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Abstract: Simultaneous measurement of the kinematics of all hand segments is cumbersome due to
sensor placement constraints, occlusions, and environmental disturbances. The aim of this study is to
reduce the number of sensors required by using kinematic synergies, which are considered the basic
building blocks underlying hand motions. Synergies were identified from the public KIN-MUS UJI
database (22 subjects, 26 representative daily activities). Ten synergies per subject were extracted as
the principal components explaining at least 95% of the total variance of the angles recorded across all
tasks. The 220 resulting synergies were clustered, and candidate angles for estimating the remaining
angles were obtained from these groups. Different combinations of candidates were tested and the
one providing the lowest error was selected, its goodness being evaluated against kinematic data
from another dataset (KINE-ADL BE-UJI). Consequently, the original 16 joint angles were reduced to
eight: carpometacarpal flexion and abduction of thumb, metacarpophalangeal and interphalangeal
flexion of thumb, proximal interphalangeal flexion of index and ring fingers, metacarpophalangeal
flexion of ring finger, and palmar arch. Average estimation errors across joints were below 10% of the
range of motion of each joint angle for all the activities. Across activities, errors ranged between 3.1%
and 16.8%.

Keywords: hand kinematics; principal component analysis; synergies; dimensionality reduction;
joint angles estimation

1. Introduction

The human hand is a complex biomechanical system, with an intricate kinematics
provided by 19 joints, some with various degrees of freedom (DoF). This complexity is
key for the versatility of the hand, enabling a large number of activities to be performed
with a high level of precision. The measurement of the kinematics of the hand can provide
useful information in different fields, such as clinical practice, prosthesis control, teleoper-
ation, or virtual reality. However, the high number of DoF makes both hand movement
measurement and its subsequent analysis difficult.

The recording of hand kinematics can be carried out using different devices that
employ different motion capture technologies [1]: Electrogoniometers [2], instrumented
gloves [3–5], optical tracking systems [6–9] or inertial sensors that incorporate magne-
tometers, accelerometers, and gyroscopes [10–13]. Electrogoniometers are commonly used
in clinical practice to measure the range of motion (RoM) of joints [14]. However, due
to their size, they can only be used to record a few hand joints simultaneously and are
invasive. Optical tracking systems (videogrammetry) is the most widely used technique
in biomechanics [15] and it is often considered the gold standard [16]. The cameras are
calibrated to track the movement of the markers, which can be reflective (passive markers)
or self-illuminated (active markers). Four different skin marker sets are commonly used to
record hand motion [16–18]: “one marker per segment”, where one marker is positioned
at each joint; “two markers per segment”, with markers at the distal and proximal heads
of each segment; and “three markers per segment”, where markers are placed forming
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a triangle on each segment. Methods with one or two markers are prone to larger skin
movements, because the joint heads of the fingers have many wrinkles in the skin [19,20].
However, those with three markers per segment are more time-consuming (high placement
times and subsequent follow-up processing) and prone to occlusions (by overlapping of
markers, body segments—mainly the hand—and the manipulated objects, especially in the
case of activities of daily life (ADL)). In recent years, inertial sensors have been used as an
alternative to measure kinematics. These systems are easy to transport and manipulate and
measure captured kinematic information with high accuracy [21]. However, they present
limitations such as the need for an orientation algorithm (such as a Kalman filter), drift,
noise, temperature influence, and possible disturbances of the magnetic field [11,22]. In
addition, they are affected by movements of the skin and their size limits their use for
measuring hand kinematics. Instrumented gloves are quite common when recording the
continuous movement of all hand joints because they have no occlusion problems and
no spatial environmental constraints, although wearing the gloves affects hand skills [23].
Furthermore, due to placement constraints some of the glove sensors have a non-linear re-
lationship with anatomical angles, therefore requiring specific calibration protocols [24,25]
to address this issue, which extends the duration of the test. In summary, the simultane-
ous measurement of all hand segments is cumbersome due to environment disturbances,
occlusions, and placement and processing times. Furthermore, the higher the number of
sensors is, the more expensive the equipment will be, and not all laboratories or clinicians
can afford this. Therefore, reducing the number of hand joints to be recorded, by estimat-
ing some joint angles based on the values of others, would reduce occlusion problems,
placement times, and post-follow-up processing times, as well as the investment required.

The concept of hand kinematic synergies [26] is being more extensively used (espe-
cially in robotics and prosthetics) to make the analysis of the simultaneous movement
of all hand joints affordable, as hand movements are coordinated because of mechanical
and neurological couplings [27,28]. These synergies are suggested as a way to represent
the basic building blocks underlying natural hand motions that can be used to reduce the
dimensionality of hand kinematics [29,30]. Although there are other methods to compute
synergies, Principal component analysis (PCA) is the most used statistical method for
obtaining kinematic synergies because it allows sparse synergies to be obtained [31–38].
Previous studies have shown that a few linear combinations of the hand joint move-
ments (principal components, PCs) could account for most of the variance in the original
set of hand postures [31–33,35,36]. Lower order PCs correspond to the gross motion
of the hand (the more “basic” patterns of finger motion) and are similar across studies,
that is, hand opening/closing caused by motion at all metacarpal-phalangeal and/or
proximal-interphalangeal joints. Higher order PCs correspond to more subtle motions
(more “specific” patterns) and provide additional information about the object to be ma-
nipulated [36,39]; thus, higher PCs differ depending on the tasks or grasps considered [31].
Therefore, given the wide variety of ADL humans can perform, a proper selection of a
limited set of representative tasks is needed to obtain representative kinematic synergies.
The observations from previous studies led to the suggestion that hand posture control
might be implemented by combining postural synergies ranging from those responsible
for the general shape of the hand (lower PCs) to those responsible for subtler kinematic
adjustments [27]. The same reasoning can be applied to the recording of hand kinematics.
The kinematic synergies could be applied to obtain the whole hand kinematics from the
recording of only a few joint angles, by estimating the remaining angles from the coordi-
nation established by those synergies. The number of PCs considered in this procedure
would depend on the level of accuracy required. Lower PCs would be enough when
estimating the whole hand posture in fields where precision is not so important (as in the
case of virtual reality), therefore requiring the recording of only a few DoF. Conversely,
a high number of PCs would be required to estimate the hand posture in fields like tele-
operation, where higher precision is necessary, therefore requiring the recording of more
DoF. However, few studies have used kinematic synergies to simplify the recording of the
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whole hand. In particular, Ciotti and colleagues [40,41] used five sensors for hand pose
recognition, although based on kinematic synergies that were not representative of the
global population or of activities of daily living (synergies extracted from only one subject,
grasping imagined objects). Furthermore, important hand motions were disregarded, as
palmar arch was not measured and because the way methods were applied underestimated
movements of joints with smaller ranges of motion such as finger abductions.

The aim of this study is to identify the minimum set of DoF of the hand needed to
record the whole hand kinematics through the use of representative kinematic synergies.
Hand synergies were identified for a set of 26 representative ADL [3]. Different combina-
tions of DoF were tested as representative of the hand kinematics, and the errors caused
by their use in estimating the rest of the DoF are presented. Finally, the solution with the
lowest error was selected to evaluate the goodness of the method, and the implications of
using these reduced sets of DoF are discussed.

2. Materials and Methods

In order to select the set of DoF that best represent the hand kinematics, the following
procedure was adopted, which will be described in greater detail later:

(1) Hand kinematic synergies extraction: For each subject in the KIN-MUS UJI database [3],
subject-specific kinematic synergies were extracted by applying a PCA to the kine-
matic data recorded during the performance of the 26 ADL in the database.

(2) Synergy clustering and selection of candidate DoF for each synergy: Hierarchical
Clustering was used to group extracted synergies that are similar among subjects,
and one or more representative joint angles were chosen for each resulting synergy as
candidate DoF.

(3) Selection of the best combination of angles: The joint angles that were not selected as
representative were estimated from different combinations of those that were selected.
Root mean square errors (RMSE) of the estimated joint angles were computed and
the best combination of representative joint angles was selected.

(4) Goodness of the method: Using the joint angles selected in the previous step, the joint
angles recorded in another kinematic database (33 complex ADL from 20 subjects of
KINE-ADL BE-UJI database) were estimated, and RMSE were computed.

2.1. Hand Kinematic Synergies Extraction
2.1.1. Experiment A

Kinematic data from the publicly available KIN-MUS UJI database [3] was used for the
extraction of synergies. This section briefly describes this experiment (see [3] for more de-
tails). Twenty-two right-handed subjects participated in the experiment, whose mean ± SD
age was 35 ± 9 years. The criteria used to select subjects were gender parity in the overall
data, age between 20 and 65 years, and no declared upper limb pathologies. Subjects
performed 26 representative ADL (Figure 1): 20 activities adapted from the Sollerman
Hand Function Test (to ensure their repeatability and to favor their standardization), and
six additional activities (A10, A15, A19, A24, A25, A26) that were added based on the
percentage of use of the commonest grasps in ADL [42]. In order to foster repeatability,
precise instructions for each task were provided and each ADL started and ended with
the body and arms in the same posture (arms and hands relaxed at the side of the body
when subjects were standing, or arms and hands resting in a relaxed position on the table
when they were sitting). They performed each activity once and all subjects did them in
the same order.
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table with fingers and thumbs close together, middle fingers aligned with forearms) was 
recorded before recording the hand kinematics while performing the selected ADL, and was 
considered zero for all the joint angles [25]. The recorded joint angles were filtered by a 2nd-
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Figure 1. Experiment A: List of activities of daily living (ADLs) performed and scenario with the objects used. Unless
indicated otherwise, the position of the subject was standing.

2.1.2. Kinematics Acquisition

Kinematic data of the right hand was acquired using a CyberGlove (CyberGlove
Systems LLC; San Jose, CA, USA) instrumented glove connected to a laptop at 100 Hz. This
glove has 18 strain gauges that allow the anatomical angles of the underlying joints to be
determined. Right-hand kinematics was recorded while performing these ADL, following
a validated calibration protocol that includes some non-linear corrections to obtain anatom-
ical angles [25]. Sixteen joint angles were recorded: flexion of the metacarpophalangeal
(MCP) joints of all the fingers and thumb, interphalangeal (IP) joint of the thumb, and
proximal interphalangeal (PIP) joints of the fingers; flexion and abduction of the thumb
carpometacarpal (CMC) joint; relative abduction between fingers (index-middle; middle-
ring; and ring-little); and palmar arch (PalmArch). A reference posture (hand resting flat
on a table with fingers and thumbs close together, middle fingers aligned with forearms)
was recorded before recording the hand kinematics while performing the selected ADL,
and was considered zero for all the joint angles [25]. The recorded joint angles were filtered
by a 2nd-order 2-way low-pass Butterworth filter with a cut-off frequency of 5 Hz [43,44],
and the initial and final frames of each recording during which the hands remained static
were trimmed.

2.1.3. Synergies Extraction

A PCA was applied to the whole kinematic data of each subject, including all the
frames for all the ADL. In order for all the ADL to weigh the same in the analyses, the
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number of frames of each record was rescaled to 1000 frames per ADL [31]. Each PCA
matrix input was composed of an ensemble of 16 joint angle time-profiles (1000 frames)
for the 26 ADL (matrix dimension 16 × 26,000). Prior to computation of the PCs, the
joint angles were normalized by rescaling them to unit variance (mean = 0 and SD = 1 for
each DoF) in order to prevent the first PCs from reflecting the joint angles with the largest
amplitudes [45]. For each subject, the first PCs explaining at least 95% of the total variance
were extracted, and Varimax rotation was applied to obtain more sparse synergies [38].
The PCs thus obtained represented the new variables that substituted the original ones and
each PC contained the correlation coefficient (CC) of the new variable with the original
variables (joint angles). Finally, the number of the PCs (synergies) extracted and the
variance explained for each subject are presented.

2.2. Synergy Clustering and Selection of Representative DoF for Each Synergy

All the extracted PCs of all the subjects were included in a cluster analysis. Conglomer-
ate or hierarchical clustering analysis [46] is a multivariate technique that allows elements
to be classified into groups or clusters, so that each element is very similar to those in its
own conglomerate according to several specific selection criteria. In this case, the angle
between PCs [43] was used as the pairwise distance to generate the groups. The angles
between PCs were used as input to a hierarchical complete-linkage clustering procedure
(or farthest neighbor clustering). The PCs were hierarchically grouped depending on their
similarity represented by their pairwise distance (angle between PCs), and the results
were presented in a dendrogram. The cut-off distance defining the number of groups was
chosen by looking for the minimum number of clusters that ensured no cluster contains
more than one synergy from the same subject. Each resulting cluster represents a different
kinematic synergy, which was finally described by: (1) the averaged PC (the average of the
CC with each original joint angle of all the PCs in the cluster) and a short description of
the implicit coordination; (2) the percentage of subjects presenting the synergy; and (3) the
mean variance explained.

One or more representative joint angles were chosen for each resulting synergy from
the hierarchical cluster, distinguishing two different cases depending on the values of the
CC [47] in the averaged PC representing the cluster:

1. If the averaged PC represents the predominant motion of only one DoF (CC > 0.8 for
only one DoF, and CC < 0.3 for all other DoF), that independent DoF was selected as
representative.

2. Otherwise, the averaged PC represents a coordinated motion of different DoF, and all
DoF with CC > 0.4 were considered as candidates to be representative.

Finally, with the independent joint angles selected in case 1 and with the different
combinations of candidates selected in case 2, all other non-representative joint angles were
estimated as explained in the next section.

2.3. Selection of the Best Combination of Angles

In order to estimate all the non-representative joint angles, the estimated physiological
angle for a given frame i (Angesti ) was proposed to be expressed as a linear combination
of the representative angles recorded for the same frame i (Angrepk,i ), in accordance with
Equation (1), where n is the total number of representative angles:

Angesti = Intercept +
n

∑
k=1

Angrepk,i ∗ x(k) (1)

For each combination of representative joint angles tested, a least-squares fitting pro-
cedure was applied to obtain the intercept and coefficients x(k) by using the MATLAB
function ‘lsqcurvefit’, which finds coefficients that minimize the sum of the squared dif-
ferences (Equation (2)) between the estimated angles (Angesti ) and the recorded angles
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(Angreci ) across all frames (22 subjects × 26 ADL × 1000 frames = 572,000 frames alto-
gether):

min
x

572000

∑
i=1

(Angesti − Angreci )
2 (2)

For each non-representative joint angle, once the intercept and coefficients x(k) had
been obtained for each combination of representative joint angles tested, the RMSEs
between the estimated joint angles and the recorded ones across all frames were obtained.
The best combination of representative joint angles (with the lowest averaged RMSE across
non-representative joint angles) was finally proposed for the estimation of physiological
angles, and its goodness was checked as detailed in the next section.

2.4. Evaluation of the Goodness of the Method
2.4.1. Experiment B

Data from the publicly available KINE-ADL BE-UJI database [4] were used to evaluate
the goodness of the method against new kinematic data. In this case, the database contains
the hand kinematics of both hands of 20 healthy subjects, whose mean ± SD age was
38 ± 9.5 years, during the performance of a wide variety of ADLs (Figure 2) related to
eating and food preparation. The criteria used to select subjects were gender parity in the
overall data, age between 20 and 65 years, and no declared upper limb pathologies. The
hand joint angles were recorded with the same instrumented glove used in Experiment A,
and applying the same protocol to obtain anatomical angles and the same filtering. Unlike
in Experiment A, the subjects had more freedom to carry out the activities, which were
more complex and varied, since each of them involved several actions. For example, the
task ‘pouring and drinking milk’ involved opening the milk carton, pouring the milk from
the carton into the cup, closing the carton, and drinking from the cup. Only right-hand
kinematics data were used for the evaluation of the method.
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2.4.2. Evaluation of the Goodness

By using Equation (1) and the intercept and coefficients x(k) obtained in the previous
step, joint angles in the non-representative DoF were estimated for each frame in Exper-
iment B (33 activities and the 20 subjects—1,485,004 frames altogether). Again, RMSE
between estimated and recorded joint angles were obtained as:

• Global RMSE errors (across all frames and subjects, thus one RMSE value per joint)
• RMSE per ADL (across subjects and frames)

RMSE values are also presented as a percentage of the RoM of each DoF (difference
between maximum and minimum values recorded in both experiments together) in order
to consider the variability in the ranges of motion of the different hand joints. Finally,
comparison of the temporal evolution of the estimated angles and the recorded ones are
presented for two trials from Experiment B: the ones with the lowest and the highest
RMSE values.

3. Results
3.1. Hand Kinematic Synergies Extraction

Ten PCs were extracted in all the subjects. The total amount of variance explained per
subject is summarized in Figure 3 by portraying the subject distribution in a histogram.
The histogram of variance explained for each subject shows the data at 96.48% ± 1.2%.
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3.2. Synergy Clustering and Selection of Representative DoF for Each Synergy

Figure 4 shows the dendrogram obtained from the hierarchical clustering algorithm of
the whole dataset of PCs (220 extracted PCs = 22 subjects × 10 PCs). The different possible
groupings, depending on the similarity between PCs according to their pairwise distances,
have been plotted in colors. In this case, the minimum number of groups that ensures that
no cluster contains more than one synergy from the same subject corresponds to a cut-off
of 60 degrees as the pairwise distance (dotted line in Figure 4), which yielded 14 groups
of synergies.
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Table 1 describes the groups obtained and the predominant DoF of each group (those
DoF with CC > 0.4). Six groups (2, 3, 4, 5, 7 and 9) showed a single predominant DoF with
CC > 0.8 and this DoF did not appear coordinated with other DoF in other groups, and
was therefore selected as the independent DoF that has to be measured (Table 2): CMC1A,
CMC1F, MCP1F, IP1F, PIP2F and palmar arch. Although groups 10 and 11 (MCP3–4A and
MCP2–3A) showed a predominance in only one DoF, they also appeared coordinated with
other DoF in group 13. They were thus considered only as candidates to represent the
coordination described afterwards (Table 2). The remaining five groups represented the
coordination that exists between DoF (Figure 4): (i) PIP coordination (group 1), (ii) MCP
coordination (groups 6, 8 and 12), and (iii) coordination between Palmar arch and PIP2F
(group 14). This last coordination was discarded as it was present in only two subjects. The
predominant DoF listed in Table 1 for the groups representing the two main coordinations
between DoF (Figure 5: groups 1, 6, 8 and 12) were considered as candidates to represent
them (Table 2).

Table 1. Percentage of subjects, predominant degrees of freedom (DoF) (sorted from higher to lower correlation coefficients)
and description of each group of synergies. F for flexion/extension and A for abduction/adduction movements. 1 to 5 for
thumb to little digits.

Groups Subjects (%) Predominant DoF Description

1 100 PIP4F, PIP5F PIP3F PIP2F Fingers 2–5 PIPF coordination
2 100 CMC1A Thumb CMCA movement
3 100 MCP1F Thumb MCPF movement
4 95.5 IP1F Thumb IPF movement
5 90.9 CMC1F Thumb CMCF movement
6 90.9 MCP4–5A, MCP4F, MCP5F Fingers 2–5 MCP coordination (more weight from Fingers 4 and 5)
7 86.4 PIP2F Index PIPF movement
8 86.4 MCP3F, MCP2F, MCP4F Fingers 2–5 MCP coordination (more weight from Fingers 2–4)
9 81.8 PalmArch Palmar arch movement
10 54.5 MCP2–3A MCP2–3A movement
11 50.5 MCP3–4A MCP3–4A movement

12 27.2 MCP2F, MCPF2–3A, MCP3F,
MCP4F, MCP3–4A Fingers 2–5 MCP coordination (with any DoF predominance)

13 27.2 MCP3–4A, MCP2–3A MCP2–3A and MCP3–4A coordination
14 9.0 PalmArch, PIP2F PalmArch, and PIP2F coordination
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Table 2. Independent and candidate DoF for the estimation of physiological angles. F for flexion/extension and A for
abduction/adduction movements. 1 to 5 for thumb to little digits.

Independent DoF DoF Candidate of PIP Coordination (from
Group 1)

DoF Candidate of MCP Coordination
(from Groups 6, 8 and 12)

CMC1A PIP3F MCP2F
CMC1F PIP4F MCP2–3A
MCP1F PIP5F MCP3F

IPF1 MCP4F
PIP2F MCP3–4A

PalmArch MCP5F
MCP4–5A
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3.3. Selection of the Best Combination of Angles

For the estimation of the physiological angles, eight representative angles were pro-
posed: the six independent DoF (Thumb IP flexion, MCP flexion and CMC flexion and
abduction movements, palmar arch and index PIP flexion) as well as two DoF candidates
for representing the coordinated movements (one DoF selected from three candidates, and
another DoF selected from three candidates). To know from which pair of candidates DoF
obtained better estimation joint angles, all possible combinations of them (21 combinations)
were tested.

Table 3 shows RMSE errors between estimated and recorded joint angles, for each
combination of DoF tested. MCP abduction/adduction obtained low RMSE errors, re-
gardless of the pair of DoF selected. Specifically, MCP2–3A showed errors in the range
of 5.7–7.3, MCP3–4A in the range of 4.5–5.4, and MCP4–5A in the range of 3.2–4.4. The
estimation of the PIP movement provided better results when the PIP of the finger adjacent
to the estimated one was used as representative (e.g., the PIP joint of the middle finger
obtained the lowest errors when the PIP of the ring finger was used as representative). The
flexion/extension of the MCP joints were the DoF most affected by the selected candidate
angles, with a range (maximum-minimum) value of 8 degrees in the case of MCP5F. Similar
to PIP joints, the lowest errors were found when the flexion/extension of the MCP joint of
the finger adjacent to the estimate was selected. In general, MCP4–5A presented the lowest
error and MCP5F presented the highest.

Table 3. RMSE between estimated and recorded joint angles across subjects and actions (for each combination of candidate
DoF). 1 to 5 refers to thumb to little fingers. F stands for flexion/extension and A for abduction/adduction movements.

Candidate DoF RMSE (Degrees)

Case 1 2 MCP2F MCP2–3A MCP3F PIP3F MCP4F MCP3–4A PIP4F MCP5F MCP4–5A PIP5F

1 PIP3F MCP2F 5.7 10.5 13.7 4.8 9.2 16.0 4.3 13.9
2 PIP3F MCP2–3A 12.0 15.4 15.9 4.5 9.4 17.3 4.4 14.1
3 PIP3F MCP3F 9.0 6.3 9.1 4.6 9.1 13.3 4.2 13.6
4 PIP3F MCP4F 12.2 6.7 9.4 4.6 9.3 8.7 3.9 13.8
5 PIP3F MCP3–4A 13.6 6.1 15.2 14.6 9.5 17.2 4.3 14.2
6 PIP3F MCP5F 13.8 7.1 13.3 8.4 5.2 9.3 3.2 14.0
7 PIP3F MCP4–5A 14.8 7.2 16.8 14.9 5.3 9.5 12.6 14.2
8 PIP4F MCP2F 5.8 10.5 7.6 13.7 4.9 16.0 4.3 10.4
9 PIP4F MCP2–3A 11.8 15.0 7.5 15.7 4.6 17.1 4.4 10.4

10 PIP4F MCP3F 9.0 6.3 7.5 9.3 4.6 13.6 4.2 10.3
11 PIP4F MCP4F 12.1 6.8 9.7 7.7 4.7 8.8 3.9 10.3
12 PIP4F MCP3–4A 13.3 6.1 14.8 7.6 14.4 16.9 4.3 10.5
13 PIP4F MCP5F 13.7 7.2 13.6 7.7 8.5 5.3 3.2 10.4
14 PIP4F MCP4–5A 14.6 7.2 16.7 7.7 14.8 5.3 12.5 10.5
15 PIP5F MCP2F 5.9 10.5 11.2 13.6 4.9 10.2 16.2 4.3
16 PIP5F MCP2–3A 11.8 14.8 10.9 15.5 4.6 10.1 17.3 4.4
17 PIP5F MCP3F 9.0 6.3 11.1 9.3 4.6 10.2 13.9 4.2
18 PIP5F MCP4F 12.1 6.9 9.7 11.3 4.7 10.2 9.1 3.9
19 PIP5F MCP3–4A 13.2 6.1 14.5 11.1 14.2 10.1 17.1 4.4
20 PIP5F MCP5F 13.6 7.2 13.6 11.1 8.5 5.3 10.1 3.2
21 PIP5F MCP4–5A 14.5 7.3 16.5 11.2 14.6 5.4 10.3 12.6

Statistics
across
cases

Minimum 9.0 5.7 9.43 7.5 8.4 4.5 9.1 8.7 3.2 10.3
Maximum 14.8 7.3 16.8 11.3 15.9 5.4 10.2 17.3 4.4 14.2
Average 12.5 6.6 13.4 9.4 12.7 4.9 9.7 14.2 4.1 12.2

Figure 6 shows the RMSE averaged across DoF. In general, the best estimations were
obtained in cases # 10 and # 11. These cases correspond to the usage of the PIP of the ring
finger and the MCP of the middle or ring finger as representative.
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3.4. Evaluation of the Goodness of the Method

To evaluate the goodness of the method, the case with the lowest RMSE was selected
(case 11). Accordingly, the representative joint angles finally selected were: CMC1A,
CMC1F, MCP1F, IPF1, PIP2F, PalmArch, PIP4F, and MCP4F. Table 4 shows the coefficients
x(k) used to estimate all the other joint angles, in accordance with Equation (1). Note
that some of the representative angles, such as IP1F and PalmArch, were barely used to
estimate the remaining angles, since the coefficients obtained were less than 0.1. MCP4–5A
showed low coefficients for all the representative angles, with the highest value for MCP4F
movement (−0.13).

Table 4. Coefficients x(k) obtained for each of the representative joint angles, in order to estimate Table 1. All the coefficients
presented are significant with a p-value of 0.05. 1 to 5 refers to thumb to little fingers. F stands for flexion/extension and A
for abduction/adduction movements.

Coefficients x(k)

Estimated
Angles Intercept CMC1F CMC1A MCP1F IP1F PIP2F PIP4F MCP4F P_Arch

MCP2F 8.66 - −0.24 0.32 −0.01 −0.04 0.06 0.52 0.01
MCP2–3A 3.53 −0.05 −0.19 −0.04 0.01 −0.03 0.06 −0.16 0.02

MCP3F 8.91 - −0.21 0.19 −0.07 0.08 −0.04 0.87 0.08
PIP3F −0.05 −0.05 −0.07 −0.03 −0.02 0.19 0.69 −0.02 0.02

MCP3–4A 3.67 −0.07 −0.15 −0.01 0.01 −0.01 0.06 −0.17 0.05
MCP5F −5.78 −0.14 −0.01 −0.07 0.05 −0.03 0.15 0.89 −0.04

MCP4–5A 5.49 0.00 −0.04 0.05 −0.03 0.00 −0.03 −0.13 −0.01
PIP5F 1.89 0.07 −0.04 0.06 0.05 −0.06 0.82 0.13 0.01

Table 5 presents the global RMSE (computed from all frames, subjects, and activities)
obtained from the representative angles selected. RMSE values are similar to those of
experiment A (Table 3, case 11).
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Table 5. Root mean square errors (RMSE) per joint obtained for Experiment B computed from all
frames. 1 to 5 refers to thumb to little fingers. F stands for flexion/extension and A for abduc-
tion/adduction movements.

RMSE (Degrees)

MCP2F MCP2–3A MCP3F PIP3F MCP3–4A MCP5F MCP4–5A PIP5F

14.35 7.63 10.68 8.92 4.18 10.25 4.25 10.54

For a better comparison, Figure 7 shows the global RMSE errors expressed as a
percentage with respect to the RoM of each DoF considering the angles for both experiment
A and experiment B. All the estimated angles presented similar RMSE values, with RMSE
errors below 10% of their maximum RoM. Note that the DoF with the highest error were
those of the index finger. The lowest error was for flexion/extension of the PIP of the
middle finger.
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Figure 8 shows the global RMSE errors, expressed as a percentage with respect to
the RoM of each DoF, per action and joint (computed from all frames and subjects of
each action) for both Experiment A (A1–A26) and Experiment B (B1–B33). All the actions
presented RMSE errors, on average, below 10%. For actions from Experiment A, those with
the highest errors were “A11. Unscrewing two lids and leaving them on a table” and “A20.
Picking up the phone” (AVG = 9.2%). The one with the lowest error was “A5. Lifting and
moving an iron” (AVG = 5.0%). For actions from Experiment B, the one with the highest
error was “B33. Cooking, serving and cutting a big omelette” (AVG = 9.0%) and the one
with the lowest error was “B21. Pouring baking powder into the bowl” (AVG = 6.1%).
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As an example, Figures 9 and 10 show the temporal evolution of the estimated angle
versus the recorded angle for subject 2 during two actions from Experiment B: the one with
the highest RMSE on average (Figure 9) and the one with the lowest error (Figure 10).
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4. Discussion

In this work, we identified the minimum set of hand DoF that best represent the
hand kinematics, in order to reduce the number of DoF needed to record the whole
hand kinematics without losing relevant information by using kinematic synergies. We
have provided a detailed description of the most independent hand DoF as well as the
most coordinated ones during the performance of representative ADL. Furthermore, we
provide the information on all the estimation errors, so that, depending on the field of
application, the designer can decide which hand DoF to measure and, therefore, the level
of accuracy required. The study was performed according to standardized actions based
on the Sollerman Hand Function Test, these tasks reflecting an accurate representativeness
of hand functions during ADL.

4.1. Hand Kinematic Synergies

The number of synergies per subject required to explain more than 95% of the total
variance of the dataset is at least twice the number of synergies extracted in other works:
10 vs. 2–5 [31,32,36,37,45]. This fact may be related to the high percentage of variance ex-
plained (95% versus 80–85%) as well as the data standardization procedure followed, which
allowed us to compare joints with different RoM. The subsequent cluster analysis grouped
the 220 PCs into 14 groups from which we reduced the dataset size (16 DoF) to a limited set
of DoF (8 DoF): 6 DoF were obtained from six grouped PCs that represented predominant
movement of only 1 DoF (Thumb flexion/abduction of CMC, and flexion of thumb MCP
and IP joints, index PIP joint and palmar arch) and the other two DoF were obtained from
two coordinated movements (PIP flexion coordination and MCP flexion/abduction coordi-
nation). Groups 6, 8 and 12, despite being different, all represent coordination between MCP
joints, albeit with different weights, which could correspond to anatomical differences across
subjects, among other things. These two coordinated movements obtained herein were
similar to those reported in the literature [31,32,36,41,43,48]. However, PIP coordination
showed slight differences: this coordinated movement revealed flexion of most fingers
except the index, which is consistent with recent studies describing the independence of
the index finger and of the thumb [43,49,50]. In this sense, this fact is in accordance with the
appearance of all thumb joints and PIP index joint as independent DoF. Palmar arch was
not considered in most previous studies because the PCA methodology followed in those
studies neglected DoF with small RoM. In previous studies that did take Palmar arch into
account [31,43], different coordination between Palmar arch and other joints was found,
depending on the activities performed. In this study, where higher accuracy is pursued (by
means of the high level of variance sought), a coordination was found between palmar arch
and PIP flexion of the index finger, but only in two subjects. These results differ from those
reported in previous work [40,41] that used kinematic synergies to recognize eight hand
grasping poses from five hand joint movements (thumb abduction of CMC, flexion of MCP
of the middle finger, flexion and abduction of MCP of the little finger, and flexion of the
PIP of the ring finger). They showed good performance recognition, which demonstrated
the value of using kinematic synergies to reduce the complexity of the hand kinematics
by recording only a few joint angles. However, several limitations need to be mentioned.
First, the method they used undervalued DoF with small RoM: Synergies in PCA using the
covariance matrix are quite sensitive to the variances of the original variables so that those
with larger ranges of variation dominate over those with small ranges. In order to ensure
each variable contributes equally to the analysis, PCA may be applied to the covariance
matrix with standardized data (mean = 0 and SD = 1 for each DoF) [44], as has been
carried out in this study. This results in a higher number of synergies identified per subject.
Second, they considered synergies extracted from only one subject, and were therefore
not representative of the overall population. As we have seen, all subjects share the same
first two synergies (PIP flexion coordination and MCP flexion/abduction coordination)
while the rest of the synergies seem to depend on the different strategies employed by
each specific subject [43,44]. Third, the synergies were extracted from non-representative
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activities (free motion while imagining grasping 57 imaginary objects). However, previous
studies have shown differences in coordination between free motion and grasping real
objects, and shown that higher PCs differ depending on the tasks or grasps considered [31].
All these facts are expected to lead to poor precision when recording the whole hand
kinematics during daily life activities using only the five joint angles proposed by Ciotti
and colleagues [40,41]. To make up for those shortcomings, in this work the synergies
have been extracted from a representative group of subjects and activities, the result being
subject-specific synergies obtained through a method that involves all joint movements
equally and makes it possible to explain more than 95% of the variability during ADL.

4.2. Estimation of Physiological Angles

Estimation of physiological angles by using the representative DoF selected resulted
in low RMSE values for all the combinations tested (Table 3), with maximum average value
of 14.2 degrees for the MCP flexion/extension of the little finger and minimum average
value of 4.1 degrees for the MCP abduction/adduction of ring and little fingers. In general,
MCP and PIP joints, during the flexion/extension movements, obtained lower errors in
the estimated angles when using the MCP or PIP flexion/extension movement of adjacent
fingers (e.g., MCP3 obtained better results when MCP2 or MCP4 were used as the represen-
tative angle). In these cases, the RMSE values obtained were about 9 degrees, in the case of
MCP joints, and about 7–10 degrees in the case of PIP joints. In MCP abduction/adduction
movements, different behavior was observed, depending on each finger:

• Abduction/Adduction between index and middle fingers obtained the lowest errors
when using MCP flexion/extension movement of the index finger as representative.

• Abduction/Adduction between middle and ring fingers obtained the lowest errors
when using Abduction/Adduction between index and middle fingers as representative.

• Abduction/Adduction between ring and little fingers obtained the lowest errors when
using MCP flexion/extension movement of the little finger as representative.

In particular, for each of the 21 combinations tested (Table 3), the best solution, in terms
of lower average RMSE across DoF, was the combination that used flexion of MCP and PIP
joints of the ring finger (Figure 11). This result seems quite reasonable, since the thumb and
index finger are more independent, and the one that best approaches the others is the ring,
which is more centered with the other two fingers. In this case, PIP index finger flexion was
the DoF with the highest error (12.14 degrees, 9.8% with respect to its RoM) and relative
abduction MCP4–5 was the DoF with the lowest error (3.89 degrees, 6% with respect to
its RoM). These specifications could be helpful in designing simpler devices to record the
whole hand kinematics, by reducing the number of DoF to be recorded, but obtaining
the best possible estimation angles for the non-recorded DoF. In fields such as virtual
reality, recording eight DoF (the best solution found herein) would be sufficient to obtain
the complete kinematics of the hand, considering that these estimations were made from
common grasps and objects used in everyday life. In other fields, like teleoperation, or in
other applications where a higher precision in specific DoF is necessary, other combinations
of DoF might be recorded. For this purpose, Table 3 presents all the combinations tested
that could be used to select other combinations of DoF, depending on which joint and
finger require more accuracy. As an example, if more precision is needed in the index and
middle fingers, MCP2F and PIP3F may improve estimation angles for these fingers. In the
case of needing more precise movements, or other activities that do not require grasping
(such as pointing with a finger), the usefulness of these simplifications should be studied
in more detail.
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Figure 11. Best 8 DoF selected as representative angles for the estimation of the remaining hand
joints. 1 to 5 refers to thumb to little fingers. F stands for flexion/extension and A for abduc-
tion/adduction movements.

The proposed solution presents different coefficients for each representative DoF
selected, depending on the DoF to be estimated (Table 4). From these coefficients, we can
observe which representative DoF are used to estimate each remaining DoF:

• MCP flexion/extension movement of the index and middle fingers are mainly esti-
mated from flexion/extension of the MCP joints and CMC thumb joint. This means
that MCP movements of these fingers are highly related to thumb position and MCP
movement of the other fingers.

• In general, PIP joints are mainly related to the PIP joint of the adjacent finger. In
particular, PIP of the middle finger presents a mainly high relation to PIP of the ring
finger, with some influence from PIP of the index finger and CMC thumb flexion. PIP
of the little finger mainly presents a relation with PIP of the ring finger with some
influence from MCP of the ring finger.

• MCP abduction/adduction movement between index, middle and ring fingers are
more related to thumb CMC flexion/extension and MCP flexion/extension of ring
finger. This means that abduction/adduction movement is also related to the thumb
position (in this case only with CMC flexion movement) and MCP flexion/extension
movements. MCP abduction/adduction between the ring and little fingers are only
related to MCP flexion/extension movement.

4.3. Evaluation of the Goodness of the Method

The method presented herein obtained similar errors in different datasets regardless of
the type of complexity of the ADL to be performed. In experiment A, the ADL were more
controlled and repeatable between subjects whereas in experiment B subjects had more
freedom to carry out the activities, which were more complex and varied, since each of
them involved several actions. In general, average errors obtained were below 10% of the
RoM of each DoF, for all the activities and DoF. The estimations were performed with the
hand movements of a few representative daily life activities (Experiment A) and were then
applied to continuous and complex actions (Experiment B), involving reaching, grasping,
and manipulation stages, with varied products and actions (beating, stirring, cooking,
serving, cutting, etc.), as well as natural and free hand movements during those actions.

The estimates presented bounded and limited errors, with values between 3.1% and
16.8% of the RoM of each DoF, depending on the DoF estimated and the activity performed.
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From Experiment A, activities A11 and A20 (“A11. Unscrewing two lids and leaving them
on a table” and “A20. Picking up the phone”) presented the highest estimation errors,
with both activities using the intermediate power-precision grasp predominantly. From
experiment B, activity B33 (“Cooking, serving and cutting a big omelet”) presented the
highest estimation error. This activity consists in: (1) Taking the lid of the pan from the
worktop, putting it over the pan and turning the omelet over with the lid; (2) Grasping
the handle of the pan and shaking it; (3) Taking the pan by the handle and putting the
omelet on the plate; (4) Taking the knife from the worktop and cutting the omelet into four
pieces and leaving the knife on the worktop. Figure 8 shows that the highest estimation
error comes from the first part of the activity, which corresponds to the action of grasping
the handle of the pan (i.e., during intermediate power-precision grasp). This means that
the highest errors occurred when the object to be handled required the performance of
an intermediate power-precision grasp. This fact makes it more difficult to estimate the
position, in this case, of the MCP of the index finger (error of 16.8%), using the rest of the
DoF. Flexion of MCP of the index finger was estimated mainly from flexion of ring MCP
and thumb CMC movements. Therefore, the highest estimation error was produced when
intermediate power-precision grasp was performed, producing a different relationship
between these joint movements, as in the case of activities A11, A20 and B33. However, this
grasp type is barely used during the performance of ADL (3.3%) and personal autonomy
(7.9%), according to previous studies [42,51].

In contrast, from Experiment A, activity A5 (“Lifting and moving an iron”) presented
the lowest error and was characterized by a cylindrical grasp. From Experiment B, the
lowest error was observed in activity B21 (“Pouring baking power into the bowl”), which
consisted only in: opening the box of baking powder, taking out one sachet and opening
it, pouring the powder into the bowl, and closing the box. This activity was mainly
characterized by using a pad-to-pad pinch. Cylindrical grasp and pad-to-pad pinch are
the most used during ADL and personal autonomy (38.3% and 12.6% during ADL, and
33.4% and 15.3% for personal autonomy, respectively) [42,51]. Therefore, by using the eight
DoF selected, a high level of estimation is obtained during the most common grasps used
during ADL and personal autonomy.

5. Conclusions

This paper proposes a reduced set of hand DoF that best represent the hand kinematics,
in order to reduce the number of joint angles needed to obtain the whole hand kinematics
through the use of kinematic synergies. The results could be helpful in the design of
simpler devices to record the whole hand kinematics, by reducing the number of DoF to be
recorded, but obtaining the best possible estimation angles for the non-recorded DoF. In
fields such as virtual reality, recording eight joint angles (the best solution found in this
study) would be sufficient to obtain the complete kinematics of the hand, considering that
these estimations were made from common grasps and objects used in everyday life. In
other fields like teleoperation, or in other applications where a higher precision in specific
DoF is necessary, other combinations of joint angles could be recorded. This reduced set of
hand joints could diminish some problems such as those of occlusion, placement times and
post-follow-up processing times, as well as the investment required. Note that the sample
used herein may not be representative of possible kinematic variabilities that may appear
in some specific pathological conditions. Therefore, the proposal presented herein may not
be suitable in those cases, for which specific studies would be needed.
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A Abduction/adduction
ADL Activities of daily living
DOF Degrees of freedom
CMC Carpometacarpal joint
F Flexion/extension
IP Interphalangeal joint
MCP Metacarpophalangeal joint
ROM Range of motion
PalmArch Palmar arch
PCA Principal component analysis
PCs Principal components
PIP Proximal interphalangeal joint
RMSE Root mean square error
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