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Abstract 

The distribution and biodiversity patterns of intertidal seaweeds and associated 

peracarids were studied along the Northeast Atlantic region from 65ºN to 27ºN of 

latitude. In order to determine what factors drive the geographical distribution of 

intertidal communities of seaweeds and peracarids, twenty-seven stations and nine 

abiotic factors were considered (fetch, air temperature, precipitation, insolation, SST, 

chlorophyll-a, pH, aragonite saturation, OHI). A total of 12779 specimens were sorted 

and identified to the species or genus level, of which the vast majority belonged to the 

group of algae. In order to assess biogeographical groups of these species along the 

Northeast Atlantic, a CLUSTER analysis as well as a NMDS analysis were carried 

out, resulting in the identification of three ecoregions; 1)Northern Europe, 2)Central 

Iberian Peninsula and 3)Southern Macaronesia. CCA and NMDS analyses showed 

high correlations between environmental factors such as precipitation, insolation and 

SST minimum albeit to a lesser extent, and species distribution. Macaronesian species 

were correlated with higher temperature and insolation whereas those of the Iberian 

peninsula were correlated with higher pH and chlorophyll. On the other hand, the 

abundance that was similar among all species and the results of the SIMPER analysis 

indicated a certain homogeneity of species without dominance of one over another. 

Both the species richness (S) and α diversity (indexes of H’, Dsimp and eH’) presented 

a decreasing latitudinal gradient towards higher latitudes. An exception to this pattern 

was observed for β-diversity, probably due to the homogeneity of abundance of 

species observed between regions, mainly affected by abiotic factors of the local 

environment. 

 

Keywords: Distribution, biodiversity, seaweeds, peracarids, abiotic factors 
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Resumo 

Os padrões biogeográficos variam de acordo com as diferentes zonas do oceano; em 

águas pouco profundas, a distribuição dos organismos fica mais irregular devido a 

uma variedade de fatores, como características geológicas, efeitos das marés, mas 

tambem, foi demonstrado que variam de acordo com o tipo de organismo, habitat que 

ocupam ou condições ambientais a que estão sujeitos. Embora a variabilidade da 

ocorrência de flora e fauna em diferentes áreas do oceano seja conhecida, os limites 

biogeográficos de muitas comunidades permanecem obscuros. A classificação global 

no ambiente marinho permanece limitada na sua resolução espacial. A delimitação 

dos limites biogeográficos marinhos indica a importância relativa dos fatores que 

causaram a distribuição atual das espécies marinhas à escala global, como deriva 

continental, temperatura, aumento do nível do mar e glaciação. O clima, e 

especificamente a temperatura, é um fator importante na configuração da distribuição 

geográfica dos organismos e, portanto, o aquecimento global está causando uma 

redistribuição dos limites geográfico das espécies marinhas. A delimitação de áreas 

biogeográficas surgiu devido ao aumento das ameaças antrópicas à biodiversidade 

marinha e à necessidade de proteger a biodiversidade. Além disso, a biogeografia é 

uma ferramenta comumente usada para a conservação marinha e um critério para a 

identificação, seleção e designação de Áreas Marinhas Protegidas (AMPs). A região 

do Atlântico Nordeste tem sido profundamente estudada, no entanto, a maioria dos 

estudos biogeográficos foram realizados numa faixa latitudinal estreita e fracionada. 

O objetivo deste estudo é investigar a distribuição geográfica de algas e crustáceos 

peracarídeos associados a elas ao longo das costas da Europea. Investigamos o papel 

das variáveis ambientais e da pressão antrópica na determinação da distribuição 

geográfica, bem como os padrões de biodiversidade de algas intertidais e 

peracarídeos ao longo do Atlântico Nordeste, cobrindo uma ampla faixa latitudinal, 

da Islândia (65ºN) para as Ilhas Canárias (27ºN). As questões que queremos 

responder são: se há diferentes ecorregiões ou áreas com certa homogeneidade 

interna quanto à composição de algas e espécies de peracarídeos, bem como se os 

fatores que configuram essa distribuição geográfica são a temperatura superficial do 

mar (TSM) e o impacto humano. Além a presença de um gradiente latitudinal com 

diminuição da biodiversidade em direção aos pólos. A fim de investigar essas 

hipóteses, algas intertidais e amostras de peracarídeos de 27 estações localizadas em 
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uma ampla faixa latitudinal foram colhidas e analisadas. Os organismos foram 

classificados ao nível da espécie e o conjunto de dados foi analisado. Foi realizada 

uma análise CLUSTER e um NMDS que revelou a presença de três ecorregiões no 

Atlântico Nordeste com base na presença de algas e peracarídeos: 1) Norte da 

Europa, 2) Península Central ou Ibérica, 3) Sul da Macaronésia. Por outro lado, a 

abundancia destes organismos está distribuída por muitas espécies, pelo que a análise 

SIMPER revelou uma baixa incidência de cada espécie na distinção entre 

ecorregiões. Além disso, o baixo endemismo encontrado especialmente na Península 

Ibérica pode indicar esta área como uma zona de transição entre a ecorregião Norte e 

Sul ou Macaronésia. Quando exploramos a relação da distribuição geográfica das 

espécies com as variáveis ambientais, as análises de CCA e NMDS mostraram, ao 

contrário do que se esperava, uma maior influência das variáveis como fetch, 

insolação, precipitação e clorofila do que da temperatura (exceto para o mínimo SST) 

e impacto humano. Isso pode ser devido ao fato de que os organismos que ocupam a 

zona entremarés estão expostos a condições ambientais extremas, na interface do 

ambiente marinho e terrestre e, portanto, são os mais afetados por esses tipos de 

fatores ambientais. Cada ecorregião foi caracterizada por uma série de condições 

ambientais: as espécies da ecorregião da Macaronésia correlacionaram-se com altas 

temperaturas, típicas desta área, bem como com elevada insolação, enquanto as 

espécies presentes na Península Ibérica se caracterizaram por elevadas concentrações 

de pH e clorofila, possivelmente devido a upwelling presente na costa de Portugal. 

Por fim, foi estudada a relação da biodiversidade desses organismos com a latitude. 

Para a biodiversidade local, foram obtidos tanto a riqueza de espécies quanto a 

diversidade alfa (índices H ', Dsimp e eH'), que descrevem um gradiente latitudinal 

com decréscimo para latitudes mais elevadas e com uma diferença marcante entre as 

ecorregiões norte e os sítios do sul (ecorregião Ibéria e Macaronésia). Porém, para a 

diversidade beta, a análise de correlação (r pearson) não mostrou relação com a 

latitude, o que indica que não há substituição ou troca de espécies entre estações ou 

ecorregiões, e a presença de habitats semelhantes dentro de cada ecorregião e entre 

elas. Além disso, os resultados de evenness (J ') que mostram valores elevados para 

as três ecorregiões indicam que dentro de cada ecorregião a abundância é distribuída 

entre as diferentes espécies sem predominância de uma sobre as outras, essas 

condições são mantidas para as três ecorregiões. Uma das causas para que a 
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diversidade beta não siga esse padrão pode ser a pouca influência que a temperatura 

exerce na distribuição dessas espécies de algas e peracarídeos na região do Atlântico 

Nordeste. Este estudo pode melhorar o conhecimento da biogeografía da região do 

Atlântico Nordeste, fornecendo uma visão em maior escala dos padrões de 

distribuição de algas e peracarídeos que habitam a zona entremarés. Além disso, a 

partição espacial do Nordeste do Oceano Atlântico é valiosa para as políticas de 

gestão de ecossistemas marinhos, o tamanho relativamente grande das unidades aqui 

definidas é justificado pela grande conectividade entre os ecossistemas marinhos e 

ajudará a compreender as escalas espaciais em que devem aplicar ações de gestão das 

AMPs. Também pode ajudar a aumentar o conhecimento sobre os fatores que 

determinam a distribuição e diversidade desses organismos, o que pode ser útil para 

pesquisas futuras sobre as previsões de possíveis mudanças causadas pelas mudanças 

climáticas. No entanto, mais estudos biogeográficos são necessários nesta região para 

confirmar esta divisão espacial. 

 

Palavras-chave: Distribuição, biodiversidade, algas marinhas, peracarídeos, fatores 

abióticos. 
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1. Introduction 

 

1.1 Marine biogeography 

 

Marine biogeographic regions, which have been recognized for over 150 years, are based on 

distinct floras and faunas (Forbes, 1859). MacArthur in 1972 defined biogeography as the 

study of biological patterns that can be mapped, but it also included the study of the 

distribution of organisms in the past and present, and of related patterns of variations over 

the earth (Brown and Lomolino, 1998). This term is more useful when it refers to areas of 

evolutionary transformation or refuge of older persistent biota, parts of the ocean that host 

unique biotas (Briggs and Bowen, 2011). Although the oceans have been and are connected, 

few are the species that have distributed around the globe (Gaither et al., 2015), most of the 

marine species are endemics, presenting a range often defined by the edges of biogeographic 

regions (Briggs J. C., 2016). 

 

Biogeographic patterns vary from the different zones of the ocean. In the pelagic environment 

and deep-sea where the environmental conditions are uniform present very broad distribution, 

whereas they are more linear and belt-like along continental slopes and shelves due to the 

geophysical structure (Dinter, 2001). Besides, in shallow waters the distribution of the 

organisms gets patchier due to more various influences by a variety of factors such as 

geological features, tidal interactions, and riverine outflows (Angel, 1993). Defining marine 

biogeographical regions on a global or large regional scale has been proposed by a number of 

authors. A first approach was the delimitation of the continental shelf in three regions: warm, 

temperate and polar waters; based on zoogeographic barriers and endemism (Ekman, 1953). 

Later, very large regions of coastal, benthic, or pelagic ocean that hold similar biotas at 

higher taxonomic levels were defined as realms (Udyardy, 1975). Nested within the realms 

are the provinces, large areas defined by the presence of distinct biotas that have at least some 

cohesion over evolutionary time frames. Provinces will hold some level of endemism, 

principally at the level of species (Spalding et al. 2007). Briggs (1974) defined biogeographic 

provinces as shallow (<200m) marine regions presenting at least a 10% of endemism. The 

definition of provinces by 10% endemism has been generally accepted for the past 35 years 

(Briggs and Bowen, 2011). Finally, ecoregions are the smallest-scale units defined by 

Spalding (2007) as: Areas of relatively homogeneous species composition, clearly distinct 
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from adjacent systems. Unlike provinces, endemism is not a key determinant factor in the 

delimitation of the ecoregions, they usually have important levels of endemism though 

(Spalding et al. 2007). 

 

While the variety in the occurrence of flora and fauna in different areas of the ocean is 

known, the biogeographic boundaries of many communities remain unclear (Costello et al., 

2017). The global classification in the marine environment remains limited in their spatial 

resolution (Spalding et al., 2007). Delimitation of marine biogeographic limits would indicate 

the relative importance of factors that have caused the present distribution of marine species 

at a global scale, such as continental drift, temperature, sea-level rise, and glaciation (Costello 

et al., 2017). A debate that persists over the years is the placement of temperate and tropical 

waters in different regions, considering there is a close relationship between warm-temperate 

province and tropical (Vermeij, 2005). Many organisms cover the tropical and warm-

temperate regions, whereas only a few extend into the cold-temperate regions (Grant et al., 

2010). The boundaries between these biogeographic provinces are frequently associated with 

continents, sharp ecological gradients, or vast expanses of open ocean (Briggs J. C., 2016). 

However, the role of fronts in marine biogeography is not yet fully understood (Acha et al., 

2015). Unlike terrestrial biogeography, the marine environment presents a greater variety of 

variables that make its study more difficult. A specific set of environmental variables can 

demarcate the distribution of a biological community, providing an ecological niche for its 

members (Dinter, 2001). In a continuous transglobal medium, the major barriers that 

constitutes these boundaries are geographic. Historically, several geographic barriers have 

been recognized to be important drivers of organisms distribution. Open oceans and rivers 

flows are also known to be barriers in the marine realm (Briggs J. C., 2016). 

 

The quantitative study of patterns of distribution and abundance of species provide a better 

understanding of the assemblages of organisms (Andrew and Mapstone 1987; Underwood et 

al. 2000). The distribution of species and delimitation of these ecological borders are usually 

tied to climatic conditions (Repasky, 1991), specifically, distribution of planktonic 

communities have been shown to have a close relationship to environmental characteristics 

(Acha et al., 2020). In addition, the relationship between competition and predation 

(Hersteinsson and McDonald 1992), as well as, food selection and habitat complexity also 

play an important role in distribution and abundance of marine organisms (Duffy and Hay 

1991; Edgar and Robertson 1992). 
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The delimitation of biogeographical areas has emerged due to the increase of the 

anthropogenic threats to marine biodiversity and the need for the protection of biodiversity 

(Hayden et al. 1984). To get representativeness of biodiversity on a higher scale of a 

zonation and regionalization above the level of habitats, biocoenoses, and species, it is 

necessary to distinguish different biogeographical areas. Besides, biogeography is a 

commonly used tool for marine conservation and a criterion for the identification, selection, 

and designation of Marine Protected Areas (MPAs)(Dinter, 2001). It is also of practical 

interest to many governmental and intergovernmental organizations who wish to identify 

naturally similar areas for reporting on the state of the environment, for prioritizing 

conservation action, or providing funding for conservation or ecodevelopment (Costello et 

al., 2017). The few publications that have aimed to use biogeographic regionalization in 

global marine conservation planning (e.g., Kelleher et al. 1995, Olson and Dinerstein 2002) 

have been qualitative, and have expressed concern about the lack of an adequate global 

classification. Only about a 0.5% of the surface area of the oceans is currently protected 

(Chape et al. 2005), and therefore there is a need for tools to improve an effective and 

representative marine conservation. 

 

1.2 North-east Atlantic Ocean 

 

1.2.1 Water masses and ocean dynamics 

 

The Atlantic Ocean did not exist until approximately 165 million years ago when seafloor 

spreading started to divide southern Gondwana during the Jurassic with a main formation of 

the Atlantic in the Cretaceous (Sclater and Tapscott, 1979). This relatively young age (in 

geological terms) did not provide much time for evolutionary differentiation and speciation 

and thus makes biogeographic approaches using endemism rates more difficult for the 

Atlantic compared to other oceans (Dinter, 2001). 

 

A better understanding of the Atlantic fauna has been possible due to phylogeographic 

analyses (Floeter et al., 2008). Several studies have identified the origins of Atlantic genera 

from different sources; Thesys origins (Dercourt et al., 1986), New World (West Atlantic-

East Pacific) (Coates & Obando, 1996), radiations within the Atlantic, and invasions from the 

Indo-Pacific via southern Africa (Briggs and Bowen, 2013). 
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The ocean is formed by several large water masses, with no clear boundaries. There is a 

gradual and mixed process between them (Castro et al., 1998). The main characteristic in the 

division of the water masses is the density, in the Atlantic Ocean they are distributed in four 

vertical layers separated by equal density in the surface. The main water mass in the upper 

layer of our study sites is the East North Atlantic Central Water (ENACW). This water mass 

is formed during winter and gets subducted in the west of the Iberian Peninsula (Liu and 

Tanhua, 2019). In addition, one component of the Subpolar Mode Water (SPMW) is carried 

by the south branch of North Atlantic Current and mixed, contributing to the properties of 

this water mass (McCartney and Talley, 1982) so that ENACW shows a typical linear 

temperature-salinity (T-S) relationship (Pollard et al., 1996). ENACW advects in the general 

southern direction along the south branch of the North Atlantic Current, passes northwest 

Africa, and then turns southwest into Canary basin passes northwest Africa, and then turns 

southwest into Canary basin (Arhan et al., 1990).  

 

The principal current that covers the Eastern Atlantic Ocean is the North Atlantic Drift 

(NAD). This current flows from the Gulf Stream beyond the Grand Bank of Newfoundland. 

The Coriolis effect forces the NAD to cross the Atlantic Ocean in easterly direction 

(Haedrich and Judkins 1979, Bearman et al., 1989). In the middle of the North Atlantic, a 

division of this current take place resulting in the Azores Current that flows south-eastward 

(Gould et al., 1985). Later divisions are the south-eastward bound (Portugal), Canary Current 

and the Irminger Current flowing towards the north-west. The former two currents are part of 

the North Atlantic Subtropical Gyre while the stronger western branch of latter forms the 

characteristic Polar Front together with the cold and less saline waters of the south-westward 

going East Greenland Current off south-east Greenland (Malmberg et al., 1985). A weak and 

variable eastern branch of the Irminger Current flows coast-near around North-West Iceland 

influencing the North Icelandic coastal waters in an interference with cold and less saline 

East Iceland Current waters (Stefánsson 1962 and  Gudmundsson 1969) (Figure 1.1). 
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Figure 1.1. Main currents of the North Atlantic Gyre, flowing in a clockwise direction, and 

part of the North Atlantic Subpolar Gyre further north. Image adapted from Gonzalez-Pola 

(2018). 

 

The ocean dynamic is a factor that plays an important role in the distribution patterns of 

marine organisms and the borders of the different ecological regions correspond with the 

distribution limits of the species (Gaines et al., 2009). Therefore, large areas defined by the 

presence of distinct biotas that have at least some cohesion over evolutionary time frames 

and hold some level of endemism (Briggs J. C., 2016), usually named as provinces, take 

place where the limits of the different water masses are set (Gaines et al., 2009).  

 

1.2.2 Marine ecoregions 

 

The boundaries of biogeographic regions usually vary considerably, not only due to the 

methods used by biogeographers but also between flora and fauna, benthic or pelagic 

organisms or different taxonomic groups (Dinter, 2001). In addition to taxonomic 

discrimination, there are other attributes to consider such as abundance, biomass and biotic 

interactions which may be useful to describe the structure and function of communities (Rice 
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et al., 1994). Looking at the very different approaches and uncertainties, we can venture to 

state that biogeography still needs further exploration and study. However, during the last 

decade there has been a notable improvement in the biogeography, and more specifically in 

the Atlantic region (Dinter, 2001). 

 

The Temperate Eastern Atlantic Region can be divided in Lusitania and Northern European 

seas provinces (Spalding et al., 2007) (Figure 1.2). The warm-temperate waters from the 

southern end of the English Channel down to southern Morocco and eastward to include the 

Mediterranean as well as the Azores, Madeira, and the Canary Islands circumscribe the 

province of Lusitania. However, Almada et al. (2013) have subsequently argued that the 

Macaronesian archipelagos are highly distinct from the mainland coasts of the Lusitanian 

Province, and these should not be grouped together. On the other hand, the Northern 

European seas province encompasses the waters from the Norwegian archipelago and Barents 

Sea to the southern entrance of the English Channel, including as well Iceland and the Faroe 

Islands. Iceland's unusual biota has made it the center of debate; this region has a low 

endemism and has been located within the Eastern Atlantic Boreal region (Briggs J. C., 

2016). Nevertheless, the eastern side of the North Atlantic holds the richest biota of this 

ocean (Vermeij, 2005). 

 

 
Figure 1.2. Map of the North-east Atlantic Ocean provinces. Each province is represented by 

a distinct color with ecoregions outlined. Image adapted from Briggs J. C., 2016 and 

Spalding et al., 2007. 
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1.3 Intertidal seaweeds and associated peracarids 

 

Distribution models have been widely applied to land based organisms (Hortal et al., 2004), 

but they have rarely been used for intertidal species (Lima et al., 2007). These species 

occupy the interface of land and sea, enduring atmospheric and oceanic stress conditions 

frequently close to their physiological tolerance thresholds (Helmuth et al., 2002). An 

important feature of these organisms is that they can be used as bioindicators of climate-

driven changes (Southward et al., 1995). Specifically, intertidal algae provide shelter and 

food resources for different organisms, as well as being structural engineers in rocky shores 

(Chapman et al., 1995). Thus, distribution models of these organisms may be used as 

powerful tools for tracking and forecasting changes in coastal systems (Martínez, Viejo, 

Carreño and Aranda, 2012). Algal phytogeography has been a subject of great controversy 

(Garbury and South 1989) and it has been constrained by a near total reliance on 

presence/absence data, species lists and floras (Adey and Hayek, 2011). Biogeographic 

regions were redefined by Van den Hoek (1975), but they were based on the appearance and 

disappearance of species, rather than by the zoologists’ percentage of endemics, while 

Lüning (1990) preferred summer/winter isotherms. Another used method, which establishes 

gradients instead of distinguishing between regions, is to calculate a numerical index that is a 

ratio of red plus green algae to brown algae (Mathieson et al. 1991). Besides, biogeographic 

regions are often characterized with endemic and rare species on the “tail of the curve”, 

where they are least abundant, and most variable, rather than with abundance data based in 

means and statistical analysis (Adey and Hayek, 2011). 

 

Rocky substrates are very abundant in many coastal areas along the Northeast Atlantic 

biogeographic region, holding a wide variety of benthic communities that are dominated, in 

most cases, by different species of macroalgae (Van den Hoek, 1975; Borja et al., 2004). The 

benthic marine alga flora of the North Atlantic has been subjected to extensive analysis and 

therefore the genera distribution patterns of the species are reasonably well-known (Robin 

South et al., 1987). The general pattern of algal distribution in the North Atlantic region 

follow temperature trends, which can be seen more significantly in the N-S orientated 

coastlines (Joosten &Hoek, 1986). In addition, algal distributions show marked differences 

in latitudinal range as a result of the Gulf stream deflection (Robin South et al., 1987).  
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In the last 25 years, the Northeast Atlantic has experimented an increase in the sea surface 

temperature of 0.5ºC per decade (Gonzalez-Taboada, 2012; Lima and Whetey, 2012) which 

has caused shifts in the species distribution (Fernández, 2016). Large brown seaweeds such 

as kelps and fucoids which are cold key structural organisms of the Atlantic coast of Europe, 

have experienced a significant declined (Dinter, 2001; Lima et al., 2007; OSPAR, 2010). 

The North-east Atlantic is dominated by cold temperate species such as Laminaria 

hyperborea, Himanthalia elongata, Chondrus crispus, Fucus serratus and warm-temperate 

species such as Cystoseira baccata, Cystoseira tamariscifolia, Gelidium corneum, Bifurcaria 

bifurcata and Ellisolandia elongata (Fernández, 2016). Further studies of the Atlantic flora 

are needed in order to establish the boundaries of the North-east Atlantic biogeographic 

regions which may have changed during the last years (Fernández, 2016). 

 

Numerous species of intertidal macroalgae are an important habitat-forming substrate, 

harboring many epiphytes as well as sessile and mobile associated fauna which are mainly 

peracarid crustaceans (Kersen et al., 2011; Guerra-García et al., 2011). Crustaceans present 

one of the most morphological diverse organisms, however, it is believed that almost the 

40% belongs to the Peracarida group (Kaestner 1980). This group is constituted of small 

benthic crustaceans found from the littoral to hadal regions of the oceans and some species 

which occupies terrestrial and freshwater habitats (Holdich and Bird 1986, Jaume and 

Boxshall 2008). Furthermore, peracarids play an important role in the structuring of benthic 

assemblages. They are a source of food for other benthic animals and fishes of commercial 

importance and important contributors to benthic production (Moreira et al., 2008). 

 

The vast majority of peracarids are bottom-dwelling organisms, either infaunal or epifaunal, 

and they have a wide variety of feeding habits (Gudmundsson et al., 2000; Guerra-García 

and Tierno de Figueroa, 2009). Changes in food supply is believed to be an important factor 

in the distribution of these species and the diversity patterns in the benthic environment 

(Izquierdo and Guerra-García, 2010). Recently, this group has been the focus of numerous 

biogeography studies (Chavanich and Wilson 2000; Thiel 2002; Castellanos et al. 2003; De 

Broyer et al. 2003; Chiesa et al. 2005; Winfield et al. 2006; Myers and Lowry 2009), mainly 

because this group lacks pelagic larvae and their capacities for long-distance movement are 

limited in adults (Izquierdo and Guerra-García, 2010). Furthermore, they have been shown to 

be important contributors to benthic production (Mancinelli and Rossi, 2002) and good 

indicators of environmental changes (Conradi and Lopéz González, 2001; Guerra García et 
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al., 2009). In spite of their interest, only a few researchers have studied the zonation patterns 

of rocky intertidal peracarids (Tararam et al., 1986; Buschmann, 1990; Krapp-Schickel, 

1993; Baldinger and Gable, 1995). 

 

Knowledge on the distribution of peracarids in the North Atlantic is still fragmentary. During 

the last decades, most of the studies have been focused on the Iberian Peninsula and 

specifically on the Strait of Gibraltar (Guerra-García, 2009; Izquierdo and Guerra-García, 

2010), very scarce research has been undertaken on other Atlantic coasts (Guerra-García, 

2009). Jimeno and Turón (1995) studied the ecological distribution of Gammaridea and 

Caprellidea from the northeast coast of Spain, and Pereira et al. (2006) studied the 

biogeographical patterns of intertidal peracarids, including isopods, tanaids and cumaceans, 

and their associations with macroalgal distribution along the Portuguese coast. Other studies 

of the distribution of these organisms have focused their interest in the deep Atlantic 

communities (Gage et al., 2004), however there is a lack of knowledge of the distribution 

patterns in the intertidal along European shores. 

 

1.4 Drivers of distribution patterns  

 

1.4.1 Environmental factors 

 

Several mesoscale studies have attempted to relate the geographic distribution of different 

communities with biotic and abiotic processes (Blanchette et al., 2008). Studies in different 

parts of the world such as South Africa (Bustamante & Branch, 1996; Sink et al., 2005), 

Chile (Broitman et al., 2001), New Zealand (Menge et al., 1999, 2003), the US west coast 

(Connolly & Roughgarden, 1998; Schoch et al., 2006; Blanchette & Gaines, 2007), Japan 

(Nakaoka et al., 2006), British Columbia, Canada (Zacharias & Roff, 2001) and Santa Cruz 

Island, California, USA (Blanchette et al., 2006) has shown a strong link between 

oceanographic conditions and geographical variation in species assemblages, and 

specifically climate has been considered as a major determinant of species distribution 

(Grinnell et al,. 1917). Nevertheless, this interaction between environmental conditions and 

species distribution remain unexplored, limiting the prediction of the effects of climate 

change in the marine environment (reviewed in Darling and Côté 2008). Moreover, most of 

the predictions are based merely on the latitudinal variation of climate, without taking into 
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account the differences in physical factors between the global, local and regional scale 

(Christensen et al. 2006; Helmuth et al. 2006; Jump et al. 2006; Austin and van Niel 2011). 

 

One of the main environmental factors that play a key role in the distribution patterns of 

marine communities is temperature. This factor has been well-studied in biogeography 

and provide a useful quantifiable metric of ocean conditions (Blanchette et al., 2008). There 

are numerous fossil evidences that demonstrate the influence of temperature on the 

distribution of the organisms, such as the shift of marine faunas polewards as sea surface 

temperatures (SST) rose during the Pleistocene-Holocene transition (Hubbs, 1960; Addicott, 

1969; Moore et al., 1980). But also short-term events such as El-Niño Southern Oscillation 

(ENSO), which causes sea surface temperature variations, can impact on species distribution 

limits (Pearcy & Schoener, 1987; Tanasichuk & Cooper, 2002; Zacherl et al., 2003; Keister 

et al., 2005). Commonly, the geographical limits of macroalgae have been linked to ocean 

isotherms, showing either lethal or sublethal conditions that limit growth and/or reproduction 

(Luning, 1990). In addition, several studies attribute recent shifts in distributions of 

macroalgae to the rising ocean temperatures (Mieszkowska et al., 2006; Lima et al., 2007a). 

Furthermore, future patterns of thermal stress should be considered in the context of 

biogeographical distributions (Blanchette et al., 2008). Present temperatures and predicted 

near future increases in thermal stress might not vary consistently with latitude in coastal 

marine systems (Helmuth et al., 2002, 2006a), and organisms could be most at risk in 

hotspots well removed from their current biogeographical range edge (Blanchette et al., 

2008). 

 

The organisms that occupy the intertidal are exposed to environmental conditions at the 

extreme edge of both the marine and terrestrial environment and therefore they are the 

most affected by the potential effects of climate change (Harley et al., 2006; Helmuth et al., 

2006b). But also, other non-climatic physical factors are critical in shaping the vertical 

and latitudinal distributions of marine intertidal organisms (e.g. Harley 2003). In intertidal 

macroalgae distribution, various non-climatic factors may be determinant variables. For 

instance, the colonization of seaweeds depends on wave action and the availability of hard 

substrata for attachment (Luning, 1990; Vadas et al., 1992). The differences in the timing of  

the low tide may create “hot spots” of thermal stress (Helmuth et al. 2006). When emerged, 

the intertidal communities suffer water loss and significant overheating which may lead to 

physiological damage (Chapman 1995; Davison and Pearson 1996; Livingstone 2001). 
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High irradiance is another factor that affects these organisms (Häder and Figueroa 1997; 

Figueroa and Viñegla 2001). Ultraviolet is common in intertidal macroalgae and its negative 

effects on these organisms have been shown to increase with high temperature (Altamirano 

et al. 2003). However, this may vary with cloudiness and wind regimes, which modify air 

temperature, humidity and irradiance (Dromgoole 1980; Helmuth 2006), conditions hard to 

predict. Therefore, most distribution models for intertidal species do not include these 

physical factors and only account for large-scale changes in ocean temperature (Lüning et 

al,. 1990). Wave exposure has been acknowledged as a key process molding the composition 

of coastal communities (Ballantine 1961, Kingsbury 1962, Lewis 1964). The most noticeable 

effect is the exclusion of those organisms with inadequate attachment mechanisms 

(Zacharias and Roff, 2001). This physical factor not only affect the organisms but also their 

interactions acting directly as a mechanical stressor (McQuaid and Branch 1985, Menge and 

Sutherland 1987, Denny 1988) and indirectly by altering temperature (West and Salm 2003), 

sedimentation (Airoldi 2003, Schiel 2006), nutrient intake (Hearn et al. 2001) and 

productivity (Hurd et al,. 2000). Long periods affected by waves can also increase light 

attenuation through sediment resuspension, limiting photosynthesis as well as burying 

communities in sediments (Zacharias and Roff, 2001). Several studies have studied the 

relationship between the structure of intertidal communities and this physical factor (Lewis 

1964, Seapy & Littler 1978). There are several tools in the assessment of this factor such as 

topographical indices based on the openness of the coastline and combined with local wind 

data, commonly showed as fetch models (Burrows et al. 2008). 

 

Although it is believed, that salinity has a little effect on the marine communities’ 

distribution (Mann & Lazier, 1996) in small scales this factor gains importance, specifically 

in intertidal communities that can be affected by salinity ranges from near 0 to >30ppt over 

shorth distances (Zacharias and Roff, 2001). In estuaries, salinity is one of the major 

environmental variables (Attrill 2002; Day et al. 2013) and it is modulated by several factors, 

such as tidal currents, evaporation, rainfall and riverine discharge (Day et al. 2013). Witman 

and Grange (1998) showed that high precipitation rates may affect local salinity and 

subsequently subtidal community structure by altering the spatial distributions of key 

predators. 

 

Another factor that is taken into account in the distribution of species is productivity, 

dependent or independent of temperature and in many occasions related to upwelling 
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processes (Field et al. 1998). The intensity and frequency of this oceanographic phenomenon 

have been pointed to act as a leading process structuring marine benthic communities in 

many temperate regions (Menge, 2000; Fenberg et al., 2014). The primary productivity is 

regulated by the availability of nutrients; the high turnover rates of phytoplankton makes 

primary producers to respond rapidly to nutrient levels which have led to the study of the 

relationship between primary productivity and assemblages of species (Huston and 

Wolverton ,2009). Chlorophyll levels in the sea can give us an idea of the primary 

productivity, which is commonly greater in coastal areas (Field et al. 1998), and can affect 

the fauna by increasing carrying capacities, population densities and diversity (Huston and 

Wolverton ,2009). In the case of algae, high productivity not only has a direct influence on 

the organisms themselves, but can also affect the associated organisms either directly or 

indirectly (Cole and McQuaid, 2010). Huston (1979) suggested that where there is greater 

diversity and greater densities of foundation species, there is more vacant space and 

consequently more dependent species. Previous studies have approached the effects of high 

productivity on the biogeography of intertidal organisms, however whether these responses 

can be generalized to include the fauna inhabiting biogenic habitats remain unknown (Cole 

and McQuaid, 2010). 

 

1.4.2 Human impact 

 

Furthermore, anthropogenically-forced environmental stresses are increasing in parallel with 

global warming, which can also cause a change in the distribution of organisms (Beaugrand 

et al., 2003; Richardson & Schoeman, 2004; Roessig et al., 2004; Harley et al., 2006; Portner 

& Knust, 2007). There are numerous models indicating that the greenhouse gas emissions 

could cause an increase on the acidification and warming of the ocean surface (Conners, 

Hollowed & Brown, 2002). Other human impacts such as overfishing may have indirect 

effects not only on the exploited populations, but also on ecosystem structure and function 

(Myers & Worm, 2003; Frank et al., 2005). In addition, one of the major threats affecting 

coastal marine ecosystems is anthropogenic eutrophication (Cloern, 2001). 

 

Due to the increase in recent years of these anthropogenic stressors, the importance of 

biodiversity conservation and the state of habitats have been highlighted (Hunter and others, 

1988; May, 1994). However, many of these studies focus on the terrestrial realm. But the 



 

13 

 

marine realm will also undergo changes on species distribution (Richmond, 1993; Norse, 

1993). Increasing world population in coastal areas is putting marine ecosystems at risk zone 

(IGBP, 1990; Leatherman, 1991; Norse, 1993) and it is timely, to evaluate the probable and 

known effects of anthropogenic global change and habitat disturbance on nearshore 

ecological communities (Ray, 1991). 

 

Human disturbance and destruction of coastal habitats is likely to have a greater effect on the 

marine ecosystems than global warming (Bugnot et al., 2020). Tropical regions characterized 

by high diversity, high numbers of endemic species, and by high numbers of rare species will 

be subject to the greatest risks from human impact (Conners, Hollowed & Brown, 2002). 

Predictions indicate that precipitation and temperatures will become more variable and 

extreme weather events will be more frequent and extreme (e.g., heat waves, droughts, and 

floods) (Easterling et al. 2000; IPCC 2007). These factors may also affect pH fluctuations 

which could become more pronounced, nonetheless little research has focused on the impact 

of pH fluctuations on marine species distribution (Conners, Hollowed & Brown, 2002). 

Several factors contribute to these fluctuations including temperature (influencing the 

solubility of CO2), salinity (influencing alkalinity), photosynthesis rates (affecting uptake of 

CO2), respiration (affecting release of CO2), and upwelling of CO2-rich deep water (Bates 

et al. 1996; Raven et al. 2005; Lee et al. 2006; Wootton et al. 2008) 

 

Species living in coastal and intertidal zones will therefore be particularly exposed if 

fluctuations in seawater pH increase (Marchini et al., 2019). Especially, organisms such as 

peracarids are more at risk of being negatively affected by ocean acidification. Their cuticle 

contains magnesium calcite (Hild et al. 2008), which is highly soluble and the surface 

seawater is predicted to become undersaturated with respect to this mineral in the near future 

(Feely et al. 2004; Andersson et al. 2008; Neues and Epple 2008). The decreased of pH in 

the ocean has been mainly caused due to the ocean’s capacity to act as a sink of 

anthropogenic carbon. Changes in pH lead to major changes in the seawater chemistry, 

namely an increase of bicarbonate and a decrease of carbonate ions as well as of the 

saturation state of calcium carbonate and aragonite. Among marine ecosystems, calcareous 

organisms such as peracarids or some algae will be the most affected by a decrease in pH 

(Martin and Gattuso, 2009; Bijma et al., 2013; Kamenos et al., 2013) 

However, for the moment many studies fail to establish limits on the natural variability of 

benthic communities, and therefore we still are unable to discriminate many of the ecological 
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responses registered because of natural or anthropogenic disturbances (e.g. Echavarri et 

al.,2007). Establishing the relationship between stressors and causes at the species or 

community level is a difficult task that requires the use of multiple lines of evidence (Adams, 

2005). Thus, there is an urgent need for tools that contribute to the effects of human 

activities in the marine environment, by providing indicators that measure the extent of 

impact of an activity on part of the ecosystem (Rogers and Greenaway, 2005). 

 

Harlpem (2012) developed an index to quantify the human impact on the ocean. The index 

allows to simultaneously evaluate disparate metrics, allowing for an integrated assessment of 

changes in, for example, fish stocks, extinction risks, coastal jobs, water quality and habitat 

restoration. The Ocean health index (OHI) comprises ten goals which can be considered 

separately or aggregated into an overall score for a region, country or entire ocean (Figure 

1.3). The index is calculated as a linear weighted sum of the scores for each of the ten public 

goal indices and the appropriate weights for each goal. Each goal score is a function of its 

present status and an indication of its likely near-term future status. The global index score 

was 60 out of 100, nevertheless it varied greatly by country. For instance, Northern Europe 

showed a high score while African countries scored poorly. Developed countries tended to 

score higher than developing countries showing that index scores are significantly correlated 

with the human development. This is because developed countries tend to have stronger 

economies, better regulations and infrastructure to manage pressures and greater capacity to 

pursue sustainable resource use (Harlpem., 2012). 
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Figure 1.3. Public goals and sub-goals of Ocean health index (OHI). Source: Harlpem, 2012. 

 

1.5 Biodiversity  
 

Biological diversity is “the variety of life” and encompasses variations at all levels of 

biological organization (Gaston and Spicer, 2004). This range of different levels of 

organization goes from the genetic variation between individuals and populations, to species 

diversity, assemblages, habitats, landscapes and biogeographical provinces. The term most 

used in many studies to describe biodiversity is species richness which refers to the number 

of species in a given area (Gray, 2000) and it is worth stressing that the richness in a region 

should be determined by a balance between the rates of extinction, migration and origination 

of species (Wiens & Donoghue, 2004; Mittelbach et al., 2007). However, the number of 

species alone does not describe the structure of the assemblage of species in a given area 

because the number of individuals per species varies (Gray, 2000). The richness of any 

region is a consequence of the richness of each of the smaller areas that compose it, and the 

turnover in species composition among them (Whittaker 1960). In order to take into account 

the proportional abundance of species, a variety of indices are used (Magurran et al., 1984). 

These indices consider both species richness and how evenly the individuals are distributed 

among species (evenness or equitability) (Gray, 2000).  

 

Several scales of species richness have been proposed; the number of species found in a 

sample or the richness of taxa at a particular community was named apha (or within habitat) 
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diversity and it was described as the basic unit of diversity. Alpha diversity measures capacity 

within a community and thus reflects how finely species are dividing ecological resources 

(Sepkoski, 1988). Several indices of species diversity are used to measure alpha diversity. A 

commonly used index is that referred to as ‘Shannon’s Index’ or ‘H’. Another widely used 

indices for community analysis are Simpson’s and Gini-Simpson’s. But these indices are not 

themselves diversities, therefore, in order to measure the true diversity, “the effective number 

of species” was proposed (Jost, 2006). This can be defined as the number of equally-common 

species required to give a particular value of an index. Converting indices to true diversities 

(effective numbers of species) gives them a set of common behaviors and properties (Cao and 

Hawkins, 2019). After conversion, diversity is always measured in units of number of 

species, no matter what index we use. This lets us compare and interpret them easily, and it 

lets us develop formulas and techniques that don't depend on a specific index. It also lets us 

avoid the serious misinterpretations spawned by the nonlinearity of most diversity indices 

(Jost, 2006). In addition, species diversity can be shown as beta (or between habitat) 

diversity, and it can also be measured at a larger scale, gamma diversity (Whittaker et al., 

1960). 

 

The spatial structure of communities is linked with ecological processes by beta diversity, 

and therefore it can also be defined as the taxonomic differentiation of fauna or flora 

between sites or communities (Sepkoski, 1988). These ecological processes include neutral 

processes such as dispersion limitation and niche-based processes (e.g. limiting similarity 

and environmental filtering) (Dobrovolski, Melo, Cassemiro and Diniz-Filho, 2011). Beta 

diversity can be used to measure the amount of turnover in species composition along 

environmental gradients and therefore, it can reflect the extent of habitat selection or 

specialization (Sepkoski, 1988). Besides, this measurement of diversity provides a better 

understanding on how ecological processes operate along environmental gradients (Qian and 

Ricklefs, 2007). Only a few studies focused on beta diversity for marine biota, especially at a 

large scale (Smit, Bolton and Anderson, 2017). Beta diversity can be divided into two 

components: spatial turnover and nestedness (Baselga, Jiménez-Valverde and Niccolini, 

2007). The latter measures the ordered deconstruction of assemblages due to non-random 

processes of species loss, leading to the formation of local sets poorer in the number of 

species. On the other hand, spatial turnover describes the replacement of species as a result 

of ecological processes (Wright and Reeves, 1992). Turnover and nestedness are 

complementary and main drivers of dissimilarity patterns between communities (Baselga, 
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Jiménez-Valverde and Niccolini, 2007), and it has become possible within the last decade 

(Baselga et al., 2010). 

 

The latitudinal gradient of diversity, specifically species richness is still one of the most 

important patterns in macroecology and biogeography (Pianka, 1966;Willig et al., 

2003;Wiens & Graham, 2005; Mittelbach et al., 2007). Latitude is a surrogate for a number 

of primary environmental gradients (e.g., temperature, insolation) that interact and are 

correlated to each other, making the study of this gradient difficult and controversial (Willig, 

Kaufman & Stevens, 2003). Global-scale patterns of biodiversity is one of the most studied 

in ecology and biogeography, consistent trends are repeatedly documented in both terrestrial 

and marine environments (Gaston et al., 2000). One of the main factors that influence this 

latitudinal gradient of biodiversity is the spatial scale but it is also dependent on the 

historical, geographic, biotic, abiotic and stochastic forces (Schemske 2002). Several studies 

confirm an increase in species diversity from the poles toward the tropics (Willing 2003; 

Hillebrand 2004). This phenomenon was described by Rapoport in 1982 and it refers to the 

tendency for species geographical ranges to become smaller towards the tropics. Although 

many explanations have been proposed for this pattern (Pianka 1966; Stevens 1989; Rohde 

1992; Koleff & Gaston 2001), its underlying causes remain unresolved (Currie et al. 2004; 

Martin & McKay 2004; Mittelbach et al. 2007).  

 

There are numerous theories that aim to explain this latitudinal gradient of species diversity. 

For example, the species–area hypothesis support that larger areas can harbor more 

individuals and populations thus reducing extinction risk, while also containing more barriers 

that promote allopatric speciation (Rosenzweig 1995, Chown and Gaston 2000). Kaspari 

(2004) proposed the species–energy hypothesis that attempt to explain the pattern by the 

faster metabolic and speciation rates associated with warmer temperatures, and the climatic 

stability that characterizes the tropics. The species–productivity hypothesis suggests that 

greater energy inputs will support more individuals and promote specialization, however the 

relationship between species numbers and productivity appears to be highly scale dependent 

(Rosenzweig 1995, Chase and Leibold 2002). This latitudinal gradient has also been observed 

in beta diversity (referring to the turnover of species). The increase of beta diversity of 

species between habitats towards the equator might contribute to high diversity at both local 

and regional scales, and it could be explained by less-seasonal environments in the tropics 
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which allow a greater habitat specialization (Stevens et al., 1989). Few studies have examined 

the relationship between latitude and beta diversity at any scale, and results are inconsistent. 

 

Despite its generality, exceptions to the latitudinal gradient of species diversity are common 

in both terrestrial and marine realm (Stevens, 1989; Stephens & Wiens, 2003; Willig et al., 

2003; Smith et al., 2005; Kindlmann et al., 2007; Fernández et al., 2009; Pyron & Bur brink, 

2009). For instance, the temperate Pacific coast of South America harbors many different 

marine taxa and it presents an inverse latitudinal gradient in seaweeds (Meneses & Santelices, 

2000; Santelices et al., 2009) and peracarids crustaceans (Lancellotti &Vásquez, 2000; 

González et al., 2008). Others regions have also shown an inverse latitudinal gradient of 

diversity of benthic organisms (Willig et al., 2003). Biodiversity patterns may be the result of 

different physical properties of the water such as light penetration and absorbency of 

radiation, salinity, temperature or oxygen concentration. They can shape the latitudinal 

gradient which may affect in the delimitation of the marine biogeographic boundaries 

(Hayden et al., 1984). Although, a decrease of diversity from the equator to the poles can be 

found in pelagic, benthic and even deep-sea species, there are exceptions such as peracarids 

in North Atlantic waters that do not follow this pattern (Brandt et al., 1996). 

 

Reductions in biological diversity have been observed during the last decades, mainly due to 

factors such as habitat destruction, pollution and climate change (Dornelas et al., 2014). Beta 

diversity has gained great importance in marine ecology and biogeography (Thrush et al., 

2010) because it can describe changes in community composition and structure along spatial 

and environmental gradients (Anderson et al., 2011). Diverse environmental factors such as 

organic matter input (Hecker 1990), currents (Blake & Grassle 1994), macrohabitat 

heterogeneity (Gooday et al. 2010), temperature (Howell et al. 2002), oxygen concentration 

(Levin et al,. 2000) among others, may be responsible for determining beta diversity patterns. 

While there is a growing body of literature on the subject, large gaps remain in the 

understanding of biodiversity patterns. Thus, one of the most important objectives in ecology 

and biogeography remains the ‘‘development of a markedly improved understanding of the 

global distribution of biodiversity’’ (Gaston  et al., 2000).  
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2. Objectives 

 

Coastal marine systems are among one of the most important in terms of economic and social 

contribution to the world population. Marine habitats are estimated to provide over US$14 

trillion worth of ecosystem goods and services per year, or c. 43% of the global total 

(Costanza et al. 1997). Nevertheless, many scientists around the world agree that coastal 

marine systems, along with the goods and services they provide, are threatened by 

anthropogenic global climate change (IPCC 2001). During the last decade there has been a 

growing concern about species distribution changes in marine systems. Climate is considered 

one of the major drivers of species distribution (Grinnel, 1917). There are numerous studies 

that have suggested climate driven species distribution shifts (Lima et al. 2007; Hawkins et 

al. 2009). However, the interaction between the factors that drive the distribution of 

organisms remain unexplored, thus limiting the capacity to predict changes on species 

distribution by climate change (Dornelas et al., 2014). In addition, biodiversity has been 

reduced in recent years, mainly due to habitat destruction, pollution and overharvesting, and 

ecosystem function is changing as a result (Butchart et al., 2005). The implementation of 

conservation and management decisions is typically at the scale of local to regional 

ecosystems, knowledge of biodiversity change within assemblages is essential to inform 

policy ("AIBSnews", 2004). 

 

There are several biogeographic studies focused on the distribution of seaweeds (Robin 

South, 1987; Fernández, C., 2016.), peracarids (Beaugrand, 2002; Guerra-García, Sánchez 

and Ros, 2009) and their relationship (Izquierdo and Guerra-García, 2010; Guerra-Garcia and 

Sanchez, 2009), however most have been carried out on a regional scale, especially in the 

Iberian peninsula. In this study, we aim to gain a broader idea of the distribution of seaweeds 

and associated peracarids. We focus on the role of environmental variables and 

anthropogenic pressure in the determination of the geographical distribution as well as 

biodiversity patterns of intertidal seaweeds and peracarids along the Northeast Atlantic, 

covering a wide latitudinal range, from Iceland to Canary Islands. This study will provide a 

larger-scale view (North-east Atlantic region) of the distribution patterns of the algae and 

peracarids that inhabit the intertidal zone. It can also help to expand the knowledge on what 

are the factors that determine the distribution and diversity of these organisms, which can be 

useful for future research on the predictions of possible changes caused by climate change. 
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Considering ecoregion as an area of relatively homogeneous species composition, clearly 

distinct from adjacent systems, we hypothesize the presence of ecoregions in the Northeast 

Atlantic, based on the occurrence of both algae and associated peracarid species and that the 

main factors that drive the separation of ecoregions are the sea surface temperature (SST) and 

anthropogenic pressure. In addition to the presence of a biodiversity latitudinal gradient, 

decreasing towards the poles. 

 

In order to verify these hypotheses, samples of a wide latitudinal range were analyzed and a 

biogeographic analysis was carried out including different environmental factors as well as 

anthropogenic pressures to reveal which of them have a greater effect on the distribution. In 

addition, the biodiversity of the different seaweeds and peracarids communities was studied 

and, they were compared with different latitudes.  

 

The intent of this study was 1) to determine ecoregions for the North-east Atlantic (25ºN-

65ºN) based on intertidal seaweeds and associated peracarids species distributions; 2) to 

explore the relationship between ecoregions and environmental variables, including 

anthropogenic pressure, and 3) to compare and contrast diversity of seaweeds and peracarids 

from intertidal sites at geographically widely dispersed areas to ascertain if there are trends 

with latitude.  

 

3. Material and methods 

 

3.1 Study area 

 

This study encompasses the North-east Atlantic region. Samples were taken at nine sites and 

twenty-seven stations along a wide latitudinal gradient from Reykjavik in Iceland (65° 59' 

59.9856'' N, 21° 19' 10.776'' W) to Canary Island (Spain) in the south of the North-east 

Atlantic region (27° 59' 8.7144'' N, 15° 22' 30.756'' W)(Figure 3.1). The sites were selected in 

order to cover the greatest range of latitudinal environmental conditions and they are strongly 

influenced by the Gulf Stream which is divided in several currents producing great 

differences in the oceanographic conditions of the sites. 
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Figure 3.1. Study area showing the sampling sites, with three stations for each site. 1)Iceland, 

2)Norway, 3)Scotland, 4)Galicia, 5)West Portugal, 6)South Portugal and the islands of 

7)Madeira, 8)La Palma and 9)Gran Canaria. 

 

The primary goal of the sampling design was to cover all relevant habitats in the intertidal 

zone to maximize diversity sampling. The design used was based on the tidal zonation levels. 

The rocky intertidal shore was divided into three levels, upper, middle and lower, according 

to the zonation scheme of Lewis (1964) and within each level, four habitats were considered, 

according to two abiotic variables that determine the distribution of algae in the intertidal 

zone, exposure to light (sun/shadow) and exposure to the sea (submerged/emerged). 

 

The limits were set by the margins of distribution of indicator species and the reason for this 

is that the degree of exposure decouples the vertical distribution of species from the levels of 

high or low tide, except in sheltered shores. Although the Lewis system only considers two 

divisions: the littoral fringe and the eulittoral, the latter can be subdivided depending on the 

relative abundance of the dominant species. Therefore, the criteria used here were: 1) Upper, 
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above the barnacle limit. It is here that occurs Melarhaphe neritoides and other littorinids in 

other regions (and also the lichens), 2) Middle, between the upper limit of the barnacle belt 

and the upper limit of the mussel belt which is usually coincident with the upper limit of 

heavy algal cover. This is where the heavy dominance of barnacles occurs (although 

decreasing up-shore) and also the limpets, 3) Lower, bellow the upper limit of the mussel 

belt. 

 

3.2  Environmental variation along the European latitudinal range 

 

The environmental variables used in the present study were selected due to the important role 

that they play on the distribution of marine organisms. Temperature, salinity and chlorophyll 

as a proxy of productivity can change the distribution and the occurrence of marine 

organisms (Rohde, 1992; Ingole & Parulekar, 1998; Gaston, 2000; Yasuhara et al., 2012). At 

the coast, other abiotic factors, such as wave fetch, tidal amplitude, insolation, are 

critical at local level to structure marine communities (Gaston, 2000; Gartner et al., 2013; 

Kroeker et al., 2016). Also human disturbances and the effect caused by climate change, can 

act both on small and large scales, affecting the distribution of organisms (Airoldi & Beck, 

2007; Brierley & Kingsford, 2009; Crain et al., 2009; Coll et al., 2010). Thus, to better 

understand the pattern of diversity and distributions of marine organisms, we need to consider 

this set of abiotic factors. 

 

The latitudinal gradient along the sampling stations was characterized by the following 

environmental variables fetch, air temperature, chlorophyll-a minimums SST, insolation, 

precipitation. Ocean acidification was studied by the addition of pH and aragonite saturation 

values, which were obtained from NOAA Dataset. Besides, Ocean Health Index (OHI) was 

included, developed by Halpern in 2012, which encompasses different human actions that can 

change the state of the ocean. The index (OHI) score is the weighted sum of ten goal-specific 

index scores (1): 

 

                               𝐼 =  ∑ 𝛼𝑖𝐼𝑖𝑁
𝑖=1                               (1) 
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where α is the goal-specific weight (∑αi=1 ; αi= 1/N) and Ii is the average value of present 

and likely future status, for each goal i. In this study, index values for 2015 were included, 

they were the most recent data found from Halpern. 

 

3.3 Sampling and species classification 

 
Sampling was conducted from spring to fall 2011 (from April to October) and consisted of  

20 cm x 20 cm quadrats within each intertidal zone, one per habitat. Each quadrat area was 

scratched and organisms were completely removed. Three replicates were taken from each 

habitat. All habitats within each level were explored and every species observed were 

collected. A minimum of 15 individuals of the most common species and the complete 

collection of the rest of organisms was established, however, this procedure slightly varied 

depending on the habitat; In the Upper level collect at least for 15 person*min. In the Middle 

and Lower levels collect for at least for 30 person*min. Then, the samples collected in the 

different habitats were placed in previously labeled bags and subsequently preserved in a 

preservative solution (40% salt water, 40% ethanol (70%), 10% glycerin, 10% formalin (4% 

formalin). 

 

3.4 Sample processing 

 

The samples were then processed. Firstly, in order to separate the peracarids from the algae, 

they were immersed in fresh water for 5 min, agitating to release the organisms. Then, the 

algae were removed and water was sieved through a 500 micra mesh. Finally, the organisms 

were preserved in alcohol. In the laboratory, samples were identified, whenever possible, to 

the species, with a Carl Zeiss Magnifier, STEMI 2000C and a Carl Zeiss Microscope, 

Axioskop 2 PLUS, and the representative specimens of the different species and locations 

were stored in liquid medium (KEW), since this process facilitates future uses of biological 

material. The identification of the species was carried out through a diverse bibliography (e.g. 

Dixon & Irvine 1977, Irvine 1983, Burrows 1991, Maggs & Hommersand 1993 and Afonso 

Carrillo & Sansón 1999).  

 

In the last phase, data was introduced in a table, with each species classified according to two 

scales of semi-quantitative abundances. The first uses values between 0 - 4, with 0 - absent, 1 

- present or rare, 2 - little abundant, 3 - common and 4 - very abundant. The second, the 
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DAFOR scale, quantifies organisms as D - dominant, A - abundant, F - frequent, O - 

occasional and R - rare. In the case of the peracarids, absolute abundance were scaled and 

adapted to the DAFOR scale (Table 3.1). 

 

 

 

Table 3.1. DAFOR scale used to determine species abundance. Source: Kenneth F. D. 

Hughey (2012). 

 

 

3.4 Data analyses 
 

First, the data set containing all the species that were sampled was cleaned, removing those 

that only appeared in one site. Then, a presence and absence matrix with sites in the rows and 

species in the columns was created in order to analyze the distribution pattern. Using the 

Vegan package of the statistical software RStudio, the affinities among sites based on 

presence-absence matrix with a total of 412 species were measured through a CLUSTER 

analysis using UPGMA (unweighted pair group method using arithmetic averages), based on 

the Bray-Curtis similarity index. The results were shown in a dendrogram and a K-means 

cluster plot was used for a better visualization of the groups. The number of groups or 

clusters (k) was chosen, based on the elbow method. In addition, the similarity of the sites 

based on the occurrence of species was shown performing a non-metric multidimensional 

scaling (NMDS), distinguishing by colors the different biogeographic regions obtained in the 

cluster analysis. Finally, the percentage of endemism corresponding with each biogeographic 

division was calculated. 

 

Before proceeding with the analysis of the environmental data, normality was verified using 

Shapiro-Wilk test and the environmental variables were plotted against latitude. The 

relationships between environmental measures and species assemblages were studied by a 

Canonical Correspondence Analysis (CCA) (Izquierdo and Guerra-García, 2010) and by 

fitting the environmental variables with the NMDS plot using the envfit function 

https://www.researchgate.net/profile/Kenneth_Hughey
https://www.researchgate.net/profile/Kenneth_Hughey
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(Dixon, 2003). Both analysis were carried out using the package Vegan from the RStudio 

software. In order to study the significance of the environmental variables represented in the 

CCA, a permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001), 

using the ‘adonis’ function of the ‘vegan’ package (Oksanen et al., 2017), with 999 

permutations was carried out. Furthermore, multicollinearity between the different 

environmental variables was detected using the VIF (Variable Inflation Factors) method.  

 

After this point, an abundance matrix with sites in the rows and species in the columns was 

used, and abundance was scaled to the DAFOR scale. The similarity percentages breakdown 

(SIMPER) procedure (Clarke, 1993) was used to assess the average percent contribution of 

each specie to the dissimilarity between the three ecoregions obtained in the previous 

analysis. Biodiversity was also analyzed by measuring alpha and beta diversities. Species 

richness (S), Shannon-Wiener Index (H’) (2), Simpsons Index (DSimp) (3), Evenness (J’) (4) 

and effective number of species (5) were calculated for each station. The indices were 

calculated as the following: 

 

𝐻′ = − ∑ (𝑝𝑖)(𝑙𝑜𝑔𝑝𝑖)
𝑠
𝑖=1                                 (2) 

 

Being p the proportion (n/N) of individuals of one particular species found (n) divided by the total 

number of individuals found (N). Natural logarithm was used in order to calculate the effective 

number of species. 

 

𝐷 = ∑
𝑛𝑖 (𝑛𝑖 −1)

𝑁(𝑁−1)

𝑠
𝑖=1          𝐷𝑠𝑖𝑚𝑝 = 1 − 𝐷       (3) 

 

                 𝐽′ =  
𝐻′

ln 𝑆
                                         (4) 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑒𝐻′         (5) 

 

On the other hand, beta diversity was partitioned into overall beta diversity, turnover and 

nestedness components following the methods proposed by Baselga in 2009 (Table 3.2). This 

procedure was performed using the function “beta.sample.abund” in the R package betapart. 

 

 

https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.12505?casa_token=qOQxJqWVyo0AAAAA%3Ap5WQNl1zeSTSy_NXWIv7szCAavmUlf_dmYGWhSsaUPRB_Sa1HAtZg6F2kcHYE7ONT6TNsD-HBEF7C2o#jbi12505-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13853?casa_token=BeRa7jwqJYwAAAAA%3AnTZpeaODFoSmPpyEFLdXZGX3mjzkoEm_xVj_nrLAEVXM33DlVLLIGbGKLHtFwso3-pP2D6yRpQ0U-xE#jbi13853-bib-0003
https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.13853?casa_token=BeRa7jwqJYwAAAAA%3AnTZpeaODFoSmPpyEFLdXZGX3mjzkoEm_xVj_nrLAEVXM33DlVLLIGbGKLHtFwso3-pP2D6yRpQ0U-xE#jbi13853-bib-0066
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Table 3.2. Beta diversity index and their nomenclatures used in the present study. Source: 

Dalmolin, Tozetti & Ramos Pereira, (2019). 
 

In order to study if there is a relationship between the latitude and biodiversity, the Pearson 

correlation coefficient was calculated for all the biodiversity indices. Furthermore, the indices 

that showed a high correlation were plotted against latitude, differentiating the three main 

biogeographic regions by color.  

 
4. Results  

 
4.1 Cluster analysis of intertidal seaweeds and peracarids 
 

A total of 12779 specimens were sorted and examined, out of which more than 74% were 

algae. In this study, 332 species of algae were identified of which almost 16% belonged to 

the Rhodomelaceae family, followed by Cladophoraceae and Ceramiaceae and 80 different 

species of peracarids were found. Amphipoda was the dominant group represented by the 

family Hyalidae with a 14% of the total of the peracarids specimens analyzed. When 

examining the cluster dendrogram based on Bray-Curtis similarity, two main groups can be 

differentiated (Figure 4.1) at 0.8 dissimilarity. One that includes the stations 10-27 (Madeira, 

Canary Islands and Iberian Peninsula) and another that includes the stations 1-9 (Iceland, 

Norway and Scotland). At 0.6 dissimilarity another division occurs, separating the stations 

19-27 (Madeira and Canary Islands) and the stations 10-18 (Iberian Peninsula). It is worth 

highlighting the distinction of a station in each of these last two groups, corresponding to 

station 14 (Moel) in the Iberian Peninsula and station 6 (Viksoy) for the northern region.  
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Figure 4.1. Cluster dendrogram based on the seaweed and peracarid composition of each 

station. 
 

 

 

 

The k-means cluster analysis gives us a better visualization of the groups (Figure 4.2). The 

number of clusters was predefined using the elbow method which the optimal number of 

clusters correspond to the bend in the knee (or elbow) (Figure 4.3). The results of the graph 

agree with those shown in the dendrogram, separating the sites into three large groups. The 

northern region which encompasses from Iceland, Norway and Scotland, shown in red, the 

green cluster includes the Iberian Peninsula or central region and the southern region is 

represented by the blue cluster. In addition, a greater amplitude in terms of dissimilarity can 

be observed for the Iberian Peninsula and North regions, where, as in the dendrogram, the 

little similarity of the station 14 (Moel) and 6 (Viksoy) with the rest present in the area 

stands out. On the other hand, the stations that belong to the southern region (Madeira and 

Canary Islands) showed a greater grouping, indicating less dissimilarity between them. 
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Figure 4.2. Graph showing the results of the k-means cluster analysis based on the 

occurrence of seaweeds and peracarids along the different stations. 
 

 

 

 

 
Figure 4.3. Elbow method which display the best k mean fitting or optimal number of 

clusters predefined for the k-means cluster analysis. 
 

 

 

Finally, distinct groups of stations emerge from the 2-dimensional picture produced by the 

non-metric multidimensional scaling (NMDS) (Figure 4.4) and match well those produced 

by the CLUSTER and k-means analysis. The three distinct groups were considered as 
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different biogeographic regions, corresponding with the stations in the north (blue), central 

region or Iberian Peninsula (orange) and those in the south (green), the latter which includes 

Madeira and Canary Island is also known as Macaronesia (Almada et al. 2013). Furthermore, 

the low stress level (0.054) indicates a good fit and therefore we can assume that the 

ordination is not arbitrary. 

 

 

 
Figure 4.4. Graph representation of the non-metric multidimensional scaling analysis 

(NMDS), where colors represent the different biogeographic regions and points represent 

each station. 

 

 
4.2 Relationship between abiotic data and the distribution of seaweeds and associated 

peracarids  

 

Regarding the latitudinal variation of the environmental parameters along sampling stations, 

low latitudes were represented by higher air temperatures, SST, insolation, pH and aragonite 

saturation while northern sites were dominated by higher precipitation and chlorophyll-a. It 

was observed that contrary to all the other variables, fetch did not show a clear latitudinal 

variation. Higher values of fetch were observed at the stations 2 (Grindavik) in the North, 14 

(Moel) in the Iberian Peninsula and 21 (Cruz) in Madeira. As well OHI did not show a 

definite trend and remains relatively stable along the latitudinal gradient, ranging from 60 

(stations 1, 2 and 3) to 80 (stations 19, 20 and 21). Stations located in the Macaronesia (19-
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27) showed higher temperature values both in the air and on the seawater surface as well as a 

greater energy received by insolation than the station along the northern Atlantic coasts 

(Figure 4.5). Oppositely, precipitation and chlorophyll-a concentration were really low for the 

southern sites, on the other hand the fetch or area (km) affected by the wind varied across all 

the stations, showing no definite trend. When focusing on the saturation of aragonite and pH 

(in the latter, with the exception of stations 1, 2 and 3) increased as we approach regions 

located farther south with a significant difference from the stations 1-9 (North) that showed 

lower values. 
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Figure 4.5. Variation of abiotic variables along sampling stations (points). The stations 

corresponding to the northern region were represented in blue, orange for the Iberian 

Peninsula and green for the stations of the Macaronesia.  

 

The non-metric multidimensional scaling analysis (NMDS) (Figure 4.6) based on the 

occurrence of seaweeds and peracarids revealed a grouping of the stations in three main 

regions, corresponding with Macaronesia, Iberian Peninsula and North, the latter showed 

marked differences between Norway, Iceland and Scotland. In addition, the analysis showed 

the relationship of these groups with the environmental variables; the communities from the 

stations 1-9 (North) tended to be associated with colder temperatures, more chlorophyll-a 

concentration minimums, lower insolation and aragonite saturation than those in the stations 

19-27 (Macaronesia). While the communities from Central or Iberian Peninsula (stations 10-

18) were associated with higher precipitation and chlorophyll-a concentration as well as 

higher fetch and pH, the latter with a longer arrow indicate a “stronger” predictor than the 

fetch. On the other hand, the OHI was associated with the southern stations and showed a 

low correlation with other environmental variables such as aragonite saturation, insolation 

and air temperature. Besides, the stress level (0,058) obtained showed a good ordination of 

the stations. 
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Figure 4.6. Non-metric multidimensional scaling (NMDS) based on Bray-Curtis distances. Arrows show vector fitting of the 

environmental variables and biogeographic regions are delimited by the colored circle.
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The Figure 4.7 and Table 4.1 show the results of the Canonical Correspondence Analysis 

(CCA). Based on the significance of the model (p-value < 0.05) it can be concluded that the 

ordination was not arbitrary and therefore that the environmental variables are significantly 

correlated with the sampling stations. The total inertia or the total variance in stations and 

species distribution was 3.588 while the environmental variables represented by the constrained 

inertia, significantly explained almost the 70% (0.6978) of the total. The results of the CCA 

represented in the graph (Figure 4.7), agree with those shown in the NMDS. There are three 

groups of stations (points), north to south from left to right, the Iberian Peninsula being a 

transition zone. The distribution of species can be observed in red, the grouping of the stations 

in Macaronesia indicated a more homogeneous species distribution within this region than the 

rest. The first axis, which explained 21% of total variance, was highly correlated with insolation, 

precipitation, chlorophyll-a, SST maximum, air temperature, OHI and aragonite saturation, 

whereas the second axis explained 12% of total variance and was mainly correlated with SST 

minimum, chlorophyll-a maximum and pH, on the other hand fetch was the only variable more 

correlated with the third axis (Table 4.1).  

 

Table 4.1. Summary of the results of the CCA analysis. 

 
 
 
 

 

 

 

 
 

 

 

 

 

 

 

Correlation with environmental variables: 

                       CCA1      CCA2      CCA3      

 fetch              0.2137    -0.13707   0.40703  

precip_max    0.6180    -0.01981   0.09533  

Insolation       0.9583    -0.07309   0.08517   

chla_mean    -0.6535    -0.62719   0.11000   

Importance of components: 

                                           CCA1   CCA2   CCA3 

Eigenvalue                         0.6072  0.3557  0.1617 

Proportion Explained         0.2174  0.1274  0.0579  

Cumulative Proportion       0.2174  0.3448  0.4027  

 

 

 

 

 

 

 

 

Partitioning of scaled Chi-square: 

                                Inertia   Proportion 

Total                         3.588     1.0000 

Constrained              2.503     0.6978    

Unconstrained          1.084     0.3022 
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sst_min          0.9833      0.10669   0.08660  

sst_max         0.9329      0.09683  -0.02541   

tair_max        0.4604     -0.32791  -0.13606   

tair_min         0.8628      0.20305   0.23699  

precip_mean -0.8096    -0.47653  -0.11541  

chla_min       -0.7652    -0.15752  -0.25256  

chla_max      -0.2651    -0.77949   0.14100   

OHI                0.4990     0.37009  -0.43878   

Arag_Sat        0.8837    -0.14694   0.23364  

pH                  0.4383    -0.49016   0.40146   

 

When observing the environmental variables, the length of the ordination vectors (arrows) 

represents the importance of the abiotic variables in the distribution of the sites (Figure 4.7). 

Some do not show any relationship between them, such as pH and precipitation or maximum 

chlorophyll-a and aragonite saturation. Variables such as SST, air temperature, precipitation, 

aragonite saturation distinguished Macaronesia and Iberian Peninsula from the North. 

Macaronesia was marked by higher OHI. Fetch, chlorophyll-a and pH maximums characterized 

the Iberian peninsula while the North region was dominated by lower temperatures, precipitation 

maximums, insolation and aragonite saturation. In addition, the results of the Permutational 

Multivariate Analysis of Variance (ADONIS) (Table 4.2) indicated that the environmental 

variables that have a greater influence on the distribution of organisms were fetch, precipitation 

maximum, insolation, chlorophyll-a, SST minimum and precipitation (p-value < 0.05). 

 

 

 Df SumofSqs MeanSqs  R2 Pr(>F) 

fetch 1 0.4870             0.48697       0.06554   0.003 **     

precip_max      1 1.1668             1.16678       0.15705   0.001 ***     

Insolation 1 1.4023             1.40227       0.18874   0.001 ***   

chla_mean        1 0.8589             0.85887       0.11560   0.001 ***   

SST_min             1 0.4718             0.47180       0.06350   0.001 *** 

SST_max            1 0.2063             0.20626       0.02776   0.100    . 

tair_max           1 0.1716             0.17164       0.02310   0.137     

tair_min            1 0.1718             0.17181       0.02313   0.146     

precip_mean    1 0.3877             0.38767       0.05218   0.012  *  

chla_min          1 0.1235             0.12354       0.01663   0.344     

chla_max         1 0.1325              0.13248      0.01783   0.294     

OHI 1 0.1977              0.19772       0.02661   0.106     

Arag_Sat         1 0.1271              0.12705       0.01710   0.294     

pH   1 0.1595              0.15949      0.02147   0.163 



 

35 

 

Residuals 12 1.3652              0.11377        

Total 26 7.4296                  1.00000              

      

Signif. 

codes:   
0 ‘***’ 0.001 ‘**’    0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 

 

Table 4.2. Results of the Permutational Multivariate Analysis of Variance using distance matrice

s  (ADONIS). Df: Degrees of freedom, Sqs: Squares and Pr(>F): p-value. 

 



 

36 

 

 

 
 

Figure 4.7. Graph representation of the stations (points) and seaweeds and peracarids species (red) with respect to the first two axes of 

the Canonical Correspondence Analysis (CCA). 
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4.3 Abundance data and species assemblage 
 

The region of the Iberian Peninsula concentrated the greatest abundance of organisms, both 

algae and peracarids. The sites where highest abundance of organisms was obtained, were 

4.Baloy, 5.Hellesoy, 8.Easdale which belong to the northern region. The three biogeographic 

regions were characterized by species common to each area, with a greater abundance of algae.  

Some species were only found at one ecoregion, and compared with their typical distribution 

from the literature (Algaebase) (Table 4.3). Species such as Vertebrata lanosa and Ascophyllum 

nodosum were only found in the North. On the other hand, a greater number of species only 

observed in Macaronesia was found while the organisms in the Iberian Peninsula shared the 

distribution with other ecoregion. However, the North, Iberian Peninsula and Macaronesia 

showed low endemism (<10%), being 2, 0 and 4%, respectively. 

 
Organism/Species Ecoregion Distribution 

Algae/Vertebrata lanosa North North and Iberian Peninsula 

Algae/Pelvetia canaliculata North North and Iberian Peninsula 

Algae/Elachista fucicola North North and Iberian Peninsula 

Algae/Ascophyllum nodosum North North, Iberian Peninsula     

Algae/Padina pavonica Macaronesia North, Iberian Peninsula     

and Macaronesia 

Algae/ Jania capillacea Macaronesia Macaronesia 

Algae/ Cladophora coelothrix Macaronesia North, Iberian Peninsula     

and Macaronesia 

Algae/Gracilaria dura Macaronesia Iberian Peninsula and         

Macaronesia 

Algae/Spyridia filamentosa Macaronesia North, Iberian Peninsula     

and Macaronesia 

Algae/Palisada perforata Macaronesia Iberian Peninsula and 

Macaronesia 

Algae/Lophosiphonia reptabunda Macaronesia North, Iberian Peninsula     

and Macaronesia 

Algae/ Heterosiphonia crispella var.laxa Macaronesia Iberian Peninsula and         

Macaronesia 
 

Table 4.3. Species that have only been found in one of the ecoregions. Ecoregion indicates in 

which of them it is present and distribution refers to the areas that these species are known to 

occupy using AlgaeBase as a source. 

 

The SIMPER analysis (Table 4.4) revealed which species were responsible for the separation 

between the three biogeographic regions. Only the species with contributions greater than 0.75% 
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are presented. The dissimilarity among regions, using the SIMPER routine, revealed a poor 

distinction due to the low contribution of each species. The highest contribution was 1.27% for 

Vertebrata lanosa and it occurs between the north and Iberian peninsula, followed by algae such 

as Pelvetia canaliculate, Elachista fucicola and Fucus spiralis that also help to the distinction of 

these regions (Table 4.4A). Between the north and south or Macaronesia region, the species that 

most contribute to the separation of the biogeographical regions coincide with the previous ones, 

with the exception of some species such as Padina pavonica, Herposiphonia secunda and Jania 

capilacea with contributions of 0.93%, 0.87% and 0.86%, respectively (Table 4.4B). On the 

other hand, the separation of the Iberian peninsula and the south was represented by a greater 

number of species, however they presented lower contribution values, being the highest 1.12% 

for Padina pavonica (Table 4.4C). For all the species shown in table 4.4, the type of organism 

was defined as well as the region in which it appears with the highest occurrence. In general, the 

species that were obtained from the north and south regions are the ones that provide the 

greatest distinction between the biogeographic regions. 

 

 

North-Iberian P average sd % Contrib 

Vertebrata lanosa(A)-North                0,01037950 0,0049935 1,27369894 

Pelvetia canaliculata(A)-North                0,00858750 0,0052161 1,05379735 

Elachista fucicola(A)-North                0,00791350 0,002045 0,97108883 

Fucus spiralis (A)-North 0,00684290 0,004902 0,83971236 

Cladophora rupestris(A)-North 0,00671970 0,0026146 0,82459413 

Hyale.stebbingi(P)-Iberian 0,00666490 0,0034059 0,81786946 

Caulacanthus ustulatus(A)-Iberian 0,00650440 0,0024565 0,79817403 

Gelidium pusillum (A)-Iberian 0,00627030 0,0030574 0,76944693 

Ascophyllum nodosum (A)-North 0,00626540 0,0042174 0,76884564 

Ectocarpales(A)-Iberian 0,00613750 0,0048359 0,75315065 

                                                                                                                                      (A) 

 

North-South average sd %Contrib 

Vertebrata.lanosa (A)-North                0,011092 0,0052005 1,21444768 

Fucus spiralis (A)-North                0,0092011 0,0041767 1,00741566 

Pelvetia canaliculata(A)-North                0,0091593 0,0054561 1,00283904 

Padina pavonica (A)-South 0,0085467 0,0018414 0,93576632 

Elachista fucicola (A)-North                0,0084372 0,0019808 0,92377731 

Herposiphonia secunda (A)-South 0,0080069 0,0016244 0,87666436 

Jania capilacea (A)-South 0,0079376 0,0016711 0,8690768 
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Apohyale prevostii (P)-North 0,0078408 0,0028949 0,85847831 

Hyale stebbingi (P)-Iberian 0,0073995 0,0018074 0,81016098 

Mastocarpus stellatus (A)-North 0,0073387 0,002883 0,80350407 

Hypnea musciformis (A)-South 0,0072879 0,001882 0,79794205 

Cladophora rupestris (A)-North 0,0072308 0,0027631 0,79169025 

Cladophora coelothrix (A)-South 0,0072269 0,001653 0,79126325 

Valonia utricularis (A)-South 0,0072176 0,0019086 0,790245 

Gracilaria dura (A)-South 0,0072081 0,0017092 0,78920486 

Corallina officinalis (A)-North 0,0071694 0,0029265 0,78496765 

Spyridia filamentosa (A)-South 0,0070631 0,0021078 0,77332901 

Centroceras clavulatum (A)-South 0,0068709 0,0015265 0,7522853 

                                                                                                                                      (B) 

 

 

Iberian P-South average sd %Contrib 

Padina pavonica (A)-South 0,0065546 0,001108 1,12403405 

Ectocarpales (A)-Iberian P 0,0062869 0,0036438 1,07812676 

Jania capilacea (A)-South 0,0060905 0,0010179 1,04444656 

Cladophora coelothrix (A)-South 0,0055477 0,0010588 0,95136297 

Gracilaria dura (A)-South 0,0055259 0,0010627 0,94762453 

Spyridia filamentosa (A)-South 0,0054101 0,0013999 0,92776624 

Palisada perforata (A)-South 0,005245 0,0029585 0,89945361 

Centroceras clavulatum (A)-South 0,0050197 0,0013978 0,8608174 

Cystoseira humilis (A)-South 0,0049398 0,0038514 0,84711552 

Hypnea musciformis (A)-South 0,0049006 0,002081 0,8403932 

Valonia utricularis (A)-South 0,0048907 0,0020501 0,83869547 

Lophosiphonia reptabunda (A)-South 0,0048312 0,001971 0,82849195 

Ulvaria obscura (A)-Iberian P 0,0046594 0,0019572 0,79903034 

Caulacanthus ustulatus (A)-Iberian P 0,0046586 0,0023476 0,79889315 

Heterosiphonia crispella var.laxa 

(A)-South 

0,0046515 0,0024678 0,79767559 

Osmundea pinnatifida (A)-Iberian P 0,004567 0,0020181 0,78318486 

Plocamium cartilagineum 

(A)-Iberian P 

0,0044818 0,0018171 0,7685741 

Sphacelaria cirrosa (A)-South 0,0044688 0,0025996 0,76634476 

Pterothamnion crispum (A)-Iberian P 0,004432 0,0015405 0,76003401 

Lichina pygmaea (A)-Iberian P 0,0043861 0,0042577 0,75216272 

                                                                                                                                        (C) 
 

Table 4.4. Results of the SIMPER analysis, showing the main species that help to the separation 

into three biogeographic regions (North, Iberian peninsula and south or Macaronesia). The type 

of organism was defined as A for algae and P for peracarids and the region with greater presence 

of each species was described. The average contribution and standard deviation (sd) were also 
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shown as well as the percentage that each species represented of the total contribution (% 

contrib). 
 

 

4.4 Latitudinal variation of biodiversity 

 

For both algae and peracarids, an inverse latitudinal gradient with species richness (S) 

decreasing towards the poles was shown (Figure 4.8). Pearson’s correlation coefficient (r) was -

0.63 for peracarids and -0.61 for algae, which indicated that species richness (S) was highly 

correlated with latitude. The algae showed higher values of species richness in Macaronesia and 

Iberian Peninsula than in the North region, being the station 17Arrifes (Iberian Peninsula) the 

one that reached the highest value with 111 species. Peracarids showed the same trend with an 

important decrease of species richness in the stations located in the North region. Alpha (α) 

diversity was measured with three diversity metrics such as Shannon-Wiener Index (H’), 

Simpson Index of diversity (Dsimp), effective number of species (eH’) and evenness (J’). The 

Shannon index for algae and peracarids showed its maximum in stations located in the Iberian 

Peninsula (stations 10Pedreira and 16Ana), with values of 4.65 for algae and 3.5 for peracarids 

(Table 4.5). The lowest values were grouped in the northern stations. 

 

 

                                                                                                                 (A) 

0

20

40

60

80

100

120

20 25 30 35 40 45 50 55 60 65 70

Sp
ec

ie
s 

ri
ch

n
es

s 
(S

)

Latitude

North

Central

South



 

41 

 

 

                                                                                                                   (B) 

Figure 4.8.  Latitudinal change in species richness (S). Latitudinal change in richness of algae 

(A) and peracarids (B), with the three biogeographic regions differentiated by colors: North 

(Blue), Iberian Peninsula (Red) and South or Macaronesia (Green). 
 

 

 

Stations 
 
Latitude S  H’ Dsimp  EH’ S H’ Dsimp  EH’ 

1 64,16 15 2,678093 0,9290513 14,557306 47 3,758679 0,9746574 42,8917286 

2 63,83 14 2,604202 0,9236625 13,5204317 59 3,993653 0,9801298 54,252713 

3 63,82 10 2,273495 0,8940067 9,71328951 56 3,952876 0,979472 52,0849479 

4 60,80 11 2,332773 0,8968755 10,3064818 32 3,363204 0,9624317 28,8815794 

5 60,66 9 2,133725 0,8745364 8,44627064 26 3,174113 0,9548639 23,9056062 

6 60,17 6 1,712941 0,8062349 5,54524609 13 2,436646 0,9532922 11,4346246 

7 56,32 20 2,954177 0,9459578 19,1859262 81 4,302379 0,9851305 73,8753342 

8 56,29 21 2,990635 0,9468379 19,8983139 65 4,068265 0,9812406 58,4554543 

9 55,53 16 2,713318 0,9294988 15,0792255 83 4,312338 0,9851166 74,6147344 

10 43,56 35 3,500591 0,9681626 33,135029 103 4,562756 0,9888685 95,8472712 

11 43,32 31 3,380578 0,9642246 29,3877523 72 4,194622 0,9835443 66,3286546 

12 43,09 33 3,416406 0,9645507 30,4597457 84 4,354999 0,9860966 77,8667475 

13 40,18 32 3,433713 0,9666856 30,9915008 83 4,373003 0,9883011 79,2813565 

14 39,77 15 2,656373 0,9262663 14,2445304 51 3,876355 0,9900218 48,2480301 

15 39,37 28 3,282464 0,960921 26,6413361 88 4,42785 0,9867566 83,7511582 

16 37,09 33 3,475997 0,9683556 32,3300455 93 4,486608 0,982252 88,8196581 

17 37,08 21 2,996171 0,947729 20,0087765 111 4,653614 0,9840189 104,96364 

18 37,05 21 3,012292 0,9490792 20,333952 82 4,361779 0,9871338 78,3964778 

19 33,07 32 3,449834 0,9676695 31,4951637 64 4,09422 0,9886256 59,9925267 
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20 32,65 19 2,911298 0,9435047 18,3806412 70 4,191595 0,9863231 66,1281813 

21 32,63 23 3,094818 0,9529484 22,083219 88 4,412642 0,9819258 82,4871068 

22 28,52 30 3,350707 0,9631173 28,5228922 99 4,532897 0,9838371 93,0276723 

23 28,57 24 3,121463 0,9530715 22,6795355 84 4,359089 0,9885608 78,1858746 

24 28,84 23 3,075699 0,9507423 21,6650205 64 4,084225 0,9819258 59,3958881 

25 28,15 30 3,337414 0,9617981 28,1462463 72 4,196937 0,9838371 66,4823833 

26 28,10 21 3,005131 0,9483796 20,1888607 98 4,525989 0,9885608 92,3872517 

27 27,99 21 3,009386 0,949019 20,2749473 77 4,269348 0,9850424 71,4750187 
 

Table 4.5. Diversity parameters of seaweeds (green) and peracarids (orange). S: Species 

richness; H’: Shannon-Wiener Index; Dsimp: Simpson Index of diversity; eH’: Effective number 

of species. 
 

 

For both algae and peracarids, the Simpson Index of diversity (Dsimp) and the effective number 

of species (EH’) showed a similar trend with the stations 10Pedreira and 14Moel in the Iberian 

Peninsula representing the greater values and the northern region characterized by lower values. 

When investigating the relationship of these diversity metrics with latitude, Pearson's correlation 

coefficient (r) showed a significant correlation with values that ranged between -0.5 and -0.6, 

with the exception of the evenness (J’) that did not show any correlation with latitude. Algae and 

peracarids showed a latitudinal gradient between the northern and southern stations, however the 

Macaronesia and Iberian Peninsula did not described any variation with latitude (Figure 4.9).  
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Figure 4.9. Graphic representation of the relationship between Shannon-Wiener Index (H’) (a, 

b), Simpson Index of diversity (Dsimp) (c, d) and Effective number of species (eH’) (e, f) with 
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latitude. Algae is represented by the left graphs and peracarids by the right, with colors 

distinguishing the three biogeographic regions; North (blue), Iberian Peninsula (red) and 

Macaronesia or South (green). 
 

Beta (β) diversity was partitioned into turnover and nestedness components. For seaweeds, the 

turnover or the balanced variation in abundance, the nestedness or abundance gradient and the 

overall dissimilarity showed the highest values in stations located in the North (Table 4.6). 

However there was no significant difference between the stations (p-value > 0.05) while 

peracarids; both the highest and lowest values are distributed among the three biogeographic 

regions. On the other hand, when we analyze the relationship of beta diversity with latitude, 

Pearson's correlation coefficient (-0.02 for algae and -0.04 for peracarids) determined that there 

was no linear relationship between beta diversity and latitude (n=27). The three components of 

beta diversity were also studied for the three biogeographic regions (North, Iberian Peninsula 

and Macaronesia) (Table 4.7) showing no significance differences between them (p-value > 

0.05). In addition, the mean of all stations was obtained for the overall dissimilarity of beta 

diversity, showing a greater value for algae (0.84 ±0.01) than peracarids (0.80 ±0.02). 

 

Stations turnover  nestedness overall 

dissimilarity 

 turnover nestedness overall 

dissimilarity 

1 0.7165044 0.09839222 0.8148966 0.7893555 0.06185371 0.8512092 

2 0.7104616 0.08958367 0.8000452 0.7790438 0.06218763 0.8412314 

3 0.7498781 0.06497283 0.8148509 0.8080106 0.03043159 0.8384421 

4 0.7485193 0.05934235 0.8078616 0.8108392 0.03684939 0.8476886 

5 0.7104512 0.10497087 0.8154221 0.7785954 0.05556959 0.8341650 

6 0.7188976 0.09960771 0.8185053 0.7941466 0.04657258 0.8407192 

7 0.7064529 0.06931246 0.7757653 0.7865950 0.04771584 0.8343108 

8 0.6929796 0.08321767 0.7761973 0.8220335 0.03299132 0.8550248 

9 0.7172927 0.05623321 0.7735259 0.7840443 0.02749186 0.8115362 

10 0.7292764 0.0582418 0.7875183 0.7851827 0.0487733 0.8339561 

11 0.6665652 0.1317361 0.7983013 0.7869359 0.0604405 0.8473764 

12 0.7401997 0.0334217 0.7736214 0.7916111 0.0657850 0.8573962 

13 0.7041403 0.0948789 0.7990192 0.8164312 0.0284874 0.8449186 
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14 0.7550386 0.0609533 0.8159920 0.8064383 0.0477129 0.8541512 

15 0.6894550 0.0876460 0.7771011 0.8232930 0.0214974 0.8447904 

16 0.7397229 0.0877861 0.8275090 0.8076383 0.0385917 0.8462301 

17 0.7005158 0.1095034 0.8100193 0.7960416 0.0556798 0.8517214 

18 0.7508184 0.0707446 0.8215630 0.8048440 0.0287068 0.8335508 

19 0.7509160 0.0744349 0.8253510 0.7947870 0.0476955 0.8424826 

20 0.7208550 0.0625119 0.7833670 0.7851327 0.0252972 0.8104299 

21 0.7132637 0.0677377 0.7810015 0.7729947 0.0354360 0.8084307 

22 0.7223213 0.0935433 0.8158647 0.8086084 0.0515529 0.8601614 

23 0.7129333 0.0909554 0.8038887 0.7834717 0.0504333 0.8339050 

24 0.7640831 0.0597673 0.8238505 0.7994650 0.0414997 0.8409647 

25 0.6717200 0.0897003 0.7614203 0.7783451 0.0743625 0.8527076 

26 0.7334331 0.0788906 0.8123238 0.7994615 0.0399334 0.8393949 

27 0.7085472 0.0976929 0.8062401 0.8133694 0.0486688 0.8620382 

Table 4.6. Beta diversity partitions; turnover, nestedness and overall dissimilarity for peracarids 

in orange and for seaweeds in green, at each sampling station. 

 

Ecoregions turnover nestedness Overall 

dissimilarity 

North  0.8125102 0.02579470 0.8383049 

Central 0.7782997 0.07042215 0.8487218 

South 0.8139615 0.03901771 0.8529792 

                                                                                                                                                     (A) 

Ecoregions turnover nestedness Overall 

dissimilarity 

North 0.7206107 0.07512859 0.7957393 

Central 0.7151279 0.07236415 0.7874920 

South 0.7541785 0.07641384 0.8305924 

                                                                                                                                                     (B) 

Table 4.7. Beta diversity partitions; turnover, nestedness and overall dissimilarity. Seaweeds (A) 

and peracarids (B) for the three different ecoregions.  
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5. Discussion 
 

The results of the present study revealed three ecoregions in the northeast Atlantic, however, 

with certain homogeneity in terms of the abundance of species. Only a few species were 

characteristic of a single ecoregion, and none in the Iberian Peninsula. Regarding environmental 

variables, those of the local environment such as precipitation, insolation and fetch, as well as 

minimum SST and chlorophyll drove the distribution of algae and associated peracarids in the 

northeast Atlantic. Additionally, our analysis support the existence of an inverse latitudinal 

gradient of seaweeds and peracarids local diversity. Consistent with previous reports, alpha or 

local diversity showed a decrease from southern regions (Macaronesia and Iberian Peninsula 

ecoregions) to the poles (North ecoregion) while beta diversity did not show any latitudinal 

pattern. 

 

5.1 Ecoregions 

 

Our analysis revealed 3 different ecoregions, North ecoregion, Iberian Peninsula or Central 

ecoregion and Macaronesia or South ecoregion, which are areas of relatively homogeneous 

species composition, clearly distinct from adjacent systems (Spalding et al., 2007). These results 

agree with Breeman & van den Hoek (1990) who studied the distribution patterns of 42 species 

of the genus Chlorophyceae. A similar pattern has also been reported for other organisms in the 

Northeast Atlantic, however, Norway, Scotland and Iceland were considered as different 

ecoregions (Spalding et al., 2007). On the other hand, our results which show very low 

endemism, differ from those proposed by Briggs (2016), which divides this area into different 

biogeographic provinces. The distinction between Iberian Peninsula ecoregion and Macaronesia 

ecoregion have already been proposed by Almada (2013) who argued that Macaronesian 

archipelagos are highly distinct from the mainland coast of Iberian Peninsula, and these should 

not be grouped together. 

 

The grouping of the stations by the presence of algae and peracarid species matches with their 

corresponding coasts, however there are exceptions such as the station of Moel (14) and Viksoy 

(6), which present some dissimilarity with the rest of the stations on their ecoregion. This 
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indicates different species composition from the rest of stations within the ecoregion. Both, the 

cluster analysis (Figure 4.2) and the NMDS (Figure 4.4 and 4.6) showed a greater grouping for 

the stations located in Macaronesia, in addition to the fact that the other ecoregions presented 

stations with greater dissimilarity, this homogeneity of species in Macaronesia may be due to the 

fact that these islands closest to the tropics presents more stable climatic conditions as well as 

lower seasonal variation than the European coast (Keith, Kerswell & Connolly, 2013). 

 

Some species were found only in one of the ecoregions described above (Table 4.3) which may 

help to characterize the distinctness of the flora of each ecoregion as well as changes in the 

distribution of the species. All of the species found in one ecoregion were algae, probably due to 

the greater number of these organisms that were obtained in the sampling. The Macaronesia was 

the ecoregion that held more species present only in this region, followed by the North 

ecoregion, this confirms the homogeneity in the presence of species from Macaronesia. 

Vertebrata lanosa and Ascophyllum nodosum were species found only at the North ecoregion, V. 

lanosa is usually attach to A. nodosum and therefore they usually share similar geographic 

distribution. Besides, these species had already been described as characteristic of the North 

Atlantic (Bjordal, Jensen & Sjøtun, 2019). Macaronesian species such as Padina pavonica had 

also been reported to this region before (Haroun & Cruz-Reyes, 2000). In addition, the 

distribution limits between the Iberian peninsula and the north are less marked, it may be caused 

by the division of the Gulf Stream into the North Atlantic Drift (NAD) and the Canary Current 

towards the south, promoting more similar oceanographic conditions between the Iberian 

peninsula and the North ecoregion. Nevertheless, the Iberian peninsula did not show any species 

only found in this area, which may implies that this ecoregion represents a transition zone 

between the southern or Macaronesia ecoregion and the north.  

 

When comparing the ecoregions in which the species have been found with the usual 

distribution, we can observe how some species are reducing their distribution area (Table 4.3). 

Shifts in distribution of marine populations are the most commonly reported changes in relation 

to shifting oceanographic conditions (Perry et al. 2005; Dulvy et al. 2008). Given the importance 

of the impacts of global warming on the biota (Harley et al., 2006) we can presume that these 

shifts in distribution are a result of the effects of the rising temperatures. Some species 
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previously found in the three ecoregions have moved north, while others have become 

established in the southern region. These results are consistent with other studies such as 

Bianchi & Morri (2003) who observed a greater occurrence of subtropical species in temperate 

waters, however other species showed more affinity for warmer water moving to these areas. 

Despite these results, further analysis is necessary to address this hypothesis. 

 

5.2 Relationship between abiotic variables and species distribution 

 

There are several studies (Blanchette et al., 2008; Guerra-García, Baeza-Rojano, Cabezas & 

García-Gómez, 2011) that show the influence of temperature on the distribution of benthic 

organisms. Furthermore, the increasing anthropogenic pressure and all the changes in 

oceanographic conditions that it entails have been shown to produce variations in the 

distribution of marine organisms (GREGORY, CHRISTOPHE & MARTIN, 2009). The results 

of the non-metric multidimensional scaling (Figure 4.6) agree with the literature, showing a 

greater importance (longer arrows) to environmental variables such as chlorophyll-a, SSTmax, 

precipitation and others driven by anthropogenic pressure such as OHI, aragonite saturation and 

pH. The main characteristic that diverges Macaronesia from the rest of the ecoregions is the 

maximum temperatures, which as it was expected is higher at the southern sites. However, it has 

been shown how hot events driven by climate change are occurring more often and can lead to 

changes in the distribution patterns of different organisms (Lima & Wethey, 2012). On the other 

hand, the Iberian peninsula is marked by higher values of pH, chlorophyll-a and fetch, the latter 

being less important in the differentiation of this area. In particular, the station of Moel(14), 

which presents a different occurrence of species than the rest of this ecoregion, is highly related 

to maximum values of chlorophyll-a concentration, which may be due to the upwelling present 

along the Portuguese coast (Oliveira, Nolasco, Dubert, Moita & Peliz, 2009). The environmental 

variables associated with the North ecoregion and that make the distribution differ from the rest 

are minimum temperatures both on the surface of the water and in the air, as well as lower 

values of insolation. It is known that many species have an optimal temperature range which can 

limit their geographic distribution (Stuart-Smith, Edgar & Bates, 2017). In addition, since they 

are organisms that inhabit the intertidal zone, insolation and air temperature are of greater 

importance and may also affect their distribution. Some studies (Guerra-García, Baeza-Rojano, 
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Cabezas & García-Gómez, 2011) have shown the importance of these factors in the distribution 

of intertidal marine organisms. 

 

Regarding the correlation between the abiotic variables, the variance inflation factor (VIF) 

showed high values for pH and aragonite saturation, which indicates correlation with the other 

variables. However, the NMDS (Figure 4.6) showed no correlation between pH and SST 

maximums, and between aragonite saturation and chlorophyll-a. The fetch has a local effect (in 

km) and is not directly affected by environmental conditions presented in this study, thus, it was 

not correlated with all the other variables. Therefore, despite the fact that most of the abiotic 

variables presented certain correlation between them, they were included in the analyzes since 

they explained a great proportion of the grouping of the stations according to the occurrence of 

species. 

 

The Canonical Correspondence Analysis (CCA) presented a “V” shape in terms of the 

arrangement of the species (Figure 4.7), this could be due to environmental variables such as 

fetch, pH, maximum chlorophyll-a or maximum air temperature. However, the analysis was 

repeated without these variables, and the CCA showed a similar shape but with a lower 

proportion explained by environmental variables. This fact may imply that the arrangement of 

species is triggered by the whole set of abiotic variables. However, it is clear how the pH and 

chlorophyll peaks make the stations located in the Iberian Peninsula differ in species 

composition from the rest. These stations coincide with an upwelling zone as well as areas of 

great river discharge, which would explain these maximums of chlorophyll concentration. In 

addition, this primary production proxy could affect high concentrations of phytoplankton, 

consuming a large amount of CO2 and thus increasing the pH. Several studies (Estrada, 1980; 

Silva, Palma & Moita, 2008) indicate that upwelling conditions that lead to increased 

concentrations of chlorophyll-a can change the distribution of organisms such as phytoplankton 

but also other organisms such as copepods (Peterson & Hutchings, 1995). In addition, these 

results are consistent with those proposed by Agostini (2018) who indicated pH and therefore 

acidification as one of the main factors causing changes in the geographical distribution of many 

species, mainly peracarids and algae with calcareous structures (Bijma et al., 2013; Kamenos et 

al., 2013).  
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On the other hand, the division between the North and South ecoregion or Macaronesia is 

marked by the minimum and maximum temperatures in the water (SST max and min). 

Macaronesia, in particular, is highly associated with the human impacts compilated in the OHI. 

Despite these results, the ADONIS analysis revealed low significance of the minimums and 

maximums of SST (Table 4.2) while the anthropogenic pressure had no significant influence (p-

value > 0.05) on the distribution of algae and peracarids. Oppositely, the abiotic factors of the 

local regime such as fetch, precipitation, insolation and chlorophyll-a showed a greater effect on 

the distribution of these organisms. As other studies suggested (Jacinto & Cruz, 2016), this may 

be due to the importance of these environmental variables in benthic communities that inhabit 

the intertidal zone, which are more exposed to environmental conditions, which may limit their 

distribution. In addition, Guerra-García (2011) demonstrated the seasonal variation of algae and 

associated peracarids of the intertidal, mainly caused by factors such as the wave exposure or 

the length of the day. Another possible explanation for the reduced significance of ocean 

temperature is that biological interactions play a more important role in the distribution of 

species as it was proposed by Keith, Kerswell and Connolly (2013). They showed how the biotic 

interactions such as predation or competition had greater importance at low latitudes while 

environmental variables are more influential at high-latitude boundaries. 

 

5.3 Species abundance and biodiversity patterns 
 

Although the highest abundance of organisms, both for algae and peracarids, was found in the 

Iberian Peninsula, the SIMPER analysis (Table 4.4) showed few species located in this region 

that have a greater influence on the distribution of the stations. The north and south or 

Macaronesia ecoregions presented a majority of species with the greatest contribution to the 

distribution patterns, which support that the Iberian Peninsula acts as a transition zone. Other 

researchers (Pereira et al., 2006; Izquierdo and Guerra-García, 2010) have developed this idea 

before, they proposed that the Iberian Peninsula represented a transition between warm-water 

(from north Africa and Mediterranean Sea) and cold-water taxa (from the North Sea and the 

Arctic). The species Vertebrata lanosa showed the highest percentage of contribution in the 

delimitation of the northern ecoregion with the rest. This algae, being an obligate epiphyte of 

Ascophyllum nodosum (Bjordal, Jensen & Sjøtun, 2019), makes it have very specific 

characteristics. By depending on another species, its presence in a certain region makes it differ 



 

51 

 

from the rest. Other algae such as Padina pavonica characterize Macaronesia, the distribution of 

this species, however, has been attributed to colder areas such as the Iberian peninsula, which 

may indicate a change in its distribution patterns (Barceló, M.C., Gómez Garreta, A., Ribera, 

M.A. & Rull Lluch, J, 1998). Only a few species of peracarids were attributed importance by the 

SIMPER analysis, this may be due to the fact that a greater number of algae was obtained in the 

sampling. In addition, the very low contribution values of the species in the delimitation of the 

distribution could indicate that there were many species with similar abundances, and none of 

them dominates in particular, which implies a certain homogeneity in terms of the biomass of 

these organisms for the three ecoregions. 

 

Biodiversity analysis showed different results for alpha (α) and beta (β) diversity. Species 

richness, which takes into account the number of species in each season, presented a negative 

trend towards higher latitudes. The decrease in biological diversity from equatorial to polar 

regions is one of the oldest and most fundamental patterns in macroecology and biogeography 

(Brown & Lomolino 1998, Gaston 1996a, Rosenzweig 1995, Willig 2001). Specifically, the 

latitudinal gradient of species richness has been the focus of research for years. Our results 

(Figure 4.8) are consistent with several studies that demonstrate this inverse gradient of species 

richness in both marine (Willig et al., 2003; Hillebrand, 2004) and terrestrial organisms (Qian & 

Ricklefs, 2007). In turn, other measures of alpha diversity such as Shannon-Wiener, Simpson’ 

Index and Effective number of species also showed the same trend (Figure 4.9). As well as for 

the species richness, a great difference was found between the north and the southern regions 

(Iberian peninsula and Macaronesia), which presented a more similar local diversity indicating 

greater homogeneity and matching with other studies (Vermeij, 2005) that showed a close 

relationship between warm-temperate province and tropical. This may be due to the fact that 

most of the environmental variables presented more similar values in these two regions (Figure 

4.5), which may lead to more marked differences in diversity with the north. Despite extensive 

research focused on this topic, few studies include these measures of diversity, and some of 

them presented exceptions such as Okuda, T., Noda, and Yamamoto (2004) who showed how 

Simpson Index did not describe a latitudinal gradient while species richness did follow this 

pattern. There are several hypotheses proposed for this latitudinal trend of diversity, interaction 

between species (migration and extinction) (Wiens & Donoghue, 2004), origin of species 
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(Mittelbach et al., 2007) or space (as the tropics occupy more surface area, they can host a 

greater number of species) (Dornelas et al., 2014). Others (Currie, 1991; Rosenzweig, 1995; 

Evans et al., 2005) proposed that this pattern is a consequence of environmental factors such as 

temperature (which can enhance predation and herbivory) or productivity. In the present study, 

since an important influence of local abiotic factors in the distribution of species has been 

observed, it might also be what triggers this variation in local diversity with latitude. In addition, 

the difference observed in the alpha diversity values (Table 4.5) between peracarids and algae, 

the latter with a greater diversity can be attributed to the greater amount of algae found in the 

sampling, which would allow sustaining a greater biodiversity. 

 

Regarding beta and its components (turnover, nestedness and total diversity), several studies 

have observed a latitudinal gradient in both terrestrial (Qian & Ricklefs, 2007) and marine 

organisms (Smit AJ, Bolton JJ and Anderson RJ, 2017). However, the present study did not 

show any latitudinal pattern of beta diversity which indicates that there is no replacement or 

exchange of species between stations or ecoregions. Furthermore, the similar evenness (J’) 

results showing high values for the three ecoregions give us a clue of which may be the cause 

that beta diversity does not follow any trend with latitude. This indicates that within each 

ecoregion the abundance is distributed among the different species without dominance of one 

over the others, these conditions are maintained for the three ecoregions. Exceptions to this 

diversity latitudinal gradient have been described for marine flora. Bolton (1994) investigated 

the distribution and abundance of seaweeds from 29 floras throughout the world and no 

consistent latitudinal trend in diversity was detected. Crow (1993) corroborated this finding for 

aquatic angiosperms from throughout North and Central America. More specifically, higher 

levels of angiosperm richness existed at warm temperate sites than at tropical sites. The reasons 

remain unknown. Some studies (Tittensor et al., 2010; Straub et al., 2016; Stuart-Smith et al., 

2017) have attributed the existence of this latitudinal gradient to temperature. In the present 

study, the SST did not present a highly significant effect on the distribution of the species, but 

local abiotic factors such as insolation, precipitation or fetch were more important. This may 

explain why alpha diversity does follow this pattern, unlike beta diversity, which indicates the 

presence of similar habitats within each ecoregion and between them. 
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6. Conclusions 

 

Seaweeds and associated peracarids in the northeastern Atlantic can be grouped into three 

ecoregions, 1) North, that includes the coasts of Iceland, Norway and Scotland, 2) Central or 

Iberia that includes the stations located in Spain and Portugal, and 3) South or Macaronesia that 

corresponds to the Canary Islands and Madeira. Several abiotic factors appear to separate the 

ecoregions but in contrast to what was expected, abiotic factors of the local regime such as fetch, 

precipitation and insolation showed a greater influence on the distribution of these intertidal 

marine organisms than temperature. In addition, the anthropogenic pressure as well as the 

environmental variables affected by this impact did not show a great effect on the distribution of 

the species. On the other hand, the different measures of alpha diversity as well as the number of 

species or richness showed a latitudinal gradient, decreasing towards the poles. This biodiversity 

pattern, that has been deeply studied in ecology and biogeography, is confirmed in the present 

study, however, beta diversity did not show relationship with latitude. We suggest that this 

disjunction result from the implication of local environmental variables in the shaping of the 

distribution of species.  

 

Climate change may lead to a modification of many boundaries in the ocean due to expected 

changes in temperature, circulation, stratification, etc. studying the spatial patterns of ecoregions 

is particularly valuable for analyzing long-term trends (Spalding et al., 2012; Spalding et al., 

2007). Our results may improve the knowledge in biogeography and they can be used as a 

baseline for future studies on the effects of climate change on the distribution of species in a 

regional scale. Moreover, the spatial partitioning of the northeastern Atlantic Ocean is valuable 

for marine ecosystem management policies, and the relatively large size of the units defined here 

is driven by the great connectivity between marine ecosystems and will aid in understanding the 

spatial scales at which management actions must be applied. However, further biogeographic 

studies on this region are necessary to confirm this spatial division. Also, in order to know the 

effects of climate change and human impacts on the distribution of species, historical data on 

environmental variables are necessary. Despite this, the present study gives a broad vision of 

which factors are the most influential in shaping the distribution of algae and associated 

peracarids, as well as the effect on biodiversity patterns encompassing a wide range of latitude. 
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