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Abstract

Background: Currently, existing biomedical literature repositories do not commonly provide users with specific means to locate
and remotely access biomedical databases.

Objective: To address this issue, we developed the Biomedical Database Inventory (BiDI), a repository linking to biomedical
databases automatically extracted from the scientific literature. BiDI provides an index of data resources and a path to access
them seamlessly.

Methods: We designed an ensemble of deep learning methods to extract database mentions. To train the system, we annotated
a set of 1242 articles that included mentions of database publications. Such a data set was used along with transfer learning
techniques to train an ensemble of deep learning natural language processing models targeted at database publication detection.

Results: The system obtained an F1 score of 0.929 on database detection, showing high precision and recall values. When
applying this model to the PubMed and PubMed Central databases, we identified over 10,000 unique databases. The ensemble
model also extracted the weblinks to the reported databases and discarded irrelevant links. For the extraction of weblinks, the
model achieved a cross-validated F1 score of 0.908. We show two use cases: one related to “omics” and the other related to the
COVID-19 pandemic.

Conclusions: BiDI enables access to biomedical resources over the internet and facilitates data-driven research and other
scientific initiatives. The repository is openly available online and will be regularly updated with an automatic text processing
pipeline. The approach can be reused to create repositories of different types (ie, biomedical and others).

(JMIR Med Inform 2021;9(2):e22976) doi: 10.2196/22976
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Introduction

Since the inception of the web, the amount of information
available online has dramatically increased. Such an explosion
can be mainly observed in the biomedical area, where the

publication of the Human Genome Project [1] led to a myriad
of new primary and translational projects. The latter produced
a vast amount of additional “omics” information that needed to
be remotely found, accessed, collected, managed, analyzed, and
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used. This acceleration in data production has been observed
in biology and bioinformatics in particular [2,3].

To facilitate access to such a plethora of information, thousands
of different databases were created by many scientists to
exchange their knowledge and data with other colleagues and
institutions. The number of database publications is continuously
increasing; therefore, giving visibility and access to those
resources can be a complicated task. A study on the usage of
databases and software in articles available at PubMed Central
(PMC) [4] found that the top 5% most popular resources
accounted for 47% of all citations. In comparison, 70% of all
detected resources were referenced just once. This focus on a
few popular resources suggests a wasted opportunity for
researchers to benefit from many informatics tools designed
and published to support scientific research and clinical practice.

A successful biomedical information classification initiative
was the Unified Medical Language System (UMLS) [5]. Led
by Lindberg, Humphreys, McCray, and staff from the National
Library of Medicine (NLM), UMLS’s original mission was to
facilitate computer programs in understanding and accessing
biomedical literature. However, the identification of databases
in scientific articles is not straightforward within UMLS. This
initiative focuses on the description of scientific research and
the grouping of data under big repositories for clinical and
genetic data, such as the Systematized Nomenclature of
Medicine (SNOMED) [6] and Online Mendelian Inheritance in
Man (OMIM) [7], while neglecting smaller databases that
comprise the vast majority of the available resources.

Currently, most efforts toward detecting and including new
databases in repositories have relied on manual approaches.
Such a strategy involving human resources cannot scale
properly. Previous work in manual database compilation
includes, for instance, the Database of Databases (DoD2007)
[8]. The DoD2007 repository has increased over the years,
having reached a total of 1082 molecular biology databases at
the time of writing. The journal Nucleic Acids Research (NAR)
releases a yearly update on their molecular biology database
collection, with the 2020 publication [9] containing a total of
148 scientific articles either presenting a new database or
reporting an update to a previously existing database. Another
study [10] collected a set of 112 widely used human-related
biological databases. Fairsharing (formerly Biosharing) [11] is
a regularly updated, curated, and crowdsourced collection of
life sciences resources. As of May 2020, it contains 1470
databases as claimed on their webpage.

The resources mentioned have been of great use for the research
community. However, using manual labor for such collection
efforts is a costly endeavor. Figure 1 shows the number of new
publications indexed in PubMed each year, a density distribution
instead of a cumulative one. As can be seen, the publication
rate has been accelerating continuously, especially since the
start of the new millennium. In 1950, PubMed registered 85,792
new publications; in 2019, however, 1,392,830 new publications
were registered. Such numbers imply an increase of 1623% in
publication rate. Since the year 2011, more than one million
articles have been registered on the platform each year.

Figure 1. Evolution of new publications in PubMed (ie, the MEDLINE database) per year from 1950 to 2018.

In this context, we consider automatic methods for information
extraction to be a good alternative, if not a necessary one. Here
we present the Biomedical Database Inventory (BiDI), a
collection of databases automatically extracted from the
scientific literature by applying deep learning methods for
natural language processing (NLP).

Methods

Model Architecture
To detect databases in the literature, we have created an
ensemble of NLP models adapted from different reported
architectures [12-14] for masked word prediction.
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In Figure 2, we show a simplified version of the training process
for masked word prediction. Initially, we replace a word from
the sentence with the special token [MASK]. Each input token
is passed through a token embedding layer, thus converting
each token into a vector representation. At this stage, [MASK]
is just another input token and is represented by a single
embedding, which is the same for all [MASK] tokens. These

vectors are general word embeddings, which are randomly
initialized and trained jointly with the rest of the network using
gradient descent. The latter propagates through the entire
network to the input token embeddings, including the [MASK]
token, and, thus, they are updated just like any other model
parameter.

Figure 2. The pretraining setup for the masked word (w) prediction architecture. Only one encoder block is shown. The sample sentence only contains
three words. However, in practice each sentence has a length of 512, adding padding to the right when necessary. [MASK] is a special token that is
used to replace a word from the sentence.

The network also learns positional embeddings, which refer to
the token sequence of input. These are represented as a
combination of sine and cosine functions of different
frequencies, which provide the model with information
regarding the token’s situation. Finally, each token is replaced
by the sum of the static token embedding and the positional
embedding.

Then, we apply the attention mechanism by which a
contextualized embedding is produced for each word. This
embedding is a weighted sum of all input vectors multiplied by
a value matrix. The weight factor would be the attention score
computed for each word. Finally, each of the contextualized
vectors is fed to a fully connected layer to produce a new word.
The loss is calculated as the cross-entropy loss between the
masked word and the model’s output in that position, discarding
the predictions for all nonmasked terms. We refer to Liu et al
[12] and Devlin et al [14] for specific details about the
underlying architecture.

By masking 15% of every sentence repeatedly with different
masking schemes each time, the model learns to predict any
word in any sentence. When the training process involves
millions of sentences, the result is a general-purpose language
model capable of capturing complex dependencies between
words. We shall remark that the particular architecture we
applied has a total of 12 encoder blocks, stacked one on top of
another, and a replicated attention mechanism with 12 attention
heads on each encoder block. Therefore, 12 different attention
schemes are applied simultaneously to focus on different input
aspects.

Our task is an instance of sentence classification. Therefore, we
do not need to consider the final contextualized embeddings of
each word. Instead, we can perform a forward pass on the model
and extract only the first embedding, which corresponds to the
special classification token [CLS]. The [CLS] token goal is to
mark the start of a sentence, and it can be easily fine-tuned to
represent global information about the whole input. In Figure
3, we represent our fine-tuning process.
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Figure 3. Fine-tuning the setup for our model. Only one encoder block is shown. The sample sentence only contains three words (w). However, in
practice each sentence has a length of 512, adding padding to the right when necessary. [CLS]: classification token.

As shown in the figure, we extract the [CLS] token and feed it
to a new, fully connected classification layer to obtain a
probability for the whole sentence. However, we update the
parameter’s weights on the classification layer and every
parameter in the encoder blocks by backpropagation. Therefore,
the model transfers the relevant information regarding our task
into the [CLS] embedding. Each encoder block adds information
to that vector before feeding it to the classification layer.

We trained three different models under the same architecture.
First, we developed a model to detect a database publication
considering only the title of the article. Then we trained a second
model to perform the same task with sentences extracted from
the abstract. After considering the particular structure of a title
sentence, we committed to this design, which usually contains
vital information about the article. We aimed to train a model

that focused on title sentences to extract all the information
about them. Finally, we trained a model on the task of database
link classification (ie, to differentiate between sentences with
a link to a database homepage from sentences with a link
unrelated to the database). This third model allows us to extract
the right link from every article, achieving our goal of directly
linking articles to data.

In Figure 4, we represent the complete procedure, which consists
of an ensemble of the three models. The first step is to classify
an article by the title; only when it is classified as a negative
sample do we resort to the abstract sentences for confirmation.
The third model is applied to sentences containing a link only
if either the first or the second model delivered a positive label
for the article.
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Figure 4. Pipeline for article classification.

Data Collection and Preprocessing
We performed database publication detection on two scientific
article repositories: PubMed and PMC. For PubMed, we
downloaded a total of 12,615,511 articles with abstracts. For
PMC, we downloaded the Open Access Subset with a total of
2,710,216 articles. Aside from the number of manuscripts, the

main difference between these data sources is that PMC offers
full-text articles, while PubMed only provides titles and
abstracts.

Article data were subject to a series of preprocessing steps
before feeding them to the model for training. The process is
depicted in Figure 5.

Figure 5. Data preprocessing steps. The subtasks inside each step were executed in order from top to bottom. BERT: Bidirectional Encoder Representations
from Transformers; NLTK: Natural Language Toolkit.

We now describe each step in the preprocessing pipeline:

1. Article filtering. We only considered articles starting from
2003 since this was the year that marked the completion of
the Human Genome Project [1], a milestone for the life
sciences research community. We also removed articles

not containing at least one URL, as we aimed to link the
publication to the database. The URLs were extracted by
applying a regular expression, using the substrings “http”
and “www” as anchors.

2. Text formatting:
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a. Removal of symbols. The model used a subword
vocabulary of about 30,000 items. Such a vocabulary
included all the letters in the English language, making
it possible for the model to represent any English word,
even if it was never seen by the model before, as,
ultimately, it can decompose it into each letter. For
languages with an alphabet different from the one used
for the English language, however, the coverage was
not guaranteed. We removed such foreign characters.

b. Sentence tokenization. We used the Natural Language
Toolkit library for Python (Python Software
Foundation) to split the whole text into smaller
sentences. This library provides a rule-based system
that carries out this partition process while maintaining
each sentence’s semantic integrity.

c. Word tokenization. Words in the text were tokenized
according to WordPiece tokens, expanding every
article’s word count each time a word was split into
several subwords.

d. URL masking. In our experiments, we found that URL
links are hard to process for the model. We wanted the
model to know that a link is present in the sentence.
For this reason, we decided to mask all URLs with the
keyword “link.” At the same time, we stored the
original URL links to retrieve them later.

In the end, the preprocessing stage produced a database with
three different fields for each article. The first one contained
the title sentence, the second one consisted of all the abstract
sentences, and the third one included all sentences containing
a link. The third field’s sentences were extracted from the
abstract for PubMed articles and from the abstract and the body
for PMC articles. The preprocessing stage resulted in a reduced
set of papers: 24,437 manuscripts for PubMed and 450,777 for
PMC. The PubMed data set reduction was quite drastic, as it is

not a common practice to include a link to the resource in the
abstract. This is a typical pattern that, in our opinion, restricts
the capabilities of search engines to find such information and
direct access to the reported databases, since PubMed only
provides the abstract.

Building a Labeled Data Set
We compiled three annotated data sets, one for each of the
models we trained. All data sets were developed from the same
set of 1242 articles. We created labels for each analyzed
manuscript for its title, abstract, and link sentences before
considering the next one. All tags were either positive or
negative, as in binary classification. The annotation was
performed by two human annotators with biomedical informatics
backgrounds—one of them also has formal training in the
medical field. Each human annotator independently annotated
the data sets. The degree of agreement regarding the annotations’
results for each category (ie, titles, abstract sentences, and link
sentences) was assessed using Cohen κ. We obtained an almost
perfect consensus for each of the categories.

In Table 1, we provide the count of positive and negative
annotations performed. As can be seen, there was a significant
data imbalance favoring the negative samples. The articles’ real
distribution was actually even more skewed toward negative
samples. Therefore, we believe that our data sets suitably
represented the actual data distribution. Due to this imbalance,
it was not easy to manually find positive articles. We actively
facilitated the annotation of positive examples by discarding
any negative examples we found after sampling 1000

manuscripts (ie, after the 1000th sample, we only added positive
examples to the data set). We continued sampling until we
collected a reasonable number of positive samples so that the
model could learn the syntactic and semantic patterns of the
target group.

Table 1. Positive and negative samples, the total number of labels for each data field, and annotator agreement evaluation per category. In all cases,
the unit for the count is a sentence.

Annotator agreement, Cohen κTotal, N (%)Negative samples, n (%)Positive samples, n (%)Category

11242 (100)922 (74.2)320 (25.8)Titles

0.99110,310 (100)9535 (92.5)775 (7.5)Abstract sentences

0.9881286 (100)845 (65.7)441 (34.3)Link sentences

Table 2 shows some sample sentences extracted from the
training set. The columns show the articles’ annotation, while
the rows indicate the annotation per sentence (ie, titles and
abstract sentences). A positively annotated sentence implies
that the manuscript contains a database. Conversely, negatively
annotated sentences can be found in positive and negative
articles. Specifically, the sentence “Mobility changes in response

to COVID-19” is the title of an article that presents a free access
database to the community [15]; however, the title does not
show evidence of this and, therefore, receives a negative label.
Most of the abstract sentences do not present direct evidence
of mentioning a database. On average, we found that only 2
sentences from the abstracts of papers that confirmed to be
reporting a database were also positively annotated.
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Table 2. Examples of trained sentences. Annotation of title and abstract sentences extracted from annotated articles.

Negative article (database not found)Positive article (database found)Category and annotation of the trained set

N/AaCoV2ID: Detection and therapeutics oligo database
for SARS-CoV-2

Positive title

Predicting care and repercussions for caregivers of
surgical patients at home

Mobility changes in response to COVID-19Negative title

N/AWe have created a comprehensive manually curated
database of circular RNAs associated with diseases.

Positive abstract sentence

A non-randomized and consecutive sample of 317
informal caregivers of surgical patients with abdom-
inal surgery was included in the study.

Recent studies have shown the role of circRNAs in
a number of diseases.

Negative abstract sentence

aN/A: not applicable. No positive sentence from this category could be found in articles where no database was found.

Results

Overview
In Figure 6, we present the performance of the three models in
their particular tasks. We assessed the models with a 5-fold

cross-validation approach. We show the receiver operating
characteristic curves and the associated area under the curve
(AUC) values in the figure.

Figure 6. Receiver operating characteristic curve and area under the curve (AUC) values for the 5-fold cross-validation experiment on the three trained
models. The dotted diagonal lines represent random chance. (A) Title classification; (B) abstract classification; (C) link classification.

As can be seen, the title classification model obtained very high
AUC values for every fold, all of them above 0.95, showing
high precision and recall scores under the different data
partitions. Conversely, the model for abstract sentences achieved
high AUC values (above 0.90) on some of the divisions but not
on all of them, as two of them presented a score ranging between
0.80 and 0.85. Finally, the link sentences model showed
consistent performance, with every AUC score within a 0.03
distance from 0.90.

We also evaluated the whole system by applying the ensemble
model on database publication detection, following the algorithm
described in Figure 4, and comparing the results to those
obtained with its individual components alone, namely the title
model and the abstract sentences. This validation was made
with a single partition of 30% and 70% for training over the
samples.

Note that this task was not the same as the one performed in
the previous experiment. We illustrate this with an example: if
an article shows evidence of reporting a new database in the
abstract but not in the title, such a title is assigned a negative
label. In contrast, the paper as a whole is labeled as a positive
sample. When we apply the title model to the aforementioned
article title, if the model outputs a negative prediction, it is
considered a hit in the cross-validation experiment. However,
it is a miss for the ensemble model evaluation experiment since
the predicted label does not match the expected class.

In Table 3, we present the results regarding precision, recall,
and F1 score. The highest precision was obtained with the title
model, but this model also yielded the lowest recall score. On
the other hand, the abstract sentences model had a lower
precision but achieved a better F1 score. Finally, we can see
from the table that the ensemble model yielded the best recall
and the best F1 score, showing a higher overall performance
than both individual models.
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Table 3. Precision, recall, and F1 scores for the title sentence model, the abstract sentences model, the ensemble model on the article classification
task, and the weblinks.

F1 scoreRecallPrecisionCategory

0.8700.7950.960Title model

0.9170.9230.911Abstract model

0.9290.9590.900Ensemble (title + abstract)

0.9080.8930.922Weblinks

To build the BiDI database, we applied the ensemble model to
all the articles collected from PubMed, PMC, and the COVID-19
Open Research Dataset (CORD-19). The total number of
manuscripts that received a positive annotation, after removing
duplicates, was 10,417: 5354 from PubMed, 5001 from PMC,
and 62 from CORD-19. It is important to note that we found
very few false positive cases in this list. One example was the
article with the PubMed identifier 32226598, which was positive
due to some sentences having reported computer resources and
because it included an “Associated Data” category on the
article’s header, but it was empty (ie, “Not applicable”).

Use Cases
BiDI provides a search engine based on the Medical Subject
Headings (MeSH) vocabulary [16]. This taxonomy, included
in the UMLS Metathesaurus, is a controlled vocabulary, a

collection of medical-related terms. The NLM uses MeSH terms
to classify PubMed articles. As of January 2020, the taxonomy
contains more than 29,000 elements. By allowing the user to
filter papers by these terms, we enable the application of very
specialized queries.

To demonstrate the utility provided by BiDI, we now present
two use cases. Let us suppose that we want to find and access
data repositories on single nucleotide polymorphisms for specific
ethnic populations. Through BiDI, we performed a text search
by typing “single nucleotide polymorphism,” accepting matches
from either the title or the abstract. BiDI returned a total of 230
articles with associated databases. We then applied MeSH term
filters to narrow the search. We selected the “Ethnic Groups”
MeSH term, and after proceeding with the query expansion,
BiDI presented two papers reporting databases relevant to our
query. The final results are shown in Figure 7.

Figure 7. Search results for single nucleotide polymorphisms databases in the Biomedical Database Inventory (BiDI) web platform.

Similarly, suppose that we want to find genomic databases
related to coronavirus. We performed a text search by typing
“coronavirus.” A total of 16 results were returned, including
repositories with heterogeneous data types, such as fatality rates
or Twitter messages regarding coronavirus. To narrow the
search, we selected the “Genomics” MeSH term. The query
returned three articles reporting coronavirus genomic databases.

Discussion

The number of publications and associated databases included
in BiDI is one order of magnitude higher than those of manually
collected database repositories. The possibility to perform
automatic and regular updates is also a significant advantage.
In that sense, our NLP system can analyze up to 42 articles per
second on an average commercial graphics card, therefore
updating thousands of manuscripts in minutes instead of hours

or days, as would be expected if a team of human curators did
the work.

Concerning general-purpose repositories such as PubMed, we
consider BiDI a complement to them. Moreover, a PubMed
weblink is provided along with every article when clicking on
the title. BiDI cannot be directly compared to PubMed, as the
former is a specialized subset of the latter, and it is not intended
to be a replacement but an extension of PubMed. BiDI’s
objective is to provide fast access to databases and their
associated articles; therefore, a link to the data is included along
with every paper. The PubMed platform does not directly
acknowledge the resources presented in articles since its goal
is to provide generic access to a large number of manuscripts.

Regarding performance, BiDI has shown high precision and
recall scores with a training data set of moderate size. We can
only expect better performance and generalization with more
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training data given the superior data scalability provided by
deep learning models.

Given that we only considered articles providing URLs, the
resulting repository acts as a direct link between the papers and
the actual data sets; it then essentially becomes a bridge between
research and data, as proposed in earlier studies. In particular,
Hoogerwerf et al [17] described the efforts made by the
OpenAIRE initiative [18] to promote discipline-independent
linking practices between publications, data, project information,
and researchers. BiDI complies with these guidelines and, in
the future, it could be expanded to integrate project metadata
and author information.

BiDI’s mission is to make scientific database resources easier
to find and easy to access to facilitate biomedical scientists’and
clinicians’ routine work. Many authors currently do not provide
easy access to their experimental data, after a deidentification
process to prevent personal data rights violations. In this context,
many initiatives have been launched to increase data sharing in
science. For instance, the Findable, Accessible, Interoperable,

and Reusable (FAIR) Principles [19] defined a set of
recommendations focused on improving findability,
accessibility, interoperability, and scientific data reusability.
BiDI contributes mainly to the first two principles and aims to
extend its service to the community as more researchers align
themselves with the FAIR Principles and share their data to
catalyze scientific discovery.

We may think of medical imaging and the “omics” fields as
obvious candidates to benefit from BiDI, due to the amount of
data generated by experiments in those areas. However, almost
any domain can benefit from our repository to a certain extent.
Others can easily reimplement the approach to create their own
search tools. Ultimately, BiDI may enable the reuse of
biomedical resources and facilitate data-driven research and
other scientific initiatives.

We integrated BiDI into an automatic text processing pipeline
to update the repository regularly. BiDI is openly available
online [20].
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