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Abstract: Sun induced chlorophyll fluorescence (SICF) emitted by phytoplankton provides consider-
able insights into the vital role of the carbon productivity of the earth’s aquatic ecosystems. However,
the SICF signal leaving a water body is highly affected by the high spectral variability of its optically
active constituents. To disentangle the SICF emission from the water-leaving radiance, a new high
spectral resolution retrieval algorithm is presented, which significantly improves the fluorescence line
height (FLH) method commonly used so far. The proposed algorithm retrieves the reflectance without
SICF contribution by the extrapolation of the reflectance from the adjacent regions. Then, the SICF
emission curve is obtained as the difference of the reflectance with SICF, the one actually obtained
by any remote sensor (apparent reflectance), and the reflectance without SICF, the one estimated by
the algorithm (true reflectance). The algorithm first normalizes the reflectance spectrum at 780 nm,
following the similarity index approximation, to minimize the variability due to other optically active
constituents different from chlorophyll. Then, the true reflectance is estimated empirically from the
normalized reflectance at three wavelengths using a machine learning regression algorithm (MLRA)
and a cubic spline fitting adjustment. Two large reflectance databases, representing a wide range of
coastal and ocean water components and scattering conditions, were independently simulated with
the radiative transfer model HydroLight and used for training and validation of the MLRA fitting
strategy. The best results for the high spectral resolution SICF retrieval were obtained using support
vector regression, with relative errors lower than 2% for the SICF peak value in 81% of the samples.
This represents a significant improvement with respect to the classic FLH algorithm, applied for
OLCI bands, for which the relative errors were higher than 40% in 59% of the samples.

Keywords: fluorescence; HydroLight; water quality; ocean color; photosynthesis; phytoplankton;
ocean productivity; optically active constituents; Sentinel-3; ocean and land color instrument

1. Introduction

Phytoplankton is the base of the trophic pyramid in aquatic ecosystems, using solar
energy for energy fixation in carbon compounds, and playing a key role in the earth’s carbon
cycle. The monitoring of chlorophyll-a (Chla) fluorescence emitted by phytoplankton is
one of the most used methods to understand the state of aquatic ecosystems [1-3]. When
the Chla molecules present in phytoplankton are excited by absorbed light, the excitation
energy can either (1) be used in the photosynthetic chain, (2) be dissipated as heat, or (3) be
emitted as Chla fluorescence in the 650-800 nm region and measurable as a contribution
to the peak within the 660-750 nm region on the water-leaving radiance or reflectance of
water bodies [4]. As shown by Gower and Maritorena [5,6], the sun induced chlorophyll
fluorescence (SICF) emission curve in natural waters can be approximated by a Gaussian
function with a maximum at ~685 nm and a full width at half maximum (FWHM) of 25 nm.
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In addition to SICEF, the fluorescence quantum yield (¢ SICF) is defined as the ratio of the
number of photons emitted to the number of photons absorbed by the Chla.

The measurement of SICF, and its quantum yield of photosynthetic organisms in
natural waters, adds information that can be interpreted in terms of phytoplankton phys-
iology [1,7,8] and species composition [9]. The SICF signal has been used to estimate
the phytoplankton’s biomass [1,10-12], photosynthetic activity, and primary productiv-
ity [13,14]. The use of optical remote sensing data in the visible-near-infra-red (VNIR)
spectral range (400-800 nm) for the estimation of SICF and ¢ has demonstrated its poten-
tial to describe the spatial and temporal variability of the physiological status of marine
phytoplankton, linked to nutrient limitation [10,15].

The fluorescence line height (FLH) algorithm, developed to retrieve SICF [16], esti-
mates the height of the red fluorescence peak by using the water-leaving radiance (L)
or remote-sensing reflectance (Rrs, defined as the ratio of L, and E, the sun irradiance
arriving at the water surface, called here apparent reflectance) at three wavelengths, one
which is centered on the SICF peak and two others that are used to define a baseline
below the SICF peak. The FLH algorithm is routinely implemented for global ocean image
processing using MODIS and MERIS/OLCI data [17-19]. The accuracy in the estimation of
the actual fluorescence peak height (centered around 685 nm) depends on the position of
the three bands used in the FLH [18,20] and the signal-to-noise of the sensor used. It has
been shown that the SICF signal retrieved by MODIS (peak band at 677 nm, with 11 nm of
FWHM) responds to only 57% of SICF signal, while MERIS/OLCI (peak band at 681.25 nm,
with 7.5 nm of FWHM) reaches 78% of the SICF signal [21].

The main difficulty in retrieving SICF is the variability in the concentration and optical
properties of the optically active constituents (OACs) of water bodies, producing a large
variability in the shape of Rrs, especially in the visible wavelengths. The main OACs are (1)
pure water itself; (2) phytoplankton, containing a large number of different pigments, the
most abundant being Chla, which is present in all phytoplankton cells; (3) colored dissolved
organic matter (CDOM); and (4) non-algal particles (NAP) composed of organic particles
(e.g., bacteria, protists, zooplankton, detrital organic matter) and suspended inorganic
particles. Hence, the detection of SICF by remote sensors is mainly affected, within the
emission region, by the absorption properties of water and phytoplankton, plus the particle
scattering (from both phytoplankton cells and NAP). The combination of these three effects
produces a reflectance peak in the SICF region that overlaps with the actual emission peak
at low Chla concentration ([Chla]) and could become dominant with increasing [Chla]
and/or NAP concentration [22-25].

Further difficulties to obtain SICF accurately from the reflected radiance signal are
the strong effects of the atmospheric compounds, selectively attenuating the signal. The
earth’s atmosphere is composed mainly of molecular gases (i.e., O,, O3, CO,, water vapor)
and particles suspended in the gases (aerosols). The scattering and absorption produced
by these atmospheric compounds strongly affects the signal detected by any remote sensor,
especially for signals leaving from water surfaces, where the contribution of Ly, in general is
much lower than the total radiance arriving at any remote sensor. In the spectral SICF range,
the signal is strongly affected by the water vapor and O, absorptions. In addition to the
standard atmospheric effects to be compensated for water targets, the case of fluorescence
emission requires that the in-filling of the O2-B band due to fluorescence emission should
be taken into account as part of the atmospheric correction process, but this is not analyzed
in this paper.

As introduced above, the performance of the FLH algorithm applied on Rrs is affected
by the overlap between SICF and the reflectance peak in the same spectral region in water
bodies with high [Chla] [4], producing a “shoulder” in the 660-750 nm region. The shape
of this reflectance “shoulder” is due to the combined absorption features of phytoplankton
and water, while its magnitude is due to the particle scattering. The combined result of
these effects determines that, in productive waters, the linear baseline assumption no longer
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holds, since the fluorescence peak adds to a curved reflectance beneath. Therefore, the FLH
calculated with the simple baseline approach leads to inaccurate SICF retrievals [26].

The use of a high spectral resolution sensor providing narrower bands than MODIS or
MERIS/OLCI to detect SICF in water allows one to detect a more accurate contribution of
SICF from a higher detailed shape of the water-leaving radiance, avoiding the atmospheric
O,-B (687 nm) absorption band. The ongoing satellite missions that include sensors with
higher spectral and radiometric resolutions (i.e., FLEX [27], CHIME [28]), increase the
possibilities of retrieving a more accurate SICF peak height and width and, therefore, a
more accurate total emission. Hence, the aim of this work is to define an algorithm able to
separate the SICF emission signal from the peak produced by the combined effects of water
and phytoplankton absorption and scattering by exploiting the detailed spectral shape of
water-leaving radiance and considering the spectral variability of water.

The measurement of SICF in natural waters is, however, challenging. There are no
standard instruments or protocols and very few actual measurements. The fluorescence
measurements routinely done in the ocean, obtained with artificial light sources, can be
considered as proxies of the SICF, but not its actual measurement in W m~2 sr~!. Since
in situ SICF data were not available, the methodology proposed in this manuscript was
based entirely on simulated data. To ensure the maximum representativeness of the results,
a very comprehensive radiative transfer model was used, and the ranges of OAC and the
inherent optical properties were chosen to represent the widest variability of ocean and
coastal waters.

2. Background and Definitions

Throughout this work, two different definitions of the remote sensing reflectance are
used. The Rrs widely used in ocean optics is called here “apparent” reflectance, because
the water-leaving radiance includes the emitted fluorescence contribution (SICF). Further,
the “true” reflectance is defined as the water-leaving remote sensing reflectance without
the SICF contribution (Rrs_gjcr) (Equations (1) and (2)):

Ly-sicr(A) = Lu(A) — SICF(A) [W.m*Z.Srfl,nmfl] O
Rs-sicr() = EEEE o] @

where E;()) is the downwelling plane irradiance arriving at the water surface (W-m~2-nm1).
The issue with the definitions of “apparent” reflectance and “true” reflectance also comes
from the consideration of the bidirectional reflectance distribution function (BRDF), and
from adjacency effects, which are not negligible for coastal areas and inland waters. While
a full consideration of these effects is outside the scope of this paper, they must be taken
into account during the atmospheric correction procedure.

In water bodies, the upwelling radiance is the result of (1) scattering and absorption
from particles and dissolved substances, and (2) emission contribution from SICF. There-
fore, Rrs corresponds to Rrs_gjcr plus the SICF contribution, with Rrs being the reflectance
observed by the sensor and Rrs_gjcr the unknown true reflectance component. It is im-
portant to recall that outside the fluorescence emission region (i.e., <660 nm and >750 nm)
both reflectances are identical (Figure 1).

To improve the SICF retrieval method for water bodies, we propose to further consider
the spectral variability of water bodies due to the OAC of water, based on their spectral
modelling. Moreover, the advantage is that the SICF spectral range is only slightly affected
by the OAC. While the variability in the shape of Rrs in the visible wavelengths is high,
the shape of the Rrs_gjcr spectrum in the near-infrared (NIR) spectral range (700-900 nm)
is largely determined by pure water absorption and thus is almost invariant [29].

Next, the modeling of the inherent optical properties (absorption and scattering)
performed in this work is described.
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Figure 1. (Left): Illustration of the fluorescence line height (FLH) algorithm for an example showing the water-leaving
radiance with and without sun induced chlorophyll fluorescence (SICF) contribution. The A1, Ay, and A3 bands correspond
to the band centers 667, 668, and 746 nm for MODIS and 665, 684, and 709 or 753 nm for OLCI. The difference between the
apparent and true water-leaving radiance corresponds to the SICF signal. (Right): Equivalent remote sensing reflectance.

2.1. Absorption

The total absorption coefficient (2(A)) can be expressed as the sum of the absorption
coefficients of each OAC:

a(A) = aw(A) + acpom(A) + apny(A) + anap(V) [mil} ®3)

The absorption by pure water a,,(A) corresponds to the absorption described by Pope
and Fry [30].
The absorption by CDOM acpop(A) is modeled as [31]
acpom(A) = acpom(Ae)e OMA=10) 4)
where acpop(Ao) is the absorption coefficient at A, = 440 nm.
The absorption by phytoplankton a;, (A) is given by [32] as follows:

Ay (A) = 0.06a; (A)[Chla)*® [’”_1} -

where [Chla] is supplied in mg-m~3, and a} (A) is the chlorophyll-specific absorption
coefficient in m?-mg~! representative of marine phytoplankton [33,34].
In the case of the absorption by NAP, ayap(A), the next expression is used [35]:

anar(A) =a* (V)[NAP] [m~] ©)

where [NAP] is supplied in g-m~3, and a*(A) is the mineral particle-specific absorption
coefficient in m?-g~1.

2.2. Scattering

The angular distribution of light scattered by a particle in a direction 1 at a wavelength
A is defined as the volume scattering function (B(y, A)). The total spectral scattering
coefficient (b(A)) is the total magnitude of the scattered light, which corresponds to the
integral of B(y, A) over all angles 47t. The phase function (B(, A)) corresponds to B(1, A)
normalized to b(A), providing the shape of the B(¢, A) regardless of the intensity of the
scattered light. The total backscattering coefficient (b, (A)) is the total light scattered in the
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backward direction, and the backscattered fraction with respect to total scattering (b(A)) is
defined as the ratio between b, (A) and b(A) [32].

Regarding scattering modeling, it only considers the scattering coming from phyto-
plankton and NAP. The contribution of CDOM in the total scattering (b(A)) is considered
to be negligible [31].

As the scattering of phytoplankton and NAP depends on the size, structure, distribu-
tion, and composition of the particles, it is not easy to model the integral effects. Hence, a
realistic approximation given by the spectral beam attenuation coefficient of particles c,(A)
is used to model b(A) for phytoplankton and NAP [36]:

cp(A) = pr(/\o)(/i:) B {m_l} @)

where A, is a nominal scaling wavelength, and n can have values from 0 to 1, depending
on the size distribution (large particles have a small n; small particles have a large n).

Therefore, b()) is calculated as the difference between c,(A) and a(A) according to [37]
as follows:

b(A) = cp(A) — a(A) [mfl] ®)

2.3. Similarity Index

Rrs is related to the total spectral absorption coefficient (a(A)) and total backscattering
coefficient (b, (A)) [29]:

by (1)
a(A) + by(A)

where « is a coefficient that depends on the illumination conditions. In the NIR, it is
assumed that the total absorption coefficient (a(A)) is dominated by ay, (A ), since acpon (A)
is negligible, and a,y,, (1) and ayap(A) are very low in this region. It is also assumed that
by(A) is almost spectrally flat for wavelengths in the NIR (Anjr), and therefore Equation (9)
can be redefined as [29,38]

Rrs(A) =« )

by (ANIR)

RI’S(/\NIR) K aw(/\NIR> (10)
The normalized Rrs (Rrsn), derived from the similarity index concept applied to the
NIR region, is defined by dividing the reflectance by its value at 780 nm [29], a wavelength
that is only affected by pure water absorption. The concept of similarity index is therefore
useful since it allows Rrsn in the red-NIR region to be obtained, where other OACs except
for pure water can be neglected. Therefore, it provides a first guess of the shape of the
Rrs_grcr in the region where the SICF emission peak occurs. The calculation of Rrsn is the
first concept of the strategy underlying the SICF retrieval algorithm presented in this paper.
In the entire visible region, however, the normalized remote sensing reflectance with-
out SICF contribution (Rrsn_gcp(A)) deviates from the ideal similarity index shape due
to the non-negligible absorption and scattering of the different OACs. If a comprehensive
simulation of the variability of OACs and illumination and surface conditions is performed
in water bodies, the deviations of Rrs_gjcp(A) within the SICF region could be empiri-
cally estimated from a database of Rrs(A) outside that region. This is the second concept

underlying the algorithm strategy presented here.

3. Materials and Methods

To build the simulated databases, the radiative transfer model (RTM) HydroLight
(HL) [32] was used. HL is an RTM that computes radiance distributions and derived
quantities (irradiances, reflectances, fluorescence, etc.) for water bodies. The spectral
radiance distribution is computed as a function of depth, direction, and wavelength within
the water. The upwelling radiance just above the sea surface includes both the water-
leaving radiance (Ly(A)) and that part of the incident direct and diffuse sky radiance
that is reflected upward by the wind-blown sea surface [32]. HL employs mathematically
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sophisticated invariant embedding techniques to solve the radiative transfer equation [32].
It includes the effects of SICF assuming that Chla always fluoresces in the band centered
at 685 nm, regardless of whether it is excited by light at near ultraviolet, blue, green, or
even red wavelengths [32]. To calculate the amount of emitted SICF, HL uses the computed
scalar irradiance, the absorption by Chla, and various assumptions about the fluorescence
efficiency and the wavelength redistribution function approximated by a Gaussian, with
685 nm the mean wavelength and 10.6 nm the standard deviation of the Gaussian, which
corresponds to a value of 25 nm for the FWHM of the emission band [32,35].

3.1. Training Database of Remote Sensing Reflectance and Normalized Remote Sensing Reflectance
without SICF Contribution (Rrs_gicp, Rrsn_gicr)

To train the retrieval algorithm for true reflectance, which is the base for the SICF
retrieval described in this paper, a large database of “true” remote sensing reflectances
was constructed with HL. This database consisted of 7200 simulations of Rrs_gjcp with 1
nm of spectral sampling, obtained from all combinations of the input variables given in
Table 1, comprising high variability in water components (Chla and CDOM), as well as
including the variability of the scattering coefficient due to the particles” shapes and sizes
(by varying the parameters Ep (Ap) and m in Equation (11) [35]) and illumination conditions
(solar zenith angle (SZA)).

The backscattered fraction with respect to total scattering from particles (Ep(/\)) is
defined as follows [35]:

B = 500 (%) )

where Ag = 550 nm, and Ep (Ao) and m are values supplied by the user. Accordingly, HL
generates a Fournier-Forand phase function using Ep (A) [39]. Hereby, the simulated phase
functions are a combination of “small” and “large” particle phase functions, depending on
the pr (Ag) and m values.

This database is intended to be a representation of the typical spectral behavior of
Rrs_gicr in coastal and oceanic waters. Due to the effect of high scattering by NAP over
the SICF signal [23,40], NAP was not included in this simulation.

Table 1. Variation of optically active constituent (OAC) parameters used in HL to simulate the 7200
spectra of Rrs_gjcr. The range of values for each parameter was taken according to values known in
the literature (see column Reference).

Parameter Units Value Reference
acpom (Ao) m~! 0.00, 0.01, 0.20, 0.50, 2.00, 5.00 [41]
0.01, 0.02, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00
. -3 ’ 7 ’ ’ ’ 7 7 7
[Chla] mgm 1.50, 2.00, 5.0, 10.00, 15.00, 20.00, 30.00 [41]
m - 0,05,1,1.5 [42,43]
by(Ao) - 0.0001, 0.001, 0.01, 0.1,0.4 [39]
SZA degrees 0, 30, 50, 70 -

The simulated database spectra are shown in Figure 2 (left) together with the calculated
Rrsn_gicr for each simulation Figure 2 (right). A high variability of Rrsn_gjcr between
640-720 nm and a very low variability for wavelengths higher than 720 nm is observed, in
accordance with the similarity index concept.
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Figure 2. The 7200 remote sensing reflectance without SICF contribution, Rrsn_gjcr (left), and remote sensing reflectance
without SICF contribution normalized at 780 nm, Rrsn_gicr (right), simulated spectra using the settings described in
Table 1. It is noted that the spectral variability is very low in the NIR spectral range (>720 nm).

3.2. Validation Database of Remote Sensing Reflectance and Normalized Remote Sensing
Reflectance with and without SICF Contribution (Rrs, Rrsn, Rrs_gicp, Rrsn_gicr)

To validate the SICF retrieval algorithm, a database of 400 random spectra was simulated,
here called the validation database (VDB). The VDB was simulated with the HL chlorophyll
fluorescence option enabled (considered here as “observed data”) to simulate water-leaving
remote sensing reflectance (Rrs) and disabled (considered here as “reference data”) to simulate
water-leaving remote sensing reflectance without SICF contribution (Rrs_gjcr) data. The VDB
includes the simulation of NAP according to the values in Table 2.

Table 2. Variation of parameters to simulate the validation database (VDB).

Parameter Units Range of Values/Classes Reference
acpom(Ao) m! 0.001-9.75 [41]
[Chla] mg-m~3 0.009-30 [41]
[NAP] gm™3 0-13.5 [23,40]
Brown earth, yellow clay, calcareous
Type of NAP . sand, red Zlay, mixe(}:ll Bukata [44,45]
avgpart, isotrop, Case Small, Case
Discrete phase _ Large, Petzold clear, coastal and [32,47 48]
function harbor, FFbb001 to FFbb500 (for 0.01% e
to 50% backscatter fraction)
$SICF 0.001-0.02 [25,46]
SZA degrees 1-79

Unlike the training database, the b (M) modeling for the simulation of the VDB by
HL has been performed by selecting a discretized phase function available in the HL
library. These discretized phase functions used by HL are the quad-averaged and Fourier-
decomposed phase functions computed as described in [32]. This b (A) modeling is made
for both Chla and NAP. Several mass-specific absorption spectra for mineral particles are
included in the HL library and are available for brown earth, calcareous sand, yellow
clay, red clay [44], and Bukata mix [45]. The variability of SICF is simulated, variating the
fluorescence quantum yield (¢SICF) parameter in HL between 0.001 and 0.02 according
to [25,46]. The considered variable parameters in VDB are described in Table 2.
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In Figure 3, the variability of the SICF curve, obtained in the simulations of the VDB,
is shown.
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Figure 3. Obtained SICF from the simulated VDB.

3.3. Regression Methods

Machine learning regression algorithm (MLRA) methods were used to estimate
Rrsn_gicp(A). MLRA methods have become one of the key tools used in many appli-
cations, such as signal and image processing and computer science. They are based on
the concept that an algorithm can be trained to learn from data without being explicitly
programmed to perform specific tasks. MLRA methods have been used in many remote
sensing studies as powerful tools for the inversion of RTMs [49,50]. MLRA methods are
robust, and in most cases they are very fast to apply once trained and are able to manage
the nonlinear relationship between the output/input data. However, the large majority of
methods do not have multi-output capability, and superior accuracies are achieved when
MLRA methods are trained per variable, as then the algorithm is more optimized [51,52].

4. Algorithm Development

In this work, the retrieval of SICF was based on the modeling of Rrsn_gjcp(A) (normal-
ized remote-sensing reflectance without SICF contribution), which is key in the modeling of
the major unknown Rrs_grcp(A), to resolve the SICF contribution from the water-leaving
radiance according the following steps:

Lo(A) = Rrs(A)E4(A) (12)
Ly-sicr(A) = Rrs_sicr(A)Eq(M) (13)
SICF(A) = La(A) = Ly_sicr(A) (14)

Assuming that after atmospheric correction of remotely sensed images (or from in situ
measurements), Rrs(A) and E;(A) can be obtained with an acceptable error, the remaining
variable to be retrieved is Rrs_gjcp(A), and this is the objective of the algorithm described
in this paper.

The normalization of Rrs at 780 nm (Rrsn(A)) in the NIR region reduces the spectral
variability in the red-NIR spectral range and thus facilitates finding a better mathemat-
ical adjustment for the estimation of Rrsn_gcp(A), the major unknown. The proposed
methodology to find such adjustment consists of the following steps: (1) analyzing nor-
malized remote-sensing reflectance at 780 nm without SICF contribution (Rrsn_gjcp(A))
behavior based on the representative database of Rrs_gjcr(A), simulated in Section 3.1;
(2) obtaining an algorithm from the analysis done in the previous step, allowing the es-
timation of Rrsn_gjcp(A) within the SICF spectral range from Rrsn(A), assuming that
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Rrsn_gjcp(A) within the SICF spectral range is unknown, and Rrsn(A) and Rrsn_gjcp(A)
are equal outside of the SICF range; (3) training different MLRA methods to estimate
Rrsn_gjcp(A) using the large database simulated in step 1; and (4) using the simulated
random database containing Rrsn_gjcp(A) and Rrsn(A) described in Section 3.2 to validate
the obtained algorithm.

Estimation of Normalized Remote-Sensing Reflectance without SICF Contribution
(Rrsn_gicp(A)) from Normalized Remote-Sensing Reflectance (Rrsn)

It is assumed that Rrsn(A) and Rrsn_gjcp(A) have the same spectral shape in the outer
ranges 640-650 nm and 720-750 nm due to the fact that these ranges are, respectively, not or
minimally affected by the SICF contribution (Figure 3). Hence, the estimation of Rrsn_gjcr(A)
from Rrsn is based on this assumption of shape stability in the outer SICF regions [32]. The
ranges outside of the SICF signal (from 640 to 650 nm and from 720 to 750 nm) are called
“outside range 1” and “outside range 2”, respectively, and the range inside the SICF signal
(from 661 to 710 nm) is hereafter called the “inside range”. The “outside range 2” was defined
to 750 nm to avoid the O,-A absorption band (760 nm) (Figure 4).

Outside SICF range
Inside SICF range

Rrsn
e Rrsn SICF simulated
Rrsn estimated

-SICF
0 Estimated anchor points
¢  Adjustment points into outside ranges

1 1 1 L

0
640

660

680 700 720 740
Wavelength [nm|

Figure 4. Graphic explanation of the Rrsn_gjcrp(A) retrieval concept. The green spectrum corresponds to the “observed

data” (from a radiometer or remote sensor) Rrsn(A). The black diamonds indicate the three anchor points estimated by

using MLRA methods. The blue spectrum is the Rrsn_gjcp(A) “reference spectra” from the simulated training database

and the orange spectrum is the Rrsn_gjcp(A) “estimated spectra” calculating the cubic spline fitting using the bands in
the “outside ranges” (green diamonds) and the three anchor points. It is observed that Rrsn_g;cp(A) has a “shoulder”
produced by the absorption/scattering effects from OACs.

Estimation of Rrsn_gjcp(A) from Rrsn(A) was performed using MLRA methods
taking all the bands in the “outside ranges” as inputs to calculate the reflectance in the
inside region. Due to the multi-output limitations in the MLRA methods, only three anchor
points located within the “inside range” were defined for the estimation. These three
“inside range” anchor points of Rrsn_gjcr(A) were chosen evenly spaced within the SICF
emission region at 670, 685, and 700 nm (Figure 4).

Once these anchor points were estimated, the Rrsn_gjcp(A) spectra in the range
between 640 and 750 nm were re-constructed by a cubic spline fitting using the outside
ranges, as shown in the Figure 4.

Once Rrsn_gicp(A) was estimated, Rrs_gicp(A) was obtained by multiplying
R?’SI’Z,SICF (/\) by Rrs ()\780) .

Four MLRA methods were used to train the estimation of the three anchor points:
kernel ridge regression (KRR) [53,54], Gaussian process regression (GPR) [55], support
vector regression (SVR) [56], and neural networks (NNs) [54,57].
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The steps followed to obtain SICF from Rrsn_gjcp(A) are summarized in Figure 5.

1. Designing 2. Train the 3. Retrieve
- De ! . Rrsn_ y N 4. Calculate 4. Calculate
and sm.luh'mng Rrsn_SIcr(/loutsiqe range) by agjlgsrt(mg:‘;;ﬂlge) Rrs_gjcp(2) from SICF by
__avey database by using function by using the Rrsn_sicp(2): using the
representative Machine Learning, to . I 3 _ ti
database of estimate the three SRIEE ERRGEatrip iRe Rrs_sicr(4) = 210 14,
Rrsn_gicr(4) anchor points three cytimated anchor Rrsn_gicp(4)Rrs(A7g0) 125

points

Figure 5. Scheme summarizing the methodology followed in the development of the SICF retrieval algorithm.

5. Results and Discussion
5.1. Fitting of Normalized Remote-Sensing Reflectance without SICF Contribution
(Rrsn_gicr(A))

The performance of the cubic spline fitting method was assessed for the 7200 Rrsn_grcp(A)
spectra of the calibration database in the spectral range between 640 and 750 nm. Each of
the Rrsn_gjcp(A) spectra was fitted using a cubic spline function, and then this fitting was
compared to the simulated Rrsn_gjcp(A) for all the bands in the spectral range between
640 and 750 nm. The results are shown in Figure 6.

20 20 p
(a) (b)
» Rrsn_SI CF(’\) »
5 Spline adjustment 15
of Rrsn_SI CF()\)

(9]
T

R2=1.00
RMSE=0.0023

Spline adjustment of Rrsn_SI CF()\)
S S

5 10 15 20

o

640 660 680 700 720 740
Wavelength [nm] Rrsn

-SICF()‘)

Figure 6. (a) Three examples from the database of 7200 spectra showing the comparison of normalized remote-sensing
reflectance without SICF contribution (Rrsn_gjcp(A)) spectra (blue) with its corresponding spline adjustment (black). (b)
Normalized remote-sensing reflectance without SICF contribution (Rrsn_gjcp(A)) vs. adjusted normalized remote-sensing
reflectance without SICF contribution in the spectral range between 640 and 750 nm for all the wavelengths in this range.

It could be observed that despite the high variability, the true normalized remote
sensing reflectance spectra of the database in the mentioned range could be modelled by
using a cubic spline fitting (Figure 6b). This confirmed the cubic spline fitting method
based on the MLRA-derived anchor points as adequate for the purposes of the algorithm.

5.2. Validation of the Normalized Remote-Sensing Reflectance without SICF Contribution
(Rrsn_gicp(A)) Estimation

The “observed data” from the VDB was used as input to test the performance of
different MLRA methods. Once the three anchor points into the “inside range” were
estimated by each MLRA method, the cubic spline fitting was performed to estimate the
Rrsn_gjcp(A). Next, the estimated Rrsn_gjcp(A) was compared with the “reference data”
from VDB to evaluate each MLRA method.
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KRR

The relative error ((reference value-estimated value)/reference value) for the estimated
Rrsn_gicp(A) in the “inside range” (661-710 nm) was calculated for each band in the
“inside range” for all the 400 spectra from the VDB (Figure 7). All four MLRA methods
showed similar performance, resulting in maximum errors near to 0.1, with RMSE values
lower than 0.1 and RRMSE values close to 0.02 (Table 3), except GPR with errors up to 0.8
in some samples and with an RRMSE value of 0.05. However, SVR showed a more accurate
retrieval, with 0% of samples with errors >0.8 (Figure 8).

GPR

661

710
100

200
SVR

>0.1 661 >0.1

R nuqmlu

0 710 0

300 100

>0.1

661

710

100

200

661

‘;w 1hw|ll4iluﬂ,|t |,-~ ™

710

300 400 100 200

300

400

Figure 7. Relative error between the “reference data” from VDB and the retrieved Rrsn_gjcp(A) in the spectral range
between 661 and 710 nm for each MLRA trained. The X-axis is the number of validated spectra (1 to 400) and the Y-axis are
the wavelengths of the estimated bands. The scale color represents the relative error values, the blue being the lower errors,

and the red being the higher errors.

Table 3. Summary of statistical results and training/testing time of validation of each MLRA trained
to estimate Rrsn_gjcp(A).

MLRA R2 RMSE RRMSE Training Time (s) Testing Time (s)
KRR 0.99 0.10 0.02 19,241 0.004
GPR 0.97 0.20 0.05 61,732 0.002
SVR 0.99 0.09 0.02 519,335 0.014
NN 0.99 0.10 0.02 73,891 0.003

5.3. Validation of Sun Induced Chlorophyll Fluorescence (SICF) Estimation

Once Rrs_gjcp(A) was estimated, SICF was calculated according to Equations (12)-
(14). The relative error between the reference and retrieved SICF peak (SICF at 685 nm)
from the VDB was calculated. A relative error of less than 2% was obtained for the four
MLRA methods in more than 70% of the samples. SVR showed the least number of samples
with errors >0.8 (0.5%) (Figure 9).

The scatterplots in Figure 10 show that all MLRA methods performed a good estima-
tion of SICF peak (at 685 nm), except the GPR, with an R? = 0.14 and an RRMSE greater
than 5. The best estimation was performed by using SVR, obtaining an R? = 0.98 and an
RRMSE lower than 0.25.
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Figure 8. Histograms of the relative errors for all bands in the spectral range between 661 and 710 nm
between the spectra of the “reference data” from VDB and the retrieved Rrsn_gjcp(A) for each MLRA

trained. The X-axis is the relative error and the Y-axis are the number of counts.

KRR GPR
300 | 72% < 0.02 300 86% < 0.02
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Figure 9. Histograms of the relative errors between the “reference data” from VDB and the estimated
SICF peak (at 685 nm), with each MLRA retrieval method used to estimate the intermediate py,;. The
X-axis is the relative error and the Y-axis is the number of counts.
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and the blue zones lower. The dashed line corresponds to the limit of 20% of error.

5.4. Comparison of the Proposed Sun Induced Chlorophyll Fluorescence (SICF) Retrieval Method
with the Fluorescence Line Height (FLH) Method

To compare SICF obtained by using the algorithm here proposed, from a high spectral
resolution reflectance, with the SICF that would be obtained from the ocean and land color
instrument (OLCI) by using the FLH method, the spectra of the VDB were convolved to
the instrument spectral response function (ISRF) of OLCI, followed by the application
of the FLH method and comparison with our algorithm. To illustrate the effect of the
reflectance shoulder (or peak) beneath the SICF emission peak, the FLH for OLCI was not
only calculated from Rrs(A), as in its normal operation (red line in Figure 11), but also
from the simulated Rrs_gjcp(A), without fluorescence (blue line in Figure 11). Two issues
are evident from the spectra shown in Figure 11: (1) the FLH from OLCI underestimated
the actual SICF emission, and (2) part of the retrieved OLCI FLH did not correspond to
fluorescence, but to “residual” reflectance above the baseline. Both effects can lead to
misinterpretations of the meaning of the FLH.
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Figure 11. Left: SICF retrieved from the simulated validation data, using Equation (14) (green line), SICF retrieved from
simulated validation data convolved to the OLCI ISRF (red line), and SICF retrieved from simulated validation data
“without SICF” convolved to the OLCI ISRF (blue line). Right: Rrs spectrum of SICF in left figure (green line). Rrs_gjcr

spectrum of false SICF in left figure (blue line).

To compare our results on SICF estimation with the original FLH method, the VDB
was convolved to the OLCI ISRF, to which the FLH method was applied.

Similar to our previous analyses, the relative error of the SICF peak between this
retrieval and the “reference” integrated SICF was calculated (Figure 12), showing that the
FLH method was only able to obtain 9% of cases with a less than 10% relative error, while
the majority of the cases showed a relative error higher than 40%.

Relative error of SICF peak estimated
by using the FLH method from OLCI data

120 1

100 9%<0.1

80r 59%>04

60 -

No of counts

40

20 1

-

0 0.2 0.4 0.6 0.8 >1
Relative Error

Figure 12. Histogram of the relative errors between the “reference” SICF peak and the estimated
SICF peak by using FLH method over convolved data to OLCI ISRF. The X-axis is the relative error,

and the Y-axis is the number of counts.

The SICF peak is a distinct feature in water-leaving remote sensing reflectance, which
adds to the “background” reflectance in the 660-750 nm region. In clear ocean waters,
that background is roughly linear with a negative slope towards the infrared, and this is
the basis of the baseline approach commonly used for fluorescence retrieval. However, in
productive coastal waters, the combined effects of particle scattering and phytoplankton
and water absorption creates a reflectance shoulder or even a peak in the 670-720 nm
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region, invalidating the baseline approach based on two wavelengths outside the SICF
emission peak.

This effect was thoroughly described in [22,23] and affects FLH use as a proxy for the
actual SICF emission. In the most extreme cases (very high [Chla]) the peak is entirely
dependent on backscattering, due to the strong Chla reabsorption of the fluorescence
emission. The only way to estimate the actual SICF curve is to decouple the emission
from the background reflectance. Since both signals are combined in actual measurements,
it is necessary to estimate somehow the background. The unavailability of SICF in-situ
data, limits the validation of the algorithm. Measurements of [Chla] or in-situ fluorescence
(measured using artificial light sources) as proxies of SICF could be used to validate it;
however, it should be taken into account that the use of this data is not free of biases and
errors. The relationship of SICF and [Chla] is not linear, and for the high [Chla] found
in productive waters, the contribution of particulate scattering to the fluorescence peak
invalids the use of a baseline approximation in the fluorescence peak for SICF retrieval.

6. Conclusions

The development and testing of a new method for the retrieval of SICF of coastal
and ocean waters is presented in this work. The algorithm first performs a normalization
of the observed apparent (Rrs) reflectance at 780 nm (following the similarity index ap-
proximation), followed by the fitting of the normalized reflectance without fluorescence
contribution. This proposed fitting is based on the estimation of three reflectance an-
chor points within the SICF emission range, by using MLRAs methods and adjusting the
normalized true reflectance spectra with a cubic spline fitting.

A training database composed of 7200 Rrsn_gjcp(A) spectra designed to typify the
high spectral variability in coastal and ocean waters affected by a wide range of Chla
contents and CDOM was used to test the algorithm. The validation database was simulated
for these typical ranges too, while using different forward formulations and adding non-
algal particles (NAP) to reduce consistency with the calibration database. The approach of
estimating the shape of the true reflectance or Rrs_gjcp(A) from the Rrsn_gicp(A) shape,
obtained from the anchor point fitting inside the SICF emission range of Rrsn(A), allows the
SICF signal to be discriminated from the “shoulder” produced by the absorption/scattering
of the OAC in water. All four tested MLRA methods showed similar results for the retrieval
of Rrsn_gjcp(A), but the GPR method showed relative errors > 0.8 in a small part of the
samples, while lower error values were obtained by using SVR.

The final SICF validation using a validation database with simulated SICF resulted
in relative errors close to 2% in the estimation of Rrsn_gjcp(A) and relative errors lower
than 2% in more than 70% of the samples in the SICF peak retrieval. When applied to
simulated OLCI bands, the proposed SICF retrieval method significantly improved the
regular method to retrieve detectable SICF based on the FLH algorithm, as the latter
resulted in relative errors higher than 40% in 59% of the samples.

The newly proposed method can be applied for future satellite missions such as
FLEX [27] and CHIME [28], which will provide a more detailed spectral shape of water-
leaving radiance. A higher accuracy in SICF retrievals from these sensors will provide
better insights into the functioning and productivity of ocean and coastal phytoplankton.

Author Contributions: C.T. and A R.-V. designed the methodology of this work. C.T. performed the
simulations. C.T., A.R.-V,, and S.V.W. analyzed the data and wrote the paper. J.D. and J.M. supervised
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC were funded by the European Union—ERDF and the Ministry of
Science and Innovation and the State Research Agency of Spain under project RTI2018-098651-B-C51
(FLEXL3L4—Advanced Products L3 and L4 for the FLEX-S3 mission).

Acknowledgments: This work has been supported by the European Union-ERDF and the Ministry of
Science and Innovation and the State Research Agency of Spain under project RTI2018-098651-B-C51
(FLEXL3L4-Advanced Products L3 and L4 for the FLEX-S3 mission).



Remote Sens. 2021, 13, 329 16 of 18

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyzes, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Behrenfeld, M.].; Westberry, T.K.; Boss, E.S.; O'Malley, R.T; Siegel, D.A.; Wiggert, ].D.; Franz, B.A.; McClain, C.R.; Feldman, G.C;
Doney, S.C.; et al. Satellite-Detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton. Biogeosciences 2009,
6,779-794. [CrossRef]

Joseph, A. Chapter 10—Magic With Colors Sea Surface Changes. In Investigating Seafloors and Oceans; Joseph, A., Ed.; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 555-574; ISBN 978-0-12-809357-3.

Ling, Z.; Sun, D.; Wang, S.; Qiu, Z.; Huan, Y.; Mao, Z.; He, Y. Retrievals of Phytoplankton Community Structures from in Situ
Fluorescence Measurements by HS-6P. Opt. Express 2018, 26, 30556-30575. [CrossRef]

Huot, Y.; Babin, M. Overview of Fluorescence Protocols: Theory, Basic Concepts, and Practice. In Chlorophyll a Fluorescence in
Aquatic Sciences: Methods and Applications; Suggett, ].D., Prasil, O., Borowitzka, A.M., Eds.; Springer: Dordrecht, The Netherlands,
2010; pp. 31-74; ISBN 978-90-481-9268-7.

Gower, J.ER.; Doerffer, R.; Borstad, G.A. Interpretation of the 685 Nm Peak in Water-Leaving Radiance Spectra in Terms of
Fluorescence, Absorption and Scattering, and Its Observation by MERIS. Int. |. Remote Sens. 1999, 20, 1771-1786. [CrossRef]
Maritorena, S.; Morel, A.; Gentili, B. Determination of the Fluorescence Quantum Yield by Oceanic Phytoplankton in Their
Natural Habitat. Appl. Opt. 2000, 39, 6725-6737. [CrossRef] [PubMed]

Laney, S.R. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications; Suggett, ].D., Prasil, O., Borowitzka, A.M., Eds.;
Springer: Dordrecht, The Netherlands, 2010; pp. 19-30; ISBN 978-90-481-9268-7.

Westberry, T.K.; Behrenfeld, M.].; Milligan, A.J.; Doney, S.C. Retrospective Satellite Ocean Color Analysis of Purposeful and
Natural Ocean Iron Fertilization. Deep Sea Res. Part Oceanogr. Res. Pap. 2013, 73, 1-16. [CrossRef]

Escoffier, N.; Bernard, C.; Hamlaoui, S.; Groleau, A.; Catherine, A. Quantifying Phytoplankton Communities Using Spectral
Fluorescence: The Effects of Species Composition and Physiological State. J. Plankton Res. 2014. [CrossRef]

Huot, Y,; Brown, C.A,; Cullen, J.J. New Algorithms for MODIS Sun-Induced Chlorophyll Fluorescence and a Comparison with
Present Data Products. Limnol. Oceanogr. Methods 2005, 3, 108-130. [CrossRef]

Huot, Y.; Brown, C.A,; Cullen, J.J. Retrieval of Phytoplankton Biomass from Simultaneous Inversion of Reflectance, the Diffuse
Attenuation Coefficient, and Sun-Induced Fluorescence in Coastal Waters. . Geophys. Res. Oceans 2007, 112, C06013. [CrossRef]
Huot, Y.; Babin, M.; Bruyant, E; Grob, C.; Twardowski, M.S.; Claustre, H. Relationship between Photosynthetic Parameters and
Different Proxies of Phytoplankton Biomass in the Subtropical Ocean. Biogeosciences 2007, 4, 853-868. [CrossRef]

Abbott, M.R.; Letelier, R.M. Algorithm Theoretical Basis Document Chlorophyll Fluorescence (MODIS Product Number 20); NASA:
Corvallis, OR, USA, 1999.

Kolber, Z.; Falkowski, P.G. Use of Active Fluorescence to Estimate Phytoplankton Photosynthesis in Situ. Limnol. Oceanogr. 1993,
38, 1646-1665. [CrossRef]

Lin, H.; Kuzminov, E1; Park, J.; Lee, S.; Falkowski, P.G.; Gorbunov, M.Y. The Fate of Photons Absorbed by Phytoplankton in the
Global Ocean. Science 2016, 351, 264-267. [CrossRef] [PubMed]

Neville, R.A.; Gower, ].ER. Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence. J. Geophys. Res. 1977,
82, 3487-3493. [CrossRef]

Babin, M.; Morel, A.; Gentili, B. Remote Sensing of Sea Surface Sun-Induced Chlorophyll Fluorescence: Consequences of
Natural Variations in the Optical Characteristics of Phytoplankton and the Quantum Yield of Chlorophyll a Fluorescence. Int. |.
Remote Sens. 1996, 17, 2417-2448. [CrossRef]

Gower, ].LER,; Borstad, G.A. On the Potential of MODIS and MERIS for Imaging Chlorophyll Fluorescence from Space. Int. J.
Remote Sens. 2004, 25, 1459-1464. [CrossRef]

Letelier, R.M.; Abbott, M.R. An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrom-
eter (MODIS). Remote Sens. Environ. 1996, 58, 215-223. [CrossRef]

Zhao, D.; Xing, X.; Liu, Y,; Yang, J.; Wang, L. The Relation of Chlorophyll-a Concentration with the Reflectance Peak near 700
Nm in Algae-Dominated Waters and Sensitivity of Fluorescence Algorithms for Detecting Algal Bloom. Int. ]. Remote Sens. 2010,
31, 39-48. [CrossRef]

Gower, J. ER.; Brown, L.; Borstad, G.A. Observation of Chlorophyll Fluorescence in West Coast Waters of Canada Using the
MODIS Satellite Sensor. Can. J. Remote Sens. 2004, 30, 17-25. [CrossRef]

Gilerson, A.; Zhou, ]J.; Oo, M.; Chowdhary, J.; Gross, B.M.; Moshary, E.; Ahmed, S. Retrieval of Chlorophyll Fluorescence from
Reflectance Spectra through Polarization Discrimination: Modeling and Experiments. Appl. Opt. 2006, 45, 5568-5581. [CrossRef]
Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Schalles, J.; Gross, B.; Moshary, F.; Ahmed, S. Fluorescence Component in the
Reflectance Spectra from Coastal Waters. Dependence on Water Composition. Opt. Express 2007, 15, 15702-15721. [CrossRef]
Gitelson, A.A.; Schalles, ].F.; Hladik, C.M. Remote Chlorophyll-a Retrieval in Turbid, Productive Estuaries: Chesapeake Bay Case
Study. Remote Sens. Environ. 2007, 109, 464-472. [CrossRef]


http://doi.org/10.5194/bg-6-779-2009
http://doi.org/10.1364/OE.26.030556
http://doi.org/10.1080/014311699212470
http://doi.org/10.1364/AO.39.006725
http://www.ncbi.nlm.nih.gov/pubmed/18354686
http://doi.org/10.1016/j.dsr.2012.11.010
http://doi.org/10.1093/plankt/fbu085
http://doi.org/10.4319/lom.2005.3.108
http://doi.org/10.1029/2006JC003794
http://doi.org/10.5194/bg-4-853-2007
http://doi.org/10.4319/lo.1993.38.8.1646
http://doi.org/10.1126/science.aab2213
http://www.ncbi.nlm.nih.gov/pubmed/26743625
http://doi.org/10.1029/JC082i024p03487
http://doi.org/10.1080/01431169608948781
http://doi.org/10.1080/01431160310001592445
http://doi.org/10.1016/S0034-4257(96)00073-9
http://doi.org/10.1080/01431160902882512
http://doi.org/10.5589/m03-048
http://doi.org/10.1364/AO.45.005568
http://doi.org/10.1364/OE.15.015702
http://doi.org/10.1016/j.rse.2007.01.016

Remote Sens. 2021, 13, 329 17 of 18

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Zhou, J.; Gilerson, A.; Ioannou, I.; Hlaing, S.; Schalles, J.; Gross, B.; Moshary, F; Ahmed, S. Retrieving Quantum Yield of
Sun-Induced Chlorophyll Fluorescence near Surface from Hyperspectral in-Situ Measurement in Productive Water. Opt. Express
2008, 16, 17468-17483. [CrossRef] [PubMed]

Gilerson, A.A.; Huot, Y. Chapter 7—Bio-optical Modeling of Sun-Induced Chlorophyll-a Fluorescence. In Bio-Optical Modeling
and Remote Sensing of Inland Waters; Mishra, D.R., Ogashawara, 1., Gitelson, A.A., Eds.; Elsevier: Amsterdam, The Netherlands,
2017; pp. 189-231. ISBN 978-0-12-804644-9.

Drusch, M.; Moreno, J.; Bello, U.D.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G.;
et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1273-1284.
[CrossRef]

Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission For The Environment (CHIME). In Proceedings
of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22-27 July 2018;
pp. 157-159.

Ruddick, K.G.; De Cauwer, V.; Park, Y.-].; Moore, G. Seaborne Measurements of near Infrared Water-Leaving Reflectance:
The Similarity Spectrum for Turbid Waters. Limnol. Oceanogr. 2006, 51, 1167-1179. [CrossRef]

Pope, RM; Fry, E.S. Absorption Spectrum (380-700 Nm) of Pure Water. II. Integrating Cavity Measurements. Appl. Opt. 1997,
36, 8710-8723. [CrossRef] [PubMed]

Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible
Domainsl. Limnol. Oceanogr. 1981, 26, 43-53. [CrossRef]

Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994.

Morel, A. Optical Modeling of the Upper Ocean in Relation to Its Biogenous Matter Content (Case I Waters). J. Geophys. Res. Oceans
1988, 93, 10749-10768. [CrossRef]

Prieur, L.; Sathyendranath, S. An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption
Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials1. Limnol. Oceanogr. 1981,
26, 671-689. [CrossRef]

Mobley, C.D. HydroLight 4.0 Technical Documentation; Sequoia Scientific, Inc.: Mercer Island, WA, USA, 2008.

Boss, E.; Twardowski, M.S.; Herring, S. Shape of the Particulate Beam Attenuation Spectrum and Its Inversion to Obtainthe Shape
of the Particulate Size Distribution. Appl. Opt. 2001, 40, 4885-4893. [CrossRef]

Loisel, H.; Morel, A. Light Scattering and Chlorophyll Concentration in Case 1 Waters: A Reexamination. Limnol. Oceanogr. 1998,
43, 847-858. [CrossRef]

Doxaran, D.; Ruddick, K.; McKee, D.; Gentili, B.; Tailliez, D.; Chami, M.; Babin, M. Spectral Variations of Light Scattering by
Marine Particles in Coastal Waters, from the Visible to the near Infrared. Limnol. Oceanogr. 2009, 54, 1257-1271. [CrossRef]
Mobley, C.D.; Sundman, LK.; Boss, E. Phase Function Effects on Oceanic Light Fields. Appl. Opt. 2002, 41, 1035-1050.
[CrossRef] [PubMed]

McKee, D.; Cunningham, A.; Wright, D.; Hay, L. Potential Impacts of Nonalgal Materials on Water-Leaving Sun Induced
Chlorophyll Fluorescence Signals in Coastal Waters. Appl. Opt. 2007, 46, 7720-7729. [CrossRef] [PubMed]

Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011.

Doxaran, D.; Babin, M.; Leymarie, E. Near-Infrared Light Scattering by Particles in Coastal Waters. Opt. Express 2007,
15, 12834-12849. [CrossRef] [PubMed]

Sipelgas, L.; Raudsepp, U. Comparison of Hyperspectral Measurements of the Attenuation and Scattering Coefficients Spectra
with Modeling Results in the North-Eastern Baltic Sea. Estuar. Coast. Shelf Sci. 2015, 165, 1-9. [CrossRef]

Ahn, Y. Proprietes Optiques Des Particules Biologiques et Minerales. Ph.D. Thesis, Universite Pierre et Marie Curie, Paris, France,
1999.

Bukata, R.P; Jerome, ].H.; Kondratyev, A.S.; Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters;
CRC Press: Boca Raton, FL,, USA, 2018.

Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Gross, B.; Moshary, E.; Ahmed, S. Fluorescence Component in the Reflectance
Spectra from Coastal Waters. II. Performance of Retrieval Algorithms. Opt. Express 2008, 16, 2446-2460. [CrossRef]

Fournier, G.R.; Forand, J.L. Analytic Phase Function for Ocean Water. In Proceedings of the SPIE—The International Society for
Optical Engineering: Ocean Optics XII, Bergen, Norway, 26 October 1994; Volume 2258, pp. 194-201.

Morel, A.; Antoine, D.; Gentili, B. Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying
Particle Scattering Phase Function. Appl. Opt. 2002, 41, 6289-6306. [CrossRef]

Rivera-Caicedo, ].P.; Verrelst, J.; Mufioz-Mari, J.; Moreno, ].; Camps-Valls, G. Toward a Semiautomatic Machine Learning Retrieval
of Biophysical Parameters. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249-1259. [CrossRef]

Verrelst, J.; Mufioz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, ]. Machine Learning Regression Algorithms
for Biophysical Parameter Retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127-139. [CrossRef]
Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural Network Estimation of LAI, FAPAR, FCover and LAIxCab, from
Top of Canopy MERIS Reflectance Data: Principles and Validation. Remote Sens. Environ. 2006, 105, 313-325. [CrossRef]
Borchani, H.; Varando, G.; Bielza, C.; Larrafiaga, P. A Survey on Multi-Output Regression. Wiley Interdiscip. Rev. Data Min. Knowl.
Discov. 2015, 5, 216-233. [CrossRef]

Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.


http://doi.org/10.1364/OE.16.017468
http://www.ncbi.nlm.nih.gov/pubmed/18958029
http://doi.org/10.1109/TGRS.2016.2621820
http://doi.org/10.4319/lo.2006.51.2.1167
http://doi.org/10.1364/AO.36.008710
http://www.ncbi.nlm.nih.gov/pubmed/18264420
http://doi.org/10.4319/lo.1981.26.1.0043
http://doi.org/10.1029/JC093iC09p10749
http://doi.org/10.4319/lo.1981.26.4.0671
http://doi.org/10.1364/AO.40.004885
http://doi.org/10.4319/lo.1998.43.5.0847
http://doi.org/10.4319/lo.2009.54.4.1257
http://doi.org/10.1364/AO.41.001035
http://www.ncbi.nlm.nih.gov/pubmed/11900122
http://doi.org/10.1364/AO.46.007720
http://www.ncbi.nlm.nih.gov/pubmed/17973016
http://doi.org/10.1364/OE.15.012834
http://www.ncbi.nlm.nih.gov/pubmed/19550552
http://doi.org/10.1016/j.ecss.2015.08.008
http://doi.org/10.1364/OE.16.002446
http://doi.org/10.1364/AO.41.006289
http://doi.org/10.1109/JSTARS.2014.2298752
http://doi.org/10.1016/j.rse.2011.11.002
http://doi.org/10.1016/j.rse.2006.07.014
http://doi.org/10.1002/widm.1157

Remote Sens. 2021, 13, 329 18 of 18

54.

55.

56.

57.

Camps-Valls, G.; Munoz-Mari, J.; Gomez-Chova, L.; Guanter, L.; Calbet, X. Nonlinear Statistical Retrieval of Atmospheric Profiles
From MetOp-IASI and MTG-IRS Infrared Sounding Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1759-1769. [CrossRef]
Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006;
ISBN 0-262-18253-X.

Camps-Valls, G.; Bruzzone, L.; Rojo-Alvarez, J.L.; Melgani, F. Robust Support Vector Regression for Biophysical Variable
Estimation from Remotely Sensed Images. I[EEE Geosci. Remote Sens. Lett. 2006, 3, 339-343. [CrossRef]

Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.


http://doi.org/10.1109/TGRS.2011.2168963
http://doi.org/10.1109/LGRS.2006.871748

	Introduction 
	Background and Definitions 
	Absorption 
	Scattering 
	Similarity Index 

	Materials and Methods 
	Training Database of Remote Sensing Reflectance and Normalized Remote Sensing Reflectance without SICF Contribution (Rrs- SICF,Rrsn- SICF ) 
	Validation Database of Remote Sensing Reflectance and Normalized Remote Sensing Reflectance with and without SICF Contribution (Rrs,Rrsn,Rrs- SICF,Rrsn- SICF ) 
	Regression Methods 

	Algorithm Development 
	Results and Discussion 
	Fitting of Normalized Remote-Sensing Reflectance without SICF Contribution (Rrsn- SICF() ) 
	Validation of the Normalized Remote-Sensing Reflectance without SICF Contribution (Rrsn- SICF() ) Estimation 
	Validation of Sun Induced Chlorophyll Fluorescence (SICF) Estimation 
	Comparison of the Proposed Sun Induced Chlorophyll Fluorescence (SICF) Retrieval Method with the Fluorescence Line Height (FLH) Method 

	Conclusions 
	References

