
 

TESIS DOCTORAL 

Estimación hidrológica del riesgo de sequía 

Hydrological assessment of drought risk 

 

 

 

Autora: 

María del Pilar Jiménez Donaire 

 

Directores: 

Juan Vicente Giráldez Cervera 

Tom Vanwalleghem 

 

Programa de doctorado: 

Dinámica de flujos biogeoquímicos y sus aplicaciones 

 

Febrero 2021 



TITULO: Hydrological assessment of drought risk

AUTOR: María Pilar Jiménez Donaire

© Edita: UCOPress. 2021 
Campus de Rabanales
Ctra. Nacional IV, Km. 396 A
14071 Córdoba

https://www.uco.es/ucopress/index.php/es/
ucopress@uco.es



 
 
 
 
 
 

 
 
 
TÍTULO DE LA TESIS: Estimación hidrológica del riesgo de sequía 
 
 
 
DOCTORANDO/A: María del Pilar Jiménez Donaire 
 
 
 

INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS 
(se hará mención a la evolución y desarrollo de la tesis, así como a trabajos y publicaciones derivados de la misma). 

 
La doctoranda ha realizado un excelente trabajo, cumpliendo con satisfacción todos 
los objetivos propuestos y creemos además que ha desarrollado de forma satisfactoria 
su formación como doctora. Esta tesis ha resultado en la actualidad en tres 
publicaciones SCI y dos contribuciones a congresos internacionales.  
 
Jiménez-Donaire, M. del P., Giráldez, J.V., Vanwalleghem, T., 2020. Evaluation of 
Drought Stress in Cereal through Probabilistic Modelling of Soil Moisture Dynamics. 
Water 12, 2592. https://doi.org/10.3390/w12092592 
 
Jiménez-Donaire, M. del P., Giráldez, J.V., Vanwalleghem, T., 2020. Impact of Climate 
Change on Agricultural Droughts in Spain. Water 12, 3214. 
https://doi.org/10.3390/w12113214 
 
Jiménez-Donaire, M. del P., Tarquis, A., Giráldez, J.V., 2020. Evaluation of a combined 
drought indicator and its potential for agricultural drought prediction in southern Spain. 
Natural Hazards and Earth System Sciences 20, 21–33. https://doi.org/10.5194/nhess-
20-21-2020 
 
Por todo ello, se autoriza la presentación de la tesis doctoral. 
 
 
 
 

Córdoba,  16 de febrero de 2021 
 
 

Firma del/de los director/es 
 
 
 
 

Fdo.:_Juan Vicente Giráldez Cervera    Fdo.: Tom Vanwalleghem  

VANWALLEGHEM 
TOM S K - 
X7356177H

Firmado digitalmente por 
VANWALLEGHEM TOM S K - X7356177H 
Fecha: 2021.02.16 23:06:37 +01'00'

GIRALDEZ CERVERA 
JUAN VICENTE - 
31165788Y

Firmado digitalmente por 
GIRALDEZ CERVERA JUAN 
VICENTE - 31165788Y 
Fecha: 2021.02.17 07:30:30 
+01'00'

https://doi.org/10.3390/w12092592


 
 
 



RESUMEN 
 
 
La sequía agrometeorológica o agrícola es una de las más graves contingencias a la que se enfrenta 
la agricultura y por tanto la sociedad en su conjunto, ya que se define en términos de pérdida de 
cosecha provocando escasez de alimentos. A su vez, la sequía es la amenaza de origen natural que 
afecta a más personas en el conjunto del planeta. La mayoría de los estudios sobre sequía no 
cuantifican de manera fiable su efecto sobre la productividad agrícola ni abordan las consecuencias 
de las predicciones de cambio climático sobre la extensión y la intensidad de las sequías.  
Una buena comprensión y el desarrollo de modelos adecuados de predicción de ocurrencia de 
sequías a escala tanto a corto como a medio plazo es esencial para una adecuada gestión de los 
recursos hídricos y de la producción agrícola. Asimismo, se pueden obtener importantes beneficios 
de mejorar la vigilancia y la predicción a largo plazo de las sequías, para lo que es fundamental tener 
en cuenta las proyecciones de escenarios de cambio climático. 
 
En esta tesis se han aplicado por primera vez los indicadores de estrés de sequía estático y dinámico 
propuestos por Porporato, validándolos frente a datos observados de rendimiento de cultivos, para 
evaluar sequías agrícolas a escala local. Se identificaron correctamente los periodos de sequía 
ocurridos poniendo de manifiesto su gran utilidad y se demostró que ambos indicadores presentan 
mejores resultados que los indicadores tradicionales de sequía como el SPI-3. Se realizó un análisis 
de sensibilidad revelando el impacto de la profundidad del suelo en las variaciones espaciales de los 
indicadores, presentando una respuesta compleja en función de la precipitación anual. 
En la tesis se propone un nuevo indicador combinado de sequía (ICS), que se evaluó a escala regional 
frente a datos observados de daños en cultivos de cereales en secano, identificando correctamente 
los eventos importantes de sequía acaecidos. Se ha diseñado un sistema de avisos de situaciones de 
sequía agrícola a partir del ICS basado en la combinación de sus componentes, que invita a poner 
en marcha las medidas oportunas para paliar los efectos de la sequía. 
Por otro lado, se han modelado los efectos del cambio climático sobre los eventos de sequía a escala 
nacional hasta 2100, empleando el escenario de emisión RCP8.5. Se mostraron las ventajas, frente 
a otros indicadores, del empleo de los indicadores de estrés estático y dinámico, teniendo este 
último la ventaja respecto a otros indicadores de incluir, además de la intensidad, información sobre 
la duración media y la frecuencia de los eventos de sequía en un único indicador. 
 
Los resultados obtenidos mostraron que los indicadores propuestos por Porporato identifican 
correctamente los periodos de sequía ocurridos en las zonas de estudio y presentan mejores 
resultados que los indicadores tradicionales de sequía. 
Por otro lado, los resultados demostraron que el ICS propuesto presenta consistencia con los eventos 
de sequía agrícola ocurridos en la región de estudio y presenta potencial para servir como indicador 
de avisos de sequía agrícola futura además de proporcionar distintas ventajas respecto al uso de 
indicadores simples. 
Por último, los resultados determinaron que tanto la severidad como la frecuencia y la intensidad 
de las sequías se verán incrementadas en el escenario RCP8.5 en nuestro país, en particular en el 
subperiodo 2071-2100.  



 
 

 

  



 
 

INTRODUCTION 

Drought is one of the major natural hazards affecting agricultural crop production and 

food security throughout history (Toonen et al., 2020) and in our own time (FAO, 2020a). 

The percentage of the planet affected by drought has more than doubled in the last 40 

years and droughts have affected more people than any other natural hazard (FAO, 

2020b). The UN estimates that a decade from now, up to 700 million people will be 

compelled to leave their homes because of water shortages (“End the drought in 

drought research,” 2019). Mediterranean countries, like Spain, have historically been 

affected by a large variability in their rainfall regime and by droughts. However, Spinoni 

et al. (2017) have shown that drought events are not localized to these traditional 

hotspots and droughts are increasing all over Europe in the last decades. They analyzed 

tendencies from 1950 to 2015 and found an evolution towards drier conditions in 

Central Europe in spring, in the Mediterranean basin in summer and in Eastern Europe 

in fall. The importance of droughts will only increase as future climate change 

projections, with decreasing precipitation and increasing temperature (IPCC, 2014), 

draw a problematic outlook for agricultural production, with lower soil moisture, 

increasing demand for water, and diminishing water supplies. Schmidhuber and Tubiello 

(2007) analyze the potential impacts of climate change on food security and show how 

the problem is even wider than just agricultural production and will impact society 

profoundly. They highlight how climate change will affect four fundamental aspects of 

food security: (i) food production and availability, (ii) stability of food supplies, (iii) food 

utilization and (iv) food prices. Most studies have addressed the first aspect, but even 

so the extent and intensity of climate change predictions on droughts and agricultural 

productivity have not yet been reliably quantified. As these depend highly on the 

scenario, models and indicators used, there is an ongoing debate in the scientific 

community. In a European study by the Joint Research Center of the EU, Císcar-Martínez 

et al. (2018) project significant drying trends in the west of the Mediterranean region, 

while they expect wetting in Central and Eastern Europe. In contrast, Lu et al. (2019) 

predict large-scale drying and limited wetting globally for all climate change scenarios, 

and identify Europe and the Mediterranean as one of the main hotspots where the mean 

spatial extent of severe drought will increase. 

Given the importance of droughts, a good understanding and development of adequate 

models for predicting drought occurrence at short and medium time scales is essential 

to manage water resources and agricultural production adequately. Additionally, 

agricultural insurance schemes and farmers can benefit from improved drought 

monitoring and prediction. Insurance policies, especially agricultural ones, are currently 

are short-term and pricing does not reflect climate change over the policy period, 

however insurers increasingly recognize the importance of taking into account climate 

change projections, and particularly the role insurance can play in climate change 

adaptation (Erhardt et al., 2019).  

Consequently, with this in mind, it is pertinent to first define drought and select the scale 

under study, as these will strongly condition the monitoring and prediction tools that 



 
 

are best suited. No universally accepted definition of drought exists as the complexity 

of the phenomenon inherently difficults an accurate description (Quiring, 2009). Slette 

et al. (2019), after a literature review, concluded that ecologists characterized drought 

in a wide variety of ways, for example reduced precipitation to reduced soil moisture or 

streamflow, but that only as few as 32% of the studies actually defined drought 

explicitly. Generally, four types are distinguished, following Wilhite and Glantz (1985), 

according to how the effects were noticed: (i) meteorological, due to the scarcity of 

rainfall; (ii) hydrological, detected by low streamflow; (iii) agricultural, when soil water 

is not sufficient to maintain a crop; and (iv) socioeconomic, when it affects the normal 

functioning of society. In this study, focus will be on agricultural drought, and its relation 

to crop yield.  

A large number of indicators have been proposed to monitor and evaluate drought 

stress. A common classification of such indicators is made according to the drought type 

considered, i.e. precipitation and temperature-based indicators for meteorological 

drought, soil moisture and vegetation stress based-indicators for agricultural drought, 

streamflow or groundwater level for hydrological droughts and supply-demand or 

pricing for socio-economical drought, although the latter is much less frequent 

(Bachmair et al., 2016).  

Two main meteorological drought indices are the Palmer Drought Severity Index (PDSI ) 

and the the Standardized Precipitation Index (SPI). The first, PDSI was first published in 

1965 by meteorologist Wayne Palmer (Keyantash and Dracup, 2002), and is based on 

precipitation and temperature, and is still widely used. In his original paper, Palmer 

(1965) specifically excludes agricultural and hydrological drought problems and focusses 

on meteorological drought. The most widely used and best known drought index is 

undoubtably the Standardized Precipitation Index (SPI) (Lloyd‐Hughes and Saunders, 

2002; Mckee et al., 1993).  Vicente-Serrano et al. (2010) proposed a modified version of 

the SPI, the Standardised Precipitation-Evapotranspiration Index (SPEI), that has gained 

a lot of popularity in recent years since it also includes evapotranspiration in addition to 

precipitation, and therefore approximates better the water balance. The different 

drought indices are also subject to continuous improvement. For example, Hobbins et 

al. (2016) have modified the SPEI index by representing the potential evapotranspiration 

and the atmospheric evaporative demand on a proper physical basis, rather than on the 

air temperature as a proxy of it. Their evaporative demand drought index (EDDI) is a 

useful indicator of drought extent, as was shown by McEvoy et al. (2016)  in the 

conterminous US. Figure 1 summarizes the number of papers published per year and 

total, using the three previously cited indices: SPI, PDSI and SPEI. For this figure, the 

search terms “drought” and the respective drought index were used in Web of Science. 

It can be seen that SPI is by far the most used drought index, although SPEI is gaining a 

lot of prevalence in recent years. The PDSI was the first drought index to appear in 

scientific literature, and has been used consistently used since, although it was never as 

widely used as SPI and SPEI. In addition, a significant increase in drought research can 

be observed in recent years, with around 70% of the papers published in the last 5 years. 



 
 

Nonetheless, the drought indicators based on remote-sensing data of vegetation 

condition do not fit well in the previous classification of indicators according to drought 

type. This refers to indicators such as the widely used Normalized Differential Vegetation 

Index (NDVI), or Vegetation Condition Index (VCI), proposed by Kogan (1995) and based 

on NDVI. AghaKouchak et al. (2015) review the state-of-the-art with respect to these 

remote-sensing-based indicators and their potential. They indicate that the main 

limitation related to these indicators is the short length of record of  many of the 

currently available satellite observations, often limited to a decade or less. On the other 

hand, they highlight the current and future possibility of development of composite 

drought indicators. Such composite or combined indicators, that combine traditional 

climate and satellite-based drought indices, have been proposed in a number of studies 

in recent years (Sepulcre-Canto et al., 2012). Keyantash and Dracup (2002) were among 

the first to propose such an approach. They called their index “Aggregate drought 

index”, and it contained information on all physical forms of drought (meteorological, 

hydrological, and agricultural) through selection of variables that are related to each 

drought type. Such indicators could contribute significantly to produce a simple and 

more comprehensive picture of drought. 

 

Figure 1. Number of papers using different drought indices, per year and total, 

according to Web of Science. 

Purdy et al. (2019) flag an important problem with all these different indicators, which 

is that drought indicators are often designed following a top-down approach, as 

scientists traditionally design drought indicators with little input from the end users, 

resulting results in indicators that are sometimes not aligned with needs of stakeholders 

(Steinemann et al., 2015). They propose that important improvements can be made in 

the design of drought indicators from the perspective of product design. Despite 

stakeholders having many drought indicators to their disposal, they are unsure if any of 

them was suitable to support their operations. As a consequence, efforts have been 



 
 

made to simplify and improve the user experience, and create a “general” drought 

indicator. Examples are the United States Drought Monitor (“United States Drought 

Monitor,” 2020) or the European Drought Observatory (JRC European Commission, 

2020), that give a quick “snapshot” view of the drought situation at continental scale. 

However, according to Purdy et al. (2019) this “one-size-fits-all” approach may not fit 

any one stakeholder group well either. In a revision study, Bachmair et al. (2016) found 

33 providers of operational drought monitoring, and, while they detected a lot of 

variability in the used indicators, they also report that the most recent trend leans 

towards using composite indicators. They also flag an important research gap, that the 

monitoring of impact of drought lacks systematization. Their review found 14 research 

papers assessing the relation of drought indicators to crop yield, 7 to remotely sensed 

vegetation stress, 6 to text-based data and 4 to other impact variables or several in 

parallel. These relatively low numbers indicate that more research effort needs to be 

done in the analysis of the relation between drought indicators and the impact of 

droughts, such as yield loss or crop damage. 

 

 

The hypothesis behind this study is that drought research, and especially research into 

the impact of droughts on agricultural crop production, needs to be adapted to the 

specific temporal and spatial scale under study, that can range from local to regional to 

national, and from past to present to future. The different spatial scales are related to 

data inputs and decisions, as proposed by Purdy et al. (2019) as shown in Figure 2.  

 

Figure 2. Data dependencies and decisions supported by different stakeholders at 

different spatial scales of interest (reproduced from Purdy et al. (2019)) 



 
 

The overall objective of this study is to improve the understanding and monitoring of 

agricultural droughts at different scales. For this purpose, new drought indicators have 

been proposed and tested at scales ranging from the local scale of Cordoba, to the 

regional scale of Andalusia, to the national scale of Spain.  

This has allowed to address novel issues such as how external conditions that affect the 

relation between droughts and agricultural production at these scales, for instance soil 

properties or crop type. This has been discussed in more details in chapters 1 and 2, 

where the relation of the newly proposed drought indicators with yield and agricultural 

insurance data is analyzed. In chapter 3 an outlook into future drought predictions is 

given by incorporating global climate change predictions. 

The present study is organized as follows, according to an increasing spatial scale and 

the time frame analyzed: 

 

Figure 3. Organization of this study, and relation to temporal and spatial scales. 
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Abstract: The early and accurate detection of drought episodes is crucial for managing agricultural
yield losses and planning adequate policy responses. This study aimed to evaluate the potential of
two novel indices, static and dynamic plant water stress, for drought detection and yield prediction.
The study was conducted in SW Spain (Córdoba province), covering a 13-year period (2001–2014).
The calculation of static and dynamic drought indices was derived from previous ecohydrological
work but using a probabilistic simulation of soil moisture content, based on a bucket-type soil
water balance, and measured climate data. The results show that both indices satisfactorily detected
drought periods occurring in 2005, 2006 and 2012. Both their frequency and length correlated well
with annual precipitation, declining exponentially and increasing linearly, respectively. Static and
dynamic drought stresses were shown to be highly sensitive to soil depth and annual precipitation,
with a complex response, as stress can either increase or decrease as a function of soil depth, depending
on the annual precipitation. Finally, the results show that both static and dynamic drought stresses
outperform traditional indicators such as the Standardized Precipitation Index (SPI)-3 as predictors
of crop yield, and the R2 values are around 0.70, compared to 0.40 for the latter. The results from
this study highlight the potential of these new indicators for agricultural drought monitoring and
management (e.g., as early warning systems, insurance schemes or water management tools).

Keywords: drought indicators; drought monitoring; plant water stress; crop yield; Spain

1. Introduction

Drought is one of the main natural hazards affecting agricultural crop production and resulting
in food insecurity [1,2]. Kim et al. [3] analyzed the global patterns of crop production losses associated
with droughts between 1983 and 2009 and concluded that three-fourths of the global harvested
agricultural production areas were affected by drought-induced losses. Leng and Hall [4], analyzing
global yield losses for different crops under global change, project that yield loss risk will increase
in the future. Moreover, their predictions, using an ensemble of models, show that this risk grows
non-linearly with an increase in drought severity. Many drought indices focus on the role of water
(e.g., SPI, the standardized precipitation index, including only precipitation), although there is some
discussion in the scientific community that heat stress might play an equally or even more important
role in this yield decline. In a study on historic crop yields in the US, Ortiz-Bobea et al. [5] found
an important effect of water stress, although they point to heat stress as the primary climatic driver of
future yield changes under climate change. Especially in water-limited environments, however, studies
clearly point to drought as the primary driver [6]. However, it is clear that both drought and extreme
heat usually occur simultaneously [7]. Lesk et al. [8] estimate a reduction in cereal production across
the globe by 9–10% due to the combined effect of droughts and extreme heat. Climate models project
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a particularly worrying increase in the frequency and magnitude of extreme events such as droughts for
specific areas such as the Mediterranean. This region is considered to be a drought hotspot. Drought is
already of great concern today, and climate projections are especially worrying in the Mediterranean [9].
This is combined with the fact that agriculture plays a vital role in its economy, occupying nearly 50%
of its total land area. Rain-fed crops are those most likely to come under pressure first by climate
change and droughts, although prolonged droughts will also affect irrigated lands and increase the
need for more efficient irrigation systems with higher water-use efficiency [10]. Nearly a fifth (21%) of
the Mediterranean region is under irrigation, and agricultural water demand represents over 50% of
the total water demand in Mediterranean Europe and 81% in Eastern and Southern Mediterranean
countries [11].

In order to respond to and control droughts, by managing food resources, planning policy
interventions, or assessing agricultural insurance damage [12], it is crucial to assess their impact on
agricultural crop yield in a timely and accurate manner. Over the last decades, researchers have
developed various drought indices to understand drought intensity and its effects. Meteorological
drought indices—for example, the widely used Standardized Precipitation Index (SPI) [13] or the
Standardized Precipitation Evapotranspiration Index (SPEI) [14]—have proven very successful but are
limited to easily available climatic data. However, these data are often not available at a high spatial
resolution due to the sparse distribution of weather stations. Satellite-based drought indices are widely
used in agronomic studies; for example, the Normalized Difference Vegetation Index (NDVI) [15]
offers a good proxy for vegetation stress. In recent years, several of these indicators were also used
simultaneously in combined drought indicators with good results [16,17]. Peña-Gallardo et al. [18]
assessed the performance of different meteorological drought indices in Spain for predicting crop yield
and found SPI and SPEI to be best correlated with yield. García Leon et al. [19] analyzed a wider range
of drought indices and found that satellite-based indices, in particular, the Vegetation or Temperature
Condition Indices (VCI/TCI), were able to explain 70% and 40% of the annual crop yield level and crop
yield anomaly variability, respectively, for winter wheat and barley.

A better understanding of how drought impacts agricultural production requires comprehending
how drought impacts ecohydrological processes. Ecohydrological research has long focused on the
interactions and interrelationships between hydrological processes and the structure and function
of vegetation, especially its response to drought. However, not much of this research has made its
way into the development of drought indicators, which generally focus on either the description of
meteorological patterns alone, through meteorological drought indices (e.g., the SPI, rainfall alone,
or the SPEI, the Standardized Precipitation Evapotranspiration Index, using rainfall and potential
evapotranspiration), or on the observation of the effects of these droughts on plants (e.g., NDVI-based
indices). The modulating effect of soil is not generally taken into account in existing drought indices.
However, in ecohydrological literature, such a framework does exist and could be very useful for
describing the effects of drought on agricultural crop yield. A modelling framework to describe
stochastic soil moisture patterns and their effect on vegetation stress was developed in a series of
papers by Laio et al. [20], Porporato et al. [1], and Rodriguez-Iturbe et al. [21]. Their research proposed
two important indicators, static and dynamic stresses, to assess the effect of drought on plants and the
interaction of soils in this process. However, no direct validation of this methodology was performed.

The objective of this paper is therefore to evaluate the use of static and dynamic stresses as
a drought indicator. The specific objectives are to (1) calculate static and dynamic stresses for a test area
in SW Spain, (2) assess the sensitivity of these two indicators to rainfall and soil conditions, and, finally,
(3) validate their performance as predictors of measured crop yield, in comparison to commonly used
drought indicators.
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2. Materials and Methods

2.1. Study Area

The study area corresponds to the province of Cordoba, located in the center of Andalusia,
SW Spain (Figure 1). This area was selected because yield data were only available at the provincial
level (see below). The climate is Mediterranean, with dry, hot summers (Köppen-Geiger climate
Csa, [22]). The average annual rainfall for the Cordoba airport station between 1959 and 2018 was
604 mm, with a standard deviation of 243 mm. This high standard deviation illustrates the important
interannual variability, with annual rainfall varying between 280 and 1297 mm. The mean annual
temperature was 18.0 ◦C.
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Figure 1. Location of study site.

Cereal production in Cordoba province is centered around the Guadalquivir river, and it is part of
one of the main cereal-producing areas of Spain [19]. This area is known as the Campiña. The weather
station “El Carpio” was selected to be representative for this area (37◦54′50′′ N, 4◦30′14′′W). Soils in the
Campiña area are derived from Miocene marls and are typically Vertisols, with a high proportion
of expansive clays of ca. 40%. These soils are highly fertile and allow for the typical crop rotation
in dryland Mediterranean areas of cereal followed by sunflower during the summer months. Cereal is
generally sown during the month of November or early December, depending on the rainfall in that
particular year. It is usually harvested during the month of June or early July.

2.2. Calculation of Static and Dynamic Stress Indicators

Porporato et al. [1] propose a model framework to quantify vegetation stress related to the soil
moisture conditions, based on key concepts of plant physiology. They define a static, ζ, and a dynamic
water stress, θ, the latter also taking into account the temporal dimension in the definition of water stress.

The first drought indicator, static stress, was calculated as a function of stomatal closure.
Stomatal closure occurs over the entire scale of water stress and starts with the so-called incipient
stomatal closure at a soil moisture content of W*. The other end of the scale corresponds to complete
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stomatal closure, in which the plant starts wilting, corresponding to a soil moisture content called the
permanent wilting point, Wpwp. Static stress is then defined for the different ranges of soil moisture as

ζ(t) = 0, for W(t) > W∗

ζ(t) = 1, for W(t) < Wpwp

ζ(t) =
[

W∗−W(t)
W∗−Wpwp

]q
, for Wpwp ≤ W(t) ≤ W∗

(1)

These equations show that static stress is taken as being zero when the soil moisture is above
the level of incipient stomatal closure, W*, and that it reaches a maximum value equal to 1 when the
soil moisture equals the wilting point. In between these soil moisture values, the vegetation water
stress depends on the soil moisture deficit. Plant stress can increase non-linearly with soil moisture
deficit, where the coefficient q is a measure of this non-linearity. Porporato et al. [1] suggest that
q can vary with plant type and, to a lesser degree, with soil type, although no data exist at present.
They suggest a value between 1 and 3, and, in this study, we used a value of 1, implying a linear soil
moisture–stress relationship.

The static stress z(t) is calculated at a daily time step. The overall static water stress, z, is then
calculated by integrating the individual positive values of z(t) over time, excluding periods where
z = 0. This is because the mean value of water stress should indicate those periods in which the plant
is actually under stress, and including nil values without stress in the overall mean would lead to
an indicator that is not very informative. In this study, we calculated z over the duration of the growing
season; for wheat in the study area, this is between November and June, as will be discussed in detail
below. This is because, obviously, only plant water stress in this period has an impact on crop yield.
When there is no crop present, the soil moisture deficit cannot contribute to the calculated stress index.
The same will be valid for dynamic water stress.

The development of the second indicator, dynamic stress, stems from the realization that the
linkage of soil moisture dynamics and plant water stress is a complex problem, due to the stochastic
nature of the soil moisture dynamics and the complexity of plant responses [1]. Static stress only takes
into account the mean intensity of the plant water deficit but contains no information on its duration
and frequency. Therefore a second indicator is proposed, a dynamic stress index that couples the static
stress, which represents the integrated effect of the excursion of soil moisture below a critical level
W*, with the mean duration and frequency of these stress events, termed, respectively, TW* and nW*,
as follows:  θ =

(
ζ TW∗
k Tseas

)1/
√

nW∗ , if ζ TW∗ < k Tseas

θ = 1 , otherwise
(2)

where Tseas is the duration of the growing season and k is a parameter.
The rationale behind this equation is explained in detail by Porporato et al. [1]. Briefly, the idea

behind it is that the same value of z can have a very different effect depending on whether drought
occurs as frequent, small episodes or as one, longer episode. For simplicity, it is assumed that a linear
relation exists between vegetation stress and the duration of that stress. At present, no data exist to
justify a non-linear relation. Therefore, q relates directly to the product of zTW*. However, the actual
vegetation stress cannot increase indefinitely with zTW*. The upper value is fixed by the parameter k,
so permanent plant damage occurs when zTW* > kTseas, and in these cases, the value of q reaches its
maximum of 1. The value of k is set to 0.5, following Porporato et al. [1].

2.3. Soil Water Balance

To calculate the soil water balance, we followed the same approach presented by
Jiménez-Donaire et al. [17]. Soil moisture dynamics are calculated with a simple bucket model,
using a volume-balance equation applied over the root zone and taking into account the main processes
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of infiltration, evapotranspiration and deep seepage. Therefore, the calculated soil moisture values are
representative of the average moisture content over the root-zone depth, h.

To evaluate the soil moisture dynamics, the simple water balance model of [23] was used. In this
model, the water depth in the soil profile, W, evolves with time, t, following the contribution of the
infiltration of the rain, f, and the extraction of the evapotranspiration, e, and of the deep percolation or
of the surface and subsurface runoff, g. The balance was computed at the daily time scale:

dW(t)
dt

= f − e− g (3)

The infiltration depth is estimated from the rain depth, p; the wetness or relative soil water content,
normalized by the maximum value, Wmax, so ω =W/Wmax; and a parameter m, with the empirical
approximation proposed by Georgakakos [24]:

f = p(1−ωm) (4)

The deep percolation or runoff loss is estimated by a simple potential function with the saturated
hydraulic conductivity, ks, and λ, the index of pore size distribution of Brooks and Corey [25].

g = ksω
3+2/λ (5)

Finally, the daily evapotranspiration rate is estimated as the FAO Penman–Monteith [26] potential
rate, e0, modified by the wetness and the crop coefficient, kc:

e = ωkce0 (6)

The values for kc for cereal were set at 0.35 (November to December), 0.75 (January to February),
1.15 (March to May) and 0.45 (June), following recommendations by FAO [27]. The other relevant
variables used in the water balance are cited in Table 1.

Table 1. Main soil and plant parameters used in the soil water balance and to calculate plant stress.

Parameter Value Source

m (-) 0.1 Mean value of the interval proposed by Brocca et al. [23]

Ks (mm day−1) 38.4 Estimate of soil water properties by Rawls and Brakensiek [28]; representative value
for clay soil according to USDA classification

λ (-) 0.15 Derived from graphics of the parameter l of Brooks and Corey [25] as a function of soil
texture, organic matter content and increase in soil porosity above the reference [29]

Ws (m3/m3) 0.45

As proposed by Vanderlinden [30] calculated from the soil map of AndalusiaWfc (m3/m3) 0.32
Wpwp (m3/m3) 0.22

Wr (m3/m3) 0.05
W* (m3/m3) 0.275 Following Doorenbos en Pruitt [27], taken as 55% of the total available water for cereal

q (-) 1 Porporato et al. [1]
k (-) 0.5 Porporato et al. [1]

h (m) 1 Fan et al. [31]

2.4. Crop Yield Data

Harvest data spanning the years 2003 to 2015 were collected from the Ministry of Agriculture,
Fisheries and Food [32], with these statistics being pooled at the provincial level. For this study, focusing
on wheat crop yields, we used the data for the Cordoba province, as this is an area representative of
one of the main cereal-growing areas in Mediterranean Spain, as mentioned above. The total wheat
production area changed over time, from 146,837 ha in 2003 to 84,314 ha in 2015, of which 77–90%
is rainfed. The irrigated wheat crop area occupies about 14,000 ha and has remained more constant
over this period. It was not taken into account for this study, as it is not likely to be affected equally
by drought.
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3. Results

3.1. Soil Moisture Dynamics

Rainfall is very seasonal in the study area, with a clearly defined wet and dry season. It is also
highly variable within the study period, with values ranging between 274.8 mm (year 2012) and
853.4 mm (year 2010). This rainfall forcing creates a clearly bimodal probability distribution function of
soil moisture, with two marked peaks, shown in Figure 2. The results shown here represents normalized
soil moisture values, i.e., S= (W−Wr)/(Ws −Wr), over the entire study period, from 2001–2014. Values of
0 correspond to a soil moisture status equal to residual soil moisture, while values of 1 represent
total soil saturation. This figure clearly shows how this bimodal distribution is the resulting sum of
a well-marked dry and wet season (respectively, represented in brown, taken from May to October,
and blue, taken from November to April). The lower peak, corresponding to the dry season, is close to
0.18, and the other peak, corresponding to the wet season, is around 0.65. The mean overall relative
soil moisture is 0.37, with minimum values close to 0 and a maximum value of 0.78. These results
provide a good indication that the established water balance model performs well. This is typical for
Mediterranean areas, and, although there are no soil moisture measurements available for the study
site under cereal, in situ soil moisture observations at a nearby site under olive cultivation showed
a very similar bimodal probability density function [33]. These authors also observed a dominating
peak corresponding to dry soils for residual water content and another, lower peak at intermediate
soil moisture values. To show the variation in soil moisture over the year better, Figure 3 depicts the
evolution of normalized soil moisture, S, over the year. In this figure, the mean value of soil moisture is
shown in bold, and the gray areas represent the 5 to 95% percentiles, calculated based on daily values
of the 2001–2014 period. This figure clearly shows that during the summer dry period, soil moisture
drops to a minimum and its variability is about half of that in the wet winter period. This means that
all the years analyzed are characterized by an absence of rainfall in this period and a drying out of the
soil to values a little above residual soil water content. Around October, the soil moisture starts rising
again sharply as the soils are replenished by rainfall. In this period, the variability also rises sharply,
as during some wet years, the soil water content is close to its maximum by October, and in other years,
the soil moisture remains dry throughout the fall and winter. This can especially be seen in the 5th
percentile lower values remaining low. After January, the average soil moisture remains constant until
March, after which it drops steadily, although, during wet years, soil moisture can remain high till
May, while in dry years, as mentioned before, the soil is never replenished.
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3.2. Static and Dynamic Stress Indicators

Figure 4 shows the evolution of the modelled soil moisture over the study period, in blue, and the
resulting static plant water stress, in gray. The extension of each growing season is indicated in green.
Static stress generally drops to 0 during the wet winter months and rises to a maximum value of
1 as soon as the soil dries out in spring. Due to the dry Mediterranean summer, it is normal to have
a maximum static stress value of 1 outside of the growing season, but these values were not taken
into account for the overall yearly calculation. The dry period between 2005 and 2006 is interesting,
as these were particularly dry years, and the soil moisture during these years remained low. Therefore,
the resulting static stress values remained at a maximum throughout the 2006 growing season. The same
happened in 2012. On the other hand, the 2008 growing season was one of the years with the lowest
static stress values.
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The dynamic stress is calculated based on the static stress but also taking into account the
number and mean duration of the stress events throughout the growing season, as described earlier.
This indicator is therefore only calculated once for each growing season. Figure 5 shows how both
variables, the number and mean duration of the drought stress events (nW* and TW*, respectively),
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are related to annual precipitation. This figure clearly shows how the dry years are characterized by
a single, long stress event. Three years are characterized by a single stress period (nW* = 1) that lasts
almost the entire growing season (8 months or 243 days). These years correspond to the growing seasons
of 2005, 2006 and 2012 (the hydrological years of 2004–2005, 2005–2006 and 2011–2012, respectively),
with an annual precipitation of around 300 mm, i.e., less than half the average annual precipitation
in this area. Wetter years are characterized by more frequent, but shorter, stress periods. The number of
stress periods increased linearly with annual precipitation, while their duration decreased exponentially.
In both cases, the fit was significant, although the scatter was high, resulting in a moderate fit with
R2 values of 0.40 and 0.50, respectively. The relationship between the number of stress periods and
annual precipitation is probably not linear but, rather, characterized by a maximum value and then
drops to 0 for higher values of annual precipitation. However, in the study area, this did not occur
during the analyzed time period.

Water 2020, 12, x FOR PEER REVIEW  8  of  15 

 

Figure 4. Evolution of normalized soil moisture (blue) and static stress (gray) over the study period. 

Growing season extent is indicated in green. 

The dynamic  stress  is  calculated  based  on  the  static  stress  but  also  taking  into  account  the 

number and mean duration of the stress events throughout the growing season, as described earlier. 

This indicator is therefore only calculated once for each growing season. Figure 5 shows how both 

variables, the number and mean duration of the drought stress events (nW* and TW*, respectively), are 

related to annual precipitation. This figure clearly shows how the dry years are characterized by a 

single, long stress event. Three years are characterized by a single stress period (nW* = 1) that lasts 

almost  the entire growing season  (8 months or 243 days). These years correspond  to  the growing 

seasons  of  2005,  2006  and  2012  (the  hydrological  years  of  2004–2005,  2005–2006  and  2011–2012, 

respectively), with an annual precipitation of around 300 mm, i.e., less than half the average annual 

precipitation in this area. Wetter years are characterized by more frequent, but shorter, stress periods. 

The  number  of  stress  periods  increased  linearly with  annual  precipitation, while  their  duration 

decreased exponentially. In both cases, the fit was significant, although the scatter was high, resulting 

in a moderate fit with R2 values of 0.40 and 0.50, respectively. The relationship between the number 

of  stress  periods  and  annual  precipitation  is  probably  not  linear  but,  rather,  characterized  by  a 

maximum value and then drops to 0 for higher values of annual precipitation. However, in the study 

area, this did not occur during the analyzed time period. 

 

Figure 5. Relation of number  (nW*) and mean duration  (TW*) of drought  stress events with annual 

precipitation (Panual). 

Finally, the relation between the static and the dynamic stress is shown in Figure 6 and is fitted 

by a power relationship. Although this is not the best possible fit in existence, it is used for theoretical 

considerations, as a power relationship can be deduced from Equation (2). In this equation, a power 

relation can be derived between static and dynamic stresses  if the other variables do not vary too 

much. Indeed, it can be seen that the values of the product kTseas remain constant for a given crop 

type, in this case, cereal. The variation in the other two variables, the number and length of drought 

stress events, nW* and TW*, is shown in Figure 5. TW* is generally around 50 days, as most years have 

multiple short drought periods, except  for  three years with a single drought  that  lasts  the whole 

growing season (8 months or 243 days). This power relationship is of interest for characterizing the 

soil–climate–plant system. 

Figure 5. Relation of number (nW*) and mean duration (TW*) of drought stress events with annual
precipitation (Panual).

Finally, the relation between the static and the dynamic stress is shown in Figure 6 and is fitted by
a power relationship. Although this is not the best possible fit in existence, it is used for theoretical
considerations, as a power relationship can be deduced from Equation (2). In this equation, a power
relation can be derived between static and dynamic stresses if the other variables do not vary too
much. Indeed, it can be seen that the values of the product kTseas remain constant for a given crop
type, in this case, cereal. The variation in the other two variables, the number and length of drought
stress events, nW* and TW*, is shown in Figure 5. TW* is generally around 50 days, as most years
have multiple short drought periods, except for three years with a single drought that lasts the whole
growing season (8 months or 243 days). This power relationship is of interest for characterizing the
soil–climate–plant system.
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3.3. Sensitivity of Static and Dynamic Stress Indicators to Soil Depth

As discussed previously, the two stress indicators are closely related to the amount and distribution
of the rainfall during the growing season. However, another important variable is the soil type; the soil
acts as a reservoir to store water and supply it to the plant when needed. The calculation of soil stress is
therefore closely related to the water buffering capacity of the soil, expressed by its total available soil
water content. This variable is calculated from the soil depth and from soil water retention behavior,
which varies as a function of soil texture and structure. The sensitivity of static and dynamic stresses
to the soil water buffering capacity is analyzed here by varying the soil depth. It is assumed here
that plant roots can explore the full soil depth, and therefore, soil depth is the limiting variable for
root-zone soil moisture storage. This variable is used here to change the soil water-holding capacity,
so the same result could be obtained by varying the soil texture or structure, although these variables
are not analyzed explicitly. Soil depth can be used as a proxy for both, as, for example, the effect of
increasing the pore space would be the same as that of increasing the soil depth. Figure 7 shows the
variation of static and dynamic stresses in relation to soil depth. A complex behavior emerges that
can be better understood as a function of annual precipitation. Therefore, the different years that fall
within the study period were classified into four groups from lower to higher total annual precipitation
(brown to blue color). Static and dynamic stresses behave similarly, with small differences that will be
analyzed in detail. First of all, for low precipitation values (<431 mm), static and dynamic stresses
both increase with soil depth. This increase is gradual for static stress and quite abrupt for dynamic
stress. For higher precipitation values (>513 mm), static and dynamic stresses decrease with soil depth.
A third group of precipitation values fall in between both behaviors, and first decrease (up to 600 mm
soil depth) and then increase.

The reason for the increase with soil depth for lower precipitation values (below 431 mm) is that if
both are low, the stress in the system increases for larger soil depths, as the same amount of rainfall
results in a lower soil moisture content since the water infiltrates deeper and is averaged out over
a larger soil volume. Since the rainfall is so low, there is no benefit from the existence of deep, fertile
soils under these conditions. Sites with this soil–rainfall combination would be highly unsuitable for
cereal growth. As soon as the rainfall increases, especially for the two classes above 513 mm, it can
be seen that deeper soils actually benefit plant growth and reduce plant water stress. The excess soil
moisture can be stored under these circumstances, and during dry periods, as long as they are not too
pronounced, the soil system can keep up with plant water uptake. The third group (413–513 mm) falls
in between both behaviors.
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3.4. Validation of Static and Dynamic Stresses for Prediction of Crop Yield

It has become clear from previous results that both plant water stress indicators are straightforward
to calculate, and the complex response to annual precipitation and soil characteristics has been assessed.
The key question that remains is whether these new stress-based drought indicators are of practical
use for the prediction of crop yield.

Figure 8 shows the prediction of crop yield as a function of three different drought indicators:
the two drought indicators that were evaluated in this study, static and dynamic stresses,
and a commonly used drought indicator, SPI-3. Both static and dynamic stresses are shown to
be very good indicators, with R2 values of 0.77 and 0.78, respectively. By comparison, SPI-3 performs
very poorly. This is surprising given that other studies generally report a reasonable performance of
this indicator. It should be noted that one year, marked in red, was considered an outlier. The reason
for this is that this point corresponds to the 2006 growing season. During that year, significantly less
surface area of rainfed wheat was sown by farmers (−30%), as a response to the bad harvests in the
wake of the 2005 drought. This probably resulted in an artificially high average crop yield for that year,
compared to other years, as more marginal lands were taken out of production.Water 2020, 12, x FOR PEER REVIEW  11  of  15 
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4. Discussion

The results of the sensitivity analysis show a high response of the static and dynamic stresses to
soil depth. This shows how important it is to take into account soil properties and plant rooting depth
in drought prediction and how both variables can modulate the effect of meteorological conditions
on plant water stress. Different soil-moisture-based drought indicators are being developed and
tested, although accurate information on soil depth or properties is often missing in these models.
Sepulcre-Canto et al. [16] use a Soil Moisture Anomaly index as part of their combined drought
indicator. This index is calculated using the LISFLOOD model at a very coarse resolution of 5 km.
While useful for continental-scale predictions, the model’s simplifications and spatial scale may make
it result in a large approximation of the actual soil moisture content and render it less accurate on
the farm scale or for agricultural crop yield predictions. A similar multi-indicator approach was
tested by Jiménez-Donaire et al. [17], who included a soil moisture deviation as one of the three
indicators that made up the drought index and concluded that it corresponded well to agricultural
insurance claim data. Narasimhan and Srinivasan [34] developed the Soil Moisture Deficit Index
(SMDI), which draws on the hydrological model SWAT, but, again, the spatial resolution is rather
coarse (16 km2). Sohrabi et al. [35] developed a specific soil moisture drought index, named SODI,
to characterize droughts by calculating the deviation of soil moisture from field capacity. When it
was tested in Idaho (USA), the authors concluded that this index outperformed other drought indices
such as the standardized precipitation index (SPI), the standardized precipitation evapotranspiration
index (SPEI) and the Palmer drought index. However, this is based only on an intercomparison
between these drought indices, as they do not use external datasets such as agricultural crop yield
data to validate these results. Other promising approaches have relied on the remote sensing of soil
moisture rather than modelling in situ soil moisture. For example, Martínez-Fernández et al. [36]
developed the Soil Water Deficit Index (SWDI), and Sánchez et al. [37], the Soil Moisture Agricultural
Drought Index (SMADI), based on SMOS and MODIS/SMOS products. The remote sensing of soil
moisture has the disadvantage that it is only sensitive to superficial moisture [38]; for example, a SMAP
radiometer can measure soil moisture up to a 5 cm depth under optimal conditions [39]. However,
different studies have shown a good correlation of in situ root-zone soil moisture measurements
with remotely sensed superficial soil moisture data [39] or with specifically developed root-zone
soil moisture products, such as the 0–100 cm L4_SM that combines the advantages of spaceborne
L-band brightness temperature measurements, precipitation observations and land surface modeling
with [38,40]. This type of work shows that there is good potential for satellite-based soil moisture
drought indices, although, as far as the authors are aware, validation against independent crop yield
data, as was performed in this study, has not yet been performed.

Finally, this study also shows the importance of rooting depth for assessing crop sensitivity to
drought. This implies that when assessing the agricultural effects of droughts, it is crucial to make
specific calculations for different crops. In presently used indicators, this is generally not included,
as many drought indicators use reference crop evapotranspiration, and those that take into account soil
moisture, a single value for soil properties. This shows that future research should be geared towards
combining land use maps with drought indicators to develop specific evaluations for different crop
types. In short, our results show that it is of critical importance to correctly estimate root-zone soil
moisture in order to calculate drought indices, as both soil depth and rooting depth influence this
variable. Our study has performed this through probabilistic modelling because of the long time frame
involved, but other approaches using remote sensing products and data assimilation for the estimation
of root-zone soil moisture are promising [39,41].

With regard to crop type, it is also important to consider the stage of crop growth. In this study,
water stress is currently considered to be equally important throughout the growing season. However,
we know that there are certain stages of plant development that are more susceptible than others.
Further research could focus on taking this into account, for example, by giving larger weight to
drought stress in these periods in the calculation of the overall indicator. However, this escapes the
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objectives of this study, whose aim was to test these two simple stress indicators, in the form in which
they were designed by Porporato et al. [1]. Further research should aim at perfecting these to obtain
even better crop yield predictions.

5. Conclusions

This study evaluated two novel indices for drought prediction, static and dynamic plant water
stress. These indices are based on early work in ecohydrology by Porporato et al. [1]. Both indices are
calculated from simulated soil moisture and take into account the stress that a soil moisture deficit
induces on plants. The simulation of soil moisture yields good results, with a bimodal probability
distribution that can be clearly divided into two separate populations, one corresponding to the dry
season and the other, to the wet season. These results are similar to those of field studies using soil
moisture sensors that reported a similar bimodal probability distribution function.

Static and dynamic stresses were shown to detect and correctly quantify the occurrence of dry
years in the study period. The number and length of drought periods, two variables taken into account
to calculate dynamic stress, were shown to decrease and increase, respectively, with increasing annual
precipitation. Both static and dynamic stresses were shown to be highly sensitive to soil depth, and their
response behavior, increasing or decreasing, was found to be dependent on total annual precipitation.

Finally, the most important result of this study is that both indicators were found to be good
predictors of crop yield. The advantage of these two new indicators, compared to meteorological
indices, such as SPI or SPEI, is that the buffering effect of the soil’s water holding capacity is taken into
account. Therefore, the static and dynamic stresses were found to be superior to the SPI in terms of
crop yield prediction, at least in the water-limited conditions of Southern Spain.

In conclusion, both static and dynamic water stress are useful indices for drought detection and
quantification. Both indices are easily computed using limited datasets. Where more detailed data
are available, these indices can account for the type and depth of soil, in order to calculate spatially
distributed drought indices. In addition, they allow one to consider the effect of the length of the
growing season and the type of crop by selecting different threshold soil moisture levels for the onset
of plant water stress. While this study focused on cereal, further research could focus on evaluating the
potential of these indices in other crops or on determining these threshold values for different crops.
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Abstract. Drought prediction is crucial, especially where the
rainfall regime is irregular, such as in Mediterranean coun-
tries. A new combined drought indicator (CDI) integrating
rainfall, soil moisture and vegetation dynamics is proposed.
Standardized precipitation index (SPI) is used for evaluat-
ing rainfall trends. A bucket-type soil moisture model is em-
ployed for keeping track of soil moisture and calculating
anomalies, and, finally, satellite-based normalized difference
vegetation index (NDVI) data are used for monitoring vege-
tation response. The proposed CDI has four levels, at increas-
ing degrees of severity: watch, warning, alert type I and alert
type II.

This CDI was thus applied over the period 2003–2013 to
five study sites, representative of the main grain-growing ar-
eas of SW Spain. The performance of the CDI levels was
assessed by comparison with observed crop damage data.

Observations show a good match between crop damage
and the CDI. Important crop drought events in 2004–2005
and 2011–2012, distinguished by crop damage in between
70 % and 95 % of the total insured area, were correctly pre-
dicted by the proposed CDI in all five areas.

1 Introduction

Drought is a recurrent phenomenon on the Earth’s surface. It
is triggered by lack of water, or “an extended imbalance be-
tween supply and demand” in the precise expression of Hob-
bins et al. (2016), and may have economic, social and en-
vironmental impacts (Wilhite, 2000). Drought is one of the

most important natural disasters threatening our society. In
spite of its relevance, there is no proper definition of drought.
Tannehill (1947) called drought “the creeping phenomenon”,
given the complexity of accurately delimiting its start time
and end time and of adequately demarcating the spatial ex-
tent of its effects.

Wilhite and Glantz (1985) distinguished four main types
of droughts according to how the effects were noticed: (i) me-
teorological, due to the scarcity of rainfall; (ii) hydrologi-
cal, detected by low streamflow; (iii) agricultural, when soil
water is not sufficient to maintain a crop; and (iv) socioeco-
nomic, when it affects the normal functioning of society.

Drought occurs worldwide but it is especially frequent
in the Mediterranean region. In a recent analysis of a tree-
ring-based reconstruction of the summer season, the Palmer
drought severity index (PDSI) (Keyantash and Dracup, 2002)
for the period from 1100 to 2012, Cook et al. (2015, 2016)
detected the gravity of recent events in the area, which were
apparently induced by anthropogenic activity. Combining
two drought indices, one meteorological, the Standardized
Precipitation Index (SPI), for water supply, and the other hy-
drological, the standardized precipitation–evapotranspiration
index (SPEI), for water loss tendency, Stagge et al. (2017)
observed, for the European continent in the period 1958–
2014, that droughts were mainly driven by a temperature
rise with the inherent increase in the evapotranspiration rate,
whereas rainfall did not change appreciably. In the south-
western United States, Ting et al. (2018) found that, under
a CO2 warming scenario, earlier spring drying was mainly
due to a decreased mean moisture convergence. A “flash”
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drought occurring suddenly is frequently triggered by high
temperatures or by severe water deficits (Wang and Yuan,
2018). Under the influence of global warming, a hypothesis
has been formulated in which dry regions will tend to be-
come drier while wet regions will tend to become wetter, the
DDWW paradigm. Nevertheless, Yang et al. (2019) have ob-
served that, on the global scale, this paradigm is mainly con-
firmed in precipitation-driven drought, when the plant and
soil conditions are not considered.

One additional problem of drought is that it can spread to-
wards other regions, as Herrera-Estrada et al. (2017) discov-
ered in their Lagrangian analysis in several Earth regions.
Andreadis et al. (2005) have elaborated on severity-area-
duration maps, modifying an earlier proposal of Dalezios et
al. (2000) for severity-duration-frequency maps. Therefore,
drought is a present-day risk at least for a part of our society.

Drought characterization depends on the perspective of
the user. The meteorological drought is possibly the simplest
type to evaluate since it is reduced to a mere consideration
of the rainfall. The two main meteorological drought indices
are those mentioned above, the PDSI and SPI. Hydrological
drought requires the conversion of rainfall into runoff, which
can be done with the help of a hydrological model; the SPEI,
for instance, is a widely used hydrological drought index.
Nevertheless, Van Loon and Van Lanen (2012) have explored
in depth the definition of hydrological drought, starting from
the time perspective of the phenomenon, and distinguishing
several types in terms of the sequences rain to snow, wet to
dry, cold snow and warm snow seasons and what they de-
nominated as classical rain deficit. The use of a simple hy-
drological model and the establishment of some threshold
values allow Van Loon and Van Lanen (2012) to determine
the drought occurrence in several regions with distinct cli-
mate types. Drought severity is a function of the available
water storage units, as Van Loon and Laaha (2015) explained
in the review of an Australian dataset. Hobbins et al. (2016)
have modified the SPEI index by representing the potential
evapotranspiration and the atmospheric evaporative demand
on a proper physical basis, rather than on the air tempera-
ture as a proxy of it. Their evaporative demand drought index
(EDDI) is a useful indicator of drought extent, as was shown
by McEvoy et al. (2016) in the conterminous US. The esti-
mation of the agricultural drought index is somewhat similar
to that of the hydrological drought one, with the additional
complexity of crop behavior. Several models have been pro-
posed for the agricultural drought index estimation. As Per-
rin et al. (2001) warned, and Orth et al. (2015) later con-
firmed, the models set up to describe soil water evolution for
this purpose must be very simple and limited to soil water
balance. Hunt et al. (2009), Khare et al. (2013) and Sohrabi
et al. (2015) proposed reasonable soil water balance models,
differing only in their characterizations of rainfall infiltration,
in order to prevent the generation of excess rain, deep perco-
lation and actual evapotranspiration rate.

The different drought indices represent distinct aspects of
drought. Therefore, to gain a wider perspective, Kao and
Govindaraju (2010) introduced the use of copulas in a new
drought indicator denominated the joint deficit index (JDI),
based on the SPI for both precipitation and streamflow. Hao
and AghaKouchak (2013) formulated another copula, the
multivariate standardized drought index (MSDI), consisting
of the SPI and a standardized soil moisture index (SSI). This
index was very useful for detecting the drought onset and
duration. Alternatively, Zarch et al. (2015) used two separate
indices to assess droughts, the SPI and the reconnaissance
drought index (RDI). A different approach was suggested
by Hao et al. (2017) with a categorical drought prediction
model, the U.S. Drought Monitor (USDM), which proved to
be highly adequate for early warning. Azmi et al. (2016) de-
veloped a data fusion-based drought index, grouping differ-
ent indices with a clustering method.

The impact of drought on vegetation can be by means of
several indices. Kogan (1995) proposed a vegetation condi-
tion index (VCI) based on the normalized difference vegeta-
tion index (NDVI), which is a good indicator of vegetation
status, by combining the radiance of the visible and infrared
wavelengths to assess the drought effects. Some other indices
have been suggested, since NDVI is sometimes influenced by
other environmental factors (Quiring and Ganesh, 2010). The
normalized difference water index (NDWI) was introduced
by Gao (1996), and, using radiances in a higher wavelength
range than that of NDVI, it is less affected than the latter by
atmospheric conditions; it is also more sensitive to drought
than other indices (Gulágsi and Kovács, 2015). The Joint Re-
search Centre of the European Comission uses the fraction of
absorbed photosynthetically active radiation (fAPAR) gener-
ated from the signals acquired by the Project for On-Board
Autonomy - Vegetation (PROBA-V) sensor.

The abovementioned methods can be used to evaluate the
impact of drought on agricultural productivity in regions
worldwide, as Sepulcre-Cantó et al. (2012) have shown for
Europe. These authors proposed a combined drought indi-
cator using SPI, fAPAR and soil moisture calculated from a
regional hydrological model. For the management of local
policy and mitigation actions, such as farm-scale insurance
schemes, smaller spatial scales than those used by Sepulcre-
Cantó et al. (2012) are required.

The main objective of this work is to assess agricultural
drought by means of a combined drought indicator (CDI),
based on SPI and anomalies in soil moisture and NDVI.
This new CDI is thus related to crop damage data in rainfed
wheat-producing regions in southern Spain at the agricultural
province level, which corresponds to the most important item
of available yield data. It is expected that this new CDI will
be useful at the local policy level and for planning farm-scale
insurance schemes.
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Figure 1. Location of the study area (grey) and selected repre-
sentative points (blue dots) within the areas cultivated with cereal
(white).

2 Materials and methods

2.1 Study area

This study was made in Andalusia, southern Spain, during
the 10-year period between 2003 and 2013.

Andalusia has a Mediterranean climate with dry, hot sum-
mers (Köppen-Geiger climate Csa, Peel et al., 2007). Since
the main source of water is rain caused by the western and
southwestern winds carrying moist air from the Atlantic
Ocean, the distribution of precipitation is conditioned by the
orography of the region, with a main decreasing gradient
from west to east.

The effect of drought on agricultural production was eval-
uated in five representative areas, in each of which, four rep-
resentative locations were selected in a two-step procedure.
First, the distribution of the land use class “non irrigated
arable land” within the study area was analyzed, as shown
in Fig. 1. This land use distribution is derived from the re-
gional land use map (SIOSE: Soil Occupation Information
System of Spain) applied to Andalusia, 2005, equivalent to
the European CORINE database, on a scale of 1 : 10000.
This class occupies 20 %, 886 250 ha, of the total agricultural
area occupied in Andalusia, 4 402 760 ha (Censo Agrario,
2009). Although the non-irrigated arable land class also in-
cludes other noncereal crops, in our study area wheat is by
far the dominant crop. Five agricultural districts in Andalu-
sia were selected where it is the leading crop: Campiña de
Cádiz (Cádiz), Campiña Baja (Córdoba), Pedroches (Cór-
doba), Norte/Antequera (Málaga) and La Campiña (Sevilla).
In each of these districts, four representative point loca-
tions were selected, yielding a total of 20 point locations.
These point locations correspond to pixels that have a res-
olution of 250 m×250 m, equivalent to the resolution of the

NDVI imagery (see Sect. 2.4). These pixels were carefully
selected and subjected to a visual case-by-case analysis in
order to exclude anomalies and ensure a homogeneous land
use in the following remote sensing analysis. Each of the
20 point locations had to fulfill the following conditions
that were checked manually using aerial orthophoto imagery
from 2004 to 2013:

i. It contains homogeneous land use of rainfed wheat
within each pixel (with no other land uses present in
it);

ii. It lacks external landscape elements, such as ponds,
roads, canals, houses or natural vegetation patches that
could distort the NDVI signal;

iii. It has continuous wheat cultivation during the study pe-
riod (no fallow period).

2.2 Standardized precipitation index (SPI)

The SPI expresses the deviation of rainfall from its long-term
mean. SPI is calculated by fitting the precipitation data to a
gamma distribution, after which it is transformed into a nor-
mal distribution. The SPI values can then be interpreted as
representing the number of standard deviations by which the
observed anomaly deviates from the long-term mean. SPI
was calculated over 1-, 3- and 6-month periods, using pre-
cipitation series of between 42 and 69 years, namely SPI-1,
SPI-3 and SPI-6.

SPI-1 is theoretically best related to meteorological
drought, together with short-term soil moisture stress, es-
pecially in periods when crop growth is sensitive to them
(Guttman, 1999). SPI-3 has been shown to reflect short to
medium seasonal precipitation trends (Guttman, 1999). Bus-
say et al. (1999) and Szalai and Szinell (2000) evaluated the
relationship between SPI and agricultural drought through
soil moisture and found that SPI-2 and SPI-3 yielded the
best results. Other authors (Ji and Peters, 2003; Rossi and
Niemeyer, 2012) have reported a high correlation between
SPI-3 and vegetation response and, therefore, deemed this in-
dex to be the best suited for evaluating agricultural drought.
They deemed SPI-6 to be the best one for identifying longer-
term or seasonal drought trends.

The program “SPI_SL_6.EXE”, developed by the Na-
tional Drought Mitigation Center, University of Nebraska-
Lincoln, was used to calculate SPI. Details of this method
can be found in McKee et al. (1993) and Lloyd-Hughes and
Saunders (2002). The same classification used by McKee et
al. (1993) was used (Table 1), and a threshold value for defin-
ing a drought of SPI >−1.00 was employed following Can-
celliere (2004).

SPI values were calculated for each of the five agricultural
regions selected: Campiña de Cádiz (Cádiz), Campiña Baja
(Córdoba), Pedroches (Córdoba), Norte/Antequera (Málaga)
and La Campiña (Sevilla). The climate series selected in each
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Table 1. Classification of droughts according to SPI and their prob-
ability of occurrence following McKee et al. (1993)

SPI Category Probability
(%)

≥ 2.00 Extremely wet 2.3
1.50 to 1.99 Severely wet 4.4
1.00 to 1.49 Moderately wet 9.2
0.00 to 0.99 Mildly wet 34.1
0.00 to −0.99 Mild drought 34.1
−1.00 to −1.49 Moderate drought 9.2
−1.50 to −1.99 Severe drought 4.4
≤−2 Extreme drought 2.3

region was the one at their particular weather station that had
the longest available series.

2.3 Soil moisture anomaly index (SMAI)

The deviation of the soil moisture from its long-term mean
was expressed as a soil moisture anomaly index (SMAI).
SMAI values were calculated for each of the five selected
agricultural regions, similar to those of the SPI. To obtain this
index, we first calculated soil moisture dynamics by means
of the simple water balance model of Brocca et al. (2008).
The long-term mean soil moisture was taken as the 10-year
mean in the study period (2003–2013). In this water balance
model, the water depth in the soil profile, W , evolves with
time, t , following the contribution of the infiltration of the
rain, f , and the extraction of the evapotranspiration, e, and of
the deep percolation or of the surface and subsurface runoff,
g. The balance was computed on the daily timescale follow-
ing Eq. (1):

dW(t)
dt
= f − e− g. (1)

The infiltration depth is estimated from the rain depth, p,
the wetness or relative soil water content, normalized by
the maximum value, Wmax, ω =W/Wmax and a parame-
ter m, with the empirical approximation proposed by Geor-
gakakos (1986), using Eq. (2):

f = p
(
1−ωm

)
. (2)

The deep percolation or runoff loss is estimated by a sim-
ple potential function with the saturated hydraulic conduc-
tivity, ks, and λ, the pore size distribution index of Brooks
and Corey (1966) using Eq. (3):

g = ksω
3+2/λ. (3)

Finally, the daily evapotranspiration rate is estimated as the
FAO Penman–Monteith (Allen et al., 1998) potential rate, e0,
modified by the wetness, using Eq. (4):

e = ωe0. (4)

Table 2. Parameters for the water balance model used in this study.

Parameter Value Source

m (–) 10 mean value of the interval proposed
by Brocca et al. (2008).

Wmax (mm) 175 as proposed by Vanderlinden (2001)
in a study based on a soil map of An-
dalusia.

ks (mm d−1) 38.4 estimate of soil water properties by
Rawls et al. (1998); representative
value for clay loam according to
USDA classification.

λ (–) 0.15 derived from graphs of the param-
eter λ in Brooks and Corey (1966)
as a function of soil texture, organic
matter content and increase in soil
porosity above the reference value
(Rawls et al., 1983).

The parameter values adopted here are shown in Table 2.
The soil moisture anomaly index (SMAI) is then given by

Eq. (5):

SMAI=
W −W

σW
, (5)

where W is the long-term average soil moisture and σW its
standard deviation.

2.4 NDVI anomaly index (NDVIA)

Different agricultural drought studies have used satellite-
based vegetation indices as their main advantage is their spa-
tial and temporal resolution. NDVI values represent the plant
chlorophyll content, which is why they are highly suitable for
identification of agricultural drought. Limitations in its use
are related to the fact that NDVI may reflect non-drought-
related stress conditions, such as plant disease, and that soil
properties can induce a bias in its response. Therefore, it is
important to use NDVI-based drought evaluation in combi-
nation with other indices based on precipitation or soil water,
as is the case here. NDVI anomalies express deviations in
NDVI from its long-term mean, and these were evaluated on
a monthly basis but only taken into account from Novem-
ber to April, which is the normal growing season for rain-
fed winter cereal in Andalusia. Only during this period can
NDVI and its anomalies be expected to transmit information
on rain-fed cereal growth. The long-term mean NDVI was
taken as the 10-year mean in the study period (2003–2013).

Thanks to its spatial continuity, NDVI trends could be an-
alyzed for 20 different points; i.e., four points or pixels were
analyzed in each of the five agricultural regions selected.
This analysis yielded a total of 20 spatially different NDVI
anomaly indices. The NDVI anomaly index was calculated
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using Eq. (6):

NDVI anomaly index=
NDVIi −NDVI

σNDVI
, (6)

where NDVIi , NDVI and σNDVI are, respectively, its value
at a particular moment in time, its long-term mean value
and its standard deviation. NDVI data were derived from
Terra MODIS (moderate resolution imaging spectroradiome-
ter) that collects imagery for each point on Earth every 1–2 d.
Based on these data, a monthly average was calculated and
used for NDVIi (Department of Agriculture, Fisheries and
Environment, Government of Andalusia). For each of the five
regions, the final NDVIA index was then calculated based on
the average of the four points or pixels of that region.

2.5 Combined drought indicator (CDI)

The main idea behind the combined drought indicator (CDI)
for identifying agricultural drought is an idealized cause–
effect relation between water deficit and yield. There are
different phases in this relationship: a precipitation deficit
(phase 1) leads initially to soil water deficit (phase 2), which,
if prolonged over time, will result in crop water stress and
be reflected in the NDVI observed (phase 3), which finally
generates a reduction in cereal yields (phase 4).

In its simplest form, this CDI would allow us to identify
which cause–effect relationship phase the agricultural system
has reached in the event of a drought. This indicator would
then allow the establishment of a series of drought warnings,
depending on that phase. The CDI should be seen as a first
step towards designing that warning system.

This study proposes a CDI that combines three indices:

– SPI-3 to identify the first level of precipitation deficit
(phase 1)

– SMAI to identify anomalies in the soil moisture
(phase 2)

– NDVI anomalies to characterize the subsequent effect
of soil water stress on crops (phase 3).

The warning levels suggested for the CDI proposed are given
in Table 3. They aim and are expected to help policy makers
to prepare and take action in the case of droughts.

The CDI uses three different levels; the first two, watch
and warning, indicate that a drought could be imminent. The
highest level of the CDI is “alert”. The two types of alert in-
clude those cases in which a meteorological drought results
in a rapid yield decrease. The type I alert can occur even
without a previous anomaly in soil moisture values, which
could be related to intense droughts occurring during sensi-
tive phenological phases of the crop. Therefore, a type I alert
depends on only two indicators, SPI-3 and NDVI. The type
II alert is based on all three indicators composing the CDI
(SPI-3, SMAI and NDVI) so that these give firmer evidence
for the existence of an agricultural drought.

2.6 Insurance data

The insurance area data and those of areas affected by
drought per agricultural season for rainfed cereal were given
by Agroseguro, the Spanish agricultural insurance provider.
These data were disaggregated for each area of the five un-
der study and each agricultural season, from 2002–2003 to
2011–2012. Note that data for the last year of the study,
2012–2013, were not provided. Crop intensity damage is ex-
pressed as the percentage of surface area that was filed for
damage with respect to the total insured area and is avail-
able on an agricultural region scale. Crop damage of close to
100 % indicates important losses during that year.

3 Results

3.1 SPI

The SPI values calculated over a 3-month period (SPI-3) re-
flected short–medium term moisture conditions and provided
an estimate of the seasonal precipitation that was useful for
agricultural purposes. In our study area, defined in Sect. 2.1,
SPI-3 values at the end of April revealed the precipitation
trends during the plant reproduction stage and the grain de-
velopment. SPI-3 at the end of December showed moisture
conditions at the start of the growing season.

Figure 2 gives the trends in SPI-3 for all five selected agri-
cultural regions. The trends are similar in all regions, with
SPI-3 values moving periodically around the long-term mean
or 0 value. In the driest years, one can observe the high-
est negative peaks. For example, during the agricultural year
2004–2005, which was very dry, negative values of up to
−2.50 can be observed for Campiña de Cádiz, indicating
the drought severity. Another dry year was 2011–2012, when
values of up to−2.12 could be observed during the month of
February in La Campiña. So, clearly, the two main dry peri-
ods were correctly identified by the trends in SPI. However,
this drought indicator also defined other different periods that
were not markedly dry as being critical. In 2008–2009 all the
regions are distinguished for being critical SPI levels, albeit
for short periods of time and mainly towards the summer
or end of the agricultural year. Even in 2012–2013 critical
drought periods were flagged in four out of five regions.

3.2 SMAI

Figure 3 shows the variation in the SMAI over the period
studied and for each of the five agricultural regions. The
two main dry periods of 2004–2005 and 2011–2012 are not
consistently apparent. Generally, only two regions at that
time dipped below the −1 mark and are indicated in red:
(a) Campiña de Cádiz and (d) Norte/Antequera for 2004–
2005 and (a) Campiña de Cádiz and (b) Campiña Baja for
2011–2012. The year 2007–2008 seems to be marked by
drier soil water contents compared to the long-term mean, as

www.nat-hazards-earth-syst-sci.net/20/21/2020/ Nat. Hazards Earth Syst. Sci., 20, 21–33, 2020



26 M. d. P. Jiménez-Donaire et al.: Evaluation of a combined drought indicator

Table 3. Classification of the combined drought indicator (CDI).

Level Definition C: characteristics, S: situation, A: actions

SPI-3 SMAI NDVIA

Watch <−1 C: relevant precipitation deficit observed
S: probability of agricultural drought occurring
A: surveillance of the situation and preparation for actions

Warning <−1 <−1 C: relevant precipitation deficit translates into an anomaly
(deficit) in soil moisture
S: agricultural drought expected
A: activate response strategies for minimizing drought exposure

Alert type
I

<−1 <−1 C: precipitation deficit is accompanied by an anomaly in vegetation condition and
precipitation deficit leads to water stress in cereal
S: agricultural drought has started to affect yield negatively
A: fortification of response strategies and careful follow up of the situation

Alert type
II

<−1 <−1 <−1 C: precipitation and soil moisture deficit are accompanied by anomalies in the
vegetation condition, such as water stress in cereal after precipitation and soil
moisture deficit
S: agricultural drought has started to affect yield negatively
A: fortification of response strategies and careful follow up of the situation

critical levels are reached for four out of the five agricultural
regions.

3.3 NDVIA

Figure 4 shows a map indicating the spatial and temporal
variability in NDVI values over Andalusia for the year 2004.
Figure 4a indicates NDVI in April, right in the growing sea-
son, while Fig. 4b shows the same area after the cereal has
been harvested. The color red indicates low values of NDVI,
while green represents maxima of between 0.96 in April
and 0.92 in June. When comparing the distribution of the
main cereal-growing regions in the area in Fig. 1, these areas
present the most important variation between the two images,
with high values in April and low red ones in June.

Figure 5 shows the monthly variation in the NDVI
anomaly for the four selected pixels within the Campiña agri-
cultural region. The pixels in the other four agricultural re-
gions are not shown, but their trend is similar. There is, of
course, an important spatial variability within the area, such
that some differences appear between the four study loca-
tions. This can be attributed to different planting dates, crop
varieties or soil properties between the locations. Over the
study period, however, the same general temporal trends ap-
pear. Important negative deviations from the mean indicate
periods of high plant stress. Values of NDVI anomaly be-
low −1 are marked in red. Its evolution is similar to that of
SPI-3 and SMAI (Figs. 2 and 3), although there is clearly a
time lag effect. Plant stress generally only occurs after pre-
cipitation and a deficit in soil moisture. Also, the temporal
pattern is more erratic than in the case of SPI-3 and SMAI.
However, the previously mentioned 2004–2005 and 2011–

2012 droughts can be identified as being the negative peaks
in Fig. 4. During other years, isolated red deviations appear,
but these are not generalized among all four sites. The only
exception is 2008–2009, when a generalized NDVI anomaly
appears in all of them, but it occurs early during the first
months of the growing season, so perhaps it can be attributed
to a late seeding that year.

3.4 CDI

Figure 6 shows the monthly evolution of CDI between 2003
and 2013 and compares its levels against crop damage data
derived from agricultural insurance information. This occurs
twice during the studied period on a regionalized scale, in-
dicating the effects of a drought. The first time is during the
agricultural year 2004–2005, with losses of between 73 %
and 99 % in the five agricultural regions studied. Also, for
the years 2011–2012, there was considerable crop damage
of between 71 % and 92 %. A third season, 2009–2010, had
medium to high losses, of between 44 % and 89 %. However,
crop damage during this period is, rather, due to the effects of
excessive precipitation, leading to water stagnation and ero-
sion damage. This can be seen when comparing the annual
precipitation values. For example, in the Córdoba agricul-
tural region, with a mean long-term precipitation of 600 mm,
the values for 2004–2005, 2009–2010 and 2011–2012 are,
respectively, 423, 1179 and 433 mm.

The CDI accurately captured these two important drought
periods. For the first area, Campiña de Cádiz (Fig. 6a), a se-
ries of drought warning levels were issued early in the agri-
cultural year 2004–2005, followed by a type I alert in Jan-
uary. There was another type I and II alert in May–June. In
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Figure 2. Variation of the standardized precipitation index over 3
months (SPI-3) during the period studied (2003–2013) in the five
selected agricultural regions: (a) Campiña de Cádiz, (b) Campiña
Baja, (c) Pedroches, (d) Norte/Antequera and (e) La Campiña. Red
lines indicate values below the defined threshold of −1.

other words, since the seeding and during the first months of
crop growth, there was a continued series of drought warn-
ings or alerts. In that particular year, 90 % of the insured area
was reported as being damaged. In 2005–2006, the CDI reg-
istered another warning indication, but it did not lead to any
damage to the crop. In September 2005 there was a type
II alert, but that month is outside the cereal growth period
and when the crop was seeded two months later, the situa-
tion had gone back to normal. In May 2006 another warning
was issued due to a precipitation and a soil moisture deficit.
However, the crop was already at the moment in its cycle
when it was close to harvesting and it was therefore not af-

Figure 3. Variation of the soil moisture anomaly index (SMAI) dur-
ing the period studied (2003–2013) in the five selected agricultural
regions: (a) Campiña de Cádiz, (b) Campiña Baja, (c) Pedroches,
(d) Norte/Antequera and (e) La Campiña. Red lines indicate values
below the defined threshold of −1.

fected so much. In 2009–2010, characterized by considerable
crop damage, 89 % of the total insured area, there was only
one alert, in November. As mentioned before, crop damage
during that season was probably due to precipitation excess
rather than drought. For the dry period of 2011–2012, the
CDI accurately indicated that critical situation with a warn-
ing, followed by type I and II alerts in the period of February–
April.

For the Campiña Baja region (Fig. 6b) the dry period of
2004–2005 was characterized by a continuous series of type
I and II alerts from January to June, with two more alerts
during the summer, outside the cereal growing period. In this
region, the insured area damaged that year was also very ex-
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Figure 4. NDVI values all over Andalusia in (a) April 2004 and
(b) June 2004. Important changes from green to red are observed
in the main grain-growing areas, while areas with natural forests
and shrubs remain green. Blue dots show the four representative
pixels that were selected within each of the five agricultural regions
studied.

tensive (95 %). In 2008–2009 a warning was issued that did
not cause any yield losses, as only 15 % of the insured area
was damaged. This can be explained by the fact that this sit-
uation did not occur at a time when the crop was sensitive.
In another dry year, 2011–2012, a series of warnings were is-
sued, from January to March, followed by, respectively, type
II and I alerts in April and May. These all occurred at times
when the crop was highly sensitive, so that it was seriously
damaged in 90 % of the area.

In the Pedroches region (Fig. 6c), the two main dry periods
were well predicted. The year 2004–2005 was distinguished
by a series of type II alerts in January, February, March and
May and a type I alert in June. This sequence of critical
CDI levels was reflected in an insured crop area with 73 %
of damage. In 2005–2006, although there were two types of

Figure 5. Variation of the monthly NDVI anomaly for the four se-
lected locations within the region “La Campiña” over the study pe-
riod. Red lines indicate values below the defined threshold of −1.

stress situations, warnings and type II alerts from November
to February, the damage rate was not a high one, only 15 %
of the insured area. It is difficult to understand the underly-
ing reasons for the good performance of the crop that year.
For example, during the years 2008–2009, the incidents were
clearly late in the year (May to July), a period when grain
growth is not sensitive. The second dry period of 2011–2012
is marked by a number of type II alerts issued from February
to April, at a time when the cereal is highly vulnerable. This
is reflected in a 71 % damaged insured area.

In the Comarca Norte/Antequera region (Fig. 6d), the dry
period of 2004–2005 was determined by several incidents
early on, with a watch issued in November and a type II alert
in January, the latter being the period of cereal nascence and
other sensitive growth stages. That year, the damaged insured
area was 88 %. In 2007–2008 there were two warnings and
a type II alert, from December to February, but these did not
lead to crop damage, as the damaged insured area was only
11 %. Again, the reason could be found in those droughts
occurring during a period when the cereal was not too sen-
sitive. During the second main dry period of 2011–2012, a
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Figure 6. Evolution of the combined drought indicator (CDI) from 2003–2013 and comparison with agricultural crop damage intensity
(blue lines) for the five agricultural regions studied: (a) Campiña de Cádiz,(b) Campiña Baja, (c) Pedroches, (d) Norte/Antequera and (e) la
Campiña.
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number of type I and II alerts were issued between February
and April. These corresponded to highly sensitive moments
of the crop cycle, and damaged insured areas were conse-
quently high that year, amounting to 83 %.

The last region, La Campiña (Fig. 6e), showed a simi-
lar trend, with 2004–2005 being identified as having an ex-
tremely high damaged insured area of 99 %. The CDI worked
well in predicting this, as there were multiple and continued
alerts; i.e., from January to June there was a continued type
II alert, except in March when it was a type I alert. In 2009–
2010 there was a watch in November, and the damaged area
was 72 %. However, as mentioned before, the absence of any
further drought watches during that year and the high total
annual rainfall indicate that the damage was likely to have
been caused by excess precipitation. In the second main dry
period of 2011–2012, the situation was worse, with a number
of warnings from January to March, a type II alert in April
and again a type I alert in May. That year the damaged in-
sured area was high, up to 90 %.

4 Discussion

The results led to the conclusion that the performance of the
newly proposed CDI is adequate (Fig. 6). The periods of high
crop damage – between 70 and 95 % – in the two impor-
tant dry periods of 2004–2005 and 2011–2012 were accom-
panied by watches, warnings and type I or II alerts of CDI
in the five agricultural regions studied. This combined indi-
cator has several advantages over using a single one, as is
evidenced by the trends in precipitation, soil moisture and
vegetation alone. Soil moisture, for example, did not include
the two main dry periods, 2004–2005 and 2011–2012, in
all of the areas. The soil moisture anomaly index only in-
dicated drought in two out of five regions for each of these
dry periods, and this could probably be improved by mea-
surements of in situ soil moisture. Krueger et al. (2017), for
example, showed how in situ soil moisture measurements ex-
plained wildfire incidence much better than the widely used
Keetch–Byram drought index (KBDI). Like our SMAI, the
KBDI is a drought index calculated on a daily scale, but
it only considers daily temperature and precipitation in cal-
culating soil moisture. Whereas our SMAI uses a more ad-
vanced soil water balance algorithm (using variable infiltra-
tion rates and refining the estimation of the actual evapotran-
spiration rate from the potential rate computed by the FAO-
Penman Monteith equation), and it is clear that future stud-
ies should focus on site-specific calibrations of soil moisture
dynamics against field data or by observations from remote
sensing. Martínez-Fernández et al. (2015) successfully ap-
plied in situ soil moisture measurements to predict agricul-
tural droughts in northern Spain. Other studies, like that of
Kędzior and Zawadzki (2017), have used SMOS-derived soil
moisture anomalies. They concluded that these were suitable
for calculating agricultural drought risk in the Vistula river

catchment. Another possibility for improving drought pre-
diction based on soil moisture is to combine different models.
Cammalleri et al. (2016) used joint means from three differ-
ent models, LISFLOOD, CLM and TESSEL, and were able
to increase the correlation with observations and reduce the
number of false drought alarms.

In any case, our results corroborate previous studies us-
ing combined indicators that also concluded that they yielded
good results for agricultural drought prediction. Sepulcre-
Canto et al. (2012), for example, use a similar CDI, based
on SPI, soil moisture and photosynthetically active radia-
tion (fAPAR). They evaluate this indicator on the continental
scale and assess its performance against annual cereal yield
at the regional level. They conclude that their indicator is suc-
cessful in predicting drought periods and lower yields. While
our indicator is similar in conception, there are notable dif-
ferences with the CDI proposed in this study, firstly in the
way soil moisture anomalies are calculated and secondly by
using NDVI instead of fAPAR. Gouveia et al. (2009), com-
paring a soil water index against NDVI response in Portugal,
found a good correlation between NDVI and soil water con-
tent under different land use conditions. They concluded that
NDVI values of arable land were more sensitive to drought
compared to forests, which suggests that NDVI is particu-
larly well suited in this study of cereal growing areas.

Future studies could focus on improving this combined in-
dicator, for example by using other probability density func-
tions rather than the gamma function used for calculating the
SPI. Sienz et al. (2012) obtained a better fit to precipitation
data of several world regions with the Weibull rather than
with the gamma probability distribution function. Carrão et
al. (2016) selected an empirical standardized soil moisture
index, which was highly correlated (r2

= 0.82) with their
maize–soybean and wheat yields in three study sites in Ar-
gentina.

5 Conclusions

This study has presented a new combined drought index
(CDI) for the assessment of agricultural drought. This CDI
uses a combination of anomalies in precipitation (SPI-3),
soil moisture and NDVI. The alert results are classified in
four levels ranging from watch, warning to alert (type I and
II). The CDI dynamics have been assessed for a 10-year pe-
riod between 2003 and 2013, characterized by two impor-
tant drought periods (2004–2005 and 2011–2012), in the five
main rainfed cereal-growing regions of SW Spain. Compari-
son with yield data shows that both dry periods, characterized
by a high crop damage extent of between 70 % and 95 %,
were correctly identified by different critical CDI levels in
all five study regions. This demonstrates the potential of this
CDI. Further research should focus on a better representation
of soil moisture data, either by improving data input from in
situ measurements or by remote sensing, or by using model
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ensembles. Also, phenological information could be used to
improve the performance of this indicator.
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Abstract: Drought is an important natural hazard that is expected to increase in frequency and
intensity as a consequence of climate change. This study aimed to evaluate the impact of future
changes in the temperature and precipitation regime of Spain on agricultural droughts, using novel
static and dynamic drought indices. Statistically downscaled climate change scenarios from the model
HadGEM2-CC, under the scenario representative concentration pathway 8.5 (RCP8.5), were used at
a total of 374 sites for the period 2006 to 2100. The evolution of static and dynamic drought stress
indices over time show clearly how drought frequency, duration and intensity increase over time.
Values of static and dynamic drought indices increase over time, with more frequent occurrences of
maximum index values equal to 1, especially towards the end of the century (2071–2100). Spatially,
the increase occurs over almost the entire area, except in the more humid northern Spain, and in areas
that are already dry at present, which are located in southeast Spain and in the Ebro valley. This study
confirms the potential of static and dynamic indices for monitoring and prediction of drought stress.

Keywords: climate change; drought stress; drought monitoring; plant water stress; Spain

1. Introduction

Climate change is one of the greatest future challenges for society as a whole, and for agricultural
production and food security specifically [1]. If the current situation of greenhouse gas emissions
continues, agricultural productivity will be significantly affected, with temperature increases and
rainfall decreases offsetting benefits of increased carbon dioxide concentrations [2]. Arora [3] reports
an estimated 20–45% decline in maize (Z. mays) yields, 5–50% in wheat (Triticum L.) and 20–30% in
rice (Oryza sativa). In Europe, a series of research projects of the Joint Research Centre, called PESETA,
have analyzed in more detail the climate change impacts on a wide range of environmental and
socio-economic aspects [4], showing clearly very uneven impacts within the EU and an important
north-south divide. Southern Europe is hit especially hard, with a significant decline in agricultural
production, whereas some parts of eastern and northern Europe show production increases. However,
this type of assessment of crop yield under climate change is entirely based on crop-growth models,
which often do not allow to take into account climate extremes, such as drought or freezing events.
Trnka et al. [5] evaluated future agroclimatic conditions in Europe and found worsening conditions
in most of Europe, including eastern and northern Europe. They attribute this to a higher risk of
extremely unfavorable years that are likely to increase everywhere, for example, due to for example
drought stress, frost, or the absence of snow cover that does not protect against frost.

It is well known that extreme events, such as heat waves and droughts, are projected to increase
over the next decades [1]. Lu et al. [6] evaluated the uncertainty related to agricultural drought
predictions from the Coupled Model Intercomparison Project phase 5 (CMIP5) models at a global
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scale. They identified Europe and the Mediterranean as being among the hotspots, where droughts are
expected to increase most notably for all analyzed emission scenarios. Pausas and Millan [7] indicate
that in the Mediterranean the situation might be more complex because, due to socio-economic feedback
loops, land abandonment of less suitable agricultural areas might actually lead to vegetation recovery,
or greening, as opposed to the drying or browning process caused by human-induced climate change.

Different studies have addressed the increase of droughts in Europe and in the Mediterranean
region under projected climate change scenarios. In order to correctly assess the impact of future
climate change on agricultural droughts, it is crucial to use adequate drought indicators and work
at the finest spatial scale possible. Firstly, drought indicators need to take into account both the
decrease in rainfall, as well as the increase in temperature and evapotranspiration. Especially for
agricultural purposes, it is crucial to have a correct representation of buffering soil moisture dynamics.
Many studies, for example, have assessed the occurrence of meteorological droughts under future
climate change, using the Standardized Precipitation Index (SPI), which only accounts for changes
in the rainfall regime. Secondly, climate change projections are normally based on simulations from
general circulation models (GCMs) that are run under various emission scenarios. The results however
cannot be directly applied to climate change impact studies, and further downscaling is needed [8].
Higher resolution can be obtained by regional climate models (RCMs), nested within a GCM, but these
generally inherit the biases and other deficiencies of the large-scale model and further, statistical,
downscaling is needed. The basic idea behind statistical downscaling is to define a relationship
between the large-scale model (either GCM or RCM) and the local climate [8].

Several studies analyze meteorological drought by means of RCMs. For instance, Maule
et al. [9] used the SPI and a version of the Palmer drought severity index (PDSI) to analyze drought
representation by 14 RCMs from the ENSEMBLES project [10] at a European scale. They conclude
that, at a European scale, the results seem robust but warn to use quantitative results at smaller,
regional scales. RCMs are also used frequently in soil moisture and hydrological drought analyses.
Spinoni et al. [11] used climate predictions from the EURO-CORDEX to evaluate drought events at
a European scale, by means of standardized precipitation index (SPI), standardized precipitation
evapotranspiration index (SPEI) and the reconnaissance drought indicator (RDI). More detailed
studies were carried out in different countries, using the data from the EURO-CORDEX project.
For example, Meresa et al. [12] studied hydro-meteorological drought in ten Polish catchments by
computing SPI, the Standardized Precipitation Evapotranspiration Index (SPEI) and runoff standardized
indices for 1971–2100. They concluded that SPI and SRI indicated wetter conditions in the future,
while SPEI indicated a drying trend. Potopová et al. [13] also used results from eight RCMs from the
EURO-CORDEX project to calculate future drought trends in the Czech Republic, by means SPI and
SPEI. Barrella-Ortiz and Quintana-Seguí [14] evaluated drought representation and propagation in
three RCMs from the Med-CORDEX database, focusing on the Mediterranean region. They conclude
that RCMs are a suitable tool for meteorological drought studies, but that they should be used cautiously
for soil moisture and hydrological drought analyses.

Drought studies using statistically downscaled climate projections are much rarer, and have not
been done for Spain, according to the knowledge of the authors. In addition, recent studies have
shown that for drought prediction and monitoring it is crucial to take into account the buffering effect
that soil properties have, as well as crop type and cropping characteristics. Jiménez-Donaire et al. [15]
recently analyzed the potential of two new indicators, static and dynamic drought stresses, based on
earlier work by Porporato et al. [16]. In a study under cereal in Southern Spain, they concluded both
indicators identified agricultural droughts well and were found to be good predictors of crop yield.

The objective of this study is to analyze the effect of climate change on agricultural drought in
Spain, using these novel static and dynamic drought stress indicators and statistically downscaled
climate change predictions for the period 2006 to 2100.
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2. Materials and Methods

2.1. Study Area

This study was conducted throughout mainland Spain and the Balearic Islands. The time period
was limited to 2006–2100, because of the availability of statistically downscaled regional climate model
(RCMs) projections.

Spain can be subdivided in three main biogeographical regions (Figure 1). Most of the country
is classified as Mediterranean, with the exception of the northern coastal region that is Atlantic and
the Pyrenees mountain range, which is classified as Alpine [17]. The Mediterranean biogeographical
region corresponds to a temperate climate region (type C), according to the Köppen classification
system, and can be further subdivided into hot and warm summer Mediterrean Climate, Csa and
Csb, respectively, which are considered typically Mediterranean climate zones, and cool-summer
Mediterranean climate, Csc. Some parts of this biogeographical region of Spain are also drier and
are also classified as dry climates (type B, specifically hot deserts climate, BWh, cold desert climate,
BWk, and hot semi-arid climate, BSh). These are located in the southeast coastal regions of Murcia,
Almeria and Valencia and the Ebro valley. The northern Atlantic biogeographical region mostly
corresponds to temperate climate (type C) without a dry summer (humid subtropical and oceanic
climate, Cfa and Cfb). The Alpine regions correspond to cold climate types without dry season (warm
summer continental and subarctic climate, Dfb and Dfc).

Figure 1. Biogeographical regions and location of used climate stations within Spain. Inset shows
Spain within Europe. White lines indicate province boundaries.

2.2. Climate Change Data

In this study, statistically regionalized projections of climate change are used that were developed
by the Spanish National Agency for Meteorology. Daily precipitation, maximum and minimum
temperature data between 2006 and 2100 were used from the model HadGEM2-CC, under the scenario
RCP8.5, from the Intergovernmental Panel on Climate Change’s fifth assessment report. These data are
available for free download [18]. This study only evaluates this emission scenario, as no statistically
downscaled data for Spain were available at present for this model under other scenarios, such as,
for example RCP4.5, which is another frequently used scenario that establishes a more moderate
greenhouse gas increase. The scenario RCP8.5 used here assumes that emissions continue to rise
at the present level throughout the 21st century. This scenario is generally taken as the basis for
the worst-case climate change scenario and, while it has received some criticism by some reports
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because it is considered implausible, it is useful, as it allows tracking and predicting the effect of our
current behavior, and makes it possible to demonstrate the impact of emission reduction policies if
no action were to be taken. In addition, some recent research has concluded that this scenario with a
high temperature increase at the end of this century is becoming increasingly more plausible because
of feedback effects [19–21]. In total, daily data between 2006–2100 was available for 374 stations.
The distribution of these stations is shown in Figure 1.

Calculations of soil water balance and drought stress indicators were made for each of these
points in R 4.0.0 [22] with packages dplyr, tidyverse and yarrr. Output maps were generated in QGIS
3.10.6 [23].

2.3. Drought Stress Indicators: Static and Dynamic Stress

A full description of the calculation of the static and dynamic stress drought indicators is given in
Jiménez-Donaire et al. [15]. Static stress (ζ) is proportional to the excursion of soil moisture (W) below
a critical point that corresponds to incipient stomatal closure (W*), and reaches a maximum equal to
1 for soil moisture values below permanent wilting point (Wpwp). It is calculated as:

ζ(t) = 0, for W(t) > W∗

ζ(t) = 1, for W(t) < Wpwp

ζ(t) =
[

W∗−W(t)
W∗−Wpwp

]q
, for Wpwp ≤W(t) ≤W∗

(1)

Plant stress can increase non-linearly with soil moisture deficit, where the coefficient q is a measure
of this non-linearity. In this study a value of 1 was used, implying a linear soil moisture-stress relation.
The static stress ζ(t) is calculated at daily time steps, and the overall static water stress, ζ, is then
calculated by integrating the individual positive values of ζ(t) over the whole year, excluding periods
where ζ(t) = 0.

Dynamic stress (θ) includes information on the mean duration and frequency of drought periods.
This indicator therefore extends the information contained in the static stress indicator, as the latter
only takes into account the intensity of the droughts that occur over a year. The expression for θ is: θ =

(
ζ TW∗
k Tseas

)1/
√

nW∗ , if ζ TW∗ < k Tseas

θ = 1, otherwise
(2)

where nW* and TW* are the number (-) and mean duration (days) of all drought occurrences over a year,
respectively, Tseas is the duration of the growing season (days) and k is a parameter, set to 0.5 following
Porporato et al. [16].

The soil water balance is calculated using the same approach as Jiménez-Donaire et al. [15], using
a simple bucket model applied over the root zone, and taking into account the main processes of
rainfall infiltration (f ), evapotranspiration (e) and deep seepage (g). The calculated soil moisture values
W(t), are representative of the mean moisture content over the root zone depth, taken as 1m.

dW(t)
dt

= f − e− g (3)

The main difference with the previous study the future climate change prediction datasets
are lacking detailed information on meteorological variables needed to calculate reference
evapotranspiration using FAO Penman-Monteith’s formula. Therefore, Hargreaves’ formula [24,25]
was used to calculate reference evapotranspiration from the minimum and maximum temperature data:

e0 = AHC Ra(T + 17.8)
√
(Tmax − Tmin) (4)
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where Ra is the water equivalent of extraterrestrial radiation (mm day−1); T, Tmax and Tmin are the
daily mean, maximum and minimum temperatures (C), respectively; AHC is the adjusted Hargreaves
coefficient, equal to 0.0023 in the original equation. Although some studies have pointed to regional
differences and have proposed locally calibrated values [26], this value was used for the entire study
area as it is sufficiently robust [25] and no estimates are available for the different parts of Spain. Finally,
the real daily evapotranspiration rate is calculated by correcting this potential rate, e0, by the wetness
of the soil profile, ω, and the crop coefficient, kc:

e = ωkce0 (5)

Static and dynamic drought stress indicators were calculated for the period 2006–2100, and their
evolution was analyzed over 3 time periods: 2006–2040, 2041–2070 and 2071–2100.

3. Results

3.1. Spatial and Temporal Trends in Static and Dynamic Drought Stress between 2006–2100

The behavior of two representative sites, respectively for the southern, semi-arid part of Spain,
and for the northern, more humid part of Spain, is analyzed first to illustrate behavior of the drought
indices and their evolution over the study period. Most of mainland Spain is characterized by
relatively dry Mediterranean climate, with a clear dry season. Drought incidence is already a frequent
phenomenon, as the observed year-to-year rainfall variability is relatively high. This means that years
where rainfall falls below 500 mm are already frequent at present. This behavior reflects in the climate
projections for the period 2006–2100 shown in Figure 2a, for the La Rambla site, Córdoba province,
which can be taken as a representative site of this climate zone. The coefficient of variation of the
annual precipitation is 31%. At the same time, the climate projections indicate a significant decrease in
precipitation that amounts to 0.45% per year, translating in a decrease of the mean annual precipitation
of 530 mm between 2006–2040 to 498 mm for 20341–2070, and decreasing even more strongly to 399 mm
for 2071–2100. This is clearly reflected in the static and dynamic drought stress indices. While this
semiarid zone has already an incidence of important drought events at the beginning of the study
period, the occurrence of serious drought events, with values of static and dynamic stress hitting highs
equal to the maximum value of 1, increases strongly by 2071–2100. The mean static stress increases
from 0.49 in 2006–2040, to 0.57 in 2041–2070 and 0.76 in 2071–2100. Over the same periods, the dynamic
stress increases from 0.35, to 0.44 and 0.69, respectively. The occurrences of dynamic stress values equal
to 1, implying that soil moisture remains below the critical soil moisture level during the entire growing
season, and increases from 2 to 4 to 18 times in the three different periods (2006–2040, 2041–2070 and
2071–2100).

In contrast, the stress indices in the northern Spanish site of Lugo, province of Lugo, shown in
Figure 2b, are much lower due to a higher rainfall regime and the absence of a dry season. Even so,
precipitation decreases significantly at a rate of 0.28% year−1. Mean annual precipitation lowers from
997 mm between 2006–2040, to 952 mm between 2041–2070 to 831 mm for the last period 2071–2100.
Overall drought stress levels are low, generally lower than the minimum values that are reached at
the La Rambla site, so no crop stress should be expected. However, also at this site an increase can
be observed over the studied period due to climate change, especially for the last period. The mean
static stress index remains at 0.07 between 2006–2040 and 2041–2070, but rises to 0.18 for 2071–2100.
The same behavior is seen for dynamic stress, almost stable at 0.03 and 0.04 between 2006–2040 and
2041–2070, respectively, and increasing to 0.12 for 2071–2100. However, static and dynamic stress never
reaches 1, even in the years with minimum annual precipitation of the series.
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Figure 2. Evolution of precipitation, static stress and dynamic stress between 2006–2100, for a site in
southern Spain and northern Spain, respectively: (a) site La Rambla, Córdoba (N 37.606, W −4.741);
(b) Lugo, Lugo (N 43.011, W −7.555).

Spatial trends of static and dynamic stress for the periods 2006–2100 are shown in Figures 3
and 4. Static and dynamic stresses are classified in 5 levels: no stress, very low (0–0.2), low (0.25–0.50),
moderate (0.50–0.75) and high stress (0.75–1.00). In the first period of 2006–2040, high levels of static
and dynamic stress (0.75–1.00) are observed in the southeast of Spain and the Ebro valley, which are
already characterized by a dry climate. The northern Atlantic region, with more abundant precipitation
is characterized by no stress (no data) to very low stress values (0–0.25). Most of mainland Spain is
characterized by low to moderate levels (0.25–0.50 and 0.50–0.75). Over the years, especially during the
last period 2071–2100 it can be observed how most of mainland Spain evolves to increasing drought
stress and more sites are characterized by high static and dynamic stress levels, over 0.75.

Figure 3. Average value of the static stress indicator in Spain over the periods 2006–2040 (a); 2041–2070
(b); and 2071–2100 (c).
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Figure 4. Average value of the dynamic stress indicator in Spain over the periods 2006–2040 (a);
2041–2070 (b); and 2071–2100 (c).

Figure 5 summarizes the temporal changes in static and dynamic drought stress, comparing the
period 2006–2040 versus 2041–2070 (a and c), and 2006–2040 versus 2071–2100 (b and d). Both drought
stress indicators show the same trends. Firstly, the sites in areas that are already dry, and characterized
by high stress levels that, at present, show almost no change over time, or even a small decrease in
mean drought stress, showing up in blue. These points are located along the southeastern Spain
and in the Ebro valley. However, the rest of Spain shows a significant change with respect to the
reference period 2006–2040. Change is moderate for the second period, 2041–2071, for most sites with
increases contained below 30%. However, especially for the last periods, most sites show up in dark
red, indicating changes of over 45%. For sites that start out with low absolute drought stress values,
such as those in the north of Spain, this does not imply important problems with crop production,
although some sites change from no stress condition to low stress condition. However, for most of
mainland Spain, already characterized by moderate to high stress levels in 2006–2040, this increase
indicates an alarming situation and flags problems with droughts affecting agricultural crop production
in most of the country.

Figure 5. Increase of the static drought stress in Spain over the periods: (a) 2006–2040 vs. 2041–2070
and (b) 2006–2040 vs. and 2071–2100; and increase of the dynamic drought stress over the periods
(c) 2006–2040 vs. 2041–2070 and (d) 2006–2040 vs. 2071–2100. Change is indicated as fractional and
negative values indicate a drought stress decrease.
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3.2. Analysis of Static and Dynamic Stress Index Dynamics

The relation between annual precipitation and static and dynamic stress is shown in Figure 6.
It can be seen that the relation of both indicators with rainfall is highly non-linear and increases
sharply below approximately 500 to 600 mm annual rainfall. Where rainfall is higher, it is very rare
to have droughts. However, within this range of annual rainfall, the variation of static and dynamic
stress indices is high, and can range from 0 (no stress) to 1 (maximum stress), depending on how the
precipitation is distributed throughout the growing season. This illustrates clearly how rainfall alone
is not a good indicator of agricultural drought stress.

The relation between static and dynamic stress is shown in Figure 7. It can be seen how most
points are clustered, except for a few points that are limited by the maximum envelope, as, for static
stress values higher than 0.8, dynamic stress reaches the maximum of 1.

Figure 6. Relation between annual precipitation and (a) dynamic and (b) static stress for all sites and
studied years

Figure 7. Relation between dynamic and static stress for all sites and studied years.
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4. Discussion

In Spain and in the Mediterranean basin specifically, agriculture has always been affected by
large natural climate variability and by droughts. Historically, Spain has suffered important droughts.
Domínguez-Castro [27] analyzed Spanish drought episodes over the past 500 years, based on ceremonial
records and tree rings. They reported frequent droughts since the start of their historical records in
the 16th century, with the most severe droughts being recorded during the period from the end of
the 16th century up until the 18th century. Additionally, in recent times, Spain has suffered several
intense drought episodes [28], and some of the most notorious ones in terms of impact were produced
during the periods: 1941–1945, 1979–1983, 1991–1995 and 2004–2007 [29]. Jiménez-Donaire et al. [30]
studied drought incidence in the south of Spain between 2003 and 2013, and reported two severe
drought periods (2004–2005 and 2011–2012) with associated crop damages between 70 and 95% of the
agriculturally insured area. The concern of Spain with droughts is reflected by the presence of drought
response measures and planning in policy tools, such as the National Hydrologic Plan Act [31].

This study demonstrates that the novel indicators static and dynamic drought stress, proposed by
Jiménez-Donaire et al. [15], are useful for analyzing drought dynamics at regional level. The results,
using statistically downscaled climate projections at regional level, indicate that if greenhouse gas
emissions continue at the present level, drought occurrence will increase significantly between
2041–2070, and especially between 2071–2100, compared to the reference period of 2006–2040. In the
Mediterranean areas, severe droughts with maximum values of static and dynamic droughts equal to 1
are shown to increase in magnitude, duration and frequency. Drought incidence increases over the
whole country, except in the north and southeast. In northern, more humid regions, static and dynamic
drought indices are below 0.25, and not limiting for crop growth, although they also experience an
increase towards the end of the studied period. In the southeast and part of the Ebro valley, drought
occurrence is already very high in the reference period 2006–2040.

Similar results were obtained by Spinoni et al. [32] using SPI and SPEI indices at European level.
They considered three periods, 1981–2010, 2041–2070 and 2071–2100. For this last period, their results
indicated more frequent and severe extreme droughts over the whole European continent, except
Iceland, under the most severe emission scenario (RCP8.5) that was used here. They reported especially
severe increases in southern Europe. For the Iberian Peninsula, a strong increase, meaning an increase
of more than one additional event every 10 years, in more than 80% of the area for all seasons except
winter, where a more moderate increase was observed. Our results are specifically designed to consider
specifically the growing season only, with precipitation during fall, winter and spring being particularly
important, whereas an increase of droughts during the summer dry period can be expected to have
little or no effect on the evolution of soil moisture during the growing season, and therefore will also
have little effect on static and dynamic drought indices. Marcos-Garcia et al. [33] studied climate
change impact on meteorological drought and hydrological drought in the Mediterranean basin of
the Jucar river. Although their predictions are geared towards the smaller river basin scale and at the
mid-term (i.e., up to 2069), their results also show a similar trend using a normalized SPI and SPEI.
They report a future decrease in the number of dry spells for the RCP8.5 scenario, but an increase of
the average duration and intensity, meaning that often a single dry spell covers the entire analysis
period instead of several, shorter dry spells. They also conclude that temperature effects on increase of
evapotranspiration should not be ignored, and therefore SPEI is more useful than SPI. In our study,
this effect was taken into account by resolving the full soil moisture balance over the period 2006–2100
for all studied sites. Gaitán et al. [34] studied future droughts in the Aragon region in northeast
Spain, covering part of the Ebro valley, for two RCPs, RCP4.5 and 8.5. Their results, also based on
the use of the SPI and SPEI indices, confirm the clear trend toward increasingly intense periods of
droughts, especially towards the end of century for the period 2071–2100. Interestingly, they report
this is only detected when considering SPEI, which in addition to precipitation takes into account
evapotranspiration, but is softened in the SPI scenarios. At the spatial scale, they also observed the
most affected region to be the Ebro valley.
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Global change has been reported to lead to drought increase in several regions around the globe,
In some areas, it is caused by a combination of temperature increase and precipitation decrease,
as this study has shown for the case of Spain, while in other regions droughts increase, in spite of
precipitation increase, due to the dominating effect of temperature increase. Wang et al. [35] studied
the increase of drought frequency and characteristics in the Huai river basin in China. They used
the SPEI index and found that although climate change models project an increase in precipitation,
it was not enough to offset the increased evapotranspiration due to temperature increases. Similar
to this study, they reported a slight increase in droughts at the beginning of the 21st century, and a
strong increase towards the end of the 21st century. In other areas droughts might increase due to
even more complex situations. In Poland in central Europe, Sojka et al. [36] report an increase in the
extension of rain-free periods, in spite of an overall precipitation increase. Their study shows that this
results in a decrease of mean groundwater levels, and a reduction of subsurface flow. They report in
contrast an increase of extreme events, leading to more runoff, but this water cannot be stored in the
soil and used for agricultural crop production. Amnuaylojaroen and Chanvichit [37] analyzed the
tendency of agricultural drought under climate change for Mainland Southeast Asia, using the SPI
and crop water need (CWN) indices. The compared present-day with the period 2020–2029 under
the scenario RCP8.5. Again, their climate predictions favor drought increase for this region, due to
the combination of precipitation decrease and temperature increase. However, they only reported a
change in SPI, while their index CWN, which would, in theory, be better suited, as it takes into account
evapotranspiration, did not indicate drought increase.

This study aimed to characterize drought patterns across Spain under the worst-case emission
scenario RCP8.5. The use of RCP8.5 impacts our results, as it the high end of CO2 emissions and
temperature increase. While different authors consider such high temperature increases more and
more likely, as discussed earlier [19–21], it would be useful to examine other, more conservative
scenarios in future studies. Follow-up studies should also explore different climate models from the
CMIP5 ensemble. In any case, our results show that static and dynamic drought stress indicators
are very useful to evaluate drought stress under climate change. Static drought stress indicates the
drought magnitude, and dynamic drought stress incorporates additional information on duration
and frequency of these drought events. This latter indicator therefore allows to obtain information on
different aspects of drought (magnitude, duration and frequency) with a single indicator.

5. Conclusions

The objective of this study was to evaluate the suitability of static and dynamic stress as indicators
of agricultural drought stress, and to use these indicators to evaluate spatial and temporal patterns of
agricultural drought stress under climate change in Spain. The results show that static and dynamic
drought stress are highly suitable indicators. Static drought stress indicates the magnitude of drought
stress, while dynamic drought stress also includes frequency and duration of drought events. Both are
shown to increase in the 21st century, especially towards the end of the studied period. Changes
are significant for most of mainland Spain, which is under a Mediterranean climate. Only in the
southeastern areas that are already very dry and in the northern areas that are humid, is the impact of
climate change on droughts absent to low.

The projected climate scenarios and the methodology used in this study have several limitations.
For example, it is expected that, for crops and pastures, production will be delayed by the onset of
autumn rainfall. Water scarcity and other climate-induced changes to the cropping cycle, such as
for example phenological changes or chilling requirements, might also change the suitability of
entire regions for certain crops altogether and force shifting cropping patterns. Such changes in the
growing season would be very interesting to address in future studies. To include these adaptations
of crop production, it is necessary to couple crop simulation models with socio-economic modelling.
Such efforts are underway in the framework of large international modelling efforts, such as AgMIP8 [38]
or MACSUR [39], but need to take into account extreme events such as the droughts modelled here.
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CONCLUSIONS 

Early and accurate detection and prediction of droughts is crucial for managing 

agricultural crop production and planning policy response. With this purpose, this study 

applied two drought indicators and proposed a new combined drought indicator and 

evaluated the potential of these indicators to detect and predict agricultural droughts, 

and their relation to crop yield and damage. Overall, this study significantly improved 

our understanding of agricultural droughts at different spatial and temporal scales.  

In chapter 1, the static and dynamic drought stress indicators first proposed by 

Porporato et al. (2001), have been applied for the first time to evaluate agricultural 

droughts at local scale (Cordoba province), for the recent period between 2001 and 

2014. These indicators, proposed in the framework of ecohydrological research, lack 

extensive formal validation against independent data, such as crop yield. The results 

obtained in the present study proved these indicators to be highly useful, as they 

correctly identified agricultural drought periods in 2005, 2006 and 2012. The results 

obtained showed that, as predictors of crop yield, both static and dynamic stress 

indicators are superior to traditional drought indicators such as SPI-3, with R2 values 

around 0.70 and 0.40, respectively. A sensitivity analysis revealed that the results were 

strongly affected by soil depth with a complex response in function of annual 

precipitation.  

In chapter 2, a new combined drought indicator (CDI) was proposed, integrating the 

well-known SPI-3, the NDVI, and an index of soil moisture anomaly, based on a bucket-

type soil moisture model. This CDI was evaluated, at regional scale (Andalusia region), 

for the recent period between 2003 and 2013, against observed crop damage data in 

rainfed grain-growing regions. The results show that two important drought events in 

2004-2005 and 2011-2012, with crop damage levels of 70 and 95% of the total insured 

area, respectively, could be identified correctly in the test areas that were used in this 

study. It was shown that using a combined indicator yielded several advantages over 

using a single one, as for example soil moisture anomaly alone would not have correctly 

identified these periods. 

In chapter 3, the projected climate change effects on drought events were modelled at 

national scale (Spain), for the future period between 2006 and 2100. The static and 

dynamic stress indicators were calculated using predictions of the scenario RCP8.5 in 

374 stations. The results showed both the severity and frequency of droughts will 

increase, especially towards the end of the studied period, 2071-2100. This increase in 

drought severity and frequency was observed over the whole country, except on the 

one hand in areas that are already characterized by high stress levels at present, in the 

southeast of Spain and the Ebro Valley, and on the other hand in areas characterized by 

no to very low stress, in northern Spain. The results of this study showcased the potential 

static and dynamic stress indicators, validated in chapter 1. Especially, the dynamic has 

the advantage, with respect to other indicators, that it includes, besides intensity, 

information on the mean duration and frequency of drought periods into a single 

indicator. 



 

 
 

Overall, two important conclusions could be drawn from this research, that should be 

translated into key priorities for future drought management research.  

The first main conclusion is that local conditions, namely soil properties and land use 

type, have a significant impact on the spatial variations of the static and dynamic 

drought stress indicators, evaluated in chapters 1 and 3; and the Combined Drought 

Indicator, evaluated in chapter 2. However, soil properties and land use type are rarely 

considered in evaluations of drought indicators at regional and national scales. 

Nevertheless, soil properties, especially soil water holding capacity will clearly influence 

any drought indicator related to soil moisture directly, and any indicator related to 

vegetation stress indirectly. This importance of local soil properties was explicitly 

acknowledged in chapter 1, by the sensitivity analysis. These findings corroborates 

results by Schwantes et al. (2018), who used the same dynamic drought stress indicator 

to track tree mortality during a 2011 drought in Texas. They found that accounting for 

the landscape heterogeneity improved greatly the spatial prediction of tree vulnerability 

to droughts, as accuracy in predicting drought‐impacted stands increased from 60%, 

when they accounted only for spatially variable soil conditions, to 72% when they also 

included lateral redistribution of water and aspect effects on radiation. Other studies 

have found contrasting results. Wang et al. (2019) analyzed the spatial variations of the 

relation between soil moisture and several drought indices in China. They found large 

spatial variations and concluded that these could be explained by soil properties. They 

claimed soil bulk density and organic carbon content are the two soil properties most 

affecting this relation. However, reexamining their data, it can be concluded only soil 

organic carbon content is significant, as p-values for the relation between soil bulk 

density and drought indices is always above 0.05. Other soil properties such as texture 

were not found to be significant either, which is surprising as these affect soil water 

holding capacity directly. Possibly, this is due to the fact that their database of more 

than 40 soil moisture stations includes experimental sites with very different land uses, 

ranging from wheat to complex crop rotations or grasses (Li et al., 2005). Therefore, it 

can be expected that the type of vegetation, that can be incorporated in regional models 

by land use category or crop type, will also have a significant impact on the calculated 

drought indices. Firstly, because vegetation type will directly influence the soil water 

balance through evapotranspiration and secondly, because of different plant water use 

strategies and susceptibilities to drought. While different drought indicators exist that 

allow taking this into account in a more simple or more detailed manner, such as for 

example the PSDI or CMI, very few studies exist that actually do this in practice at larger 

spatial scales, from regional-national to continental. One exception is the European 

Drought Observatory (JRC European Commission, 2020), which also uses a combined 

drought indicator, comparable to the one used in chapter 2. For the calculation of soil 

moisture anomaly they rely on LISFLOOD model predictions, which take into account 

land use and soil properties (Laguardia and Niemeyer, 2008). While this is one off the 

most advanced models available at this scale, land use is only used to calculate 

evapotranspiration crop coefficients, not for modulating vegetation susceptibility to 

drought. Also, soil moisture is not calibrated, and no information on soil depth or rooting 



 

 
 

depth is used in the predictions, while our results in chapter 2 showed the importance 

of this. Therefore, significant progress can be expected when detailed vegetation and 

soil properties are considered for drought monitoring and prediction. 

The second main conclusion is that despite the high volume of drought-related 

publications, there is still progress to be made in this field, as there are still novel drought 

indicators with a high potential that have not been widely tested and used. Good 

examples of this are the static and dynamic drought stress and Combined Drought Index 

that were proposed here, in chapters 1 and 2, respectively. In any case, it is 

recommended that the scientific community should increase the testing and validation 

of existing and new indicators. Keyantash and Dracup (2002) proposed a weighted set 

of indicators to evaluate drought indicators, including robustness, tractability, 

transparency, sophistication, extendability, and dimensionality. However, in the case of 

agricultural droughts, it is more reasonable that validation should be done against 

independent data from crop yield or crop damage. The amount of studies explicitly 

validating the performance of drought indicators against such independent data is 

relatively low, compared to papers evaluating simply occurrence of droughts, as noted 

by Bachmair et al. (2016). In a revision study, they found that 55 studies evaluated the 

performance of drought indicators simply against other existing indicators, while only 

31 studies evaluated against some form of independent data. Of the latter category, 

only 14 studies validated against crop yield data. It can be expected that future advances 

in data availability and big data should make it easier to make this link, as yield variability 

is already being linked to other agronomic variables (Filippi et al., 2019; van 

Klompenburg et al., 2020).  
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