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Abstract
The detection and transmission of a physical variable over time, by a node of a sensor network to its sink node, represents a

significant communication overload and consequently one of the main energy consumption processes. In this article we

present an algorithm for the prediction of time series, with which it is expected to reduce the energy consumption of a

sensor network, by reducing the number of transmissions when reporting to the sink node only when the prediction of the

sensed value differs in certain magnitude, to the actual sensed value. For this end, the proposed algorithm combines a

wavelet multiresolution transform with robust prediction using Gaussian process. The data is processed in wavelet domain,

taking advantage of the transform ability to capture geometric information and decomposition in more simple signals or

subbands. Subsequently, the decomposed signal is approximated by Gaussian process one for each subband of the wavelet,

in this manner the Gaussian process is given to learn a much simple signal. Once the process is trained, it is ready to make

predictions. We compare our method with pure Gaussian process prediction showing that the proposed method reduces the

prediction error and is improves large horizons predictions, thus reducing the energy consumption of the sensor network.

Keywords Sensor networks � Time series � Gaussian process

1 Introduction

Sensor networks generated time series are increasingly

significant for emerging applications that analyze this data,

however, the acquisition for long periods of time depends

on the network making a proper management of its energy

resources. One of the main sources of energy expenditure

occurs in the transmission of data within the network [1, 2].

Efforts to reduce radio transmissions communication

include data aggregation [3, 4] and data reduction via

prediction of the sensed magnitude [5], the latter consists in

the use of algorithms to analyze and predict the sensed

magnitude, in this way if the prediction is within a certain

range of error, the data is not transmitted, allowing energy

savings. This scheme depends on the model used to predict

the time series. The analysis of time series is an important

area of research in general, in the last decades there has

been a growing activity in trying to develop and improve

time series forecast models [6].

Time series prediction on sensor networks has been

analyzed with different statistical methods, from classical

prediction methods such as autoregressive moving aver-

ages (ARMA) and integrated autoregressive moving aver-

ages [7], Kalman filters [8] to deep learning LSTM [9]. The

latter has taken a great boom with the introduction of deep

learning, especially the use of extensive short-term mem-

ory networks [10], however despite the success using deep

learning methods, for most sensor networks, the compu-

tational cost is still prohibitive and prediction with classical

methods is still applicable and desirable in comparison to

deep learning methods that generally require a large

amount of training data, and increase complexity [11].

Here we are interested in probabilistic modeling such as

Gaussian processes [12], these methods were applied to

sensor networks, for deciding when and which sensor to

acquire reading [13] and modeling for sensor localization

[14]. Also, Gaussian processes have been applied to a wide
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variety of problems outside the sensor networks context,

such as noise reduction, image super resolution and clas-

sification, in addition, they have also been used in the

problem of time series prediction [15], for example, in [12]

the authors consider the problem of predicting multiple

steps in time series using a non-parametric Gaussian pro-

cess model. The method is focused on minimizing the

variance of error in the prediction in long horizons and

noisy inputs, this is achieved by adapting the variance each

time a prediction is made on a sample; in [16] the adaptive

control of a domestic heating system is addressed in order

to minimize costs and carbon emissions within an intelli-

gent network, Gaussian processes are used to predict

environmental parameters 24 h in advance, by On the other

hand, [17] models based on Gaussian processes for fore-

casting electric consumption is examined. The work in [18]

used a multiresolution model developed in the context of

spatial modeling based on regression ideas with Kriging

and Markov random fields, the authors propose a sum of

independent processes at different scales to model a family

of larger processes, however it is not suited for application

in sensor networks.

In this work, we contemplate a new approach for the

application of Gaussian processes to time series forecasting

in a sensor network that implements the dual prediction

scheme explained in [1]. In this context, the sensor network

samples each observation with a specified accuracy, con-

sequently a data is accepted by a sensor when it lies within

an error bound (e). Specifically, under this scheme a sensor

node can use the time series prediction model to transmit a

sample, x, when the prediction is inside the interval [x- e,
x ? e], otherwise nothing is transmitted. In the case that

the sample is not transmitted the sink node uses the pre-

dicted value, here is assumed that the model is known by

the entire network.

The approach that we propose to carry out predictions in

a sensor node is the Gaussian processes technique as in

[12, 18], but under a new domain without using Markov

modeling, this type of analysis has been proposed also in

[19, 20] using neural networks and ARMA, under a simple

multiresolution decomposition of two levels with basic

Haar filters of two coefficients, in this work we extend the

application to an arbitrary number of levels and using any

filter with multiresolution analysis capability, in addition,

we consider the application of Gaussian processes at each

level using a kernel that is a combination of radial and

exponential basis functions, for easy implementation in

sensor networks. One of the advantages of using Gaussian

process is that they can give a reliable estimate of the

uncertainty of the predicted value, this can be used to

decide whether or not the sample will be transmitted.

2 Multiresolution and Gaussian processes

This section offers a brief introduction to the wavelet

transform and the theory of Gaussian processes. For a more

detailed treatment of these topics, the reader can consult

[19, 21] and [22] for the topic of wavelets and GP,

respectively.

2.1 Wavelet transform

The wavelet transform, W{.}, consists of a decomposition

of a continuous signal, f(x), using basis functions, wmn. This

family of bases, is obtained by translations, n, and dila-

tions, m, of a specified basis function, w(x), known as

mother wavelet. Thus, any basis function is specified as

[23]

wmn xð Þ ¼ 2
m
nw 2mx� nð Þ ð1Þ

where m and n, are integers that specify translations and

dilations of the mother wavelet function.

An important feature of the mother wavelet is that it can

be constructed from a scaling function, /(x), that meets the

property

/ xð Þ ¼
ffiffiffi

2
p X

1

l¼�1
h lð Þ/ 2x� lð Þ ð2Þ

where h(l) are scalar factors [19, 23, 24], which are the

coefficients of some filter h. Using the scaling function, it is

possible to express w(x) as

w xð Þ ¼
ffiffiffi

2
p X

1

l¼�1
�1ð Þlh 1� lð Þ/ 2x� lð Þ: ð3Þ

It is possible to generate the decomposition of a signal

without explicitly using the wavelet basis functions w(x),
this is done through the coefficients h, which define digital

filters that can be used to represent the wavelet transform of

discrete signals [25], in this case, the wavelet transform in

discrete time, for a discrete signal f(m), is defined as a

series of subband signals yk of a filter bank given by

yk nð Þ ¼
X

1

m¼�1
f mð Þhk 2kþ1n� m

� �

k ¼ 1; . . .;K ð4Þ

Where, K is the number of levels of the transform and

the filter h is related to hk in the Fourier domain as

Hk ejx
� �

¼ H ej2
kx

� �

ð5Þ

where H(�) is the Fourier transform of h(�).
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2.2 Gaussian process

A random process f(x) is a Gaussian process if any vector

(f(x1), f(x2),…, f(xm)) at finite number of points x1, x2,…xm
has a multivariate normal distribution. The Gaussian pro-

cess is fully characterized by its mean m(x) and a covari-

ance function c(x, x0) [22].
So, given a sequence of points x1, …, xN, the sequence of

the values of f, evaluated at those points, f ¼ f1; . . .; fNf g, is
distributed as a multivariate Gaussian, that is

f �N m;Cð Þ ð6Þ

where C ¼ c xi; xj
� �� �

is the covariance matrix and m is the

mean vector.

It is possible to use Gaussian processes to predict a

value, f � xð Þ, at a new point at location x�; through the

knowledge of noisy observations y ¼ y1; y2; . . .; ymð Þ,
which are relate to GP by the expression y ¼ f þ w, where

w�N 0; rIð Þ is Gaussian noise.

Under these circumstances, the calculation of new pre-

dictions is made through a predictive distribution p (f* | y)

which turns out to be normally distributed, making it

possible to obtain a solution in analytical form of the mean

and variance at the prediction point x* as follows

m x�ð Þ ¼ c X; x�ð ÞT C þ r2I
� ��1

y ð7Þ

var x�ð Þ ¼ c x�; x�ð Þ � c X; x�ð ÞT C � r2I
� ��1

c X; x�ð Þ ð8Þ

where c X; x�ð ÞT¼ c x1; x
�ð Þ; c x2; x

�ð Þ; . . .; c xm; x
�ð Þð ÞT .

The Gaussian process covariance function determines

many of the characteristics that the process will have and is

generally selected during the observation of the data.

3 Methodology

It is common that in certain applications of time series or

signals, the samples represent a complex sequence difficult

to model, so it is necessary to resort to statistical models.

Gaussian processes, as seen in Sect. 2.2, can provide a

model that is easily adaptable to a large class of practical

signals. However, due to the complex forms that the signal

can acquire, it is in general difficult to adapt a covariance

function in these types of signals. In the present work it is

proposed to transform the signal to be analyzed to the

wavelet domain and then adapt a Gaussian process to each

of the subbands of the decomposition. Using this approach,

it is expected that the representation of the signal in each

subband has of less complexity and therefore it will be

much easier to adapt the covariance function of the

Gaussian process. Thus, our proposed method has the fol-

lowing advantages:

• It is adaptable to specific signal by estimating a

covariance function for that signal.

• It can handle variable complexity of the signals by

incrementing the level of decomposition of the wavelet

transform.

• Our method can give a reliable estimate of the

uncertainty of the predicted value, this can be used to

decide whether or not the sample will be transmitted

given the error bound (e) of a dual prediction

scheme [1].

• As can be seen from the experiments the proposed

method has less error than the other methods with

which the comparison was made, thus using the dual

prediction scheme [1], the amount of data transmitted

over the network would decrease as compared to the

other methods.

3.1 Prediction model

The first step of the proposed model is to transform the

signal of interest to the wavelet domain, a series or discrete

signal f(m) will be assumed to have a wavelet representa-

tion given by a collection of subbands yk. The number of

subbands, K, will depend on the complexity of the signal.

The determination of the optimal number of levels can be

performed empirically or by measuring the error between

the Gaussian process model and the original signal.

A Gaussian process is then adjusted to each subband

using a suitable kernel or covariance. In this work we

assume that the subbands resulting from the transformation

consist of collections of random variables, of which any

finite set has a multivariate Gaussian joint distribution,

yk 1ð Þ; . . .; yk Nkð Þ�N 0;Ckð Þ k ¼ 1; . . .;K n ¼ 1; . . .;Nk

ð9Þ

where Nk is the number of elements in subband k and Ck is

the specific covariance matrix at level k, here each level or

subband defines a different Gaussian process.

The prediction sought is forward in time to a given

horizon, that is, to predict values using the last known

value of the signal. So the next step is to adjust the number

of decomposition coefficients to the number of desired

samples to predict for this, the following formula adapted

from [24] is used:

Nkþ1 ¼ floor
Nk � 1

2

� �

þ Nf

2
ð10Þ

where Nk is the length of the subband adjusted to the

number of samples to predict with N0 the length of the

signal to be predicted, Nf is the size of the subband filter k.

Next, the necessary points in the future are predicted for

each subband using their respective Gaussian processes and
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finally the subbands are transformed with the inverse

wavelet transform, to obtain a time domain signal with an

expanded horizon.

4 Results

This section presents the results of a series of experiments

focused on the validation and comparison of the proposed

algorithm. All experiments were performed on a computer

with microprocessor i7-6500U CPU @ 2.50 GHz, with 8 G

of RAM.

For a first experiment, data come from the database of

[26]. This database contains 9358 samples of average

hourly responses from five chemical metal oxide sensors

embedded in an air quality sensor device. The device was

located in a significantly contaminated area of an Italian

city. Registration data began in March 2004 until February

2005. For more details regarding the database, the reader

can consult [26].

The experiment consists of a comparison with a pure

Gaussian processes (GP), the implementation of the algo-

rithms was made in python language with the library of

[27]. In order to make a better comparison, the same ker-

nel, radial basis function (RBF) with exponential square

sinusoidal was used, in both implementations, the proposed

method and the algorithm using only GP:

kernel xi; xj
� �

¼ 1

2
RBF xi; xj; pScala

� �

þ exp �2

sin
p�abs xi;xjð Þ
pPeriod

� �

pScala

0

B

B

@

1

C

C

A

2
0

B

B

B

@

1

C

C

C

A

ð11Þ

Where the pScala and pPeriod parameters establish the

scale and period of the process, this was automatically

established by optimization algorithms provided with [27].

The metric used to quantitatively evaluate the results was

the root mean square error (RMSE), defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
t¼1 ŷ tð Þ � y tð Þð Þ2

n

s

ð12Þ

Where n is the number of samples, y(t) is the original

signal and ŷ tð Þ is the estimated sample.

To select the number of decomposition levels of the

wavelet we observed the effect that decomposition levels

have on the prediction error. From the database of [26], 329

samples were taken, of these samples 290 samples were

taken for training. A prediction horizon of 39 samples was

used. Once data was selected, the wavelet transform is used

for its analysis and prediction. This process was repeated

using J = 2,3,4 and 5 levels of decomposition with the

wavelet transform. For each level selection the prediction

error was calculated using the RMSE, the results can be

Fig. 1 Prediction error of the proposed method using 1, 2, 3, 4, and 5

levels of decomposition with wavelet transform

Fig. 2 Decomposition with three-level wavelet transform. a Prediction in the aproximation subband, b prediction in the last level, detail subband
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seen in the graph of Fig. 1, it can be seen that the RMSE

increases as the number of levels used increases, this may

be due to different causes, One of them could be that by

increasing the number of levels, the information in each

subband decreases what could adversely affect the training

of the Gaussian process causing a deterioration in the

prediction.

In Fig. 2, the prediction in the last band is shown, using

a three-level wavelet transformation (J = 3). Figure 2b

shows a prediction error in the last samples due to a poor

Fig. 3 Data predicted with the proposed method using: a two levels, b three levels, c four levels and d five levels

Fig. 4 a Prediction with a horizon of 27 samples. b Prediction error with different prediction horizons
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optimization of the Gaussian process parameters in that

subband.

In Fig. 3, the predicted data are shown against the

original data for the reconstructed data from the wavelet

transform resulting from the predictions with the proposed

method.

Next, we compare the proposed algorithm with predic-

tion using only Gaussian processes (GP), a prediction

horizon of 27 samples were used, for the case of the pro-

posed method a two-level wavelet decomposition was

selected. Prediction was done using a window of five

samples, results are shown in Fig. 4a, where it can be seen

that the proposed method (GP ? wavelet) exceeds the

method using GP directly, this is shown quantitatively in

Fig. 4b where it is shown a graph of the prediction error as

the samples to be predicted increase. Figure 5, shows the

original signal an a bound of ± e = 0.05, it can be seen that

the proposed model has more intervals where the predic-

tion is within bound, than using GP alone, meaning that

under the dual prediction scheme [1], using the proposed

method there could be more energy savings than using GP

alone.

For the next experiment, a more complex dataset was

used, it consists of a time series of greenhouse gas con-

centrations measured by grid cells. Data was created using

simulations of the Weather Research and Forecast model

with Chemistry, for details see [28]. Comparisons were

made with the following methods: a neural network (NN)

of five layers with 6, 3, 2 and 1 neurons with rectified linear

Fig. 5 Signal with bounds ± e = 0.05, in zones where the predicted

signal is within the bound, the samples are not transmitted

Fig. 6 The Greenhouse Gas Observing Network Data Set [28]. Prediction with a NN, RMSE = 0.302, b random forest, RMSE = 0.188, c GP,

RMSE = 0.223, and d proposed method, RMSE = 0.047
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activation function, except the last layer which has a linear

activation; and a random forest with 220 trees. Training for

all methods was done with 2000 samples, for the NN 600

epoch were used and for GP 19 iterations. Predictions were

made using windows of 100. Figure 6a, b, show the pre-

diction using NN and random forest respectively, the ran-

dom forest was unable to follow the abrupt changes that the

series presented. Figure 6c shows the GP prediction, here

the GP has the same parameters as the proposed method

(Fig. 6d), however it was unable to adapt to changes in the

signal, there may be other kernels that are better suited to

the signal, however, one of the purposes of the experiment

is to show the advantage of using GP in the wavelet

domain, without a more accurate analysis of the types of

kernels.

In Fig. 6c, it is shown the results of the proposed

method, despite the greater complexity of the series, the

larger number of samples and the use of a larger prediction

window than the one used in the previous experiment,

helped to have a prediction quite accurately compared to

the other methods presented. Although in general, using a

larger number of samples for the prediction, significantly

increases the accuracy, the training of the estimators,

including the proposed method, becomes computationally

prohibitive for low-end devices, however since the training

is done by the central node, a device with more computing

power for that node can be used, such as a small single

board computer.

5 Conclusions

An algorithm for signal prediction to operate under the dual

prediction scheme was presented. The proposed method

makes use of the wavelet transform and Gaussian processes

to obtain estimates of the signal. The algorithm first

transforms the signal to the wavelet domain and the pre-

diction by Gaussian processes is made in each subband.

The signal in each subband is expected to be easier to

analyze and predict by Gaussian processes than if the entire

signal was taken in its entirety, this was more evident when

using the method in complex series, as is shown in the last

experiment where the proposed method was able to adapt

to the series much more precisely than using GP without a

multi-resolution analysis. The method is compared with

prediction using Gaussian processes, NN, and random

forest on the original signal resulting that the proposed

algorithm obtains better prediction results, based on the

RMS measured with the test signal. As a future work in the

future, we plan to analyze the algorithm behavior using

other multiresolution transforms apart from wavelets and

try different decomposition filters. Also, an implementation

of the algorithm in a physical sensor network.
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holds a Ph D in Management

Science form the Lancaster

University, UK, a master’s

degree in Manufacturing Engi-

neering from the University of

Syracuse, USA and a B. S. in

Mechanical Engineering from

National Polytechnic Institute of

Mexico. He is board review

member of the Journal of Sup-

ply Chain Management

(JSCMP). He has published in the Journal of Physical Distribution

and Logistics Management (JPDLM), Mathematical Problems in

Engineering (MPE), Journal of Ambient Intelligence and Humanized

Computing (JAIHC), International Journal of Applied Metaheuristic

Computing and Nova Scientia. Oliverio has contributed to book

chapters on Simulation for Industry 4.0 (Springer) and Order Picking

Performance in Logistics (IGI Global).

Boris Mederos has a Ph.D. in

Applied Mathematics from the

Instituto de Matemática Pura e
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research interests include medi-

cal image processing, machine

learning, calculus of variation,

optimization and numerical

methods.

Wireless Networks

123

Author's personal copy


	Prediction of time series using wavelet Gaussian process for wireless sensor networks
	Abstract
	Introduction
	Multiresolution and Gaussian processes
	Wavelet transform
	Gaussian process

	Methodology
	Prediction model

	Results
	Conclusions
	Acknowledgements
	References




