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Abstract: There is an increasing demand for the use of new food packaging materials. In this study,
natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed
as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent
Extraction (ESE) techniques were employed to obtain the bioactive RGPE. Afterward the supercritical
solvent impregnation conditions to obtain RGPE-natural jute fibers were studied, by varying pressure,
modifier percentage and dried RGPE mass. PLE technique offered the highest bioactive extract at
20 MPa, 55 °C, 1 h residence time using C,HsOH:H,O (1:1 v/v), providing an EC50 of 3.35 + 0.25
and antibacterial capacity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa
(MIC of 12.0, 1.5 and 4.0 mg/mL RGPE respectively). The natural jute fibers impregnated with 3 mL
of that RGPE (90 mg/mL) at 50 MPa and 55 °C generated the most efficient packing material with
regards to its food preservation potential.

Keywords: active packaging; food preservation; supercritical solvent impregnation; vinification
by-products; natural fibers

1. Introduction

Grape cultivation is one of the main and most widespread agro-economic activities
in the whole world, mostly used for winemaking, with an official global production in
2019 in excess of 77 million tons according to FAO statistics. Wine production generates
enormous amounts of by-products. Its valorization is mainly represented by the production
of soil fertilizers, fermentation substrate for biomass production and livestock feed [1].
However, there are certain restrictions on the reuse of these by-products. For example, the
phytotoxicity of certain polyphenols could have an antimicrobial effect during composting,
which would impair their use for such purpose. Regarding their use as cattle feed, some
animals have shown intolerance to certain components, such as condensed tannins, which
negatively affect their digestion [2]. However, grape vinification by-products have a high
content in bioactive compounds, especially polyphenols and condensed tannins (proantho-
cyanidins) or even anthocyanins, in the case of red grape pomace [3], which represent a
source of antioxidant and antimicrobial rich compounds of interest for the manufacturing
of different cosmetic, pharmacological or food products [4,5]. For instance, it has been
reported the use of aqueous extracts of red grape pomace in the elaboration of meat prod-
ucts due to their antioxidant and antimicrobial properties, particularly against mesophiles,
psycrotrophics and fecal microbiota [6-8]. However, the applicability of RGPE go beyond
their direct addition in food formulation and it has been also investigated in material
engineering. Besides its use as a natural dyeing colorant for wood, silk, cotton, polyamide
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or acrylic fabrics [9-11], anthocyanins and proanthocyanidins from red grape and other
sources have been recently used as pH-sensitive compounds in intelligent packaging and
as an active substance in active film-packaging formulation [12-15]. For example, Kurek
et al. evaluated the antioxidant properties of chitosan and carboxymethyl cellulose films
enriched with blueberry and red grape pomace extracts [16]. Bi et al. completed a deep
study and demonstrated not only the antioxidant properties but also the antimicrobial
ones of a chitosan-proanthocyanidins film against Escherichia coli, Salmonella spp., Staphy-
lococcus aureus and Listeria monocytogenes during in vitro experiments [17]. In agreement,
Qin et al. discuss the same properties on biodegradable films enriched with purple corn
extract [18] and Lycium ruthenicum Murr. [19], which demonstrated, in that case, antho-
cyanins’ preservative effect on pork meat. Moreover, Xu et al. evaluated the antimicrobial
capacity against S. aureus and L. monocytogenes of the Cabernet Franc and Viognier grape
pomace extracts used for the production of starch films [20].

Today’s society as well as some governmental regulations, point the absolute necessity
to replace plastic materials by other biodegradable alternative constituents. In the food field,
the highest challenge is the replacement of plastic-packaged and net-packaged products by
other more environmentally friendly alternatives. In this sense, the functionalization of
natural fibers by supercritical fluids seem a reliable alternative due to its resistant nature
grants a lower modification of their structure under supercritical conditions. Among them,
jute (Corchorus capsularis) is one of the most natural fibers used in food packaging, because
it has been traditionally used to pack bulk vegetables and beans since decades. It has
been used for different applications such as packaging paper, decorations, reinforcement
for polymers, construction, furniture, automotive applications [21,22]. Although some
research studies on fabrics, such as cotton, with natural extracts for biomedical application
have been reported [23-26], as far as we know, there is scarce research on the use of jute
in the food industry. The literature found on this subject is focused on the use of natural
fibers as a reinforcing filler in composites [27,28], because their improvement of strength,
stiffness and better moisture absorption [29]. Just to mention an example, Jawaid et al. [30]
developed a material based on jute in combination with oil palm fruit bunches and obtained
a resistant composite material that could be used for different applications. Moreover,
Gangopadhyay et al. [31] developed a polypropylene (PP) and superabsorbent fiber (SAF)
based on technical fabric, to be used as a potential packaging material to transport fresh
fruit and vegetables. Furthermore, Chatterjee et al. (2020) developed a laminated packaging
made of jute fibers and PP by thermal processing [32]. However, no active substances were
included in any of those formulations.

In view of the literature and the great potential of both natural fibers and RGPE
for food industry, this study intends to analyze the development of an alternative jute
food-packaging material with bioactive properties thanks to its impregnation with RGPE.
Among the different techniques reported in the bibliography, the supercritical solvent
impregnation (SSI) is the one that is having a greater scientific impact at the moment.
On one hand, scCO; offer advantages in comparison to other traditional techniques such
as casting or extrusion, like their applicability to different matrices (wounds, polymers,
particles, etc.) or that being a functionalization technique after the polymerization of the
matrix do not compromise the polymerization step [33]. Besides, it offers the possibility
to combine both SFE and SSI in a continuous system [34,35]. Numerous investigations
have focused on the supercritical impregnation of natural extracts, such as thyme [36],
clove [37,38] or oregano essential oils [39] among others, into synthetic polymeric films.

In the present study, the RGPE is obtained by a Pressurized Liquid Extraction (PLE)
and Enhanced Solvent Extraction (ESE) has been used as supercritical extraction techniques,
due to they combine the use of polar co-solvents and scCO, to increase the extraction yield
of plant extracts [40,41].

The objective of the present study is both analyze the extraction and impregnation
process using high pressure techniques. Extraction yield and antioxidant capacity levels
of the RGPE obtained by ESE and PLE were compared by varying different pressure
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(10 and 20 MPa) temperature (55—70 °C) and co-solvent (C;HsOH or C,H;OH:H,0)
conditions. The antimicrobial capacity of the chosen extract against food-borne pathogens
was analyzed prior to its impregnation into jute fibers, in order to obtain active fabrics
with potential preservative properties as food packaging. For this purpose, the influence of
some supercritical impregnation parameters were studied, such as pressure (10—50 MPa)
percentage of modifier (2.8, 4.8 and 6.7%) and amount of dried RGPE (28.8 and 270 mg) in
the impregnation vessel.

2. Materials and Methods
2.1. Chemical Reagents, Raw Materials and Bacterial Samples

The chemical reagents and materials used in this work are presented in Table 1. Red
grape pomace (RGP) of the Petit Verdot variety was supplied by “Bodegas Luis Pérez”
(Jerez de la Frontera, Spain). It was obtained immediately after the vinification process
and it was dried in an oven at 60 °C. Prior to the extraction process, it was grinded with a
blender to reduce particle size. Finally, natural jute fibers with a grammage of 305 g/m?
was supplied by Deyute (Tejijut S.L.U, Crevillente (Alicante, Spain)).

Table 1. Chemical regents and microbial strains.

Reagent Supplier
Carbon dioxide (99.99%) Abello-Linde S.A. (Barcelona, Spain).
2,2-diphenyl-1-picrylhydrazyl (DPPH) Sigma-Aldrich (Steinheim, Germany)
Lennox LB agar Conda Laboratories (Torrejon de Ardoz, Spain)
Dimethyl sulfoxide (DMSO) Panreac (Barcelona, Spain)
Phenolic standards (gallic acid, quercetin and cyanidin) Sigma-Aldrich (Steinheim, Germany)
Lysogenic Broth (LB) with 10 g/L tryptone, 5 g/L NaCl and 5 g/L yeast extract Sigma-Aldrich (Steinheim, Germany)
Escherichia coli (CECT101) Spanish Type Culture Collection (CECT, Valencia, Spain)
Pseudomonas aeruginosa (ATCC 9027) Microbiologics Inc. (Saint Cloud, MN, USA)
Staphylococcus aureus (ATCC 6538) Microbiologics Inc. (Saint Cloud, MN, USA)

2.2. High-Pressure Extraction of RGPE

The extractions were carried out in a high-pressure equipment (Thar Technologies
SF100, Pittsburgh, PA, USA) described in a previous work [42] (Figure 1). 20 g of RGP was
loaded into a paper filter cartridge and it was installed inside the extraction vessel. When
the pre-set temperature conditions were achieved, the co-solvent and the CO, supply were
pumped until the desired pressure was reached. Then, the BPR opened to let the extract
enter the cyclonic separator. In the PLE procedure, no CO, process-line was necessary,
since only liquid solvents are used.

The extraction conditions were selected according to the results obtained in previous
studies [41]. First, an ESE process was completed during 1 h using CO, and ethanol
pumped at 5 g/min each one, with a total flow rate of 10 g/min. Pressure and temperature
were studied at 10 and 20 MPa, at 55 and 70 °C respectively. PLE was carried out at the
best pressure and temperature conditions previously defined by ESE, using pure ethanol
and a mixture of C;H5OH:H,O (1:1 v/7v) as solvents. The extraction yields were calculated
(Equation (1)):
mrece (8) | 109 )

mrap (8)

where mpgpr is the mass of the extract obtained and mpggp is the mass of red grape pomace
extracted.

Extraction yield =
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Figure 1. High Pressure Extraction equipment flowchart. The CO, process-line (within the red dot-line) is not used in

PLE processes.

2.3. Supercritical Impregnation of Natural Jute Fibers with RGPE

The impregnation process was carried out in the same high-pressure set-up described
in Section 2.2, but using a thermostatic flat bottomed impregnation vessel (104 mL) (Wa-
ters Corp., Milford, MA, USA). A certain amount of RGPE was poured into the vessel. A
magnetic stirrer, running at 60 rpm, is installed at the bottom of the vessel to aid to the disso-
lution of the extract. Then, it was introduced a stand that holds a 5 cm wide rounded-shape
sample of jute natural fibers horizontally. The impregnation procedures were carried out in
batch mode. CO, was first pumped at 10 g/min until the desired pressure conditions were
reached. Then, the CO, flow was stopped and the system pressure was maintained until
the impregnation time (1 h) was over. The system was rapidly depressurized (10 MPa/min)
to obtain the impregnated jute fibers (IJF). The depressurization rate flow acted also as
drying agent, so any further drying step of the fabric was required.

Three sets of experiments were carried out to determine the influence of some vari-
ables on the process (Table 2). The optimal impregnation conditions in each experiment
were established according to the impregnation loading and antioxidant capacity of the
impregnated natural fibers.

Table 2. Summary of the impregnation experiments’ conditions.

P

Experiment (MPa)

T
€O

Dried RGPE % RGPE % Modifier (v/v) ** Molar Ratio Modifier
(mg) * ¢ (C,H50H:H,0) (n CO,/n Modifier) Volume (mL)

1 10
50

55

28.8 9.6 2.8 6.88 3
20.09

2 50

55

28.8 9.6 2.8 20.09
46.1 4.8 10.73
67.2 6.7 7.89

N 01 W

3 50

55

270 90 2.8 20.09 3

* Adjusted by drying RGPE using a rotavapor and then re-dissolving into the desired amount of modifier. ** Calculated respecting the total

volume of the vessel.
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2.4. Analysis of the Bioactivity of the Extracts and the IJF Samples
2.4.1. Antioxidant Capacity

The antioxidant capacity of samples was evaluated by means of a DPPH assay con-
sidering the methods described by Brand-Williams [43] and Scherer and Godoy [44]. The
reaction of the N- radical of DPPH in the presence of the extract is controlled by reduc-
ing the absorbance at 515 nm. To perform the analysis, 0.1 mL of the extract at different
concentrations was added to 3.9 mL of the 6 x 107> M DPPH ethanolic solution. The
absorbance was measured every 2 min during 4 h until the plateau was reached. The tests
were performed in triplicate.

The concentration of the remaining DPPH after the test was determined using a DPPH
calibration line previously determined (Equations (2) and (3)):

Abs = 10089M + 0.0085; R? = 0.9994 ?)
. Cppprf

RemainingDPPH = x 100 3)
CoppHi

where M is the molar concentration of DPPH, Cpppy; is the concentration of DPPH at the
initial time and Cpppp; is the concentration of DPPH at time ¢. By plotting the values of
the remaining %DPPH in stationary state versus the concentration of the extract at each
point, the EC50 value (efficient concentration) can be graphically determined. The extract
with the highest antioxidant properties was further characterized in terms of antibacterial
activity and was used for the impregnation process.

The antioxidant capacity and loading of impregnated samples were determined using
the method described by Cejudo et al. [33] with some changes. A specific amount of
the impregnated natural fibers was introduced in 3 mL of ethanol and was sonicated
during 30 min in order to extract the impregnated compounds. Then, the solvent was
evaporated in a rotavapor and it was replaced by 4 mL of the DPPH reagent at 6 x 107> M
in ethanol. The reaction was kept in the dark for 4 h and the reduction of the absorbance
was determined as %I (Equation (5)). The results were expressed as %I/100 mg natural
fibers. To calculate the antioxidant activity, the inhibition percentage (%I) (Equation (5))
versus the extract concentration at the pleateau was plotted, obtaining Equation (6):

=" w100 )

%I = —0.3427C%+ 10.596C + 15.665; R? = 0.9989 (5)

where Abs; is DPPH absorbance at the initial time, Abs; is DPPH absorbance at time ¢
measured at 515 nm, and C is the RGPE concentration that results in a particular %I at each
point.

In order to calculate the impregnation loading of the natural fibers samples, the
concentration of RGPE was calculated expressing the results as ug RGPE/100 mg natural
fibers.

2.4.2. Antibacterial Capacity of the RGPE and the IJF Samples

The antibacterial capacity was tested against E. coli, P. aeruginosa and S. aureus, by agar
dilution method in 60 mm Petri plates using 0.375, 0.75, 1.5, 3, 4, 5, 6, 8, 10 and 12 mg/mL
of RGPE. The test was carried out in triplicate and a solution of DMSO and distilled water
(1:1 v/v) was used as the negative control. The plates were inoculated with 0.1 mL of a
1.5 x 10° UFC/mL inoculum. After a 24 h incubation at 37 °C, the minimum inhibitory
concentration (MIC) in each bacterial culture was determined.

In the case of the impregnated samples, their inhibition properties were assessed in
a liquid medium. Two different amounts of impregnated natural fibers (50 and 100 mg)
were used in order to determine their inhibitory properties in two ranges. Samples were
sterilized by UV and then introduced in a 5 mL sterilized tube with liquid LB propagation
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medium. 24 h were allowed for the compounds to diffuse in the culture media, and
then the blank of each tube medium was measured at 625 nm. The extract compounds
were considered to have diffused completely, achieving concentrations in the media of ca.
0.07 mg/mL and 0.14 mg/mL, when using 50 and 100 mg of IJF respectively. Then, the
tubes were inoculated at 1.5 x 10°® UFC/mL and incubated (24 h/37 °C). Absorbance was
measured at 625 nm to determine bacterial growth inhibition (Equation (6)).

_ Cr

Inhibition = aron x 100 (6)
i

where Cyis the cell concentration of samples and C; is the cell concentration in the positive

control containing non-impregnated natural fibers.

2.5. Phenolic Characterization of RGPE and Impregnated Jute Fibers by UPLC-ESI-TOF-MS

The phenolic characterization of both the RGPE and the impregnated fibers have been
carried out by ultra-performance liquid chromatography (UHPLC) coupled to quadrupole-
time-of-flight mass spectrometry (QToF-MS) (Xevo G2 QToF, Waters Corp.). The chromato-
graphic method followed have been previously described by Cejudo et al. (2018) [45], with
some modifications. To recover phenolic compounds, certain amount of IJF was introduced
into 10 mL of ethanol and sonicated during 30 min. Then, the fraction was evaporated
in a rotavapor and diluted in 1 mL of ethanol and filtered through 0.22 um prior to the
chromatographic analysis. Not impregnated jute fibers have been also analysed in order to
eliminate interferences in the phenolic determination, so the signals detected were used
as blank of the impregnated jute fiber signals. Identification of compounds was carried
out considering the molar mass, the molecular formula and the presence of compounds
reported in literature [46,47]. Analysis have been done in duplicate.

The column employed in the analysis was an Acquity UPLCr BEH C18 column (50 mm
x 2.1 mmi.d., 1.7 mm particle size, Waters Corporation). The mobile phase is comprised
by a phase A (water with 0.1% formic acid) and a phase B (acetonitrile with 0.1% formic
acid) working with a flow rate of 0.6 mL/min. Analysis was started at 98% phase A for
0.3 min, changing to 65% at 1.5 min later. Then solvent B achieved the 100% after 1.5 min,
maintaining that proportion during 1 min. Then, the B percentage decreased until 2%
and was maintained for a minute. The total method time was 5 min. Electrospray was
operated in full scan analysis (100-1000 Da), working in negative ionization mode for the
determination of phenolic acids, flavanols and flavonols, and in positive ionization mode
for anthocyanin determination. Three calibration lines were carried out to quantify three
different families of phenolic compounds: phenolic acids (Equation (7)), flavonols and
flavanols (Equation (8)), and anthocyanins (Equation (9)):

Gallic acid = 1813x — 1235.2; R? = 0.9997 @)
Quercetin = 221.68x — 737.86; R? = 0.9902 (8)
Cyanidin = 48.521x — 248.2; R? = 0.9951 o)

2.6. Scanning Electron Microscopy (SEM)

Natural fibers were visually evaluated by SEM (Quanta 200, FEI, Hillsboro, OR, USA)
to verify the presence of the impregnated extract in the fibers. Samples analyzed were
those obtained at the most convenient impregnation conditions. Fibers were coated with a
gold layer (15 um thick) and were submitted to a 20 kV voltage.

3. Results and Discussions
3.1. RGPE Bioactivity

The extraction yield and the antioxidant activity of the extracts obtained is collected
in Figure 2. Respecting to the extraction yield of the extracts obtained by ESE, under
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isobaric conditions an increase in temperature from 55 °C to 70 °C hindered the extraction
process. This behaviour can be attributed to the fact that the density of the mixture CO,+
CyH50H decreased [48], which would intervene in the extraction of high-weight molecules
as anthocyanins. Another possible explanation to this behaviour is the possibility of being
in a retrograde solubility zone above this temperature. On the contrary, under isothermal
conditions, an increase in pressure from 10 to 20 MPa improved extraction thanks to
the higher density level of the mixture. Regarding to the extract bioactivity, the extract
obtained at 20 MPa and 55 °C showed a significantly higher EC50 than the rest. At 10 MPa,
the influence of the temperature was not as evident as the samples obtained at 20 MPa,
where the increase of the temperature decreases the antioxidant capacity of the extracts.
Mantell et al. [49] previously reported a higher extraction yield of anthocyanins from the
same raw material in ESE when using methanol in higher % organic co-solvent instead
of water, obtaining better recovering at 10 MPa rather than 50, and 60 °C rather than
40 °C. Thus, the employ of higher temperature studied in this case (70 °C) seemed to
interfere the polyphenol recover. The presence of polar solvents was reported to have
a positive effect for the extraction of compounds from different natural products [50,51].
In fact, organic solvents with water are usually combined in the isolation of bioactive
compounds from grapes and their by-products [52,53]. For instance, Kytrité et al. [54]
studied the recovery of antioxidant compounds of lingoberry by different SFE techniques
(SFE-PLE), among which PLE-ethanol offered better recoveries of polar compounds above
PLE-water. Accordingly, PLE was evaluated as a potential technique for the extraction of
polyphenols and anthocyanins. The extractions took place at the most convenient pressure
and temperature conditions previously determined by ESE (20 MPa and 55 °C) using
different solvents. As can be seen (Figure 2), the use of C;H50OH:H,0O would favour a
slightly greater extraction yield. This result agrees with the research of Santos et al. when
recovering active compounds from feijoa peel [55]. Moreover, the antioxidant capacity of
the RGPE obtained by means of PLE increases significantly, providing very much higher
antioxidant extracts, due to the EC50 values are quite low, leading to think that the mixture
of organic solvent and water promoted the extraction of the active compounds. According
to Mustafa and Turner [56], the ethanol in this dual mixture could improve the solubility of
the analyte, while the water would enhance its desorption and would break the matrix—
analyte hydrogen bonding. Moreover, the presence of water could be an important factor
for the extraction of glycosylated anthocyanins —as will be further discuss in Section 3.3.—,
while the presence of ethanol decreases the water surface tension, favouring infiltration
and mass transfer [56]. Corrales et al. [57] reported that the antioxidant capacity of RGPE
obtained by PLE was specially enhanced by hydroalcoholic mixtures when ethanol content
remained within the 50-80% range. Similar conclusions were reported by Otero-Pareja [41]
obtaining better RGPE by PLE at 10 MPa and 120 °C. In agreement, Ferri et al. [58] reported
a higher polyphenol extraction yield in RGPE of Merlot variety using PLE instead of
solvent extraction using C;H;OH:H,0O, although obtaining similar antioxidant activity.
Alafion et al. studied the composition and bioactivity of wine by-products obtained by
PLE, pointing the hydroalcoholic mixtures as better solvents for obtaining antioxidant and
rich-in-phenolic compounds extracts [59]. Considering the results, the extract obtained by
PLE at 20 MPa and 55 °C using C,HsOH:H,O was used in impregnation experiments, and
was characterized in terms of antibacterial capacity.
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Extraction yield and antioxidant activity of the red grape pomace extracts (RGPE) obtained by ESE and PLE (n = 2).

Table 3 shows the Minimum Inhibitory Concentration (MIC) of RGPE against three
common food pathogens. Escherichia coli was the most resistant bacteria to the presence
of RGPE, with a MIC value of 12 mg/mL of RGPE, followed by Pseudomonas aeruginosa
(4 mg/mL) and Staphylococcus aureus (1.5 mg/mL). Possibly, the double-lipid membrane of
gram-negative bacteria makes them especially resistant to the action of some antibacterial
substances [60]. The results obtained in this work are more satisfactory than other reported
in literature. Respecting to the raw material, the grape variety influences the bioactivity
of the extracts. Cheng et al. studied the antimicrobial activity of the grape pomace of
Pinot noir and Pinot meunier [53], observing that S. aureus was also the most sensitive
microorganism in all extracts studied, showing a MIC of 0.75 and 12.5 respectively in
CyHsOH:H,O extracts. Regarding to the extraction technique used, lower activity was
found in Petit Verdot extracts obtained from the maceration of seeds and grape skin,
where no antibacterial activity against E. coli was found, and S. aureus was inhibited only
when using concentrations over 6.25 mg/mL [61]. In fact, Oliveira et al. [62] found lower
antimicrobial activity in Syrah and Merlot grape pomace extracts obtained by SFE at
25 MPa and 60 °C, observing no inhibition against E. coli and P. aeruginosa so, again, it
seemed more convenient the use of PLE technique instead of other SFE technique. The
literature comparing antibacterial activity of grape by-products by different conditions
of PLE is very scarce, but there are references using other natural extracts. For instance,
Zandona et al. [63] studied the antimicrobial activity of aracazeiro (Psidium cattleianum) leaf
by PLE (10.3 MPa, 50 °C) using different solvents, achieving higher inhibition of S. aureus
and P. aeruginosa in water /ethanol mixtures rather than water or ethanol alone. All this
information confirms the use of C;HsOH:H,O mixtures by PLE as the most convenient
alternative for their further use in the impregnation experiments.
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Table 3. Antibacterial activity of pure RGPE and IJF at 50 MPa 55 °C (1 = 2).

Concentration of % Inhibition in

ek MCKGrE gl R RO
Escherichia coli 12.0 8(1)Z 1%?;;71%?865
Pseudomonas 40 0.07 26.045 £ 3.007
aeruginosa ’ 0.14 35.471 & 1.516
Staphylococcus aureus 1.5 8(1)Z i;égg i }82

3.2. Bioactivity of RGPE-Impregnated Natural Fibers

The aim of the supercritical impregnation is to include an active substance into a
polymeric matrix in order to obtain a new material with active properties. To evaluate
the bioactivity of the jute fabrics impregnated with RGPE, the impregnation yield, the
antioxidant activity and the antibacterial activity were determined.

Three different experiments were carried out in order to evaluate the influence of the
operational variables in the impregnation process (Figure 3). The first experiment was
carried out using 2.8% of modifier (C,HsOH:H,O (1:1)) and 28.8 mg of dried RGPE, to
evaluate the influence of pressure variations on the process (Figure 3A). Greater pressure
values provided impregnated natural fibers with higher RGPE loading and antioxidant
capacity. When the pressure raises, the density of the supercritical fluid increases, which
may favour both the swelling of the matrix and the solubility of the compounds. This
behaviour agrees with the literature on the impregnation of polyester and cotton natural
fibers with natural extracts, as well as on the impregnation of PET /PP films with natural
extracts [42,45,64]. Based on these results, a pressure of 50 MPa was selected for the
experiments to be carried out later on.
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Figure 3. Influence of variables on the impregnation loading and the antioxidant capacity of the impregnated fabric samples
(n =2). (A) Effect of pressure (experiment 1). (B) Effect of modifier percentage (experiment 2). (C) Effect of dried RGPE

loading (experiment 3).

In the second experiment, the modifier percentage introduced in the impregnation
vessel was evaluated at a fixed RGPE concentration (Figure 3B). This factor was studied
at three particular levels (i.e., 2.8, 4.8 and 6.7%), while RGPE concentration remained
constant (9.6 mg/mL). For this purpose, different amounts of dried RGPE were introduced
in the vessel (28.8, 46.1 and 67.2 mg respectively). It was observed that an increase of the
C,H50H:H,O percentage had in general a negative effect on the impregnation loading
while the best results were obtained with a modifier percentage of 2.8%, although no
differences were found between using 2.8 and 4.8%. It has been reported that the relation
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CO, /modifier, as well as the nature of the modifier, interfere in the affinity between
the solute and the matrix [64]. For instance, Garcia-Casas and others established that
10% v/v of acetone/DMSO (80%/20%)/CO, were the optimal conditions to impregnate
mangiferin into silica [65]. The characteristics of the supercritical phase varied according to
the percentage of modifier used. When increasing, the affinity between the solute and the
supercritical phase seemed to increase, which eventually reduced the impregnation loading.
Besides, the presence of water in the modifier could further evidence this change of affinity.
The low solubility of water in scCO; could lead to the formation of a second phase in the
solvent [66], which may further alter the balance solute-fluid-matrix at higher modifier
percentages. Regarding the effect of the modifier on the matrix, it has been reported that a
higher modifier content increases the swelling effect of supercritical CO, on polymers [67],
which favours the impregnation of compounds. As far as we know, any literature of
the swelling effect on jute natural fibers under supercritical conditions has been ever
reported. Yet, such effect did not seem to be predominant in the impregnation efficiency.
On the contrary, the amount of dried extract introduced in the vessel at a fixed modifier
percentage showed a high relevance (Figure 3). When a greater amount of extract was
used, the impregnation loading and the antioxidant capacity of the natural fibers increased
considerably. Possibly, the supercritical phase was more concentrated in compounds and
the system tended to balance by impregnating the matrix, producing natural fibers with a
higher bioactivity. As far as we know, any similar results have been reported in natural
fibers, although, some experiments carried out in polymers achieved the same conclusion.
For instance, Wenzel et al. obtained better loading of walnut husk ethanolic extract in
impregnated LDPE films when its concentration increased 1g/g ethanol [68]. Moreover,
previous experiments with olive leaf extract impregnated into PET /PP polymer achieved
the same conclusion [69], although the significance was not as evident as in this case,
probably because of the high affinity between RGPE and the jute natural fibers.

Considering the results obtained, it was determined that the best impregnation condi-
tions were 50 MPa and 55 °C, using a RGPE with 2.8% of C,HsOH:H,0 and 270 mg of dried
RGPE. The IJF used for the antibacterial assay was obtained at such optimal conditions.

Different pathogenic bacteria were cultivated in liquid LB medium in the presence of
two amounts of impregnated natural fibers (50 and 100 mg) that resulted in a corresponding
RPGE concentration in the culture media of 0.07 and 0.14 mg RGPE/mL respectively. This
concentration of RGPE in the media was far below the MIC values reached by crude RGPE
(Table 3) and too low to totally inhibit the growth of microorganisms. However, the natural
fiber showed higher growth inhibition that would be expected, which might be due to a
reduction in the RGPE particle size or by a selective impregnation of the RGPE compounds
with greater antibacterial capacity. This behaviour had been previously observed when
the antibacterial capacity of olive leaf extract against P. aeruginosa before and after its
impregnation in PET /PP films [69].

3.3. Phenolic Composition of RGPE and Impregnated Jute Fiber

The quantification of the identified compounds is collected in Table 4. Eleven phenolic
compounds were identified in the RGPE obtained by PLE using C,HsOH:H,O as extraction
solvent. The abundance of flavonols is representative in the extract, which is in agreement
to Jara-Palacios et al. [70], who found the quercetin-3-O-glucoside as the most abundant
compound identified in a C;H5OH:H;O RGPE. On the other hand, it has been reported
a great amount of catechin in GPE obtained by subcritical water extraction at 100 MPa at
different temperature ranges [71]. In this case, although catequin is not the most abundant
compound, it has demonstrated the highest affinity both with the supercritical phase and
the fibers during impregnation, and it has been successfully loaded in the fibers.
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Table 4. Phenolic composition of RGPE and impregnated jute fibers (1 = 2).
RT Mass (Da) RGPE (ug/mL) IJF (ug/mL) % Impregnation *
Phenolic acids
Protocatechuic acid 0.38 153.0188 1.45 + 0.09 5.38 £ 0.71 6.60 + 0.47
Caffeic acid 1.81 179.0344 0.63 £ 0.90 nd nd
p-coumaric acid 1.95 163.0395 1.27 +0.50 22.56 + 3.46 33.08 £ 8.19
Syringic acid 1.98 197.0450 17.70 £ 1.35 22.73 +1.31 2.29 £0.31
Flavanols
Catechin 2.59 289.0712 0.73 £ 0.04 20.08 + 1.69 48.77 £ 1.63
Flavonols
Rutin 1.94 609.1456 10.03 £ 3.60 nd nd
Quercetin 3-glucoside 1.98 463.0877 43.62 +7.90 nd nd
Quercetin 2.31 301.0348 20.12 +1.26 nd nd
Anthocyanins
Delphinidin-3-O-glucoside 1.98 463.0877 86.28 £ 2.04 nd nd
Petunidin-3-O-glucoside 2.07 477.1033 20.99 + 4.89 nd nd
Delphinidin 3-O-(6"-acetyl)-glucoside 2.15 505.0982 8.27 +0.30 nd nd

* calculated as pug compound contained in the extract/pug compound in the fabric.

From the RGPE compounds identified, only four have been found in the IJF, which
evidence the selective character of the impregnation process, being especially selective to
phenolic acids. Syringic, p-coumaric and protocatechuic acids were the most abundant
compounds in impregnated fibers at the condition studied, being the responsible for their
bioactivity. Regarding flavanols, only catechin was found in the impregnated fibers. The
process was less selective to anthocyanins, and any of them was identified in the jute
fabric. According to the results obtained by Buratto and researchers in the supercritical
drying of aerogels impregnated with hydroalcoholic acai extract, polyphenols were lower
affine to the supercritical phase than anthocyanins, promoting its impregnation. Therefore,
anthocyanins were dragged out of the system and its remaining content in the dry aerogel
was very low [72]. Possibly, this behavior also occurs in the jute impregnation, and the
process was more selective in low-weight phenolic compounds, since significant content
of catechin and p-coumaric acid were determined in IJE. Those compounds have been
reported to have a high antioxidant and antimicrobial activity against food pathogens, such
as Staphylococcus aureus, E. coli and B. cereus, which confirms the results obtained in terms
of the bioactivity observed in both the fabrics and the extracts [73,74].

3.4. SEM Images

Samples were evaluated by SEM in order to determine the distribution and the
appearance of the extract in the natural fiber. SEM images at different magnifications are
depicted in Figure 4.

TS Py,

Eallagt®i N

MM

Figure 4. SEM images for non-impregnated (A,B) and impregnated RGPE jute fibers at (C). The red circles indicate the

RGPE particles on the fabric surface.
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The impregnated natural fiber (Figure 4C) showed a more rugged surface in compari-
son with the one of the untreated natural fiber (Figure 4A y Figure 4B), observing a partial
penetration of the RGPE particles into the fibers and thus, the great affinity between RGPE
and the fibers on the impregnation process. This result agrees with previous literature
about the impregnation of mango leaf extract into natural cotton natural fibers, where
spherical particles embedded into the fibers were observed [75].

4. Conclusions

The promising prospects in the production of active food packaging using agriculture
by-products as active agents, opens a new way for the revalorization of such by-products.
The RGP that is obtained after the vinification process still contains a large amount of
bioactive compounds that can be put to some use after being extracted. Moreover, the solid
residues after such extraction could be still used for other applications based on its protein,
fiber or carbohydrate contents among others, where this target compound would be an
intermediate product.

Regarding the production of RGPE, PLE using CoHsOH:H,O as the solvent seemed to
be the best choice to obtain an extract with high antioxidant and antibacterial capacities. In
view of the results, the antioxidant and antimicrobial properties of RGPE were transferred
successfully to jute natural fabrics through supercritical impregnation. These results are
comparable with other obtained in polymeric matrices, and offer a very encouraging view
of the use of this natural fiber as active food packaging.
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