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“Gold there is, and rubies in abundance,
but lips that speak knowledge are a rare jewel. ”

Proverbs 20:15

“Hay oro y multitud de piedras preciosas;
Mas los labios prudentes son joya preciosa. ”
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Resumen.

Ésta tesis basada en art́ıculos analiza un nuevo enfoque computacional pa-

ra el problema de localización de cobertura máxima (MCLP, sigla en inglés).

Consideramos una formulación de tipo difuso del MCLP genérico y desarro-

llamos los aspectos teóricos y numéricos necesarios del Método de Separación

(SM) propuesto. Una estructura espećıfica del MCLP originalmente dado ha-

ce posible reducirlo a dos problemas auxiliares de tipo mochila (Knapsack).

La separación equivalente que proponemos reduce esencialmente la comple-

jidad de los algoritmos resultantes. Este algoritmo también incorpora una

técnica de relajación convencional y el método de escalarización aplicado

a un problema auxiliar de optimización multiobjetivo. La metodoloǵıa de

solución propuesta se aplica a continuación a la optimización de la cadena

de suministro en presencia de información incompleta. Estudiamos dos ejem-

plos ilustrativos y realizamos un análisis riguroso de los resultados obtenidos.

El resultado anterior se extiende a un enfoque de optimización compu-

tacional recientemente desarrollado para una clase espećıfica de problemas

de localización de cobertura máxima (MCLP) con una estructura dinámica

conmutada. La mayoŕıa de los resultados obtenidos para el MCLP conven-

cional abordan el caso “estático” donde una decisión óptima se determina en

un peŕıodo de tiempo fijo. En nuestra contribución consideramos una toma

de decisiones óptima basada en MCLP dinámica y proponemos un método

computacional efectivo para el tratamiento numérico del problema de loca-
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lización de cobertura máxima dinámica de tipo conmutado (DMCLP). Una

estructura geométrica genérica de las restricciones en cuestión hace posible

separar el problema de optimización dinámica dado originalmente y reducir-

lo a una familia espećıfica de problemas auxiliares relativamente simples. El

método de separación (SM) generalizado para el DMCLP con una estructu-

ra conmutada finalmente conduce a un esquema de solución computacional.

El algoritmo numérico resultante también incluye la relajación clásica de

Lagrange. Presentamos un análisis formal riguroso de la metodoloǵıa de op-

timización del DMCLP y también discutimos aspectos computacionales. El

algoritmo basado en SM propuesto se aplica finalmente a un ejemplo orienta-

do a la práctica. Ejemplo, a saber, de un diseño óptimo de una configuración

de red móvil (dinámica).



Abstract.

This Ph.D. article-based thesis discusses a novel computational approach

to the extended Maximal Covering Location Problem (MCLP). We consider

a fuzzy-type formulation of the generic MCLP and develop the necessary

theoretical and numerical aspects of the proposed Separation Method (SM).

A specific structure of the originally given MCLP makes it possible to re-

duce it to two auxiliary Knapsack-type problems. The equivalent separation

we propose reduces essentially the complexity of the resulting computatio-

nal algorithms. This algorithm also incorporates a conventional relaxation

technique and the scalarizing method applied to an auxiliary multiobjective

optimization problem. The proposed solution methodology is next applied

to Supply Chain optimization in the presence of incomplete information. We

study two illustrative examples and give a rigorous analysis of the obtained

results.

The previous result is extended to a newly developed computational opti-

mization approach to a specific class of Maximal Covering Location Problems

(MCLPs) with a switched dynamic structure. Most of the results obtained

for the conventional MCLP address the “static” case where an optimal de-

cision is determined on a fixed time-period. In our contribution we consider

a dynamic MCLP based optimal decision making and propose an effecti-

ve computational method for the numerical treatment of the switched-type

Dynamic Maximal Covering Location Problem (DMCLP). A generic geome-
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trical structure of the constraints under consideration makes it possible to

separate the originally given dynamic optimization problem and reduce it

to a specific family of relative simple auxiliary problems. The generalized

Separation Method (SM) for the DMCLP with a switched structure finally

leads to a computational solution scheme. The resulting numerical algorithm

also includes the classic Lagrange relaxation. We present a rigorous formal

analysis of the DMCLP optimization methodology and also discuss compu-

tational aspects. The proposed SM based algorithm is finally applied to a

practically oriented example, namely, to an optimal design of a (dynamic)

mobile network configuration.
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Introduction

The location theory is central to the design of logistic systems, especially

in the supply chain. Classification of location problems allows understanding

the different models there exist in this area. Even location and allocation

decisions are generally intertwined, in this Ph.D. paper-based thesis, we split

those decisions and concentrate on the pure location decision. This kind of

decisions are strategic or tactical in all systems, that depends if location deci-

sion can be reversible in the medium term. Besides the decision affect demand

volume because it may lead to the acquisition of customers who previously

could not be served at a satisfactory level of service or lost some customers

due to the closure of a facility. So, the study of these decisions is core in the

design of the logistic network.

Currently, by the expansion of Operational Research, there are raising

new applications, and those applications share the same mathematical mo-

dels sometimes, although their parameters have a different meaning. In such

a way, we work in the known Maximal Covering Location Problem (MCLP),

and this model can be led to the telecommunication network. We can keep

the same model structure, but their parameters shift their meaning because

the facility here is the base stations that decision-maker has to select, the

customer is a cell phone, and the covering concept is the distance traveled by

telecommunication signal, instead of the distance traveled by the customer.

In this case, the model allows selecting the optimal open base stations for a

telecommunication network.
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Both paragraphs define the key task of mathematical modeling as well as

the link between Operational Research and Math Modeling. Latter affirma-

tion is the reason for doing a Ph.D. in Modeling and Scientific Computing.

For doing this, Chapter one explains the research proposal in the first sec-

tion including the objective and the methodology. The second section is an

introduction of the traditional Maximal Covering Location Problem and the

use of this model in both latter cases. Section three descriptive the Knapsack

model, and their computational results related to this research. The latest

section of the first chapter explains different resilient concepts in the supply

chain, and why our proposal of the resilient model is different from that pro-

posed in the known literature.

The key chapters, especially, chapter two and three contain the papers

which are the result of the research. In the second chapter shows the resulting

built model, the new computational procedure, and the application example

in the supply chain. Chapter three shows the latest submitted paper where

we move from static model to dynamic model based on the MCLP, the exten-

ded computational procedure similar to the static case, and the application

to the dynamic telecommunication network.

The rest of the chapters contains future work and the conclusions of the

Ph.D. based-papers thesis. The future work allows thinking in new research

projects, including how can be applied this to a realistic case. The conclusions

reinforce the findings of our research work. To inform we agree with the

publishing policy, here it is the web address of the publishing policy of the

journal where we published or submitted our work:

1. https://www.elsevier.com/journals/ifac-papersonline/2405-8963/

guide-for-authors#9001

2. https://aimsciences.org/journal/1547-5816/JIMO_Guide

https://www.elsevier.com/journals/ifac-papersonline/2405-8963/guide-for-authors#9001
https://www.elsevier.com/journals/ifac-papersonline/2405-8963/guide-for-authors#9001
https://aimsciences.org/journal/1547-5816/JIMO_Guide


CHAPTER 1

Fundamental

1.1. Motivation and Research Proposal

The presented article-based work proposes a new effective numerical treat-

ment of the conventional and extended Maximal Covering Location Problem

(MCLP). We start our consideration by studying the classic (static) variant

of the MCLP. The obtained conceptual results are next extended to the newly

determined class of dynamic MCLP’s. A specific linear-integer structure of a

basic and advanced mathematical problems makes it possible to reduce the

originally static or dynamic MCLP to two auxiliary optimization Knapsack-

type problems. In either case, one can also include the lack of a complete

information into the main mathematical model. The equivalent transforma-

tion (so-called separation) we propose provides a useful tool for an effective

numerical treatment of the original MCLP and constitutes a conceptual ba-

sis for the new numerical approach we propose. This new computational

approach reduces the total complexity of the resulting algorithms. The met-

hodology we follow involves an additional relaxation procedure (for example,

the celebrated Lagrange relaxation) in combination with some multiobjecti-

ve optimization techniques. In the presented work we give a rigorous formal

analysis of the proposed theoretical concepts and numerical algorithms. Fi-
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nally, we apply the developed theory and numerical approach to practically

oriented examples that includes several disciplines and areas among others

optimization of logistics operations, general decision science, optimal manu-

facturing management system, and mobile networking system.

Constructive optimization of complex technological processes and the co-

rresponding computer oriented methods and software are nowadays a usual

and efficient methodology for the practical development of several real-world

Management Systems (see e.g., [1, 2, 5, 6, 7, 9, 10, 14, 16, 17, 18, 22, 23, 24,

26, 25, 27]). The proposed Ph.D. paper-based Project will study mathema-

tical aspects of two MCLPs in the presence of incomplete information. The

requested optimal design of a real-world system under consideration can be

formalized as a specific “disturbed” static or dynamic MCLP. The celebrated

Maximal Covering Location Problem and the possible generalizations cons-

titute a challenging mathematical problem with numerous applications in

practice. We mostly deal with new constructive numerical approaches to this

class of problems. Note that MCLP has a decisive role in the success of supply

chains, with applications including the location of industrial plants, landfills,

hubs, cross-docks, etc (see e.g., [1, 3, 8, 9, 10, 11, 12, 13, 14, 17, 21, 23]). It

can also be applied to the general decision/management science (problems

of economical, econometrical, social, financial nature). A well-known MCLP

and the related supply chain activity involve the delivery of a manufactured

product to the end customer or/and to a warehouse. In a classical MCLP,

one seeks the location of a number of facilities on a network in such a way

that the covered “population” is maximized [13, 15]. Let us also mention a

possible application of the MCLP methodology in the optimization of mobile

networks/communication science.

MCLP was first introduced by Church and ReVelle [13] on a network, and

since then, several extensions to the original problem have been made. A va-

riety of numerical approaches have been proposed to the practical treatment
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of distinct MCLP’s. Let us mention here exact, heuristic and metaheuristic

families of methods and also refer to [8, 9, 10, 11, 12, 13, 14, 17, 21] for some

necessary details, concrete solution algorithms and further references.

Note that heuristics and metaheuristics have usually been employed in

order to solve large size MCLP’s (see e.g., [3, 12, 17, 19]). A recent interest

to MCLP’s has arisen out the uncertainty of model parameters, such as de-

mands or/and locations of demand nodes [9, 10, 23].

The optimization approach we propose includes an equivalent transforma-

tion of the original MCLP that finally involves common Knapsack problems

(see e.g., [15] and references therein). The developed approach reduces the

complexity of an initially given MCPL and makes it possible to apply various

exact methods to the original MCLP. We also use a generic relaxation (for

example, the celebrated Lagrange scheme) for this purpose [11, 27]. Moreo-

ver, we also incorporate the standard multiobjective optimization techniques

and some heuristic approaches into the resulting computational scheme. And,

it should be noted already at this point that the MCLP based modeling ap-

proach we propose can be effectively implemented (at the optimization stage)

in a concrete optimal design of some engineering, financial and social systems.

1.1.1. Motivation

The renewal of exact methods of Numerical Optimization ([34, 35, 36,

37, 38]) is currently a hard task. The numerical optimization methods per-

mit consistency/convergence results, also looking be easy to program, and

make it possible to reduce the principal problem to ones more studied pro-

blems. Because there exist difficult problems, the combination possibilities

with other exact or heuristic techniques are important, which requires con-

sistent algorithms, and are a source for engineering/economical application.

The possibility of a specific useful generalization for dynamic optimization
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problems (engineering and optimal control problem [4, 20]) is a so interesting

area, which let us study how to transit from the static case into the dynamic

case. MCLP has been applied traditionally to static problems in location

theory, but the new applications to the location theory need to introduce

the time dependence to make the decision. Both this motivation is caused by

some limitations of existing methods.

1.1.2. Objective

The main aim of our Ph.D. project is with a strong theoretic foundation

of a new effective numerical approach to MCLP’s.

1.1.3. Methodology

Our methodology is based on deductive and mathematical modeling cy-

cle, and in this article-based thesis project, furthermore, we introduce an

aspect of resilience modeling in the context of supply chain and telecommu-

nication network. The modeling cycle which is the principal step to simplify

the real world problem into a mathematical model for the decision makers

in different areas, and it is used to explain the parameters inside the main

model. Finally, we propose a conceptual new algorithm for solving this pro-

blem, count the computational complexity, and show the final procedure for

solving the optimization problem.
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1.2. Maximal covering location problem

The Maximal Covering Location model ([13]) consider the following linear

integer programming problem

maximize J(z(y)) :=
n∑

j=1

wjzj

subject to





∑l
i=1 yi = k,

zj ≤
∑l

i=1 aijyi,

z ∈ Bn, y ∈ Bl

(1.1)

Here wj ∈ R+, j = 1, ..., n are given non-negative objective “weights” and

decision variables zj, j = 1, ..., n determine the “facilities to be served”. By

yi, where i = 1, ..., l, we define the generic decision variables of the problem

under consideration and k ∈ R+ in (1.1) describes the total amount of the

facilities to be located. Elements

ai,j =

{
1 if the facility i covers the point j

0 otherwise

are components of the so called “eligibility matrix”A := (ai,j)
i=1,...,l
j=1,...,n associa-

ted with the eligible sites that provide a covering of the demand points inde-

xed by j = 1, ..., n. Note that the second index in (1.1), namely, i = 1, ..., l is

related to the given “facilities sites”. Finally, the admissible sets Bn and Bl in

the main problem (1.1) are defined as follows: Bn := {0, 1}n, Bl := {0, 1}l.

This is the core model we study in this Ph.D. project, understand its

parameter, and the possible real application in two different environments.

The traditional one, in the location-covering model, the aim is to locate a

least-cost set of facilities in such a way that each user can be reached within a

maximum travel time from the closest facility. From a logistic point of view,

this model is used in the Public Sector, especially in services of firefighting,
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transport of the disabled, ambulance dispatching, etc.

On the other hand, this model can locate the best-fixed number of base

stations under a limited budget allowing to maximize the proportion of de-

mand nodes covered by the cells within the permitted range. Here in both

field, we are assuming single-period, single-type facility, the single homoge-

neous customer (population, signal, to name a few) who are able to get a

direct route to the single facility.

1.3. Knapsack problem

The Knapsack problem ([28]), one of the pioneering studies on this) which

is really a family of combinatorial NP -hard problems known as this name,

consider the following linear integer programming problem

maximize J(z) :=
n∑

j=1

wjzj

subject to
n∑

i=j

ujzj ≤ C, z ∈ Bn

(1.2)

Usually, this model is linked with a hitch-hiker who has to fill up his

knapsack by selecting from among several possible objects those which will

give him maximum comfort. Here, zj is the binary decision variable which 1

is for a selected object j, 0 otherwise; wj is a measure of the comfort given by

object j, uj its size and C the size of the knapsack. Readers, who preference

another point view can think in resource allocation, where we want to invest

a capital of C dollars, and you are considering n possible investments, each

one with wj of profit you expect from investment j, and uj the number of

dollars it requires.

The problem (1.2) is also known as 0 − 1 knapsack problem. There are
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other problems related to Bounded Knapsack, Subset-sum, Change-making,

0−1 multiple knapsack, generalized assignment, and Bin-packing. All of the-

se problems are NP -hard, although there exist efficient algorithms as shown

in [15]. These efficient algorithms can be included in a wide range of opti-

mization problems, and the complexity theorem is useful for the operational

count.

1.4. Resilience concept in supply chain

The main topic presented in this section is to discuss a resilience concepts

approach to the extended Maximal Covering Location Problem (MCLP). We

consider a fuzzy-type formulation of the generic MCLP and make a compa-

rison among our resilient concept and other describe in ([29, 30, 31, 32, 33]).

Design resilient supply chain ([29, 32]) are planned in a range of options.

Decision makers have the financial resources available, the type of network

under consideration, their own risk preference, and other factors inside the

context where the supply chain works. As disruptions are the principal sour-

ce which gets in unreliable to the system in facility location, in such way,

the objective of designing the supply chain networks that operate efficiently

both normally and when a disruption occurs, it is considered resilient to

disruptions. Facility’s unavailability is another way of unreliability, which is

generally caused by congestion and its maximum availability. In the latter,

customers cannot be served, then customers should move for the next faci-

lity to be served. These facilities unavailable produces loss of goodwill for the

company.

In design, we have assumed that no network is currently in place. Instead

of, some supply chain already exists, and we want to fortify this network to

make it more resilience, including fail, vulnerability or security of the facility.

We are going to focus on the design resilient supply chain henceforth. Some
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Facility Location Models are based on the classical Uncapacitated Fixed-

charge Location Problem (UFLP, or known as simple plan location) as the

Resilient Fixed-charge Location Problem (RFLP) which minimizes the sum

of the fixed cost and the expected transportation and lost-sales costs, subject

to r-resilient server to customers, which is modeled through “level-r” assign-

ment among customer and r closer open facilities that allow introducing a

“backup” facilities to understand the resilience.

An alternative model, based on the P -median problem for modeling the

degree of coverage is a non-increasing step function of the distance to the

nearest facility rather than the UFLP objective function. This model [30]

generalized maximal covering location problem, called GMCLP, and is equi-

valent to UFLP where the fixed costs (normally non-zero) are set to zero.

In particular, the “standard” MCLP problem is a special case of UFLP. In

[31] face the same problem, in both cases they maximize the coverage of the

demand points by determining one of the selected facility sites, which ensures

maximum coverage level for each demand point, but [31] introduce a different

concept in the level of coverage using a monotone decreasing function wit-

hin [0, 1] between total coverage distance S and a maximum partial coverage

distance T , in this paper they name that problem as MCLP-P .

Finally, Lee in [33], provide a heuristic for the RFLP using a traditional

objective function of UFLP subject to each customer should be served by

either the primary facility or the secondary facility at any instant (additio-

nal constraint), the flow feasibility among each customer and the facility and

facilities, each facility is used as either the primary or the secondary facility,

but no both are enforced in a set of constraint of flow feasibility; and due

to the unreliability of the facility, the demand of each customer cannot be

satisfied by using only one facility. In all cases, mix assignment model with

location has been the constant. We are proposing using the fuzzy parameter

to include the customer preferences inside the constraint of location feasibi-
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lity, and come back to the traditional MCLP, and follow the way location

first, assignment after. In that manner, a customer is a coverage where se-

veral facilities have a sum of preference customer more than one, allowing

to use the traditional coverage function of MCLP, and keeping the linearity

of the model, but in any case, we can not avoid the NP problem in the models.

Now, we are able to propose a shifting in the use of disruption concept

from the objective function into the covering concept, in that way, we are

avoiding to mix to NP models as has been done until today.
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CHAPTER 2

Papers on Static Model

We add in this chapter two papers on MCLPs applying to supply chain.

The formal problem formulation for the classic MCLP under case, is given

in papers [39, 40] anexed to this chapter in the sections 2.1 and 2.2.

2.1. IFAC Paper

The first paper is an advanced of our work. We combine MCLP with resi-

lience concept, allowing to introduce disruption into MCLP in the constraint

of covering. Such,

First We change the concept of covering radius for a fuzzy-type formulation

in that constraint.

Second We keep the simplicity of the mathematical formulation, and allow

to extended the model to another assumption.

Third We propose a conceptual new algorithm for solving it.

Fourth We present a toy example of this model applying to a resilient supply

chain for a family of manufacturing plants-warehouses.
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Abstract: This paper deals with the Maximal Covering Location Problem (MCLP) for Supply
Chain optimization in the presence of incomplete information. A specific linear-integer structure
of a generic mathematical model for Resilient Supply Chain Management System (RSCMS)
makes it possible to reduce the originally given MCLP to two auxiliary optimization Knapsack-
type problems. The equivalent transformation (separation) we propose provides a useful tool for
an effective numerical treatment of the original MCLP and reduces the complexity of algorithms.
The computational methodology we follow involves a specific Lagrange relaxation procedure. We
give a rigorous formal analysis of the resulting algorithm and apply it to a practically oriented
example of an optimal RSCMS design.

1. INTRODUCTION

Constructive optimization of complex technological pro-
cesses and the corresponding computer oriented methods
and software are nowadays a usual and efficient method-
ology for the practical development of several real-world
Management Systems (see e.g., [1,5-7,9,10,11,15,18,23,24]).
Our paper studies mathematical aspects of a particular
RSCMS model that involves incomplete information. The
requested optimal design of a RSCMS can be formal-
ized as a specific ”disturbed” MCLP [10]. Recall that
the celebrated Maximal Covering Location Problem is a
challenging optimization problem with numerous appli-
cations in practice. It has a decisive role in the success
of supply chains, with applications including location of
industrial plants, landfills, hubs, cross-docks, etc (see e.g.,
[1,3,8-10,12-15,18,20,22,24]). A well-known MCLP and the
related supply chain activity involve the delivery of a
manufactured product to the end customer or/and to a
warehouse. In a classical MCLP, one seeks the location of
a number of facilities on a network in such a way that the
covered ”population” is maximized [14,24].

MCLP was first introduced by Church and ReVelle [14]
on a network, and since then, several extensions to the
original problem have been made. A variety of numerical
approaches have been proposed to the practical treatment
of distinct MCLPs. Let us mention here exact, heuris-
tic and metaheuristic families of methods and also refer
to [8-10,12-15,18,20,22] for some necessary details, con-
crete solution algorithms and further references. Note that
heuristics and metaheuristics have usually been employed
in order to solve large size MCLPs (see e.g., [3,13,18,20]).
A recent interest to MCLPs has arisen out the uncertainty
of model parameters, such as demands or/and locations of
demand nodes [9,10,24].

The main aim of our contribution is with a strong theoretic
foundation of the newly elaborated separation method.
The optimization approach we propose includes an equiv-
alent transformation of the original MCLP that finally
involves a common Knapsack problem (see e.g., [16] and
references therein). The developed approach reduces the
complexity of an initially given MCPL and makes it possi-
ble to apply various exact methods to the original MCLP.
We concretely use the well-known Lagrange relaxation
scheme for this purpose [12,16]. And, it should be noted
already at this point that the MCLP based optimization
algorithm we propose can be effectively implemented (at
the optimization stage) in a concrete RSCMS.

The remainder of our paper is organized as follows: Section
2 contains a formal problem statement and some necessary
concepts. In Section 3 we prove our main separation result,
namely, Theorem 1 and give a constructive characteriza-
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MCLP does not constitute a ”universal” solution approach
under assumption of possible process disruptions (techni-
cal faults, maintenance and so on). This is specifically true
with respect to the second sub-problem mentioned above.
We next introduce a suitable analytic extension of the con-
ventional MCLP that includes the possible updates of the
demand allocation for the same location distribution. The
extended modelling approach we propose can be expressed
in the form of a (specific) linear integer program

maximize J(z(y)) :=
n∑

i=1

wjzj

subject to





∑l
i=1 yi = k ∈ N, l > k,

zj ≤ ∑l
i=1 aijyi,

z ∈ Bn, y ∈ Bl

(1)

Here wj ∈ R+, j = 1, ..., n are given nonnegative objective
”weights” and variables zj , j = 1, ..., n determine the
”facilities to be served”. By yi, where i = 1, ..., l, we
define the generic decision variables of the problem under
consideration and k ∈ R+ in (1) describes the total amount
of the facilities to be located. Elements aij , where

1 ≥ aij ≥ 0,
∑

i=1,...,l

aij ≥ 1,

are components of the so called ”eligibility matrix”

A :=
(
aij

)i=1,...,l

j=1,...,n

associated with the eligible sites that provide a resilient
covering of the demand points indexed by j = 1, ..., n. Note
that the second index in (1), namely, i = 1, ..., l is related
to the given ”facilities sites”. Finally, the admissible sets
Bn and Bl in the main problem (1) are defined as follows:

Bn := {0, 1}n, Bl := {0, 1}l.
Note that the objective functional J(·) from (1) has a
linear structure. We use the following natural notation
z := (z1, ..., zn)T and y := (y1, ..., yl)

T . The implicit
dependence

J(z(y)) = 〈w, z〉, w := (w1, ..., wn)T

of the objective functional J on the vector y is given
by the corresponding (componentwise) inequalities con-
straints z ≤ AT y in (1). By 〈·, ·〉 we denote here the scalar
product in the corresponding Euclidean space. A vector
pair (z, y) that satisfies all the constraints in (1) is next
called an admissible pair for the main problem (1).

The abstract optimization framework (1) provides a con-
structive and modelling approach for various practically
oriented problems (see e.g., [1,9,11,13,18,22,24]). Follow-
ing [14] we next call the main optimization problem (1)
a Maximal Covering Location Problem (MCLP). Let us
also refer to [24] for a detailed discussion on the applied
interpretation of the MCLP (1). Note that the main MCLP
is formulated under the general (non-binary) assumption
related to the elements aij of the eligibility matrix A. This
corresponds to a suitable modelling approach under incom-
plete information (see e.g., [10] and references therein).
Roughly speaking every selection of an admissible param-
eter aij in (1) has a ”fuzzy” nature (similar to [8]). This
fuzzy characterization of the MCLP under consideration
provide an adequate modelling framework for the RSCMS
(see Section 5).

The mathematical characterization of (1) can evidently be
given in terms of the classic integer programming (see e.,
g. [11,16,19] for mathematical details). Let us note that
(1) posesses an optimal solution (an optimal pair)

(zopt, yopt) ∈ Bn
⊗

Bl,

where

zopt := (zopt1 , ..., zoptn )T , yopt := (yopt
1 , ..., yopt

l )T .

This fact is a direct consequence of the basic results from
[11,16,19]. Our aim is to develop a simple and effective
numerical approach to the sophisticated MCLP (1). We
firstly ”separate” the original optimization problem and
introduce two auxiliary optimization problems. These for-
mal constructions provide a necessary basis for the future
numerical development we propose. The first auxiliary
problem can be formulated as follows

maximize
n∑

j=1

µj

l∑

i=1

aijyi

subject to

{∑l
i=1 yi = k, y ∈ Bl,

µj ∈ [0, 1] ∀j = 1, ..., n

(2)

The second auxiliary problem has the following specific
form:

maximize J(z) :=
n∑

j=1

wjzj

subject to

{
zj ≤ ∑l

i=1 aij ŷi
z ∈ Bn

(3)

where ŷ ∈ Bl is optimal solution of problem (2). The com-
ponents of ŷ are denoted as ŷi, i = 1, ..., l. The existency
of an optimal solution for (2) is a direct consequence of the
results from [11,19]. The same is also true with respect to
the auxiliary problem (3). Let ẑ ∈ Bn, ẑ := (ẑ1, ..., ẑn)T

be an optimal solution to (3). Evidently, problem (3)
coincides with the originally given MCLP (1) in a specific
case of a fixed variable y = ŷ. Let us note that in general
ŷ �= yopt.

The first auxiliary problem, namely, problem (2) is a
usual linear scalarization of the following multiobjective
optimization problem (vector optimization):

maximize {
l∑

i=1

ai1yi, ...,
l∑

i=1

ainyi}

subject to

{∑l
i=1 yi = k,

y ∈ Bl

(4)

Recall that a scalarizing of a multi-objective optimization
problem is an adequate numerical approach, which means
formulating a single-objective optimization problem such
that optimal solutions to the single-objective optimiza-
tion problem are Pareto optimal solutions to the multi-
objective optimization problem. We next assume that the
multipliers µj , j = 1, ..., n in (2) are chosen by such a way
that problems (2) and (4) are equivalent (see e.g., [2,11,19]
for necessary details). In this particular case we call (2) an
adequate scalarizing of (4). Moreover, problems (2) and
(3) have a structure of a so-called Knapsack problem (see
[16] and references therein). Various efficient numerical
algorithms are recently proposed for a generic Knapsack
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MCLP does not constitute a ”universal” solution approach
under assumption of possible process disruptions (techni-
cal faults, maintenance and so on). This is specifically true
with respect to the second sub-problem mentioned above.
We next introduce a suitable analytic extension of the con-
ventional MCLP that includes the possible updates of the
demand allocation for the same location distribution. The
extended modelling approach we propose can be expressed
in the form of a (specific) linear integer program

maximize J(z(y)) :=
n∑

i=1

wjzj

subject to





∑l
i=1 yi = k ∈ N, l > k,

zj ≤ ∑l
i=1 aijyi,

z ∈ Bn, y ∈ Bl

(1)

Here wj ∈ R+, j = 1, ..., n are given nonnegative objective
”weights” and variables zj , j = 1, ..., n determine the
”facilities to be served”. By yi, where i = 1, ..., l, we
define the generic decision variables of the problem under
consideration and k ∈ R+ in (1) describes the total amount
of the facilities to be located. Elements aij , where

1 ≥ aij ≥ 0,
∑

i=1,...,l

aij ≥ 1,

are components of the so called ”eligibility matrix”

A :=
(
aij

)i=1,...,l

j=1,...,n

associated with the eligible sites that provide a resilient
covering of the demand points indexed by j = 1, ..., n. Note
that the second index in (1), namely, i = 1, ..., l is related
to the given ”facilities sites”. Finally, the admissible sets
Bn and Bl in the main problem (1) are defined as follows:

Bn := {0, 1}n, Bl := {0, 1}l.
Note that the objective functional J(·) from (1) has a
linear structure. We use the following natural notation
z := (z1, ..., zn)T and y := (y1, ..., yl)

T . The implicit
dependence

J(z(y)) = 〈w, z〉, w := (w1, ..., wn)T

of the objective functional J on the vector y is given
by the corresponding (componentwise) inequalities con-
straints z ≤ AT y in (1). By 〈·, ·〉 we denote here the scalar
product in the corresponding Euclidean space. A vector
pair (z, y) that satisfies all the constraints in (1) is next
called an admissible pair for the main problem (1).

The abstract optimization framework (1) provides a con-
structive and modelling approach for various practically
oriented problems (see e.g., [1,9,11,13,18,22,24]). Follow-
ing [14] we next call the main optimization problem (1)
a Maximal Covering Location Problem (MCLP). Let us
also refer to [24] for a detailed discussion on the applied
interpretation of the MCLP (1). Note that the main MCLP
is formulated under the general (non-binary) assumption
related to the elements aij of the eligibility matrix A. This
corresponds to a suitable modelling approach under incom-
plete information (see e.g., [10] and references therein).
Roughly speaking every selection of an admissible param-
eter aij in (1) has a ”fuzzy” nature (similar to [8]). This
fuzzy characterization of the MCLP under consideration
provide an adequate modelling framework for the RSCMS
(see Section 5).

The mathematical characterization of (1) can evidently be
given in terms of the classic integer programming (see e.,
g. [11,16,19] for mathematical details). Let us note that
(1) posesses an optimal solution (an optimal pair)

(zopt, yopt) ∈ Bn
⊗

Bl,

where

zopt := (zopt1 , ..., zoptn )T , yopt := (yopt
1 , ..., yopt

l )T .

This fact is a direct consequence of the basic results from
[11,16,19]. Our aim is to develop a simple and effective
numerical approach to the sophisticated MCLP (1). We
firstly ”separate” the original optimization problem and
introduce two auxiliary optimization problems. These for-
mal constructions provide a necessary basis for the future
numerical development we propose. The first auxiliary
problem can be formulated as follows

maximize
n∑

j=1

µj

l∑

i=1

aijyi

subject to

{∑l
i=1 yi = k, y ∈ Bl,

µj ∈ [0, 1] ∀j = 1, ..., n

(2)

The second auxiliary problem has the following specific
form:

maximize J(z) :=
n∑

j=1

wjzj

subject to

{
zj ≤ ∑l

i=1 aij ŷi
z ∈ Bn

(3)

where ŷ ∈ Bl is optimal solution of problem (2). The com-
ponents of ŷ are denoted as ŷi, i = 1, ..., l. The existency
of an optimal solution for (2) is a direct consequence of the
results from [11,19]. The same is also true with respect to
the auxiliary problem (3). Let ẑ ∈ Bn, ẑ := (ẑ1, ..., ẑn)T

be an optimal solution to (3). Evidently, problem (3)
coincides with the originally given MCLP (1) in a specific
case of a fixed variable y = ŷ. Let us note that in general
ŷ �= yopt.

The first auxiliary problem, namely, problem (2) is a
usual linear scalarization of the following multiobjective
optimization problem (vector optimization):

maximize {
l∑

i=1

ai1yi, ...,
l∑

i=1

ainyi}

subject to

{∑l
i=1 yi = k,

y ∈ Bl

(4)

Recall that a scalarizing of a multi-objective optimization
problem is an adequate numerical approach, which means
formulating a single-objective optimization problem such
that optimal solutions to the single-objective optimiza-
tion problem are Pareto optimal solutions to the multi-
objective optimization problem. We next assume that the
multipliers µj , j = 1, ..., n in (2) are chosen by such a way
that problems (2) and (4) are equivalent (see e.g., [2,11,19]
for necessary details). In this particular case we call (2) an
adequate scalarizing of (4). Moreover, problems (2) and
(3) have a structure of a so-called Knapsack problem (see
[16] and references therein). Various efficient numerical
algorithms are recently proposed for a generic Knapsack
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problem. We refer to [16] for a comprehensive overwiev
about the modern implementable numerical approaches to
this basic optimization problem.

3. THE SEPARATION BASED SOLUTION
APPROACH

The relevance and main motivation of the auxiliary opti-
mization problems (2) and (3) introduced in Section 2 can
be stated by the following abstract result.

Theorem 1. Assume (zopt, yopt) is an optimal solution of
(1) and (2) is an adequate scalarizing of (4). Let ŷ be an
optimal solutions of (2) and ẑ be an optimal solution of
the auxiliary problem (3). Then (1) and (3) possess the
same optimal values, that is

J(zopt(yopt)) = J(ẑ). (5)

Moreover, in the case problems (1), (2), and (3) possess
unique solutions we additionally have (zopt, yopt) = (ẑ, ŷ).

Proof: Since
l∑

i=1

ŷi = k, ẑj ≤
l∑

i=1

aij ŷi,

we conclude that (ẑ, ŷ) is an admissible pair for the
original MCLP (1). Taking into account the definition of
an optimal pair for problem (1), we next deduce

J(ẑ(ŷ)) ≤ J(zopt(yopt)). (6)

Let
Γ = Γz

⊗
Γy ⊂ Bn

⊗
Bl

be a solutions set (the set of all optimal solutions) for
problem (1). We also define the solutions sets Γ(2.2) ⊂ Bl

and Γ(2.3) ⊂ Bn of problems (2) and (3), respectively. From
(6) it follows that

Γ(2.3)

⊗
Γ(2.2) ⊂ Γ. (7)

Taking into account the restrictions associated with the
variable y in (1) and (2), we next obtain

Γy ≡ Γ(2.2). (8)

Since (2) is an adequate scalarization of the multi-objective
maximization problem (4), we deduce

zj ≤ max{∑l
i=1 yi = k,

y ∈ Bl

l∑

i=1

aijyi.

This fact implies
Γz ⊂ Γ(2.3). (9)

Inclusions (7), (9) and the basic equivalence (8) now imply
the following crucial equivalence

Γ(2.3)

⊗
Γ(2.2) ≡ Γ. (10)

Taking into account the same form of the objective func-
tionals in (1) and (2.3), we immediately obtain the basic
relation (5). In a specific case of one point sets Γ, Γ(2.3)

and Γ(2.2) the expected relation (zopt, yopt) = (ẑ, ŷ) is a
direct consequence of (10). The proof is completed. �

Theorem 1 makes it possible to separate (equivalently) the
originally given sophisticated problem (1) into two simple

optimization problems. It provides a theoretical basis for
effective numerical approaches to the abstract MCLPs and
to corresponding applications.

We now observe that the first auxiliary optimization
problem, namely, problem (2) has a trivial combinatorial
structure and can be easily solved:

ŷi = 1 if i ∈ Î; ŷi = 0 if i ∈ {1, ..., l} \ Î , (11)

where

Î := {1 ≤ i ≤ l
∣∣ SAi

∈ max
k

{SA1
, ..., SAl

}},

SAi :=

n∑

j=1

µjaij , Ai := (ai1, ..., ain)T .
(12)

Here Ai is a vector of i-row of the eligibility matrix A
and operator maxk determines an array of k-largest num-
bers from the given array. Evidently, the choice (11)-(12)
determines an optimal solution of (2). Roughly speaking
the combinatorial algorithm (11)-(12) assigns the maximal
value ŷi = 1 for all vectors Ai which sum of components
SAi

belongs to the array of k-largest sums of compoents
of all vectors Ai, i = 1, ..., l. It is easy to see that for
the given eligibility matrix A with the specific elements
aij (determined in Section 2) the sum of components SAi

constitutes a specific norm of the given vector Ai. Let us
also note that the total complexity of the combinatorial
algorithm (11)-(12) is equal to

O(l × log k) + O(k)

(see e.g., [16] for details).

Let us denote

c :=

n∑

j=1

l∑

i=1

aij ŷi.

Then the inequality constraints in (3) imply the generic
Knapsack-type constraint with uniform weights

n∑

j=1

zj ≤ c.

We now present a fundamental solvability result for the
second auxiliary optimization problem, namely, the Knap-
sack problem (3).

Theorem 2. The Knapsack problem (3) can be solved in
O(nc) time and O(n + c) space.

The formal proof of Theorem 2 can be forund in [16].

4. LAGRANGE RELAXATION AND
CONSTRUCTIVE NUMERICAL TREATMENT OF

THE ORIGINAL MCLP

Our main analytic results, namely, Theorem 1, the combi-
natorial choice algorithm (11)-(12) and Theorem 2 provide
a theoretic basis for a novel exact solution scheme for the
originally given MCLP (1). Finally we need to define a
suitable and implementable procedure for an effective nu-
merical treatment of (3). This auxiliary optimization prob-
lem, which is NP -hard, has been comprehensively studied
in the last few decades and several exact algorithms for
its solution can be found in the literature (see [16] and
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the references therein). Constructive algorithms for Knap-
sack problems are mainly based on two basic approaches:
branch-and-bound and dynamic programming. Let us also
mention here the celebrated ”combined” approach.

In this paper we apply the well-known Lagrange relaxation
scheme to the second auxiliary problem (problem (3)).
”Relaxing a problem” has various meanings in applied
mathematics, depending on the areas where it is defined,
depending also on what one relaxes (a functional, the
underlying space, etc.). We refer to [2,4-7,12, 21] for
various implementable relaxation techniques. Introducing
the Lagrange function

L(z, λ) :=
n∑

j=1

wjzj −
n∑

j=1

λj

(
zj −

l∑

i=1

aij ŷi
)

associated with the Knapsack problem (3), we next con-
sider the following relaxed problem

maximize L(z, λ)

subject to z ∈ Bn (13)

The relaxed problem (13) does not contain the unpleasant
inequality constraints which are included in the objective
function (3.17) as a penalty term

n∑

j=1

λj

(
zj −

l∑

i=1

aij ŷi
)
.

Recall that all feasible solutions to (3) are also feasible
solutions to (13). The objective value of feasible solutions
to (3) is not larger than the objective value in (13) (see
[16] for the necessary proofs). Thus, the optimal solution
value to the relaxed problem (13) is an upper bound to
the original problem (3) for any vector of nonnegative
multipliers λ := (λ1, ..., λn)T , λj ≥ 0. For a concrete
numerical solution of the relaxed problem (13) we use here
the classic branch-and-bound method (see e.g., [11,16]).
In a branch-and-bound algorithm we are interested in
achieving the tightest upper bound in (13). Hence, we
would like to choose a vector of nonnegative multipliers

λ̂L := (λ̂L
1 , ..., λ̂L

n)T , λ̂L
j ≥ 0

such that (13) is minimized. This evidently leads to the
generic Lagrangian dual problem

minimize L(z, λ)

subject to λ ≥ 0
(14)

It is well-known that the Lagrangian dual problem (14)
yields the least upper bound available from all possible
Lagrangian relaxations. The problem of finding an optimal

vector of multipliers λ̂L ≥ 0 in (14) is in fact a linear
programming problem [11,19]. In a typic branch-and-
bound algorithm one will often be satisfied with a sub-
optimal choice of multipliers λ ≥ 0 if only the bound can
be derived quickly. In this case subgradient optimization
techniques can be applied [19]. The following analytic
result is an immediate consequence of our main Theorem
1 and of the basic properties of the primal-dual system
(13)-(14).

Theorem 3. Let (ẑL, λ̂L) be an optimal solution of the
primal-dual system (13)-(14) associated with the auxiliary
problem (3). Assume that all conditions of Theorem 1 be
satisfied. Then

J(zopt(yopt)) ≤ J(ẑL). (15)

and the obtained inequality (15) constitutes a tightest
upper bound.

We are now ready to formulate a complete algorithm for
an effective numerical treatment of the basic MCLP (1).

Algorithm 1.

I. Given an initial MCLP (1) separate it into two
auxiliary problems (2) and (3);

II. Apply the combinatorial algorithm (11)-(12) and
compute ŷ;

III. Using ŷ, construct the Lagrange function L(z, λ) and
solve the primal-dual system (13)-(14).

The numerical consistency of the proposed Algorithm 1
is established by our main theoretic results, namely, by
Theorem 1 - Theorem 3.

Finally let us note that the Lagrange relaxation scheme
is usually applied to the original problem (1) (see e.g.,
[12,16]). In that case the resulting (relaxed) problem
and the corresponding Lagrangian dual problem possess
a higher complexity in comparison with the proposed
”partial” Lagrange relaxation (13)-(14) of the original
MCLP (1). This is an immediate consequence of the
proposed separation method (Section 3) that reduces the
initial problem (1) to two auxiliary optimization problem
(2)-(3).

5. APPLICATION TO THE OPTIMAL DESIGN OF A
RESILENT SUPPLY CHAIN MANAGEMENT

SYSTEM

This section is devoted to a practical application of the
proposed novel numerical approach to the MCLP (1). We
use the basic MCLP model and optimize a Resilient Supply
Chain for a family of manufacturing plants - warehouses.
Note that the ”resilience” of a Supply Chain Management

Fig. 1. Fuzzy eligibility model

System is modelled here by an eligibility matrix A with the
fuzzy-type components aij (see Section 2). The conceptual
Supply Chain scheme that include l = 8 manufacturing
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the references therein). Constructive algorithms for Knap-
sack problems are mainly based on two basic approaches:
branch-and-bound and dynamic programming. Let us also
mention here the celebrated ”combined” approach.

In this paper we apply the well-known Lagrange relaxation
scheme to the second auxiliary problem (problem (3)).
”Relaxing a problem” has various meanings in applied
mathematics, depending on the areas where it is defined,
depending also on what one relaxes (a functional, the
underlying space, etc.). We refer to [2,4-7,12, 21] for
various implementable relaxation techniques. Introducing
the Lagrange function

L(z, λ) :=
n∑

j=1

wjzj −
n∑

j=1

λj

(
zj −

l∑

i=1

aij ŷi
)

associated with the Knapsack problem (3), we next con-
sider the following relaxed problem

maximize L(z, λ)

subject to z ∈ Bn (13)

The relaxed problem (13) does not contain the unpleasant
inequality constraints which are included in the objective
function (3.17) as a penalty term

n∑

j=1

λj

(
zj −

l∑

i=1

aij ŷi
)
.

Recall that all feasible solutions to (3) are also feasible
solutions to (13). The objective value of feasible solutions
to (3) is not larger than the objective value in (13) (see
[16] for the necessary proofs). Thus, the optimal solution
value to the relaxed problem (13) is an upper bound to
the original problem (3) for any vector of nonnegative
multipliers λ := (λ1, ..., λn)T , λj ≥ 0. For a concrete
numerical solution of the relaxed problem (13) we use here
the classic branch-and-bound method (see e.g., [11,16]).
In a branch-and-bound algorithm we are interested in
achieving the tightest upper bound in (13). Hence, we
would like to choose a vector of nonnegative multipliers

λ̂L := (λ̂L
1 , ..., λ̂L

n)T , λ̂L
j ≥ 0

such that (13) is minimized. This evidently leads to the
generic Lagrangian dual problem

minimize L(z, λ)

subject to λ ≥ 0
(14)

It is well-known that the Lagrangian dual problem (14)
yields the least upper bound available from all possible
Lagrangian relaxations. The problem of finding an optimal

vector of multipliers λ̂L ≥ 0 in (14) is in fact a linear
programming problem [11,19]. In a typic branch-and-
bound algorithm one will often be satisfied with a sub-
optimal choice of multipliers λ ≥ 0 if only the bound can
be derived quickly. In this case subgradient optimization
techniques can be applied [19]. The following analytic
result is an immediate consequence of our main Theorem
1 and of the basic properties of the primal-dual system
(13)-(14).

Theorem 3. Let (ẑL, λ̂L) be an optimal solution of the
primal-dual system (13)-(14) associated with the auxiliary
problem (3). Assume that all conditions of Theorem 1 be
satisfied. Then

J(zopt(yopt)) ≤ J(ẑL). (15)

and the obtained inequality (15) constitutes a tightest
upper bound.

We are now ready to formulate a complete algorithm for
an effective numerical treatment of the basic MCLP (1).

Algorithm 1.

I. Given an initial MCLP (1) separate it into two
auxiliary problems (2) and (3);

II. Apply the combinatorial algorithm (11)-(12) and
compute ŷ;

III. Using ŷ, construct the Lagrange function L(z, λ) and
solve the primal-dual system (13)-(14).

The numerical consistency of the proposed Algorithm 1
is established by our main theoretic results, namely, by
Theorem 1 - Theorem 3.

Finally let us note that the Lagrange relaxation scheme
is usually applied to the original problem (1) (see e.g.,
[12,16]). In that case the resulting (relaxed) problem
and the corresponding Lagrangian dual problem possess
a higher complexity in comparison with the proposed
”partial” Lagrange relaxation (13)-(14) of the original
MCLP (1). This is an immediate consequence of the
proposed separation method (Section 3) that reduces the
initial problem (1) to two auxiliary optimization problem
(2)-(3).

5. APPLICATION TO THE OPTIMAL DESIGN OF A
RESILENT SUPPLY CHAIN MANAGEMENT

SYSTEM

This section is devoted to a practical application of the
proposed novel numerical approach to the MCLP (1). We
use the basic MCLP model and optimize a Resilient Supply
Chain for a family of manufacturing plants - warehouses.
Note that the ”resilience” of a Supply Chain Management

Fig. 1. Fuzzy eligibility model

System is modelled here by an eligibility matrix A with the
fuzzy-type components aij (see Section 2). The conceptual
Supply Chain scheme that include l = 8 manufacturing
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plants and n = 5 warehouses is indicated on Fig. 1.

Here i′ is an index that corresponds to a ”resilient” cover
of demand point. We also assume that aij + ai′j ≥ 1 for
i = 1, ...5 j = 1, ...8. The last condition means that at
least two feasible facilities (warehouse) cover a given de-
mand point (the manufacturing plants). The correspond-
ing (transposed) eligibility matrix A is given as follows:

AT =




0.81286 0.0 0.0 0.62968 0.0
0.25123 0.58108 0.32049 0.89444 0.79300

0.0 0.0 0.64850 0.91921 0.94740
0.54893 0.90309 0.74559 0.50869 0.99279

1.0 0.0 0.0 0.0 0.0
0.77105 0.27081 0.65883 0.60434 0.23595

0.0 0.51569 0.0 0.0 0.57810
0.64741 0.91733 0.60562 0.63874 0.71511




Recall that the objective weights wj ∈ R+, j = 1, ..., n
indicates a priority and are assumed to be equal to

wT = (32.0, 19.0, 41.0, 26.0 37.0 49.0 50.0 11.0)T

Note that the fifth demand point in this example has no
”resilient” character (only one facility covers this point).
We assume that the Supply Chain decision maker is inter-
ested opens k = 2 facilities. Moreover, we also calculate
from (12)

SA1
= 8.06295 SA2

= 5.86033 SA3
= 5.30955

SA4
= 7.47098 SA5

= 6.99921

Application of the basic Algorithm 1 leads to the following
computational results:

zopt = (1, 1, 0, 1, 1, 1, 0, 1)T ,

yopt = (1, 0, 0, 1, 0)T ,
(16)

The corresponding (maximal) value of the objective func-
tional is equal to

J(zopt(yopt)) = max
Problem(1)

J(z(y)) = 174.0

Let us also note that the computed scalarizing multiplier
µ in the auxiliary problem (2) for the given problem data
is equal to

µ = (2.0, 2.0 1.0 2.0 2.0 2.0 1.0 2.0)T .

The practical implementation of the computationall Al-
gorithm 1 was carried out by using the standard Python
package and an author-written program.

For comparison, the given MCLP problem was also solved
by a direct application of the standard CPLEX optimiza-
tion package. We use the concrete problem parameters
given above and obtain the same optimal pair as in (16).
The CPLEX integer programming solver proceeds with 6
MIP simplex iterations and 0 branch-and-bound nodes for
in total 13 binary variables and 9 linear constraints. Let
us finally note that all the customers (except the fifth) are
covered and moreover, could still be covered if one of the
facilities is closed.

6. CONCLUDING REMARKS

In this contribution, we proposed a conceptually new nu-
merical approach to a wide class of Maximal Covering

Location Problems with the fuzzy-type eligibility matri-
ces. This computational algorithm is next applied to the
optimal design of a practically motivated Resilient Sup-
ply Chain Management System. The developed computa-
tional scheme is based on a novel separation approach to
the initially given maximization problem. The separation
scheme we propose makes it possible to reduce the original
sophisticated problem to two Knapsack-type optimization
problems. The first one constitutes a generic linear scalar-
ization of a multiobjective optimization problem and the
second auxiliary problem is a simple version of the classic
Knapsack formulation. Application of the conventional
Lagrange relaxation in combination with a specific com-
binatorial algorithm leads to an implementable algorithm
for the given Maximal Covering Location Problem as well
as for the optimal design of a Resilient Supply Chain.

Theoretical and computational methodologies we present
in this contribution can be applied to various general-
izations and extensions of the basic MCLP and also to
several optimization problems associated with the RSCMS
design. One can combine the elaborated separation scheme
with the conventional branch-and-bound method, with
the celebrated dynamic programming approach or/and
with an alternative exact or heuristic numerical algorithm.
Let us finally note that we discussed here only theoretic
aspects of the newly elaborated approach and presented
the corresponding conceptual solution procedure. The ba-
sic methodology we developed needs a comprehensively
numerical examination that includes solutions of several
MCLPs and simulations of the corresponding optimal
RSCMSs.
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Abstract. Our paper discusses a novel computational approach to the extended
Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of
the generic MCLP and develop the necessary theoretical and numerical aspects of the
proposed Separation Method (SM). A specific structure of the originally given MCLP
makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent
separation we propose reduces essentially the complexity of the resulting computational
algorithms. This algorithm also incorporates a conventional relaxation technique and
the scalarizing method applied to an auxiliary multiobjective optimization problem.
The proposed solution methodology is next applied to Supply Chain optimization in
the presence of incomplete information. We study two illustrative examples and give a
rigorous analysis of the obtained results.

Keywords: MCLP, integer optimization, numerical optimization

1. Introduction

Optimization of modern technological processes and the corresponding computer
oriented methods are nowadays a usual and efficient approach to the practical de-
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velopment of several engineering applications (see e.g., [1,5-7,9,10,11,15,18,23]).
In our contribution we study an extended MCLP model with an incomplete
information and propose a relative simple approach to the effective numerical
treatment of this problem. The obtained theoretic and computational results
are next applied to the resilient Supply Chain Management System Optimiza-
tion. The requested optimal design of an optimal management operation can
be formalized as a specific MCLP [10]. In that case the information incomplete-
ness mentioned above can be adequately described by an eligibility matrix with
the fuzzy structure and the systems ”resilience” is related to this incomplete
modelling framework.

Let us recall that the conventional and extended MCLP formulations con-
stitute a family of challenging optimization problems with numerous practical
applications. It has a decisive role in the success of a Supply Chain management,
with several applications including location of industrial plants, landfills, hubs,
cross-docks, etc (see e.g., [1,3,8-10,12-15,18,20,22,24]). A well-known MCLP
and the related decision making involve the delivery of a manufactured prod-
uct to the end customer or/and to a warehouse. In a classical MCLP, one
seeks the location of a number of facilities on a network in such a way that
the covered ”population” is maximized [14,24]. MCLP was first introduced by
Church and ReVelle [14] on a network, and since then, several extensions to
the original problem have been made. A variety of numerical approaches have
been proposed to the practical treatment of distinct MCLPs. Recently several
heuristical methods are actively used in the practical treatment of the MCLP
based models. We refer to [8-10,12-15,18,20,22] for some effective heuristic and
metaheuristic algorithms and for further references. Note that heuristics and
metaheuristics have usually been employed in order to solve large size MCLPs
(see e.g., [3,13,18,20]). A recent interest to MCLPs has arisen out the uncer-
tainty of model parameters, such as demands or/and locations of demand nodes
[9,10,24]. The solution procedure (Separation Method) we propose is generally
based on an exact optimization procedure. However it also can incorporate some
heuristic procedures for solving the obtained auxiliary problems.

This paper is devoted to a further theoretic and numerical development of
a newly elaborated solution method for the MCLPs, namely, to the so called
Separation Method (see [7]). The optimization approach we follow includes an
equivalent transformation (separation) of the original MCLP and solution of two
auxiliary Knapsack-type problems (see e.g., [16] and references therein). The
proposed SM reduces the complexity of the original problem. Moreover, one
can apply various methods to the resulting auxiliary problems. In this paper
we use a usual relaxation scheme for the purpose of a concrete computation
[12,16]. We also apply the standard scalarizing of an intermediate multiobjec-
tive optimization problem we obtain. And, it should be noted already at this
point that the MCLP based optimization approach we propose can be effectively
implemented (at the prototype stage) in a concrete optimal design of a decision
or management system. Concretely, this SM involved approach is applied in
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our paper to the optimal design of a resilient Supply Chain scheme for a typical
manufactures - customers delivery. Finally note that SM we propose in fact
involves a suitable (equivalent) decomposition of an initially given MCLP. This
fact, namely, the consideration of two resulting auxiliary problems makes it also
possible to extend this method to some applied large-scale MCLP (see e.g., [3]).

The remainder of our paper is organized as follows: Section 2 contains an
abstract problem formulation and some necessary theoretical concepts and facts.
In Section 3 we develop a theoretic basis of the SM. This section also includes
a necessary characterization of the obtained auxiliary problems. Section 4 dis-
cusses the appropriate numerical schemes in the context of the the initially given
and auxiliary optimization problems. We use our main theoretic results and fi-
nally propose an implementable and well-determined algorithm for an effective
numerical treatment of the originally given MCLP. This algorithm also incor-
porates the conventional relaxation technique. Section 5 contains two computa-
tional examples of an optimal resilient Supply Chain design. These practically
oriented examples illustrate the implementability of the resulting computational
algorithms and usability of the proposed solution procedure. Section 6 summa-
rizes our contribution.

2. Problem formulation and preliminaries

We start by introducing the main optimization problem with a fuzzy structure.
The MCLP we study has the following form:

maximize J(z(y)) :=
n∑

j=1

wjzj

subject to





∑l
i=1 yi = k ∈ N, l > k,

zj ≤∑l
i=1 aijyi,

z ∈ Bn, y ∈ Bl

(1)

Here wj ∈ R+, j = 1, ..., n are given nonnegative objective ”weights” and vari-
ables zj , j = 1, ..., n determine the ”facilities to be served”. By yi, where
i = 1, ..., l, we define the generic decision variables of the problem under con-
sideration and k ∈ N in (1) describes the total amount of the facilities to be
located. Elements aij , where

1 ≥ aij ≥ 0,
∑

i=1,...,l

aij ≥ 1,

are components of the so called ”eligibility matrix”

A :=
(
aij
)i=1,...,l

j=1,...,n

associated with the eligible sites that provide a covering of the demand points
indexed by j = 1, ..., n. The admissible values of the elements of the matrix A are
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”distributed” on the interval [0, 1]. Note that the second index in (1), namely,
i = 1, ..., l is related to the given ”facilities sites”. Finally, the admissible sets
Bn and Bl in the main problem (1) are defined as follows:

Bn := {0, 1}n, Bl := {0, 1}l.

Note that the objective functional J(·) from (1) has a linear structure. We use
the following vectorial notation

z := (z1, ..., zn)T , y := (y1, ..., yl)
T .

The implicit dependence

J(z(y)) = ⟨w, z⟩,
w := (w1, ..., wn)T

of the objective functional J on the vector y is given by the corresponding
(componentwise) inequalities constraints

z ≤ AT y

in (1). By ⟨·, ·⟩ we denote here the scalar product in the corresponding Euclidean
space. A vector pair (z, y) that satisfies all the constraints in (1) is next called
an admissible pair for the main problem (1). Note that the objective functional
does not depend explicitly on the problem variable y.

The abstract optimization framework (1) provides a constructive and mod-
elling approach for various practically oriented problems (see e.g., [1,9,11,13,18]).
Following [14] we next call the main optimization problem (1) a Maximal Cover-
ing Location Problem (MCLP). Let us also refer to [24] for a detailed discussion
on the applied interpretation of the MCLP (1). The main problem (1) is for-
mulated under the general (non-binary) assumption related to the elements aij
of the eligibility matrix A. This corresponds to a suitable modelling approach
under incomplete information (see e.g., [10] and references therein). Roughly
speaking every value of an admissible parameter aij in (1) has a fuzzy nature
(similar to [8]). This fuzzy MCLP under consideration provides an adequate for-
mal framework for the resilient Supply Chain Optimization (see Section 5). Let
us also observe that the ”resilience” concept is understood here as a kind of ro-
bustness of the optimization approach we develop. This robustness is considered
with respect to a possible incomplete information about the main mathemati-
cal model (robustness with respect to uncertainties in the modelling approach).
Note that the possible incompleteness of the mathematical model mentioned
above and the robustness requirement for a selected optimization approach con-
stitute the common (and adequate) attributes for a realistic Supply Chain op-
timal design.
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The mathematical characterization of (1) can evidently be given in terms of
the classic integer programming (see e., g. [11,16,19] for mathematical details).
Let us note that (1) possesses an optimal solution (an optimal pair)

(zopt, yopt) ∈ Bn ⊗ Bl,
where

zopt := (zopt1 , ..., zoptn )T ,

yopt := (yopt1 , ..., yoptl )T .

This fact is a direct consequence of the basic results from [11,16,19]. Let us
also note that the conventional problem (1) can also be easily extended to the
”multi-valued” version, where the admissible sets Bn and Bl are replaced by

B̃n := {0, 1, ..., Nn}n,
B̃l := {0, 1, ..., Nl}l,

where Nn, Nl ∈ N.
Our aim is to develop a simple and effective numerical approach to the

sophisticated MCLP (1). Facility location has a decisive role in success of Supply
Chains with applications in many production and service facilities. It has been
a focal center of interest in the last century among practitioners and scholars.
For a detailed introduction to location models, one may refer to [15,23,24].
In general the literature of covering models is too diverse to be exhaustively
studied in this paper. Although some of known publications in the literature of
MCLP are included in this paper, one may refer to valuable reviews for further
information.

3. Analytical foundations of the separation method

We next separate the originally given MCLP (1) and introduce two auxiliary
optimization problems. These formal constructions provide a necessary basis
for the future numerical development. The first optimization problem can be
formulated as follows

maximize

n∑

j=1

µj

l∑

i=1

aijyi

subject to

{∑l
i=1 yi = k, y ∈ Bl,

µj ∈ [0, 1] ∀j = 1, ..., n

(2)

The second auxiliary problem has the following specific form:

maximize J(z) :=

n∑

j=1

wjzj

subject to

{
zj ≤∑l

i=1 aij ŷi

z ∈ Bn

(3)
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where ŷ ∈ Bl is optimal solution of problem (2). The components of ŷ are
denoted as ŷi, i = 1, ..., l. The existence of an optimal solution for (2) is a direct
consequence of the results from [11,19]. The same is also true with respect to
the auxiliary problem (3). Let

ẑ ∈ Bn, ẑ := (ẑ1, ..., ẑn)T

be an optimal solution to (3). Evidently, problem (3) coincides with the origi-
nally given MCLP (1) in a specific case of a fixed variable y = ŷ. Let us note
that in general ŷ ̸= yopt.

The first auxiliary problem, namely, problem (2) can be interpreted as a
usual linear scalarization of the following multiobjective optimization problem
(vector optimization):

maximize {
l∑

i=1

ai1yi, ...,

l∑

i=1

ainyi}

subject to

{∑l
i=1 yi = k,

y ∈ Bl

(4)

Recall that a scalarizing of a multi-objective optimization problem is an ad-
equate numerical approach, which means formulating a single-objective opti-
mization problem such that optimal solutions to the single-objective optimiza-
tion problem are Pareto optimal solutions to the multi-objective optimization
problem. We next assume that the multipliers

µj , j = 1, ..., n

in (2) are chosen by such a way that problems (2) and (4) are equivalent (see e.g.,
[2,11,19] for necessary details). In this particular case we call (2) an adequate
scalarizing of (4). We discuss shortly the adequate scalizing in Section 4.3.

It is easy to see that problems (2) and (3) have a structure of a so-called
Knapsack problem (see [16] and references therein). Various efficient numerical
algorithms are recently proposed for a generic Knapsack problem. We refer to
[16] for a comprehensive overview about the modern implementable numerical
approaches to this basic optimization problem.

The relevance and the main motivation of the auxiliary optimization prob-
lems (2) and (3) introduced can be stated by the following abstract result.

Theorem 3.1. Assume (zopt, yopt) is an optimal solution of (1) and (2) is an
adequate scalarizing of (4). Let ŷ be an optimal solutions of (2) and ẑ be an
optimal solution of the auxiliary problem (3). Then (1) and (3) possess the
same optimal values, that is

(5) J(zopt(yopt)) = J(ẑ).

Moreover, in the case problems (1), (2), and (3) possess unique solutions we
additionally have

(zopt, yopt) = (ẑ, ŷ).
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Proof. Since
l∑

i=1

ŷi = k,

and

ẑj ≤
l∑

i=1

aij ŷi,

we conclude that (ẑ, ŷ) is an admissible pair for the original MCLP (1). Taking
into account the definition of an optimal pair for problem (1), we next deduce

(6) J(ẑ(ŷ)) ≤ J(zopt(yopt)).

Let
Γ = Γz ⊗ Γy ⊂ Bn ⊗ Bl

be a solutions set (the set of all optimal solutions) for problem (1). We also
define the solutions sets

Γ(2) ⊂ Bl, Γ(3) ⊂ Bn

of problems (2) and (3), respectively. From (6) it follows that

(7) Γ(3) ⊗ Γ(2) ⊂ Γ.

Taking into account the restrictions associated with the variable y in (1) and
(2), we next obtain

(8) Γy ≡ Γ(2).

Since (2) is an adequate scalarization of the multi-objective maximization prob-
lem (4), we deduce

zj ≤ max∑l
i=1 yi=k,

y∈Bl

l∑

i=1

aijyi.

This fact implies

(9) Γz ⊂ Γ(3).

Inclusions (7), (9) and the basic equivalence (8) now imply the following crucial
equivalence

(10) Γ(3) ⊗ Γ(2) ≡ Γ.

Taking into account the same form of the objective functionals in (1) and (2.3),
we immediately obtain the basic relation (5). In a specific case of the one point
sets Γ, Γ(3) and Γ(2) the expected relation

(zopt, yopt) = (ẑ, ŷ)

is a direct consequence of (10). The proof is completed.
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Theorem 3.1 makes it possible to separate (decompose equivalently) the orig-
inal sophisticated problem (1) into two relative simple optimization problems.
It provides a theoretical basis for effective numerical approaches to the abstract
MCLPs and to possible applications.

4. Numerical analysis of the auxiliary problems

This section is dedicated to the numerical aspects related to the two optimization
problems obtained in Section 3. Our aim is to develop a resulting self-closed
algorithm for an effective numerical treatment of the original MCLP (1).

4.1 A combinatorial algorithm for the first auxiliary problem

We first observe that the auxiliary optimization problem (2) has a simple com-
binatorial structure. It can be easily solved using the following natural scheme:

ŷi = 1 if i ∈ Î;

ŷi = 0 if i ∈ {1, ..., l} \ Î
(11)

where

Î := {1 ≤ i ≤ l
∣∣ SAi ∈ max

k
{SA1 , ..., SAl

}},

SAi :=

n∑

j=1

µjaij ,

Ai := (ai1, ..., ain)T .

(12)

Here Ai is a vector of i-row of the eligibility matrix A and operator maxk de-
termines an array of k-largest numbers from the given array. Evidently, the
choice (11)-(12) determines an optimal solution of (2). Roughly speaking the
combinatorial algorithm (11)-(12) assigns the maximal value ŷi = 1 for all vec-
tors Ai which sum of components SAi belongs to the array of k-largest sums of
components of all vectors

Ai, i = 1, ..., l.

It is easy to see that for the given eligibility matrix A with the specific ele-
ments aij (determined in Section 2) the sum of components SAi constitutes a
specific norm of the given vector Ai. The total complexity of the combinatorial
algorithm (11)-(12) can be easily calculated and is equal to

O(l × log k) +O(k).

We refer to [16] for the necessary details.
Let us denote

c :=

n∑

j=1

l∑

i=1

aij ŷi.
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Then the inequality constraints in (3) imply the generic Knapsack-type con-
straint with uniform weights

n∑

j=1

zj ≤ c.

We now present a fundamental solvability result for the second auxiliary opti-
mization problem, namely, the Knapsack problem (3).

Theorem 4.1. The Knapsack problem (3) can be solved in O(nc) time and

O(n+ c)

space.

The formal proof of Theorem 4.1 can be found in [16].

4.2 A relaxation based approach and the resulting computational
scheme

The theoretic and numerical results obtained above, namely, Theorem 1 and the
combinatorial choice algorithm (11)-(12) provide a theoretic basis for a novel ex-
act solution method for the originally given MCLP (1). We now need to establish
an implementable solution procedure for the effective numerical treatment of the
second auxiliary problem (3) from the obtained decomposition (2)-(2.3). This
optimization problem, which is NP -hard, has been comprehensively studied in
the last few decades and several exact algorithms for its solution can be found in
the literature (see [16] and the references therein). Constructive algorithms for
this Knapsack problems are mainly based on two basic numerical approaches:
branch-and-bound and dynamic programming. Let us also mention here the
corresponding combined approach.

In this paper we firstly consider the well-known Lagrange relaxation scheme
in the context of the second auxiliary problem (problem (3)). ”Relaxing a prob-
lem” has various meanings in applied mathematics, depending on the areas
where it is defined, depending also on what one relaxes (a functional, the un-
derlying space, etc.). We refer to [2,4-7,12, 21] for various relaxation techniques
in the modern optimization. Introducing the Lagrange function

L(z, λ) :=
n∑

j=1

wjzj −
n∑

j=1

λj
(
zj −

l∑

i=1

aij ŷi
)

associated with the Knapsack problem (3), we obtain the following relaxed prob-
lem

maximize L(z, λ)

subject to z ∈ Bn(13)
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The relaxed problem (13) does not contain the originally given unpleasant
inequality constraints. These constraints are now included into the objective
function L(z, λ) from (13) as a penalty term

n∑

j=1

λj
(
zj −

l∑

i=1

aij ŷi
)
.

Recall that all feasible solutions to (3) are also feasible solutions to (13). The
objective value of feasible solutions to (3) is not larger than the objective value
in (13) (see [16] for the necessary proofs). Thus, the optimal solution value to
the relaxed problem (13) is an upper bound to the original problem (3) for any
vector of nonnegative Lagrange multipliers

λ := (λ1, ..., λn)T ,

λj ≥ 0, j = 1, ..., n.

For a concrete numerical solution of the relaxed problem (13) we use here the
classic branch-and-bound method (see e.g., [11,16]). In a branch-and-bound
algorithm we are interested in achieving the tightest upper bound in (13). Hence,
we would like to choose a vector of nonnegative multipliers

λ̂L := (λ̂L
1 , ..., λ̂

L
n)T ,

λ̂L
j ≥ 0, j = 1, ..., n

such that (13) is minimized. This evidently leads to the generic Lagrangian dual
problem

minimize L(z, λ)

subject to λ ≥ 0
(14)

It is well-known that the Lagrangian dual problem (14) yields the least upper
bound available from all possible Lagrangian relaxations. The problem of finding
an optimal vector of multipliers λ̂L ≥ 0 in (14) is in fact a linear programming
problem [11,19]. In a typical branch-and-bound algorithm one will often be
satisfied with a sub-optimal choice of multipliers λ ≥ 0 if only the bound can
be derived quickly. In this case sub-gradient optimization techniques can be
applied [19]. The following analytic result is an immediate consequence of our
main Theorem 1 and of the basic properties of the primal-dual system (13)-(14).

Theorem 4.2. Let (ẑL, λ̂L) be an optimal solution of the primal-dual system
(13)-(14) associated with the auxiliary problem (3). Assume that all conditions
of Theorem 1 be satisfied. Then

(15) J(zopt(yopt)) ≤ J(ẑL).

The obtained estimation (15) constitutes a tightest upper bound for the optimal
value J(zopt(yopt)).



A SEPARATION METHOD FOR MAXIMAL COVERING LOCATION PROBLEMS ... 663

We are now ready to formulate a complete (conceptual) algorithm for an
effective numerical treatment of the basic MCLP (1).

Algorithm 1.

I. Given an initial MCLP (1) separate it into two auxiliary problems (2) and
(3);

II. Apply the combinatorial algorithm (11)-(12) and compute ŷ;

III. Using ŷ, construct the Lagrange function L(z, λ) and solve the primal-dual
system (13)-(14).

The numerical consistency of the proposed Algorithm 1 is an immediate
consequence of the obtained main theoretic results, namely, of Theorem 3.1 and
Theorem 4.2. Recall that the Lagrange relaxation scheme is usually applied to
the original MCLP (1) (see e.g., [12,16]). In that case the resulting (relaxed)
problem and the corresponding Lagrangian dual problem possess a higher com-
plexity in comparison with the proposed ”partial” Lagrange relaxation (13)-(14)
associated with the original MCLP (1). This is a simple consequence of the pro-
posed SM that reduces the initial problem (1) to two (more simple) auxiliary
optimization problem (2)-(3). This fact makes it possible to apply the proposed
separation methodology to the large-scale MCLPs that are important and re-
alistic mathematical models for many practically oriented (optimal) decision
making systems (see e.g., [7,9,10,14,15,18,20,22,23,24]).

4.3 A remark on the adequate scalarizing procedure

Let us now make a short remark related to the scalarizing procedure used above
(see Section 3, problems (2)-(4)).

It can be shown analytically that the values SAi in (12) depend on the
multipliers vector µ. This is a consequence of the inclusion (9). Recall that (9)
constitutes a useful relation of the SM and for the resulting optimization strategy
we propose. Since the obtained multiobjective maximation problem (5) has a
linear structure, an adequate scalarizing makes it possible to determine every
”non-dominant” points (see [11,19] for mathematical details).

On the other hand, a possible ”non-adequate” selection of µ geometrically
implies a significant ”cutting” (restriction) of the feasible region for problem
(3). This feasible region restriction can finally eliminate a true optimal solu-
tion. Recall that a scalarizing implemented in the objective function from (2)
evidently determines the resulting geometry associated with the basic problem
(3). On the other side the geometrical properties of a non-adequately scalarized
problem can violate the conceptual condition (9).
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5. Optimization of the resilient supply chain management system

This section is devoted to applications of the proposed SM to an optimal resilient
Supply Chain Management for a system of manufacturing plants - warehouses.
Note that the ”resilience” of a Supply Chain Management System is modelled
here by a fuzzy-type eligibility matrix A (see Section 2). We use here the
notation from Section 4 and denote by Ai a vector of i-row of the eligibility
matrix A (i = 1, ..., l) such that

A = (AT
1 ...AT

l )T .

Let us firstly point the common applied meaning of the variables and param-
eters from the general MCLP (1) in the context of the resilient Supply Chain
Management system. The binary variables

(z, y) ∈ Bn ⊗ Bl

constitute the main ”decision variables” of the problem under consideration.
The vector of weights w can be interpreted as a rentability of the final prod-
uct. Therefore, the maximization of the cost functional J(·) in (1) expresses
the maximization of the total profit (total income) generated by the designed
Supply Chain system. The complete ”decision resource” associated with the
decision variable (vector) y is restricted in (1) by a constant (parameter) k ∈ N.
The eligibility matrix ”A” is in fact a useful linear modelling framework that es-
tablishes the natural relation between the ”producer” decision and ”recipient”.
This relation is formally given by the corresponding elements aij of the matrix
A. Our aim now is to apply the developed SM to two practically oriented exam-
ples of the optimal Supply Chain Management design in a classic manufactures
- warehouses system.

Example 5.1. The simple Supply Chain system that include n = 8 manufac-
turing plants and l = 5 warehouses is indicated on Fig. 1.

We also assume that

aij + ai′j ≥ 1, i = 1, ...5 j = 1, ...8.

Here i′ is an index that corresponds to a resilient cover of a demand point.
The last condition means that at least two feasible facilities (warehouse) cover
a given demand point (the manufacturing plants). The corresponding eligibility
matrix A is given as follows:

AT =




0.81286 0.0 0.0 0.62968 0.0
0.25123 0.58108 0.32049 0.89444 0.79300

0.0 0.0 0.64850 0.91921 0.94740
0.54893 0.90309 0.74559 0.50869 0.99279

1.0 0.0 0.0 0.0 0.0
0.77105 0.27081 0.65883 0.60434 0.23595

0.0 0.51569 0.0 0.0 0.57810
0.64741 0.91733 0.60562 0.63874 0.71511



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Figure 1: Fuzzy eligibility model

The objective weights

wj ∈ R+, j = 1, ..., 8

indicate the service priority and are selected in this example as follows

w = (32.0, 19.0, 41.0, 26.0 37.0 49.0 50.0 11.0)T .

Note that the fifth demand point in this example has no ”resilient” character
(only one facility covers this point). We assume that the Supply Chain decision
maker is interested opens k = 2 facilities. That means

5∑

i=1

yi = 2.

Moreover, we also define the necessary row vectors (see Section 3) for the com-
binatorial algorithm (11)-(12):

SA1 = 8.06295 SA2 = 5.86033
SA3 = 5.30955 SA4 = 7.47098
SA5 = 6.99921

Application of the basic Algorithm 1 leads to the following computational re-
sults:

zopt = (1, 1, 0, 1, 1, 1, 0, 1)T ,

yopt = (1, 0, 0, 1, 0)T ,
(16)
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The corresponding (maximal) value of the objective functional is equal to

J(zopt(yopt)) = max
Problem(1)

J(z(y)) = 174.0

Let us also note that the computed scalarizing multiplier µ in the auxiliary
problem (2) for the given problem data is equal to

µ = (2.0, 2.0, 1.0, 2.0, 2.0, 2.0, 1.0, 2.0)T .

The practical implementation of Algorithm 1 was carried out by using the stan-
dard Python package and an author-written program.

For comparison, the given MCLP problem was also solved by a direct ap-
plication of the standard CPLEX optimization package. We use the concrete
problem parameters given above and obtain the same optimal pair as in (16).
The CPLEX integer programming solver proceeds with 6 MIP simplex iter-
ations and 0 branch-and-bound nodes for in total 13 binary variables and 9
linear constraints.

Example 5.2. We now consider a formal extension of the previous example
(for a double dimension) and put n = 16, l = 10, k = 5. Let

w = (29.0, 37.0, 22.0, 42.0, 26.0, 14.0, 27.0, 30.0,

46.0, 16.0, 10.0, 36.0, 33.0, 39.0, 46.0, 49.0)T .

The eligibility matrix A is given by rows:

A1 = (0.846109459436, 0.0, 0.0, 0.582693667799, 0.964574511054, 0.798899459366, 0.0, 0.0, 1.0,

0.300320432977, 0.997688107849, 0.3335795069, 0.49602683501, 1.0, 0.0, 0.374671961499),T

A2 = (0.0, 1.0, 0.0, 0.0, 0.741552391071, 0.537788748272, 0.883796533814, 0.585368404373, 0.0,

0.860903890172, 0.958028639759, 0.0, 0.186896812387, 0.0, 0.968601622008, 0.579580096602)T ,

A3 = (0.407084305512, 0.0, 0.565187029512, 0.0, 0.420858280659, 0.361836079442, 0.472471488805,

0.0, 0.0, 0.696525107652, 0.436819747759, 0.0, 0.587300759229, 0.0, 0.347864951313, 0.0)T ,

A4 = (0.208102698902, 0.0, 0.0, 0.0, 0.0, 0.346461956794, 0.0, 0.0, 0.0, 0.768124612788,

0.413970925056, 0.0, 0.97348389961, 0.0, 0.0, 0.0)T ,

A5 = (0.0, 0.0, 0.965589029405, 0.0, 0.0, 0.893792904298, 0.0, 0.723969499937, 0.0,

0.562381237935, 0.78216104002, 0.557958082269, 0.671624833192, 0.0, 0.601221801206, 0.0)T ,

A6 = (0.0, 0.0, 0.0, 0.7732353822, 0.0, 0.930557571029, 0.0, 0.427721730484, 0.0,

0.818424694417, 0.795450242494, 0.314453291276, 0.645666417485, 0.0, 0.0, 0.0)T ,
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A7 = (0.0, 0.0, 0.0, 0.71613857057, 0.0, 0.573866657173, 0.0, 0.692538237821, 0.0,

0.296797567788, 0.306871729419, 0.334127066948, 0.0, 0.0, 0.0, 0.976783604764)T ,

A8 = (0.448086601628, 0.0, 0.888380378484, 0.576276602931, 0.939065250623, 0.0, 0.0,

0.773234003255, 0.0, 0.414398315721, 0.203669220313, 0.35600682894, 0.523619957827,

0.0, 0.0, 0.527029464076)T ,

A9 = (0.964964029806, 0.0, 0.0, 0.562565185744, 0.0, 0.0, 0.0, 0.0, 0.0, 0.773260049125,

0.468988424786, 0.0, 0.0, 0.0, 0.0, 0.794463270734)T ,

A10 = (0.0, 0.0, 0.0, 0.545222010668, 0.0, 0.0, 0.536645142919, 0.212898303253, 0.0,

0.197891148706, 0.471120100438, 0.0, 0.0, 0.0, 0.0, 0.0)T .

The basic Algorithm 1 was applied to this example. We obtain the following
optimal solution:

zopt = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

yopt = (1, 1, 1, 0, 1, 0, 0, 1, 0, 0)T .

The obtained scalarizing multiplier µ in the auxiliary problem (2) for the given
problem data is equal to

µ = (2.0, 2.0, 4.0, 4.0, 2.0, 0.0, 8.0, 2.0, 1.0, 2.0, 6.0, 1.0, 0.0,

1.0, 1.0, 1.0)T .

Finally, the calculated optimal value of the objective functional is equal to

J(zopt(yopt)) = max
Problem(1)

J(z(y)) = 502.

Let us note that the successful application of the proposed computationalalgo-
rithm to the above high-dimensional problem indicates a possible usability of
this approach in the effective solution procedures of large-scale MCLPs.

Finally let us note that the CPLEX based comparatively analysis and the
computational results obtained in Example 5.1 and Example 5.2 illustrate the
realisability and effectiveness of the Separation Method developed in our paper.

6. Conclusion

In this contribution, we proposed a conceptually new numerical approach to a
wide class of Maximal Covering Location Problems with the fuzzy-type eligi-
bility matrices. This computational algorithm is next applied to the optimal
design of a practically motivated Resilient Supply Chain Management System.
The developed computational scheme is based on a novel separation approach to
the initially given maximization problem. The SM we propose makes it possible
to reduce the original sophisticated problem to two Knapsack-type optimization
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problems. The first one constitutes a generic linear scalarization of a multi-
objective optimization problem and the second auxiliary problem is a version
of the classic Knapsack formulation. Application of the conventional Lagrange
relaxation in combination with a specific combinatorial algorithm leads to an
implementable algorithm for the given fuzzy-type Maximal Covering Location
Problem.

Theoretical and computational methodologies we present in this contribu-
tion can be applied to various generalizations of the basic MCLP. One can com-
bine the elaborated separation scheme with the conventional branch-and-bound
method, with the celebrated dynamic programming approach or/and with an
alternative exact or heuristic numerical algorithm. Let us finally note that we
discussed here only main theoretic aspects of the newly elaborated approach and
presented the corresponding conceptual solution procedure. The basic method-
ology we developed needs further comprehensively numerical examinations that
includes solutions of several MCLPs.
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CHAPTER 3

Paper on Dynamic Model

This submitted paper [41] introduce a switched dynamic structure to a

specific class of Maximal Covering Location Problems, namely DCMLP, and

propose a newly developed computational optimization approach for it. It

dues to the complexity of the switched-type dynamic constraints, the “gene-

ralization” of Separation Method (SM) mentioned below constitutes a cha-

llenging theoretic and computational problem. Most of the results obtained

for the MCLP address the “static” case where an optimal decision is deter-

mined on a fixed time-period. The SM uses a generic geometrical structure

of the constraints under consideration makes it possible to separate the origi-

nally given dynamic optimization problem and reduce it to a specific family

of relative simple auxiliary problems. The generalized (SM) for the DMCLP

with a switched structure leads to a computational solution scheme. This

extension constitutes a conceptually new solution approach and includes a

necessary formal characterization of the resulting optimization problems ob-

tained during the proposed separation procedure, and the computational as-

pects. The proposed SM based algorithm is applied to a concrete application

of the proposed extension of the classic MCLP, namely, the dynamic version

of the SM to a problem from the telecommunication engineering, as well as

to find an optimal design of a (dynamic) mobile network configuration.
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Department of Basic Science,
Universidad de Medellı́n, Medellı́n, Colombia

ERIK I. VERRIEST

School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA

STEFAN W. PICKL

Department of Computer Science,
Universität der Bundeswehr München, München, Germany

(Communicated by the associate editor name)

ABSTRACT. This paper extends a newly developed computational optimization approach
to a specific class of Maximal Covering Location Problems (MCLPs) with a switched
dynamic structure. Most of the results obtained for the conventional MCLP address the
”static” case where an optimal decision is determined on a fixed time-period. In our con-
tribution we consider a dynamic MCLP based optimal decision making and propose an
effective computational method for the numerical treatment of the switched-type Dynamic
Maximal Covering Location Problem (DMCLP). A generic geometrical structure of the
constraints under consideration makes it possible to separate the originally given dynamic
optimization problem and reduce it to a specific family of relative simple auxiliary prob-
lems. The generalized Separation Method (SM) for the DMCLP with a switched structure
finally leads to a computational solution scheme. The resulting numerical algorithm also
includes the classic Lagrange relaxation. We present a rigorous formal analysis of the DM-
CLP optimization methodology and also discuss computational aspects. The proposed SM
based algorithm is finally applied to a practically oriented example, namely, to an optimal
design of a (dynamic) mobile network configuration.

1. Introduction. Applications of diverse methods from the modern Mathematical Opti-
mization Theory and the corresponding numerical techniques are nowadays a usual and
efficient approach to the development of engineering applications (see e.g., [2, 3, 4, 5, 7,
10, 11, 23, 26, 31, 32]). Optimal facility location methodology, amongst others, plays an
important role in a success of Supply Chains and provides an important analytic tool for
many real-world manufacturing and service problems [6, 8, 14, 16, 18, 20, 22, 25, 30, 34].
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Let us recall that the conventional Maximal Covering Location Problem (MCLP) gives
an optimal solution to cover a set of demands such that an objective is to be maximized.
The basic MCLP was introduced by Church and ReVelle [14] and thereafter numerous
practically important applications, theoretical and computational extensions to the classi-
cal MCLP have been developed. Let us mention here some known applications of the
conventional MCLP for optimal location of industrial plants, landfills, hubs, cross-docks,
networks, etc (see e.g., [8, 9, 13, 16, 17, 18, 19, 20, 22, 25, 29, 30, 34]). We also refer to
[6] and references therein.

In our contribution, we propose a switched-type dynamic extension of the MCLP model
with an incomplete information. We study a specific MCLP-type optimization problem
with dynamic constraints. These constraints have a switched structure (depend on the
switching time intervals) for some given switching times. The incomplete information of
the Dynamic Maximal Covering Location Problem (DMCLP) under consideration is mod-
elled by including the fuzzy-type eligibility matrices into the problem formulation. These
two conceptual modifications of the generic MCLP involve more usability of the resulting
DMCLP at the modelling stage and make it possible to incorporate the ”resilience” or (and)
”fuzzy” properties into the modelling approach. We give a self-closed and mathematically
rigorous introduction to the new class of MCLP-type optimization problem, namely, to the
DMCLPs and also develop a relative simple and implementable computational approach.
In fact, the proposed methodology generalise the newly elaborated approach to the classic
MCLP (see e.g. [6]).

Recall that a variety of computer oriented approaches have been proposed for an ef-
fective computational treatment of distinct classes of ”static” MCLPs. Recently several
heuristical methods are actively used in the practical numerical treatment of the MCLPs.
We refer to [8, 17, 27, 29] for some effective heuristic and meta-heuristic algorithms and
for further references. Note that heuristics and meta-heuristics have usually been employed
in order to solve large size MCLPs (see e.g., [18, 19, 27, 29, 30]). However, the exact and
various heuristic methods for the conventional MCLP are not sufficiently extended to a
class of dynamic MCLP-type problems with the switched structure. The solution proce-
dure we propose, namely, the generalized version of the Separation Method (SM) is based
on an exact optimization procedure. The analytic method we propose can also be easily
incorporated (as an independent exact solution tool) into some heuristic procedures.

The optimization approach we follow in our paper includes an equivalent transforma-
tion (called ”separation”) of the originally given DMCLP and further consideration of two
auxiliary dynamic Knapsack-type problems (see e.g., [23] and references therein). The
proposed dynamic version of the SM reduces the complexity of the original optimization
problem in the presence of dynamic constraints. In this paper, we additionally use the cel-
ebrated Lagrange relaxation scheme for the purpose of a concrete computation [6, 12]. Let
us also refer to [2, 7, 24, 28] for some advanced relaxation schemes of dynamic optimiza-
tion.

It is necessary to stress that due to the extreme complexity of the general switched-type
dynamic constraints and in particular to the complexity of the resulting dynamics the ”gen-
eralization” of SM mentioned above constitutes a challenging theoretic and computational
problem and cannot be considered as a simple ”theory / facts transfer” from the conven-
tional MCLP theory. Theoretic and numerical results obtained in this paper are next applied
to a practically motivated example from the area of telecommunication engineering. The
optimization problem we study in this example constitutes a (simplified) special case of the
general Restricted Covering Problem (RCP) from the theory of mobile communication net-
works. Due to the dynamic nature of the communicative processes we try to maximize an
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average covering for a given system of the radio base stations. The requested optimal cov-
ering ”design” and the resulting optimal management (decision making) can be formalized
here as a specific switched DMCLP. In that case the natural information incompleteness of
the used model can be adequately described by an eligibility matrix with a fuzzy structure.

The remainder of our paper is organized as follows: Section 2 contains a mathematically
rigorous DMCLP problem formulation and some necessary theoretical concepts and facts.
In Section 3 we extend the existing (static) SM to the switched-type dynamic MCLP. This
extension constitutes a conceptually new solution approach and includes a necessary for-
mal characterization of the resulting optimization problems obtained during the proposed
separation procedure. Section 4 contains the concrete numerical schemes for the auxiliary
optimization problems. Using the equivalence between the initially given and auxiliary
problems (established in the previous sections), we finally develop a new implementable
algorithm for a consistent numerical treatment of the initial DMCLP. The algorithm we
consider also incorporates the Lagrange relaxation technique. Section 5 contains a con-
crete application of the proposed theoretic and numerical extensions of the classic MCLP
techniques, namely, the dynamic version of the SM to a problem from the telecommu-
nication engineering. We study a problem of the optimal covering of a cellular (mobile)
communication network. This engineering examples shows the practical usability of the
new solution approach we propose. It also illustrate the implementability and effectiveness
of the resulting computational algorithm. Section 6 summarizes our contribution.

2. Problem Formulation and Preliminaries. We study a specific case of the integer pro-
gramming problem with some dynamic variables and parameters

maximize J(z(·)) :=
1

(t f − t0)

∫ t f

t0

n

∑
j=1

w j(t)z j(t)dt

subject to




∑l
i=1 yi(t) = ks, t ∈ (ts−1, ts],

z j(t)≤ ∑l
i=1 as

i jyi(t), t ∈ (ts−1, ts],
z(t) ∈ Bn, y(t) ∈ Bl , t ∈ [t0, t f ],

s = 1, ...,S ∈ N,
j = 1, ...,n ∈ N, i = 1, ..., l ∈ N.

(1)

Here w j(t) ∈ R+, j = 1, ...,n are the given dynamic weights of a demand node j for t ∈
[t0, t f ] and z j(t) is a binary ”state” variable which is equal to 1 if a j-demand node is covered
by at least one facility at the time t, otherwise z j(t) = 0. By yi(t) we denote a binary
”decision” variable which is equal to 1 if a i-facility is opened at the time t, otherwise
yi(t) = 0. We next assume that the complete operational time interval [t0, t f ] for the given
model is divided into S adjoint intervals

(ts−1, ts], s = 1, ...,S

by switching times:
t0 < t1...tS−1 < tS = t f .

Additionally ks ∈N for s = 1, ...,S in (1) describes a total number of facilities to be located
on every time-interval (ts−1, ts]. Evidently, ks ≤ l for every s = 1, ...,S. Coefficients

as
i j, s = 1, ...,S,
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where

1≥ as
i j ≥ 0,

l

∑
i=1

as
i j ≥ 1,

are constant on every interval (ts−1, ts] and constitute components of the ”eligibility matrix”
associated with the optimization problem (1)

As :=
(
as

i j
)i=1,...,l

j=1,...,n.

This matrix describes a ”resilient” (or fuzzy) covering of the demand nodes indexed by
j = 1, ...,n for every specific time-interval

(ts−1, ts], s = 1, ...,S.

Let us note that the index i = 1, ..., l in (1) is related to the given facilities. The admissible
sets Bn (sometimes called ”state space”) and Bl (”decision space”) in (1) are defined as
follows:

Bn := {0,1}n, Bl := {0,1}l .

We use here the natural notation

z := (z1, ...,zn)
T , y := (y1, ...,yl)

T .

Motivated from practical applications we next assume that all dynamic components in the
basic problem (1) have a structure of piecewise-constant functions determined on the full
time interval [t0, t f ]:

w j(t) = cs
j > 0 ∀t ∈ (ts−1, ts],

z j(t), yi(t) = 0 or 1 ∀t ∈ (ts−1, ts], s = 1, ...,S

where j = 1, ...,n and i = 1, ..., l. In this specific case we evidently have

J(z(·)) :=
S

∑
s=1

(ts− ts−1)

(t f − t0)

n

∑
j=1

(w j(t)z j(t))|t∈(ts−1,ts]
=

S

∑
s=1

(ts− ts−1)

(t f − t0)
〈w(t),z(t)〉|t∈(ts−1,ts]

.

Here w := (w1, ...,wn)
T . By 〈·, ·〉 we denote here the scalar product in the corresponding

Euclidean space. As we can see the objective functional J(·) in (1) has a linear structure and
can be interpreted as optimal average costs over the complete operating time-interval. Note
that the implicit dependence of z(·) on the decision function y(·) is given by the inequalities
constraints

z(t)≤ (As)T y(t),

t ∈ (ts−1, ts], s = 1, ...,S

in (1). A pair (z(·),y(·)) of piecewise-constant functions that satisfies all the constraints in
(1) is next called an admissible pair of this problem.

The basic optimization framework (1) provides a useful modelling approach to the va-
riety of real-world applications (see e.g., [8, 9, 13, 16, 17, 18, 19, 20, 22, 25, 29, 30, 34]).
Following [18] we next call the main optimization problem (1) a Dynamic Maximal Cov-
ering Location Problem (DMCLP). Evidently, the given DMCLP has a specific switched
dynamic structure. Let us also refer to [6, 17] for a detailed discussion on the conventional
(static) MCLPs and some possible generalizations. The main DMCLP (1) is formulated
here using the general (non-binary) values of the elements as

i j of matrix As. This fact is
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motivated by a possible incomplete ”eligibility” information in the practical optimal de-
sign (see e.g., [8, 9] and references therein). The resulting abstract framework can also
be interpreted as a ”resilience” modelling approach. In that case an admissible value of a
parameter as

i j has a fuzzy nature (see e.g., [6, 29]). The fuzzy DMCLP (1) provides an ad-
equate formal model for many applied engineering problems, for example, for the optimal
mobile networking design and for the optimization of Resilient Supply Chain Manage-
ment Systems (RSCMSs). We refer to [6, 30] for the necessary technical details and some
interesting example.

The DMCLP under consideration has a structure of an integer programming problem
(see e.g., [10, 14, 26] for mathematical details). Let us note that (1) possesses an optimal
solution (an optimal pair) (zopt(·),yopt(·))

(zopt(t),yopt(t)) ∈ Bn
⊗

Bl ,

where
zopt := (zopt

1 , ...,zopt
n )T , yopt := (yopt

1 , ...,yopt
l )T .

The main optimization problem (1) has an evident switched structure related to the given
time-intervals (ts−1, ts], s = 1, ...,S. For the objective functional J(·) in (1) we obtain the
natural decomposition

J(z(·)) =
S

∑
s=1

Js(z(·)), (2)

where

Js(z(·),y(·)) :=
(ts− ts−1)

(t f − t0)
〈w(t),z(t)〉|t∈(ts−1,ts ]

.

The following theorem uses the additivity property (2) of the objective functional and is
in fact a compilation of the celebrated Bellman Optimality Principle from Optimal Control
(see e.g., [7, 26])).

Theorem 2.1. The restriction (zopt(·),yopt(·))s of an optimal solution (zopt(·),yopt(·)) on
the time interval (ts−1, ts], s = 1, ...,S is an optimal solution to the following particular
MCLP

maximize Js(z(·))
subject to




∑l
i=1 yi(t) = ks, t ∈ (ts−1, ts],

z j(t)≤ ∑l
i=1 as

i jyi(t), t ∈ (ts−1, ts],
z(t) ∈ Bn, y(t) ∈ Bl , t ∈ [ts−1, ts],
s ∈ N, s≤ S,
j = 1, ...,n ∈ N, i = 1, ..., l ∈ N.

(3)

The presented results means that the total optimal solution (zopt(·),yopt(·)) can be found
sequentially. This optimal solution constitutes a formal union of optimal solutions for the
particular MCLPs of the type (3) determined on intervals

(ts−1, ts], s = 1, ...,S.

This fact is an immediate consequence of the ”independence” of the particular problems of
the type (3): an optimal solution of problem (3) for s+1 does not depend on the previous
solution to MCLP (3) with the index s.

We refer to [7, 33] for some general theoretic and computational results related to
switched dynamic optimization problems. The aim of our contribution is to propose an
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effective approach for the numerical treatment of the sophisticated DMCLP (1). We gener-
alize here the newly elaborated (”static”) separation method for this purpose (see [6]) and
next combine it with the Lagrange relaxation scheme (see e.g., [23]).

3. Theoretical Foundations of the General Separation Method. Let us now introduce
a sequence PrS of the following auxiliary problems (indicated by s = 1, ...,S):

maximize
n

∑
j=1

µs
j

l

∑
i=1

as
i jyi(t), t ∈ (ts−1, ts],

subject to




∑l
i=1 yi(t) = ks, t ∈ (ts−1, ts],

y(t) ∈ Bl , t ∈ (ts−1, ts],
µs

j ∈ [0,1], j = 1, ...,n,

(4)

Assume ŷs(·), where ŷs(t)∈Bl , s = 1, ...,S are optimal solutions to the given problems (4).
The components of ŷs(t) are denoted by ŷs

i (t), i = 1, ..., l. In parallel to (4) consider the
single auxiliary problem

maximize J(z(·))
subject to




z j(t)≤ ∑l
i=1 as

i j ŷ
s
i (t), t ∈ (ts−1, ts],

z(t) ∈ Bn, t ∈ [t0, t f ]

s = 1, ...,S, j = 1, ...,n.

(5)

Note that the existence of optimal solutions to the auxiliary problems (4) and (5) is a direct
consequence of the general results from [10, 23, 26]. Let us also underline here that every
problem from PrS can be solved independently from problem (5). Therefore, we next
define a total optimal vector ŷ(t) ∈ Bl for PrS determined by the natural composition

ŷ(t) := ŷs(t) ∀t ∈ [t0, t f ], s = 1, ...,S. (6)

By ẑ(·), where ẑ(t) ∈ Bn and ẑ(·) := (ẑ1(·), ..., ẑn(·))T , we next denote an optimal solution
to the auxiliary problem (5). It is easy to see that problem (5) coincides with the originally
given DMCLP (1) for the specific case

y(·) = ŷ(·).
In the general case we evidently have ŷ(·) 6= yopt(·) and hence

(zopt(·),yopt(·)) 6= (ẑ(·), ŷ(·)).
We next call the pair (ẑ(·), ŷ(·)) an optimal solution of the family of auxiliary problems
(4)-(5).

Every problem (for a fixed index s) from the family PrS of problems (4) was obtained
by a standard linear scalarization of the following multiobjective optimization problem
(sometimes also called ”vector optimization”):

maximize {
l

∑
i=1

as
i1yi(t), ...,

l

∑
i=1

as
inyi(t)}

subject to
{

∑l
i=1 yi(t) = ks,

y(t) ∈ Bl , t ∈ (ts−1, ts],

(7)
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A SEPARATION BASED OPTIMIZATION APPROACH 7

where s = 1, ...,S. Let us recall that a suitable scalarizing of a multi-objective optimization
problem is an adequate theoretic and computational approach to an initially given vector
optimization problem. We refer to [15, 21] for the corresponding technical details and
algorithms. From the general results of the vector optimization it follows that there exist
vectors µs, s = 1, ...,S of multipliers µs

j , j = 1, ...,n in (4) such that an optimal solution
to the scalarized optimization problem (4) is a Pareto optimal solution for the originally
given multi-objective optimization problem. In this case problems (4) and (2.2a) are called
equivalent (see e.g., [10] for the necessary mathematical foundations).

We now assume that the multipliers µs
j , j = 1, ...,n in (4) are chosen such that problems

(4) and (7) are equivalent for every s = 1, ...,S. In this case we call (4) an adequate scalar-
izing of the auxiliary problem (7). We now observe that every problem (4) from the family
PrS and problem (5) have a structure of the celebrated Knapsack problem (see [23] and ref-
erences therein). Let us recall that many powerful computational algorithms are recently
proposed for an effective numerical treatment of the generic Knapsack problem. We refer
to [16] for a comprehensive overview of the theory and modern numerical schemes for this
celebrated optimization problem.

The importance of the family PrS and of the auxiliary optimization problem (5) intro-
duced above can be recognized from the following theoretic result.

Theorem 3.1. Assume (4) is an adequate scalarizing of problem (7). Then an optimal
solution (ẑ(·), ŷ(·)) of the family of auxiliary problems {PrS, (5)} is also an optimal solution
to the originally given DMCLP (1) and

J(zopt(·)) = J(ẑ). (8)

If additionally all problems (1), (4) and (5) have unique optimal solutions, then

(zopt(·),yopt(·)) = (ẑ(·), ŷ(·)). (9)

Proof. Since
ŷs(·), s = 1, ...,S

and ẑ(·) are admissible solutions for (4) and (5), we have
l

∑
i=1

ŷs
i (t) = ks,

ẑ j(t)≤
l

∑
i=1

as
i j ŷi(t)

for every t ∈ (ts−1, ts] and s = 1, ...,S. Therefore, (ẑ, ŷ) is also an admissible pair for the
originally given DMCLP (1). By the property of an optimal pair

(zopt(·),yopt(·))
we next obtain

J(ẑ(·))≤ J(zopt(·)). (10)
Let us introduce the set of all optimal solutions (solution set) associated with the original
problem (1)

F := Fz
⊗

Fy

Evidently,

zopt(·) ∈Fz,

yopt(·) ∈Fy.
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The particular solution sets of problems (4) and (5) denote by

F s
(2.2), s = 1, ...S

and F(2.3), respectively. From (10) it follows that

F(2.3)
⊗
{
⋃

s=1,...,S

F s
(2.2)} ⊂F . (11)

Observe that the constraints for the decision variable y(·) in (1) and in all problems (4) from
PrS are the same. This fact implies

Fy ≡ {
⋃

s=1,...,S

F s
(2.2)}. (12)

Since (4) is an adequate scalarization of the multi-objective maximization problem (7) and
taking into consideration the inequality constraints for the state variable z(·) in (1), we next
deduce

zopt
j (t)≤ max




∑l
i=1 yi(t) = ks,

y(t) ∈ Bl

l

∑
i=1

as
i jyi(t)≡

l

∑
i=1

as
i j ŷ

s
i (t). (13)

for every
t ∈ (ts−1, ts], s = 1, ...,S.

Here
zopt

j (·), j = 1, ...,n

is the j-component of zopt(·). The obtained condition (13) implies that zopt(·) is an ad-
missible solution of the auxiliary problem (5). Since ẑ is an optimal solution of (5), we
get

J(ẑ(·))≥ J(zopt(·)) (14)

for the admissible solution zopt(·) in (5). The obtained inequalities (10) and (15) for the
objective functional J(·) imply the expected result (8).

Moreover, inequality (15) also implies the following inclusion

Fz ⊂F(2.3). (15)

From (11), (12) and (15) we immediately deduce the crucial consequence

F(2.3)
⊗
{
⋃

s=1,...,S

F s
(2.2)} ≡F . (16)

If the solutions sets F ,F(2.3) and F s
(2.2), s = 1, ...,S are one-point-sets, we deduce the

expected result (9) as a direct consequence of the obtained equivalence (16). The proof is
completed. �

As we can see Theorem 3.1 separates equivalently the originally given sophisticated
DMCLP (1) into two relatively simple optimization problems. It provides the theoretical
foundation of the Separation Method we propose and generates effective numerical ap-
proaches to the dynamic MCLPs of the type (1). In fact, Theorem 3.1 reduce a dynamic
optimization problem (1) with a switched structure to a family of specific Knapsack prob-
lems. This complexity reduction is a direct consequence of the geometrical structure of
constraints in the originally given DMCLP (1).
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4. The Separation Based Computational Approach to DMCLP. We now consider a
particular problem from the family PrS, namely, problem (4) and introduce the following
notation

Îs := {1≤ i≤ l
∣∣SA s

i
∈max

k
{SA s

1
, ...,SA s

l
}},

SA s
i

:=
n

∑
j=1

µ jai j,

A s
i := (as

i1, ...,a
s
in)

T .

(17)

Here A s
i is a vector of i-row of the eligibility matrix As and operator maxks{·} determines

an array of ks-largest numbers from the given array. Since every problem (4) has a trivial
combinatorial structure it can be easily solved by the naturally combinatorial algorithm.

Algorithm 1.
ŷs

i = 1 if i ∈ Îs;

ŷs
i = 0 if i ∈ {1, ..., l}\ Îs,

(18)

The following result establishes the consistency of the obtained Algorithm 1.

Theorem 4.1. Algorithm 1 and the corresponding optimal choice (18) determines an opti-
mal solution of problem (4) for every s = 1, ...,S.

Proof. The finite selection algorithm (18) assigns the maximal (from admissible) value
ŷs

i = 1 for all vectors A s
i such that the weighted sum of components SA s

i
of this vector

belongs to the ks-dimensional array of largest sums of components of all vectors

A ∫
〉 , i = 1, ..., l.

Hence the resulting sum
n

∑
j=1

µs
j

l

∑
i=1

as
i j ŷ

s
i (t)

for t ∈ (ts−1, ts] is maximal. The proof is completed. �

Let us also note that for the given eligibility matrix As with the specific positive elements
as

i j (as determined in Section 2) the sum of components SA s
i

constitutes a specific norm of
the row-vector A s

i . The total complexity of the proposed combinatorial Algorithm 1 for a
fixed index s can be calculated as follows (see e.g., [23] for details)

O(l× logks)+O(ks).

We now turn back to the second auxiliary problem (5) and define

cs :=
n

∑
j=1

l

∑
i=1

as
i j ŷ

s
i ,

c := max
s=1,...,S

{cs}

Then the inequality constraints in (5) imply the generic Knapsack-type constraint with
uniform weights for every index s = 1, ...,S

n

∑
j=1

z j ≤ cs.
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Let us present a fundamental solvability result for the second auxiliary optimization prob-
lem, namely, the ”switched-type” Knapsack problem (5).

Theorem 4.2. The Knapsack problem (5) can be solved in maximum O(nc) time and

O(n+ c)

space.

A formal proof of Theorem 4.2 can be found in [23].
We now need to determine an adequate implementable numerical procedure for problem

(5). This auxiliary optimization problem, which is N P-hard, has been comprehensively
studied in the last few decades and several exact algorithms for its solution can be found
in the literature (see [6, 23] and the references therein). Computational algorithms for
Knapsack problems are mostly based on two basic approaches: the celebrated branch-and-
bound methods and dynamic programming techniques. Moreover, one can combine these
two basic numerical approaches. These two main solution procedures can also be used in
combination with a relaxation scheme applied to an initial model.

”Relaxing a problem” has various meanings in applied mathematics, depending on the
areas where it is defined, depending also on what one relaxes (a functional, the underlying
space, etc.). We refer to [2, 5, 7, 12, 23, 24, 28] for various implementable relaxation
techniques. In this contribution we apply the celebrated Lagrange relaxation scheme to the
second auxiliary problem, namely, to the Knapsack-type problem (5). Let us introduce the
Lagrange function for (5)

L (z(·),λ (·)) :=
S

∑
s=1

(ts− ts−1)

(t f − t0)
〈w(t),z(t)〉|t∈(ts−1,ts]

−

n

∑
j=1

λ j(t)
(
z j−

l

∑
i=1

as
i j ŷ

s
i
)

where λ j(·), j = 1, ...,n are piecewise constant on the time intervals

(ts−1, ts], s = 1, ...,S

functions. Let us denote

λ (t) := (λ1(t), ...,λn(t))T , t ∈ [t0, t f ].

The following problem is called Lagrange relaxation of the auxiliary optimization problem
(5)

maximize L (z(·),λ (·))
subject to

z(t) ∈ Bn t ∈ [t0, t f ].

(19)

Let us refer to [7, 12, 23] for the foundations of the Lagrange relaxation in optimization.
Note that the relaxed problem (19) does not contain the unpleasant inequality constraints
which are included in the objective (Lagrange) function L (·, ·) as a penalty term. All fea-
sible solutions to (5) are also feasible solutions for problem (19). Moreover, the objective
value calculated for the feasible solutions to (5) is not larger than the objective value ob-
tained using a solution of (19) (see [1, 23] for the necessary proofs). This fact implies
that the optimal solution value to the relaxed problem (19) provides an upper bound to the
original problem (5) for any vector of non-negative Lagrange multipliers

λ (·), λ j(t)≥ 0, t ∈ [t0, t f ].
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A SEPARATION BASED OPTIMIZATION APPROACH 11

Applying the branch-and-bound algorithm to the relaxed problem we are interested in
achieving the tightest upper bound for the objective functional in (19). Hence, we would
like to choose a vector of non-negative Lagrange multipliers (piecewise constant functions)

λ̂L (t) := (λ̂L
1 (t), ..., λ̂L

n (t))T ,

λ̂L
j ≥ 0

such that L(·, ·) in (19) is minimized. This consideration strongly motivates the celebrated
concept of a Lagrangian dual problem (see e.g., [23] for details)

minimize L (z(·),λ (·))
subject to

λ (t)≥ 0 t ∈ [t0, t f ]

(20)

By (ẑL (·), λ̂L (·)) we next denote the optimal solution pair to the primal-dual system (19)-
(20). It is well-known that the Lagrangian dual problem (20) yields the least upper bound
for (5) available from all possible Lagrangian relaxations. Note that the dual problem (20)
is in fact a linear (integer) programming problem [6, 10]. The following basic result is a
direct consequence of the basic properties of the above primal-dual system (19)-(20) and
of our main theoretic result, namely, of Theorem 3.1.

Theorem 4.3. Let (ẑL (·), λ̂L (·)) be an optimal solution of the primal-dual system (19)-
(20) associated with the auxiliary problem (5). Assume that all conditions of Theorem 3.1
are satisfied. Then

J(zopt(·)) = J(ẑ(·))≤ J(ẑL (·)). (21)
where (ẑ(·), ŷ(·)) is an optimal solution of the family of auxiliary problems (4)-(5). More-
over, inequality (21) constitutes a tightest upper bound available from all possible La-
grangian relaxations (19) of the optimization problem (5).

Theorem 4.3 can be proved by a direct calculation using the corresponding result from
[23].

5. Numerical Aspects. In this section we apply the generalized SM developed in Section
3 and Section 4 and study a specific real-world example from the area of telecommuni-
cation. Our aim is to optimize a cellular mobile communication network, namely, to find
an optimal solution to a specific restricted covering problem (see [9, 16]). Note that the
mobile communication network constitutes a (dynamic) switching system. Our objective
leads to the definition of a transmitter location problem as a locating problem that does not
require the coverage of all demand nodes. The coverage model of a mobile communication
network includes a limited budget as a constraint on the number of facilities to be located.
The optimization model we implement has a fuzzy nature and includes a fixed number

ks, s = 1, ...,S ∈ N

of the totally l ∈N base stations such that a specific average covering (considered on a fixed
time interval) is maximized.

Example 1. Consider a mathematical abstraction of the cellular mobile communication
network in the form of the generic DMCLP (1). Assume a study region split into n = 15
demand nodes. In this particular technical problem a concrete demand node represents the
center of an area that contains a quantum of demand (from a traffic viewpoint) accounted in
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a fixed number of call requests per time unit. We next assume to have l = 5 totally feasible
locations for the base stations. As mentioned above for every interval (ts−1, ts] we assume

ks, s = 1, ...,S ∈ N

”active” base stations (the stations in service). In our example we put t0 = 0 and t f = 2
and the (unique) switching time t1 = 1. Moreover, let

S = 2, k1 = 2, k2 = 4.

Let us now specify the further variables and parameters from the general DMCLP
framework (1): the weights vectors associated with the corresponding time intervals are
selected as follow

w1 = (27,42,11,29,43,16,14,19,45,30,0,0,16,42,0)T ,

w2 = (27,26,0,48,0,35,49,10,49,48,16,14,41,28,0)T .

The eligibility matrices
As ∈ R5×15, s = 1,2

associated with the corresponding time intervals are selected as follows (given by rows Ai
of As for i = 1, ...,5)

A1 = (0.0,0.959,0.832,0.965,0.0,0.0,0.9380,1.0,0.0,0.0,0.816,

0.528,0.378,0.0,0.998),

A2 = (0.5069,0.846,0.388,0.624,0.970,0.0,0.0,0.0,0.653,0.779,0.701,

0.511,0.876,0.566,0.963),

A3 = (0.340,0.222,0.211,0.745,0.0,0.0,0.0,0.0,0.0,0.542,0.0,

0.0,0.730,0.832,0.0),

A4 = (0.0,0.478,0.593,0.0,0.0,0.939,0.0,0.0,0.736,0.0,0.0,

0.0,0.794,0.406,0.0),

A5 = (0.0,0.437,0.0,0.0,0.959,0.596,0.619,0.0,0.0,0.819,0.0,

0.0,0.611,0.0,0.806),
for s = 1

and

A1 = (0.531,0.283,0.0,1.0,0.975,0.0,0.383,1.0,0.479,0.829,0.0,

0.0,0.707,0.688,0.0),

A2 = (0.558,0.512,1.0,0.0,0.691,0.949,0.929,0.0,0.650,0.979,0.438,

0.0,0.517,0.0,0.0),

A3 = (0.0,0.563,0.0,0.0,0.530,0.532,0.0,0.0,0.0,0.843,0.0,

0.0,0.0,0.605,1.0),

A4 = (0.0,0.375,0.0,0.0,0.241,0.0,0.0,0.0,0.0,0.0,0.360,

0.739,0.928,0.0,0.0),

A5 = (0.559,0.0,0.0,0.0,0.615,0.606,0.969,0.0,0.0,0.0,0.0,

0.432,0.470,0.686,0.0),
for s = 2.
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Both the eligibility matrices have a fuzzy structure and express the technical reliability of
the communication network under consideration.

Recall that the decision variable from (1), namely,

yi(t), i = 1, ...5

represents here the ”activating” of the i - base station at the time instant t ∈ [0,2]. Addi-
tionally the specific state variable

z j(t), j = 1, ...,15

from the general model (1) describes here the binary state of the j - demand node. Recall
that it is equal to 1 if the j - demand node is covered by at least one base station (facility).
Otherwise

z j(t) = 0.

Application of the numerical Algorithm 1 leads to the computational results for the
optimal variables zopt(t) and yopt(t), where

t ∈ [0,1] for s = 1

and
t ∈ [1,2] for s = 2.

We have obtained the following optimal pairs (zopt(t), yopt(t)):

zopt(t) = (0,1,0,1,0,0,0,0,0,1,0,0,1,1,0)T ,

yopt(t) = (0,1,1,0,0)T ,
(22)

for s = 1, t ∈ [0,1] and

zopt(t) = (1,1,0,1,0,1,1,1,1,1,0,1,1,1,0)T ,

yopt(t) = (1,1,0,1,1)T ,
(23)

where
s = 2, t ∈ [1,2].

The optimal value max{J(z(·))} of the objective functional J(·) in (1) is as follow:

max{J(z(·))}= 534.

The dynamic behavior of the optimal decision variable yopt(t) is also presented in Fig. 1.

Let us now give a practical interpretation of the obtained computational (optimal) re-
sults (22)-(23). From (22) we deduce that the active base stations are the stations no.2 and
no.3. Moreover, the following dynamic demand nodes no.2, no.4, and no.10 are covered.
The optimal pair in (23) indicates that the active base stations are the stations no.1, no.2,
no.4, and no.5. In that case the demand nodes excluding the following nodes: { no.3, no.5,
no.11, no.15 } are covered.

Finally, note that the implementation code of the computational Algorithm 1 was carried
out by using the Python optimization packages and an author-written program.

In the above illustrative Example 1 we have considered some given eligibility matrices
As. In the telecommunication engineering this technical parameter has a specific structure
and is usually a function of the required cover range of the existing base stations.
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FIGURE 1. Optimal dynamics of the switched decision variables yopt(t)

6. Conclusion. This paper proposes advanced theoretic and computational approaches to
a new class of the Dynamic Maximal Covering Location Problems with a switched struc-
ture. In our contribution, we have theoretically extended the classic static Maximal Cover-
ing Location Problems and also implemented some additional novel modelling approaches.
First of all we have proposed a switched type dynamical generalization of the conventional
MCLP problem statement. This new approach makes it possible to incorporate a wide
range of real-world application and engineering effects into the proposed framework. Ev-
idently, switched dynamic processes constitute in general a more adequate modelling ap-
proach to the technical processes and systems. Moreover, we have considered the DMCLP
optimization with the fuzzy-type eligibility matrices. This fact also involves more flexibil-
ity of the resulting optimization model that finally includes some necessary ”resilience” or
(and) ”fuzzy” interpretations. In this paper, we have followed a mathematically rigorous
considerations and developed a consistent numerical solution approach.

The obtained computational algorithm was next applied to an engineering motivated
problem of optimal covering in a cellular communication network. Application of the
proposed algorithm makes it possible to optimize a specific RCP type problem (see Section
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5) and maximize an average covering for a given configuration of the base stations. The
SM and the corresponding numerical scheme we developed reduce the originally given
sophisticated optimization problem to two Knapsack-type auxiliary problems. The first one
is in fact a linear scalarization of a specific multiobjective program. The second Knapsack-
type model in the framework of SM constitutes a classic problem. We have studied the
proposed dynamic generalization of the SM in the context of the conventional Lagrange
relaxation scheme and in combination with an additional combinatorial algorithm. The
obtained theoretic results finally lead to an implementable computational algorithm for the
switched type DMCLPs with a fuzzy-type eligibility matrix.

The analytic and numeric methodologies we propose in our paper can be applied to var-
ious further generalizations of the generic MCLP. Moreover, the developed SM for a class
of DMCLP under consideration can be combined with the celebrated branch-and-bound
method and with the dynamic programming approach. It can also be included (as an auxil-
iary computational tool) into the modern heuristic solution approaches. Let us note that our
paper mainly discussed the theoretic foundations of the newly elaborated SM for DMCLPs.
The novel solution methodology we proposed needs further comprehensively numerical ex-
aminations and computer based simulations of several switched-type DMCLPs.
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CHAPTER 4

Future work

We are shown in this article-based thesis two lines of work on the papers.

First, we did a shift in the traditional static model, when included fuzzy

concept inside the cover constraint for allowing to include disruptions in the

facility. Second, we extended the static model to the dynamic model without

complex dynamic laws, which allow us to connect this model with the static

model through Bellman Principle, and extend the conceptual algorithm to

this case. In both cases, we provided a conceptual algorithm for solving it.

This in mind, we can introduce the next ideas to future work.

4.1. Modeling Approach

Let’s begin to come back to the static point of view. In the traditional

static model, we assume that the eligibility matrix comes from a covering

radius, and assuming the availability of the facility is always true, instead

of a family of statistical distribution. This family can model in a better way

realistic assumption of the functionality of the facility, and avoid the sensi-

tivity of the configuration of the selected facility with respect to the service

radius. Furthermore, we assume this set must be bound, closed, and convex

set, then we will be able to calculate maximin concepts in this model, but
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we need to provide a suitable family for it and prove some theorems on their

relations and how to calculate the minimization with respect this family.

Lastly, we proceed to calculate the optimal selection of the facilities to get

the maximum cover for the customer.

For the dynamic case, we will have to consider more complex dynamic

relations time-spatial. For the third paper, we considered the case when a

telecommunication service has to become widespread from one location, and

then we move to another location -not spatially related- when we make a

decision over the new spatial distribution on a different time until we arrive

at the last location. Now, we can think in a car, ship, or airplane, goes to one

location to a final location, and we need to provide a service during all the

trip as much as we can. We need to model what kind of spatial-time relation

there exist for the specific type of service that we need to provide. Include

dynamical growth of population, when the service is for a population, to na-

me a few possible instances.

Finally, MCLP tries to get the better service to a customer including the

constraint for this service, but if we include the expectation of the customer,

we can think of providing the better service, minimizing the dissatisfaction

of the customer including the technical constraint to attend the customers.

This is known as Bi-level optimization, and now, the scientific community

has developed algorithms for this kind of optimization, it is an interesting

field of research.

4.2. Computational Techniques

For the proposed algorithm, we need to study the building of the initial

point, the computational time performance for different large instances. Li-

kewise, it needs to compare the performance of the implementation with

other currently implementation through a specific measure of computational
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effectiveness and efficiency.

4.2.1. Complexity

This kind of NP-hard problem is quite normal to produce metaheuristic or

matheuristic approaches, because of the significant subproblems thereof. We

need to remember that Knapsack problem is an NP-hard problem itself, and

from the outlook of algorithms and codes that integrate (meta)heuristics and

MIP strategies and software, it will be successful to lead new methodologies.

4.2.2. Scalarazing

Let us now make a short remark related to the scalarizing procedure used

above (see Sections 2.1, 2.2 and Chapter 3).

It can be shown analytically that the values SAi
in sections 2.1 and 2.2

depend on the multipliers vector µ, and the values SAs
i

in Chapter 3 depend

on the multipliers vector µs. This is a consequence of the inclusion constitutes

a useful relation of the SM in both cases, and for the resulting optimization

strategy we propose. Since the obtained multiobjective maximation problem

relate has a linear structure, an adequate scalarizing makes it possible to de-

termine every “non-dominant” points (see [25, 26] for mathematical details).

On the other hand, this is a limitation of the proposed SM, because a

possible “non-adequate” selection of µ or µs geometrically implies a signifi-

cant “cutting”(restriction) of the feasible region for respective problems. This

feasible region restriction can finally eliminate a true optimal solution. Recall

that a scalarizing implemented in the objective function evidently determines

the resulting geometry associated with the basic key problem. On the other

side, the geometrical properties of a non-adequately scalarized problem can

violate the conceptual condition Γz ⊂ Γ(3) in the static case or Fz ⊂ F(2,3)

for the dynamic case.
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4.3. Practical Implementation

For the Resilient Supply Chain Management System creates a good mea-

sure of the resilient concept to be implemented is a hard task, and that makes

the difference between the applied practical work with the theoretical work as

this. The building of the eligibility matrix in the real context is not studied

here, even the toy examples were creating under this assumption that the

value aji is known, and the synthetic data parameters satisfy the condition

explained in the introduction of the model in static as well as in dynamic case.

As disruption is constituted by different topic, create a measure (Fuzzy

or Stochastic) that can make the role of the measure of ji eligibility para-

meter is another interesting research field that allows going from theoretical

optimization into a realistic application of this model.



Conclusions

On published paper in section 2.1 and 2.2

In both contributions, we proposed a conceptually new numerical ap-

proach to a wide class of Maximal Covering Location Problems with the

fuzzy-type eligibility matrices. The paper in section 2,2 is a suitable exten-

sion from the paper in section 2,1 according to the publication law, where

complete some elements that was no cover in the previous one, and allow us

to have two different publications.

In general term. In one hand, the eligibility location matrix in the traditional

MCLP model is a binary selection when we choose its components (j, i) as

1 (cover), 0 (not cover) values. Fuzzy parameters, numbers between [0, 1],

normally represents the weight of a cut in the membership function, which

can represent a grade of preference. In this way, any component (j, i) of the

eligibility location matrix can represent the grade of coverage of the facility

j to customer i as an “natural” extension of the prior selection concept, and

generalize the binary coverage assumption, which could be unrealistic. That

introduces a class of preference without include assignment model for eva-

luating the disruption of a facility, which implies we must mix disruption in

facility model in location constraint as well in the objective function.

In another hand, the sum of several fuzzy parameters of facility selec-

tion must be more than one, imply there exist at least two facilities that

cover the customer, and we can avoid to include a specification of how many
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facilities we need to attend this particular customer, and the relationship

to expected (minimax) transportation and lost-sales costs. Transportation

and lost-sales costs are difficult to estimate because the transportation cost

depends of the failed open facilities, and lost-sales depend on demand distri-

bution, both elements have much variability inside. Fuzzy parameters allow

staying only in location model, but the open facilities are able to introduce

in the next assignment problem a new resilient coverage to tackle the service

to the customer. This methodology does not include, as other methods eit-

her, competitive aspect present in retail facilities. It moves away of facility

fortification, and the risk measure (expected cost and minimax cost).

The resilient definition can be approaching in a different way, first combining

the distribution of the service inside the location, second using the P -median

model to lead central distribution service, and third coming back to the tra-

ditional path, location first, assignment after. The two first method involves

to have an immediate evaluation of the disruption in the system, the latter

one imply to solve the assignment of service to get this kind of report (we do

not work in this case), but we only take in account the optimal open facilities

in the before step.

Theoretical and computational methodologies we present in both contribu-

tion can be applied to various generalizations and extensions of the basic

MCLP and also to several optimization problems associated with the Resi-

lient Supply Chain Management System (RSCMS) design. One can combine

the elaborated separation scheme with the conventional branch-and-bound

method, with the celebrated dynamic programming approach or/and with an

alternative exact or heuristic numerical algorithm. Let us finally note that

we discussed here only theoretic aspects of the newly elaborated approach

and presented the corresponding conceptual solution procedure. The basic

methodology we developed needs a comprehensively numerical examination

that includes solutions of several MCLPs and simulations of the correspon-

ding optimal RSCMSs.
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On submitted paper in chapter 3.

This paper proposes advanced theoretic and computational approaches

to a new class of the Dynamic Maximal Covering Location Problems with a

switched structure. In our contribution, we have theoretically extended the

classic static Maximal Covering Location Problems and also implemented

some additional novel modeling approaches. First of all, we have proposed a

switched type dynamical generalization of the conventional MCLP problem

statement. This new approach makes it possible to incorporate a wide range

of real-world application and engineering effects into the proposed framework.

Evidently, switched dynamic processes constitute in general a more adequate

modeling approach to the technical processes and systems. Moreover, we have

considered the DMCLP optimization with the fuzzy-type eligibility matrices.

This fact also involves more flexibility of the resulting optimization model

that finally includes some necessary “resilience” or (and) “fuzzy” interpreta-

tions. In this paper, we have followed mathematically rigorous considerations

and developed a consistent numerical solution approach.

The obtained computational algorithm was next applied to an engineering

motivated problem of optimal covering in a cellular communication network.

Application of the proposed algorithm makes it possible to optimize a specific

RCP type problem and maximize an average covering for a given configura-

tion of the base stations. The SM and the corresponding numerical scheme

we developed reduce the originally given sophisticated optimization problem

to two Knapsack-type auxiliary problems. The first one is, in fact, a linear

scalarization of a specific multiobjective program. The second Knapsack-type

model in the framework of SM constitutes a classic problem. We have stu-

died the proposed dynamic generalization of the SM in the context of the

conventional Lagrange relaxation scheme and in combination with an addi-

tional combinatorial algorithm. The obtained theoretic results finally lead to

an implementable computational algorithm for the switched type DMCLPs

with a fuzzy-type eligibility matrix.
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