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a b s t r a c t 

Pharmaceutically active compounds (PhACs) widely present in urban wastewater effluents pose a threat 

to ecosystems in the receiving aquatic environment. In this work, efficiency of granular activated carbon 

(GAC) - based catalytic processes, namely catalytic wet peroxide oxidation (CWPO), peroxymonosulfate 

oxidation (PMS/GAC) and peroxydisulfate oxidation (PDS/GAC) at ambient temperature and pressure were 

studied for removal of 22 PhACs (ng L −1 level) that were present in secondary effluents of real urban 

wastewater. Concentrations of PhACs were measured using Ultra Performance Liquid Chromatography –

Triple Quadrupole Mass Spectrometry (UPLC-QqQ-MS/MS). Catalytic experiments were conducted in dis- 

continuous mode using up-flow fixed bed reactors with granular activated carbon (GAC) as a catalyst. The 

catalyst was characterized by means of N 2 adsorption-desorption isotherm, mercury intrusion porosime- 

try (MIP), elemental analysis, X-ray fluorescence spectroscopy (WDXRF), X-ray diffraction (XRD), thermal 

gravimetry and differential tem perature analyses coupled mass spectrometry (TGA-DTA-MS). Results indi- 

cate that the highest efficiency in terms of TOC removal was achieved during CWPO performed at optimal 

operational conditions (stoichiometric dose of H 2 O 2 ; TOC removal ~ 82%) followed by PMS/GAC (initial 

PMS concentration 100 mg L −1 ; TOC removal ~73.7%) and PDS/GAC (initial PDS concentration 100 mg 

L −1 ; TOC removal ~ 67.9%) after 5 min of contact time. Full consumption of oxidants was observed in all 

cases for CWPO and PDS/GAC at contact times of 2.5 min, while for PMS/GAC it was 1.5 min. In general, 

for 18 out of 22 target PhACs, very high removal efficiencies ( > 92%) were achieved in all tested pro- 

cesses (including adsorption) performed at optimal operational conditions during 5 min of contact time. 

However, moderate (40 – 70%) and poor ( < 40%) removal efficiencies were achieved for salicylic acid, 

ofloxacin, norfloxacin and ciprofloxacin, which can be possibly attributed to insufficient contact time. De- 

spite high efficiency of all studied processes for PhACs elimination from urban wastewater effluent, CWPO 

seems to be more promising for continuous operation. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Presence of pharmaceutically active compounds (PhACs) in ur- 

an wastewater effluents is attracting significant attention recently, 
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hich can be explained by the ability of these pollutants (even at 

ery low levels) to cause biological effects ( Suárez et al., 2008 ). It

an be expected that constant discharge of pharmaceutical com- 

ounds to the aquatic environment could pose a threat to the 

quatic ecosystems ( François et al., 2015 ; Quinn, Gagné and Blaise, 

009 ; Quinn et al., 2011 ). A list of these substances was recently

ncluded in the Watch List by EU Water Framework Directive (EU 

ecision 2018/840). 

Municipal wastewater treatment plants (WWTP) are the main 

arrier preventing the release of pollutants into the receiving wa- 

er bodies. During the secondary wastewater treatment step (bio- 

ogical) some PhACs can be eliminated. The tertiary treatment step 

t conventional urban wastewater treatment plants usually aims 

t elimination of pathogens, turbidity and nutrients. Hence, filtra- 

ion, chlorination as well as UVC disinfection are often used as a 

ertiary treatment step. However, commonly applied tertiary treat- 

ent processes do not lead to efficient elimination of recalcitrant 

rganic contaminants. As a result, emerging contaminants are often 

eleased to the aquatic environment with urban wastewater efflu- 

nts ( Gracia-Lor et al., 2012 ; Luo et al., 2014 ). Tertiary treatment of

rban wastewater aiming at elimination of contaminants of emerg- 

ng concern (CECs), pathogens, etc. is of high interest especially in 

iew of recent EU regulation 2020/741 for wastewater reuse. 

Advanced Oxidation Processes (AOPs) can be considered as 

n alternative option for post-treatment of urban wastewater ef- 

uents ( Rueda-Marquez et al., 2020 ; Sichel, Garcia and Andre, 

011 ; Rizzo, Agovino et al., 2019 ; Huang et al., 2020 ; Michael-

ordatou, Karaolia and Fatta-Kassinos, 2018 ; Rizzo et al., 2019 ). 

urrently, AOPs are extensively studied by many researchers 

ainly due to non-selective behaviour and potential for pollutant 

xidation as well as lack of solid waste formation during ma- 

ority of AOPs. Among the different AOPs, catalytic wet peroxide 

xidation (CWPO) and persulfate oxidation processes are of sig- 

ificant promise. Main advantages of CWPO include absence of 

ludge generation and possibility to work in a wide pH range 

 Wang et al., 2016 ). Mainly iron-based catalysts are used for CWPO 

 Munoz et al., 2017 ), while carbon-based catalysts are not so 

idely studied. Similarly, carbon-based materials for the activa- 

ion of different persulfate salts have been mainly addressed us- 

ng dyes or phenol as model pollutants ( Wang and Wang, 2018 ). 

ccordingly, the persulfate activation efficiency by carbonaceous- 

ased materials, especially metal-free, is worth further research 

 Zhao et al., 2017 ). Thus, the application of activated carbon as 

 catalyst for CWPO and persulfates at ambient temperature and 

ressure is emerging as a technique of significant promise. Recent 

tudies have demonstrated formation of hydroxyl radicals during 

ecomposition of H 2 O 2 by carbon materials ( Santos et al., 2009 ; 

ueda-Márquez et al., 2015a ; Rueda-Márquez et al., 2015b ). 

To the best of our knowledge, there is only one study 

 Munoz et al., 2017 ) devoted to post-treatment of real urban 

astewater effluents by CWPO (iron-based catalyst) aiming at re- 

oval of pharmaceutical compounds at environmentally relevant 

oncentrations. Thus, there is an important knowledge gap in ap- 

lication of carbon-based catalysts for the elimination of emerg- 

ng pharmaceutical compounds from real urban wastewater efflu- 

nts by CWPO and persulfate oxidation at ambient temperature 

nd pressure ( Rueda-Márquez, Levchuk and Sillanpää, 2018 ). This 

tudy aims at taking a step forward towards existing research gap. 

n this work we have studied granular activated carbon (GAC) as a 

atalyst for CWPO and persulfate oxidation performed in up-flow 

xed bed reactors for treatment of real urban wastewater efflu- 

nts. The effect of initial concentration of oxidizing agents (H 2 O 2 

or CWPO; peroxymonosulfate (PMS) and peroxydisulfate (PDS) for 

ersulfate oxidation) was studied in order to identify optimal re- 

ction conditions leading to highest TOC conversion. When opti- 

al conditions were established, removal of 22 PhACs present in 
2 
eal urban wastewater effluents (not spiked) by CWPO, PDS/GAC 

nd PMS/GAC was studied. Moreover, catalyst stability was inves- 

igated. As far as we are aware, this is the first work focused on 

reatment of real urban wastewater effluents (decrease of TOC and 

limination of 22 PhACs) by CWPO and persulfate oxidation using 

arbon-based catalyst. 

. Materials and methods 

.1. Chemicals 

Sodium Peroxydisulfate (PDS, reagent grade, ≥ 98%), monop- 

rsulfate compound OXONE® (PMS), sodium bicarbonate (ACS 

eagent, ≥ 99.7%), and potassium iodide (ACS reagent, ≥ 99%) 

ere purchased from Sigma-Aldrich. Hydrogen peroxide (30%), 

ethanol (ACS, ISO, Reag. Ph Eur) and titanium (IV) oxysul- 

ate were received from Merck. Analytical standards of monitored 

hACs were obtained from suppliers listed elsewhere by Baena- 

ogueras et al. (2016) . Orange (II) was received from ACROS Organ- 

cs®. The solid phase extraction cartridges Oasis HLB 200 mg were 

urchased from Waters Chromatography Europe BV. A granular ac- 

ivated carbon (GAC) from coconut shell (PQ-0602-02) purchased 

rom Hidrowater was used as catalyst. 

.2. Sampling and characterization of municipal wastewater effluent 

Municipal wastewater effluent from the largest Wastewater 

reatment Plant (WWTP) in Finland, namely, Viikinmäki (Helsinki, 

inland) was used for experiments. This WWTP processes in- 

ustrial (approx. 15%) and domestic (approx. 85%) wastewater of 

ver 800 000 inhabitants from capital area with average flow 

80 0 0 0 m 

3 /day. The Viikinmäki WWTP is conducting conven- 

ional wastewater treatment based on the activated sludge pro- 

ess. The wastewater is processed in nine activated sludge pro- 

ess lines which also include biological denitrification. Besides me- 

hanical, biological and chemical treatment, a biological filter has 

een added in order to improve nitrogen removal. The process 

nit operations include intake, screening, grit and grease removal, 

reliminary settling and activated sludge treatment with nitrifica- 

ion/denitrification steps. More details regarding wastewater treat- 

ent process can be found elsewhere ( Helsinki Region Environ- 

ental Services Authority HSY,2018 ). Prior to experiments, com- 

osite 48 h samples (during weekend, winter) of wastewater influ- 

nt and effluent from WWTPs were collected in order to perform 

omplete analysis of typical PhACs (in total 83 compounds were 

nalyzed; list of analyzed compounds is in Table 1 SM). It should 

e noticed that during the weekend when composite sample was 

ollected, it was raining heavily. Wastewater samples were col- 

ected into specifically cleaned amber glass and bottles and Solid 

hase Extraction (SPE) was performed as soon as samples were re- 

eived. This wastewater effluent was used for optimization of op- 

rational conditions of CWPO, PMS/GAC, and PDS/GAC processes. 

hen the optimal conditions were selected, experiments at opti- 

al conditions with CWPO, PMS/GAC, PDS/GAC and GAC (as a ref- 

rence test) were repeated using wastewater effluent collected in 

ummer, which was used for the experiments in the same day. 

oncentration of 22 PhACs ( Table 2 SM) was measured using Ul- 

ra Performance Liquid Chromatography – Triple Quadrupole Mass 

pectrometry (UPLC-QqQ-MS/MS) before and after all experiments 

erformed at optimal conditions. Wastewater effluent before and 

fter treatment by CWPO, PMS/GAC, PDS/GAC and GAC was col- 

ected inside amber glass bottles, which were specially cleaned. 

he physicochemical characterization of wastewater effluent was 

onducted using standard methods ( APHA 2008 ). The Total Organic 

arbon (TOC) analysis was conducted using Shimadzu TOC-L ana- 

yzer in non-purgeable organic carbon (NPOC) mode. 
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Table 1 

Results of UPLC-QqQ-MS/MS analysis of pharmaceutically active compounds (PhACs) in influent and effluent of studied 

WWTP. 

Compound Concentration Reduction, % ∗ LOD ∗∗ , ng L -1 LOQ ∗∗∗ , ng L -1 

influent, ng L -1 effluent, ng L -1 

Lincosamides 

Chloramphenicol 20.8 ± 4.0 14.4 ± 0.4 30.9 < 0.1 < 0.1 

Lincomycin 9.8 ± 0.4 0.4 ± 0.3 96.8 < 0.1 < 0.1 

Anti-inflammatory 

Acetaminophen 69072.9 ± 2161 < LOD 100 0.5 1.8 

Salicylic Acid 1183.1 ± 191.8 33.7 ± 1.6 97.2 1.3 4.4 

Phenylbutazone 131.2 ± 130.5 < LOD 100 0.8 2.8 

Fenoprofen 197.1 ± 30.9 98.4 ± 9.7 50.1 0.1 0.5 

Ibuprofen 35827.7 ± 754.5 361 ± 8.8 99 1 3.5 

Indomethacin 20 ± 1.2 18.7 ± 1.7 6.5 0.6 2.1 

Naproxen 3972.5 ± 579.8 764.2 ± 46.5 80.8 0.3 0.9 

Mefenamic acid 75 ± 5.2 60.4 ± 5.3 19.4 < 0.1 < 0.1 

Diclofenac 1499.2 ± 13.4 1362.1 ± 31.3 9.1 0.1 0.2 

Ketoprofen 117.3 ± 13 93.8 ± 1.5 20 0.1 0.3 

Phenazone 1.9 ± 0.3 3.6 ± 0.1 negative 0.1 0.2 

Lipid Regulators 

Bezafibrate 93.7 ± 0.9 51.4 ± 1.8 45.1 < 0.1 < 0.1 

Clofibric acid 4.8 ± 4.7 1.3 ± 1.2 74.2 0.1 0.2 

Gemfibrozil 58.6 ± 21 92.2 ± 14.7 negative < 0.1 < 0.1 

Pravastatin 88 ± 4.9 20.3 ± 6.2 100 < 0.1 0.1 

Diuretics 

Furosemide 2564 ± 58.7 1810.7 ± 23.8 29.4 < 0.1 < 0.1 

Hydrochlorothiazide 625.9 ± 8.3 518.5 ± 18.5 17.2 < 0.1 < 0.1 

Other antibiotics and surfactants 

Triclocarban (TCC) 14.9 ± 1 < LOD 100 < 0.1 0.1 

Triclosan (TCS) 344.1 ± 12.2 357.9 ± 33.1 negative < 0.1 0.1 

Monensin < LOD 13.3 ± 1 negative < 0.1 < 0.1 

Macrolides 

Roxithromycin 13.4 ± 0.1 5.2 ± 2.9 61.1 < 0.1 < 0.1 

Azithromycin 1499.1 ± 68.2 946.1 ± 62.9 36.9 < 0.1 < 0.1 

Clarithromycin 238.5 ± 12.8 160.8 ± 9.8 32.6 < 0.1 < 0.1 

Sulfonamides 

Sulfathiazole 0.4 ± 0.04 0.5 ± 0.02 negative < 0.1 < 0.1 

Sulfadiazine 14.1 ± 0.1 24.9 ± 0.6 negative < 0.1 < 0.1 

Sulfamethoxazole 49 ± 2.7 69.6 ± 2 negative < 0.1 < 0.1 

Sulfanilamide 40.8 ± 7.6 122.4 ± 12.3 negative 0.4 1.2 

Quinolones 

Flumequine < LOD 3.2 ± 3 negative < 0.1 < 0.1 

Ofloxacin 5729.2 ± 446.6 2226.7 ± 67.1 61.1 < 0.1 < 0.1 

Norfloxacin 273.7 ± 98.8 1216.6 ± 1088.9 negative < 0.1 0.1 

Danofloxacin 297.8 ± 35.4 1104.9 ± 829 negative 0.1 0.2 

Sparfloxacin 8502.4 ± 137.3 241.6 ± 210 97.2 < 0.1 < 0.1 

Nitroimidazols 

Metronidazole 324 ± 22.7 371.9 ± 1.5 negative < 0.1 0.1 

Ornidazole 8 ± 7 5.6 ± 5.4 30.1 < 0.1 < 0.1 

Dihydrofolate 

Trimethoprim 60.4 ± 0.4 102.1 ± 7.3 negative < 0.1 < 0.1 

Beta-blockers 

Propanolol 146.7 ± 3.4 171.1 ± 1.1 negative < 0.1 0.1 

Timolol 4.9 ± 0.04 9 ± 0.4 negative < 0.1 < 0.1 

Atenolol 118.7 ± 3.3 78.9 ± 0.3 33.5 < 0.1 < 0.1 

Metoprolol 320.6 ± 5.5 366.8 ± 20.6 negative 0.1 0.2 

Histamine receptor antagonist 

Ranitidine 187.4 ± 10.9 60.7 ± 58.9 67.6 < 0.1 0.1 

Psychiatric drugs and stimulants 

Amitriptiline 12.2 ±1.7 7.6 ± 1.8 37.7 < 0.1 0.1 

Carbamazepine 13.1 ± 0.3 28.6 ± 0.5 negative < 0.1 < 0.1 

Caffeine 492223.2 ± 143239 0.3 ± 0.2 100 0.1 0.3 

Asthma medication 

Albuterol 8.7 ± 1.5 5.3 ± 5 39.8 < 0.1 0.1 

Tetracyclines 

Tetracycline 4562.1 ± 120 < LOD 100 1 3.5 

∗ It should be noticed that hydraulic retention time was not considered. 
∗∗ LOD – Limit of Detection. 
∗∗∗ LOQ – Limit of Quantification. 
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Concentrations of PhACs were determined in duplicate as re- 

orted earlier ( Baena-Nogueras et al., 2016 ). Briefly, Solid Phase Ex- 

raction (SPE) was used as pre-treatment method (HLB cartridges 

asis, 200 mg). Conditioning of HLB cartridges was performed us- 

ng 8 mL of methanol and 8 mL of Milli-Q water. Consequently, 

amples (100 mL) were passed through the cartridges. Finally, car- 
3 
ridges were washed with Milli-Q water (10 mL) and dried in air. 

lution was performed using 10 mL of methanol. Evaporation of 

xtracts was carried out under a nitrogen stream and a mixture of 

ater and methanol (75:25) was used for reconstruction. Identi- 

cation and quantification of PhACs were performed by means of 

ruker EVOQ Elite (Bruker, Billerica, MA) UPLC-QqQ-MS/MS with 
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Table 2 

Physico-chemical characterization of urban wastewater effluent. 

Parameter (unit) Concentration Parameter (unit) Concentration 

Chemical Oxygen Demand (mg L −1 ) 49 NO 3 -N (mg L −1 ) 1.46 

Total Organic Carbon (mg L −1 ) 14.4 Alkalinity (mmol L −1 ) 2.13 

Biochemical oxygen demand 7 (mg L −1 ) 9.16 Total iron (mg L −1 ) 0.55 

Suspended Solids (mg L −1 ) 4.8 pH 7.13 

Total Phosphorous (mg L −1 ) 0.23 Conductivity (mS cm 

−1 ) 0.68 

Total Nitrogen (mg L −1 ) 4.9 SO 4 
2 − (mg L −1 ) 89.83 

NH 4 -N (mg L −1 ) 1.38 Cl − (mg L −1 ) 87.12 
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-18 column (100 × 2.1 mm; particle size 2 μm) and electrospray 

nterface. The injection volume was 10 μL and the flow rate was 

.4 mL/min in positive and negative ionization modes. The aque- 

us mobile phases used for measurements conducted in positive 

onization mode were a mixture of 10 mmol formic acid and am- 

onium formate (pH 3.2), while 100% methanol was used as or- 

anic mobile phase. Aqueous mobile phases applied for analysis 

erformed in negative ionization mode were 5 mmol ammonium 

cetate/ammonia (pH 8), while organic mobile phase consisted of 

00% methanol. Multiple reaction monitoring (MRM) was used for 

ata acquisition. Obtained data were processed with Bruker MS 

orkstation 8.1 Software. 

.3. Characterization of granular activated carbon 

Different GAC sam ples were characterized: fresh (GAC), GAC 

fter adsorption runs (GAC-Ads) and after AOPs experiments 

GAC-AOPs). Textural properties were determined combining N 2 

dsorption-desorption isotherm and mercury intrusion porosime- 

ry (MIP). N 2 isotherms were obtained at -196 °C with a Quadra- 

orb Evo apparatus (Quantachrome). Before measurements, the 

amples were outgassed at 150 °C for 24 h under high vacuum 

residual pressure < 10 −4 Pa). BET surface area was calculated, and 

-plot method was used for micropore analysis. Mercury intru- 

ion porosimetry was used to determine the meso and macrop- 

re volumes (Poremaster 60 apparatus from Quantachrome). The 

esopore volume in the range not covered by MIP was obtained 

rom the N 2 isotherm. Elemental analyses were performed in a 

ECO CHNS628 elemental analyser. Complementary chemical anal- 

sis was carried out by wavelength dispersive X-ray fluorescence 

pectroscopy (WDXRF) to check for the presence of different ele- 

ents with a S8 Tiger apparatus (Bruker). X-ray diffraction (XRD) 

attern was performed in a Bruker D8 Advance XRD diffractometer 

ith a Cu K α radiation ( λ= 0.1541 nm) in the 2 θ range 10-80 ° at a

can rate of 0.02 °/s and 0.5 s per point. 

Thermal gravimetry and differential temperature analyses cou- 

led mass spectrometry (TGA-DTA-MS) were performed with a STA 

49 F3 Jupiter (Netzsch) coupled to a mass spectrometer (QMS 

03D Aëolos III from Netzsch) in order to analyse the evolution of 

O 2 , CO and H 2 O during the temperature programmed treatments. 

wo different experiments were carried out in inert (temperature 

rogrammed desorption (TPD) in Ar) and in oxidizing flows (tem- 

erature programmed oxidation (TPO) runs in Ar/O 2 , 80/20) with 

 flow rate of 100 mL/min, using a heating rate of 10 °C/min from 

0 °C to 1100 °C. The pH of the GAC suspension slurry (pH PZC ) can

e equivalent to the point of zero charge under certain conditions 

 Moreno-Castilla et al., 1995 ; Menendez et al., 1995 ). It was de-

ermined by mass titration with 5 wt.% GAC loading in ultrapure 

ater as described in the literature ( Moreno-Castilla et al., 1995 ; 

enendez et al., 1995 ) in dark conditions and continuous stirring 

ntil the pH of the slurry was stabilized. A calibrated pH-meter 

Crison GLP21 + ) was used for pH measurement. 
4 
.4. Experimental set-up 

All CWPO, PMS/GAC, PDS/GAC and GAC experiments for urban 

astewater treatment were conducted in discontinuous mode us- 

ng up-flow fixed bed reactors at ambient pressure and tempera- 

ure (20 ± 2 °C). Methacrylate tubes with diameter of 4.5 cm and 

ength of 13 cm were used as reactors ( Fig. 1 SM). Each reactor 

as charged with 68.825 ± 0.345 g of GAC (catalyst). Real urban 

astewater effluent (410 mL) was placed in glass beaker (volume 

50 mL) and mechanically stirred, then the appropriate amount 

f H 2 O 2 (for CWPO), PMS (for PMS/GAC) or PDS (for PDS/GAC) 

as added to the effluent and pumped to the fixed-bed reac- 

or using peristaltic pump (Masterflex®). Adsorption experiments 

blank/reference test) were conducted in parallel with catalytic ex- 

eriments (CWPO, PMS/GAC, PDS/GAC) in order to reach similar 

aturation of GAC used for catalytic and adsorption tests. The time 

ero of each experiment was considered when the effluent reached 

he top of the GAC bed. Experimental set up for CWPO, PMS/GAC 

nd PDS/GAC experiments is shown in Fig. 2 SM. Residual concen- 

ration of hydrogen peroxide was measured during all CWPO ex- 

eriments by means of colorimetric method reported elsewhere 

 Eisenberg, 1943 ). Persulfate concentration was monitored using 

pectrophotometric methods according to the protocols proposed 

n ( Liang et al., 2008 ; Wacławek, Grübel and Černík, 2015 ). 

Long-term CWPO tests were also performed in order to evalu- 

te the stability of the catalyst using two different experimental set 

ps. The first long-term test was conducted using the experimen- 

al set up described above and shown in Fig. 2 SM. For this test a

odel solution consisting of tap water and Orange II (initial con- 

entration 500 mg/L) was continuously pumped (flow rate about 

0 mL/min) through the fixed-bed reactors during 47 h. Taking into 

onsideration that the theoretical COD of Orange II model solution 

as estimated to be about 760 mg L −1 , the amount of H 2 O 2 was

hosen based on optimum stoichiometric ratio obtained in previ- 

us experiments with wastewater effluent. No hydrogen peroxide 

as added in adsorption column (CWPO and adsorption tests were 

erformed in parallel). The contact time was decreased as com- 

ared to experiments with wastewater in order to ensure presence 

f residual H 2 O 2 in the CWPO effluent. Concentration of Orange II 

n water was measured by means of UV-Visible spectrophotome- 

er (Jenway 7315) at the wavelength 486 nm. Taking into account 

he large amount of catalyst used in this experimental set up it 

as difficult to reach saturation of GAC. Hence, similar tests were 

erformed using smaller amounts of catalyst (experimental set up 

hown in Fig. 3 SM). Two up-flow fixed bed reactors (polystyrene, 

 cm diameter, 5 cm bed length, 22 cm total length) filled with 2 

 of GAC each were used and operated in parallel (one for CWPO 

nd one for adsorption). Model solution (except that pH was ad- 

usted to 3) and concentration of H 2 O 2 were similar to these used 

n the first long-term test. Experiments were performed continu- 

usly during 400 min and model solution was pumped through 

eactors with flow rate of 2 mL min 

−1 . 
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Fig. 1. (A) Effect of hydrogen peroxide concentration on conversion of TOC of urban wastewater effluent (initial TOC = 12.28 ± 0.33 mg L −1 ; initial pH = 7.6); (B) hydrogen 

peroxide consumption. 
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. Results and discussion 

.1. Optimization of operational conditions of CWPO, PMS/GAC and 

DS/GAC 

.1.1. CWPO 

The CWPO experiments were conducted at ambient pressure 

nd temperature with various concentrations of hydrogen perox- 

de in order to choose the optimal concentration of the oxidant to 

reat the wastewater effluent. Performance of the CWPO process 

ith different initial hydrogen peroxide concentrations was eval- 

ated based on TOC conversion (X TOC ,%), calculated as shown in 

quation (1) , while hydrogen peroxide consumption (X H2O2 ,%) was 

stimated using Equation (2) . 

 TOC = (([TOC] inlet - [TOC] outlet )/[TOC] inlet ) · 100 (1) 

 H2O2 = (([H 2 O 2 ] inlet - [H 2 O 2 ] outlet )/[H 2 O 2 ] inlet ) · 100 (2)

It is well known that concentration of hydrogen peroxide is a 

ritical parameter for CWPO. According to Pliego et al. (2012) , the 

toichiometric amount of hydrogen peroxide required for the com- 

lete mineralization of wastewater is 2.125 g per g of COD. The ini- 

ial COD and TOC values of wastewater effluent used for CWPO ex- 

eriments were 49 mg L −1 and 12.3 mg L −1 , respectively. Thus, the 

heoretical stoichiometric concentration of hydrogen peroxide was 

stimated to be about 104 mg L −1 taking into consideration the 

OD value (49 mg L −1 ) of the tested wastewater effluent. Follow- 

ng concentrations of hydrogen peroxide: 104 mg L −1 (H 2 O 2 :COD 1 

toichiometric), 56 mg L −1 (H 2 O 2 :COD 0.5 stoichiometric), 189 mg 

 

−1 (H 2 O 2 :COD 1.8 stoichiometric) and 1075 mg L −1 (H 2 O 2 :COD 

0.3 stoichiometric) were tested. Results (TOC conversion and H 2 O 2 

onsumption profiles) are shown in Fig. 1 . 

As it can be seen from Fig. 1 (A), with an initial increase of

ydrogen peroxide concentration (H 2 O 2 :COD from 0.5 to 1.8 sto- 

chiometric) the TOC conversion increased, while when the H 2 O 2 

oncentration was too high (H 2 O 2 :COD 10.3 stoichiometric) the ef- 

ciency of CWPO decreased. Similar observations have been re- 

orted earlier ( Fang et al., 2018 ) and can be explained by the fact

hat an excess of hydrogen peroxide acts as scavenger of hydroxyl 

adicals (reactions 3 and 4 ( Chou and Huang, 1999 )). 

 2 O 2 + HO 

· → H 2 O + HO 2 
· (3) 
5 
O 2 
· + HO 

· → H 2 + O 2 (4) 

The highest TOC conversion was achieved with initial H 2 O 2 

oncentrations of 104 mg L −1 (H 2 O 2 :COD 1 stoichiometric) and 189 

g L −1 (H 2 O 2 :COD 1.8 stoichiometric), leading to approx. 82% and 

4% of TOC removal, respectively. Obtained results are in agree- 

ent with data reported earlier as in most of recent studies de- 

oted to wastewater treatment by CWPO the H 2 O 2 :(COD or TOC) 

atios were with the range of 0.5 – 2 ( Rueda-Márquez, Levchuk and 

illanpää, 2018 ). It should be mentioned that hydrogen peroxide 

as fully consumed during all CWPO tests ( Fig. 1 B), which is 

ighly beneficial as the presence of H 2 O 2 in effluents even at low 

oncentrations can be possibly toxic for the receiving environment 

 Drábková et al., 2007 ). The pH and conductivity values were mea- 

ured before and after each CWPO test and similar results were 

btained for all tested H 2 O 2 :COD ratios, namely pH increased from 

.6 ± 0.03 (initial wastewater effluent) to 8.04 ± 0.03, while con- 

uctivity raised from 0.9 ± 0.01 mS cm 

−1 to 1.08 ± 0.04 mS cm 

−1 . 

he values of pH and conductivity after adsorption test were 8.38 

0.01 and 1.13 ± 0.01 mS cm 

−1 , respectively. The H 2 O 2 :COD ra- 

io 1 stoichiometric was chosen as the optimal among all CWPO 

ests and used for further experiments, although TOC conversion 

as slightly higher at ratio 1.8 stoichiometric. However, required 

mount of H 2 O 2 at ratio 1.8 is almost two times higher as com- 

ared with ratio 1, while the TOC removal is very similar. Refer- 

nce (blank) test in absence of catalyst with 1 stoichiometric con- 

entration of hydrogen peroxide was conducted and no changes in 

OC were observed. The adsorption capacity of GAC in absence of 

ydrogen peroxide was relatively high ( Fig. 1 A) as expected due to 

igh GAC load in the fixed-bed reactor. However, experiments con- 

rming that chemical oxidation and not sorption takes place when 

 2 O 2 is added to the GAC column have been performed in our pre- 

ious study ( Rueda-Márquez et al., 2015b ). Briefly, deionized wa- 

er spiked with 4-chlorophenol and H 2 O 2 was pumped through 

he GAC column (mass of catalyst 140.10 g) and a stoichiometric 

mount of chloride ions was detected after treatment, confirming 

hat oxidation occurred. It should be mentioned that the same GAC 

as used in previous ( Rueda-Márquez et al., 2015b ) and current 

tudy. 

In this sense, this GAC will promote H 2 O 2 decomposition into 

eactive oxidizing species (ROS), mainly HO 

· radicals ( Oliveira et al., 

0 04 ; Santos et al., 20 09 ; Georgi and Kopinke, 2005 ; Rey et al.,

008 ). This reaction is favoured by surface defects, unsaturated 
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Fig. 2. (A) Effect of PDS concentration on conversion of TOC (after 5 min of contact time) of urban wastewater effluent (initial TOC = 11.59 ± 0.72 mg L −1 ); (B) PDS 

consumption; (C) Effect of PMS concentration on conversion of TOC (after 5 min of contact time) of urban wastewater effluent (initial TOC = 11.51 ± 0.82 mg L −1 ; initial 

pH = 7.6); (D) PMS consumption. 

Fig. 3. Results of Orange II conversion during adsorption (ADS) and catalytic wet peroxide oxidation (CWPO), and H 2 O 2 conversion during CWPO (H 2 O 2 CWPO). Experiments 

were conducted as during long-term test (2 g GAC experimental set up). 
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ites and basic surface oxygen groups (SOGs) in activated carbons, 

ut also by the presence of metallic species (mainly Fe) on their 

urface ( Domínguez et al., 2013b ; Rey et al., 2011 ; Santos et al.,

009 ), this latter being very low in the GAC used in this study. 

owever, the vast number of active sites in activated carbons is 

 disadvantage for the use of H 2 O 2 during CWPO due to the re-

ombination of the ROS generated. Adsorption of organic molecules 

locking some of the active sites has demonstrated to favour the 

verall process making the hydrogen peroxide decomposition more 

ontrollable ( Domínguez et al., 2013a ). More evidence about the 

echanism during CWPO is presented in the long-term test results 

 Section 3.3.2 ) with the characterization of the used GAC samples. 

.1.2. PDS/GAC and PMS/GAC 

The PDS/GAC and PMS/GAC experiments were conducted at am- 

ient pressure and temperature with various concentrations of PDS 

r PMS in order to choose the optimal concentration of the ox- 

dant to treat the wastewater effluent. Performance of PDS/GAC 

nd PMS/GAC process with different initial PDS or PMS concentra- 

ions was evaluated based on TOC conversion (X TOC ,%), calculated 

s shown above in Equation (1) , while PDS consumption (X PDS ,%) 

r PMS consumption (X PMS ,%) was estimated using Equation (5 , 

 ). 

 PDS = (([PDS] inlet - [PDS] outlet )/[PDS] inlet ) · 100 (5) 

 PMS = (([PMS] inlet - [PMS] outlet )/[PMS] inlet ) · 100 (6) 

In order to get comparable results with CWPO (with H 2 O 2 as 

n oxidant), similar concentrations of persulfates (PDS/PMS) have 

een used, i.e., 10, 100, 10 0 0 mg L −1 . Results obtained for each sys-

em (PDS/GAC, PMS/GAC) are shown in Fig. 2 , where the TOC con- 

ersion ( Fig. 2 A, B) and the oxidant consumption profiles ( Fig. 2

, D) are reported. 

In PDS/GAC system, similar behaviour on TOC conversion was 

btained for all the concentrations tested, in which 70% conver- 

ion was reached at 5 min of contact time. Regarding PDS con- 

umption ( Fig. 2 C), it should be noted that at 2.5 min all PDS has

een consumed. In fact, the PDS decomposition decreased as the 

oncentration increased. On the other hand, PMS was practically 

onsumed (independently of initial concentration) at 1.5 minutes 

f contact time. Accordingly, PMS/GAC system shows better per- 

ormance than PDS/GAC, as PMS is more efficiently decomposed 

han PDS, and also shows better TOC conversion rates (about 72% 

s. about 69%; Fig. 2 ). No major changes were detected in pH and

onductivity values, being similar to that reported on CWPO ex- 

eriments, although at 10 0 0 mg PMS ·L −1 the pH decreased to 5.80

t initial conditions and raised up to 7.98 at the end of the ex- 

eriments with a conductivity of 1.3 mS ·cm 

−1 . Similar conclusions 

ere obtained in the literature ( Saputra et al., 2013 ), in which au-

hors showed that the ability of activated carbons (ACs) to pro- 

uce sulfate radicals was much higher in a PMS system compared 

o PDS ( Saputra et al., 2013 ). 

Activated carbon (AC) is an electron transfer mediator in per- 

ulfates activation. However, a non-radical activation pathway has 

lso been reported ( Yao et al., 2019 ), which makes difficult to 

trictly explain activation mechanisms. Nevertheless, the persul- 

ates might be decomposed by the AC surface with the release 

f organic radicals and sulfate radicals, via radical or non-radical 

athway ( Zhang et al., 2013 ; Zhao et al., 2017 ). Accordingly, it is

ssumed that as persulfates are decomposed, they produce chem- 

cal oxidation in some way, and major TOC mineralization rates 

an be achieved rather than sorption. Also, taking into account 

hat GAC with very low iron content (0.03 wt.%) was used in this 

tudy, catalytic performance in PDS/GAC or PMS/GAC might be 

ower ( Zhao et al., 2017 ; Xiao et al., 2020 ). 
7 
These systems have been previously studied by means of 

yes ( Yang et al., 2011 ; Zhang et al., 2013 ) and phenol degra-

ation ( Saputra et al., 2013 ) as well as antibiotic metronida- 

ole ( Forouzesh et al., 2019 ; Forouzesh, Ebadi and Aghaeinejad- 

eybodi, 2019 ). Generally, the persulfate/GAC system shows 

romising degradation rates for dyes removal; however when 

ineralization rates are analysed in form of TOC it reduces its 

fficacy ( Zhang et al., 2013 ; Yang et al., 2011 ). The presence

f other organic substances could imply the reduction of ac- 

ive surface sites available for the activation of persulfates, and 

t is of high importance as real effluent was used in the ex- 

eriments. When more specific pollutants are studied, for in- 

tance, antibiotics ( Forouzesh, Ebadi and Aghaeinejad-Meybodi, 

019 ; Forouzesh et al., 2019 ), significantly higher amounts of per- 

ulfates (~ 30 0 0 mg L −1 ) have been used in order to increase the

egradation performance by comparison with single adsorption, 

hich can agree with our results. 

The persulfates:TOC ratio 8.6 was selected for further PDS/GAC 

r PMS/GAC experiments due to (i) highest TOC conversion ob- 

ained in PMS/GAC (100 mg ·L −1 of PMS), (ii) comparative purposes 

in terms of initial oxidant concentration, mg L −1 ) with CWPO, 

hich was the most efficient among studied AOPs. 

.2. Comparison of CWPO, PMS/GAC and PDS/GAC for elimination of 

hACs from real urban wastewater effluent 

.2.1. Occurrence of PhACs in urban wastewater influent and effluent 

Composite samples (48 h) of urban wastewater influent and 

ffluent were collected for screening and identifying PhACs (83 

n total, see Table 1 SM) with higher concentrations to be moni- 

ored during further post-treatment experiments (CWPO, PMS/GAC, 

DS/GAC at optimal conditions). Moreover, some PhACs, the con- 

entrations of which significantly increased after treatment (neg- 

tive removal efficiency) were taken into consideration because 

hose would be especially interesting to follow during possible 

ost-treatment (CWPO, PMS/GAC, PDS/GAC). Results are shown in 

able 1 . 

Forty seven out of eighty three analysed PhACs were detected 

n influent and effluent wastewater. Obtained concentrations of 

hACs in wastewater influent and effluent ( Table 1 ) are in agree- 

ent with PhACs concentration ranges previously reported for in- 

uents and effluents of conventional WWTPs in different coun- 

ries ( Luo et al., 2014 ), except for concentrations of acetaminophen 

in influent), diclofenac (in effluent) and metoprolol (in effluent), 

hich were slightly higher. Interestingly, concentration of caffeine 

n wastewater influent measured in this study (492.223 ± 143.239 

g L −1 ) was significantly higher than caffeine concentrations re- 

orted in wastewater influents of various countries (0.22 – 209 μg 

 

−1 ) ( Luo et al., 2014 ). This result can be explained by the fact that

offee consum ption in Finland is among the highest in the world 

 Kempf et al., 2010 ). 

Out of all detected PhACs only acetaminophen, phenylbuta- 

one, pravastatin, triclocarban (TCC), and tetracycline were com- 

letely removed (concentration in effluent was < LOD) after 

onventional wastewater treatment process. High removal ef- 

ciency ( > 70%) was observed for lincomycin, salicylic acid, 

buprofen, naproxen, clofibric acid, sparfloxacin and caffeine, 

hich is generally in agreement with the removal efficiency 

or micropollutants reported by Luo et al. (2014) . Moder- 

te removal efficiency (40 – 70%) was achieved for fenopro- 

en, bezafibrate, roxithromycin, ofloxacin and ranitidine. Chlo- 

amphenicol, indomethacin, mefenamic acid, diclofenac, ketopro- 

en, furosemide, hydrochlorothiazide, azithromycin, clarithromycin, 

rnidazole, atenolol, amitriptyline and albuterol were poorly re- 

oved ( < 40%), which is in agreement with removal efficien- 

ies reported earlier for some of these compounds (e.g. di- 
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lofenac, mefenamic acid) ( Luo et al., 2014 ). Concentrations of 

ome PhACs, such as phenazone, gemfibrozil, triclosan (TCS), mon- 

nsin, sulfathiazole, sulfadiazine, sulfamethoxazole, sulfanilamide, 

umequine, norfloxacin, danofloxacin, metronidazole, trimetho- 

rim, propanolol, timolol, metoprolol, carbamazepine were higher 

n effluent than in influent wastewater (negative removal effi- 

iency). Consulting the scientific literature, similar results have 

een reported earlier ( Rivera-Jaimes et al., 2018 ; Luo et al., 2014 ;

asprzyk-Hordern, Dinsdale and Guwy, 2009 ; Sun et al., 2014 ; 

illar-Navarro et al., 2018 ). Observation of higher concentrations 

f some PhACs in wastewater effluent in comparison with influ- 

nt can possibly be ascribed to (i) desorption from activated sludge 

r suspended particulate matter during wastewater treatment pro- 

ess; (ii) transformation of some PhACs to their original state dur- 

ng wastewater treatment from metabolites present in influent 

e.g. carbamazepine, sulfamethoxazole) ( Kasprzyk-Hordern, Dins- 

ale and Guwy, 2009 ); (iii) seasonal variations, sampling and an- 

lytical uncertainties ( Sun et al., 2014 ). 

Obtained results suggest that several PhACs were poorly or neg- 

tively removed after conventional wastewater treatment. Thus, it 

s of high importance to monitor such PhACs during tertiary treat- 

ent of secondary wastewater effluent in order to ensure complete 

limination of these compounds. 

.2.2. Removal of PhACs from wastewater effluent by CWPO, 

MS/GAC and PDS/GAC 

Efficiency of catalytic processes, namely, CWPO, PMS/GAC and 

DS/GAC was compared for removal of selected PhACs (in total 22) 

rom real urban wastewater effluent. Physico-chemical character- 

zation of wastewater effluent used for experiments is shown in 

able 2 . 

Taking into account that the initial TOC of urban wastewater 

sed for PhACs removal was higher than in previous experiments, 

he optimal ratio of oxidant to organic matter obtained from pre- 

ious experiments was kept for each process. Samples were col- 

ected after 5 min of contact time. Removal percentages of PhACs 

fter CWPO, PMS/GAC and PDS/GAC are shown in Table 3 . 

Results shown in Table 3 revealed that concentrations of PhACs 

n urban wastewater effluents may significantly vary in summer 

 Table 3 ) compared to winter ( Table 1 ), which is in agreement with

reviously published works ( Luo et al., 2014 ). For instance, con- 

entrations of ibuprofen and caffeine were significantly higher in 

ffluent collected in summer. 

Complete removal of acetaminophen, ketoprofen, sulfadiazine, 

rimethoprim, propanolol, atenolol and albuterol was achieved af- 

er treatment by CWPO, PMS/GAC, PDS/GAC and GAC only (ad- 

orption). Interestingly, sulfamethoxazole was fully eliminated by 

ll applied processes except GAC (adsorption). Complete decom- 

osition of gemfibrozil and clarithromycin (compound included in 

atch List by EU Decision 2018/840) was observed after CWPO, 

hile azithromycin (compound included in Watch List by EU De- 

ision 2018/840) was fully eliminated after PMS/GAC. In general, 

or 18 out of 22 target PhACs very high removal efficiencies ( > 

2%) were achieved by all tested processes. However, moderate 

40 – 70%) and poor ( < 40%) removal efficiencies were achieved 

or salicylic acid, ofloxacin, norfloxacin and ciprofloxacin (the last 

ompound included in Watch List by EU Decision 2018/840). Thus, 

floxacin was poorly removed after GAC (9.5%), PDS/GAC (35.7%) 

nd PMS/GAC (33%), while no removal was reached after CWPO. 

bserved differences in removal efficiency of ofloxacin by tested 

rocesses can be possibly attributed to more selective nature of 

ulfate radicals ( Ye et al., 2017 ) generated during PDS/GAC and 

MS/GAC as compared to only hydroxyl radicals formed during 

WPO. Poor removal efficiency of norfloxacin (26%) was achieved 

fter GAC/PDS, while this compound was not eliminated after 

WPO, GAC and PMS/GAC. Salicylic acid was poorly removed af- 
8 
er CWPO (1.6%) and PMS/GAC (8.7%) and not eliminated after 

AC/ PDS and GAC. Poor elimination of ciprofloxacin was reached 

fter CWPO (11.2%), GAC (30.5%) and PMS/GAC (19%), while it 

as moderately removed after PDS/GAC (62.8%). Complete elim- 

nation of a mixture of six pharmaceuticals (sulfamethoxazole, 

tenolol, metronidazole, trimethoprim, diltiazem, ranitidine) with 

nitial concentration 10 μg L −1 each has been reported after appli- 

ation of CWPO (30 min of contact time; 75 °C; Fe 3 O 4 / γ -Al 2 O 3 – 2

 L −1 ; H 2 O 2 - 100 mg L −1 ; pH 0 - 3) ( Munoz et al., 2017 ). Higher

ontact time (60 – 90 min) was required for the removal of phar- 

aceuticals listed in EU Watch List (Decision 2015/495) spiked to 

rban wastewater effluent (10 0 0 μg L −1 ) by CWPO (25 °C; modi- 

ed magnetite - 2 g L −1 ; H 2 O 2 - 35 mg L −1 ). In another study

 Díaz-Garduño et al., 2017 ), combination of UV/H 2 O 2 and CWPO 

ambient temperature; GAC – 144.1g; H 2 O 2 – 160 mg L −1 ; contact 

ime – 3.5 min) for the treatment of three different urban wastew- 

ter effluents was demonstrated to be extremely efficient and com- 

letely remove 53 compounds originally detected in used effluents, 

xcept for fenofibrate (W3) and bezafibrate (W1). Considering that 

n the current study the contact time was only 5 min, it can be 

xpected that with increase of contact time higher/complete re- 

oval of salicylic acid and quinolones can be possibly achieved. 

s far as authors are aware, relatively few studies have been re- 

orted focused on elimination of pharmaceutical compounds (mg 

 

−1 level) from deionized water using persulfates oxidation acti- 

ated by carbonaceous-based materials ( Chen and Carroll, 2016 ; 

ang et al., 2016 ), while there are no studies conducted in real 

astewater matrices using environmentally representative concen- 

rations (ng L −1 - μg L −1 ) of pharmaceuticals. 

The results suggest that adsorption by GAC was also very effi- 

ient for the elimination of studied PhACs from wastewater efflu- 

nt, which can be explained by relatively low concentration of tar- 

et PhACs and high dose of GAC. Obtained results are in agreement 

ith earlier studies ( Luo et al., 2014 ). However, keeping in mind 

he different nature of studied catalytic and sorption processes, it 

an be expected that in a long-term perspective catalytic processes 

ay be more beneficial due to lower saturation of catalyst with or- 

anic compounds. 

.3. Long-term CWPO and adsorption test 

.3.1. Performance of long-term tests 

Based on results obtained with real urban wastewater efflu- 

nts, it can be concluded that among the studied processes under 

hosen operational conditions (ambient temperature and pressure, 

arbon-based catalyst) the highest performance was achieved for 

WPO using the stoichiometric concentration of H 2 O 2 . Hence ad- 

itional experiments were performed in order to evaluate catalyst ́s 

tability during long-term continuous operation and get better un- 

erstanding of studied processes ́nature. Long-term test was per- 

ormed using the same fixed-bed reactors, which were used for ex- 

eriments with urban wastewater. Orange II was used as a model 

ompound. The flow rate was adjusted to 20 mL min 

−1 in order to 

nsure availability of residual H 2 O 2 concentration in the effluent 

f fixed-bed reactor. Long-term adsorption experiments (GAC-Ads) 

ere conducted in parallel with CWPO (GAC-AOPs) test during 47 

. Judging from obtained results ( Fig. 4 SM) 47 h was not sufficient 

or saturating GAC column (adsorption experiment). Hence, no sig- 

ificant difference was observed in performance of CWPO and ad- 

orption. 

In order to get more evidence in the different nature of the 

tudied CWPO and adsorption processes, an additional long-term 

xperiment was conducted using fresh GAC (2 g) and Orange II as 

 model solution (500 mg L −1 , pH 3). The model solution with 

H 3 was selected and used at this part of the work only in or-

er to check the differences between adsorption-oxidation perfor- 
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Table 3 

Results of UPLC-QqQ-MS/MS analysis of pharmaceutically active compounds before and after CWPO, PMS/GAC, PDS/GAC 

and GAC treatment of real urban wastewater effluent. 

Compound effluent, ng L -1 GAC, ng L -1 CWPO, ng L -1 PDS/GAC, ng L -1 PMS/GAC, ng L -1 

Anti-inflammatories 

Acetaminophen 168.7 ± 5.4 < LOD < LOD < LOD < LOD 

Salicylic Acid 24.3 ± 6.1 24.7 ± 6.2 23.9 ± 3.9 27.5 ± 6.9 22.2 ± 5.6 

Ibuprofen 20612.4 ± 342.5 29.9 ± 0.5 19 ± 0.9 30.2 ± 0.5 21.7 ± 0.4 

Naproxen 3294.9 ± 84 9.2 ± 0.2 3 ± 4 7.3 ± 0.2 7.6 ± 0.2 

Diclofenac 1575 ± 154.9 16.5 ± 1.7 8.4 ± 0.5 19.8 ± 2 13.9 ± 1.2 

Ketoprofen 261.9 ± 12.6 < LOD < LOD < LOD < LOD 

Lipid Regulators 

Gemfibrozil 45.5 ± 2.3 1.4 ± 0.1 < LOD 3.2 ± 0.2 0.6 ± 0.1 

Diuretics 

Furosemide 2047.8 ± 31.8 9.8 ± 1.5 6.3 ± 1 10.8 ± 1.7 7.8 ± 1.2 

Hydrochlorothiazide 604.2 ± 39.7 1.9 ± 0.2 1.1 ± 0.1 1 ± 0.1 1.3 ± 0.2 

Macrolides 

Azithromycin 748.8 ± 24.4 8.1 ± 2 2.7 ± 3 7.3 ± 1.8 < LOD 

Clarithromycin 123.3 ± 3 3.6 ± 0.4 < LOD 2.6 ± 0.4 3.6 ± 0.5 

Sulfonamides 

Sulfadiazine 30.6 ± 0.1 < LOD < LOD < LOD < LOD 

Sulfamethoxazole 80.6 ± 5.1 1.2 ± 0.2 < LOD < LOD < LOD 

Quinolones 

Ofloxacin 745.4 ± 108.4 674.8 ± 101.2 766.1 ± 41.4 479 ± 81.4 498.5 ± 69.8 

Norfloxacin 55.1 ± 17.2 84 ± 14.3 59.5 ± 3 40.7 ± 5.8 67.9 ± 7 

Ciprofloxacin 5545.2 ± 1612.7 3852.2 ± 269 4923.1 ± 63.6 2062.9 ± 103 4489.7 ± 168 

Dihydrofolate 

Trimethoprim 78 ± 1 < LOD < LOD < LOD < LOD 

Beta-blockers 

Propanolol 81.9 ± 1.2 < LOD < LOD < LOD < LOD 

Atenolol 76.3 ± 4.3 < LOD < LOD < LOD < LOD 

Psychiatric drugs and stimulants 

Carbamazepine 20.6 ± 1 0.3 ± 0.03 0.3 ± 0.02 0.3 ± 0.1 0.3 ± 0.1 

Caffeine 349442 ± 7410.7 362.4 ± 86.8 256.5 ± 58.9 221 ± 44 365.7 ± 76.5 

Asthma treatment 

Albuterol 10.1 ± 0.2 < LOD < LOD < LOD < LOD 

Fig. 4. Evolution of H 2 O, CO and CO 2 during TGA-DTA in Ar. 
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ance of GAC when saturation with Orange II is reached at the 

ested conditions. It was demonstrated in the literature that higher 

H at low temperature can induce the inefficient decomposition 

f H 2 O 2 or hydroxyl radical scavenging ( Khalil, Girgis and Tawfik, 

001 ; Buxton et al., 1988 ; Pignatello, Oliveros and MacKay, 2006 ; 

ivas et al., 1998 ; Thomsen, 1998 ), hence, pH near 3 used in many

ases ( Rey et al., 2008 ; Domínguez et al., 2013a ; Pinho et al., 2015 )

 Experimental set up is shown in Fig. 3 SM. Results are presented 

n Fig. 3 and GAC characterization after these tests is discussed be- 

ow. 

At these conditions, after 360 min almost all the GAC was sat- 

rated with Orange II in the adsorption experiment. During CWPO 
9 
GAC-AOPs ∗, where ∗ indicates that experimental set up presented 

n Fig. 3 SM was used), a stationary H 2 O 2 conversion of about 

5% was reached whereas only 22% of Orange II in the influent 

as eliminated at 360 min. It should be mentioned that the ob- 

ective of this long-term test was not to achieve high removal of 

range II, but to observe the differences in GAC saturation during 

WPO and adsorption. The difference between Orange II profiles 

uring adsorption (GAC-Ads ∗, where ∗ indicates that experimen- 

al set up presented in Fig. 3 SM was used) and CWPO tests was

3% indicating the oxidation of the dye by radical species produced 

nto the GAC surface through H 2 O 2 decomposition. However, at 

ested conditions an important part of H O on GAC was decom- 
2 2 



J.J. Rueda-Márquez, J. Moreno-Andrés, A. Rey et al. Water Research 192 (2021) 116833 

Table 4 

Textural properties of GAC. 

Sample S BET (m 

2 g -1 ) S MICRO (m 

2 g -1 ) S EXT (m 

2 g -1 ) V MICRO (cm 

3 g -1 ) V MESO (cm 

3 g -1 ) V MACRO (cm 

3 g -1 ) V TOTAL(N2) (cm 

3 g -1 ) V TOTAL(N2 + Hg) (cm 

3 g -1 ) 

GAC 1040 1023 17 0.435 0.031 0.270 0.470 0.736 

GAC-Ads 759 744 15 0.318 0.029 0.200 0.348 0.547 

GAC-AOPs 758 739 19 0.314 0.030 0.220 0.347 0.564 

GAC-Ads ∗ 638 624 14 0.276 0.028 n.m. 0.304 n.m. 

GAC-AOPs ∗ 822 810 11 0.336 0.025 n.m. 0.362 n.m. 

Table 5 

TGA-DTA-MS-Ar results. 

Sample H 2 O ( μmol g -1 ) CO ( μmol g -1 ) CO-OII ∗ ( μmol g -1 ) CO 2 ( μmol g -1 ) M/M 0 (%) pH slurry 

GAC 429 1337 16 558 7.0 9.4 

GAC-Ads 960 1481 105 751 9.2 7.2 

GAC-AOPs 698 1371 67 699 8.3 7.1 

GAC-Ads ∗ 1161 1913 117 983 11.7 n.m. 

GAC-AOPs ∗ 835 1307 85 609 7.9 n.m. 
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osed into oxygen and water, which was supported by our obser- 

ations and is in agreement with earlier studies ( Oliveira et al., 

004 ; Huang et al., 2003 ; Rey et al., 2016 ). Further differences in

ature of tested processes are discussed in the Section 3.3.2.2 . 

.3.2. Characterization of GAC before and after CWPO and adsorption 

ests 

.3.2.1. Fresh GAC characterization. According to the supplier, the 

ommercial GAC used had a mesh size of 4-8 mm and average 

article density of 0.47 g cm 

−3 . Textural characteristics of the GAC 

amples calculated from N 2 -isotherm and Hg porosimetry are sum- 

arized in Table 4 . 

The isotherm shape ( Fig. 5 SM) of fresh GAC is characteristic 

f microporous materials (type I) with H4 type hysteresis loop as- 

ociated to some mesoporosity ( Brunauer et al., 1940 ). Macropore 

olume was calculated by Hg porosimetry (Figure 6 SM). The GAC 

resented a high BET surface area, mainly because of its microp- 

rous structure but also an important contribution of macroporos- 

ty to the total pore volume was observed. 

Regarding the composition of the activated carbon (Tables 3 SM 

nd 4 SM), it is essentially constituted by C with H, N and S in

mall amount. The ashes content calculated from TGA-DTA-MS in 

xidizing environment was 5.84 wt.%. These ashes are composed 

ainly of K, Na, Cl, Si and Mg according to WDXRF results. For 

he relevance in CWPO and other AOPs ( Domínguez et al., 2013b ), 

he amount of Fe in the GAC structure was determined as c.a. 0.03 

t.%. 

By XRD only graphitic carbon was detected (Figure 7 SM), with 

he main reflection signals at 2 θ values of 24.3 °, 43.6 ° and 79.2 °
orresponding to (0 02), (10 0)-(101) and (110) diffraction planes of 

raphene layers in activated carbon ( Nieto-Márquez, Valverde and 

eane, 2007 ; Zhao et al., 2009 ; Lueking et al., 2007 ). The wide

eaks indicate a poor degree of graphitization in a common tur- 

ostratic carbon structure, typical of activated carbons (AC). The 

alues of the interplanar distance between graphene sheets in the 

ctivated carbon (d 002 ) and the crystal thickness (L c ) were 0.365 

nd 2.82 nm, respectively, confirming the amorphous character of 

he activated carbon used in this study. The structural distortion 

nd defects may play a key role in the AC as catalyst for hydro-

en peroxide decomposition ( Rey et al., 2011 ). No diffraction peaks 

orresponding to any other inorganic structure were observed in 

greement with the WDXRF results and the vegetal origin of the 

AC. 

The role of the surface composition of the activated carbon as 

atalyst is also well known. The presence and distribution of sur- 

ace oxygen groups in GAC has been determined by Ar-TPD ( Fig. 4 ).
10 
Table 5 summarizes the amount of CO and CO 2 evolved and 

lso the pH slurry of the GAC. The assessment of the different 

OGs has been performed according to the literature ( Moreno- 

astilla, López-Ramón and Carrasco-Marıń, 20 0 0 ; Moreno- 

astilla et al., 1998 ; Figueiredo et al., 1999 ; Szyma ́nski et al.,

002 ). The profile of CO 2 presents a main contribution of car- 

oxylic (100 - 400 °C), followed by anhydride (400 - 600 °C) and 

actone-type (700 - 900 °C) SOGs. These structures, mainly car- 

oxylic acids, would confer acidic character to the AC surface to 

ome extent. On the other hand, the CO profile presents a small 

ontribution of the anhydride-type SOGs, followed by phenolic 

tructures (600 - 700 °C), with predominance of basic structures 

ike carbonyl (700 - 900 °C), ether and chromene (~800 °C) and 

yrone-like SOG (800 - 1000 °C). The highest contribution of the 

asic SOG compared to the acidic type (evolving mainly as CO 2 ) 

s evident from the basic value of the pH slurry for this GAC. The 

mportance of the SOGs content and distribution in the processes 

f adsorption of organic compounds or catalytic decomposition of 

ydrogen peroxide, PMS and PDS, has been previously reported 

 Jung et al., 2001 ; Vidic, Tessmer and Uranowski, 1997 ; Georgi and

opinke, 2005 ; Rey et al., 2008 ; Rey et al., 2011 ; Domínguez et al.,

013b ). 

.3.2.2. GAC characterization after long-term CWPO and adsorption 

ests. Textural characterization of fresh and used GAC after ad- 

orption (GAC-Ads) and AOPs (GAC-AOPs) tests (including the long- 

erm tests, experimental set up shown in Fig. 2 SM) is presented 

n Table 4 and Figure 8 SM. The decrease observed in the BET sur- 

ace areas (mainly microporous area) and micropore volumes indi- 

ates that some organic compounds remain adsorbed onto the GAC 

urface after both type of treatments (adsorption and oxidation), 

hich is not surprising taking into consideration the relatively high 

oncentration of chosen organic pollutant and short contact time. 

acroporosity seems to be slightly affected also by the applied 

reatments. The reduction of BET surface area of activated carbon 

r Fe-activated carbon catalysts has been previously reported after 

WPO of phenol and Orange II ( Zazo et al., 2006 ; Domínguez et al.,

013a ; Duarte, Maldonado-Hódar and Madeira, 2013 ). Condensa- 

ion by-products due to oxidative coupling of aromatic structures 

sually remain adsorbed and cannot be oxidized at the conditions 

f CWPO ( Vidic, Tessmer and Uranowski, 1997 ; Domínguez et al., 

013a ). The presence of organic compounds adsorbed in used GAC 

as analysed by TGA-DTA-MS in Ar. At this point it is necessary 

o highlight that the contribution of previous organic compounds 

rom batch experiments can be considered negligible according to 

he TOC of the water samples compared to Orange II long-term 
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Fig. 5. Evolution of H 2 O, CO 2 and CO evolved upon TGA-DTA-MS in Ar in fresh and 

used GAC samples. 
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xperiments. Figure 9 SM shows the TGA and calculated differen- 

ial thermogravimetry (DTG) profiles of fresh and used GAC, the 

nal mass loss is presented in Table 5 . The highest mass loss 

as found for GAC-Ads confirming a high loading of organic com- 

ounds, mainly Orange II, in its surface. The DTG profiles in Fig- 

re 9 SM (down) agree with the results by Duarte, Maldonado- 

ódar and Madeira (2013) . For GAC, physisorbed water is released 
11 
t around 100 - 150 °C with a weight loss overlapped with some 

O 2 evolution from SOGs. This was confirmed by the coupled MS 

nalysis during TGA (see Fig. 5 ). The next important mass loss 

etween 600 - 1000 °C is attributed to the decomposition of CO- 

volving SOGs. On the other hand, DTG of GAC-Ads and GAC- 

OPs samples presented two additional contributions at 346 °C and 

30 °C that have been assigned to the thermal decomposition of Or- 

nge II ( Duarte, Maldonado-Hódar and Madeira, 2013 ). Besides, the 

eight loss corresponding to physisorbed water can be affected by 

ome dehydration of Orange II. Regarding to the differences found 

etween both used samples (GAC-Ads and GAC-AOPs), the weight 

oss assigned to Orange II seems to be lower for oxidation sample. 

hus, around 346 °C a peak in the profile of H 2 O, CO 2 and CO is

bserved ( Fig. 5 ); and around 530 °C clear peaks of H 2 O and CO 2 

ere detected. 

The total amounts of H 2 O, CO 2 and CO evolved during TGA- 

TA-MS/Ar analysis are summarized in Table 5 . The highest val- 

es of the three compounds were detected for the adsorption sam- 

le (GAC-Ads) confirming the presence of the highest amount of 

dsorbed organic matter. The differences in the profiles of H 2 O, 

O 2 and CO between both used samples in Fig. 5 , in which dif- 

erent height ratio are observed for the same species, can suggest 

ome differences in the nature of adsorbed organic matter in both 

amples. Thus, mainly Orange II is expected to be adsorbed onto 

AC-Ads but some oxidation intermediates can be also present in 

AC-AOPs ( Duarte, Maldonado-Hódar and Madeira, 2013 ). Hence, 

ccording to the profiles in Fig. 5 , the CO peak located at 346 °C can

e a good indicator of Orange II (or similar structures) adsorbed 

nto GAC. Thus, the CO profile has been decomposed in individual 

ontributions (see Figure 9 SM) and the value of the 346 °C peak 

OII-CO) has been included in Table 5 . From these results, a higher 

mount of Orange II remained adsorbed onto GAC after adsorption 

ests compared to oxidation. Finally, the increase in the percent- 

ge of S determined by elemental analysis and WDXRF (Tables 3 

M and 4 SM) can also confirm the presence of Orange II or S- 

ontaining by-products in the GAC samples, which was higher for 

AC-Ads. 

GAC samples (GAC-Ads ∗ and GAC-AOPs ∗) after the second long- 

erm test (experimental set up is shown in Fig. 3 SM) were charac- 

erized by N 2 adsorption-desorption isotherms and TGA-DTA-MS in 

r. According to textural characterization ( Fig. 5 SM and Table 4 ), 

 higher decrease of the BET surface area and pore volumes was 

bserved after adsorption (GAC-Ads ∗) as compared to CWPO (GAC- 

OPs ∗). These result s reveal a higher load of Orange II, blocking 

he porous structure, onto GAC used for adsorption test in compar- 

son with GAC used for CWPO. Higher loading of Orange II on the 

urface of GAC used for adsorption test can be also confirmed by 

igher mass loss and higher amounts of H 2 O, CO 2 and CO evolved 

uring TGA-DTA-MS/Ar analysis observed for GAC-Ads ∗ in compar- 

son with GAC-AOPs ∗ ( Table 5 ). Moreover, differences in profiles 

f H 2 O, CO 2 and CO obtained from TGA-DTA-MS analysis for GAC- 

ds ∗ and GAC- AOPs ∗ indicate differences in nature of adsorbed or- 

anic compounds (Figure 10 SM), which is similar to results ob- 

ained after the first long-term test. Additionally, the peak at 346 °C 

OII-CO) was higher for GAC-Ads ∗ in comparison with GAC-AOPs ∗

Figure 11 SM). 

Results of GAC characterization confirm the ability of the GAC 

o promote catalytic decomposition of H 2 O 2 and the subsequent 

rganic matter oxidation despite the fact that difference between 

emoval of organic pollutants by adsorption and CWPO was not 

ery significant. Despite the high efficiency of GAC only (adsorp- 

ion) observed in experiments with wastewater effluent, it should 

e noticed that oxidation processes are more beneficial for post- 

reatment of wastewater effluents mainly due to higher long-term 

erformance. 
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. Conclusions 

Catalytic wet peroxide oxidation (CWPO) and persulfate oxida- 

ion (PMS/GAC and PDS/GAC) performed at ambient temperature 

nd pressure using an up-flow fixed bed reactor exhibit high effi- 

iency for the treatment of urban wastewater effluents. Thus, in 

erms of TOC mineralization difference in performance was ob- 

erved with trend CWPO > PMS/GAC > PDS/GAC. In terms of 

hACs removal from urban wastewater effluent, similar perfor- 

ance was observed for all tested processes. In general, for 18 out 

f 22 target PhACs very high removal efficiencies ( > 92%) were 

chieved after 5 min of contact time (all tested processes, includ- 

ng adsorption). However, moderate (40 – 70%) and poor ( < 40%) 

emoval efficiencies were achieved for salicylic acid, ofloxacin, nor- 

oxacin and ciprofloxacin, which can be attributed to insufficient 

ontact time for elimination of these compounds. 

Results of GAC characterization (mainly by TGA-DTA-MS and 

 2 adsorption-desorption isotherm) after long-term adsorption and 

WPO tests with Orange II indicate that a higher amount of Orange 

I was loaded on GAC used for adsorption tests. This, in turn, con- 

rms the different nature of processes (CWPO and adsorption), and 

he catalytic ability of GAC. 

Results obtained in this study indicate possible practical appli- 

ation of CWPO and/or persulfate oxidation for post-treatment of 

rban wastewater effluents aiming at removal of contaminants of 

merging concern. 
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