2. In this way, we can ultimately prove our Main Theorem, Theorem

27, on the growth of the orders of these finite Jacobians. So we achieve the same goal

as the Iwasawa program via this route.

For the moment we leave aside the question as to whether our Jacobian Λ-module,

constructed via divisors actually coincides with the inverse limit of the Sylow p-

subgroups of the finite Jacobians, Jp(Xp∞), since there may be unresolved issues of

inverse limits and tensor products.

In the next section, we give important results and definitions pertaining to Λ-modules.

Many of the modules over Λ that occur in Iwasawa theory are finitely generated tor-

sion modules. Thus, in Subsections 5.3.1 and 5.3.1, the Λ-modules that we consider
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will be finitely generated.

5.3 Iwasawa Modules

The overall strategy for the proof of Theorem 27 is modeled on a “method of descent”

that is reminiscent of the techniques used in the Inverse Galois Groups problem via

the “rigidity method.” The latter problem is to show that every finite group is a Ga-

lois group over the rational numbers, Q. An excellent reference for the Inverse Galois

Groups problem is [Vol96]. For a general overview of significant results pertaining to

it, [RR15] is another great reference.

The general approach to the Inverse Galois Groups problem, undertaken by Thomp-

son, Belyi, Fried and others, is to first realize an arbitrary finite group as a Galois

group over the analytic field C(t), where t is transcendental over the complex num-

bers. It can be shown that every finite group G is a Galois group of some finite

extension K of C(t). This result is “classical,” and its proof relies on the theory of

branched covers of Riemann surfaces: The fields K are function fields of Riemann

surfaces; and there are topological covers of the Riemann sphere with any specified

ramification type–hence with any Galois group type–by the Riemann Existence The-

orem.

Any given Galois group that is realized over C(t) can then be “descended” to be a

Galois group over a field that is the “algebraic analogue of C(t),” namely as a Galois

group over Q(t), where Q is the algebraic closure of Q in C (again t is transcendental
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over Q). The field Q does not have the same completeness/analytic properties as

C, which are essential to the first step; however it is “closer” to the ultimate goal of

realizing G over just Q(t).

The second step, descent from Q(t) to Q(t), involves the so-called “rigidity method.”

It applies, unfortunately, only to certain (nearly simple) groups; and so the full Inverse

Galois Groups problem cannot entirely be solved by these two successive descents.

The final descent from realizing a Galois group over Q(t) to realizing it over Q itself

is achieved by the classical Hilbert Irreducibility Theorem, which says that there are

infinitely many specializations (i.e., evaluations) of t to a rational number that maps

Q(t) to Q and “preserves” a given Galois extension.

In our setting we begin with a given cyclic voltage p-tower, which has an associ-

ated tower of Jacobian p-subgroups, Jp(Xm). By the methods of Section 5.1, we first

pass to the completion of this tower, Xp∞ . This is the analog of the “algebraic stage”

where Q(t) was the corresponding main actor in the Inverse Galois problem. The

“profinite Jacobian” of Xp∞ carries the necessary information about the finite Jaco-

bians: it is a subgroup of the Picard group, DivR/PrR, of Xp∞ (namely MR/PrR),

where R = Zp[Γ] is the usual group algebra of Γ with coefficients from Zp. It is, how-

ever, difficult to work directly with the “algebraic” divisor group, DivR = DivZp(Xp∞),

and its quotients. They are modules over the non-Noetherian (and incomplete) ring

R (see the remark after Theorem 29). We circumvent this shortcoming by passing to

the larger, complete ring, the Iwasawa algebra Λ = Zp[[Γ]], which plays the role anal-

ogous to C(t) in the Galois group problem. In contrast, Λ is a complete, Noetherian,
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Unique Factorization Domain.

Moreover, there is a “classical” general Structure Theorem for finitely generated mod-

ules over Λ, namely Theorem 30. To avail ourselves of this, we extend scalars of DivR

and PicR to obtain modules over Λ, denoted by DivΛ and PicΛ respectively. This

Structure Theorem (Theorem 30) then applies to these Λ-modules. Indeed, the Iwa-

sawa Structure Theorem plays the same role for PicΛ as the Smith Normal Form

Theorem does for PicZ(X), for any graph X. The “guts” of the proof of Theo-

rem 27 now involves a two-fold descent to carry the Iwasawa decomposition from the

“analytic” level of modules over Λ, to the “algebraic” level of modules over Zp[Γ],

and finally to the “finite” layers level, where we ultimately achieve our (asymptotic)

growth formulas for the finite p-Jacobians, Jp(Xm).

One technical obstacle is to pick out the correct “divisors of degree zero” submodule

of the Λ-module DivΛ (recall that we need to take the quotient of the submodule of

divisors of degree zero by principal divisors in order to obtain the Jacobian). The

naïve approach of taking a degree map on DivΛ with respect to the chosen basis of

divisors for this free module does not work (that quotient is too big). It turns out

that the module we denote asMΛ is the right choice—it is basically divisors of degree

zero together with the augmentation ideal of Λ times all divisors.

The key result that undergirds the technical aspects of the first stage descent proof is

that certain finite quotients of the “analytic” ring Λ are isomorphic to corresponding

quotients of the “algebraic” ring R (see Proposition 13). This generalizes from rings
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to the modules that we need to “descend” (Proposition 14). The descent from the

“algebraic” modules over R to the finite modules over Zp is achieved by “reducing

modulo p,” once we precisely determine what the kernels of these reduction maps are,

as well as their relationships to MR and PrR. Ultimately, a variant of the classical

Iwasawa Decomposition Theorem—the one in our Theorem 32—exactly matches the

setup we have maneuvered to, and it provides the desired conclusion.

We begin by defining what it means for two Λ-modules to be pseudo-isomorphic.

We then define when a nonconstant polynomial is distinguished. This leads the way

to results (in particular, Proposition 14 and Corollary 19) that will be used in proving

the claims in Section 5.4.

Definition 32. Two Λ-modules M and M ′ are said to be pseudo-isomorphic, written

M ∼M ′

if there is a homomorphism M →M ′ with finite kernel and co-kernel.

Definition 33. A nonconstant polynomial P (T ) ∈ Λ

P (T ) = T n + an−1T
n−1 + · · ·+ a0

is called distinguished if p | ai for all 0 ≤ i ≤ n− 1.

The following proposition can be found in [Ouy] as Corollary 2.4.
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Proposition 13. Let F (T ) be a distinguished polynomial in Zp[T ]. Then

Zp[T ]/F (T )Zp[T ] ∼= Zp[[T ]]/F (T )Zp[[T ]],

where the isomorphism is as Zp[T ]-modules. The isomorphism is the natural one,

namely for r ∈ Zp[T ], the coset r + F (T )Zp[T ] maps to r + F (T )Zp[[T ]].

Let Λ = Zp[[Γ]] and fix a topological generator γ for Γ; so by Theorem 28 the

map γ 7→ T + 1 extends to an isomorphism from Λ to Zp[[T ]]. Let Z = 〈 γ 〉 be

the (abstract, not topological) cyclic group generated by γ; so Z ∼= Z, the infinite

cyclic group. Under this isomorphism the polynomial ring Zp[T ] corresponds to the

p-adic integral group ring Zp[Z] = Zp[γ]. For m ≥ 0 let ωm = γp
m − 1 and let

ηm = 1 + γ + · · ·+ γp
m−1.

Lemma 3. For m ≥ 1 both ωm and ηm map to distinguished polynomials in Zp[T ].

Proof. By definition, ωm maps to (T + 1)pm − 1. Thus

(T + 1)pm − 1 ≡ (T pm + 1pm)− 1 ≡ T p
m (mod pZp[T ]),

which establishes the first claim. Since ωm = (γ − 1)ηm in the Unique Factorization

Domain Zp[γ], and since γ−1 7→ T , we have ηm 7→ T p
m−1 (mod pZp[T ]), which gives

the second claim

Note: this works for ω0 = γ − 1 too.

Let R = Zp[Γ]. Fix m ≥ 0.
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Definition 34. Let D be any Λ-module and let B be any subset of D. For every

m ≥ 0, define

ΩD
m(B) = B ∩ ωmD.

Define Rm = R/ΩΛ
m(R) = R/R ∩ ωmΛ.

In the special case when B is an R-submodule of D (where D is considered as an

R-module), we have that ΩD
m(B) is an R-submodule of B containing ωmB.

The sets ΩD
m(B) define relatively open subsets of B in the “ω-adic topology” on

D. They obey the appropriate transitive property: If B and C are subset of D with

C ⊆ B, then

ΩD
m(B) ∩ C = ΩD

m(C).

It is not true in general that ωmB ∩ C = ωmC however.

Proposition 14. Let D be a Λ-module, let A be any Λ-submodule of D and let B be

any R-submodule of A, where A is considered as an R-module. Then the map

φ : B/ΩD
m(B) −→ A/ΩD

m(A) by φ(x+ ΩD
m(B)) = x+ ΩD

m(A)

is a well-defined and injective R-module homomorphism. If B contains a set of Λ-

module generators for A, then φ is an isomorphism and A = B + ΩD
m(A); and if

additionally ωmD ⊆ A then A = B + ωmD.

Proof. We first simplify notation by denoting ΩD
m(C) by just Ωm(C) for every subset

C of D throughout the proof. The map B → A/Ωm(A) by x 7→ x + Ωm(A) is

a well-defined R-module homomorphisms, and since Ωm(B) ⊆ Ωm(A), its kernel
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clearly contains Ωm(B). This map therefore factors through B/Ωm(B), giving the

homomorphism φ. We also have

kerφ = {x+ Ωm(B) | x ∈ B and x+ Ωm(A) = 0 + Ωm(A)}

= {x+ Ωm(B) | x ∈ B and x ∈ Ωm(A)}

= (B ∩ Ωm(A))/Ωm(B)

= (B ∩ (A ∩ ωmD))/Ωm(B)

= (B ∩ ωmD)/Ωm(B) = Ωm(B)/Ωm(B) = 1,

so φ is injective. It remains to show if B contains a set of Λ-module generators for

A, then φ is surjective. Assuming this hypothesis, every y ∈ A can be written as

y = α1b1 + · · ·+ αnbn, for some α1, . . . , αn ∈ Λ and b1, . . . , bn ∈ B.

By Proposition 13 and Lemma 3, for each αi there is some ri ∈ Zp[γ] ⊆ R such that

αi − ri ∈ ωmΛ. Let y′ = r1b1 + · · ·+ rnbn ∈ B. By construction,

y − y′ = (α1 − r1)b1 + · · ·+ (αn − rn)bn ∈ A ∩ (ωmΛ)B ⊆ A ∩ ωmD = Ωm(A).

Thus φ(y′ + Ωm(B)) = y′ + Ωm(A) = y + Ωm(A), and so φ is surjective, hence an

isomorphism. Also, surjectivity of φ implies that A = B+ Ωm(A). If ωmD ⊆ A, then

Ωm(A) = ωmD, so the last assertion holds too.
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Corollary 19. For R = Zp[Γ], we have that φ induces an R-module isomorphism

Rm
∼= Zp[Γm].

Proof. As in Definition 34, we have Rm = R/Ωm(R) = R/(R ∩ ωmΛ). Now Zp[T ]

corresponds to Zp[γ] in the isomorphism between Zp[[T ]] and Λ, where γ is a fixed

topological generator for Γ. So we have

Rm = R/(R ∩ ωmΛ) by definition

∼= Λ/ωmΛ by Proposition 14

∼= Zp[γ]/(ωm) by Proposition 13

∼= Zp[γ]/(γpm − 1)

∼= Zp[Γm],

where the last isomorphism follows since Zp[γ]/(γpm − 1) is isomorphic to the group

ring of the cyclic group Z/pmZ ∼= Γm. Hence Rm
∼= Zp[Γm].

In the next subsection, we now specify our Λ-modules to be finitely generated. The-

orem 32 will be used in Section 5.4 to ultimately prove Theorem 27.

5.3.1 Finitely Generated Λ-Modules

The following theorem can be found in [Was82] as Theorem 13.12.

Theorem 30. [Structure Theorem for Iwasawa modules] For any finitely generated
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Λ-module M, we get the following pseudo-isomorphism:

M ∼ Λr
(
⊕si=1Λ/(pki)

)
⊕
(
⊕tj=1Λ/(gj(T )mj)

)

where r = rank(M), s, t, ki and mj ∈ Z and gj is distinguished and irreducible. This

decomposition is uniquely determined by M . If M is a torsion module, then r = 0.

We can see where the order formula comes from by examining the relevant finite

quotients of the individual factors in Theorem 30. These may be found in [Was82],

Section 13.3.

Case 1) M = Λ/(pµ) :

Here M/ωmM is isomorphic to Zp[Γm], which is an abelian group isomorphic to

(Z/pµZ)pm . It has order pµpm and rank pm.

and

Case 2) M = Λ/(g(T )) for g a distinguished polynomial of degree λ :

Here M is isomorphic to Zp[T ]/g(T )Zp[T ], which is isomorphic to the Zp-module of

polynomials over Zp of degree ≤ λ; so, for sufficiently large m, M/ωmM has a sub-

group of constant index, c, that is isomorphic to (Z/pmZ)λ. It has order pmλ+c, and

rank ≤ λ+ c.

Definition 35. As in the notation of Theorem 30, we define the Iwasawa invariants

of M by

µ =
s∑
i=1

ki and λ =
∑
j

mj deg gj.
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Definition 36. Let M be any finitely generated torsion Λ-module with pki and gmjj ,

as in Theorem 30. The characteristic polynomial of M , denoted by Char(M), is the

product:

Char(M) = pk1+···+ksgm1
1 · · · gmtt ,

where Char(M) = 1 if M is finite.

We record some basic facts about finitely generated torsion Λ-modules. These may

be found in [For20], Section 1.1.

Proposition 15. Let P be any finitely generated torsion Λ-module.

1. The relation “pseudo-isomorphism” is an equivalence relation on any set of

finitely generated torsion Λ-modules.

2. For any Λ-moduleM , the characteristic polynomial is an invariant of the pseudo-

isomorphism equivalence class of M .

3. If M is a submodule of P , then Char(P ) = Char(M)Char(P/M). In particular,

Char(M)
∣∣∣Char(P ).

The following Theorem can be found in [Sha] as Theorem 2.4.7. In it, O is a valuation

ring of a p-adic field. We simplify his statement by taking O = Zp.

Theorem 31. Let M be a finitely generated, torsion, Λ-module, and let n0 ≥ 0 be

such that Char(M) and ωm,n0 = ωm/ωn0 are relatively prime for all n ≥ n0. Set

λ(M) = λ and µ(M) = µ. Then there exists an integer ν such that

|M/ωm,n0M | = qem where em = µpm + λm+ ν
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for all sufficiently large n ≥ 0.

This theorem is used to prove Theorem 32. But first we need an elementary lemma

to circumvent an extraneous hypothesis in Theorem 31. We phrase this lemma in the

language of elementary number theory rather than ideals; here “divides”, “gcd” etc.

means “up to associates”.

Lemma 4. Let U be any Unique Factorization Domain and let d ∈ U with d 6= 0.

Suppose {am}∞m=0 is any sequence of nonzero elements of U with am
∣∣∣ am+1 for all

m ≥ 0. Then there exists some n0 ≥ 0 such that

gcd(an0 , d) = gcd(am, d) for all m ≥ n0, and

gcd(am/an0 , d) = 1 for all m ≥ n0.

Proof. This is an easy exercise. The key point is that d has only finitely many divisors,

so the chain of gcd(am, d) must stabilize after finitely many steps.

Theorem 32. Let P be a nonzero finitely generated torsion Λ-module. Let Pm =

ωmP , for all m ≥ 0. Assume there is a Λ-submodule N of P such that Pm ⊆ N and

|N/Pm | < ∞, for all m ≥ 0. Then there are nonnegative integers µ and λ and an

integer ν such that

|N/Pm | = pem where em = µpm + λm+ ν,

for all m ≥ m0, for some constant m0 ≥ 0.

Proof. First let d = Char(P ) and apply Lemma 4 in U = Λ to am = ωm, for all

m ≥ 0. Let n0 be as provided by the conclusion of that lemma. For any m ≥ n0,
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define ωm,n0 = ωm/ωn0 ∈ Λ. Let M = Pn0 .

Note that for all m ≥ n0 we have

ωm,n0M = (ωm/ωn0)(ωn0P ) = ωmP = Pm.

By hypotheses then, for all m ≥ n0,

|M/ωm,n0M | = |Pn0/Pm |

= |N/Pm|
|N/Pn0 |

≤ |N/Pm | <∞.

By Lemma 4 we have that ωm,n0 = ωm/ωn0 is relatively prime to Char(P ) = d, for

all m ≥ n0. By Proposition 15(3) we have that ωm,n0 is relatively prime to Char(M)

as well.

We now have the hypotheses of Theorem 31 above. This theorem proves that there

are µ, λ, and some ν ′ such that

|M/ωm,n0M | = pem where em = µpm + λm+ ν ′,

for all m greater than or equal to some fixed m0 ≥ n0.
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Now, as noted above, ωm,n0M = Pm, and so for all m ≥ m0, by Lagrange we have

|N/Pm | = |N/Pn0 | · |Pn0/Pm |

= |N/M | · |M/ωm,n0M |

= pk · pem where pk = |N/M | and em = µpm + λm+ ν ′.

Finally, let ν = k + ν ′ to obtain the conclusion to the theorem.

The goal of the next subsection is to construct a finitely generated torsion Λ-module,

P = PicΛ. We will then apply Theorem 32 to PicΛ in Section 5.4.

5.3.2 Constructing a Finitely Generated Λ-Module

Let R = Zp[Γ] be the usual group ring of Γ with coefficients from Zp. The objects

we are concerned with were described in Section 2.5, so the reader may wish to re-

view this section first. For the given voltage p-tower let Xp∞ be its completion, so

by Theorem 24 we may henceforth identify the intermediate graphs of Xp∞/X with

corresponding graphs in the tower.

Fix the following subset of Xp∞ :

B = {vi,0 | 1 ≤ i ≤ n},

where 0 is the additive identity of Zp, so these vertices are taken from the “zeroth

sheet”. We fix the identification of X and X0 with B by vi is identified with vi,0.
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We first take the free Z-module on basis B, DivZ(X), and extend scalars (see [DF04],

Section 10.4, Corollary 18) to the free Zp-module with the same basis, now viewed

over Zp. Denote this module by DivZp(X0). We can do likewise for each of the graphs

Xm and for Xp∞ too. We obtain the free Zp-modules of divisors

DivZp(Xm) = Zp ⊗Z DivZ(Xm), m ≥ 0

DivZp(Xp∞) = Zp ⊗Z DivZ(Xp∞).

Now for every m ≥ 0, each DivZ(Xm) is a free Z[Γm]-module on the set B too,

once we consider the group indices for vertices in Xm to be p-adic indices reduced

to Zp/pmZp ∼= Z/pmZ (as in Theorem 24); and so DivZp(Xm) is a free module of

rank n over Zp[Γm]. We may do likewise for Xp∞ to obtain that DivZp(Xp∞) is a free

R-module, also of rank n (on basis B). In order to emphasize the free, rank n nature

of these respective modules, we adopt the following notation:

DivRm = DivZp(Xm) and DivR = DivZp(Xp∞).

Since DivRm = DivZp(Xm) is a free Zp-module on the basis of vertices of Xm,

{vi,g | 1 ≤ i ≤ n, g ∈ Γm}, we may define the usual degree zero divisors with respect

to this Zp-basis, and denote this by

Div0
Zp(Xm) =

∑
i,g

ai,gvi,g | ai,g ∈ Zp and
∑
i,g

ai,g = 0


where these sums are for 1 ≤ i ≤ n and g ∈ Γm.
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Next we extend scalars from R to Λ. Since DivR is a free R-module of rank n,

its extension is a free Λ module of rank n, denoted by

DivΛ = Λ⊗R DivR.

Since R is a subring of Λ we may simply view the elements of DivΛ as Λ-linear com-

binations of B and DivR as the subset of these consisting ofR-linear combinations of B.

Next, as in Section 2.5, we define the Laplacian endomorphism:

Lp∞ : DivR −→ DivR by Lp∞(vi,0) = pi,0 1 ≤ i ≤ n,

where pi,0 (as in Section 2.5) is the principal divisor “based at vi,0.” This is extended

by R-linearity to all of DivR. Because Γ acts transitively on vertices in each fiber

of Xp∞/X, as usual we have that the image of Lp∞ is the Zp-span of the set of all

principal divisors. We encapsulate this by the following notation (definition):

PrR = Lp∞(DivR).

By taking the “same map”, but defined on the basis B of the free Λ-module DivΛ we

denote this by

L̂p∞ : DivΛ −→ DivΛ by L̂p∞(vi,0) = pi,0 1 ≤ i ≤ n,
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extended now by Λ-linearity. (Formally, L̂p∞ = 1⊗ Lp∞ .) Now we just define

PrΛ = L̂p∞(DivΛ).

Likewise, as in Section 2.5, because Γm acts transitively on the vertices of Xm, using

the same Lp∞ , but instead reading the vertices vi,0 as lying in DivRm (i.e., with

the vertex indices reduced to Zp/pmZp), and extended by Rm-linearity—call this map

Lm—defines the usual Laplacian endomorphism of DivRm . Its image is theRm-module

of principal divisors of DivRm , denoted as

PrRm = Lm(DivRm).

We now define the appropriate Picard groups as follows:

PicRm = DivRm/PrRm (an Rm-module)

PicR = DivR/PrR (an R-module)

PicΛ = DivΛ/PrΛ (a Λ-module).

So these modules are cokernels of the respective module endomorphisms.

It is important to note that, with respect to the basis B of both DivR (as an R-

basis) and DivΛ (as a Λ-basis), the two maps, Lp∞ and L̂p∞ , have the same matrix

representation. Thus we define

Θp∞ = detLp∞ = det L̂p∞ ,
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which is an element of R = Zp[Γ] that plays the role of the reduced Stickelberger

element. In particular, by the same argument as in Section 2.5 we have

Θp∞ annihilates both PicR and PicΛ.

Note that if Θp∞ = 0, its projection onto the finite reduced Stickelberger elements

Θpm would also be zero, but this contradicts Corollary 12. So Θp∞ 6= 0.

Next, we identify the Λ-submodule that plays the role of “degree zero divisors” in the

proof of Theorem 27. (Using divisors of Λ-degree-zero with respect to basis B is “too

big” a submodule, since it would have quotient isomorphic to the coefficient ring, Λ.)

Definition 37. Let

S1 = {vi,0 − vj,0 | 1 ≤ j < i ≤ n} and

S2 = {pi,0 | 1 ≤ i ≤ n}

Let MΛ be the Λ-submodule of DivΛ generated by S1, S2 and (γ − 1)DivΛ, and let

MR = DivR ∩MΛ and NΛ = MΛ/PrΛ.

It turns out thatMΛ is actually generated by just S1 and (γ−1)DivΛ (see Claim 2(1)

in the next subsection); but we include the redundant generators for expository clarity.

Since DivΛ is a finitely generated Λ-module and Λ is Noetherian, all of its submodules

are finitely generated, and so it follows that the quotient modules DivΛ/PrΛ = PicΛ

and MΛ/PrΛ = NΛ are also finitely generated as Λ-modules.
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Theorem 33. Let DivΛ, PrΛ, PicΛ and NΛ be as above. Then PicΛ is a finitely

generated torsion module over the Iwasawa Algebra Λ = Zp[[Γ]] and therefore so is its

submodule NΛ.

5.4 The Main Theorem

We now go on to prove Theorem 27. The way in which we do so is by relating quo-

tients of Λ-modules to quotients of R-modules. In particular, we are able to show

that MΛ/(ωmDivΛ + PrΛ) ∼= MR/(kerπm + PrR), where the latter is isomorphic to

DivRm/PrRm = Jp(Xm), and where πm : DivR → DivRm . We first prove Claims 1-4

below, which lead to the lattice and map diagram in Figure 5.2. Then by comparing

the first column (Λ-level) with the second column (R-level), we are able to show that

NΛ/ωmPicΛ ∼= Jp(Xm). We are then in a position to apply Theorem 32 which estab-

lishes a growth formula for the order of the Jacobians, Jp(Xm) ∀m.

Consider the reduction map

πm : DivR → DivRm by vi,g 7→ vi,g

where g ∈ Γ and g ∈ Γm is the reduction of g to Γ/Γpm ∼= Zp/pmZp, (and recall

DivRm = DivZp(Xm)). Here we are really defining πm on the free R-basis vectors on

the zeroth sheet, and then extending by R-linearity to all of DivR. It is helpful to

keep in mind that for all m ≥ 0, by the above map and by the previous subsection
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we have

DivR is an R-submodule of DivΛ, and

DivRm is an R-quotient module of DivR.

In the next claim, we let D = DivΛ as in Proposition 14, but we simplify notation by

writing Ωm(DivR) to denote ΩD
m(DivR).

Claim 1

The kernel of πm is Ωm(DivR) = DivR ∩ ωmDivΛ, where ωm = γp
m − 1.

Proof. By Proposition 14 and Corollary 19, we get the following isomorphisms, where

the composition of these isomorphisms is the induced map on DivR mod kerπm:

DivR/Ωm(DivR) ∼= DivΛ/ωmDivΛ

∼= (Λ⊕ Λ⊕ · · · ⊕ Λ)/(ωm(Λ⊕ Λ⊕ · · · ⊕ Λ))

∼= (Λ/(ωm))⊕ · · · ⊕ (Λ/(ωm))

∼= Rm ⊕ · · · ⊕Rm

∼= Zp[Γm]⊕ · · · ⊕ Zp[Γm]

∼= DivRm

the free Zp[Γm]-module of rank n. Thus, the kernel of πm is Ωm(DivR), as claimed.

Now let

Km = kerπm.
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Claim 2

As R-modules we have the following:

1. DivΛ/MΛ ∼= Zp and MΛ is the Λ-submodule of DivΛ generated

by S1 ∪ (γ − 1)DivΛ (where S1 is as in Definition 37)

2. ωmDivΛ + DivR = DivΛ. In particular, MΛ + DivR = DivΛ and

ωmDivΛ +MR = MΛ.

3. DivR/MR
∼= Zp

4. kerπm ⊆MR

5. Div0
Zp(Xm) = πm(MR)

Proof. Keep in mind throughout that all the maps following are valid as R-module

maps, as well as abelian group maps.

To prove (1): We may obtain DivΛ/MΛ as follows: first factor DivΛ by (γ − 1)DivΛ.

By Corollary 19 applied with m = 0, and as in the proof of Claim 1, we have that

DivΛ/(γ − 1)DivΛ ∼= (Λ/ω0Λ)⊕ · · · ⊕ (Λ/ω0Λ) ∼= Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
n of these

,

where the divisors v1,0, . . . , vn,0 map to a basis of this free Zp-module of rank n. Now

factor out the submodule generated by the images of all vi,0 − vj,0 ∀i, j from the

quotient DivΛ/(γ − 1)DivΛ. By doing this, we are simply identifying all the basis

vectors with each other, leaving the rank-1 Zp-module quotient. The latter process is

the same as modding DivZp(X0) by the degree zero divisors in DivZp(X0). So this tells
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us that pi,0 for 1 ≤ i ≤ n must already be contained in the Λ-submodule generated

by just S1 ∪ (γ − 1)DivΛ. This proves (1).

To prove (2), apply Proposition 14 toD = A = DivΛ and B = DivR. Its final assertion

gives the first claim of (2). The second assertion is immediate because ωmDivΛ ⊆MΛ

by definition. Finally, by the first result of (2) and the latter observation, we have

MΛ = MΛ ∩ (ωmDivΛ + DivR)

= ωmDivΛ + (MΛ ∩DivR)

= ωmDivΛ +MR

as needed for the third assertion.

To prove (3): First note that by definition MR = MΛ ∩ DivR. By the previous two

parts, we have that

DivΛ/MΛ = (DivR +MΛ)/MΛ.

Then by Figure 5.3 we see that

DivR/MR
∼= Zp.
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DivR +MΛ

DivΛ

1
{

DivR MΛ

DivR ∩MΛ = MR

Figure 5.3: (DivR +MΛ)/MΛ ∼= DivR/MR by the Diamond Isomorphism Theorem

To prove (4): By Claim 1 we have kerπm = DivR ∩ ωmDivΛ. Since ωm = (γ − 1)ηm,

we have

ωmDivΛ = (γ − 1)ηmDivΛ ⊆ (γ − 1)DivΛ ⊆MΛ.

Thus we have kerπm ⊆ DivR ∩MΛ = MR, as needed for (4).

To prove (5): By the above discussion, it is clear that

S1 ∪ (γ − 1)DivR ⊆ DivR ∩MΛ = MR.

Since the image of S1 ∪ (γ − 1)DivR under πm generates Div0
Zp(Xm) as a Zp-module,

it follows that

Div0
Zp(Xm) ⊆ πm(MR). (5.4)

To show the reverse containment, let D = π−1
m (Div0

Zp(Xm)), (the complete preimage).

By basic properties of homomorphisms (part of the Lattice Isomorphism Theorem)
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and by (4) we have:

π−1
m (πm(MR)) = MR + kerπm = MR.

By applying π−1 to (5.4) we get D ⊆ MR. By the Lattice Isomorphism Theorem we

have that πm induces an isomorphism

DivR/D ∼= DivRm/πm(D) = DivRm/Div0
Zp(Xm) = DivZp(Xm)/Div0

Zp(Xm) ∼= Zp.

Since D ⊆ MR we get that DivR/MR is a quotient Zp-module of the Zp-module

DivR/D. By (3) we also have DivR/MR
∼= Zp. This is illustrated in Figure 5.4:

MR Zp

DivR

Zp
{

D

Figure 5.4: DivR/MR
∼= Zp is a quotient Zp-module of the Zp-module DivR/D

However, the only Zp-module quotient of Zp that is also isomorphic to Zp is the

quotient by the zero submodule (this follows by Lemma 2 in Section 5.2) i.e., we

must have MR = D; and so πm(MR) = πm(D) = Div0
Zp(Xm), as needed for (5).

From Claim 2(4) it follows that the kernel of the map πm restricted to MR (which we

simply denote by πm too) is also equal to Km = DivR ∩ ωmDivΛ. From the definition
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in Section 5.3.2 we introduce the new notation:

MRm = Div0
Zp(Xm).

Now πm induces the surjective map

πm : MR/PrR →MRm/PrRm

where MR/PrR = NR and MRm/PrRm = Jp(Xm), and note that PrRm ∼= PrZp(Xm).

This is defined by the following commutative diagram in Figure 5.5:

MR MRm

proj

MR/PrR = NR

MRm/PrRm = Jp(Xm)πm

proj
πm

Figure 5.5: The map πm : NR → Jp(Xm) commutes with the natural projection map

Claim 3

For πm : MR/PrR →MRm/PrRm , we have that kerπm = (Km + PrR)/PrR.

Proof. First note that for all a ∈ MR, we have that πm(a) = πm(a + PrR) =

πm(a) + PrRm .

Let a ∈ MR. We use bar notation to emphasize that elements of NR are cosets
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of PrR in MR. Then for a ∈ NR, with a ∈ kerπm, we have that

πm(a) = πm(a+ PrR)

= πm(a) + PrRm

= 0 + PrRm .

Thus a ∈ kerπm if and only if πm(a) ∈ PrRm . So if a ∈ Km, then a + PrR ∈ kerπm.

Hence, (Km + PrR)/PrR ⊆ kerπm.

For the reverse containment, let a ∈ kerπm. Then by the above, πm(a) ∈ PrRm .

Now since πm : PrR → PrRm is surjective (by the transitive action of Γ on the fibers

of the covering map Xp∞ → X, PrR contains all principal divisors), there exists

b ∈ PrR such that πm(a) = πm(b) and so πm(a − b) = 0. Thus, a − b = k, for some

k ∈ Km = DivR∩ωmDivΛ. So we have that k ∈ DivR and k = ωmd for some d ∈ DivΛ.

Therefore, a = ωmd+ b and so a ∈ (Km + PrR)/PrR. So we have shown that

kerπm = (Km + PrR)/PrR.

Define QR = PrΛ ∩DivR.

Claim 4

We have that QR +Km = PrR +Km = (ωmDivΛ + PrΛ) ∩DivR.

Proof. By Proposition 14 applied with D = DivΛ, A = PrΛ + ωmDivΛ and B = PrR,
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since PrR and PrΛ are both generated (as R- and Λ-modules, respectively) by the

same generators, they both have the same image in DivΛ/ωmDivΛ as in Claim 1. So,

by the last sentence of Proposition 14,

PrR + ωmDivΛ = PrΛ + ωmDivΛ. (5.5)

Then since

PrR ⊆ QR ⊆ PrΛ,

by (5.5), we get

PrR + ωmDivΛ = QR + ωmDivΛ = PrΛ + ωmDivΛ. (5.6)

Now because PrR and QR are contained in DivR, intersecting the subgroups in (5.6)

with DivR gives

(PrR + ωmDivΛ) ∩DivR = PrR + (ωmDivΛ ∩DivR) = PrR +Km

= QR + (ωmDivΛ ∩DivR) = QR +Km

= (PrΛ + ωmDivΛ) ∩DivR,

which gives the desired result.

The following checklist is for ease of verifying the lattice properties depicted in Figure

5.6.
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Table 5.1: Checklist for Figure 5.6

Columns 1 and 2

Containments:

PrΛ ⊆ ωmDivΛ + PrΛ ⊆MΛ ⊆ DivΛ

Reason: Clear.

PrR ⊆ QR ⊆ Km +QR ⊆MR ⊆ DivR

Reason: By Claim 2(4) Km ⊆MR, so all containments are clear.

Intersections:

DivR ⊆ DivΛ

Reason: Section 5.3.2.

DivR ∩MΛ = MR

Reason: By definition.

(ωmDivΛ + PrΛ) ∩DivR = Km +QR

Reason: Claim 4.

PrΛ ∩DivR = QR

Reason: By definition.

Joins:

MΛ + DivR = DivΛ

Reason: Claim 2(2).

(ωmDivΛ + PrΛ) +MR = MΛ

Reason: By Claim 2(2).

PrΛ + (Km +QR) = ωmDivΛ + PrΛ

Reason: Not actually needed, so left as an exercise.
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Columns 2 and 3

PrRm ⊆MRm ⊆ DivRm

Reason: This is clear since MRm = Div0
Zp(Xm).

πm : DivR → DivRm is well-defined and surjective

Reason: By definition of πm.

πm(MR) = MRm and MR = π−1
m (MRm)

Reason: Claim 2(5); and its proof gives the second assertion.

πm(Km +QR) = PrRm and π−1
m (PrRm) = Km +QR

Reason: Follows from Claims 3 and 4 because πm(PrR) = PrRm and Km = ker πm.

The following lattice and map diagram summarizes Claims 1-4.

PrR

QR

PrΛ

Km +QR

ωmDivΛ + PrΛ

ωmDivΛ

Km

PrRm

DivR

Zp
{

DivΛ
DivRm}

Zp

MR

Jp(Xm)
{

MΛ

Jp(Xm)
{

Zp
{

MRm

πm

}
Jp(Xm)

Figure 5.6: Lattice and map diagram showing Claims 1-4

For each subgroup A of DivΛ let Ã denote the image of A under the natural projection
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map

∼: DivΛ −→ DivΛ/PrΛ

(which is both a Λ- and an R-module homomorphism). Since ∼ is a Λ-module ho-

momorphism, the image of ωmDivΛ + PrΛ under it is ωmPicΛ. Since DivR is an

R-submodule of DivΛ, we may apply ∼ to it as well, and to its submodules.

By the Diamond Isomorphism Theorem, since we’ve checked all the appropriate in-

tersections from column 1 to column 2 in Figure 5.6, this natural projection, by

inspection, gives the first two columns in Figure 5.7 as well as all intersections (de-

picted, as usual, by horizontal lines) between their subgroups in column 2. To get the

third column of Figure 5.7, factor the third column of Figure 5.6 by PrRm . The hori-

zontal lines—which are homomorphisms—relating column 2 to column 3 in Figure 5.7

are obtained by taking images of the subgroups in column 2 under πm. By Claim 4,

πm is a well-defined group homomorphism from the second column of Figure 5.7 to its

third column. By simple inspection of the claims, all the horizontal group homomor-

phisms from column 2 to their images in column 3 of Figure 5.7 are valid too. Note

that there are no direct “horizontal line” relationships from column 1 to column 3,

and so nothing to check in that regard. By the Lattice Isomorphism Theorem, the

(already established) quotient groups (in red) are consequently also preserved when

passing between columns (thus also transitively from column 1 to column 3). We only

need these to be abelian group isomorphisms; but they are, in fact, R- and Λ-module

isomorphisms.
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0

K̃m

ωmPicΛ
0 = PrRm

D̃ivR

Zp
{

PicΛ
PicRm}

Zp

M̃R

Jp(Xm)
{

NΛ

Jp(Xm)
{

Zp
{

Jp(Xm)}
Jp(Xm)

πm

Figure 5.7: The natural projection homomorphism from DivΛ to PicΛ indicated in the first
two columns and the passage from πm to πm indicated in the third column

We are now in a position to directly apply Theorem 32, with P = PicΛ and N =

NΛ = MΛ/PrΛ used as P and M in its hypotheses. Since Xm is connected and

ωmPicΛ ⊆ NΛ for all m by (5.7), we have

|NΛ/ωmPicΛ| = |Jp(Xm)| <∞.

It is here that we need the crucial hypothesis that all Xm are connected, so the

Jacobians are finite (the rest of the arguments up to this point have not used this

fact!). This leads immediately to the conclusion of Theorem 27.

Corollary 20. Under the hypothesis and notation of Theorem 32, the ranks of Jp(Xm)

are bounded as m→∞ if and only if p does not divide Θp∞ in Λ (or in Zp[Γ]).

Proof. By definition, PicΛ is the cokernel of the voltage Laplacian, Lp∞ : DivΛ →

DivΛ, where Θp∞ = detLp∞ . In the notation of Theorem 30, let pµ be the product of
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the pki . Then the characteristic polynomial, as in Definition 36, is equal to

pµ
t∏

j=1
g
mj
j = Char(PicΛ). (5.7)

Let M = ωm0PicΛ where m0 ≥ 0 is fixed. Then since PicΛ/M has finite p-rank (fixed,

independent of m → ∞), the ranks of PicΛ and M differ by a constant, and one is

bounded as m→∞ if and only if the other is bounded.

We now compare µ invariants for PicΛ and M , as follows. By Proposition 15(3),

we have

Char(M) = Char(PicΛ)
Char(PicΛ/M) . (5.8)

The Λ-module PicΛ/M is a quotient of the module DivΛ/(ωm0DivΛ); and as in Claim 1,

DivΛ/(ωm0DivΛ) ∼= (Λ/ωm0Λ)⊕ · · · ⊕ (Λ/ωm0Λ)︸ ︷︷ ︸
n of these

.

But by Lemma 3 we know ωm0 maps to a distinguished polynomial in Zp[[T ]] ∼= Λ, so

(Λ/(ωm0))n is already in Iwasawa decomposition form, and it clearly has characteristic

polynomial ωnm0 (again, under the identification γ 7→ T + 1). Once more useage of

Proposition 15(3) gives that

Char(PicΛ/M)
∣∣∣ωnm0 ,

so Char(PicΛ/M) is relatively prime to p (since the distinguished polynomial ωm0 is).
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By (5.8), this shows

p
∣∣∣Char(PicΛ) ⇐⇒ p

∣∣∣Char(M).

If µ(PicΛ) = 0, then Char(PicΛ) = Θp∞ by Proposition 10.23 in [KKS12]. In this

case, p does not divide Θp∞ by definition of Char(PicΛ). By Lemma 4.32 in [Bro], we

have that the ranks of the finite Λ-module quotients of a finitely generated torsion

Λ-module stay bounded if and only if the µ invariant of the Iwasawa decomposition is

zero. So if the ranks of Jp(Xm) stay bounded as m→∞, then p does not divide Θp∞ .

Conversely, we show that if the ranks of Jp(Xm) don’t stay bounded as m → ∞,

then p does divide Θp∞ in Λ. So if the rank of Jp(Xm) → ∞ as m → ∞, then the

µ-invariant of the submodule M , and hence also of PicΛ, must be nonzero. i.e., the

Iwasawa decomposition of PicΛ in (5.8) must have at least one factor of the form

Λ/(pa), for some a ≥ 1. This forces p to divide Θp∞ as follows: If p did not divide

Θp∞ , then Θp∞ would be relatively prime to p in the UFD Λ; but then Θp∞ would

not annihilate the Iwasawa factor Λ/(pa) of PicΛ. This would contradict Theorem 9

that says that Θp∞ annihilates PicΛ (hence every submodule and quotient module of

PicΛ too—hence Θp∞ annihilates anything pseudo-isomorphic to PicΛ too). Thus, p

must divide Θp∞ .
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5.5 Example: Single Voltage p-Towers

over Kn

The purpose of this section is to put Corollary 18 into the context of the preceding

“Iwasawa Theory” for graph Jacobians. In the special case of X0 = Kn, the complete

graph on n vertices, we can furthermore exactly determine the “Iwasawa invariant

factors” of the p-adic Jacobian, for every prime p (although for convenience, we only

treat p ≥ 5).

First fix n ≥ 4 and p ≥ 5 (so we can just quote Theorem 14; if p = 2 or 3, Theorem

15 is needed). Let X0 = Kn, the complete graph on n vertices. By Theorem 30, we

have that since NΛ is finitely generated as a Λ-module

NΛ ∼ Λr ⊕ (
s⊕
i=1

Λ/(pki))⊕ (
t⊕

j=1
Λ/(gj(T )mj)),

where µ = ∑
ki and λ = ∑

mj deg gj. First note that r = 0 since NΛ is torsion. By

Corollary 18, we know that µ is equal to the exact exponent for the p-power of K,

the reduced Stickelberger element coefficient, and that λ = 1. Since λ = 1 we must

have t = 1,m1 = 1 and deg(g1) = 1, i.e.

g1(T ) = g(T ) = T + a0,
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where p | a0 (since g(T ) is distinguished). Thus, we have

NΛ ∼
s⊕
i=1

Λ/(pki)⊕ Λ/(T + a0).

According to Theorem 14, we have the exact abelian group structure of the Jacobian

of all (finite) single voltage covers of Kn ∀n. Each J (Xm) has three distinct invariant

factors:

(i) n with multiplicity (n− 4)d+ 2,

(ii) n(n− 2) with multiplicity d− 2 and

(iii) d · n(n− 2) with multiplicity 1

We describe the abelian group structure of NΛ in each of the following cases.

Case 0) p - n(n− 2).

Since p does not divide n or (n − 2), it follows that µ = β = ν = 0, where µ, β

and ν are as in Corollary 18, and the order of the Sylow p-subgroup of J (Xm),

denoted by Jp(Xm), is

|Jp(Xm)| = pem , where em = m.

However, by Theorem 14, we have the exact Invariant Factor decomposition, which

gives us the distinct elementary divisor, and so

Jp(Xm) ∼= Zpm

230



which has multiplicity 1. Now if we take inverse limits of these abelian groups as

m→∞, we see by Theorem 30 that the inverse limit is

NΛ ∼= Λ/(g(T ))

where

Λ/g(T )) ∼= Zp.

Case 1) p|n, so p - (n− 2) since p > 3.

Let pa be the exact power of p dividing n. Since p - (n−2), we have that µ = a(n−3)

and β = a(n− 2) where β and µ are as above. Thus, it follows that ν = β − µ = a.

So then for all m ≥ 0, we have that the order of the Sylow p-subgroup of J (Xm) is

|Jp(Xm)| = pem where em = a(n− 3)pm +m+ a.

However, by Theorem 14, we have the exact Invariant Factor decomposition, which

gives us the distinct elementary divisors, and so

Jp(Xm) ∼= (Zpa)Nm × Zpm+a , where Nm = (n− 4)pm + 2 + pm − 2 = (n− 3)pm

and Nm gives us the multiplicity. The second elementary divisor has multiplicity

equal to 1. Note that these elementary divisors are distinct since m + a > a for all

m ≥ 1.

Now if we take inverse limits of these abelian groups as m → ∞, we see by The-
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orem 30 that the inverse limit is

NΛ ∼= (Λ/(pa))(n−3)pm × Λ/(g(T ))

where (n− 3)pm denotes the multiplicity of the factor, and by the same reasoning as

above, we have that Λ/(g(T )) ∼= Zp.

Case 2) p|(n− 2), so p - n.

Let pb be the exact power of p dividing n − 2. Since p - n, we have that µ = b

and β = 0. Thus, it follows that ν = α−µ = −b. So then for all m ≥ 0, we have that

the order of the Sylow p-subgroup of J (Xm) is

|Jp(Xm)| = pem

by Corollary 18 where em = bpm+m− b. However, by Theorem 14, we have the exact

Invariant Factor decomposition, which gives us the distinct elementary divisors, and

so

Jp(Xm) ∼= (Zpb)Nm × Zpm+b

where Nm = pm − 2 gives the multiplicity. Note that these elementary divisors are

distinct since m+ b > b for all m ≥ 1.

Now if we take inverse limits of these abelian groups as m → ∞, we see by The-
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orem 30 that the inverse limit is

NΛ ∼= (Λ/(pb))pm−2 × Λ/(g(T ))

where pm − 2 denotes the multiplicity of the factor, and by the same reasoning as

above, we have that Λ/(g(T )) ∼= Zp.

Example 8. We let p = 5 and consider when n = 4, 5 and 7, respectively (for

m = 1, 2, 3, 4, 5).

Table 5.2 Jacobian of K4 with Single Voltage Cover by Z/5mZ,
m The Jacobian
1 (Z4)2 × (Z8)3 × Z8 × Z5
2 (Z4)2 × (Z8)23 × Z8 × Z52

3 (Z4)2 × (Z8)123 × Z8 × Z53

4 (Z4)2 × (Z8)623 × Z8 × Z54

5 (Z4)2 × (Z8)3123 × Z8 × Z55

Table 5.3 Jacobian of K5 with Single Voltage Cover by Z/5mZ,
m The Jacobian
1 (Z5)7 × (Z15)3 × Z3 × Z52

2 (Z5)27 × (Z15)23 × Z3 × Z53

3 (Z5)127 × (Z15)123 × Z3 × Z54

4 (Z5)627 × (Z15)623 × Z3 × Z55

5 (Z5)3127 × (Z15)3123 × Z3 × Z56
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Table 5.4 Jacobian of K7 with Single Voltage Cover by Z/5mZ,
m The Jacobian
1 (Z7)17 × (Z35)3 × Z7 × Z52

2 (Z7)77 × (Z35)23 × Z7 × Z53

3 (Z7)377 × (Z35)123 × Z7 × Z54

4 (Z7)1877 × (Z35)623 × Z7 × Z55

5 (Z7)9377 × (Z35)3123 × Z7 × Z56

By Theorem 12, the reduced Stickelberger element forXp∞ is Θp∞ = −(n−2)nn−3(γ−

1)2γ−1 (because we may treat τ as a polynomial indeterminate in this matrix calcu-

lation). In the notation of Corollary 18, we have (ignoring the minus sign)

K = (n− 2)nn−3.

Note that K and γ− 1 are relatively prime in the UFD, Λ = Zp[[T ]]. Also, under the

above isomorphism,

γ − 1↔ T.

Moreover, K = pµ · u, where u is a unit in Zp. Thus, we see that the g(T ) Iwasawa

λ-invariant factor must divide T , hence a0 = 0 and g(T ) = T.
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Table 5.5: List of Notation for Chapter 5

1 p is a fixed prime and Zp is the additive group of p-adic integers (also

viewed as a ring according to context); a topological generator for Zp

may be taken to be 1

2 Γ is the topological group isomorphic to Zp written multiplicatively and

γ is a fixed topological generator for Γ (where we may let γ map to 1

under the isomorphism of Γ with Zp)

3 X is a connected graph with rX − 1 6= 0;V (X) = {v1, v2, ...., vn}

4 X = X0 ← X1 ← X2 ← · · · is a cyclic voltage p-tower with Xm con-

nected for all m, as in Definition 29

5 Xp∞ is the infinite derived graph obtained from the voltage graph

(X,Zp, α), where the voltage group is the additive p-adic integers and

the voltage assignment α is determined by the cyclic voltage p-tower in

point (4); We call Xp∞ the completion of the tower

6 Γ acts as automorphisms of Xp∞ and acts on the fibers of the covering

map Xp∞ → X in a way that is permutation isomorphic to the regu-

lar representation (transitive with the stabilizer of a point equal to the

identity)

7 πm : Xp∞ → Xm ∀m is the reduction map (so Xm is obtained by reducing

the elements of Xp∞ modulo pm by vi,g 7→ vi,g, where g ∈ Zp/pmZp)

8 Γm = Γ/Γpm , a cyclic group of order pm; and Γm ∼= Gal(Xm/X0)
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9 For any intermediate graph Xm defined in point (4), DivZ(Xm) is a free

Z[Γm]-module of rank n (and a free Z-module of rank n·pm); by extension

of scalars of free modules, DivZp(Xm) ∼= Zp⊗ZDivZ(Xm) is a free Zp[Γm]-

module of rank n

10 J (Xm) is the usual Jacobian of Xm

11 Jp(Xm) is the Sylow p-subgroup of J (Xm), i.e., Jp(Xm) = Zp⊗ZJ (Xm),

which is a Zp-module

12 R = Zp[Γ] is the usual group algebra of Γ over Zp

13 DivR = DivZp(Xp∞) is a free R-module of rank n (and a free Zp-module

of infinite rank)

14 Rm
∼= Zp[Γm]

15 From point (9) and point (14), we have DivRm = DivZp(Xm) is a free

Rm-module of rank n (and a free Zp-module on the vertices of Xm)

16 With respect to the Zp-basis in point (15), Div0
Zp(Xm) is the usual divisors

of degree zero; we let MRm = Div0
Zp(Xm)

17 Lp∞ : DivR → DivR is the voltage p-Laplacian defined on the R-basis of

DivR, where Lp∞(vi,0) = pi,0 1 ≤ i ≤ n

18 PrR is the image of Lp∞

19 PicR is the cokernel of Lp∞ ; it can also be defined as the quotient

DivR/PrR

20 Λ = Zp[[Γ]] is the completion of Zp[Γ], under the profinite topology

defined by the open subgroups Γpm

21 the free R-module DivR becomes a Λ-module by extension of scalars; so

DivΛ is the corresponding module Λ⊗R DivR
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22 L̂p∞ : DivΛ → DivΛ is the voltage p-Laplacian defined on the R-basis of

DivR (but here viewed as a Λ-module basis) where L̂p∞(vi,0) = pi,0 1 ≤

i ≤ n

23 PrΛ is the image of L̂p∞

24 PicΛ is the cokernel of L̂p∞ ; it can also be defined by the quotient

DivΛ/PrΛ = PicΛ

25 PrRm is the image of the Laplacian endomorphism of DivRm , denoted by

Lm (here we’re using the same map Lp∞ as above, but instead reading

the vertices vi,0 as lying in DivRm and extending by Rm-linearity)

26 PicRm = DivRm/PrRm is the cokernel of Lm

27 MΛ is the Λ-submodule of DivΛ generated by S1, S2 and (γ − 1)DivΛ

where S1 = {vi,0 − vj,0 | 1 ≤ j < i ≤ n} and S2 = {pi,0 | 1 ≤ i ≤ n}

28 MR = DivR ∩MΛ

29 NΛ = MΛ/PrΛ is a submodule of PicΛ

30 Θp∞ = det L̂p∞ = detLp∞ is the reduced p-Stickelberger element for

Xp∞/X; it is as an element of Zp[Γ]

31 ωm = γp
m − 1 = (γ − 1)ηm, where ηm = 1 + γ + γ2 + · · ·+ γp

m−1, where

γ as above is a fixed topological generator of Γ

32 For D any Λ-module and B be any subset of D, we define ΩD
m(B) =

B ∩ ωmD

33 For Rm as in point (15), define Rm = R/ΩΛ
m(R) = R/R ∩ ωmΛ
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Chapter 6

Conclusion

In retrospect, we see that the development of this dissertation rests on a number of

themes—the Picard group, the Jacobian group, the (voltage) Laplacian, the Smith

Normal Form, and the reduced Stickelberger element. We survey these ideas in Sec-

tion 6.1. Then in Section 6.2, we present various pathways for future work.

6.1 An Encapsulation

The Picard and Jacobian groups of a graph X are invariants that may be defined

in terms of the Laplacian matrix of X. In particular, the Picard group is the cok-

ernel of the Laplacian L, considered as a Z-module endomorphism of the Z-module

of divisors of X, DivZ(X), which is free over Z of rank n = |V (X)|. Then for the

voltage graph with voltage group G and derived graph Y , the Z-module of divisors of

Y becomes a free module of the same rank n over the larger ring Z[G]. The voltage

adjacency matrix captures the “voltage adjacencies” across the different sheets of the

covering of X by Y ; and these sheets are acted on by G as the regular represen-
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tation. The voltage Laplacian L is then an endomorphism of the free Z[G]-module

DivZ(Y ) = DivZ[G](X), which agrees with the ordinary Laplacian endomorphism for

Y ; it can be represented by an n×n matrix with entries in Z[G], or an n|G | ×n|G |

matrix of integers—the ordinary Laplacian matrix for Y—by forming L ⊗ ρ, where

ρ is a matrix representation for the regular representation of G. This is all described

in Chapter 2.

For a connected graph X, the Jacobian of X is the torsion subgroup of the Z-module

PicZ(X). The Jacobian is a finite abelian group whose decomposition into invariant

factor cyclic subgroups is its Smith Normal Form; and the product of these invariant

factors, which is the determinant of the reduced Laplacian matrix, is the order of

the Jacobian of X, the important tree number of the graph X. Likewise, for Y the

derived graph as above, the Picard group PicZ(Y ) may also be viewed as the cokernel

of the voltage Laplacian endomorphism of the Z[G]-module DivZ[G](X); and when G

is abelian, the determinant of the voltage Laplacian—called (by us) the reduced Stick-

elberger element—also annihilates the Picard group of Y (as a Z- or a Z[G]-module).

So the reduced Stickelberger element—which is an element of the group ring Z[G]

rather than just an integer—plays a role closely analogous to the tree number for

ordinary graphs X (again, assuming G is abelian). Moreover, we saw in Chapter 4

that this reduced Stickelberger element may also be interpreted as an “equivariant

L-function” whose values at various complex roots of unity can be used to compute

the order of the Jacobian of Y explicitly in certain cases. This is the “Fourier analy-

sis” section of the dissertation.
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In Chapter 5 we take this development a step further: For a fixed prime p, given

an infinite cyclic p-tower of derived graphs over the base graph X, there is a natu-

ral p-adic completion of this tower to an infinite (uncountable) graph Xp∞ that can

nonetheless be described by an n × n voltage adjacency (or Laplacian) matrix, but

with voltages from the p-adic group Γ. In this setting, the voltage modules of divisors

and principal divisors as well as the Picard group can all be extended to become mod-

ules over the group ring Zp[Γ]. We may then extend scalars to obtain corresponding

modules over the completed group ring, the Iwasawa algebra Λ. The advantage that

accrues is that the Picard group of Xp∞ , when extended to the Λ-module PicΛ, is

still the cokernel of the (same matrix) voltage Laplacian endomorphism, but is now a

finitely generated, torsion Λ-module. Classical Iwasawa theory then gives an Iwasawa

Decomposition of this module into its “Iwasawa invariant factors” in a way completely

analogous to how the Smith Normal Form gives a decomposition of PicZ(X). When

we “pick off” the subgroup of PicΛ that maps to the torsion subgroups of the finite

Picard groups, this Iwasawa decomposition “descends” to give powerful information

about the Jacobians of the graphs in the original tower: their asymptotic orders and

ranks.

Again, the reduced Stickelberger element for Xp∞ annihilates the Picard groups for

the modules over both Zp[Γ] and Λ, and plays a critical role in the theory. In certain

cases the reduced Stickelberger element equals the product of the Iwasawa invariant

factors, in the same way as for the tree number above. So this dissertation, taken

as a whole, indicates how some of the key invariants of a graph generalize naturally

to voltage graphs, where the group action on the derived graph provides analogous
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invariants that may be exploited to considerable advantage. It also points to many

new, possible extensions and applications of these ideas.

6.2 Topics to Consider

Constructing more examples:

In Chapter 2, we considered single and constant voltage assignments. However, con-

jectures were not made for constant voltage assignments even though some data was

gathered (see Section 3.1). Re-visiting this assignment on various graph families may

lead to provable conjectures.

Constructing voltage assignments that are “similar” to the single voltage assignment

would be valuable, as the single voltage assignment lead to a plethora of results. We

may also explore other families of graphs with the single voltage assignment by the

cyclic group of order d, such as Paley graphs (where vertices come from a fixed finite

field and two vertices are connected by an edge if their difference is a square in the

field), transposition graphs, the complete bipartite graph on m+ n vertices (we only

considered the case when m = 2), and other various strongly regular graphs.

Then instead of having multiple variables, we may look at single voltage cyclic covers

of all known small graphs (graphs with less than or equal to 13 vertices). To obtain

further results on the Petersen graph, it may be of value to work over Z(p), as we

did for Kn,n, for p 6= 2 or 5, to put the voltage Laplacian matrix (and then ordinary

Laplacian) in diagonal form.
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Edge Artin L-Functions and edge zeta-functions:

In Chapter 4, we used results about zeta functions and L-functions from [HMSV19]

and [Ter11] to obtain an order formula for the Jacobian of the derived graph Y . Could

one use the edge adjacency matrix, edge zeta function, or edge Artin L-function to

obtain similar results?

Extending results to multigraphs:

Throughout this dissertation we restricted the base graph X in the voltage graph

(X,G, α) to be simple. However, the construction of voltage graphs easily generalizes

to multigraphs (or graphs with loops). Allowing multiple edges or loops complicates

things. However, both [HMSV19] and [Ter11] allow their graphs to have loops and

multiple edges. Therefore, it may be possible to extend the results from Chapter 4

to such multigraph bases. This would require a more complicated definition of both

the Artinized adjacency matrix and the voltage adjacency matrix.

Further results when G is abelian:

Many of the tools developed in this dissertation were proved for arbitrary (finite)

abelian voltage groups, although we often specialized to cyclic groups, where explicit

results were more tractable. For other families of non-cyclic abelian voltage groups—

such as elementary abelian p-groups—which methods and theorems, especially in

Chapters 4 and 5, lead to new results? In particular, are there families of voltage

covers that are “natural” generalizations of single voltage covers? Also, theorems on

the asymptotic growth of Jacobians in general abelian p-towers may be obtainable
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from theorems about finitely generated modules over the multivariable formal power

series ring Zp[[T1, . . . , Tk]]. Some results in this vein have already been achieved by

Daniel Vallieres in [Val20].

Voltage graphs where G is non-abelian:

We might also consider voltage graphs where the voltage group is non-abelian. In

this case, single voltage assignments would not result in a connected derived graph.

It might be interesting to consider the relationship between different voltage assign-

ments on a particular base graph and how it determines the resulting derived graph

and Jacobian.

Regarding Chapter 4, when G is an abelian group, all of the irreducible represen-

tations are degree one. Thus, the Artin Ihara L-functions are easier to work with.

So if we consider G non-abelian, this would again result in a more complicated def-

inition of the Artinized adjacency matrix. Recall, the reduced Stickelberger element

played a significant role in obtaining the order formula. So when the voltage group

is non-abelian, how does one define the reduced Stickelberger element?

Resolving the relationship between Jp(Xp∞) and NΛ:

Recall from Chapter 5: J∞ = lim←−J (Xm) and Jp(Xp∞) = lim←−Jp(Xm). Instead of

working with Jp(Xp∞), we used divisors over Λ to construct what we call NΛ. Thus,

we wish to determine whether or not Jp(Xp∞) actually coincides with the Jacobian

that we constructed, NΛ.
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Theorem 27 and Classical Iwasawa Theory (over general number fields and ellip-

tic curves):

Examining whether the ideas in the proof of Theorem 27 provide new insight into

classical Iwasawa Theory for extensions of number fields is an intriguing line of in-

vestigation. If there is a voltage tower “lurking” in the background in this classical

setting, the results and/or methods of this dissertation may be applied to obtain new

results in number theory, perhaps pertaining to elliptic curves or algebraic curves. In

this way our dissertation, which was inspired by the goal of seeking a graph-theoretic

analog to classical Iwasawa Theory could, in turn, show how graph theory may be

used to “return the favor” by giving new insights into Number Theory!
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Appendix A
Sample SAGE Code

This code is used to compute the adjacency matrix for a derived graph Y. Once we
(separately) compute the degree matrix for Y , we use the output of this code to
compute the Laplacian. Then putting the Laplacian matrix into Smith Normal Form
gives the invariant factors (and their multiplicities) of the Jacobian, as in Table 3.3,
Table 3.4, Table 3.5, etc.

Listing A.1: Computing the Adjacency Matrix of a Derived Graph
1 de f group_op (S , f , l , l_e ) :
2 " " " Does the group opera t i on o f S on
3 the e lements l and l_e .
4

5 Parameters
6 −−−−−−−−−−
7 input v a r i a b l e : v a r i a b l e type
8 Desc r ip t i on o f v a r i a b l e
9

10 S : Group
11 The group
12 f : d i c t
13 This maps the s t r i n g ve r s i on
14 o f group element to the i n d i c e s
15 in S . l i s t ( ) . More s p e c i f i c a l l y
16 the keys are the s t r i n g ve r s i on
17 o f group elements and the va lue s
18 are the i n d i c e s .
19 l : s t r
20 the i n i t i a l ve r tex in the der ived graph
21 l_e : s t r
22 the edge going from l to l_u
23

24 Returns
25 −−−−−−−
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26 output_group_element : same as e lements o f S
27 The output o f the group opera t ion on l_e
28 and l .
29

30 Examples
31 −−−−−−−−
32 >>> S [ f [ ' ( 1 , 2 ) ' ] ]
33 ( 1 , 2 )
34

35 >>> S [ f [ ' ( 1 , 2 ) ' ] ] ∗ S [ f [ ' ( 2 , 3 ) ' ] ]
36 ( 1 , 3 , 2 )
37

38 " " "
39 re turn S [ f [ l_e ] ] ∗ S [ f [ l ] ]
40

41 de f get_out_edges (G, v ) :
42 " " " T e l l s you which v e r t i c e s are adjacent to v in the base graph
43

44 Parameters
45 −−−−−−−−−−
46 input v a r i a b l e : ve r tex
47

48

49 G : Base Graph
50 v : ver tex
51

52 Returns
53 −−−−−−−
54 output : tup l e
55 i n i t i a l vertex , t e rmina l vertex , and edge l a b e l
56

57 Examples
58 −−−−−−−−
59 >>> get_out_edges (G, ' v ' )
60 ( ' v ' , ' u ' , ' ( 1 , 2 ) ' )
61

62 " " "
63 out_edges = [ ]
64 f o r e in G. edges ( ) :
65 i f v == e [ 0 ] :
66 out_edges . append ( e )
67 re turn out_edges
68

69 de f vo l t age (G, v , l , S , f ) :
70 " " " T e l l s you which edges are adjancent to v_l in the der ived graph
71

72 Parameters
73 −−−−−−−−−−
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74 input v a r i a b l e : v a r i a b l e type
75 Desc r ip t i on o f v a r i a b l e
76

77 G : Graph
78 Base Graph
79 v : s t r
80 i n t i a l ve r tex
81 l : s t r
82 the i n i t i a l ve r tex in the der ived graph
83 l_e : s t r
84 the edge going from l to l_u
85 f : d i c t
86 This maps the s t r i n g ve r s i on
87 o f group element to the i n d i c e s
88 in S . l i s t ( ) . More s p e c i f i c a l l y
89 the keys are the s t r i n g ve r s i on
90 o f group elements and the va lue s
91 are the i n d i c e s .
92

93 l_u : s t r
94 which ver tex i s ad jacent to v_l v ia the group opera t ion o f l on l_e
95

96 Returns
97 −−−−−−−
98 output : tup l e
99 the te rmina l ver tex and the group element

100

101 Examples
102 −−−−−−−−
103 >>> vo l tage (G, ' v ' , ' ( 1 , 3 ) ' , S , f )
104 ( ' u ' , ( 1 , 2 , 3 ) )
105

106 >>> vo l tage (G, ' v ' , ' ( 1 , 2 ) ' , S , f )
107 ( ' u ' , ( ) )
108

109 " " "
110 # e t e l l s us which v e r t i c e s are ad jacent to v in the base graph
111 v o l t a g e s = [ ]
112 f o r e in get_out_edges (G, v ) :
113 u=e [ 1 ]
114 l_e=e [ 2 ]
115 l_u=group_op (S , f , l_e , l )
116 v o l t a g e s . append ( ( u , str ( l_u ) ) )
117 re turn v o l t a g e s
118

119 de f get_der ived (G, S ) :
120 " " " Gives the adjacency matrix f o r the der ived graph
121
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122 Parameters
123 −−−−−−−−−−
124 input v a r i a b l e : v a r i a b l e type
125 Desc r ip t i on o f v a r i a b l e
126

127 G : Graph
128 Base Graph
129 S : Group
130 the group
131 f : d i c t
132 This maps the s t r i n g ve r s i on
133 o f group element to the i n d i c e s
134 in S . l i s t ( ) . More s p e c i f i c a l l y
135 the keys are the s t r i n g ve r s i on
136 o f group elements and the va lue s
137 are the i n d i c e s .
138

139 Returns
140 −−−−−−−
141 output : Matrix
142 the adjacency matrix f o r the der ived graph
143

144

145 " " "
146 f={str ( t ) : i f o r i , t in enumerate(S . l i s t ( ) ) }
147 de r i v ed_ve r t i c e s =[(x , str ( i ) ) f o r x in G. v e r t i c e s ( ) f o r i in S . l i s t ( ) ]
148 Adjacency=Matrix . ze ro ( len (G. v e r t i c e s ( ) ) ∗ S . order ( ) )
149 f o r v in G. v e r t i c e s ( ) :
150 f o r l a b e l in S . l i s t ( ) :
151 i f get_out_edges (G, v ) i s None :
152 continue
153 row = der i v ed_ve r t i c e s . index ( ( v , str ( l a b e l ) ) )
154 vert_and_label = vo l tage (G, v , str ( l a b e l ) , S , f )
155 f o r x in vert_and_label :
156 c o l = de r i v ed_ve r t i c e s . index ( x )
157 Adjacency [ row , c o l ]=1
158 re turn Adjacency , d e r i v ed_ve r t i c e s
159

160 # Example
161 S=CyclicPermutationGroup (4) #t h i s i s the c y c l i c group o f order 4
162 G=DiGraph ( )
163 G. add_edges ( [ ( 'v_1 ' , 'v_2 ' , ' ( 1 , 2 , 3 , 4 ) ' ) ] )
164 G. add_edges ( [ ( 'v_1 ' , 'v_3 ' , ' ( ) ' ) ] )
165 G. add_edges ( [ ( 'v_1 ' , 'v_4 ' , ' ( ) ' ) ] )
166 G. add_edges ( [ ( 'v_2 ' , 'v_3 ' , ' ( ) ' ) ] )
167 G. add_edges ( [ ( 'v_2 ' , 'v_4 ' , ' ( ) ' ) ] )
168 G. add_edges ( [ ( 'v_3 ' , 'v_4 ' , ' ( ) ' ) ] )
169 # Base graph i s K_4 s i n g l e vo l tage ass ignment by element ' ( 1 , 2 , 3 , 4 ) '

252



170

171 A,F=get_der ived (G, S)
172 pr in t A,F # t h i s p r i n t s the d i r e c t e d adjacency matrix f o r the der ived graph
173 A1=A. t ranspose ( )
174 A2=A1+A
175 pr in t A2 # t h i s p r i n t the und i rec ted adj matrix o f the der ived graph
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Appendix B
Sample Mathematica Code

This code was used to check the row and column operations in the proof of Theorem
14. It was then used to construct the matrices in Example 6.

Here is the matrix for ρ(1-τ)

b = ConstantArray[0, d];

b[[d]] = 1;

T = Transpose[ToeplitzMatrix[b,RotateRight[Reverse[b]]]];

B = IdentityMatrix[d]− T ;

MatrixForm[B]

The next command creates matrix (1).

M = ConstantArray[0, {3d, 3d}];

Part[M, 1;;d, 1;;d] = B;

Part[M,d+ 1;;2d, d+ 1;;2d] = B;

Part[M,d+ 1;;2d, 2d+ 1;;3d] = nIdentityMatrix[d];

Part[M, 2d+ 1;;3d, 1;;d] = nIdentityMatrix[d];

Part[M, 2d+ 1;;3d, 2d+ 1;;3d] = n(2− n)IdentityMatrix[d];

MatrixForm[M ]
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Next do all the row and column operations to produce matrix (2).

M1 = M ;

M1[[1]] = ∑d
i=1 M1[[i]];

M1[[d+ 1]] = ∑d
i=1 M1[[d+ i]];

M2a = Transpose[M1];

M2a[[1]] = ∑d
i=1 M2a[[i]];

M2a[[d+ 1]] = ∑d
i=1 M2a[[d+ i]];

M2 = Transpose[M2a];

For[i = 3, i < d+ 1, i++,M2[[i]] = M2[[i− 1]] + M2[[i]]];

For[i = 3, i < d+ 1, i++,M2[[d+ i]] = M2[[d+ i− 1]] + M2[[d+ i]]];

MatrixForm[M2]

Next do the column switch to produce matrix (3).

M3 = Transpose[M2];

M3[[d+ 1]] = M3[[1]];

For[i = 1, i < 3d+ 1, i++,M3[[1, i]] = 0];

M3 = Transpose[M3];

MatrixForm[M3]

The next command produces matrix (4).

M4 = Part[M3, 2;;3d, 2;;3d];

For[i = 1, i < d, i++,M4[[2d+ i]] = M4[[2d+ i]]− nM4[[i]]];

MatrixForm[M4]
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The next command produces matrix (5).

M5 = Part[M4, d;;3d− 1, d;;3d− 1];

MatrixForm[M5]

The next command produces matrix (6).

M6 = M5;

For[i = 2, i < d+ 1, i++,

For[j = d+ 2, j < 2d+ 1, j++,M6[[i, j]] = 0]];

MatrixForm[M6]

The next command produces matrix (7).

M7a = ConstantArray[0, {2d, 2d}];

M7a[[2d]] = M6[[1]];

Part[M7a, 1;;2d− 1, 1;;2d] = Part[M6, 2;;2d, 1;;2d];

M7b = Transpose[M7a];

M7c = ConstantArray[0, {2d, 2d}];

M7c[[2d]] = M7b[[1]];

Part[M7c, 1;;2d− 1, 1;;2d] = Part[M7b, 2;;2d, 1;;2d];

M7 = Transpose[M7c];

MatrixForm[M7]

The next command produces matrix (8).

M8 = Part[M7, d;;2d, d;;2d];

MatrixForm[M8]

The next command produces matrix (9).

M8[[1]] = M8[[1]] + (n− 2)M8[[d+ 1]];
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M9 = M8;

MatrixForm[M9]

The next command produces matrix (10).

For[i = 2, i < d+ 1, i++,M9[[i]] = M9[[1]]−M9[[i]]];

M10 = M9;

MatrixForm[M10]

The next command produces matrix (11).

For[i = 3, i < d+ 1, i++,M10[[i]] = M10[[i]] + M10[[i− 1]]];

M11 = M10;

MatrixForm[M11]

The next command produces matrix (12).

M12a = Transpose[M11];

For[i = 3, i < d+ 1, i++,M12a[[i]] = M12a[[2]]−M12a[[i]]];

M12 = Transpose[M12a];

MatrixForm[M12]

The next command produces matrix (13).

M13a = Transpose[M12];

For[i = 4, i < d+ 1, i++,M13a[[i]] = M13a[[i]]−M13a[[3]]];

M13 = Transpose[M13a];

MatrixForm[M13]

The next command produces matrix (14).

M14a = Transpose[M13];
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For[i = 5, i < d+ 1, i++,M14a[[i]] = M14a[[i]]−M14a[[4]]];

M14 = Transpose[M14a];

MatrixForm[M14]

The next command finishes the zeroing-out process after matrix (14).
(We’ll just zero the entries out instead of doing column operations.
This matrix does not appear in the notes.)

For[i = 2, i < d+ 1, i++,

For[j = i+ 2, j < d+ 1, j++,M14[[i, j]] = 0]];

MatrixForm[M14]

The next command finishes the zeroing-out process to produce matrix (15).
(We’ll just zero the entries out instead of doing operations on C_2.)

For[i = 2, i < d, i++,M14[[i, 2]] = 0];

M15 = M14;

MatrixForm[M15]

The next command produces matrix (16).

M16a = Transpose[M15];

M16a[[2]] = M16a[[2]]−M16a[[1]]− (n− 2)M16a[[d+ 1]];

M16 = Transpose[M16a];

MatrixForm[M16]
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