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Abstract: In this study, we have synthesized new double layered hydroxides to be incorporated to low
density polyethylene thermoplastic matrix. These new composites present promising applications as
materials to build greenhouses due to the enhancement of their optical properties. A characterization
of the modified nanoclay has been performed by means of X-ray fluorescence (XRF), X-ray
Diffraction (XRD), Thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy
(FTIR). We have prepared a series of polyolefin-based films to evaluate the effect of the addition
of a whitening agent (disodium 2,2’-((1,1’-biphenyl)-4,4’-diyldivinylene)bis(benzenesulfonate)),
the modified hydrotalcite-like material and a commercial dispersant. The rheological and mechanical
characterization of the films have proved that the inclusion of the modified-layered double hydroxides
(LDHs) do not substantially affect the processing and mechanical performance of the material. On the
other hand, optical properties of the nanocomposites are improved by reducing the transmission in
the UVA region.

Keywords: LDH; low density polyethylene (LDPE); rheology; optical properties; films; composites

1. Introduction

One of the most common types of degradation of polymers is induced by Ultraviolet (UV) light
radiation which produces highly reactive free radicals. The so-called aging process is a result of
photodegradation and color fading of polymers [1,2]. A wide range of additives are included in
thermoplastic films to avoid UV light aging. These UV blocking compounds are classified based on the
blocking mechanism: shielding by inorganic additives and UV light absorption by organic species.
The thermal performance of the final product is one of the most important aspects to be taken into
consideration since the processing of thermoplastic films occurs at high temperatures. In this case,
inorganic additives usually are more stable at high temperatures than the organic additives. Besides,
the UV energy absorbed can be dissipated as heat promoting a thermal aging of the thermoplastic
matrix causing a loss of the mechanical properties [3,4]. In addition, organic UV absorbers migrate to
the surface of the plastic due to their volatility and different polarity, so the plastic matrix loses its
UV protection over time [5]. However, there are several strategies to reduce these negative effects.
For example, the usage of layered double hydroxides (LDH) as host matrix of organic compounds
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results into a hybrid absorber which can block the UV light, increasing the thermal and photostability
of the nanocomposite [6].

Layered double hydroxides (LDH) are anionic clays represented by the general formula of
M2 _ M3+ (OH) M (A" )xyn'mH,0, where M?™ and M3 are divalent and trivalent metallic cations
and A"” depicts the anions which can be present in the hydrated interlayer galleries of the clay [7-11].
The value of x is in the range of 0.20-0.33 [12]. Therefore, positively-charged metal hydroxide layers
are intercalated with anions in order to keep the materials electroneutrality [13,14]. The cations fill
octahedral sites having hydroxide ions in the vertices. These anions are weakly bound to the structure
and ion exchange reactions are suitable for the modification of LDHs [15-17]. LDHs composed of
Mg and Al hydroxyl sheets with carbonate ions as counter anions and M?*:M3* = 3:1 are called
hydrotalcite, and quintinite when the ratio M?+:M3* = 2:1 [18-20]. LDHs have attracted the attention of
the scientific community due to their unique properties such as anion exchange ability, thermal stability
and easy production [21-23] and the promising applications in different fields of adsorption [24-26],
sensors [27-30], biomedicine [31-33], polymer additives [34-36], among others. LDH host layers
promote the thermal and optical stabilization of the exchanged anions. Many thermoplastic materials
such as polyethylene (PE) do not contain polar groups in their backbone. Therefore, a homogenous
dispersion of clay platelets at a nonmetric level is a challenging aim in this technology. The addition
of compatibilizers has been proven to favor the exfoliation of hydrotalcite particles [37]. In this
work, we have evaluated the effect on the viscoelastic, mechanical and optical properties of the
addition of a polar whitening agent to low density polyethylene. A modified LDH hosting the anionic
whitening agent has been prepared. The research compares the effect on the polymeric matrix to the
addition of the whitening agent, the modified LDH, and also the addition of a commercial surfactant.
A characterization of the LDHs has been performed by means of XRD, TGA and FI-IR. The viscoelastic
behavior at different temperatures of the resulting nanocomposite has been performed to evaluate the
impact on processing conditions. The mechanical and optical properties have been also determined.

2. Materials and Methods

2.1. Materials

Low density polyethylene (LDPE) was used as the thermoplastic matrix for the formation of the
composites. The sample, containing no additives, was purchased by Repsol Technology Center (Madrid,
Spain) with reference “LPDE Alcudia PE003” produced by high pressure autoclave technology.

The layered double hydroxide used in this investigation was provided by Kisuma Chemicals
(Veedam, The Netherlands) with reference HT4AU from Kisuma Chemicals. The stoichiometric
formula is Mgy Al;(OH)1(CO3)-nH,O with a particle size of 0.4 pm. Therefore, this synthetic LDH
is an analogue of mineral quintinite. The anionic exchange capacity is 2.1 mmol/g of LDH in
the case of divalent anions and 4.2 mmol/g for monovalent anions. The divalent salt disodium
2,2’-((1,1’-biphenyl)-4,4’-diyldivinylene)bis(benzenesulfonate) was employed as fluorescent whitening
agent, chemical compound that absorb light in the ultraviolet region and re-emission in the blue region.
The molecular structure is depicted in Scheme 1a and the CAS number is 27344-41-8. To improve
the dispersion of the additives in the thermoplastic matrix, sorbitan monooleate with CAS number
1338-43-8 (tradename SPANS80). The formula of this non-ionic surfactant is depicted in Scheme 1b.
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Scheme 1. Structure of the whitening agent (a) and the non-ionic surfactant (b).

2.2. Ion Exchange Reaction

One of the most popular anion-exchangeable compounds are LDHs, presenting the highest affinity
to carbonate anions. Therefore, to facilitate the introduction of the whitening agent, a precursor
was prepared. The first modification of the hydrotalcite is the exchange of carboxylate anions by
chloride anions by means of an anion exchange reaction as it is described by lyi et al. [38]. The reaction
consisted on mixing HCI with an aqueous dispersion of LDH under magnetic agitation in Ny inert
atmosphere, setting the pH to a value of 4.5. 3 anion exchange capacity (AEC) of NaCl (75 g/100 g
LDH) are added to introduce Cl anions in the interlayers. The resulting suspension was filtered
and washed with degassed water under a nitrogen atmosphere to remove the excess of HCI and
NaCl. Then the precipitate was collected and dried in a vacuum to remove water and a white
solid is obtained. This modified LDH was labeled as Cl-LDH. The whitening agent (WA) disodium
2,2’-((1,1’-biphenyl)-4,4’-diyldivinylene)bis(benzenesulphonate) was intercalated in Cl-LDH by ionic
exchange reaction replacing the chloride anions. In this step, CI-LDH is mixed with 1 AEC of WA
(2.1 mmol of WA per gram of Cl-LDH) for four hours of stirring at room temperature. This exchange
reaction was conducted under nitrogen atmosphere and degassed water to avoid the absorption of
CO;2". The modified hydrotalcite WA-LDH was filtered and washed with degassed water under
nitrogen atmosphere to remove the remaining WA and the displaced Cl~. Afterwards, the solid was
dried in vacuum.

2.3. Preparation of Films

The first step of the preparation of films of neat polyethylene (PE) and with additives is a
premixture and predispersion in a compounding extruder Leistritz ZSE 18HP (Leistritz Group,
Nuremberg, Germany) with intermeshed co-rotating screws. The extruded material is pelletized.
Secondly, the nanocomposite pellets were processed in a cast film extrusion line to obtain 200 microns
thick films with a Dr. Collin E20P single screw extruder with an L/D ratio of 25 and screw diameter of
20 mm. The final concentration of WA in the nanocomposite is 0.5 wt.%. The extruder temperature
ramp is depicted in Table 1. The die width and the calander width were, respectively, 10 and 22 cm.
The screw speed set value was 60 rpm, with a die pressure of 45 bares.
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Table 1. Temperatures in °C for the different zones in the extruder for the preparation of films.

Feeding Zonel Zone 2 Zone 3 Zone4  Die
35 200 208 209 185 190

2.4. Characterization Techniques

In order to evaluate the modification of the LDHs, several characterization techniques have been
used. A Leco CHN628 (Leco Corporation, St. Joseph, MI, USA) analyzer was used to determine
the elemental composition of the different samples. The Fourier transform infrared analyses were
performed in a MIR-FT-IR Bruker 20 Vertex 70-80 device. The thermogravimetric analysis (TGA) was
carried out with Mettler Toledo TGA/SDTA 851e/LF1100 equipment (Mettler-Toledo S.A.E., Barcelona,
Spain). The X-ray diffraction patterns were recorded on a Bruker D-8 Advance diffractometer (Bruker
Biosciences Espaiiola S.A., Madrid, Spain) using a wavelength of 1.542 A from CuKa, with an angular
speed of 120 s}, at room temperature.

The rheological study of the PE and its nanocomposites was performed using an AR-G2 rotational
rheometer (TA Instruments, New Castle, DE, USA) of parallel plates at different temperatures,
with frequency between 10 and 0.01 Hz under a 1% constant strain value. Tensile tests were carried out
with a universal test machine ProLine Z010 from Zwick/Roell using a contact extensometer. These tests
were accomplished following two standards [39,40]. The optical performance of the nanocomposites
has been evaluated with a Perkin Elmer Lambda 750S spectrophotometer with integrating sphere.
The absorbance of the sample was recorded in a range from 200 to 800 nm.

3. Results

3.1. Characterization of the Modified LDHs with WA

The general formula of LDHs is [M?*1_ M3* (OH),]*" (A™"),,-mH,0O. LDH structures exist for
values of x in the range of 0.1-0.5, although in pure LDHs the x values has been found to be 0.20-0.33.
According to our X-ray fluorescence (XRF) analysis and elemental analysis results, for CI-LDH, x is
equal to 0.49 and 0.45 for WA-LDH. These values higher than 0.33 can be related to an increase of the
number of octahedrons containing Al, producing adjacent Al. AI** ions in the Brucite-like sheets of
LDHs are subject to repulsion of positive charges and the increase in neighboring Al octahedra can
leads to the formation of amorphous AI(OH)3; not detectable by X-ray measurement [12]. This can be
ascribed to the formation of an excess on AI** generated by the removal of magnesium during the
preparation of the precursor CI-LDH. After the first ion exchange reaction, the formation of MgCl
by reaction of Mg(OH), with HCl may occur, and this water-soluble salt can be removed during the
washing with the degassed water. At pH = 4.5, this insoluble amorphous AI(OH); form a passive layer
that avoid further Mg?* leaching [41].

The concentration of the elements of both CI-LDH and WA-LDH was determined by XRF and
CHNS. These results are shown in Table 2.

Table 2. Concentration in wt.% and mol/100 g of the elements of CI-LDH and WA-LDH determined by
XRF and CHNS.

Concentration (wt.%)  Concentration (mol/100 g)
CIl-LDH WA-LDH CIl-LDH WA-LDH

Elements

Na 2.03 0.15 0.09 0.006
Mg 13.55 7.45 0.56 0.31
Al 14.63 6.80 0.54 0.25
S 0.058 5.88 0.002 0.18
C 0.34 30.80 0.03 2.57

Cl 14.73 0.024 0.41 0.0007
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Therefore, according to the data shown in Table 2, the stechiometric formula of CI-LDH and
WA-LDH are:
Mg 65Alg.35(OH)2(Cl)g 350.68H,O

20.65A10.35(OH)2(WA)(.180.68H,O

In CIl-LDH, the carbon content is reduced to 0.34 wt.% and Cl is 14.53 wt.%. Therefore, the
chloride anions have satisfactory replaced the carbonate anions in the original hydrotalcite-like material.
After the addition of WA, we can observe a decrease in Cl and an increase in S, ascribed to the presence
of WA in the LDH. We have calculated the content in WA in WA-LDH from the concentration of S,
with a concentration of approximately 47 wt.% of WA in the modified hydrotalcite, corresponding to
0.09 mol/100 g, the amount expected according to the theoretical stechiometric formula for 0.31 mol/100
g of Mg. That means that only 2% of the whitening agent is loss during the reaction. Additionally,
according to the XRF results, the concentration of metallic oxides is 52.8 wt.% in CI-LDH and 25.41 wt.%
in WA-LDH, amount greater than the expected pursuant to the stoichiometric formula, which confirms
the formation of AI(OH)j3.

As it can be seen in Figure 1 and Table 3, the unmodified LDH presents a characteristic absorption
peak at 1370 cm ™!, due to the presence of carbonate ions [42]. However, the modified CI-LDH spectra
do not present this peak. Comparing the spectra of WA-LDH and the whitening agent, the peaks at
1174 cm™!, appear in both spectra and can be assigned to the presence of sulfonate ions [43]. Therefore,
this can be attributed to the incorporation of the whitening agent to the LDH. Thus, the effective
reaction exchange is also proved by these data. In Cl-LDH the characteristic absorption peak at
1370 cm ™! ascribed to the presence of carbonate anions is not observed, and the incorporation of the
whitening agent is also seen in the sample WA-LDH.
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Figure 1. FI-IR spectra of the unmodified LDH, CI-LDH, WA-LDH, and the whitening agent.
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Table 3. Infrared bands observed for unmodified LDH, CI-LDH, and WA-LDH compared to the
literature data.

Wavenumber (cm~1)
Original LDH  Quintinite [42] CI-LDH WA-LDH WA
1370 1350 -

Band Assignment

- CO3%~ v3 antisymmetric stretching
- - - 1174 1180  SOj3~ v3 antisymmetric stretching
3415 3388 3395 3467 - OH™ stretching vibration

The thermogravimetric study of the LDHs and WA is depicted in Figure 2a under an inert
atmosphere and Figure 2b under an oxygen atmosphere. The pristine whitening agent presents a first
step of mass loss due to the elimination of water. Secondly, the thermal decomposition of the sample
starts at 550 °C. For the LDH modified with Cl, there are four steps of mass loss, until 225 °C, 360 °C,
500 °C, and 800 °C. However, in the case of WA-LDH, the mass loss is shifted to higher temperatures.
Cl-LDH shows a first mass loss of approximately 19% until 225 °C, which is ascribed to the absorbed
water by the material. There is a mass loss of 18% due to the reversible dehydration of the interlaminar
hydroxides and water in the second step from 225 to 360 °C [44-46]. After that, the loss of HCI can
be seen in the range of 360-500 °C, in agreement with the presence of Cl ions [37]. Finally, up to
800 °C the loss of the hydroxide groups present in the Brucite layers can be observed. When the
WA is added to LDH, a similar behavior can be seen. However, the loss of HCI is not observed and
there is a decomposition of the WA at 550 °C. TGA of WA-LDH shows different steps of mass loss
ascribed to hydrotalcite structure: up to 225 °C: loss of absorbed water; 225-450 °C: loss of interlaminar
hydroxides; and 500-800 °C: loss of hydroxide groups present in Brucite-like layers. Other steps
present in WA-LDH TGA are characteristics of the decomposition of WA: material loss at 500-600 °C
and loss of pyrolytic carbon. A subsequent heating of the sample in oxygen atmosphere shows a loss of
mass in the pristine whitening. Due to the combustion of the carbon formed in the previous pyrolysis
in inert atmosphere, this loss of mass of pyrolytic carbon can also be observed in WA-LDH. However,

this mass loss is not present in the thermogravimetric data of CL-LDH, since WA is the only organic
compound present. This finding is in agreement with the presence of WA in WA-LDH (Figure 2b).

110 110
eeeee Pristine Whitening Agent
—— CI-LDH
100 - —— WA-LDH 100 1
90 -
S ST :
A ” :
7] .
o 804 3 704 :
E 70 I g 60 T o:
50 -
60 - '-.“.
40 o e+ Pristine Whitening Agent i
—— CILDH v
50 T y T T a) 30 — WA;LDH T T b)
0 200 400 600 800 1000 200 400 600 800 1000
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Figure 2. Thermogravimetric analysis of the whitening agent and the modified LDHs under inert
atmosphere (a) and a subsequent oxygen atmosphere heating (b).
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The evaluation of the structure of the modified LDHs has been performed by means of XRD.
Figure 3 depicts the XRD patterns of CI-LDH and WA-LDH. In Figure 3, the CI-LDH d003 peak is
located at 7.87 A in contrast with the results obtained with the original LDH (as it is depicted in
Figure Ala in Appendix A). However, when the WA-LDH results are examined, there is an increase of
the basal d-spacing of WA-LDH having d-value as 19.41 A in comparison to CI-LDH having d-value
as 7.89 A (Figure 3b). This can be ascribed to the presence of larger anions in the interlayers due to
the effective exchange of Cl with WA [47]. In order to verify that the whitening agent is placed in
the interlayers, we have also performed the XRD characterization of the pristine whitening agent
(see Figure Alb in Appendix A). These results show that the WA presents a poorly crystalline structure
with an intense diffraction peak at 15.17 A. Although these diffraction peaks could be attributed to the
presence of unreacted WA, the smoothness of the pattern in Figure 3b and the results shown in Table 1
are in agreement with an effective exchange reaction in which the WA is located in the interlayers of
the hydrotalcite-like material.

6x10° -
7.87 A (a) 2.5x10% 1 741 A (b)
5x10° /
2.0x104 1
4x10° -
0 0
c 3.92 A T 1.5x10°
S 3x10° S
o o
(&) (]
104 -
2x10° -
10° 4 5.0x10° -
0 L L L L L L ) 0
0 10 20 30 40 50 60 70 0

Figure 3. X-Ray Diffraction patterns of CI-LDH (a) and WA-LDH (b).
3.2. Rheology of LDH-Polyolefin Composites

Rheology is a powerful tool that provides crucial knowledge regarding the interaction between
the different phases added to polymeric matrices and the processing of composites [48]. In order to
perform the rheological characterization of the samples, amplitude sweep tests were performed in
a temperature range from 190 to 250 °C to determine the linear viscoelastic region. In every case,
constant values of the elastic modulus (G’) and viscous modulus (G”) were found in a wide range of
strain. As an example, we have included Figure A2 in Appendix B as supporting information with the
determination of the LVR for the PE nanocomposite with WA-LDH with SPAN. G” values were higher
than G, and when the temperature is raised a decrease of the elastic and viscous module is observed,
as expected. Similar trends were found for all the samples, and a constant value of strain of 1% was set
to perform the following frequency sweep tests.

We have investigated the effect of the different additives on the viscoelastic behavior of films of
polyethylene. In Figure 4, we have shown the values of G’ (a) and G” (b) for the different samples
at 190 °C, which is the lowest temperature utilized in these measurements. It is interesting to notice
that G’ and G” are slightly affected by the addition of either the whitening agent, or the modified
LDH. In the case of the WA, there is a low affinity between the anionic molecules and the non-polar



Materials 2019, 12, 3580 8 of 16

macromolecular chain. Thus, the values of the viscoelastic properties do not change with the presence
of this additive. There is a small increase on the viscoelastic properties when WA-LDH is added.
This finding might indicate that we are reaching the percolation concentration in the melting state.
Therefore, an effective interaction between the LDH and PE happens and the viscoelastic properties
undergo this limited increase [49]. On the other hand, a drop of G’ and G” when SPAN is added to
the nanocomposite is observed. Electrostatic repulsive forces appear due to the interaction of the
hydrophobic chain of SPAN with PE. Therefore, not only does the surfactant improve the dispersion
of the nanoclay in the thermoplastic matrix, but also the mobility of the polymeric chains [50]. Then,
the positive effect on G’ and G” when the modified LDH is added is counteracted by the addition
of SPAN.

105
—{— neat PE
—O— PE+WA
—/\— PE+ WA-LDH
—/— PE+ WA-LDH + SPAN
104 -
©
e
L)
103 -
102 T T T T a)
103 102 101 10° 10° 102
Frequency (Hz)
105
—{ neat PE
—O— PE+WA
—/\— PE+ WA-LDH
—/— PE+ WA-LDH + SPAN
104 -
©
o
)
103 -
b)
102 T T T T
103 102 101 10° 10? 102

Frequency (Hz)

Figure 4. Storage (a) and loss (b) moduli of neat PE, PE + WA, PE + WA-LDH and PE + WA-LDH +
surfactant at 190 °C.

We have performed a series of oscillatory experiments at different temperatures. G’, G’ and
complex viscosity data have been recorded, but only the elastic modulus values are depicted in
Figure 5. It can be observed that the general tendency of the samples is a decrease of G’ with increasing
temperature, as expected [51]. When temperature is raised, the mobility of the macromolecules is
increased and the viscoelastic properties diminish. This behavior is observed in our four different
films. If we compare Figure 5c with Figure 5d, we can observe the combined effect of surfactant and
temperature on the nanocomposite. In both cases, a thinning effect occurs. Paying attention at 240 °C,
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the values of G’ for the nanocomposites with and without SPAN are very similar. Therefore, at high
temperatures the effect of the surfactant seems to be negligible. One of the most important applications
of surfactants in thermoplastic materials is to improve their processability. However, in the case of
these new nanocomposites, it seems that the addition of surfactant is only necessary in the case of low
processing temperatures.

105 105
a) b)
10 1 10* 1
= _
& 1034 é‘-; 103 4
o (L)
—e— 190 °C —e— 190°C
107 1 —v— 200°C 102 ; —v— 200°C
—A— 220°C —a— 220°C
—eo— 240°C —e— 240 °C
10' v v v v 101 v v v v
103 102 101 100 10° 102 103 10-2 10" 10° 10° 102
Frequency (Hz) Frequency (Hz)
105 105
c) d)
10* { 104 1
© ©
& 1034 2 103 ;
o o
rY 190 OC ® 190 OC
102 —v— 200°C 102 ; —v— 200°C
A 220 OC A 220 OC
—e— 240°C —e— 240 °C
10° v v v v 10° v v v v
103 102 101 100 10° 102 103 102 10 10° 10° 102
Frequency (Hz) Frequency (Hz)

Figure 5. Storage Moduli values at several temperatures of neat PE (a), PE with whitening agent (b),
PE + WA-modified LDH (c), and PE + WA-LDH and surfactant (d).

Oscillatory experiments are known to give useful information for processing conditions of
thermoplastic-based materials. However, some extreme conditions cannot be investigated due to
equipment restrictions, such as high values of oscillatory frequencies. In order to come up to larger
values of frequency, Time-Temperature Superposition curves (TTS) have been developed in this work.
Figure 6 shows a superposition of the experimental data and the TTS predictions at 240 °C for neat PE
(a) and its nanocomposite with WA-modified LDH and surfactant (b). Both TTS curves have been
constructed with the oscillatory experiments at 190, 200, 220, and 240 °C. There is a good agreement
between the TTS curve and the experimental data in the case of PE. The nanocomposite shows a perfect
superposition for the loss modulus, but the storage modulus presents some scattering of the data at low
frequency. This effect is probably due to the similarity of the values of G’ at the different temperatures
that can be observed in Figure 5d. This low dependence of G’ with the temperature may overcome to a
worse accuracy in the treatment of the data. Nevertheless, we can assess that this methodology can
predict the behavior of nanoclay-modified composites with a PE matrix.
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105 105
—o— TTS 240°C G' —e— TTS240°C G'
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Figure 6. TTS curves for neat PE (a) and PE + WA-LDH (b) nanocomposite with surfactant.
3.3. Mechanical and Optical Properties of the Composites

In order to evaluate actual applications of these new composites, we have performed a series
of mechanical and optical tests. In Figure 7 we have represented the results from the tensile tests
performed to the neat PE, PE with the addition of WA, PE with the addition of WA-modified LDH and
the sample with PE, WA-LDH, and the surfactant. Longitudinal and vertical tests have been carried out
and the yield and tensile strengths and the elongation at break have been determined in longitudinal
direction of extrusion and also in the transversal direction. In Figure 7a it can be seen that the addition
of the additives decrease the mechanical properties of the new nanocomposites, especially when the
surfactant is added. It is noteworthy that, for neat PE, the values of the mechanical properties in both
directions of the applied load are fairly the same. Longitudinal yield and break strengths are barely
affected by the additives. However, a decrease on the transversal mechanical properties is observed.
This can be ascribed to lower anisotropy of the polymer chains after the extrusion. Regarding the values
of the elongation at break (Figure 7b), the values when the load is applied in the transversal direction
of extrusion are lower than the neat PE, but there is no an apparent trend for the longitudinal series.

I Lonigtudinal Yield Strength
I TransversalYield Strength
[ Longitudinal Break Strength
14 [ Transversal Break Strength 700
a) - b) mmmm | ongitudinal
12 1 I 600 === Transversal
10 1 _ g 500
= s
o - Q
= 8- 1 5 400
< ®
2 5
6 O 300
: g
w c
4 1 2 200
w
2 1 100
0 0
Neat PE PE+WA PE+ PE+ Neat PE PE+WA PE+ PE+
WA-LDH WA-LDH+ WA-LDH WA-LDH+
SPAN SPAN

Figure 7. Mechanical properties of Neat PE, PE + WA, PE + WA-LDH, and PE + WA-LDH + surfactant
are depicted. In (a) the longitudinal and vertical yield and tensile strengths are represented, and in
(b) the longitudinal and vertical nominal deformation.
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The optical behavior of the samples is depicted in Figure 8. Neat PE presents the higher
transmission of light in UV-VIS range. However, the addition of the WA reduces the transmission at
low wavelengths due to the Ultraviolet A (UVA) blocking activity of the whitening agent (blue line).
This optical performance is increased if the whitening agent is included in the LDH and even more
enhanced when the surfactant is added to the film. LDPE is a non-polar thermoplastic matrix and ionic
species as this WA are questionably dispersed. The decrease of UVA transmission in the sample with
LDH modified with WA indicates that the optical activity of the whitening agent is enhanced when it is
encapsulated between the layers of LDHs. Moreover, if a surfactant (SPAN) is added to the composite,
the UVA light transmission is reduced to less than 10%. This effect of surfactant can be attributed to a
better dispersion of the LDH in the polymeric matrix [52]. Although the addition of the dispersant
provokes a dramatic drop on the transmission of UVA, the transmission in the visible range presents
the same values than neat PE. These special optical properties make this material a perfect candidate
for greenhouse applications since they are able to only block the damaging light range for plants.

120
100 1
_ ———
X
80 -
[ =
02
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Figure 8. UV-VIS spectra of films made of neat PE, PE with whitening agent, and PE with WA-LDH.

4. Discussion

In this work, we have synthesized new double layered-PE composites. The synthesis of the
modified LDH has been made by simple exchange reaction. We have proven by means of FI-IR, X-Ray
diffraction and TGA that an anionic whitening agent has been incorporated to the LDH. This new
modified LDH presents larger interlayer space due to the presence of the WA. In the rheological tests,
we have demonstrated that the WA-LDH composites present higher values of G’ and G”, and therefore,
the percolation concentration is almost reached. The addition of a dispersant agent decreases the
viscoelastic properties of the composite. However, this effect only appears at low temperatures and is
negligible when high temperatures are reached (240 and 250 °C). TTS curves have been elaborated to
increase the frequency window of the films. The anisotropy of the films provoke that the surfactant
has a negative impact on the transversal mechanical properties of the resulting composites, but with
small effect on the longitudinal yield and break strengths. Finally, the addition of WA decreases the
transmission of the UVA light but not in the visible range, and the best results are found for the
formulation with encapsulated WA and surfactant. Therefore, the addition of surfactant not only
enhances the processing of the nanocomposites but their optical properties.
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Figure A1. X-Ray diffraction pattern of original LDH (a), and pristine whitening agent (b).
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