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Abstract. The cornea is a complex hemispheric structure, made of collagen fibres 

that provide it a homogenous and stable geometry. During keratoconus disease, 

a loss of tenacity takes place in the collagen fibres that form the corneal structure, 

producing an alteration of its geometry, this is, a change of its curvature, and 

therefore, a loss of visual quality of patients. The geometric characterization of 

the hemispheric structure by means of biometric parameters is a very solid tech-

nique of diagnosis, based in a virtual 3D model, which has already been validated 

for several degrees of severity of keratoconus pathology. In this prospective com-

parative study, 93 corneas (50 healthy subjects and 43 patients with keratoconus 

with moderate visual limitation) were geometrically modelled. The results ob-

tained in this work suggest that the best predictive biometric parameters are an-

terior corneal surface area and posterior apex deviation, and that the strongest 

correlation is produced between sagittal plane apex area in minimum thickness 

point and sagittal plane apex area. The studied biometric parameters have shown 

significant differences between groups. Therefore, the analysis of the biometric 

parameters that register the geometric decompensation that locally appear in a 

corneal region, as a response to the asymmetry produced during the development 

of keratoconus disease with a moderate visual impairment, is a new approach that 

may lead to a better understanding of the disease with this degree of optical lim-

itation. 

Keywords: Computer-Aided Geometric Design (CAGD), Optical Aberrometry, 

Scheimpflug, 3D Modelling. 

1 Introduction 

The cornea is an avascular structure with a hemispheric shape that is part of the anterior 

segment of the human eye [1]. It is a highly differenced tissue with five layers which 
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have different functions, being the most important the one of the first ocular refractive 

element, due to its properties of transparency and curvature along all the structure [2]. 

One of the main pathologies of the cornea is keratoconus, which is a clinical term 

that describes a corneal condition characterized by its progressive thinning, which 

causes a cone-shaped corneal protrusion [3]. This degenerative geometrical defor-

mation leads to a decrease of cornea’s optical quality.   

The knowledge, from a clinical point of view, of the geometrical characteristics of 

the cornea is important in clinical practice [1]. There are several studies in scientific 

literature which have validated indexes or topographic descriptors of the cornea [3,4] 

in order to define the cut off values that allow the discrimination between normal and 

keratoconus corneas. From this indexes, several keratoconus classifications have been 

proposed, such as a morphological classification [1], keratometric [5], of keratoconus 

severity [6], or Amsler-Krumeich [1]. However, none of these classifications measures 

the degree of severity of keratoconus depending on the visual limitation level. 

In addition, computer-aided design is a widespread tool for biological structure mod-

elling [7-9], and its later use for disease diagnosis [10,11]. Our research group have 

developed some new virtual geometric models of the human cornea that have been used 

to characterize corneal ectasia disease basing on Amsler-Krumeich classification [12-

14], and for other classification, named RETICS [15], which allows characterizing ker-

atoconus’ pathology considering visual performance of patients in its initial phases 

[16,17]. 

This investigation work proposes a way to characterize cornea’s morphogeometry in 

keratoconus pathology with a moderate degree of visual performance, and also to quan-

tify the existence of correlations between the geometries of corneal surfaces for this 

degree of severity of the disease. 

2 Materials and Methods 

2.1 Participants 

This observational case series study evaluated 93 corneas of 93 patients (selected at 

random to avoid interference) structured in two groups: a normal group (healthy cor-

neas), which included 50 subjects presenting no ocular pathology (36.80 ± 15.67 years); 

and a second group, composed of 43 patients diagnosed with moderate KC (46.67 ± 

24.99 years). The classification protocol for normal or moderate KC cases was run ac-

cording to reported state of the art of clinical and topographic evaluations [18]. 

All patients were selected according to the RETICS grading. Inclusion criteria were 

patients diagnosed as Grade III KC eyes (moderate visual impairment, 0.4 < CDVA ≤ 

0.6 in decimal scale, or 6/15 < CDVA ≤ 6/9.5 Snellen), corneal topography revealing a 

localized steepening, and/or an asymmetric bowtie pattern with or without skewed ra-

dial axis. The exclusion criteria were the following: any previous ocular surgery, ocular 

surface inflammation, moderate to severe dry eye or other active ocular comorbidity, 

or use of contact lenses within the four weeks prior to the first visit. 

These evaluations were made at Vissum Instituto Oftalmologico Alicante, Spain 

(Vissum) who were adequately informed about the clinical study and voluntarily signed 
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their consent to participate. The study was ratified by the clinic’s Institutional Review 

Board in compliance with the ethical restrictions established in the Declaration of Hel-

sinki (Seventh revision, October 2013, Fortaleza, Brasil). 

2.2 Examination Protocol 

All subjects selected for this study were examined using Sirius System® (CSO, Flor-

ence, Italy), and following a validated protocol previously created by our research 

group, which has been thoroughly described in preceding studies [14,12,13], and that 

has proved itself successful when used for diagnosis and characterization of KC in 

asymptomatic (pre-clinical) and mild visually-impaired eyes [17,16].  

The final output of this protocol after its application, is a patient-specific 3D virtual 

model of the cornea, which is then analysed to find several biometric parameters (Fig-

ure 1). These biometric parameters studied herein, along with their characteristics, have 

been previously described in [19], and are summarized in Table 1, but are used for the 

first time to study KC eyes with moderate visual impairment. In this study, the Rhinoc-

eros’ surface was deformed to minimise the nominal distance between the spatial points 

and the surface. This deviation could be later calculated by the software, providing a 

mean value of the distance error for the solution surface of 5.560 × 10−17 ± 5.81 × 10−17 

mm (mean ± standard deviation). 

Table 1. Biometric parameters analysed in the study. 

Biometric parameter Description 

Total corneal volume (Voltot) [mm3] Volume limited by front, back and peripheral surfaces of the solid 

model generated 

Anterior / posterior corneal surface area (Corareaant 

/ Corareapos) [mm2] 
Area of the front/exterior and rear/interior surfaces 

Total corneal surface area (Corareatot) [mm2] Sum of anterior, posterior and perimeter corneal surface areas of the 

solid model generated 

Sagittal plane apex area (Splareapapex) [mm2] Area of the cornea within the sagittal plane passing through the optical 

axis and the highest point (apex) of the posterior corneal surface 

Anterior and posterior apex deviation (Devaapex / 

Devpapex) [mm] 

Average distance from the optical axis to the highest point (apex) of the 

anterior / posterior corneal surfaces 

Sagittal Plane Area in minimum thickness point 

(Splareaminthk) [mm2] 

Area of the cornea within the sagittal plane passing through the optical 

axis and the minimum thickness point (maximum curvature) of the pos-

terior corneal surface 

Anterior and posterior minimum thickness point de-

viation (Devaminthk / Devpminthk) [mm] 

Average distance in the XY plane from the optical axis to the minimum 

thickness points (maximum curvature) of the anterior / posterior corneal 

surfaces 

Centre of mass X, Y, Z (COMX, COMY, COMZ) 

[mm] 
Centre of mass coordinates X, Y, Z of the solid 
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Fig. 1. Scheme of the procedure for the generation of a virtual model and later analysis of the 

corneal structure.  

2.3 Statistical Analysis 

Both Kolmogorov-Smirnov test and Shapiro-Wilks test were run to check data normal-

ity. According to these tests and thereafter, a Student’s T-test or U-Mann Whitney Wil-

coxon test were employed, when appropriate. Correlation between parameters was as-

sessed by means of Pearson coefficients (for normally distributed data) or Spearman 

coefficients (not normally distributed). A significance level of 0.05 was fixed for p-

values in all statistical tests. Receiver operating characteristics (ROC) curves were used 

to determine which parameters could be useful in terms of characterization of diseased 

corneas, and optimal cut-offs were stablished using Youden’s J index, basing on sensi-

tivity and specificity values [20,21]. Graphpad Prism V 6 (GraphPad Software, La Jolla, 

USA) and IBM SPSS V 23.0 software (SPSS, Chicago, USA) were used to make all 

the analyses. 

3 Results 

Most of the modelled parameters showed statistically significant differences when com-

paring healthy and moderate KC corneas, as shown in Table 2 below. 
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Table 2. Descriptive values and differences in the modelled biometric parameters among the 

normal and moderate KC groups. SD: standard deviation. P: statistical test, Z: z-score. 

Biometric 

Parameters 

Normal Group (n = 50) Moderate KC Group (n = 43)   

Mean SD Min Max Mean SD Min Max z P  

Voltot (mm³) 25.71 1.53 23.23 29.07 23.97 1.52 21.06 28.74 -5.16 0.000 

Corareaant (mm²) 43.08 0.14 42.77 43.33 43.67 0.47 42.79 45.09 -7.37 0.000 

Corareapos (mm²) 44.24 0.26 43.53 44.71 45.22 0.80 44.17 47.53 -7.24 0.000 

Corareatot (mm²) 103.87 1.12 100.73 105.66 104.91 1.70 101.91 109.95 -3.47 0.001 

Splareapapex (mm²) 4.32 0.26 3.93 4.87 3.93 0.29 3.19 4.83 6.72 0.000 

Splareaminthk (mm²)  4.31 0.26 3.92 4.86 3.92 0.29 3.19 4.82 6.61 0.000 

Devaapex (mm) 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.07 -7.57 0.000 

Devpapex (mm) 0.07 0.02 0.04 0.09 0.21 0.08 0.03 0.34 -7.37 0.000 

COMX (mm) 0.04 0.02 0.01 0.09 0.02 0.05 -0.15 0.20 3.39 0.001 

COMY (mm) 0.03 0.02 0.00 0.08 0.00 0.05 -0.14 0.16 -5.14 0.000 

COMZ (mm) 0.77 0.02 0.71 0.81 0.83 0.06 0.72 1.00 -6.26 0.000 

Devaminthk (mm) 0.83 0.21 0.44 1.27 0.81 0.09 0.35 1.81 0.37 0.713 

Devpminthk (mm) 0.76 0.20 0.38 1.24 0.74 0.26 0.30 1.31 0.57 0.570 

 

3.1 Roc Analysis 

A ROC analysis was used to ascertain the predictive value of the modelled parameters 

(Figure 2). Five biometric parameters showed an area under the ROC (AUROC) above 

0.7 (Table 3). 

Table 3. The area under the ROC results. 

Biometric Parameters AUROC Sensitivity  Specificity Cut off value 

Corareaant  0.945 86.0 96.0 ≥ 43.2595 mm2 

Corareapos  0.937 83.7 96.0 ≥ 44.6205 mm2 

Devaapex  0.910 83.7 94.0 ≥ 0.0010 mm 

Devpapex  0.945 93.0 99.9 ≥ 0.0965 mm 

COMZ  0.878 69.8 98.0 ≥ 0.0809 mm 
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Fig. 2. Curves for modelled parameters detecting moderate KC. 

Table 4 summarizes all significant correlations between the modelled biometric pa-

rameters for the moderate KC group. Correlation coefficients between parameters for 

normal group have not been included, as their mutual relations have already been ad-

dressed in a previous study [16]. 

Table 4. The significant correlation coefficient values for the modelled variables in the moderate 

KC group. 

Measurement correlation 

Moderate KC group (n = 43) 

Correlation 

coefficient 
P value 

Splareapapex / Voltot 0.965 0.000 

Corareaant / Devpapex 0.313 0.041 

Corareapos / Devpapex 0.361 0.017 

Corareaant / Corareapos 0.941 0.000 

Corareaant / Corareatot 0.778 0.000 

Corareapos / Corareatot 0.864 0.000 

Voltot / Corareatot 0.354 0.020 

COMX / Corareaant -0.340 0.025 

COMX / Corareapos -0.317 0.038 

COMX / Corareatot -0.361 0.017 
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COMX / COMZ -0.369 0.015 

COMZ / Corareaant 0.938 0.000 

COMZ / Corareapos 0.882 0.000 

COMZ / Corareatot 0.844 0.000 

Devaminthk / Devpapex 0.440 0.003 

Devpminthk / Devpapex 0.532 0.000 

Devaminthk  / Devpminthk 0.979 0.000 

Splareaminthk / Splareapapex 0.997 0.000 

Voltot / Splareaminthk 0.963 0.000 

Devaapex / Devpapex 0.403 0.007 

 

4 Discussion 

The cornea is a complex hemispheric structure, made of collagen fibres that provide it 

a homogenous and stable geometry. In a pathological scenario, a loss of tenacity takes 

place in the collagen fibres that form the corneal structure, producing an alteration of 

its geometry, this is, a change of its curvature, and therefore, a loss of visual quality of 

patients [22]. 

There are in scientific literature several works that have studied the geometry of 

corneas with a moderate degree of optical aberration [23,13,24]. Several studies [23] 

observed that corneal thickness is not constant in this pathology, as a thinning is pro-

duced in the region in which the loss of structural tenacity appears. These results are 

consistent with the ones obtained by other researchers [24] that analysed the thickness 

of corneas with an advanced degree of optical aberration. Other recent study has 

demonstrated that some morphological singularities as well as corneal thickness are 

related with disease progression [13]. Therefore, the cornea in this pathology shows a 

region of geometrical decompensation as a non-symmetric response to the disease pro-

gress. However, the parametrization and study of the correlation between the biometric 

parameters that register this decompensation, which allow to evaluate the progression 

of keratoconus with moderate visual loss, have not been analysed for each patient from 

a virtual model of their own eye.  

In this study, all measures made have resulted consistent, and almost all mean dif-

ferences have been statistically significant between healthy corneas and corneas with 

keratoconus showing a moderate degree of visual impair, except for the anterior/poste-

rior minimum thickness point deviation. These results are in accordance with the ones 

reported by previous studies that evaluated some of these anatomic parameters with 

equipment based in Scheimpflug technology [25]. In our study, we have used a tech-

nology based in a double rotating camera based in the Scheimpflug projection system. 

This system has shown, in a previous study [26], being a robust and repeatable system 

for spatial data acquisition of the hemispheric structure, from which basing the genera-

tion of the virtual model with CAD software [17]. 
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Regarding the AUROC, four parameters from all the ones analysed in our study 

showed very high discriminant values (AUROC > 0.9). Two parameters, which are the 

anterior and posterior corneal surface areas showed AUROC values of 0.937 y 0.945 

respectively, due to the fact that in the pathological scenario a biomechanical weaken-

ing takes place, caused by the loss of tenacity of the hemispheric structure and conse-

quently, an increase of the corneal surface curvature is produced. This tendency is in 

line with some previous works that made ratio studies between anterior and posterior 

areas for different degrees of severity of the disease [25]. The other two parameters 

with high discrimination values were anterior apex deviation (AUROC= 0.910) and 

posterior apex deviation (AUROC= 0.945), this is because the corneal apex is the point 

of maximum curvature in corneal surfaces, therefore, according with other authors [27], 

the apex deviation is a parameter that could affect the visual performance of the pa-

tients.  

In this study, we have analysed the correlation between biometric parameters that 

register the structural alteration which manifests during the disease development. So, 

the parameters related with the areas show a strong positive correlation, specifically 

between anterior and posterior surface areas (R2= 0.941, p = 0.000), anterior surface 

area and total corneal surface area (R2= 0.778, p = 0.000) and posterior and total corneal 

surface areas (R2= 0.864, p = 0.000), due to the fact that corneal surfaces tend to behave 

proportionally during the evolution of the disease. These results are consistent with the 

ones obtained for corneal curvature in eyes with keratoconus, with the biomechanical 

weakening of the cornea, and with the possible effect of intraocular pressure in the 

weakened corneal structure [28]. 

Regarding anterior and posterior deviations, both between corneal apex points (R2= 

0.832, p = 0.000) and minimum thickness points (R2= 0.997, p = 0.000), there is a strong 

positive correlation, this is in line with the results reported by other authors [25] that 

demonstrated a robust correlation between apex deviation and the minimum thickness 

points and their relation with the pachymetric progression of corneal thickness.  

5 Conclusion 

The analysis of the biometric parameters that register the geometric decompensation 

that locally appear in a corneal region, as a response to the asymmetry produced during 

the development of keratoconus disease with a moderate degree of optical aberration, 

is a procedure that provides the ophthalmologist a new tool for the diagnosis of this 

pathology with this degree of development. In this work it has been ascertained that the 

most predictive biometric parameters are the anterior corneal surface area and the de-

viation of the posterior apex, detecting that the strongest correlation is the one between 

the areas of the sagittal planes defined through the minimum thickness points and the 

posterior corneal apex. The studied biometric parameters showed significant differ-

ences between groups. Therefore, this new approach based in the personalised diagno-

sis from a computational model may lead to a better understanding of the disease with 

this degree of optical limitation.  
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