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Abstract 

A new analytical method for the determination of 22 perfluoroalkylated (carboxylic and 

sulfonic) acids in water samples is presented. The method’s objective was to achieve the 

simultaneous quantification of compounds with different chain length (from C1 to C18). To 

this end, 500 mL of water were extracted with Oasis WAX solid-phase extraction cartridges 

and eluted with 3 mL of 5% ammonia in methanol. After evaporation to dryness, extracts 

were reconstituted in methanol:ultrapure water (1:1) and analyzed by mixed-mode liquid 

chromatography-tandem mass spectrometry (MMLC-MS/MS) using a weak anion 

exchange/reversed-phase column. The method provided good results, with limits of 

quantification lower than 1 ng/L in river water for most of compounds, except the two 

perfluorocarboxylic acids with the longest alkyl chain (>C14) and trifluoroacetic acid, for 

which a blank contamination problem was observed. The method proved good trueness and 

precision in both ultrapure and river water (R ≥ 81%, RSD ≤15%). After validation, the 

method was applied to the analysis of nine water samples where 9 perfluoroalkylated acids 

were quantified. Seven of them were ultrashort- (C1-C4) and short-chain (C4-C8) 

perfluoroalkylated acids, pointing out the importance of developing methods capable to 

target such substances for further monitoring.  

Keywords: Perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), 

persistent and mobile organic contaminants (PMOCs), water samples, solid-phase extraction.      
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Introduction 

Awareness on perfluoroalkylated acids (PFAAs) and other fluorinated substances has 

substantially raised in the last 2 decades. Although this class of organic compounds contains 

several chemical species, the most frequently studied groups are perfluoroalkyl carboxylic 

acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs). These compounds are used in 

several industrial applications due to their physical and chemical properties and stability, 

such as manufacturing of fire-fighting products, coatings, lubricants, etc. Thus, the global 

emission of PFCAs, has been estimated as thousands of tons worldwide [1]. The main reason 

for the increasing concern on these compounds is that some of them, specially long-chain 

(C8-C18) PFAAs, are nowadays known to be very stable in the natural environment (resistant 

to degradation), present high mobility (can be easily transported for long distances) and 

because of their potential bioaccumulation in the food chain and long half-lives in humans 

[2]. For those reasons, perfluorooctanoic acid (PFOA) and its salts were included in 2017 in 

the candidate list of regulatory substances in the EU (Annex XVII to Regulation (EC) No 

1907/2006). Also, perfluorooctanesulfonic acid (PFOS) was added to the persistent organic 

pollutants (POPs) list at the Stockholm Convention on Persistent Organic Pollutants in 2009 

(Part A of Annex I to Regulation (EC) No 850/2004) and also included in the Directive 

2013/39/EU as regards priority substances in the field of water policy in 2013 [3]. Besides 

them, perfluorohexane sulfonic acid (PFHxS) and PFCAs from C9 to C14 are included in the 

candidate list of substances of very high concern (SVHC) under REACH regulation, and 

should, therefore, be progressively replaced by less dangerous substances. 

The presence of PFAAs in the environment, wildlife and even human fluids and tissues 

has been reported worldwide [4], which lead to limit the production and emission of some of 
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the most widely used PFAAs. Due to this limitation on the use of long-chain PFAAs, the 

industry has searched for alternative substances, such as short- (C4-C8) and ultrashort- (C1-

C3) chain PFAAs, which exhibit similar persistence and lower bioaccumulative potential than 

long-chain PFAAs but with lower occurrence and toxicological data available [5-7].  

Solid-phase extraction (SPE), using mixed-mode weak anion-exchangers, is the 

preferred sample extraction procedure [8-10] for this class of analytes. Although recoveries 

using for example Oasis Hydrophilic-Lipophilic Balance (HLB) are also acceptable for long-

chain PFAAs [11, 12], for short-chain compounds the use of ionic exchangers is mandatory 

[13]. Early analytical determination of PFCAs was carried out by gas chromatography (GC) 

[14]. However, the GC analysis involves a previous derivatization step due to the high 

polarity of them, cluttering the procedure, on the other hand, the GC determination of PFSAs 

is quite difficult, because the derivatives are highly unstable. Thus, high-performance liquid 

chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS) is currently the 

most preferred and extensively employed analytical technology for PFAAs quantitation. 

Although high resolution analyzers have been employed, such as quadrupole time-of-flight 

mass spectrometry (QTOF-MS), providing a high resolving power, selectivity and mass 

accuracy necessary for the discovery of novel PFAAs [15, 16], the highest sensitivity is still 

provided by triple quadrupole mass spectrometers (QqQ) [17]. The main analytical challenge 

in ultrashort- and short-chain PFAAs analysis is chromatographic separation. Common 

reversed-phase LC (RPLC) based methods used as routine for the analysis of long-chain 

PFAAs, fail for these compounds with high polarity, which elute early and exhibit poor peak 

shape [18, 19]. To improve the separation, alternative mechanisms have been considered, 

such as hydrophilic interaction liquid chromatography (HILIC) [20], ion-exchange HPLC 

[13] and supercritical fluid chromatography (SFC) [19, 21]. The main limitation in these 
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cases is the inability to jointly analyze ultrashort-chain PFAAs and the longer chain 

congeners, so that two different methodologies are normally employed when they all need to 

be analyzed [13, 19].  

Mixed-mode liquid chromatography (MMLC) has been previously applied for the 

analysis of perfluoromethane sulfonic acid (PFMS) [22] providing good results, while being 

capable of determining other less polar analytes. Thus, in the present study we investigate 

the suitability of a new method based on mixed-mode SPE and MMLC, aiming at analyzing 

at the same time 22 ultrashort-, short- and long-chain PFCAs and PFSAs in water samples.  

 

 

Experimental 

Reagents and materials 

Detailed supplier information is provided in Electronic Supplementary Material, Table 

S1. Most of analytes’ standards and isotopically labeled analogs employed as internal 

standards (IS) were supplied by Wellington Laboratories (Ontario, CA) as mixtures of 2 

μg/mL in methanol (MeOH). Five analytes (short-chain PFAAs) were obtained as individual 

standards from Sigma-Aldrich (San Luis, Mi, USA), Kanto Corporation (Portland, OR, USA) 

and Carbolution (Saarbrücken, Germany), and prepared as a mixture of 2 μg/mL in methanol 

(MeOH). Diluted working solutions (500 ng/mL) containing all the analytes or all the IS were 

prepared in MeOH and stored in the dark at -20°C until use. 

LCMS-grade MeOH, formic acid, acetic acid and ammonia solution in ultrapure water 

(25%) were supplied by Scharlab (Barcelona, Spain). LCMS-grade acetonitrile (ACN) and 

ammonia (NH3) in MeOH (7N) were supplied by Fisher Scientific (Hampton, NH, USA) and 

Acros Organics (Geel, Belgium), respectively. Ultrapure water was obtained in the laboratory 
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by purifying demineralized water in a Milli-Q Gradient A-10 system (Merck-Millipore, 

Bedford, MA, USA).  

Sampling and sample treatment 

Water samples were collected at different locations (see Electronic Supplementary 

Material Table S2) in Galicia (NW of Spain). They were vacuum-filtered through 0.7 µm 

glass microfiber and 0.45 µm low protein binding membrane filters. Then, 500 mL of water 

were spiked with 2 ng of IS and solid-phase extracted onto mixed mode reversed-phase-weak 

anion exchange cartridges (Oasis WAX-150 mg, Waters). Prior sample loading, the 

cartridges were consecutively conditioned with 5 mL of MeOH containing 2% of formic acid 

and 5 mL of ultrapure water. Subsequently, samples were passed through the cartridges using 

a vacuum pump, and after sample loading, cartridges were washed with 10 mL of ultrapure 

water and dried under a nitrogen stream (99.999%) for 30 min. Analytes were recovered with 

3 mL of 5% NH3 in MeOH. Eluates were evaporated to dryness under a nitrogen stream and 

redissolved in 100 µL of MeOH:ultrapure water (1:1) for analysis.  

 

UHPLC-MS/MS analysis 

10 µL of extract (or standard) were injected into a Waters Acquity UPLC® H class 

system (Milford, MA, USA) equipped with a sample manager, a binary solvent pump and a 

column oven. Chromatographic separation was carried out on an Acclaim ™ mixed-mode 

WAX-1 120 Å column (50 × 3 mm I.D., particle size 3 μm) from Thermo (Waltham, MA, 

USA) kept at 40°C. Mobile phases consisted of (A) ultrapure water, (B) acetonitrile and (C) 

1 M aqueous ammonium acetate at pH 5.5. The concentration of C was maintained constant 

at 4 % during the separation. The elution gradient was as follows: 0 min (45% B), 10 min 

(90% B), 13 min (90% B), 13.05 min (45% B), 16 min (45% B). 
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During the chromatographic optimization, another mixed-mode column, an Acclaim™ 

Trinity™ P1 column (50 × 2.1 mm I.D., particle size 3 μm) was used and the separation 

compared with that obtained with the WAX column under the same gradient conditions. 

A triple quadruple mass spectrometer Xevo TQD (Waters Corp., Milford, MA, USA) 

equipped with an electrospray ionization (ESI) source, working in negative mode, was used. 

Nitrogen and argon were used for ionization and collision induced dissociation, respectively. 

Ionization parameters were as follows: 3 kV (capillary voltage), 150°C (source temperature), 

400°C (desolvation temperature), 900 L/h (desolvation gas-N2 flow) and 50 L/h (cone gas- 

N2 flow). Collision energy (CE) and cone voltage (CV) values were adjusted individually for 

every compound. One (IS) or two (analytes) ion transitions per compound were recorded in 

the Selected Reaction Monitoring (SRM) mode. For 4 analytes (TFA, PFPrA, PFBA and 

PFPeA) only one transition could be registered. Selected transitions, together with their 

corresponding CE and CV values, retention times (RT) and the labeled compound used as IS 

for each analyte, are shown in Electronic Supplementary Material, Table S3. 

 

Method validation 

The method was evaluated in terms of linearity, instrumental repeatability, 

instrumental and whole method limits of quantification (IQLs and MQLs), trueness and 

precision. Analytes were quantified using the isotopic labeled analogs as IS. In those (six) 

cases where no labeled analog was available, the labeled compound providing the best results 

in terms of trueness was selected (see Electronic Supplementary Material, Table S3).  

Calibration curves were prepared in MeOH:ultrapure water (1:1) between 0.5 and 500 

ng/mL for all the analytes. The IS level was 20 ng/mL in all cases. IQLs were calculated as 

the concentration of a standard providing a signal-to-noise ratio (S/N) of 10. Instrumental 
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repeatability was assessed as the relative standard deviation (%RSD) of six consecutive 

injections of two different standards (containing either 5 or 50 ng/mL of all analytes and 20 

ng/mL of IS).  

Trueness and precision of the whole method were estimated from recovery experiments 

performed in ultrapure and river water spiked with 10 ng/L of all the analytes and 4 ng/L of 

all IS. Samples were also analyzed without analyte addition in order to correct for their native 

content. MQLs were assessed from measured concentrations in river water samples 

containing (or spiked with) low concentrations of all analytes, downscaling the levels for 

which the signal-to-noise ratio is 10. For estimation of TFA MQL, 10 replicates of the 

procedural blank were done and the MQL calculated following the Eurachem guide [23] 

recommendations. Trueness and precision for this compound were evaluated separately at 

higher spiking level (100 ng/L). 

 

Results and discussion 

Chromatographic separation 

The chromatographic behavior of the analytes has been tested in two MMLC columns. 

The selected mixed-mode columns were the Acclaim Trinity P1 (hereafter Trinity), which 

provides at the same time strong cation exchange (SCX), WAX and RP functionalities, and 

the Acclaim WAX-1 (hereafter WAX), which only contains WAX and RP functionalities. 

The Trinity column was firstly tested since it provided good results for TFMS according to 

our previous experience [22, 24]. Fig. 1 shows the chromatograms obtained with both 

columns for the five ultrashort-chain PFAAs. The chromatograms for the remaining 

compounds are provided in the Electronic Supplementary Material, Fig.S1. For all of them, 
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both peak shape and width were similar using the WAX and Trinity columns, but the WAX 

column provided more retention than the Trinity.  

The WAX column was selected as it provides more retention of the analytes and it will 

not retain basic species, thus, possible basic interferences present in the matrix would elute 

in the void volume and consequently less matrix effect is expected. 

A limitation when using MMLC columns is their durability when compared with RP 

columns, as retention times become less stable with time, especially when injecting complex 

matrices. Thus, the injection of daily quality standards to control retention time stability is 

mandatory (a maximum variability of 10% for 13C4PFBA retention time was stablished). 

 

Solid-phase extraction 

Our previous experience with long-chain PFAAs [11] and specially, literature for 

ultrashort-chain PFAAs [13] led us to select SPE mixed-mode cartridges with WAX 

functionality that should provide good recovery for all PFAAs. Two different types of WAX 

SPE cartridges were tested, Oasis WAX and Strata-X-AW. Fig. 2 shows the recovery 

obtained using both cartridges when 500 mL of ultrapure water spiked at 10 ng/L (20 ng/L 

IS) are extracted. TFA was evaluated separately at a higher concentration (100 ng/L). Both 

cartridges provided similar results for ultrashort- and short-chain PFAAs, in agreement with 

published methods [25]. However, those compounds containing more than ten atoms of 

carbon in the alkyl chain (lower polarity) presented better recoveries with Oasis WAX 

cartridges.  

 

Assessment of blank contamination 
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As one of the main problems reported in the literature associated with analysis of 

PFAAs is background contamination [8, 26], instrumental blanks were performed by 

injection of MeOH:ultrapure water (1:1). Instrumental contamination was discarded since 

none of the target compounds were observed in the instrumental blanks. Procedural blanks 

were carried out, eluting directly the cartridge after conditioning and IS addition, without 

sample loading. Also, samples of ultrapure water were submitted to the entire protocol. Fig. 

3 shows the chromatograms for TFA in an instrumental blank, procedural blank and an 

ultrapure water sample, where it can be observed that this compound was detected in both 

the procedural blank and the ultrapure water sample. Thus, the source of TFA contamination 

in procedural blanks was studied. The elution solvent was injected (before and after a 

concentration step) and TFA was not detected. A deep rinse with LC-MS quality MeOH and 

ACN of every plastic material used in the protocol was made, also an additional cleaning 

step (5 mL MeOH containing 5% of NH3) was included in the cartridge conditioning. None 

of the efforts managed to completely eliminate the plastic material contamination with TFA. 

However, the repeatability of the signal in procedural blanks was appropriate (RSD 8%, 

n=10), the MQLs for this compound were then estimated using the Eurachem guidelines [23]. 

This problem led to an increase in the MQL for this compound compared with the obtained 

IQLs (Table 1). MQLs in the same order were reported for TFA by other authors [19, 27], 

who quantified TFA by direct injection. In that cases, they do not report blank contamination 

problems [27] and when observed, they performed a blank subtraction [19]. Given the fact 

that TFA can be considered ubiquitous and has been reported in drinking water after several 

oxidation processes at high levels (ca. 50 µg/L) [28] and that the ultrapure water obtained at 

the laboratory (see Figure 3) contains ca. 110 ng/L of TFA, we consider the MQL still valid 

to detect TFA in many samples. 
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Method performance 

Firstly, the performance of the LC–MS/MS method was evaluated in terms of 

precision, linearity, and instrumental LODs and LOQs (Table 1). Linearity was satisfactory 

with determination coefficients (R2) higher than 0.9972. Moreover, a Durbin-Watson statistic 

test provided a p-value greater than 0.05 for all compounds, which indicates no significant 

correlation in the residuals at the 95% confidence level. Precision, in terms of RSD, was 

evaluated at two concentration levels, 5 and 50 ng/mL, providing values below 12 and 10 %, 

respectively. IQLs were calculated and ranged from 0.01 to 0.56 ng/mL. These values are 

similar or even 10 times lower (in some cases, such as PFES or PFOS) than those obtained 

by SFC [21] or using other ion exchange columns [13]. 

After optimization of the sample preparation protocol, the performance of the entire 

method was assessed. Trueness, precision and MQLs are shown in Table 2. Trueness was 

acceptable with recovery values ranging between 81 and 115 % in both ultrapure and river 

water, except for the most lipophilic compounds, PFHdA, PFOdA, PFDeS. Moreover, RSD 

was below 15% for all compounds but PFHdA, PFOdA, PFDeS. Thus, although the 

instrumental methodology performed well for these compounds, the extraction method does 

not meet the quality criteria for them. The significance of this limitation is relatively low 

since the partition coefficients (log D, pH 7.4) are higher than 7 in case of both carboxylic 

acids and 4.5 for PFDeS, and thus, it seems unlikely to find these compounds dissolved in 

the water samples water phase and their presence may be more relevant in suspended 

particulate matter. 

The MQLs were lower than 1 ng/L for most of compounds, except PFHdA, PFOdA 

and TFA. These values are comparable to those reported in the literature for short and long-
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chain PFAAs in surface water samples [8, 10]. Furthermore, in the case of PFOS, the MQL 

is 0.4 ng/L, fulfilling the requirements of the European existing legislation on PFOS in inland 

surface water which sets the annual average (AA) and the maximum allowable concentration 

(MAC) environmental quality standard (EQS) in 0.65 ng/L and 36 µg/L, respectively [3]. 

For ultrashort-chain PFAAs, the highest MQL was obtained for TFA (63.5 ng/L), due to the 

contamination problem reported in the previous section. The remaining ultrashort-chain 

compounds presented MQLs below 0.6 ng/L, similar to those reported in other studies [13, 

21, 25] where the MQL for these 4 compounds ranged between 0.1 and 4 ng/L. Yet, the main 

advantage of the method reported in this work when compared with the literature [13, 19] is 

its ability of determine all studied PFAAs, from 1 to 18 carbon atoms, in one single 

chromatographic run and without the requirement of any special equipment, beyond the 

chromatographic column. 

 

Occurrence in river water 

The concentrations of the analytes detected in the samples are shown in Table 3 (see 

sample location in Electronic Supplementary Material, Table S2). TFA, PFMS and PFBA 

were found in all samples. PFMS, reported in 2016 for the first time in drinking water [20], 

was detected at levels higher than 5 ng/L, while TFA and PFBA levels ranged between 66-

262 and 1.8-174 ng/L, respectively. The levels of PFBA were higher in drinking water than 

in surface water, and even higher than those found by other authors in highly polluted river 

water [29], this suggests that this compound may originate in the water supply treatment or 

tubing. Within the other ultrashort- and short-chain PFAAs, PFBS and PFPrA were found in 

7 and 3 samples, respectively, while PFHxA and PFHxS appeared only in 1 sample at levels 

near their MQL.  PFOA and PFOS were the only long-chain PFASs found in this sampling 
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set being detected only in river water, at levels ranging between 1.2-5 and 1.3-1.6 ng/L, 

respectively. In the case of PFOS, these levels are lower than the maximum allowable 

concentration set by EU authorities as environmental quality standard in inland waters (36 

µg/L), but higher than the annual average value (0.6 ng/L), thus a monitoring campaign along 

the year should be performed.  

 

Conclusions 

A new method based on MMLC was developed and validated for the quantification of 

PFAAs including ultrashort-, short- and long-chain compounds in water samples. The 

chromatographic method was capable of determining a total of 22 PFAAs (C1-C18) with one 

single chromatographic run. However, the three most lipophilic analytes did not perform well 

during SPE with Oasis WAX in river water due to its lower solubility and lack of isotopically 

labelled internal standards. The methodology was applied to the analysis of 9 river and 

drinking water samples where 9 PFAAs were found in at least one sample. Among them, 7 

were ultra-short and short-chain PFAAs. The long-chain compounds found were PFOA and 

PFOS. These findings point out the relevance of the most hydrophilic chemicals in the 

aqueous environment, where further monitoring is required. 
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Tables: 

Table 1: Instrumental figures of merit.  

Name Acronym Linearity (R2)  Repeatability (RSD, n=6) IQL (ng/mL) 

    0.5-500 ng/mL 5 ng/mL 50 ng/mL   

Trifluoroacetic acid TFA 0.9989 11% 9% 0.56 
Perfluoropropanoic acid PFPrA 0.9995 7% 4% 0.17 
Perfluoro-n-butanoic acid PFBA 1.0000 6% 8% 0.08 
Perfluoro-n-pentanoic acid PFPeA 0.9999 8% 9% 0.08 
Perfluoro-n-hexanoic acid PFHxA 0.9995 5% 2% 0.02 
Perfluoro-n-heptanoic acid PFHpA 0.9992 3% 6% 0.03 
Perfluoro-n-octanoic acid PFOA 0.9998 10% 9% 0.03 
Perfluoro-n-nonanoic acid PFNA 0.9999 8% 9% 0.05 
Perfluoro-n-decanoic acid PFDeA 0.9999 10% 5% 0.04 
Perfluoro-n-undecanoic acid PFUnA 0.9996 7% 6% 0.02 
Perfluoro-n-dodecanoic acid PFDoA 0.9993 10% 6% 0.05 
Perfluoro-n-tridecanoic acid PFTriA 0.9997 7% 10% 0.05 
Perfluoro-n-tetradecanoic acid PFTeA 0.9998 6% 8% 0.06 
Perfluoro-n-hexadecanoic acid PFHdA 0.9997 5% 8% 0.07 

Perfluoro-n-octadecanoic acid PFOdA 0.9972 8% 9% 0.07 

Perfluoromethane sulfonic acid PFMS 0.9994 5% 10% 0.02 
Perfluoroethane sulfonic acid PFES 0.9986 5% 2% 0.02 
Perfluoropropane sulfonic acid PFPrS 0.9978 8% 3% 0.06 
Perfluorobutane sulfonic acid PFBS 0.9985 7% 3% 0.05 
Perfluorohexane sulfonic acid PFHxS 0.9996 5% 2% 0.01 
Perfluorooctane sulfonic acid PFOS 1.0000 10% 2% 0.01 

Perfluorodecane sulfonic acid PFDeS 0.9994 12% 2% 0.02 
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Table 2: Percentages of recovery (%R), relative standard deviations (%RSD) and method 

quantification limits (MQL) of the SPE-MMLC-MS/MS analytical method. 

  Recovery % (RSD, n=4) MQL (ng/L) 

 Analyte Ultrapure water River water River water 

TFA(1) 92(12) 85(8) 63.5 
PFPrA 102 (7) 93 (11) 0.5 
PFBA 115 (9) 99 (15) 0.7 
PFPeA 94 (7) 96 (12) 0.6 
PFHxA 117 (6) 87 (9) 0.6 
PFHpA 99 (7) 105 (13) 0.5 
PFOA 103 (6) 90 (14) 0.5 
PFNA 98 (7) 94 (15) 0.3 
PFDeA 92 (8) 95 (10) 0.5 
PFUnA 103 (8) 92 (13) 0.4 
PFDoA 103 (12) 89 (12) 1.0 
PFTriA 82 (15) 85 (15) 0.4 
PFTeA 82 (13) 81 (14) 0.5 
PFHdA 103 (12) 34 (30) 3.4 
PFOdA 115 (15) 11 (35) 1.7 
PFMS 95 (9) 114 (13) 0.1 
PFES 103 (8) 90 (12) 0.5 
PFPrS 104 (12) 92 (14) 0.6 
PFBS 101 (11) 86 (13) 0.2 
PFHxS 104 (12) 87 (13) 0.7 
PFOS 96 (10) 96 (15) 0.4 

PFDeS 75 (26) 58 (23) 0.2 
(1) Recovery and RSD evaluated at 100 ng/L, MQL calculated from 
procedural blanks. 
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Table 3: Concentrations (ng/L) of the analytes that were detected in river water samples (n = 3). N.B.: those analytes which are not 

presented were not detected in any of the samples. 

Conc. ± SD (ng/L) 

Analyte SW 1 SW 2 SW 3 SW 4 SW 5 SW 6 DW 1 DW 2 DW 3 

TFA 71 ± 6 81 ± 5 262 ± 15 101 ± 11 230 ± 15 113 ± 9 66 ± 13 77 ± 13 79 ± 8 
PFMS 5.1 ± 0.8 5.8 ± 0.2 9.4 ± 1.2 15 ± 0.4 52 ± 3 26 ± 2 5.2 ± 0.2 7 ± 1 7.9 ± 0.2 
PFPrA 3.2 ± 0.3 5.4 ± 0.1 nd nd nd 3.3 ± 0.2 nd nd nd 
PFBA 1.8 ± 0.1 3.0 ± 0.1 7 ± 1 3.6 ± 0.1 22 ± 1 9.8 ± 0.5 51 ± 1 47 ± 3 174 ± 9 
PFBS 0.68 ± 0.06 0.32 ±0.02 0.25 ± 0.02 nd 0.65 ± 0.03 0.31 ± 0.01 0.29 ± 0.01 0.28 ± 0.02 nd 
PFHxA 0.81 ± 0.12 nd nd nd nd nd nd nd nd 
PFHxS nd nd nd nd 0.8 ± 0.1 nd nd nd nd 
PFOA 1.2 ± 0.1 2.3 ± 0.3 nd nd 5.0 ± 0.4 nd nd nd nd 

PFOS nd nd nd nd 1.6 ± 0.2 1.3 ± 0.1 nd nd nd 

nd. Not detected         
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Caption to figures 

Figures:  

Fig.1: Chromatograms of a standard (10 ng/mL) of ultrashort-chain PFAAs separation on the 

mixed-mode columns: WAX (A) and Trinity (B). Peak identification: 1: TFA, 2: PFMS, 3: 

PFPrA, 4: PFES, 5: PFPrS. 

Fig. 2: SPE extraction efficiency (relative recovery, %) obtained with the two studied 

cartridges (spike level: 10 ng/L, *except TFA: 100 ng/L).  

Fig. 3: Extracted-ion chromatogram of TFA in an instrumental blank (red line), a procedural 

blank (green line) and an ultrapure water sample (black line). 
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Table S1 

Name  Acronym  Formula  Supplier  Concentration 

Analytes         

Perfluoroethanoic acid  TFA  C2HF3O2  Sigma Aldrich  99% 

Perfluoropropanoic acid  PFPrA  C3HF5O2  Sigma Aldrich  97% 

Perfluoro‐n‐butanoic acid  PFBA  C4HF7O2  Wellington 
Laboratories 

2 µg/mL 

Perfluoro‐n‐pentanoic acid  PFPeA  C5HF9O2    2 µg/mL 

Perfluoro‐n‐hexanoic acid  PFHxA  C6HF11O2    2 µg/mL 

Perfluoro‐n‐heptanoic acid  PFHpA  C7HF13O2    2 µg/mL 

Perfluoro‐n‐octanoic acid  PFOA  C8HF15O2    2 µg/mL 

Perfluoro‐n‐nonanoic acid  PFNA  C9HF17O2    2 µg/mL 

Perfluoro‐n‐decanoic acid  PFDeA  C10HF19O2    2 µg/mL 

Perfluoro‐n‐undecanoic acid  PFUnA  C11HF21O2    2 µg/mL 

Perfluoro‐n‐dodecanoic acid  PFDoA  C12HF23O2    2 µg/mL 

Perfluoro‐n‐tridecanoic acid  PFTriA  C13HF25O2    2 µg/mL 

Perfluoro‐n‐tetradecanoic acid  PFTeA  C14HF27O2    2 µg/mL 

Perfluoro‐n‐hexadecanoic acid  PFHdA  C16HF31O2    2 µg/mL 

Perfluoro‐n‐octandecanoic acid  PFOdA  C18HF35O2    2 µg/mL 

Perfluoromethane sulfonic acid  PFMS  CHF3O3S  Carbolution   98% 

Perfluoroethane sulfonic acid  PFES  C2HF5O3S  Kanto 
Corporation 

95% 

Perfluoropropane sulfonic acid  PFPrS  C3HF7O3S  Kanto 
Corporation 

95% 

Perfluorobutane sulfonic acid  PFBS  C4HF9O3S  Wellington 
Laboratories 

2 µg/mL 

Perfluorohexane sulfonic acid  PFHxS  C6HF13O3S    2 µg/mL 

Perfluorooctane sulfonic acid  PFOS  C8HF17O3S    2 µg/mL 

Perfluorodecane sulfonic acid  PFDeS  C10HF21O3S    2 µg/mL 

Internal standards         

Perfluoro‐n‐(1,2,3,4‐13C4)butanoic acid  13C4PFBA  C4HF7O2  Wellington 
Laboratories 

2 µg/mL 

Perfluoro‐n‐(1,2‐13C2)hexanoic acid  13C2PFHxA  C6HF11O2    2 µg/mL 

Perfluoro‐n‐(1,2,3,4‐13C4)octanoic acid  13C4PFOA  C8HF15O2    2 µg/mL 

Perfluoro‐n‐(1,2,3,4,5‐13C5)nonanoic acid  13C5PFNA  C9HF17O2    2 µg/mL 

Perfluoro‐n‐(1,2‐13C2)decanoic acid  13C2PFDeA  C10HF19O2    2 µg/mL 

Perfluoro‐n‐(1,2‐13C2)undecanoic acid  13C2PFUnA  C11HF21O2    2 µg/mL 

Perfluoro‐n‐(1,2‐13C2)dodecanoic acid  13C2PFDoA  C12HF23O2    2 µg/mL 

Sodium perfluoro‐1‐
hexane[18O2]sulfonate 

18O2PFHxS  C6HF13O3S    2 µg/mL 

Sodium perfluoro‐1‐[1,2,3,4 
13C4]octanesulfonate 

13C4PFOS  C8HF17O3S    2 µg/mL 
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Table S2.  

Sample Code  Location (GSM coordinates)  Description 

SW 1  42°51'26.1'' N 8°38'43.9'' W  River water 

SW 2  42°51'40.6'' N 8°39'24.0'' W  River water 

SW 3  42°54'18.8"N 8°41'40.9"W  River water  

SW 4  42°36'33.5"N 7°44'35.5"W  River water 

SW 5  43°10'18.8"N 8°26'59.0"W  River water connected to landfill leachate 

SW 6  43°13'40.8"N 8°19'10.2"W  River water used for water facilities, before treatment 

DW 1  42°52'28.0"N 8°33'38.9"W  Drinking water 

DW 2  42°51'28.9"N 8°39'11.6"W  Drinking water 

DW 3  42°36'31.1"N 7°46'04.7"W  Drinking water 
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Table S3  

   Precursor  Product  Cone Voltage  Collision energy  Internal standard  Retention time 

Analytes  m/z  m/z  (V)  (V)     (min) 

TFA  113  69  22  8  13C4PFBA  5.30 

PFPrA  163  119  18  12  13C4PFBA  6.30 

PFBA  213  169  20  12  13C4PFBA  7.16 

PFPeA  263  219  20  10  13C4PFBA  8.02 

PFHxA  313  269  18  10  13C2PFHxA  8.63 

313  119  18  28     

PFHpA  363  319  20  12  13C2PFHxA  9.05 

363  119  20  20     

PFOA  413  369  20  14  13C4PFOA  9.32 

413  169  20  20     

PFNA  463  419  22  14  13C5PFNA  9.50 

463  219  22  22     

PFDeA  513  469  22  14  13C2PFDeA  9.61 

513  269  22  24     

PFUnA  563  519  22  14  13C2PFUnA  9.72 

563  169  22  32 

PFDoA  613  569  24  16  13C2PFDoA  9.86 

613  169  24  36     

PFTriA  663  619  24  16  13C2PFDoA  9.99 

663  169  24  40     

PFTeA  713  669  24  16  13C2PFDoA  10.12 

713  169  24  44     

PFHdA  813  769  24  18  13C2PFDoA  10.41 

813  169  24  52     

PFOdA  913  869  24  18  13C2PFDoA  10.7 

913  169  24  60     
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Table S3 cont.  

   Precursor  Product  Cone Voltage  Collision energy  Internal standard  Retention time 

Analytes  m/z  m/z  (V)  (V)     (min) 

PFMS  149  80  46  20  13C4PFBA  5.90 

149  99  46  18     

PFES  199  80  50  24  18O2PFHxS  6.70 

199  99  50  20     

PFPrS  249  80  54  28  18O2PFHxS  7.38 

249  99  54  22     

PFBS  299  80  56  36  18O2PFHxS  7.93 

299  99  56  30     

PFHxS  399  80  67  42  18O2PFHxS  8.57 

399  99  67  35     

PFOS  499  80  78  50  13C4PFOS  8.84 

499  99  78  40     

PFDeS  599  80  85  60  13C4PFOS  9.04 

599  99  85  37     
Internal standards                

13C4PFBA  217  172  20  10  7.16 

13C2PFHxA  315  270  18  10    8.63 

13C4PFOA  417  372  20  14    9.32 

13C5PFNA  468  423  22  14    9.5 

13C2PFDeA  515  470  22  14    9.61 

13C2PFUnA  565  520  22  14    9.72 

13C2PFDoA  615  570  24  16    9.86 

18O2PFHxS  403  84  67  42    8.57 

13C4PFOS  503  80  78  50     8.84 

Quantification transition marked in bolds.      
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