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Abstract  By varying the conditions of the epoxidation reaction, samples of epoxidized linseed oil with different 

epoxidation degrees were obtained. The epoxidation of linseed oil was carried out by the formation of peracetic acid in situ 

using acetic acid, hydrogen peroxide solution, Amberlite IR-120H as the catalyst, and toluene as solvent. The quantification 

of the number of epoxides was carried out by 1H-NMR and the values obtained were correlated with the absorbance of the 

epoxy group signal in the FTIR-HATR spectrum. The method used to quantify the absorbance of the epoxy group signal by 

FTIR-HATR is based on the analysis of two regions: the area between 765-854 cm-1, and the net absorbance at 821 cm-1. Both 

signals analysis showed high linear correlation coefficients corroborating that this methodology represents an easy, fast, and 

reliable technique in the quantification of epoxides in natural oils. 
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1. Introduction 

Nowadays there is a great interest in epoxidized vegetable 

oils (EVOs) because they have a wide range of applications 

such as polyvinyl chloride (PVC) stabilizer [1], plasticizers 

[2,3], prepolymers [4–7], lubricants [8–10], as starting 

material to produce polyols [11–14], polyurethanes [15],   

as an intermediate in the fabrication of Non-isocyanate 

polyurethanes [16–23], etc. Usually, epoxides have been 

obtained from petroleum but this is a non-renewable source. 

However, vegetable oils are available in large quantities, 

they have a low cost and a non-toxic nature [20,24]. Two of 

the most important vegetable oils are soybean oil (SO) and 

linseed oil (LO) because of the large number of carbon 

double bonds present in their structure. Especially, LO has 

attracted attention due to has until 6.6 carbon double bonds. 

This characteristic is important due to the properties of the 

EVOs are affected by the number of epoxides [25,26]. 

Therefore, the greater the number of epoxides present in 

EVOs, the greater their reactivity. 

There are several methods used to epoxidate vegetable oils 

[27–29] but the most common is the use of peracids to form 

the epoxy ring [8, 30–40]. Epoxidized linseed oil (ELO) has  
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been used as raw material to produce bioresins [6,26,41,42] 

and cyclic carbonates [16,23,43] which are used in the 

fabrication of Non-isocyanate polyurethanes [20,22,23,43]. 

The epoxidation process can be monitored by chemical 

methods based on titrations [3,37,39,40,44,45]. These 

methods are usually accurate, however, they require the 

consumption of reagents, a large sample size as well as 

personnel and operating time and generate waste [44]. Also, 

problems in the determination of epoxide groups commonly 

arise in the presence of other functional groups or when 

simultaneous determinations are necessary [46]. 1H-NMR 

[11,30,34,47–51], NARP-LC (Non-aqueous reversed-phase 

liquid chromatographic), and mass spectrometry [52] also 

have been used to quantify the number of epoxides and 

monitoring the epoxidation reaction of vegetable oils, 

however, these techniques are expensive and require a long 

waiting time to obtain the results. 

On the other hand, mid-infrared spectroscopy has been 

widely using for the characterization of organic compounds. 

Both qualitative and quantitative information can be 

obtained by this technique [36,53,54]. The FTIR-HATR 

technique has many advantages such as small samples are 

required, no sample preparation is needing, and the course of 

the reaction can be followed easily and quickly. 

The goal of this research was to quantify the number    

of epoxides per molecule in linseed oil with a high degree  

of epoxidation, by FTIR-HATR spectrometry as well as 

corroborating its reliability by 1H-NMR.  
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2. Material and Methods 

2.1. Chemicals 

The solvents toluene, ethyl acetate, and deuterated 

chloroform, chromatographic-grade α-Alumina, the catalyst 

Amberlite IR-120H (AIR-120H), hydrogen peroxide (30 and 

50 wt.% solutions), and the reactive grade LO were supplied 

by Sigma-Aldrich, Co. The LO used has 6.5 double bonds 

and a molecular weight of 900.61 g/mol, both were 

determined by 1H-NMR according to [11,43,47]. Acetic acid 

and anhydrous magnesium sulfate were acquired from 

Fermont. Sodium bicarbonate was purchased from J.T Baker. 

Whit the exception of LO, all the other reactants were used as 

they were received. LO was passed through a packed column 

of α-Alumina previous to use it, to eliminate the stabilizer. 

2.2. Analytical Techniques 

1H-NMR spectra were recorded using a Varian 

spectrometer at 300 MHz with deuterated chloroform as the 

solvent and tetramethylsilane (TMS) as the internal standard. 

Chemical shift (δ) is quoted in ppm. The number of epoxides 

was calculated as described in [11,43,47]. 

FTIR-HATR spectra were acquired on an IRPrestige-21 

SHIMADZU spectrometer equipped with a horizontal 

attenuated total reflectance (HATR) diamond crystal. The 

spectral window used was 4000-560 cm-1 with a resolution of 

4 cm-1 and 64 scans. 

2.3. Synthesis of Epoxidized Linseed Oil 

The ELO samples with a different number of epoxides   

in their structure were obtained varying the temperature  

(65, 70, and 80°C), the concentration of hydrogen peroxide 

(30 and 50 wt.% solutions), the molar ratio of unsaturation to 

hydrogen peroxide (1:1 and 1:1.5) and the time of the 

reaction (40,50 and 120 min) keeping constant the values  

of the molar ratio of acetic acid to unsaturation (0.5:1.0),  

the quantity of toluene (44 wt.%) and Amberlite IR-120H 

(25 wt.%) respect to linseed oil weight. The epoxidized 

linseed oil was synthesized as described in [30]. The general 

procedure consisted of placing 10 g of LO with 6.5 double 

bonds in a two-neck reactor, 4.4 g of toluene as solvent, 2.5 g 

of Amberlite IR-120H as the catalyst, and 2.2 g of acetic acid. 

The mixture was kept under magnetic stirring for 15 min at 

50°C. After that time, the addition of hydrogen peroxide (8.2 

or 12.3 g at 30 wt.% solution or 4.9 or 7.4 at 50 wt.% solution) 

began by dripping. The temperature (50°C) was maintained 

constant using an oil bath to avoid the decomposition of 

hydrogen peroxide [55,56]. Once the addition of hydrogen 

peroxide was completed, the mixture was heated up until the 

temperature of the reaction was reached (65, 70, or 80°C). At 

the end of the reaction (40,50 or 120 min), the mixture was 

cooled to room temperature and 50 mL of acetyl acetate was 

added. The Amberlite IR-120H was separated by filtration 

and washed with ethyl acetate. The product of the reaction 

was washed with a saturated solution of sodium bicarbonate 

to neutralize. The oil phase was separated and the traces of 

moisture were eliminated using anhydrous magnesium 

sulfate. The solvents (toluene and ethyl acetate) were 

evaporated by vacuum distillation and the ELO samples 

were stored for 48 h in a vacuum desiccator to eliminate 

solvents traces. The ELO samples were analyzed by 
1H-NMR and FTIR-HATR techniques. Table 1 shows the 

epoxidation reaction conditions of the samples used. 

Table 1.  Epoxidation Reaction Conditions 

Sample 
LO 

(g) 

Molar Ratio 

(Hydrogen 

Peroxide/ 

unsaturation) 

T 

(°C) 

Hydrogen 

Peroxide 

Solution 

(wt. %) 

t 

(min) 

ELO1 10 1.0 70 30 50 

ELO2 10 1.0 80 30 50 

ELO3 10 1.0 70 50 50 

ELO4 10 1.0 80 50 50 

ELO5 25 1.5 80 50 40 

ELO6 10 1.5 65 50 120 

ELO7 10 1.5 80 50 50 

ELO8 10 1.5 80 50 50 

t: Reaction time 

LO: Linseed oil 

3. Results and Discussion 

The results of the evaluation of the variables used in the 

epoxidation reaction of linseed oil were discussed in detail in 

[30,43]. In the present work, we focus on the characterization 

and quantification of the epoxy groups by FTIR-HATR and 
1H-NMR techniques and their correlations. 

3.1. 
1
H-NMR Spectroscopy 

Table 2.  Signals Assignment of Partially Epoxidized Linseed Oil in the 
1H NMR Spectrum 

Chemical 

Shift, δ (ppm) 
Assignment 

5.60 Olefinic hydrogens (-CH=CH-) 

5.25 
Central hydrogen in glycerol fraction 

(-CH2-CH-CH2-) 

4.10-4.40 Four hydrogens in glycerol fraction (-CH2-CH-CH2-) 

2.85-3.25 Epoxy group hydrogens (-CHOCH-) 

2.15-2.45 
Hydrogens of the methylene group alpha to carbonyl 

groups (-CH2-CH2-CO-O) 

2.06-2.11 Allylic hydrogens (-CH2-CH=CH-) 

1.67-1.90 
Hydrogens of the methylene group between two 

epoxy groups (-CHOCH-CH2-CHOCH-) 

1.54-1.67 
Hydrogens of the methylene group beta to carbonyl 

groups (-CH2-CH2--CO-) 

1.40-1.54 
Hydrogens of methylene groups adjacent to the epoxy 

group (-CH2-CHOCH-CH2-) 

1.20-1.40 Hydrogens of the aliphatic methylene groups (-CH2-) 

0.76-1.13 Hydrogens of methyl groups (-CH3) 
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1H-NMR spectroscopy is a powerful technique used to 

characterize vegetable oils allowing quantify the number of 

unsaturation (carbon double bonds) and epoxides present in 

their structure [11,30,43,47,50,51,57]. Table 2 describes the 

assignment of all hydrogen signals of partially epoxidized 

linseed oil [30,43,47,49]. 

Figure 1 shows the 1H-NMR spectrums of LO and ELO 

associated with the principal hydrogen signals of the 

theoretical structure of partially epoxidized linseed oil. 

These signals are used to monitor the epoxidation reaction  

of vegetable oils [30,43,47,48]. As the signal of the 4 

hydrogens, that belong to methylene groups in the glycerol 

part (B, δ 4.1-4.4 ppm) remains without any change, it is 

possible to use it as an internal standard to quantify the area 

of all signals. Setting the value of this area to 4, the area of 

each signal is going to be proportional to the quantity of each 

equivalents hydrogens presents in the molecule. 

 

 

Figure 1.  1H-NMR spectrums of linseed oil (LO) and partially epoxidized linseed oil (ELO) 

 

Figure 2.  1H-NMR spectrums of samples of partially epoxidized linseed oil (ELO1, ELO2, and ELO8) and linseed oil (LO) 
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The signals of olefinic hydrogens (C, δ 5.6 ppm) and the 

hydrogen central of glycerol (A, δ 5.25 ppm) in the ELO 

spectrum are overlapped in the LO spectrum (centered in δ 

5.35 ppm). However, this signal decreases as the double 

bonds react until being completely separated (Figure 2). 

Monitoring the olefinic hydrogen signal (C) is possible to 

quantify the number of carbon double bonds that remain   

in the structure allowing calculation of the conversion 

percentage of the reaction by Eq. (1). The hydrogens 

associated with epoxy groups (EG) (signal D, δ 2.85-3.25 

ppm) are used to determine the number of epoxides in the 

molecule. As the number of epoxides present in the ELOs 

molecule grows the area of the hydrogen signals associated 

with the EG grows too (Figure 2). Relating the number of 

epoxides in the molecule with the initial carbon double 

bonds it is possible to calculate the percentage of epoxidation 

of the reaction by Eq. (2). The relation between the 

percentages of epoxidation to conversion is known as the 

selectivity percentage (Eq. (3)). These three parameters 

(conversion %, epoxidation %, and selectivity %) have been 

used to evaluate the epoxidation reaction of vegetable oils 

[30,43,47,48]. Table 3 shows the results obtained from the 

epoxidation reactions. 

Table 3.  Conversion, Epoxidation and Selectivity Percentages of the Epoxidation Reaction 

Sample Double Bonds Epoxides Conversion % Epoxidation % Selectivity % 

ELO1 3.9 2.6 40.0 40.0 100.0 

ELO2 2.7 3.8 58.5 58.5 100.0 

ELO3 2.1 4.4 67.7 66.2 97.7 

ELO4 1.9 4.5 70.8 69.2 97.8 

ELO5 1.0 5.4 84.6 82.8 97.8 

ELO6 0.1 5.5 86.5 84.3 97.5 

ELO7 0.2 6.0 97.1 92.3 95.1 

ELO8 0.1 6.1 98.5 93.8 95.3 

 

Conversion %=  
Initial double bonds-final double bonds

Initial double bonds
 *100  (1) 

Epoxidation %=  
Epoxides

Initial double bonds
 *100           (2) 

Selectivity %=  
Epoxidation %

Conversion %
 *100               (3) 

The highest number of epoxides in ELO (Samples ELO7 

and ELO8) was obtained at 80°C, using a solution of 

hydrogen peroxide at 50 wt.% and the relation of 1.5 mol of 

hydrogen peroxide per unsaturation mol. Under the 

conditions used in the epoxidation reaction of LO, the 

hydrogen peroxide concentration was the most important 

factor to consider during the formation of the epoxides 

followed by the temperature [43]. The ELO samples 

obtained have an epoxidation percentage between 40%    

to 93.8%, which corresponds to 2.6 to 6.1 epoxides per 

molecule. 

3.2. FTIR-HATR Spectroscopy 

The infrared spectrum has been used to characterize 

organic compounds qualitatively because the different bonds 

present in the molecules vibrate at specific wavenumber 

(cm-1). Also, it is possible to quantify functional groups, this 

is based on the Beer-Lambert law, in which the absorbance is 

proportional to the concentration of the functional group. 

Evtushenko et al. 2003 and Nuñez et al. 2016 have related 

the growth of the epoxy signal in the IR spectrum with the 

concentration of epoxides obtained by chemical methods 

based on titrations. 

On the other hand, Jebrane et al. 2017 related the areas of 

the epoxy groups from both the FTIR-ATR and 1H-NMR 

spectrum for ELO with relative low epoxidation percentage 

(from 26.8% to 56.5%) and epoxidized soybean oil (ESO) 

with an epoxidation percentage from 28.9% to 69.0%.   

The epoxidation reactions were carried out by the formation 

of peracetic acid in situ using sulfuric acid as catalyst and 

low temperatures (30-50°C). According to the correlation 

coefficients obtained (0.96 and 0.99 for ELO and ESO, 

respectively), they propose the use of infrared spectroscopy 

to quantify the degree of epoxidation in vegetable oils. 

The most important signals to follow the epoxidation 

reaction are the signals associated with the carbon double 

bonds (DB) and epoxy groups (EG). Figure 3 shows the 

FTIR-HATR spectrum regions of DB and EG respectively. 

These spectra were normalized with the signal of the 

carbonyl group of the ester at 1736 cm-1 (C=Ost) as an 

internal standard because its concentration was kept constant 

during the epoxidation reactions since the formation of the 

epoxide takes place between the peracetic acid formed in  

situ and the double bonds present in the LO [28,43,58]. 

Furthermore, the ELO hydrolysis reaction was ruled out, 

under the study conditions in the present work, due to the 

absence of hydroxyl group signals (OH-) in the FTIR-HATR 

spectra at 3100-3600 cm-1 region (Figure 3) and in the 
1H-NMR spectra at 3.3-4.1 ppm region (Figure 2) [43]. Also, 

the theoretical molecular weight of ELO samples was the 

same as the obtained by 1H-NMR [43]. As shown in Figure 3, 

the signals of DB at 3009 cm-1 (=C-Hst) tend to disappear as 

the DB reacts. Contrary to the above, the epoxy group signals 

(765-864 cm-1) tend to increase as the number of epoxy 

groups increase. 
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Figure 3.  FTIR-HATR spectrum of linseed Oil (LO) and partially epoxidized linseed oil (ELO1, ELO2, and ELO8) 

 
Measuring the area in the range at 765-864 cm-1 [36] and 

the net absorbance at 821 cm-1 of the EG signals by tracing  

a baseline (Figure 4) it is possible to relate these values  

with the number of epoxides obtained by 1H-NMR. The 

wavenumber was chosen at 821 cm-1 because the EG signals 

present a maximum at this point. 

 

Figure 4.  Measurement of the area (765-864 cm-1) and the net absorbance 

(821 cm-1) of the epoxy group signal of ELO in FTIR-HATR spectrum 

Table 4 shows the number of epoxides per molecule 

obtained by 1H-NMR, the area (765-864 cm-1), and the    

net absorbance (821 cm-1) obtained from FTIR-HATR 

spectrums of 8 samples of partially epoxidized linseed oil 

with different content of epoxides. 

Table 4.  Measurements of Areas and Net Absorbances of the Epoxy 
Group Signals of Partially Epoxidized Linseed Oil 

Sample Epoxidesa 
Area of Epoxy 

Groupb 

Net Absorbance of 

Epoxy Groupb 

ELO1 2.6 3.504 0.0910 

ELO2 3.8 5.428 0.1355 

ELO3 4.4 6.691 0.1619 

ELO4 4.5 7.149 0.1703 

ELO5 5.4 9.044 0.2131 

ELO6 5.5 9.075 0.2154 

ELO7 6.0 10.214 0.2306 

ELO8 6.1 10.380 0.23259 

a: Obtained by 
1
H-NMR 

b: Obtained from FTIR-HATR spectrums 

The number of epoxides obtained by 1H-NMR from the 

ELO samples was plotted as a function of the area (Figure 5) 

and the net absorbance (Figure 6). The linear correlation 

coefficients obtained were 0.9951 for the area method and 

0.9953 for the net absorbance method. Both linear 

correlation coefficients were slightly higher than those 

reported by Jebrane et al. 2017 (R2=0.96) for ELO. The high 

linear correlation coefficients obtained in this study and 

other works [36,46,54] corroborate that is possible to use 

FTIR-HATR spectroscopy for the quantification of the 

number of epoxides in epoxidized vegetable oils without 

taking into account the method used to epoxidize. This 

method also works to track the epoxidation reaction. 

The mathematical models obtained from the linear fitting 

of the area and net absorbance methods (Figure 5 and Figure 
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6, respectively) were used to quantify the number of 

epoxides in partially epoxidized linseed oils obtaining good 

reproducibility with a maxima variation of 1.2% for the area 

and 1.9% for the net absorbance method. Also, if the number 

of initial double carbon bonds in vegetable oils is known is 

possible to report the epoxidation percentage of the reaction 

by Eq. (2) using the FTIR-HATR technique. 

 

Figure 5.  Correlation plot for area method 

 

Figure 6.  Correlation plot for net absorbance method 

4. Conclusions 

The high linear correlation coefficients obtained by    

the area (R2=0.9951) and the net absorbance (R2=0.9953) 

methods using FTIR-HATR spectroscopy corroborate that is 

feasible to use this technique to determine the number of 

epoxides per molecule on modified vegetable oils without 

taking into account the method of epoxidation used obtaining 

good accuracy. 
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