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Lo que importa verdaderamente en la vida no son los objetivos que 
nos marcamos sino los caminos que seguimos para lograrlos. 

(Peter Bamm) 
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RESUMEN 

El concepto “sostenible” apareció en los años 70 con el objetivo de relacionar el 

desarrollo económico y la conservación de los ecosistemas. La palabra 

sostenibilidad se debe al informe Brundland realizado en 1987 en el marco de la 

Comisión de las Naciones Unidas para el Medio Ambiente. Este informe advirtió 

sobre las consecuencias ambientales negativas del desarrollo económico y la 

globalización, tratando de ofrecer soluciones a los problemas derivados del 

crecimiento demográfico y la industrialización. La sostenibilidad persigue 

garantizar el equilibrio entre crecimiento económico, cuidado del medio ambiente 

y bienestar social. 

Esta definición da lugar a la idea de desarrollo sostenible, progreso que no 

compromete los recursos futuros dándole un carácter multidisciplinar. La 

sostenibilidad asume que la naturaleza y el medio ambiente son fuentes agotables 

de recursos, siendo necesarios su protección y uso racional en todos los ámbitos. 

La calidad de vida de una sociedad depende en gran medida de su calidad 

ambiental y del bienestar económico. Se requiere por tanto un equilibrio entre 

tres elementos: medio ambiente, economía y sociedad, logrando el desarrollo en 

cada uno de ellos sin repercusiones negativas en los demás.  

Particularizando en la Química, el calificativo sostenible aporta un enfoque 

holístico, que establece políticas y objetivos medibles para un proceso continuo 

de mejora. En este contexto, la Química Verde aparece directamente relacionada 

con la Química Sostenible. 

 

“La Química Verde se define como la química que se centra en el diseño, 

obtención, fabricación y uso de productos químicos que tengan un potencial de 

contaminación reducido o nulo”. Nació a principios de la década de 1990 en 

Estados Unidos a través de la Agencia de Protección Ambiental como herramienta 

conceptual para la protección del medio ambiente y fue expresada en 12 

principios establecidos por Paul Anastas y John Warner en 1998. 

“La Química Sostenible no solo incluye los conceptos de Química Verde, también 

amplía la definición para considerar el proceso químico y también sus efectos, 

materiales,  energía y economía”. Un proceso químico sostenible es aquel que no 

produce impactos ambientales y residuos, aporta eficiencia en la reacción 
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considerada en su caso, utiliza cantidades mínimas de energía y es 

económicamente justificado en el marco del problema a resolver. 

La Química Analítica Sostenible une la Química Analítica Verde, cuyos 12 

principios definidos por Galuzca et al. se basan en los de la química verde, y los 

principios socio-económicos. La Química Analítica tiene un papel importante en el 

desarrollo de la sostenibilidad, a través del seguimiento de contaminantes en el 

medio ambiente y de procesos y a su vez disminuyendo el impacto 

medioambiental de sus propias metodologías. Reducir la cantidad de disolventes 

necesarios en la etapa de pretratamiento de la muestra, la cantidad y toxicidad de 

los disolventes y reactivos utilizados para la medición mediante su automatización 

y/o miniaturización y desarrollar metodologías analíticas alternativas que no 

requieran de disolventes ni reactivos son posibles medidas a adoptar. 

 

Por otra parte, existe una necesidad creciente de utilizar métodos para evaluar la 

sostenibilidad de un proceso o producto en general, con la finalidad de 

categorizar su impacto. En esta Tesis se ha propuesto la huella de carbono como 

medida directa de impacto ambiental de metodologías analíticas  y se ha utilizado 

la herramienta hexágono propuesta por nuestro grupo de investigación 

MINTOTA-UV para medir la sostenibilidad de procedimientos analíticos. Se  

contribuye a la Química Analítica Sostenible desde dos estrategias diferentes: 

1. Pretratamiento de la muestra en línea y miniaturización mediante 

el desarrollo de la técnica microextracción en tubo acoplada a 

cromatografía líquida capilar  (IT-SPME-CapLC). 

2. Desarrollo de dispositivos colorimétricos para análisis in situ. 

 

El pretratamiento de la muestra suele ser necesario para extraer, aislar y 

concentrar los analitos de interés. Este paso aumenta por tanto la selectividad y la 

sensibilidad. Sin embargo, implica un alto grado de manipulación de la muestra, 

que conduce a métodos no eficientes en términos de impacto ambiental y 

económico. La extracción en fase sólida (SPE) es una de las técnicas más 

utilizadas. Se basa en el uso de columnas empaquetadas con una fase sólida 

adsorbente capaz de retener los analitos cuando la muestra pasa a través de ella o 

está en contacto con la fase extactante.  
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Arthur y Pawliszyn en 1990 introdujeron la microextracción en fase sólida (SPME), 

como alternativa miniaturizada a la SPE. En 1997 Eisert y Pawliszyn propusieron la 

microextracción en fase sólida en tubo (IT-SPME). Esta técnica es de gran interés 

desde el punto de vista de la Química Analítica Sostenible ya que es automatizable 

y es fácil de acoplar a cromatografía liquida (LC). Además de facilitar y simplificar 

en gran medida la etapa de pretratamiento de la muestra, IT-SPME es una técnica 

respetuosa con el medio ambiente, ya que minimiza el uso de disolventes, reduce 

la generación de residuos y, finalmente, se puede acoplar en línea a LC.  

 

Los principales parámetros relacionados con la eficiencia de extracción en IT-

SPME son la fase extractiva, el caudal, el volumen de muestra procesada y la 

longitud de la columna capilar. Por tanto, deben tenerse en cuenta a la hora de 

diseñar el procedimiento IT-SPME. La selección de la fase de extracción es un 

parámetro clave ya que el éxito en la eficiencia de extracción depende de la 

interacción entre los analitos objetivo y la fase. 

 

La miniaturización de los sistemas de cromatografía líquida (LC) fue propuesta en 

1967 considerando la disminución del diámetro interno (i.d.) de la columna 

analítica. Su disminución conlleva un menor flujo de fase móvil, reduciendo el 

consumo de disolventes y por tanto la cantidad de residuos generados. Según 

Nazario et al. 2015, la disminución en el flujo de la fase móvil posibilita además 

nuevos mecanismos de interacción entre la fase móvil y los analitos, lo que 

conduce a una mayor selectividad. Por otro lado, la reducción del diámetro 

interno de la columna analítica también disminuye el volumen de muestra 

requerido. Los efectos señalados son factores positivos para la química analítica 

sostenible. 

 

Esta Tesis demuestra que un sistema miniaturizado como CapLC acoplado en línea 

a IT-SPME es una herramienta eficaz y versátil para el análisis de una gran 

variedad de analitos en diferentes matrices: ambientales, biológicas, alimentarias 

y forenses, entre otros.  

Otro de los retos que aborda la Tesis es el desarrollo de dispositivos que permitan 

realizar determinaciones in situ, es decir, en el lugar donde se encuentra el 

compuesto de interés y se produce el problema. Además de evitar el transporte 

de la muestra al laboratorio, que conlleva tiempo, costes y recursos, también se 
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minimiza el riesgo de contaminación o degradación de la muestra. Los dispositivos 

de análisis in-situ deben cumplir una serie de características, como portabilidad, 

bajo costo, simplicidad y rapidez, dichas características los hacen especialmente 

atractivos desde el punto de vista de la Química Analítica Sostenible.  

Los sensores químicos son dispositivos formados por un elemento de 

reconocimiento que está en contacto directo con un elemento de transducción, 

siendo capaces de proporcionar información química específica. Los sensores 

colorimétricos presentan ventajas ya que se basan en cambios de color y la 

lectura puede ser realizada de distintas formas: 

 En un laboratorio con un Instrumento óptico o in situ con un instrumento 

óptico portátil. 

 Mediante análisis de imágenes digitalizadas para medición in situ. 

 Por inspección visual para realizar mediciones in situ  (semi)cuantitativas. 

 

En esta Tesis se han desarrollado composites poliméricos de polidimetilsiloxano 

(PDMS), pudiendo contener tetraetilortosilicato (TEOS), nanopartículas de sílice 

(SiO2 NPs), líquidos iónicos (IL), y sensores sólidos plasmónicos soportados en 

nylon. Se han propuesto dispositivos basados en PDMS dopados con 1,2-

naftoquinona-4-sulfonato (NQS). El cambio de color se produce por reacción de 

sustitución nucleofílica entre los grupos amino y el grupo sulfonato del NQS. Otro 

caso estudiado es el atrapamiento del reactivo de Griess (sulfanilamida y N- (1-

naftil) etilendiamina) en el soporte polimérico PDMS. La derivatización se basa en 

la formación de compuestos azoicos entre el reactivo de Griess y nitrito. Se ha 

extendido su uso para la medida de nitrato proponiendo una dispersión de 

nanopartículas de zinc (ZnNPs) inmovilizada o no en nylon. También se ha 

propuesto un soporte PDMS dopado con reactivo colorimétrico azul solido BB 

(FB). El cambio de color se basa en la formación del complejo azo entre FB y 

alquilresorcinoles (AR). La respuesta de los sensores sólidos plasmónicos, 

concretamente las nanopartículas de plata (AgNPs) retenidas en nylon, se basa en 

la banda de resonancia de plasmón superficial que se modifica por la agregación 

de los AgNPs en presencia de compuestos sulfurados.  

 

Cabe destacar que en la actualidad existen varias aplicaciones gratuitas y 

disponibles que se pueden utilizar para el análisis de imágenes. Software como 

Adobe Photoshop, GNU, GIMP, ImageJ, entre otros, son capaces de convertir una 
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señal de color en diferentes parámetros numéricos. Existen varios modelos de 

descomposición de color (RGB, HSV, CMYK, CIELAB), que pueden posibilitar 

información analítica.  

RGB (Rojo, Verde, Azul): Los colores se crean a partir de la combinación de sus 

tres colores primarios (rojo, verde y azul), las intensidades pueden variar entre 0 y 

255. 

 

HSV (Matiz, Saturación, Valor): Es una combinación de tres valores: matiz, 
saturación y brillo. Por tanto, este modelo proporciona información sobre la 
cantidad y brillo del color. 
 
CMYK (Cyan, Magenta, Yellow y Key): es un modelo de color sustractivo, utilizado 
en la impresión en color. 
 
El espacio de color CIELAB, también conocido como L * a * b *, es un espacio de 
color definido por la Comisión Internacional de Iluminación (abreviado CIE) en 
1976. 
 
Estos modelos son herramientas para el análisis de imágenes. Sin embargo, la 

etapa de adquisición de la imagen juega un papel fundamental, ya que de ella 

dependen los resultados derivados de su posterior tratamiento. Uno de los 

parámetros que más puede influir en la calidad de la imagen obtenida es la 

iluminación, de acuerdo con Chaplan et al. (2014). 

 

Se han propuesto diferentes opciones para minimizar el impacto de la luz externa.  

En esta Tesis se emplearon el software GIMP y el modelo RGB para 

descomposición de color de las imágenes de los sensores realizadas con un 

teléfono móvil.   

El objetivo general de esta Tesis ha sido el desarrollo de metodologías analíticas 

sostenibles que resuelvan diferentes problemas en diferentes campos. Los objetos 

específicos han sido: 

1. Desarrollar herramientas analíticas para abordar la sostenibilidad y la 

química analítica mediante el uso de dos estrategias: 

 IT-SPME – Cap LC DAD  

 Dispositivos sólidos de análisis in situ  
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2. Evaluar el IT-SPME acoplado CapLC-DAD como una herramienta 

sostenible basada en la miniaturización del pretratamiento de muestra y 

del proceso cromatográfico. 

3. Desarrollar dispositivos dopados en diferentes soportes (PDMS, nylon) 

para realizar análisis in situ. 

4. Realizar pruebas de concepto de los procedimientos propuestos para 

varios analitos de interés (orgánicos e inorgánicos) en distintas matrices 

tales como ambientales, biológicas, alimentarias y forenses. 

Matrices ambientales 

Se ha abordado la determinación de herbicidas (irgarol-1051 y diuron) en 

aguas superficiales mediante técnicas IT-SPME-CapLC y, por otro lado, la de 

nitrato y nitrito en aguas ambientales mediante dispositivos in situ basados en 

PDMS como soporte sólido dopado con el reactivo Griess. 

 Para la determinación de irgarol -1051 y diuron en aguas superficiales, se 

optimizó la naturaleza de la fase sorbente, la longitud de la columna 

capilar y el volumen de muestra procesada.  Los límites de detección (LD) 

fueron 0.015 y 0.2 μg /L para irgarol-1051 y diuron utilizando detector de 

fila de diodos (DAD), por lo que se puede utilizar para evaluar el 

cumplimiento de la normativa europea. Se estimó la precisión de los 

tiempos de retención y los valores de RSD para diurón e irgarol-1051 

fueron de 0,3 y 0,5%. Esta estrategia no solo fue evaluada en términos de 

parámetros analíticos básicos, sino también en términos de impacto 

ambiental, comparándola con otras metodologías propuestas en la 

literatura sobre el tema. Para ello, se propuso y evaluó la huella de 

carbono. Los resultados indicaron que la metodología más sostenible para 

determinar  irgarol-1051 y diurón es el IT-SPME-CapLC-DAD. Por lo tanto, 

puede ser una metodología alternativa fácilmente aplicable y respetuosa 

con el medio ambiente para estimar los dos analitos en muestras de agua 

ambientales. Los resultados mostraron que  irgarol-1051 y diurón estaban 

por debajo de los LDs y, por lo tanto, las muestras de agua ensayadas 

cumplían con los estándares de calidad europeos establecidos. 

 

 Para determinar nitrito o nitrato en muestras de agua, se ha desarrollado 

una membrana de PDMS modificado con liquido iónico (IL) y dopada con 

el reactivo de Griess La determinación de nitrito y nitrato en muestras de 
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agua se realizó mediante análisis in situ. Se estudió la influencia de 

algunos compuestos dopantes, sobre las propiedades de las membranas 

de PDMS, como el TEOS, y/o líquidos iónicos. El IL hexafluorofosfato de 1-

metil-3-octilimidazolio (OMIM-PF6) proporcionó los mejores resultados.  

En esta membrana el reactivo de Griess es más estable que en disolución 

y se libera a la disolución para llevar a cabo la reacción de derivatización. 

Para aplicar el procedimiento al nitrato se propuso una dispersión de 

nanopartículas de Zn (ZnNPs) en una mezcla de tensioactivos (SDS/CTAB). 

Se estudió la adición de ZnNP y se comparó con la de polvo de Zn. 

También se estudió la capacidad de reducción de ZnNPs utilizando dos 

enfoques: (i) en disolución y (ii) inmovilización de ZnNPs en membranas 

de nylon. Finalmente, las respuestas analíticas se obtuvieron midiendo la 

absorbancia o utilizando los componentes RGB de imágenes digitales. Los 

resultados indicaron una buena precisión (RSD <8%) y una estabilidad 

satisfactoria. El límite de detección alcanzado fue de 0.01 y 0.5 mg/L para 

nitrito y nitrato. La aplicación práctica se demostró mediante el análisis de 

diferentes aguas ambientales. Los resultados obtenidos fueron 

satisfactorios y estadísticamente comparables con los obtenidos mediante 

electrodo selectivo de nitrato o espectroscopía UV-Vis. Por lo tanto, se 

puede decir que este estudio ofrece una nueva metodología sostenible 

para la determinación in situ de nitrito y nitrato en matrices de agua. 

 

Matrices biológicas 

Se han estudiado cuatro casos de potencial uso. Determinación de 

antibióticos como meropenem en tubos endotraqueales mediante IT-SPME-

CapLC, sulfuros en cardiomiocitos y en aire exhalado mediante sensor 

plasmónico sólido basado en la inmovilización de AgNPs sobre membrana de 

nylon. Finalmente, se ha propuesto un dispositivo dopado de PDMS y también 

IT-SPME-CapLC para la determinación de alquilresorcinoles (AR) en muestras 

de orina. 

 Cuantificar la concentración de antibiótico en dispositivos médicos 

invasivos puede dar información sobre su capacidad de penetrar en el 

biofilm que se genera y, por tanto, sobre la eficacia ofrecida en el 

tratamiento de la infección. Con ese objetivo se ha propuesto IT-SPME 
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acoplado en línea a CapLC-DAD para determinar la concentración de 

meropenem en tubos endotraqueales de pacientes en unidad de 

cuidados intensivos que fueron tratados con este antibiótico. Se 

estudió la extracción de meropenem de los ETT. Se ensayó la 

extracción directa, extracción asistida por agitación y extracción por 

ultrasonido. Los resultados indicaron resultados de recuperación 

similares y, por lo tanto, se eligió la extracción directa. La aplicación 

del procedimiento propuesto ha dado lugar a límites de detección 

muy bajos (3ng/mL) y precisión satisfactoria (RSD <4%). Se encontró 

meropenem en concentraciones del orden de ng/mL en los tubos ETT. 

La validación del procedimiento se llevó a cabo mediante un estudio 

de recuperación. Los valores de recuperación mostraron resultados 

satisfactorios (94-103%). El nuevo enfoque propuesto en este trabajo 

ha demostrado ser una alternativa no solo por la sensibilidad y 

precisión, sino también por la sencillez, la rentabilidad, minimización 

del uso de reactivos y disolventes y el tiempo de análisis, 

contribuyendo por tanto a la química analítica sostenible. 

 

 La determinación de compuestos de sulfuro volátiles (VSC) en el 

aliento humano se determinó mediante el uso de un sensor 

plasmónico de AgNPs. El mecanismo de retención y agregación de 

AgNPs se ha confirmado mediante espectroscopía UV-vis, TEM, SEM y 

espectroscopia Raman. Además, se demostró la agregación de AgNPs 

debido a la presencia de sulfuro a partir del aumento en el diámetro 

hidrodinámico, estimado usando la técnica analítica de 

fraccionamiento en flujo mediante campo de flujo asimétrico (AF4) 

acoplado en línea a dispersión dinámica de luz (DLS). Otra 

característica importante que se estudió es el tamaño de partícula de 

los AgNPs que puede afectar a la sensibilidad, eligiendo AgNPs de 

20nm para el diseño del sensor.  En presencia de compuestos de 

sulfuro a niveles de ppbv las membranas plasmónicas cambiaron el 

color del amarillo a naranja/marrón. La espectrofotometría de 

reflectancia difusa y las imágenes digitales procesadas obtenidas con 

un teléfono inteligente se han utilizado como medidas para análisis 

cuantitativo. Se alcanzó un intervalo lineal para sulfuro de hidrógeno 

de 150 a 1000 ppbv y un límite de detección (LD) de 45 ppbv, 



17 
 

midiendo después de 10 min de exposición del sensor a la atmósfera 

de sulfuro de hidrógeno (2 L) para porcentajes de humedad entre 50 y 

96% y temperatura ambiente. El límite de detección se puede mejorar 

aumentando el tiempo de exposición, si es necesario. También se 

obtuvieron resultados satisfactorios en términos de precisión (<10%) 

y selectividad. Finalmente, las membranas se aplicaron para la 

determinación de compuestos sulfurosos volátiles en el aliento 

exhalado de 10 voluntarios humanos sanos. Los niveles de H2S 

detectados en el aliento humano exhalado podrían servir como 

marcadores para algunas enfermedades, tales como la halitosis. Sus 

valores se encontraron en el intervalo de concentración de 70 a 210 

ppbv, por debajo del límite de diagnóstico de periodontitis o gingivitis 

(250 ppbv). El sensor colorimétrico plasmónico propuesto es estable y 

presenta una sensibilidad óptima. Además, es económico, 

desechable, seguro y fácil de usar y se ha aplicado con éxito para 

determinar los VSC expresados como sulfuro de hidrógeno en 

muestras de aliento a diferentes volúmenes de muestreo entre 2 L y 

250 mL, como prueba de concepto.  

 

 Para la detección de H2S en muestras biológicas (cardiomiocitos) 

mediante análisis in vitro se ha desarrollado una tecnología para 

preparar un multisensor colorimétrico en fase sólida (hasta 96 

dispositivos). Aparte de la simplicidad en la fabricación, también es 

rápido de preparar y el costo de fabricación es muy bajo. La placa de 

multisensor se prepara en 3 min. Se optimizó el volumen necesario de 

dispersión de AgNPs en el nylon, eligiendo 110 µL como valor óptimo 

para cada sensor unitario. También se estudió la precisión con y sin 

glicerol midiendo la reflectancia difusa de una placa con 14 y 24 

sensores respectivamente, siendo los valores de RSD (%) obtenidos 

inferiores al 5%. Como señales analíticas se proponen los espectros 

normalizados a 500 nm obtenidos usando la técnica analítica de 

espectrofotometría de reflectancia difusa. El intervalo lineal para H2S 

fue 0.34 – 8 µM y el límite de detección fue de 0.13µM, se estimaron  

en condiciones de incubación a 37 ° C y 95% de humedad durante 8 

horas. Se realizó una evaluación mediante la herramienta hexágono 

de evaluación y selección de métodos analíticos. Dicha herramienta 
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permite indicar que el método presenta ventajas como alta 

sensibilidad, menor costo económico y mayor sostenibilidad que otros 

métodos analíticos recientes propuestos en la literatura. La estrategia 

propuesta es energéticamente eficiente, no requiere pretratamiento 

de la muestra, portátil, rápido y de fácil manejo por personal no 

especializado y ofrece la ventaja de análisis simultáneo con alta 

sensibilidad para la determinación de sulfuro de hidrógeno en 

muestras biológicas como células, y también es aplicable para otro 

tipo de matrices como plasma o saliva, entre otras. 

 

 Se han propuesto los alquilresorcinoles (AR) como biomarcadores 

sensibles y específicos del consumo de gluten. El dispositivo 

colorimétrico propuesto se sintetizó dopando un composite 

PDMS/TEOS con el reactivo azul sólido (Fast Blue B salt, FB). El ensayo 

se basó en la liberación de FB a la solución que contiene AR y la 

formación del complejo azo que se midió a 520 nm. La respuesta se 

evaluó por espectroscópia UV-vis y IT-SPME-LC-DAD para aislar la 

señal del ácido 3,5-dihidroxihidrocinámico (DHCA). Los resultados 

indicaron que el análisis espectroscópico se puede utilizar como una 

herramienta de detección para diferenciar muestras positivas y 

negativas. El ensayo cromatográfico permite aislar la respuesta de AR 

en muestras positivas. En las condiciones experimentales óptimas, el 

valor de LD fue de 60 ng/mL al agregar un paso de extracción en fase 

solida (cartuchos C18) antes del análisis, la precisión fue del 7 %. Los 

estudios realizados en muestras de orina muestran que DHCA puede 

usarse como biomarcador de la ingesta de gluten. Las principales 

ventajas de la metodología propuesta son el desarrollo de una 

herramienta de preselección previa al análisis cromatográfico y la 

miniaturización de éste último y por tanto la simplificación de la 

evaluación de la transgresión dietética y ello a través de metodologías 

sostenibles. 
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Matrices alimentarias  

Se ha desarrollado la determinación de nitrito y nitrato en aguas obtenidas de 

verduras frescas y enlatadas, además de la determinación de la frescura de 

muestras de carne a partir de la medida de la liberación de amoníaco, 

desarrollando composites dopados de  PDMS para su uso in situ. 

 La determinación de nitrato y nitrito en aguas de muestras de vegetales 

(acelgas y espinacas) frescos y enlatados se realizó empleando sensores 

colorimétricos basados en la membrana polimérica de PDMS/TEOS-IL 

dopada con el reactivo de Griess (SA-NEDD), descrita anteriormente. En 

el caso del nitrato, se utilizó la dispersión de ZnNPs como agente 

reductor. La respuesta analítica se obtuvo midiendo la absorbancia o las 

coordenadas RGB de la imagen digital obtenida de la membrana. Las 

aguas de verduras frescas y enlatadas se procesaron directamente. Las 

ventajas del método propuesto están relacionadas con las figuras de 

mérito obtenidas, la portabilidad, el bajo costo y el corto tiempo de 

análisis. 

 La determinación del amoniaco en atmósferas se realizó empleando 

sensores basados en PDMS dopados con líquidos iónicos (LI) 

particularmente con OMIMPF6, con la hipótesis de que los IL pueden 

proporcionar cambios en la morfología del composite, que permiten 

lograr sensores más sensibles. Además, se demostró la naturaleza 

másica del sensor y se estableció su cinética.  La capacidad de adsorción 

está de acuerdo con la isoterma de Langmuir y por tanto los sitios de 

adsorción son homogéneos en el sensor y el mecanismo de respuesta es 

quimisorción. La calibración es flexible y es función del tiempo de 

muestreo, la temperatura y el volumen de muestreo. Además, se 

observó que el sensor IL-NQS-PDMS es capaz de discriminar entre 

grupos aminos primarios y secundarios en atmósferas. Una prueba de 

concepto indicó que se obtiene una respuesta significativa de amoniaco, 

principal nitrógeno básico volátil para la evaluación de la frescura, 

cuando la muestra de carne envasada se mantiene hasta diez días a 4ºC. 

El amoníaco liberado fue 20 ± 4 µg/kg y 18 ± 3 µg/kg empleando 

reflectancia difusa y %R obtenida a partir de las fotos de sensores 

tomadas por un teléfono inteligente. La evolución hasta 12 días del 

sensor dentro del paquete que contenía la carne se siguió a partir de las 
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imágenes captadas por el teléfono inteligente, mostrando un perfil 

diferente con respecto a los estándares ensayados, lo que puede 

deberse a una liberación progresiva del amoníaco de la carne. Por lo 

tanto, el empleo del sensor PDMS-NQS-IL podría ser una nueva 

alternativa potencialmente sostenible para al análisis in situ de la 

frescura de la carne en referencia a las aportaciones de la literatura. 

También se ha demostrado que la presencia de sulfuro no interfiere en 

la respuesta de amoniaco del sensor. 

 

 

Matrices forenses 

 Se ha estudiado la toma de muestra, así como la determinación de 

residuos orgánicos (OGS) y residuos inorgánicos (IGSR) de disparos en las 

manos de policías tras efectuar sendos disparos. La microextracción en 

fase sólida en tubo (IT-SPME) acoplada en línea a cromatografía líquida 

capilar con detector de fila de diodos (CapLC-DAD) permite evaluar la 

presencia de OGSR, mayoritariamente difenilamina (DPA) y la microscopía 

electrónica (SEM-EDX) se ha utilizado para IGSR. Se ha optimizado el 

procedimiento de extracción de DPA de las manos de los tiradores, 

ensayando distintos muestreadores.  La mejor eficiencia de extracción se 

logró utilizando un hisopo de algodón seco seguido de extracción del 

mismo asistida por vórtex con agua en segundos. Cabe mencionar que se 

emplearon la mínima cantidad de disolventes no tóxicos y materiales de 

bajo coste. De esta forma, se obtuvieron LD satisfactorios (0,3 ng) y buena 

precisión (RSD 9%). Se encontró DPA en el 81% de las muestras analizadas 

y residuos inorgánicos tratados. 
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1.1 Sustainability 

The concept “sustainable” is related with the idea of reconciling economic 

development and the conservation of natural ecosystems. It was first appeared in 

70`s and was enunciated in various reports and in different ways [1]. However, 

the expression with the most acceptance success was the term sustainability 

reached in 1987. The current concept of sustainability first appeared in the 

Brundland report (also known as Our Common Future Report) in 1987 by the 

World Commission on Environment and Development [2]. This report warned 

about the negative environmental consequences of economic development and 

globalization, trying to offer solutions to the problems derived from population 

growth and industrialization. From then until today, the term sustainability 

sounds more and more frequently and is linked to many areas as Figure 1.1 

shows, which was obtained from the data base Web of Science (Clarivate 

Analytics). Different organizations expressed their own definition of the concept 

of sustainability too.  

 
Figure 1.1 Weight of sustainability in different scientific areas expressed in 

percentages with respect to the total publications that contain this item. Web of Science 

source by searching sustainability (December 2020).  
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According to The World Conservation Union (United Nations Environment 

Program and World Wide Fund for Nature, 1991) [3], sustainable development 

implies the improvement of the life quality within the ecosystem limits. According 

to the International Council of Local Environmental Initiatives (ICLEI) (1994) the 

definition of sustainability offers basic environmental, social and economic 

services to all members of a community without endangering the viability of the 

natural, built and social systems on which the supply of services depends [4]. 

 Sustainability refers to the satisfaction of current needs without 

compromising the ability of future generations to satisfy theirs, guaranteeing the 

balance between economic growth, care for the environment and social well-

being. 

 This definition gives rise to the idea of sustainable development, being a 

mode of progress that maintains the delicate balance today, without endangering 

future resources. Sustainability assums that nature and the environment are not 

exhaustible sources of resources, their protection and rational use being 

necessary. 

 On the other hand, the quality of life of a given society depends largely on 

environmental quality and economic well-being. Finally, a balance is required 

between three elements: environment, economy and society, that is, to achieve 

development in each of the three elements without negative repercussions 

between them [5,6]. Figure 1.2 shows the principles and approach of the three 

elements mentioned above. To understand the sustainability concept related to 

chemistry it is important to understand the fundamentals of sustainability. Table 

1.1 summarizes the main topics.   
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Figure 1.2 Sustainable systems: principles and approaches. 

 

 

 

 

 

Table 1.1 Summary of the principles and approaches in sustainability 

PRINCIPLES  

 

ENVIRONMENTAL 
 

 

 

Renewable resources 

 

The resources that are available are treated in 

a continuously renewed way [7]. 
 

 

Resource minimization 

 

Conservation of natural resources. Concerns 

about resources such as energy, raw materials, 

and water supply. 
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Source reduction 

 

Reduction of energy and quantity of materials 

entering a waste stream[8]. 
 

 

Recycling 

 

Collection and treatment of waste products 

and its use as raw material [7].  

 

 

Reuse 

 

Use of waste as raw material in a different 

process without any structural change. 
 

 

Repair 

 

Improvement of a product to increase its 

quality and usefulness before its reuse. 
 

 

Regeneration 

 

Material renewal to return it in its primary 

form for use in the same or a different process. 
 

 

Recovery 

 

Energy waste found in the waste stream for 

beneficial use[7]. 

 

Remanufacturing 

 

Reconstruction or reconditioning of machines, 

mechanical devices to reuse then [9]. 
 

Purification 

 

Removal of unwanted particles like mechanical 

also organic compounds and other impurities. 
 

End-of-pipe 

 

Treatment of polluting substances at the end 

of the production process [8]. 
 

 

Degradation 

 

 

Biological, chemical or physical process that 

results in the loss of productive potential [7]. 
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ECONOMIC 
 

 

Environmental Accounting 

 

Reduce cost improvement of the 

environmental quality and profitability of the 

organization [8]. 
 

 

Eco-efficiency 

 

Delivery of competitively priced goods and 

services that satisfy human needs and bring 

quality of life [8,10,11]. 
 

 

Ethical investments 

 

Financial instruments stimulate responsible 

corporate practices.  
 

 

SOCIAL 
 

 

 

Social responsibility 

 

Safe, respectful, liberal, equitable and equal 

human development.  
 

 

Health and safety 

 

Working environment including 

responsabilities and standards. 
 

 

 

 

 

Polluter pays 

 

According to Environmental Protection Agency 

(EEA), environmental damage is paid in the 

form of cleaning and taxes that pollute it [7]. 
 

 

Reporting to stakeholders: 

 

Global Reporting Initiative create a framework 

and report on the economic, environmental 

and social performance of all organizations 

[12]. 
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APPROACHES 

 

             ECONOMIC and SOCIAL  
 

 

Environmental Legalization 

 

Group of laws, regulations, directives that 

influence both the environment and the life to 

improve the environment protection and the 

quality of life. 
 

 

Voluntary Environmental 

Agreements 

 

Agreements between the corporations, 

government and/or non-profit sectors [13]. 
 

 

Supply Chain Management 

 

Plans, implement and control the operations of 

the supply chain to meet the  

consumer requirements. 
 

 

 

 

             SOCIAL 
 

 

 

Pollution control 

 

Reduce the impacts of the pollutants, before 

they are released into the environment, 

through some type of treatment[11]. 
 

 

Cleaner production 

 

Systematically organized approach to 

production activities, which has positive effects 

on the environment (minimization, 

improvement of eco-efficiency and sources 

reduction) [14,15]. 
 

 

Eco-design 

 

Product development process that takes into 

account the complete life cycle of a product 
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and considers environmental aspects at all 

stages of a process [8,11] 
 

 

Life cycle assessment 

 

Stages and the life span of products, their 

environmental impacts and services, 

manufacturing processes and decision [7,8]. 

Carbon footprint estimation. 
 

 

Waste minimization 

 

Techniques that reduce the amount of waste 

generated during industrial processes 

(according EPA). 
 

 

Zero waste 

 

Minimizes waste and maximizes recycling, 

reducing consumption and ensuring that 

products are reused, regenerated, repaired 

and recycled internally or back to nature or to 

the marketplace. 
 

 

 

 

1.2 Sustainability and Chemistry 

 The importance of the chemical process sustainability is evidenced by the 

numerous reports in the literature that begin to address this issue [16–22]. As it 

can bee seen in Figure 1.3, the citations that related with chemical sustainability 

were increased progressively during the last 10 years.  
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Figure 1.3 Evolution of the citation number of published papers in Web of Science for 

matching the search terms “sustainable chemistry” in a period of 12 years (December 

2020).  

 

 Through new approaches and technologies, sustainable chemistry stimulates 

technical and social innovations. It develops and creates products and services 

[23]. Sustainable chemistry is based on a holistic approach, setting polices and 

measurable objectives for a continuous process of improvement. This implies the 

development of networks with interdisciplinary scientific research and education. 

By encompassing all the information, the development of alternative processes 

fulfils the following needs: recycling concepts, supporting the recovery and 

efficiency of resources avoiding rebound effects, damages and deterioration as in 

human beings as also in ecosystems and natural resources. Summarizing, by 

means of a series of parameters, the adequacy of chemical processes is evaluated 

by: 

 Preparation of a chemical process.  

 Environmental impact.  

 Resources used.   

 Generated wastes.  

In this context, Green Chemistry appears directly related with sustainable 

chemistry, however these are not synonyms. 
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“Green chemistry can be defined as a chemistry that is focused on the design, 

manufacture and use of chemicals that have decreased or no pollution potential”.  

“Sustainable chemistry” not only includes the concepts of green chemistry, it also 

expands the definition to include a larger system than just the reaction. 

Sustainable chemistry also considers the effects of processing, materials, energy, 

and economics (Figure 1.2).  

Green chemistry was born in the Environmental Protection Agency (EPA) in USA in 

the early 1990s as an approach and a conceptual tool for environmental 

protection to pollution caused by industry chemistry, and was expressed by 12 

principles stablished by Paul Anastas and John Warner in 1998. Green chemistry is 

the design, development and implementation of chemical processes or products 

to reduce or eliminate the use and generation of dangerous and toxic substances. 

Table 1.2 The 12 principles of Green Chemistry 

 

GREEN CHEMISTRY 12 PRINCIPLES 

1.Prevention Minimization of residue formation. 
 

2.Atomic economy Synthetic methods must be designed to obtain the 
maximum incorporation in the final product of all subjects 
used in the process. 
 

3.Less harmful 
synthesis 
 

Whenever possible, must design synthetic methodologies 
with low or no human and environmental toxicity. 

4.Safe chemical 
reagents 

Chemicals must be selected to preserve their efficiency of 
their function in the process and to toxicity. 

 
5.Solvents and other 
safe auxiliary 
substances 
 

The use of auxiliary substances (solvents, separation, etc.) 
should be avoided whenever possible and be innocuous 
when used. 

6.Energy efficiency Energy needs must be considered in relation to their 
environmental and economic impacts, and should be 
minimized. Synthetic methods should be carried out at 
room temperature and atmospheric pressure if possible. 
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7.Renewable raw 
materials use: 

Raw materials must be renewable and non- 
extinguishable. 

 
8.Derivatives 
reduction 

Unnecessary derivatives (blocking of groups, 

protection/unprotection, temporary modification of 

physical /chemical processes) should be avoided as far as 

possible. Because these measurements require additional 

reagents and can generate waste. 

 
9.Catalysis Catalytic reagent (as selective as possible) are higher than 

stoichiometric reagents. 

 
10.Degradation The chemicals used will be chosen so that at the end of 

their function they decompose into harmless and non-
persistent degradation products in the environment. 

 
11.Real-time 
analysis for pollution 
prevention 

Substances and ways to use it in a chemical process 
should be chosen in a way that minimizes the possibility of 
accidents. 
 
 

12.Safe chemistry for 
accident prevention 

Substances and ways to use it in a chemical process 

should be chosen in a way that minimizes the possibility of 

accidents. 

 

 

 

As we have discussed earlier, achieving sustainable chemical processing requires a 

rather complex balance between resources use, economic growth and 

environment impact. Green chemistry becomes one of the tools to characterize 

chemical sustainability. 

 In summary, a sustainable chemical process is that one that does not produce 

environmental impacts or waste, offers high levels of sustainability in reaction 

efficiency, uses minimal amounts of energy and is cost-effective. 
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1.3 Sustainability and Analytical chemistry  

 

The relevance of sustainable analytical chemistry has increased in the last years, 

as it can see in Figure 1.4. 

 

 
Figure 1.4 Evolution of the number of citation in Web of Science for matching the 

search sustainable analytical chemistry for the last 12 years (December 2020).   

 

Sustainability in analytical chemistry combines the components of Green 

analytical chemistry (Figure 1.5) with the principles corresponding to the socio-

economic factor (discussed in Figure 1.2). Directly related with sustainability is 

green analytical chemistry, its characteristics are described in the 12 well-know 

principles introduced by Galuzca et al., starting from those corresponding to 

Green Chemistry  [24]. 

1. Apply direct analysis techniques to avoid sample treatment 

2. Minimize the volume and number of samples 

3. Carry out in-situ determinations 

4. Integrate analytical processes and operations to reduce consumption of 
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5. Select miniaturized and automated methods 

6. Avoid derivatization stages 

7. Reduce waste generation and implement management measures 

0

200

400

600

800

1000

1200

1400

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

N
u

m
b

e
r 

o
f 

ci
ta

ti
o

n
  

Year 



Chapter 1. Introduction 

14 
 

8. Give preference to multicomponent analysis over individual ones 

9. Minimize energy consumption 

10. Promote the use of reagents obtained from renewable sources 

11. Eliminate or substitute reagents 

12. Increase operator safety 

 

Thus, the principles of sustainable analytical chemistry include green analytical 

chemistry principles, economic and social principles as Figure 1.5 indicates. 

 

 

Figure 1.5 Sustainable analytical chemistry scheme  

 

 

Analytical chemistry has an important role in the development of sustainability, 

due to monitorization of pollutants and development of more sustainable 

processes. The environmental impact of analytical methods can be reduced by: 

 Reducing the amount of solvents required in the sample pre-treatment 
stage. 

 Reducing the amount and toxicity of solvents and reagents used in the 
measurement step, especially through automation and miniaturization. 
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 Developing alternative direct analytical methodologies that do not require 

solvents or reagents. 

On the other hand, there is an increasing need to use methods for evaluating the 

sustainability of a process or product in general. There are several "green 

chemistry metrics" tools to calculate environmental impact such as carbon 

footprint [25]; atomic economics [26]; environmental factor E [27]; environment, 

health and safety index (EHS) [28]; and LCA [29,30]. Three multi-criteria  methods 

have been compared recently [31] in the analytical chemistry field, one of them, 

hexagon tool, proposed by our research group MINTOTA [32,33]. 

The carbon footprint estimation (CFP) is a metric tool to evaluate the 

methodology negative environmental impact. CFP represents the net emissions of 

greenhouse gases (GHG) emitted by an individual, organization, event or product 

measured as CO2 equivalents [34]. Thus, CFP can be understood as an awareness 

tool about the environmental cost associated with a product or process, in a way 

that influences decision-making that contribute to the reduction of GHG 

emissions.  

Hexagon tool [31-33] is proposed for evaluating the optimal selection and/or 

testing of sustainable analytical methods. Besides, it allows a quick and easy to 

use visual inspection of the characteristics of an analytical procedure by means of 

the regular hexagonal pictogram (see Figure 1.6). The pictogram is formed by six 

equilateral triangles, it accounts for the variables of the analytical method that are 

evaluated and quantified, such as the figures of merit, toxicity and safety, waste, 

environmental impact and economic cost. The existence of metrics is widely 

encouraged not only in research labs but also in industries, as green is a 

contemporary driving force promoting the development of more environmental-

friendly analytical scenarios. Hexagon tool can be a guide to evaluate and/or 

select analytical procedures that are in line with the philosophy of sustainable 

analytic chemistry, taking into account the needs of green chemistry and cost-

effective aspects. 
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Figure 1.6 Pictogram to evaluate and quantify the sustainability of an analytical 

procedure (Figures of merit 1: Sample treatment, method characteristics and calibration. 

Figures of merit 2: Quality control and Accuracy). 

 

This Thesis contributed to sustainable analytical chemistry by using two strategies: 

 Coupling on-line the sample pre-treatment with the separation and 

determination step and miniaturization 

 Developing solid colorimetric devices for in-situ analysis 

These two approaches were evaluated in terms of environmental, economic and 

social impact.  

 

 

1.4 In-tube solid phase microextraction coupled to capillary liquid 

chromatography (IT - SPME - CapLC)  

Sample pre-treatment is often necessary to extract, isolate and concentrate the 

analytes of interest  [35,36]. This step increases selectivity and sensitivity [37]. 

However, this involves a high degree of sample manipulation, which leads to non-

efficient methods in terms of environmental and economic impacts.  
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Solid phase extraction (SPE) is one of the most widely used techniques for 

sample pre-treatment. It is based on the use of columns packed with a solid. In 

the recent decades new miniaturized extraction techniques have been 

proposed[38]. Microextraction based techniques emerged as alternative tools to 

develop more sustainable techniques by reducing reagents wastes, extractive 

phases and if possible energy, their on-line coupling with separation system is an 

added value for some of them. Liquid and solid microextraction based techniques 

have been proposed. Liquid phase microextraction (LPME) is carried out by using 

immiscible solvents with water at low µL. There are different LDME modalities 

such as drop microextraction (SDME) [39,40], liquid-dispersive liquid 

microextraction (DLLME) [41–43], hollow fiber liquid phase microextraction 

(HFLPME), among others [44–46]. 

Solid phase microextraction (SPME) was proposed by Pawliszyn et al in 1990, 

focussed at the beginning, mainly to gas chromatography (GC) [47]. It is 

performed by immersing a fiber coated with the extractive phase in the sample 

solution or in its headspace or even in solid samples.  After extraction time, the 

analyte is desorbed by using an organic solvent or thermically by direct injection 

in the GC system. The main advantage is miniaturization of the sample step, since 

sampling extraction and preconcentration are carried out in one step. Later in 

1997, Eisert and Pawliszyn proposed in-tube solid-phase microextraction (IT-

SPME), thereby solving the problems associated with fiber brittleness and long 

desorption times [48]. In addition to the advantages mentioned, this technique is 

of great interest from the point of view of analytical green chemistry since it is 

automatable and it is easy to couple on line with liquid chromatography (LC) too. 

Among the different SPME techniques, in tube–SPME (IT-SPME) has shown 

advantages in the context of sustainable analytical process and LC.  

1.4.1 IT‐SPME modalities in LC 

IT-SPME now can be performed using two different modalities: draw/eject and in-
valve. 

In draw/eject mode, the capillary column is coupled between the needle and loop 

of a programmable autosampler. Next, a fraction of the sample is repeatedly 

aspirated and ejected through the capillary column until reaching equilibrium 

between analytes and extractive phase [49]. Finally, analytes are transferred to 

the analytical column by static extraction, with appropriate solvent, or by dynamic 
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extraction, through the mobile phase. (Figure 1.7). In this technique, high 

recoveries can be achieved by increasing the number of draw/eject cycles. In 

general, this modality is usually used for complex matrices with low volume 

availability (biological samples). 

 

Figure 1.7. Schematic representation of the draw/eject configuration. 

 

In valve IT-SPME. The most common configuration is to use the IT-SPME capillary 

column as injection loop of the valve of the liquid chromatographic system. The 

analytes are retained on the surface of a capillary column during the sample 

loading process and, later, are transferred to the analytical column by means of a 

change of the valve to the inject position (Figure 1.8). 

 

Figure 1.8. Schematic representation of the in- valve IT-SPME system. 
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Although, the absolute extraction efficiency is low, sensitivity can be increased by 

passing relatively high volumes of sample. In this technique, the IT-SPME capillary 

columns go from commercial GC columns to synthesized capillary coatings. This 

modality can also be performed with a system based on two valves system [50,51] 

(see Figure 1.9) or other similar configurations. 

 

 

Figure 1.9 Schematic representation of a IT-SPME system in circulation mode with 

two valves. 

 

The main parameters related with the extraction efficiency are: extractive phase, 

flow rate, processed sample volume and capillary column length. Therefore, they 

should be taken into account when designed the IT-SPME procedure.  

The selection of the extraction phase is a key parameter since the success on the 

extractive efficiency depends on the interaction between the target analytes and 

the phase. The main commercial phases used in the literature are: 

polidimethylsiloxane (PDMS) based extractive phase (TRB 5, 20, 35, 50), porous 

divinylbenzene columns (Supel-Q Plot) and CP ‐ Pora Plot amine and polyethylene 

glycol (PEG).  

In this Thesis PDMS based extractive phases have been proposed for 

environmental, biological and forensic samples. These extractive phases are 

advantageous since the polarity can be turned as a function of the diphenyl 

groups. Table 1.3 summarized the main PDMS column tested in this Thesis. 
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Table 1.3 PDMS based capillary columns used in this Thesis  

Extractive capillary Coating 

TRB-5 5% diphenyl-95% polydimethylsiloxane 

TRB-20 20% diphenyl-80% polydimethylsiloxane 

TRB-35 35% diphenyl-65% polydimethylsiloxane 

TRB-50 50% diphenyl-50% polydimethylsiloxane 

 

Besides the commercial extractive phases, alternative IT-SPME capillary columns 

have been proposed for providing more sensitivity, selectivity and stability. Some 

examples are: modified capillaries coated with multi-walled carbon nanotubes 

(MWCNTs)[52] for analysis of substituted anilines and for quantification of polar 

triazines and degradation products [53]; synthetic polymers that present specific 

regions for the recognition of certain compounds (MIPs) to determine 4-

nitrophenol in environmental samples [54], drug monitoring [55] and antibiotic 

analysis [56]; metal oxides NPs have been also proposed to modify coated phases, 

which were applied in the determination of acetylsalicylic acid, acetaminophen, 

atenolol, diclofenac and ibuprofen [57], triazines [58] and organophosphate 

compounds [59]. 

The volume of sample processed is a relevant factor, since processing larger 

volumes implies a greater amount of retained analytes (until the saturation of the 

adsorbent phase). Depending on the need of each case, the injected volumes can 

vary from µL [60] to up to mL [61,62]. 

Length of the capillary column can be also used to improve extractive efficiency 

since the amount of solvent phase depends on the capillary length. Longer lengths 

imply more surface area of sorbent material available to extract the analytes. 

There have been publications in which capillary column lengths of 20 cm [63], 30 

cm [64], 60 cm [65], 70 cm [66] or 80 cm [67] were employed. 

Flow rate is adjusted according to the analysis. The flow rates used can be of the 

order of µL/min [53,62,68] or higher flows (mL/min) [67,69] according to the type 

of LC used. 

In addition, clean-up can be also performed when complex samples are analysed. 

This step is carried out by passing a volume of the adequate solvent through the 
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capillary column. Therefore, cleaning solvent as well as its volume are parameters 

that should be optimized [62,64]. 

Finally, desorption is carried out to transfer the analyte to the analytical column. 

The desorption of the analytes can be carried out by using a solvent by the static 

mode or by means of the mobile phase, which is the dynamic mode, the latter 

being the most common. In the case of static desorption, the variables that affect 

are the volume of solvent and the extraction time, in the case of dynamic 

desorption, its effectiveness depends on the composition of the phase mobile and 

flow rate. 

This technique is versatile when adapting to different chromatographic systems 

such as NanoLC [70] UHPLC [50,51] or CapLC [58,60–62,64,71,72]. One of the 

characteristics that differentiates the aforementioned chromatographic systems is 

the diameter of analytical columns, which stablishes mobile phase flow. Table 1.4 

shows a classification of LC systems based on column dimensions and mobile 

phase flows. 

Table 1.4 General classification of LC systems taking into account the dimensions of the 

column and the flow. 

 LC system Analytical column 
 i. d.  (mm) 

Mobile phase flow 
(µL /min) 

Preparative > 10 > 5000 

Conventional 4.0 - 4.6 2000 

Narrow bore 2.1 500 

Microbore 1 100 

Capilar 0.1 – 0.5 1 – 20 

Nano < 0.1 < 1 

 

The miniaturization of LC systems was proposed in 1967, it was based on 

minimizing the internal diameter (i.d.) of the analytical column. Later, different 

works were published that used analytical columns of 1 mm i.d. filled with 

particles of different sizes and covered by different materials [73,74]. Currently, 

there are commercial columns for LC ranging from 2.1 mm to 75 µm i.d. [75,76]. 

Another parameter involved in the miniaturization of the LC is the particle size of 

the stationary phase. In recent decades, the diameter of the particles used as 
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stationary phase has been reduced, obtaining greater efficiency [77] due to 

pumps working at higher pressures (UHPLC) have been introduced. 

The reduction of the internal diameter of the analytical column leads to a 

decrease in the flow of mobile phase, reducing the consumption of solvents and 

therefore the amount of waste generated. According to Nazario et al. in 2015 

[75], the decrease in the flow of mobile phase makes possible new mechanisms of 

interaction between mobile phase and analytes, which leads to improved 

selectivity. On the other hand, reducing the internal diameter of the analytical 

column also reduces the volume of the sample required. It should be noted that 

reducing the diameter decreases the dispersion of the analytes within the 

analytical column. The decrease in chromatographic dilution improves the signal-

to-noise ratio, which leads to a significant increase in sensitivity compared to the 

conventional technique. Therefore, the miniaturized chromatographic systems are 

in accordance with the principles of sustainable analytical chemistry. 

In this Thesis a miniaturized system such as CapLC coupled on line to IT-SPME and 

diode array detection (DAD)  with  low economic cost and environmental impact 

satisfied the requirements of sustainable analytical chemistry, making it effective 

and versatile tool for the analysis of a great variety of analytes in different 

matrices such as environmental, biological, food and forensic, among others. 

 

1.5 In-situ analysis devices 

As above mentioned, sustainability is directly related with environment, 

economy and social impact. An economically sustainable analytical chemistry 

method means that it has to be cost effective, which often means high-

throughput, fully automated systems. Portable devices can be a cost-effective 

alternative [78].  

One of the great challenges of Analytical Chemistry is the development of 

devices that allow to carry out determinations in situ, that is, in the place where 

the compound of interest is found and the problem is produced [79,80]. 

Therefore, apart from avoiding transport of the sample to the laboratory, which 

entails time, costs and resources [81], the risk of contamination or degradation of 

the sample is also minimized.  
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Two types of analysis are classified according to the site where analytical 

process is developed: off-line and In-situ (Figure 1.10). In an off-line process, the 

sample is transported to the laboratory for analysis and the analysis is carry out 

there, while in in situ analysis is carried out by introducing the device at the 

sampling site (in-line) or it can be carried out near the sampling site (on -line). 

Also, on-site devices can be classified as passive or active depending on the type 

of sampling. Active devices require a power source for sampling (for example, a 

pump). However, passive devices do not require energy consumption, so sampling 

is done mainly by diffusion. 

 

Figure 1.10 Schematic representation of in-situ and off-line analysis. 

In-situ analysis devices must meet a number of characteristics, such as 

portability, low cost, simplicity and rapidity, [82]. Currently, different devices that 

meet these characteristics are already available on the market, such as 

glucometers, pregnancy tests, alcohol or bad breath meters in exhaled air and 

several probes, among others. Another advantage is the level of simplicity when 

handling these devices, which allows the analysis to be carried out by non-

specialized personel. However, the need to advance in the knowledge of these 

devices is still a challenge. As can be seen in Figure 1.11 the number of publication 

has increased exponentially in the last years showing the interest on this topic. 
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Figure 1.11 Number of publications in Web of Science for matching the following 

search term “sensors” and “in-situ analysis” in the 2000-2020 periods.  

 

The main devices reported can be classified as optical devices, portable 

instruments, electrochemical devices and remote stations. Figure 1.12 shows the 

advantages and disadvantages of these devices. 

Optical devices offer interesting properties such as low cost, portability, low 

energy consumption, simplicity that make them especially attractive from the 

point of view of analytical chemical sustainability [80]. The vast majority of optical 

devices are colorimetric, which allows us to perform a (semi)quantitative analysis 

by visual inspection, without the need for instrumentation [83,84]. Kits, test 

strips, microfluidic platforms, solid and plasmonic sensors, colorimetric tubes, 

colorimetric supports have been proposed for this aim.  
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Figure 1.12 In-situ devices classification with some of their characteristics. 

 

1.5.1 Chemical sensors 

According to the IUPAC definition, a chemical sensor is a device that transforms 

chemical information into a useful readout signal. Chemical sensors are devices 

formed by a recognition element that is in direct contact with a transduction 

element, being capable of providing specific quantitative or semi-quantitative 

chemical information [85].  

Among the different strategies to develop chemical sensors, and related to 

sustainable devices, colorimetric sensors show advantages since they are based 

on colour changes and therefore, the readout can be performed by: 

- Optical instrument for quantitative purposes at laboratory or in-situ with 

portable optical instrument.  
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- Analysis of images for quantitative measurement for in-situ analysis. 

- Simple visual inspection to perform semiquantitative estimations for in-

situ analysis. 

In a colorimetric device, the property to readout is the change of colour when the 

sensing device is generally in contact with the target analyte. These optical 

properties are obtained through a derivatization procedure of the target analyte. 

Among the different options, the use of colorimetric reagents deposited, 

embedded or immobilized in a solid-support, that in contact with the analyte 

gives rise to a change of colour. This change can be inside of in the solid support 

or in the solution (liquid sensing). The read-out in solution or in solid support 

depends on the solid support composition, analyte and reaction medium. 

Traditional colorimetric reagents have been used for this purpose, however, new 

responses based on optical signals have been recently reported. This is the case of 

surface plasmon resonance based sensor obtained for noble metallic 

nanoparticles (MNPs). MNPs such as AgNPs and AuNPs are characterized by a 

surface plasmon band that is produced by the oscillation of electrons on the metal 

surface when they come into resonance with electromagnetic radiation [86–88]. 

Plasmonic sensors, specifically silver nanoparticles (AgNPs), which the current 

thesis will be about, are based on the colour change produced by the aggregation 

of AgNPs in the presence of target analyte. AgNPs have an intense colour (yellow) 

in the visible region due to the plasmon band, while their aggregation provides 

different colours (orange/brown) due to displacement of the plasmon band. The 

development of this type of sensor has experienced a considerable increase 

[88,89] with applications for the analysis of compounds in areas such as food 

[90,91] medicine [92–95] or environmental pollution [96–98]. Designing a solid-

phase colorimetric plasmonic sensor should consider several factors such as:  

 Avoiding rigid chemicals attached to the support that can cause spatial 

reorganization/ aggregation of NPs against the analyte [99]. 

 The immobilization can cause surface modification on NPs and promote 

their aggregation too.  

 The immobilization should guarantee the access of the analyte to the NPs 

surface. 

There are not many works on this topic; for example, Heli et al. [100], described a 

simple and sensitive plasmonic solid sensor based on nanoparticles embedded in 
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bacterial cellulose for ammonia exposure. Also, Colombelli et al. [101] reported an 

optochemical sensor based on double decker terbium (III) bis (phthalocianinato) 

complex TbPc2 thin films for sensing volatile organic compounds. 

A key point on the development of these sensing devices is the solid support used 

to perform the sensing reaction. Paper, silica and polymers based on PDMS and 

nylon are some of the materials proposed as solid supports for the design of in-

situ sensors. One of the materials as support that arouses great interest is paper 

due to its low cost, versatility, abundance, simplicity and compatibility [102]. 

Whatman paper was one of the most widely used to carry out analytical 

applications. These devices based on the use of paper as a solid support have 

been widely used to carry out qualitative and semi-quantitative analysis, since the 

simplicity of the technique allows detecting the colour change by simple visual 

inspection. These sensors were applied in different fields as diverse as medicine 

[103] the environment [104–109] or food [110].  

Among the different solid supports, in this Thesis polymeric and nylon supports 

have proposed as efficient alternatives. 

Polydimethylsiloxane (PDMS) is a linear polymer of dimethylsiloxane Si(CH3)2. It 

belongs to the group of organosilicon compounds, substances commonly known 

as silicones (Figure 1.13 A). PDMS is a widely employed polymer since it shows 

low manufacturing cost, easy fabrication, optical transparency, low toxicity, non-

flammability, flexible/stretch ability and gas permeability. The PDMS matrix has 

been employed to develop a smart strategy for preparing colorimetric sensing 

devices [111–113]. To this end the derivatizing reagent is entrapped in this 

polymer. For this reason, different authors have used PDMS material to develop 

colorimetric sensors based on the high hydrophobic polymeric matrix, thus the 

performance for more polar analytes is limited. Therefore, the use of matrix 

modifiers has been proposed for increasing polarity. Tetraethyl orthosilicate 

(TEOS) and SiO2NPs have been proposed to modify hydrophobicity. They combine 

the mutual advantages of both, organic and inorganic parts to obtain novel nano 

structured materials with different extra functionalities. Figure 1.13B shows the 

structure of TEOS. 
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Figure 1.13 A) PDMS, B) TEOS, C) OMIMPF6 structures 

 

 A.I. Argente et al, in 2016 reported, that the presence of TEOS in the 

polymeric matrix leads to an increase in the hydrophilicity of the PDMS sensing 

device while maintaining the stability and inertness of the polymeric solid 

support, additionally, improving the homogeneity of the sensing device. The 

addition of NPs SiO2 in the PDMS/TEOS matrices  improved the pore size of the 

polymer matrix [112].  

 By another hand, there is a growing interest in using Ionic liquids (ILs) in the 

materials field since the presence of organic cations and anions places, with their 

unique structural and physiochemical characteristics lead to design and tune the 

properties of the materials [114,115]. ILs are also interesting materials to improve 

PDMS matrix. In particular, the hybrid organic-inorganic ILs endow an 

improvement on the mechanical properties of the materials maintaining the 

flexibility and tractability. In addition, these additives can increase the 

permeability of the polymeric matrices.  The presence of ILs also yields to specific 

interactions inside of the membrane [116–118]. In this Thesis the ionic liquid 1-

methyl-3-octylimidazolium hexafluorophosphate (OMIMPF6) has been used. The 

structure is show in Figure 1.13D. 

 Entrapping of a responsive colorimetric derivatizing reagent as a smart 

strategy to develop colorimetric sensing devices is proposed [79,111–113,119] 
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This is the case of 1,2-naphthoquinone-4-sulfonate NQS-doped PDMS based 

sensors [111,120][4,5]. In this thesis several entrapments have been 

demonstrated: NQS for nucleophilic substitution reactions between the primary 

and secondary amine groups and the sulfonate group of NQS reagent (see Figure 

1.14A) [121–123]; entrapment of Griess reagents (sulphanilamide and N-(1-

naphthyl) ethylendiamine) in the PDMS polymeric support for azo compounds 

formation between Griess reagents and nitrite (see Figure 1.14B) [124,125]. And 

finally, PDMS doped with fast blue B (FB) colorimetric reagent for azo complex 

formation between FB and alkylresorcinols (1.3 dihydroxy-5-pentylbenzene (PR)) 

(Figure 1.14C). 
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Figure 1.14 Derivatization reactions A) Reaction of NQS in the presence of primary, 

secondary amines or ammonia in an alkaline medium. B) Griess reaction in the presence of 

nitrites. C) Chemical reaction between AR and FB reagent. 
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Nylon is a synthetic polymer that belongs to the group of polyamide. It is formed 

by two monomers, each with 6 carbon atoms: hexamethylenediamine and adipic 

acid. The polymeric structure is shown in Figure 1.15 

 

 

Figure 1.15 Structure of Nylon. 

 

Nylon membranes are hydrophilic, flexible and resistant in nature, with a regular 

microporous structure. Depending on the size of the pore there are nylon of 0.1, 

0.22, 0.45 microns, the last two sizes have been used in this Thesis. Nylon 

membranes are widely used in different fields thanks to their inherent 

characteristics such as hydrophilicity, excellent physical and thermal resistance 

and good compatibility with aqueous samples. According to the mentioned 

characteristics, a variety of applications can be found such as diagnostic kits, 

biosensors, drug filtration, bacteria and particle retention. Regarding particle 

retention, there are several articles dealing with synthesis of nanoparticles in 

concrete of silver in nylon-nanofiber [126,127]. Considering this characteristic, it 

was used for the preparation of plasmonic sensors of AgNPs individual or multi-

sensors attachable for 96-well plates. Multi-sensors allow simultaneous multi-

analysis and they are in great need in the clinical field, where many samples are 

treated on a daily basis. Therefore, a sustainable technique including portability, 

simplicity, cost-effectiveness and ease of use arouses great interest in the clinical 

field. Our group had already developed another multisensory for simultaneous 

analysis in 96 wells [128], where the high importance of multisensory in the 

clinical field was emphasized, also cost-effectiveness, and simplicity of the 

method. 

 

1.5.2 Analytical response 

In Analytical Chemistry, colorimetric techniques are widely used in, since 

they provide both qualitative and quantitative information about a solution or a 
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coloured support. It is a simple technique, however, to obtain and quantify the 

analytical signal, specific equipment such as UV-vis spectrophotometers (in 

dissolution case) and diffuse reflectance equipment (in solid support case) are 

needed, among others. In this context, smart technology can provide solutions for 

in situ measurement and without qualified personnel. Currently, there are 

sophisticated smartphone, high resolution cameras, powerful processors with 

storage capacity, which can replace conventional equipment  [104,129]. 

The relevance of this topic is demonstrated by the increase in the number of 

publication about smartphones as an example (see Figure 1.16).  

 

Figure 1.16 Number of publication evolution in Web of Science on Smartphone used 

with analytical applications. 

 

Currently there are several free and available applications that can be used for 

image analysis. Software such as Adobe Photoshop, GNU Image Manipulation 

Program (GIMP), Inskape, Krita or ImageJ, are capable of converting a colour 

signal to different numerical parameters. There are several models for colour 

decomposition (RGB, HSV, CMYK, CIELAB), that allows to provide analytical 

information. 

RGB (Red, Green, Blue): The colours are created from the combination of their 

three primary colours (red, green and blue), the intensities can vary between 0 
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and 255. The black colour is obtained when the value of the three components is 

0, while the white occurs when all three parameters take the value 255.  

HSV (Hue, Saturation, Value):  It is a combination of three values: hue, saturation 

and brightness. Therefore, this model provides information on the quantity and 

brightness of the colour. 

CMYK (Cyan, Magenta, Yellow y Key): Is a subtractive colour model, used in colour 

printing.  

CIELAB colour space also referred to as L*a*b* is a colour space defined by the 

International Commission on Illumination (abbreviated CIE) in 1976.  

These models are tools for image analysis. However, the image acquisition stage 

plays a critical role, since the results derived from its subsequent treatment 

depend on it. One of the parameters that can most influence the quality of the 

image obtained is lighting reported by Chaplan et al. [130]. 

In order to solve this problem, some authors have proposed several techniques 

when taking the image, to eliminate any possible interference from external light 

that could influence the acquisition of the images [129,131,132]. On the other 

hand, other publications have chosen to insert reference points (black and white) 

aimed at correcting the interference factor [104,133]. In this Thesis RGB colour 

mode was used to perform images analysis.  

 

1.6 Matrices and analytes 

In this Thesis, IT-SPME- Cap-DAD and sensor devices have been proposed 

as sustainable tools to determine of different analytes of interest in 

environmental, biological, forensic and food sample. 

1.6.1 Environmental samples  

Humans are totally dependent on the environment for living. Therefore, it is 

important to take care and monitor the environment, through analytical 

techniques that allow qualification and quantification of different hazard analytes 

existing in the environment system. Environmental samples are air, water 

(aquifers, well water, coastal water, rain, among others), soil and sediments and 

https://en.wikipedia.org/wiki/Subtractive_color
https://en.wikipedia.org/wiki/Color_model
https://en.wikipedia.org/wiki/Color_printing
https://en.wikipedia.org/wiki/Color_printing
https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/International_Commission_on_Illumination
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biota. The pre-treatment of environmental samples is a fundamental and essential 

step due to the complexity of the matrix [134].  

Organic and inorganic compounds are of environmental interest, and therefore, 

the methodologies must be adequate to their requirements. In this Thesis, 

biocides such as irgarol, diuron, nitrite and nitrate have been studied as use cases 

of organic and inorganic compounds. 

Biocides: Irgarol-1051 belongs to compounds of the triazine family. Diuron is an 

herbicide from the phenylurea group. Irgarol-1051 and diuron, has been widely 

employed as booster biocides in antifouling paints to prevent the fouling on 

surfaces submerged in water [135]. The use of antifouling paints is an effective 

method to control invasive species, from microbes such as algae and bacteria to 

barnacles and shellfish that can adhere to the hull of ships, thus reducing the 

speed of ships and increasing fuel consumption [136]. These coatings, in addition 

to combating the formation and settlement of biofouling communities on surfaces 

exposed to water, are also intended to protect against chemical and biological 

corrosion. Normally these antifouling paints are applied to commercial and 

pleasure boats, underwater pipelines, dam gates, oil rigs, aquaculture facilities, 

among others. These biocides are added to antifouling products due to their high 

effectiveness as a growth inhibitor of marine and freshwater algae through 

interactions with their photosynthetic system. However, both compounds show 

harmful effects to the marine ecosystem [137] at a concentration level given. 

Irgarol and diuron accumulate in areas where they are intense boating activities. 

This is mainly due to the fact that both biocides are relatively persistent in sea 

water and not widely divided into other environmental matrices such as 

sediments. 

In seawater, Irgarol-1051 has a half-life (t½) of between 100 and 350 days [138–

140] whilst being very persistent in anaerobic sediments [141]. Irgarol-1051 as it 

does not easily degrade in water which may explain its persistence once released 

from painted surfaces [139] (Scarlett et al. 1999). Diuron also persists in seawater, 

but is less persistent in marine sediments with a half-life of 14 days [142]. 

Additionally, these compounds can be degraded to different transformation 

products that are potential contaminants as secondary pollution [143–145]. 

Figure 1.17 shows the structure of iragrol - 1051 and diuron as well as their main 

degradation products and maximum allowable concentrations (MAC) expressed 

[146] from the environmental quality standards (EQS)[147]. 
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Both biocides do not present the same toxicity for all types of aquatic beings. For 

example, diuron has extremely high toxicity for phytoplankton organisms, 

however it has lower levels of toxicity for aquatic invertebrates. Therefore, data 

on possible effects on environmental matrices are very important in the general 

assessment of the risks that these biocides can cause to the aquatic environment. 

Therefore, is necessary to control their levels in environmental matrices to avoid 

harmful environmental effects.  

 

 

 

Figure 1.17 Diuron and irgarol-1051 chemical structure with their main degradation 

products DCPU (3, 4-Dichlorophenylurea), DCPMU (1-(3, 4-Dichlorophenyl)-3-methylurea), 

DCA (3,4 ‐ dichloroaniline) and M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) 

respectively.  
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Consequently, the determination of these compounds in water involves 

extraction, clean-up and preconcentration before the chromatographic analysis. 

Solid phase extraction (SPE) coupled with HPLC-UV detection or HPLC-MS 

detection have been reported to determine booster biocides in environmental 

matrices [148,149]. Fully automated procedures such as SPE coupled on-line with 

LC–MS have also been investigated [150,151]. These systems showed high 

sensitivity, reproducibility and selectivity not only for biocides but also for 

multiresidue analysis. Giraldez et al. evaluated stir bar sorptive extraction (SBSE) 

and thermal desorption (TD)-GC–MS to determine these compounds in sea water 

with successful results [152]. In addition, microwave assisted extraction followed 

by SPE (MAE-SPE) and combined with LC-MS/MS have also been proposed to 

estimate booster biocide in environmental matrices [153]. Microextraction based 

techniques are other alternatives as pre-treatment step to extract and 

preconcentrate booster biocides from environmental samples. Headspace solid 

phase microextraction (HS-SPME), SPME and single drop solid phase 

microextraction (SDSPME) were first utilized [154–156]. More recently, 

microfunnel-supported liquid-phase microextraction (MF-LPME) coupled to HPLC-

UV detection has been described to determine irgarol-1051 and diuron in water 

samples [157]. Moreover, dispersive liquid-liquid microextraction (DLL-ME)-HPLC-

MS/MS has also been proposed for these biocides [158]. In all cases, these 

techniques are carried out in off-line mode, which yield to long analysis times, 

especially if the number of samples is high. Therefore, in this context, the use of 

on-line SPME techniques, such as in-tube solid phase microextraction (in-tube 

SPME), can be advantageous compared with off-line SPME modalities since 

extraction, preconcentration, injection, separation and detection are carried out 

in a single step. Thus, analysis time is reduced and sensitivity and precision can be 

improved. 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chromatographic-analysis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pretreatment
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Nitrite and Nitrate (NO2
- , NO3

- ) 

In environmental samples, such as water, nitrite and nitrate are widely present. 

The high risk of nitrate and nitrite contamination is due to the use of fertilizers, 

animal waste, and wastewater disposal. Due to their high solubility in water, 

nitrate and nitrite migrate from the soil to groundwater and as they do not 

volatilize, therefore, they are likely to remain in the water until consumed by 

plants or other organisms [159]. Nitrate is consumed in a variety of bacterial 

processes such as the anaerobic denitrification, dissimilatory nitrate reduction to 

ammonium or nitrous oxide, being a potent greenhouse gas [160]. The amounts 

of nitrate in waters and soil contribute to their amounts in vegetables and fruits. 

Therefore, elevated concentrations of nitrate in water systems pose a significant 

risk to both the environmental and to human health [161]. In Table 1.5 are 

summarized the main regulations about nitrate concentration in water.  

 

Table 1.5 Concentrations limits of nitrate or nitrite established by different regulations. 

Sample Limit NO3
-
  Limit 

NO2
-
  

Regulation 

Drinking 
water 

50 mg/L 0.5 mg/L Council Directive 98/83/EC 

of 3 November 1998 [162] 

EPA - United States Environmental 
Protection Agency [163]  

WHO – World Health Organization [164]  

Groundwater 50 mg/L - Directive 2006/118/EC of the European 
Parliament and of the Council of 
12 December 2006 [165] 

Sewage 
treatment 
plant 

25 mg/L - Spanish regulation, Royal Decree 
1620/2007 of 7 December [166] 

 

Because of this concern, during the past 15 years, numerous methods have been 

reported for the detection and determination of nitrite and/or nitrate including 

spectrophotometric, chemiluminescent, electrochemical, chromatographic, 

capillary electrophoresis, spectrotrofluorimetric and electrochemiluminiscent 

methods [167]. From among these methods, the spectroscopic methods have 

excellent detection limits and have facile protocols. These methods are far the 

most widely used due to its simplicity and cheapness. The well-known 



Chapter 1. Introduction 

38 
 

spectrophotometric method for analysis of nitrite is based on the Griess reaction 

[168]. Often the protocols described for this determination indicate that the 

procedure should be carried out in the laboratory either in batch or continuous 

mode (flow injection analysis). These methodologies are far away from the actual 

needs of analytical methods that combine high sensitivity, accuracy and rapid 

analysis with simplicity, portability, low cost and accessible to non-qualified 

personal. Thus, in order to develop in situ procedures, the Griess reaction 

presents some weak points, such as i) the reagents are added in solution and ii) 

the determination of nitrate required its reduction to nitrite. Concerning to Griess 

reagents, these are rather unstable and usually need to be keeping at low 

temperatures as individual solutions. An option to stabilize reagents is to embed 

them in solid supports; material such as polymers can be used as an inert matrix 

support [111,169]. This scheme is increasingly used for the development of optical 

sensors and microfluidic devices [112,113,128,170]. These strategies generally 

allow miniaturization, reduce reagent and waste, cost, non-required any external 

forces, and they can be used for in situ analysis by non-trained personal. It should 

be noted, the reagent entrapment during the polymeric gelation process has 

certain advantages such as greater resistance of the membrane or a better 

preservation of the reagent against environmental conditions. For the NO3
- 

redactors such as Zn and Cd have been used. After a literature search we found 

the following nitrate reduction approaches: using a column of Zn granules or a 

copper-coated cadmium column [171,172] and hydrazide with copper catalyst 

[173] photoinduced device. Also vanadium III chloride as a reducing agent was 

proposed [174,175]. Many of these procedures were performed online using flow 

injection analysis (FIA) to monitor the reduction process and the derivatization 

step. In reference to the in situ procedures Martínez-Cisneros et al. [176] 

proposed a laboratory procedure on a chip using a cadmium column and Griess 

reaction. M. Jayawardane et al [177], used immobilized Zn powder for the 

reduction reaction and developed a procedure based on microfluidic paper. In 

recent years, the use of nanoparticles aroused great interest due to their special 

properties. To our knowledge, any work has been published using NP as a nitrate 

reductor combined with the Griess reaction. In this Thesis, PDMS based 

membranes have been proposed to determine NO2
- and NO3

- in fresh and 

preserved spinach and chard matrices. Table 1.6 summarizes some methods for 

determining NO2
- and NO3

-. 

 



 

 
 

Table 1.6 Main analytical properties of different procedures described in the literature for NO2
-
/NO3

- 
determination (*related with higher 

complexity of the parameter). 

Analite/ 
sample  

Procedure Evaluation  
Ref. Analytical parameters Green points 

 
Economical points 

  Analytical 
time/ 

Robustez 

Figures of 
merits 

LODs/Dynamic 
range 

Foot print Kg 
CO2/100 
muestras 

Waste Reagent 
consumption 
Personal time 

consumed 
Instrumentation 

NO3
-
 (water) 

 
 

Nitrate Reduction – 
column Zn granules 
(0,15-0,40 mm) 8cm- 
3 min. 
Derivatization Griess- 
solution 
Analtical signal-
Absorbance 

FIA in lab or 
in situ  
(40 
samples/h) 
 

1,3 ug/L  
3-700 ug/L 
 

0.25 High 
amount of 
waste  
(continous 
flow) 

Reagents:*** 
Personal: ** 
Instrumentation: 
*** 

[171] 
 

NO2
-
/NO3

-  

(water and 
food samples) 
 
 

Nitrate Reduction –
Zn powder (0,1 
g/sample)- 5 min 
volume 100 mL 
Derivatization Griess-  
10 min 
Analytical signal-
Absorbance 

Batch 
 

3 to 5 mg/Kg  5.99 High volumes 
used 

Reagents:*** 
Personal: *** 
Instrumentation: ** 

[178] 
 



 

 
 

NO3
-
 (water) 

 
 

Nitrate Reduction –
Zn powder (150 µm) 
(25 mg/sample)-10 
min 
Derivatization Griess 
- solution  
Analtyical signal-
Absorbance 

Batch  
 
 

0,5 mg/L  
0,5-45 mg/L 

0.23 10 mL 
sample/1 min 
reagent 

Reagents:** 
Personal: *** 
Instrumentation: ** 

[179] 

a)
NO2

-
/

b)
NO3

-  

(Synthetic, 
tap, pond and 
mineral 
water) 
 

Inkjet printing with 
AKD 
Zn suspension 
prepared by mixing 
500 mg of Zn dust 
(<10 µm); 1mg 
/sample (75seconds) 
Derivatization Griess 
- µPAD paper support 
(3-7 min) 
Analytical signal-
scanned imagens 
processed 

In situ 
Microfluidic 
Sensor 
Stable for 30 
days 
Stored in 
vacuum at ≤-
20ºC ) 

a)
1,0/

b)
19 µM 

10-150 µM
a)

 
50-1000 µM

b)
 

9.45 
In the 
fabrication of 
the sensor 
/scanner  

Low 
consumption 
of reagents 
(µl) 

Reagents:* 
Personal: * 
Instrumentation: ** 

[174] 

Reference 
methods 

       

NO3
-  

 
Electrode Nitrate 
10 mL sample 10 mL 
of buffer ( (Al3SO4)3 
17 mg ; Ag2SO4 34.3 
mg; H3BO4 18.6 
mg,H2SO3H 25.4 
mg/per sample) 

In situ o in 
the lab 
Interference
s: 
Cl

-
, CO3

-2
, 

NO2
-
, CN

-
, S

2-
 

, Br
-
, I

-
, ClO3

-
, 

LODs: 10
-
5 M 

Range: 10
-
5 M- 

10-1 M  
 

1.8*10
-4

 High volumes Reagent:** 
Time/sample: 3min 
Instrumentation: 
*** 

[180] 



 

 
 

Analtyical signal-
Electrochemical 

ClO4
-
 

NO3
-  

 
Absorbance 
measurement at 220 
nm and 275 nm  
Analtyical signal-
Absorbance 

In situ 
(probes) 
In the lab 
(batch or 
FIA)  
Interference
s: soaps, 
NO2

-
, Cr

6+
 

LODs: 0.02 mg/L 
Range: 007 a 7 
mg/L  
 

0.025  Reagent: 
Time/sample: 1min 
Instrumentation: 
*** 
 

[180] 

NO3
-  

 
Nitrate Reduction –
Cd column 
(Derivatización Griess 
- solution  
Analtyical signal-
Absorbance  

FIA  
Column 
innactivation
,  
Cd toxicity 

LODs: 0.002 
mg/L   
Range: 0 a 10 
mg/L  

0.082 Waste of Cd Reagent: *** 
Time/sample: 
15min 
Instrumentation: 
*** 

[180] 

 (NO3
-
, NO2

-
)  

(Cl
-
, F

-
, PO4

3-
, 

SO4
2-

 ) 
 

Ionic Cromatography 
Anionic column, 
mobil phase Na2CO3 
5.2 mM/NaHCO3 1 
mM Injection 20 µl  

In the lab Intervalo: 0.2—
50 mg/L 
LODs 0.02 µg/L 

3.3  Reagent:* 
Time/sample: 20 
min 
Instrumentation: 
**** 

[180] 
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1.6.2 Biological samples  

Regarding to biological samples, the aim of quantitative analytical method is to 

provide accurate and reliable results of the amount of a targeted or untargeted 

analyte, usually a pharmaceutical or drug, a metabolite or a biomarker. Biological 

samples such as organs, tissues, cells, DNA, RNA, proteins, exhaled breath or body 

fluids like urine, saliva, blood, sweat, cerebrospinal fluid, breast milk, sweat, 

gastric fluid, among other [181] can be considered. The development of biological 

sample analysis methods has become more and more challenging over the past 

years due to very demanding requirements in terms of method reliability, 

sensitivity, speed of analysis and sample throughput.  

In this Thesis different biological samples have been studied to develop new 

sustainable strategies. Mucosa samples, breath samples and urine samples have 

been analysed to determine different analytes of interest. Both, in-tube SPME-

DAD and PDMS and nylon based in-situ devices have been proposed. 

Endotracheal tubes (ETTs) are catheters that are inserted into the trachea with 

the purpose of estabilising and maintaining a patent airway and to ensure 

adequate exchange of O2 and CO2. Therefore, it is an increasing source of 

healthcare-associated infections due to colonization of these appliances by 

microbes[182]. The surface of these devices acts as a substrate which allows the 

attachment of microorganisms, resulting in the formation of a dense multicellular 

communities of bacteria embedded in a self-produced extracellular matrix that 

imbibes and protects them, known as biofilm [183,184]. The formation of a 

biofilm in medical devices is of particular concern due, once the device is 

colonized, infection is such difficult to be eradicated that, in most clinical practice 

guidelines, the withdrawal of a device related to the infection is recommended. 

However, in many occasions, the devices removal is not possible and the 

treatment with an antimicrobial therapy is needed, making the biofilm an object 

of great interest in many investigation fields. Although, there are several 

approaches for the biofilm prevention, traditional treatment with antimicrobials is 

generally used [185]. In this Thesis meropenem has been studied.  

Meropenem (Figure 1.18), chemically (4R,5S,6S)-3-[(3S,5S)-5-

(dimethylcarbamoyl)pyrrolidin-3-yl]sulfanyl-6-[(1R)-1-hydroxyethyl]-4-methyl-7-

oxo-1-azabicyclo[3,2,0]hept-2-ene-2-carboxylic acid,  is a carbapenem (β-lactam) 

antibiotic with broad-spectrum to a wide range of gram positive, gram negative 
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and anaerobic bacteria. These type of β-lactams are often used as last resort 

when patients with infections become gravely ill or are suspected of harboring 

resistant bacteria [186]. Carbapenems, like all β-lactam antibiotics, inhibit 

bacterial cell wall synthesis by inactivating penicillin-binding proteins [187–189]. 

Moreover, β-lactams are time-dependent antibiotic, which means that, to ensure 

a bactericidal effect, the concentration of free drug must be maintained above the 

minimum inhibitory concentration between two consecutive doses [190–193]. 

Meropenem has shown clinical efficacy in the treatment of a wide range of 

serious infections such as lower respiratory tract, intra-abdominal infection, 

obstetric/gynecological, urinary tract, meningitis, cystic fibrosis and in febrile 

neutropenia [194,195]. Therefore, the estimation of the concentrations in 

patients and in particular, in invasive medical devices, such as ETTs is of great 

importance in order to evaluate the effectiveness of treatments.  

 

Figure 1.18 Chemical structure of meropenem. 

 

Traditionally, the determination of antibiotics in biological fluids has been carried 

out using microbiological procedures [6]. Nevertheless, the literature survey 

reveals different analytical methods for quantitative estimation of antimicrobials 

in biological fluids and in pharmaceutical formulations, including high-

performance liquid chromatography [189,196–199], capillary zone electrophoresis 

[200] or ultraviolet spectrophotometry [196], among others (see Table 1.7). As 

can be observed, the analysis by HPLC with UV–vis [192,196] or MS/MS detection 

[188] remains the main analytical technique for the determination of 

antimicrobials. HPLC methods usually involve a sample pre-treatment step before 

the analysis, which generally is the most time-consuming part of the chemical 

analysis. As described in-tube SPME is a potential alternative method, and 

therefore, it was studied to determine meropenem in mucosa sample from 

endotracheal tube.   



 

 
 

Table 1.7 Main analytical properties of different analytical methods proposed for Meropenem and other antimicrobials in the bibliography. 

Analyte Matrix Sample 
treatmant 

Method LOD LOQ RSD (%) Linear range Ref. 

Meropenem Pharmaceutical 
dosage 

- Microbiological 
assay 

  0.94 1.5-6 µg/mL [187] 

Meropenem Bacterial media Centrifugation 
(centrifugal filter 

device)  

LC-MS/MS   6.91 50-25,000 
ng/mL 

[188] 

Cefepim 
Ceftazidim 
Cefuroxim 

Meropenem 
Piperacillin 

Human plasma SPE (with tubes 
vacuum manifold 
Macherey-Nagel) 

HPLC-UV  0.5, µg/mL 
0.5, µg/mL 
0.5, µg/mL 
0.5, µg/mL 
0.5, µg/mL 

6.8 
8.4 

12.2 
3.5 
5.6 

2.5–60 µg/mL 
2.5–60 µg/mL 
2.5–60 µg/mL 
2.5–60 µg/mL 
2.5–60 µg/mL 

[192] 

Meropenem Pharmaceutical 
dosage 

 
- 

HPLC-UV 4.24 ng/mL 12.85 
ng/mL 

0.85 10-70 ng/mL [196] 

UV 
spectrophotomet

ric method 

19.41 
ng/mL 

59.09 
ng/mL 

0.89 5-35 ng/mL 

Meropenem Serum and 
bronchial 
secretions 

SPE(HPLC-
integrated-
extraction 

system) 
(extraction 

column) 

HPLC-UV/vis 0.5 µg/mL 0.5µg /mL 6 0.5 to 40 µg 
/mL 

[197] 

Amikacin 
Streptomyci

n 
Kanamycin B 

Water SPE(laboratory-
made exchange 

columns packed) 

SCX- HPLC-CL 0.7 µg/L 
7.5 µg/L 

10.0 µg/L 
1.0 µg/L 

 3.1 
4.9 
5.4 
2.7 

2.5-50 µg/L 
25-500 µg/L 
30-750 µg/L 
3.5-75 µg/L 

[201] 



 

 
 

Paromonyci
n 

Neomycin B 

1.5 µg/L 3.6 5.0-100 µg/L 

 
Meropenem 

 

plasma Centrifugation HPLC-UV 0.01 µg/ml 0.05 µg/ml 7.17 0.05-100µg/ml [202] 

Meropenem Plasma SPE(HLB 
cartridges used in 
a Varian vacuum 

manifold) 

MEKC 0.2 µg/mL   0.5–50µg/mL [203] 

Cerebrospinal 
fluid 

Without sample 
pretreatment 

0.3 µg/mL  

Linezolid 
Meropenem 
Vancomycin 

Bacterial  
growth  

médium (spiked 
sample) 

1.Precipitation(ce
ntrifugation) with 

direct injection 
2.Precipitation 
and solvent 
evaporation 

HPLC-DAD  0.5 µg/mL 
2 µg/mL 

0.5 µg/mL 

  [204] 

Amoxicilin 
Cefuroxime 
Ceftazidime 
Meropenem 
Piperacillin 

Human plasma 
Bovine serum 

Precipitate of 
proteins and 

centrifugation. 

UPLC-MS/MS - 1.05 mg/L 
0.62 mg/L 
0.81 mg/L 
0.52 mg/L 
1.09 mg/L 

16.7 
11.9 
7.1 

11.4 
8.1 

1-100 mg/L 
1-100 mg/L 
0.5-80 mg/L 
0.5-80 mg/L 
1-150 mg/L 

[205] 

Ertapenem 
Meropenem 
Doripenem 

Urine (spiked 
sample) 

 
- 

LC-UV 2.362 
µg/mL 
0.943 
µg/mL 
1.137 

7.156 
µg/mL 
2.858 
µg/mL 
3.445 

1.354 
0.909 
1.391 

15-50 µg/mL 
20-50 µg/mL 
20-50 µg/mL 

[206] 



 

 
 

µg/mL µg/mL 
Meropenem 

+ 10 β-
lactams 

Human plasma Centrifugation HPLC-UV  0.1  µg/mL 4.7 0.1- 50 µg/mL. [207] 

Doripenem 
Ertapenem 
Imipenem 

Meropenem 

Human plasma  Centrifugation of 
human plasma 
adding internal 

standart solution. 
Evaporation 

UPLC-UV  0.50 mg/L 
0.50 mg/L 
0.50 mg/L 
0.50 mg/L 

6.6 
12.2 
5.08 
2.9 

 [208] 

Ampicillin 
Piperacillin 
Tazobactam 
Meropenem 

Acyclovir 
Metronidazo

le 

Human Plasma  
 

Centrifugation 

LC-MS/MS  300 ng/mL 
300 ng/mL 
150 ng/mL 
50 ng/mL 

100 ng/mL 
100 ng/mL 

6.97 
8.20 
7.02 
7.81 
9.06 
9.44 

0.3-150 µg/mL 
0.3-150 µg/mL 
0.15-75 µg/mL 
0.1-50 µg/mL 
0.1-50 µg/mL 

0.05-25 µg/mL 

[209] 

Meropenem 
+ 11 β-
lactams 

Human plasma  Proteins 
precipitation with 

ACN and 
centrifugation 

HPLC-UV  5 µg/mL 1.4 5–250 µg/mL [210] 

Meropenem 
+ 8 β-

lactams 

Human serum 
(spiked sample) 

SPE (using Waters 
Oasis HLB 
cartridges) 

HPLC-MS/MS 0.05 µg/mL 0.10 µg/mL  0.1–50 µg/mL [211] 

Meropenem 
Biapenem 

Peritoneal fluid Centrifugation 
(Nanosep 10K 

centrifugal filter 
device) 

HPLC-UV 0.01 µg/mL 0.05 µg/mL  0.05–100 µg/mL [212] 

Human Bile 0.02 µg/mL 0.1 µg/mL  0.1–100 µg/mL 
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Volatile sulfure compounds (VSCs) 

The composition of human breath can provide relevant information about health 

status, thus, it is an interesting biological sample. Many volatile organic 

compounds (VOCs), mainly alkanes and benzene derivatives, in the breath report 

lung cancer[213]. On the other hand, Broza et al. report a respiration-based 

classifier for gastric cancer that uses a nanomaterial-based sensor array [214]. 

Early detection of kidney lesions can also be performed using breath samples 

[215]. Finally, volatile sulfur compounds (VSCs) such as hydrogen sulfide (H2S), 

methyl mercaptan (CH3SH), and dimethyl sulfide ((CH3)2S) have interest in many 

analytical fields; one of the most monitored gas is H2S [216]. Specifically, VSCs are 

primarily produced by anaerobic bacteria and are considered to be the major 

gases associated with halitosis and have demonstrated a high correlation with 

breath malodour, which is also termed as halitosis [217]. Halitosis is one of the 

common problems that affect people in their day to day life, and it is an important 

negative factor in social communication. It has been reported that about 20% of 

the general population are suffering from halitosis, and about 50% was estimated 

that will suffer from it once in their lives[218]. In addition, some studies reported 

that halitosis or bad breath can be associated with the presence of plaque, tongue 

coating [219] and periodontal diseases [220]. According to several studies is not 

considered halitosis if VSCs levels are between 80-160 ppb, considered weak 

halitosis if VSCs=160-250 ppbv (malodor at a close distance) and halitosis strong-

VSCs>250 ppbv (malodour at a greater distance) [220,221]. Commercial 

measurement tools for the quantification of mouth odours  are the halitometer 

[222] and CG and GC-MS [223]. These are expensive and relatively complex 

instrumentation and requires warm-up times and yearly maintenance and they 

are not accessible to the general population. Also, there is an Oral microbial 

BANA[224] test, which quantifies salivary levels of an enzyme, correlating this 

value with sulfide levels (see Table 1.7). Other methods for determination of 

sulfur compounds frequently used are electrochemical devices [225] and optical 

methods such as the commercial lead acetate paper strips 48 or the colorimetric 

tubes of Hg+2 [226]. These methods have some disadvantages, for example, lead, 

its toxic and colorimetric tubes need active sampling with a pump; and in 

addition, the sensitivity of these methods often are low (>1000 ppbv), which is not 

suitable for sensitive sulfur detection in, for example, breath samples. An 

iodometry coupled to a photometric detector [227]  was also proposed with a 

good limit of detection. A disposable sensor based on Bi(OH)3 coated on paper and 
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wetted in alkaline media responded also to H2S in 30 min [228]. This sensor has 

been tested in breath samples, however, it needs to be stored under a nitrogen 

atmosphere to avoid reactivity with CO2. Plasmonic colorimetric sensors have 

been also reported for sulphide detection but these were performed in solution 

[229–231]. Table 1.8 shows a summary of the analytical methods for determining 

VSCs.  

 

 

 

 



 

 
 

 

Table 1.8 Summary of existing methods for the in situ sulphide determination. 

Analytical 
method 

Concentrations 
(LOD, linear 
range 
in ppbv) 

Response 
(time, 
conditions) 

Selectivity Stability Matrix Applications 
(samples) 

Green 
Process

a
 

Cost
b
 Ref./ 

Commercial 
brand 

1) INSTRUMENTAL          
Halitometrer 
(electrochemical 
sensor) 

LOD = 10 
10 - 3000 

10 min Affected by 
humidity, 
alcohol and 
other gases 

1 year Gaseous Breath 
(Halitosis) 

x *** [222] 
Commercial 

OralChroma  
(Gas 
chromatography) 

LOD = 10 
50-1000 

8 min Separately 
determination 
of 
H2S, metyl 
and 
dimethyl 
mercaptano 

2 years Gaseous Breath 
(Halitosis) 

x *** [223] 
Commercial 

2) INDIRECT          
Enzymatic test 
BANA: 

Semi-
cuantitativo 

15 min, 
55ºC 

Affected by 
humidity 
and light 

- Aquesos Saliva xx ** [224]  
Commercial 

3)ELECTROCHEMICAL          
In2O3@CuO 300-10000 

LOD = 300 
5 sec 
RT 

Detection of 
H2S and 
NH3 

30 days Gaseous - xx ** [225]  
 

4) OPTIC          



 

 
 

Lead acetate paper 
strips 

3525- 35250 < 1 min - - Gaseous 
Aqueous 

Employment 
security and 
others 

x * [232] 
Commercial 

 

Colorimétric tube of 
Hg

+2
 and a pump 

LOD = 2·10
3
 

(2 - 50)·10
3
 

6 min SO2, HCl, Ethyl 
mercaptane 

- Gaseous Employment 
security and 
others 

x ** [226] 
 

Commercial 
Iodometry. Sampler 
and fotometric 
detector 

LOD = 3.6 
150 – 705 

12 min - - Gaseous Breath 
(n=10) 

xx * [227] 
 

Bi(OH)3 on paper 
(sock it in buffer 
before use) 

LOD > 30 
30-200 

30 min 
 

Can react with 
CO2 

1 month 
(under 
N2) 

Gaseous Breath 
(n=1) 

xx ** [228] 
 

AgNO3 and 3,3',5,5'- 
tetramethilbenzidiea 
nanoparticles of Ag2S 

LOD = 5 
24 – 1922 

5 min, 30ºC, 
pH=4 

Selective to 
cations and 
anions 

Prepara
tion 
before 
use 

Aqueous  Water 
samples 

xxx * [230] 
 

AgNP-tanic acid- 
benzoquinones 

LOD: 4.8·10
3
 

(4.8 – 4.8) ·10
3
 

10 min Selective to 
thiosulfate 
against 
other anions 

In 
solution 

Aqueous Tap and lake 
water 

xxx * [231] 
  
 

a
 Greenest process correspond to xxx, b higher cost corresponds to ** 
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In recent years interest in methods of detecting H2S in biological matrices has 

increased, as it is a modulator of the fundamental physiological and 

pathophysiological functions in different organs such as the brain [233,234], the 

kidney [235] and the gastrointestinal tract [236,237]. H2S has also been reported 

to be involved in the pathogenesis of a variety of disorders, including Alzheimer's 

disease and Down syndrome [238,239]. Its physiological actions have also been 

shown to include regulation of inflammation[240], blood pressure [241], energy 

production [242] and oxidative stress [243]. Experimental studies reveal that H2S 

is produced enzymatically at µM levels in mammals and exerts a series of 

physiological actions on the cardiovascular system[240,244]. In previous years 

cardiovascular research had focused mainly on two endogenously produced gas 

signaling molecules: nitric oxide and carbon monoxide. However, a third 

endogenously produced gas signaling molecule, H2S, has become a potentially 

important mediator in such research [245]. In summary, we can say that the 

accurate and reliable measurement of H2S concentrations in biological matrices 

can provide critical information on the relationship of amounts of H2S with various 

normal or abnormal biochemical processes. Due to many H2S-mediated 

physiological processes discovered in recent years, the search for new methods of 

detecting H2S in biological matrices is at the centre of scientific research.  

The properties of the previous method, showed difficulties to be applied for some 

biological samples such as living cells due to their destructive nature. Therefore, it 

would be interesting to develop a sensitive, non-invasive, simple, inexpensive, and 

easy to prepare sensor for in situ analysis for detection of H2S, in vitro live cell 

assays. Therefore, a non-invasive sensor, with high sensitivity and selectivity, 

inexpensive and easy to prepare for H2S in situ analysis in live cell assays in vitro 

will be an alternative satisfactorily accepted.  
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 Alkylresorcinols 

Urine is a biological matrix widely used to determine the health status by 

obtaining information biomarkers. In this Thesis alkylresorcinols in urine samples 

have been studed as biomarkers to evaluate an adequate gluten-free diet in celiac 

patients.  

Celiac disease is an immune-mediated systemic disorder elicited by gluten 

and related prolamines present in genetically susceptible individuals.  It is 

characterized by the presence of different clinic symptoms, specific antibodies 

(SA), haplotypes HLC DQ2 and/or DQ8 and enteropathy. The only efficient therapy 

is to follow a gluten free diet (GFD), however there are several drawbacks limiting 

its efficiency, since their compliance with the gluten-free diet is not always 

adequate, and thus low adherence is achieved and many food products contain 

low concentrations of gluten. The serologic biomarkers have a limited utility to 

detect food transgressions, since last more than 24 months to obtain a negative 

response and afterwards, low transgressions do not produce immunologic 

response. By another hand, dietary reports are also used, however their low 

reliability have been demonstrated.  

Therefore, and given the relevance of this health problem, there is an 

important need of a good biomarker that can estimate the gluten intake in the 

evaluation of celiac patients. Thus, alkylresorcinols (AR) is potential biomarkers to 

estimate little variations of GFD. These compounds are present in gluten 

containing grain, hence they can be used as biomarkers of gluten intake of 

individuals with GFD. The main benefits of the monitoring are directly related with 

the diet control, preventing patients from involuntary transgressions improving 

the diagnostic and the medical prognosis, which would be translated in socio-

economic benefits in the health system. Therefore, RA and its metabolites can be 

considered as possible biomarkers in biological samples. In this Thesis 3,5-

dihydroxyhydrocinnamicacid (DHCA) and 1,3-dihydroxy-5-pentylbenzene (PR) has 

been studied (see Figure 1.19). 
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Figure 1.19. A) DHCA and B) PR structures. 

 

From an analytical point of view, the methods described to study these 

compounds are based on chromatographic, HPLC or GC methods with a previous 

pre-treatment step of the sample. In the case of biological samples, solid phase 

extraction has been the most widely used technique to extract and 

preconcentrate analytes. On the other hand, detection has been carried out by 

UV-vis, fluorescence or EM [246–253]. These reports have shown the possible 

application of AR as a dietary biomarker of gluten ingestion, however from a 

practical point of view, there is a need for simplified devices that allow the 

estimation of these biomarkers for medical services and patients, mainly to obtain 

a rapid response to possible food offenses. 

 

 

 

 



 

 
 

 

Table 1.9 Previously proposed trchniques for the determination of AR. 

Analysis technique Extraction Matrix Analyte LOD RSD (%) Ref 

GC-MS EFS Biological fluid AR 35 nmol/ L < 15 [254] 

GC-MS EFS Biological fluid AR 0.1 µmol/L < 11.5 [247] 

HPLC - DAD - MS  Ultrasound 
assisted 

extraction 

Food AR 1.18 – 8.38 
ng 

< 4.99 [247] 

UHPLC - 
UV-vis 

 
 
 

Lixiviation 

 
 
 

Food 
 

 
 

Heptadecylresorcinol 
Nonadecylresorcinol 

Tricosylresorcinol  
Pentacosylresorcinol 

1250 pg < 10 
 
 

< 10 

 [248] 
 

UHPLC -Fluorescence 2 pg 

UHPLC – 
electrochemical 

detecter 

20 pg < 10 

HPLC - fluorescence EFS Biological fluid Total alkylresorcinol 1.1-1.8 
nmol/ L 

< 3.1 [249] 

Spectrophotometer – 
UV-Vis 

Maceration Food Olivetol 
Catechin 

0.253 µg/mL 
0.768 µg/mL 

< 9.7 [251] 
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1.6.3 Forensic matrices 

Forensic science is considered as an alternative for the administration of 

justice to assist in the resolution of conflicts between members of the community. 

Forensic samples provide the scientific truth for the administration of justice. 

Analysis of these samples can take weeks or even months to complete due to the 

technical requirements of different forensic tests, the limited availability or 

integrity of some samples and their complexity, and finally, the extensive 

collection of data in the records required for legal proceedings, makes these tests 

slower. Therefore, the development of forensic analysis methods has become 

more and more challenging due to the very demanding requirements mentioned 

above, such as method reliability, sensitivity and analysis speed.  

Chemical and physical evidence such as gunshot residues (GSRs) from 

firearms discharge may provide valuable forensic information [255,256]. GSRs are 

organic and inorganic components in nature, which can be deposited on a 

shooter’s body, mainly onto the index fingers and thumbs of the hands, after 

discharging a firearm [257]. A suspect can be successfully identified if GSRs are 

reliably analyzed. Thus, the detection of these compounds plays an important role 

in the field of forensic science. Inorganic gunshot residues (IGSRs) are usually 

spherical particles mainly composed of Ba, Pb, and Sb [258]. Other elements such 

as Ca, Al, Cu, Fe, Zn, Ni, Si, and K can also be found [259], although they are more 

prevalent in the environment than Pb, Ba, and Sb[260]. The size of these particles 

is usually from 0.5 µm to 10 µm, although sizes up to 100 µm have also been 

reported[261].  The presence of these metallic particles has been traditionally 

confirmed by scanning electron microscopy coupled to the energy dispersion X-

ray (SEM-EDX) technique due to its non-destructive capability to perform both 

morphological and elemental analyses [262]. However, the analysis of IGSRs has 

its limitations. False positive results can be produced from inorganic particles 

derived from environmental and occupational sources [263–265], which is a 

problem when considering IGSRs as evidence in judicial proceedings in the 

forensic field. The analysis of organic gunshot residues (OGSRs) in the same 

sample could provide complementary information that could strengthen the 

probative value of a forensic sample. Organic components originate mostly from 

the propellant, and their composition depends on the commercial brand and 

ammunition type. An important component of gun propellants is diphenylamine 

(DPA).  



Chapter 1. Introducrion 

56 
 

DPA is an organic compound with the structure presented in the Figure 1.20, is an 

important component of weapon propellants, used as a stabilizer to prevent the 

decomposition of explosive products such as nitrocellulose and nitroglycerin, both 

of which are present in many smokeless powders used as propellants[266] 

Therefore, this stabilizer may remain on a shooter’s hands, and it may be used as 

an indicator of gunshot residues [267]. DPA detection could provide valuable 

evidence of firearm discharge for the identification of suspects in firearm-related 

crimes. The low amount of DPA remaining on a shooter’s hands requires highly-

sensitive analytical techniques for its detection. In order to improve the 

sensitivity, many methods include off-line sample treatment, which involves time-

consuming and tedious steps. Table 1.10 presents several methods used for 

extraction and determination of DPA that remains on the hands. The main 

drawback of the reported methods is the low detection limit required, taking into 

account the sampling and extraction process, time of analysis, and greenness of 

the procedure.  

 

Figure 1.20 Chemical structure of DPA 

 

As mentioned in seccion 1.4 on-line sample pre-treatment has become an 

interesting alternative as sustanable analytical chemistry indicates. Although mass 

spectrometry (MS) coupled to gas chromatography (GC) or liquid chromatography 

(LC) offers suitable sensitivity, the chromatographic techniques can present 

issues. Thermal degradation of DPA can occur by GC and the wide range of 

polarities of compounds present in GSRs can limit LC. Some methods have also 

successfully identified DPA using several MS techniques without any 

chromatographic system such as tandem mass spectrometry (MS–MS) [268], 

desorption electrospray ionization-mass spectrometry (DESI-MS) [269], 

nanoelectrospray ionization mass spectrometry (nESI-MS) [270], and ion mobility 

spectrometry (IMS)[271]. However, IT-SPME coupled to capillary liquid 

chromatography (CapLC) contributes to increase the sensitivity and sample clean-

https://en.wikipedia.org/wiki/Organic_compound
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up in an on-line way. Additionally, the miniaturization of the LC technique (i.e., 

low column dimensions, low flow rates, low amount of wastes) contributes also to 

achieve improved sensitivity, which can permit the use of diode array UV-

detectors (DAD), which cost less than an MS detector. 

 



 

 
 

Table 1.10 Comparison of reported methods for DPA on a shooter’s hands The method proposed in this work was also included for 

comparison (On-line in-tube solid phase microextraction coupled to capillary liquid chromatography with diode array detection (IT-SPME-

CapLC-DAD). 

Analysis 
Tecnhique  

DPA extraction LOD DPA amount 
on hands 

Mobile phase; Flow;Injection 
volume 

Organic solvents Ref. 

HPLC-MS DPA extracted with cotton 
swab soaked with acetone, 
wich was evaporated and 
dissolved in 0.1mL  methanol 

0.3 ng/mL 
(solution) 

 LOQ Methanol-water (90:10)  
800µL/min; 
10µL 

Methanol and 
acetone  as 
extractive solvent 
and movile phase 

[267] 

GC-MS DPA extracted with cotton 
swab moistened in water ,  the 
swab was heated and capillary 
microextraction made 

3 ng ≈1 ng  LOQ - Water as extractive 
solvent 

[258] 

MS  Cotton swab soaked with 
methanol to extract DPA from 
the hand and dilution to 1mL of 
methanol 
 

1 ng/mL 
solution  

Not studied - Methanol as 
extractive solvent 

[268] 

MS Dabbing an adhesive coated 
aluminium stub over the hands 

- Not 
detected 

4 µL/min Water:methanol 
0.1% formic acid as 
solvent spray 

[272] 

HPLC-MS Cotton swab moistened 
with isopropyl 
alcohol:water, 75:25, 
which was introduced in 
a tube with 3.2 mL of the 
mixture and centrifuged. 
The aliquot was diluted 
five times with 
deionized water. SPEC 
C18 cartridges were 

34 ng 0.29-
83nmol/L 

Acetonitrile: 
methanol: 
water, acidified 
by 0.1% of 
formic acid; 
200 µL/min; 
20 µL 

Isopropylalcohol 
as extraction 
solvent, 
methanol and 
acetonitrile for 
mobile phase 

[273] 



 

 
 

conditioned with 250 µL 
of isopropyl alcohol and 
deionized water. 5000 µL 
of aqueous samples were 
loaded. The sorbent was 
rinsed with 250 µL of 
deionized water and 
dried. The analytes were 
eluted in 
acetonitrile:water:methyl 
alcohol, 80:10:10; 200 µL 

CE Hands were swabbed by 
a cotton swab embedded 
in a solvent. The analyte 
was recuperated by 
sonication into 2 mL of 
solvent. Liquid 
extraction was carried 
out with 2 mL of ethyl 
acetate and 50 µL of 
ethylene glycol; 
the solvent was 
evaporated under dry 
nitrogen. The residues 
were reconstituted with 
diaminocyclohexane 
tetraacetic acid, 
and borate 

2387 ng/mL 
(solution) 

Not 
detected 

- Diaminocyclohexane 
tetraacetic acid 
and sodium 
dodecyl sulfate 
as sampling 
solvents 

[259] 
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1.6.4 Food matrices 

The evaluation of the food quality and authenticity has been and will be of great 

importance to guarantee the safety of food in accordance with the legislation. It 

includes the control of technological processes and their effect on food, the 

characterization of the food composition, determination of food nutritional value, 

among others. The complex combination of objectives mentioned above can only 

be addressed thanks to the large number of advanced analytical technologies 

available today.  

 

Nitrite and Nitrate (NO2
- , NO3

- ) 

 

Elevated concentrations of nitrate in food matrices suppose a significant risk to 

human health [161]. Nitrate can be reduced to nitrite even in the human digestive 

system causing several serious health problems, for example when nitrate can 

oxidize iron in hemoglobin thus leading to methemoglobinemia. Nitrite forms 

carcinogenic nitrosamines under the acidic conditions of the stomach which can 

cause gastric cancer [274]. 

Vegetables are the most important source of nitrate exposure in the human diet 

and contribute to the intake of more than 80% of nitrates [275]. The amount of 

nitrates in environmental samples such as waters and soil contribute to the 

amount in vegetables and fruits. The main regulations about nitrate concentration 

in fresh and preserved spinach and in two types of fresh lettuce are summarized 

in Table 1.11. 

 

Table 1.11 Concentrations limits of nitrate or nitrite established by different regulations. 

Sample Limit NO3
-
  Limit 

NO2
-
  

Regulation 

Fresh spinach 2500-3000 
mg/Kg 

- Commission Regulation (EC) N
o
 1881/2006  

of 19 December 2006 [276] 

Preserved, 
deep-frozen or 
frozen spinach 

2000 mg/Kg - Commission Regulation (EC) No 1881/2006  

of 19 December 2006 [276] 

Fresh lettuce 2500-4500 
mg/Kg 

- Commission Regulation (EC) N
o
 1881/2006  

of 19 December 2006 [276] 

Iceberg-type 
lettuce 

2000-2500 
mg/Kg 

- Commission Regulation (EC) N
o
 1881/2006  

of 19 December 2006 [276] 
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The maximum nitrate amount to be ingested daily is less than 3.65 mg/kg by body 

weight [277]. Therefore, it is essential to design sustainable analytical methods to 

be able to measure these analytes reliably and at low cost. As we discussed in 

section 1.6.1 there are several methods (spectrophotometric, chemiluminescent, 

electrochemical, chromatographic, capillary electrophoresis, 

spectrotrofluorimetric and electrochemiluminiscent) to measure nitrate and 

nitrite in environmental and in food samples. [167]. As discussed earlier (in 

section 1.6.1) a device based on Greiss reagent embedded on PDMS supports has 

been proposed as a sustainable solution. Table 1.6 summarizes some methods to 

determine NO2
- and NO3

- in food and in environmental water.
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Ammonia and amines 

Meat products are commercially important and widely consumed foods, so 

ensuring their quality and safety are very essential. The quality of the meat is 

assessed by the following attributes, such as texture, colour, tenderness and 

freshness. Therefore, determining meat quality parameters are very essential in 

all food industry processes because consumers always demand superior quality of 

meat and meat products [278,279]. The meat freshness is a very important 

parameter to assess quality and safety [280,281] and it degrades due to microbial 

deterioration and biochemical reactions during storage. The main ingredients, 

such as carbohydrates, proteins and fats over time are broken down by enzymes 

and bacteria, producing many volatile organic compounds (VOCs): carbohydrates 

break down into hydrocarbons, alcohols, ketones and aldehydes; the protein will 

break down into ammonia, amines, hydrogen sulfide, ethyl mercaptan, etc .; the 

fat will break down into aldehydes and acid aldehydes [282]. Ammonia and 

aliphatic amines are colorless gases with a distinctive odor. Ammonia like aliphatic 

amines has become important pollutants due to their toxic and odorous 

characteristics. Ammonia and aliphatic amines found in air in considerable 

concentrations are the result of their extensive use throughout the chemical 

industry, in which these compounds are applied in the production of fertilizers, 

pesticides, surfactants, drugs, polymers, colorants. Hence, it is important to 

monitor these analytes. Ammonia is also produced naturally in the environment, 

in the air, soil, and water, in plants and animals, including humans. For example, 

the human body produces ammonia when it breaks down protein-containing 

foods into amino acids and ammonia, and then converts the ammonia into urea 

[283]. On the other hand, as commented above, during spoilage, protein-rich 

foods (meat chicken, pork, beef, mutton and fish) can release organic amines such 

as dimethylamine (C2H7N), trimethylamine (C3H9N), and ammonia (NH3) etc., as a 

result of microbial degradation. Total volatile basic nitrogen (TVBN) has been used 

as an index of decomposition in meats and fish since 1952. In meat, TVBN consists 

mainly of ammonia, with only traces of trimethylamine [284] and other amines. 

Some methods of evaluation of meat spoilage status determined by ammonia 

[285–288] and amine compounds [289–295] [21–30] are given in the literature. 

For amine compounds, generally a separation method was employed [25–30]. It is 

of great significance for rapid, accurate and nondestructive detection of meat 

freshness, increasing interest in developing in-situ analysis devices has risen for 
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aiding to the consumer. In this regard, the development of chemical sensor 

technology [79,111,285–287,296–298]  has acquired great scientific impact. 

Below in the Table 1.12 some sensors designed in recent years are discussed to 

monitor meat contamination and spoilage by determining ammonia and aliphatic 

amines. In this Thesis, NQS-ILs doped PDMS membranes have been proposed as a 

sustainable alternative to in-situ determination of ammonia and amines.    

 



 

 
 

Table 1.12 Different procedures described in the literature for TVBM quantification in meat matrix. 
 

Type of sample Analyte Calibration 

lineal slope/ 

LOD 

Sensor design Reagent Sensor 

response  

Measurement  Ref. 

Pork and 

chicken 

Triethylamine - Intelligent film 
(Based on 
cassia gum 
containing 

Bromothymol 
Blue-anchored 

cellulose 
fibers) 

Bromothymol 

Blue – pH 

indicator 

 

colorimetric portable 

colorimeter 

[287] 

Beef (sirloin 
steak) Chicken 

(thigh)  

Fish (cod fillet),  

Pork (loin 
chops) 

Trimethylamine 

Cadaverine 

H2S 

(CH3)2S 

-/LOD 35ppbv Combination 
of a disposable 

colorimetric 
sensor array 

from the 
printing of 

various 
chemically 

sensitive dyes 

Various 

chemically 

sensitive dyes 

Colorimetric RGB colour 

model 

[298] 



 

 
 

Shrimp with a 
handheld 

device 

Cod and 
chicken breast 

NH3, 

Trimethylamine, 

H2S, CO2 and CO 

- Paper-based 

electrical gas 

sensor (PEGS) 

- Electrochemic

al 

Single PEGS 

consisting of two 

carbon 

electrodes with 

three fingers and 

a spacing of 1 

mm between 

each finger. 

[285] 

Chicken, beef, 

fish and pork 

Trimethylamine 

Putrescine 

Cadaverine 

7ppm Force Spun 

polydiacetylen

e (PDA) 

nanofibers 

PDA Colorimetric, 

fluorescence 

 [289] 
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Analytical information is important in different areas of the society 

towards more sustainable and respectful practices. Indeed, in the last decade, an 

exponential growth on the development of sustainable analytical method has 

been observed. This fact implies to follow the principles of sustainable analytical 

chemistry to develop reliable analytical method, environmental friendly and cost 

effective that solves the social problem addressed.  

The objective of this Thesis has been the development of sustainable analytical 

methodologies for solving different problems in the environmental, biological, 

food and forensic analysis. The specific objectives have been: 

1. To develop analytical tools to address sustainability in Analytical 

Chemistry by using two strategies  

 Coupling on-line several steps and miniaturization by IT-SPME – 

Cap LC DAD 

 Providing new in-situ analytical solid colorimetric devices  

 

2. To evaluate in-tube SPME coupled on-line to CapLC-DAD as a sustainable 

tool based on the miniaturization of sample pre-treatment.  

3. To develop sensing membrane based on different supports to perform in 

– situ analysis. 

4. To validate the proposed procedures for several analyts (organic and 

inorganic) in environmental, biological, food and forensic matrices. 

Environmental matrices: the determination of herbicides in surface waters 

using IT-SPME-CapLC techniques and, on the other hand, nitrate and 

nitrite in environmental waters using in situ devices based on the 

embedding of derivatizing reagents in PDMS as a solid support. 

Biological matrices: the determination of antibiotics such as meropenem 

in endotracheal tubes using IT-SPME-CapLC and, on the other hand, 

sulfides in cardiomyocyte cells and in exhaled air using a solid plasmonic 

sensor based on the immobilization of AgNPs on nylon membrane.  

Finally, using IT-SPME-CapLC and PDMS based solid support for 

alkylresorcinols determination in urine samples.  

Food matrices: The determination of nitrite and nitrate in waters from 

canned and fresh vegetable samples and ammonia in meat samples using 

solid PDMS based sensors.  

Forensic matrix: the determination of diphenylamine in hand gunshot 

residues by means of IT-SPME-CapLC. 
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5. Evaluating practical application of the proposed procedures by carrying 

out proofs of concept. 

 

The development of this Thesis has been possible thanks to the research projects: 

- Project PROMETEO 2012/045, granted by Generalitat Valenciana - 

Programa Prometeo para grupos de investigación de Excelencia, 

“Desarrollo de nuevas estrategias para el diseño de dispositivos de 

análisis in situ”. (4 years) 

- Project CTQ2014-53916-P granted by Spanish Ministry of Economy and 

Competitivness and EU from FEDER – Programa Estatal de Fomento de la 

Investigación Científica y Técnica de Excelencia Subprograma Estatal de 

Generación de Conocimiento, “Desarrollo de nuevas estrategias para el 

diseño de técnicas de cromatografía líquida miniaturizada en línea: 

nanopartículas, contaminación secundaria”. (3 years) 

- Project PROMETEO2016/109, granted by Generalitat Valenciana - 

Programa Prometeo para grupos de investigación de Excelencia, 

“Desarrollo de nuevas estrategias para el diseño de dispositivos de 

análisis in situ: nano y biomateriales”. (4 years) 

- Project CTQ2017-90082-P, granted by Ministry of Science, Innovation and 

Universities, “Microextracción en fase sólida en tubo acoplada en línea a 

nanocromatografía líquida: nuevas oportunidades para/desde la 

nanoescala y cromatografía líquida”. (4 years)  

The results of this Thesis have given rise to scientific articles, 5 published, 1 

submitted and 2 in draft forms.  

1. J. Pla- Tolós, P. Serra-Mora, L. Hakobyan, C. Molins-Legua, Y. Moliner- 

Martinez, P. Campins Falcó. A sustainable on-line CapLC method for 

quantifying antifouling agents like irgarol-1051 and diuron in water 

samples: Estimation of the carbon footprint. Science of the Total 

Environment 569-579,611-618, 2016. Impact Factor (2019): 6.551. 

 



Chapter 2. Objectives 

71 
 

2. L. Hakobyan, J. Plá - Tolos, Y. Moliner-Martinez, C. Molins-Legua, P. 

Campins-Falcó, Jesús Ruiz Ramos, Paula Ramirez - Galleymore. 

Determination of antimicrobials in invasive medical devices by in-tube 

solid phase microextraction as preconcentration tool: application to 

endotracheal tubes. Journal of Pharmaceutical and Biomedical Analysis 

151(2018) 170-177. Impact Factor (2019): 3.209 

 

3. A. Argente-García, L. Hakobyan, C. Guillem, P. Campíns-Falcó, A new 

method for estimating diphenylamine in gunshot residues as a new tool 

for identifying both, inorganic and organic ones, in the same sample. 

Separations 2019, 6, 16. Open Access. 

 

4. N. Jornet-Martínez, L. Hakobyan, A. I. Argente-García, C. Molins-Legua, P. 

Campíns-Falcó, Nylon-Supported Plasmonic Assay Based on the 

Aggregation of Silver Nanoparticles: In Situ Determination of Hydrogen 

Sulfide-like Compounds in Breath Samples as a Proof of Concept. Journal 

ACS Sensors. 2019, 4, 2164−2172. Impact Factor (2019): 6.944.  

 

5. A. Ballester-Caudet, L. Hakobyan, Y. Moliner-Martinez, C. Molins-Legua, P. 

Campíns-Falcó, Ionic-liquid doped polymeric composite as passive 

colorimetric sensor for meat freshness as a use case. Journal Talanta. 

2021, 223, 2, 121778. Impact Factor (2019): 5.339. 

 

6. L. Hakobyan, Y. Moliner Martínez, C. Molins-Legua, P. Campíns-Falcó, 

New approach for Griess reaction based on reagent stabilization on PDMS 

membranes and ZnNPs as reductor of nitrates. Application to 

environmental waters and waters from canned and fresh vegetable 

samples. Submitted 

 

7. L. Hakobyan, M.C. Prieto-Blanco, Maria Roca Llorens, C. Molins-Legua, M. 

Fuster-Garcia, Y. Moliner-Martinez, P. Campins-Falcó, Carmen Ribes-

Koninckx, Fast Blue B Functionalized Silica-Polymer Composite to 

Evaluate DHHC as Biomarker of Gluten Intake. Submitted.  

 

https://www.sciencedirect.com/science/journal/00399140
https://www.sciencedirect.com/science/journal/00399140/223/part/P2
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8. L. Hakobyan, A. Ballester-Caudet, C. Molins-Legua, P. Campins-Falcó, 

Colorimetric multiplatform for determination of endogenous H2S emitted 

by living cells: aplication to cardiomiocites. Submitted 

 

The results have been also presented in conferences. Poster or oral 

communication have been performed.  

 

1. Y. Moliner-Martínez, A. Argente-García, J. Pla-Tolos, P. Serra-Mora, L. 

Hakobyan, Campíns-Falcó, P. Evaluation of in-tube solid phase 

microextraction coupled to capillary LC with mass spectrometry for the 

estimation of irgarol-1051 and its polar transformation products in water. 

NET-SCARCE International Conference. Rivers under water scarcity: threats 

and challenges, Internacional congress. Póster communication. Barcelona, 

Spain - 2016. 

 

2. Y. Moliner-Martínez, P. Serra-Mora, L. Hakobyan, R. Herráez-Hernández, 

J. Verdú-Andrés and P. Campíns-Falcó. New extraction phases for IT-

SPME. 2nd Caparica Christmas Conference on Sample Pretreatment, 

International congress. Oral communication. Caparica, Portugal - 2016. 

 

3. Argente-García, L. Hakobyan, Y. Moliner-Martínez and P. Campins-Falcó. 

Optimization of sampling and treatment of forensic samples for fast and 

sensitive estimation of diphenylamine using on-line in-tube solid phase 

microextraction coupled to capillary liquid chromatography. 2nd Caparica 

Christmas Conference on Sample Treatment, International congress. 

Poster communication. Caparica, Portugal - 2016. 

 

4. C. Molins-Legua, P.Campins-Falcó, Y. Moliner-Martinez, J. Plá- Tolos, N. 

Jornet - Martinez, L. Hakobyan. Solid biodevice for sensing in microplate 

supports: application to glucose determination. 18th International 

Symposium on Advances in Extraction Technologies & 22ndInternational 

Symposium on Separation Scienc. International congress. Oral 

communication. Torun Polonia - 2016. 
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5. M. Muñoz-Ortuño, L. Hakobyan, Y. Moliner-Martínez, R. Herráez-

Hernández, J.Verdú-Andrés and P. Campins-Falcó. A new tool for direct 

estimation of chlorophyll by using diffuse reflectance measurements.  

NET-SCARCE International Conference. International congress. Poster 

communication. Barcelona, Spain - 2016. 

 

6. Y. Moliner-Martínez, L. Hakobyan, P. Serra-Mora, C. Molins-Legua, R. 

Herráez-Hernández, J. Verdú-Andrés and P. Campins-Falcó. High 

performance extractive phase for IT-SPME. 19th International Symposium 

on Advances in Extraction Technologies, International congress. Oral 

presentation. Santiago de Compostela, Spain – 2017. 

 

7. L. Hakobyan, Y. Moliner Martinez, C. Molins Legua and P. Campins- Falcó. 

Ionogel based colorimetric sensor to determie NH3 in atmospheres. XXI 

Reunión de la Sociedad Española de Química Analítica, National congress, 

Poster presentation. Valencia, Spain – 2017. 

 

8. C. Molins Legua, D.L. Palacios- López, M.C. Prieto – Blanco,  N. Jornet-

Martinez, L. Hakobyan, S. Bocanegra-Rodriguez, P. Campins- Falcó. Solid 

sensor supported in PDMS for derivatizing carbonyl compounds in several 

matrices. 32nd International Symposium on Chromatography. International 

congress. Poster communication. Cannes-Mandelieu, France – 2018. 

 

9. L. Hakobyan, C. Molins Legua, Y. Moliner - Martínez, P. Campins Falcó. 

New assay for the Griess reaction based on the use of stable Zn 

nanoparticles dispersions and doped PDMS membranes: application to 

water analysis. International Congress on Analytical Nanoscience and 

Nanotechnology – IX NyNA., International congress. Poster presentation. 

Zaragoza, Spain - 2019. 

 

10. Ballester – Caudet, L. Hakobyan, C. Molins Legua, P. Campins Falcó. Solid-

fase colorimetric sensors for monitoring meat freshness. XXII Reunión de 

la Sociedad Española de Química Analítica, National congress, Poster 

communication. Valladolid, Spain – 2019. 
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11. Y. Moliner – Martinez, M. Fauster- Garcia, L. Hakobyan, C. Molins Legua, 

P. Campins Falcó, M. Roca Llorens, C. Ribes- Koninckx. XXII Reunión de la 

Sociedad Española de Química Analítica, National cogress, Poster 

communication. Valladolid, Spain – 2019. 

 

12. L. Hakobyan, C. Molins Legua, P. Campins Falcó, P. Sepulveda Sanchis, A. 

Dorronsoro – Gonzalez, S. Tejedor – Gascón.  XXII Reunión de la Sociedad 

Española de Química Analítica, National congress, Poster communication. 

Valladolid, Spain – 2019. 

 

13. L. Hakobyan, C. Molins Legua, P. Campins Falcó. Different analytical 

methodologies cleaning in place (CIP) process control. XXII Reunión de la 

Sociedad Española de Química Analítica, National congress, Poster 

communication. Valladolid, Spain – 2019. 

 

14. C. Molins Legua, L. Hakobyan, N. Jornet - Martinez, P. Campins Falcó. 

Study of the aggregation of silver nanoparticles in solid supports: 

development of several assays for determination of sulphur compounds in 

several matrices. International Congress on Analytical Nanoscience and 

Nanotechnology – IX NyNA., International congress. Oral presentation. 

Zaragoza, Spain - 2019.  
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3.1 Reagents 

Table 3.1 shows all the reagents (analytical grade) used during the experimental 

part of the Thesis, including the commercial suppliers and GHS (Globally 

Harmonized System of classification and labelling of chemicals) hazard pictograms 

according to Regulation (EC) No 1272/2008 - classification, labelling and packaging 

of substances and mixtures (CLP). 

Table 3.1 Summary of reagents with their comercial suppliers and GHS pictograms, were  

 - (GHS02) flammable,  - (GHS05) corrosive,   - (GHS06) toxic,  - (GHS07) 

harmful,  - (GHS08) health hazard,  - (GHS09) environmental hazard. 

 

Chemical  
compound 

Supplier 

      

Acetone MERK x   x   
Acetonitrile VWR x   x   
Ammonium chloride Probus    x   
Anhydrous citric Panreac    x   
C18particles(50µm  65A)        
Cetyltrimethylammonium 
bromide 

Sigma  x  x x x 

Diphenylamine Sigma x x x x   
Diurón Sigma    x x X 
Ethanol Sharlau x   x   
Fast Blue B salt Sigma    x   
Glycerol Sigma    x   
Hydrochloride acid Scharlab  x  x   
Irgarol®-1051 Sigma    x  x 
Methanol VWR x  x  x  
Meropenem     x   
N - 1-Naphtyl ethylene 
diamine dihydrochloride 

Sigma    x   

Phosphoric acid Scharlau  x  x   
Polydimethylsiloxane 
Sylgard®184 Kit 

Dow 
corning 

      

Potassium carbonate Probus    x   
Potassium nitrate Panreac x      
Silver nanoparticle 
dispersion (20 nm)  

Sigma      x 

Silver nitrate  Scharlab x x    x 
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Sodium dodecyl sulfate Sigma x x  x   
Sodium hydroxide Sigma  x     
Sodium 1,2- naphthoquinone 
4-sulfonate 

Sigma    x   

Sodium sulfide Sigma  x x x  x 
Sulphanilamide Guinama    x   
SiO2 NPs (20 nm) Sigma    x   
Tetraethyl orthosilicate Sigma x  x    
Trichloracetic Scharlab  x  x  x 
Zn powder Probus      x 
Zn NPs (60 nm) Sigma      x 
1-butyl-4-methylpyridinium 
hexafluorophosphate 

Sigma    x   

1.3-Dihydroxy-5-
pentylbenzene 

Sigma  x  x  x 

3,5-
dihydroxyhydrocinnamicacid 

Sigma    x   

 

3.2 Instrumentation 

 

Throughout the development of the Thesis, spectroscopic, chromatographic and 

microscopic techniques have been used.  

3.2.1 Spectroscopic techniques 

UV-Vis spectrophotometry 

 

UV-Vis spectra were registered using a Cary 60 UV-vis spectrophotometer (Agilent 

Technologies, Santa Clara, CA, USA) (Figure 3.1A). For measurement, quartz or 

plastic cuvettes with 10 mm light path were used. Data acquisition and 

subsequent processing were performed with the Carry WinUV software.  The full 

UV-vis spectra were registered between 200 and 1000 nm. 

 

Diffuse reflectance spectroscopy 

 

Colorimetric measurement of solid support (such as PDMs and nylon-AgNPs) by 

using diffuse reflectance measurements sensors was carried out using Carry 60 

sectrophotometer coupled to a diffuse reflection probe (Harrick Scientific 
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Products, New York, USA) (Figure 3.1B). It was equipped with a video camera and 

a built-in light that makes it easy to view the sample in real time. GrabBee 

software, for data acquisition and procesing was used CarryWinUV software. 

Measurements were made in the range of 200 to 800 nm. 

 
 

 
 

Figure 3.1 A) Cary 60 UV-Vis Spectrophotometer with B) Remote Diffuse Reflectance 

Accessory (DRA) accessory.  

 
 

3.2.2 Microscopic techniques 

Optical microscopy 

 

A Nikon ECLIPSE E200LED MV series microscope (Nikon Corporation, Tokyo, 

Japan) with Nis-Elements 4.20.02 software (Nikon) was used to take microscopic 

images. The instrument, equipped with 3 objective lenses of different 

magnifications (10x, 50x and 100x), is shown in Figure 3.2. 

 

A B 



Chapter 3.Materials and Methods 
 

80 
 

 
   

Figure 3.2 Optical microscopy ECLIPSE E200LED MV. 

 

Scanning Electron Microscope (SEM) 

 

For the characterization of tested solid sensors, a Hitachi S-4800 (Tokyo, Japan) 

scanning electron microscope was used at an acceleration voltage of 20 keV, on 

samples metallized with a mixture of gold and palladium for 30 s. Image capture 

and processing were performed with QUANTAX 400 software (Hitachi) (Figure 

3.3). 

 

 

 

Figure 3.3 SEM - Hitachi S-4800. 
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3.2.3 Chromatographic techniques: Capillary liquid chromatography 

(CapLC) 

 

Miniaturized liquid chromatography systems have been employed for the 

chromatographic measurements performed in this Thesis. The capillary 

chromatographic system (CapLC) consisted on a LC capillary pump (Agilent 1100 

Series, Waldbronn, Germany) equipped with a UV–Vis diode array detector 

(Agilent, 1200 series), equipped with a 80-nL flow cell. The system was linked to a 

data system (Agilent, HPLC ChemStation) for data acquisition and calculation. 

Spectra were recorded between 190 and 400nm. (Figure 3.4). The CapLC system 

was on-line coupled with in-tube SPME to perform the on-line sample 

pretreatment of samples. Experimental details are summarized in section 3.3. 

The chromatographic measurements were carried out to determine irgarol-1051, 

diuron, diphenylamine, meropenem and DHCA. In all cases, the detection system 

was a DAD detector. The wavelength was set at 226nm, 254 nm, 280 nm for 

irgarol-1051, diuron and diphenylamine, respectively and the meropenem 

absorbance signals were registered at 300 nm. Finally, DHCA derivatives registred 

at 520nm. 

 

 
            Figure 3.4 CapLC-DAD system, Agilent 1200 Series with binary pump. 

In addition to the instrumentation described above for the development of the 

experimental procedure of this Thesis, the following instruments and materials 
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have also been used: Ultrasonic bath Sonitech (TerraTech, Spain), magnetic stirrer 

(450 W) (Sstuart Scientific), nanopure II water system (Barnstead, UK), ZX3 vortex 

mixer (VELP Scientifica, Italy), thermostat LT200 (Hagh Lange United for water 

quality, Sapin), nylon membranes (0.45 and 0.22 μm) (Teknokroma, Spain), 

double-sided carbon adhesive tape (8 mm wide x 0.16 mm thick x 1 cm long) (Ted 

Pella Inc. Redding, US), tape lift kit (Sirchie Finger Print Laboratories, USA), plastic 

well-plates (Sharlau, Spain), plastic bag from Hardiron store (China), incubators 

(Forma™ Series II 3110, ThemoFisher), pH-meter Crison micro pH 2001, (Crison 

Instruments S.A., Barcelona Spain), vacuum pump system (Sharlab, Barcelona, 

Spain),  Malvern Zetasizer Nano ZS from Malvern Panalytical Ltd (UK), thermo –

hygrometer Derta OHM HD 9216(Laselle di Selvazzano, Italy) and  centrifuge EBA 

20 from Hettich (Tuttlingen, Germany). 

 

3.3. Sensor preparation 

During the development of the Thesis, two differents sensing membranes, have 

been developed: PDMS based sensors and devices based on silver or zinc 

nanoparticles retained in Nylon, the preparation procedures are detailed below. 

3.3.1 PDMS based sensors 

 

 Preparation of PDMS /TEOS-SiO2NPs-SA-NEDD  

The fabrication of the PDMS /TEOS-SiO2NPs-SA-NEDD sensing device was carried 

out following the procedure proposed in[111] with some modifications. Firstly, 

the reagents sulphanilamide (SA) (4.18%) and N - 1 - Naphthyl ethylenediamine 

dihydrochloride (NEDD) (1.14%) were added to TEOS (39.77%) and SiO2NPs 

(0.11%) dispersion previously prepared. Achieve homogeneity an ultrasonic bath 

was used for 5 min. After, the final mixture was added to the elastomer base 

(49.82%) and the new mixture was vigorously stirred for 15 min at room 

temperature to obtain a homogeneous suspension. Subsequent, the curing agent 

(4.98%) was added to the previous solution leaving 5 minutes under stirring. The 

standard mixing ratio for PDMS was 10:1 elastomer and curing agent, 

respectively. This ratio provides the desirable and optimum mechanical 

properties. The gelation procedure was carried out at 30 °C for 8 h. After 200μl of 
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the mixture were deposited in the well plate (d=1.5 cm). In case of using 

microplate wells, 20 µl were doped in each well.  

 Doped of PDMS /TEOS-SiO2NPs-SA-NEDD-OMIM-PF6  

The preparation of the supported IL-based (Figure 3.5) PDMS device was 

performed by mixing the reagents that form the azo compound, such as SA 

(4.176%) and NEDD (1.145%), with the OMIM-PF6 (6.187%). The mixture was 

stirred during 10 min. After, the elastomer base (44.191%) was added to the 

previous mixture and the resulting combination (combination 1) was stirred 

during 10 min more to get a homogeneous dispersion. Then, a mixture of TEOS-

SiO2NPs was prepared by mixing SiO2NPs (0.11%) with TEOS (39.772%) 

(combination 2). Finally, combination 1 and 2 were mixed and stirred vigorously to 

obtain homogenous mixture. After adding the curing agent (4.419%), the mixture 

was stirred for 2 min. Finally, the drying procedure was carried out as previously 

described previously.  

 

 

Figure 3.5 Steps for PDMS /TEOS-SiO2NPs-SA-NEDD-ILs sensing devices preparation. 

 

 Preparation of PDMS /TEOS- SiO2NPs-NQS- OMIM-PF6  

Synthesis of these sensing membranes (Figure 3.6) was performed by mixing the 

recognition element, NQS (0.325%-0.352%), with the IL (0.2%-7.8%). The mixture 

was then stirred during 10 min.  After, the elastomer base (33.89% - 36.69%) was 

added to the previous mixture and the resulting mixture was stirred during 10 min 

to get a homogeneous dispersion (dispersion 1). Then, a mixture of TEOS-SiO2NPs 

was prepared by mixing SiO2NPs (0.381% – 0.41%) with TEOS (54.22% - 58.71%) 
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(dispersion 2). Finally, dispersion 1 and 2 were mixed and stirred vigorously to 

obtain a homogeneous mixture. Then, the curing agent (3.39% - 3.52%) was 

added. 200 µL of the resulting solution was deposited on a plastic-well plate and 

was cured at 35 ºC during 24 h.  

 

Figure 3.6 Steps for PDM/TEOS-ILs-NQS-SiO2NPs sensing devices preparation. 

 

 Preparation of PDMS /TEOS- FB  

FB doped PDMS membranes were synthesised based on previously works, 

[79,112,113]. Briefly, FB (0,35 g) were mixed with PDMS (36.0-90.6 %) and stirred 

during 5 min to obtain a homogenous mixture. Before the addition of the curing 

agent, three matrix modifiers were studied: TEOS (58,5-59.1%), C18 (5-20%) and 

the ionic liquid OMIMPF6 (0,59%). Finally, curing agent (ratio 1:10 curing-PDMS) 

was added to the previous mixture and stirred. Once, the homogenous mixture 

was obtained, 200 µL were place in 1-cm plastic mold and heated at 40ºC for 24 h. 

Table 3.2 summarized the different membrane compositions tested. 

 

Table 3.2 Composition of PDMS/TEOS-FB sensing membrans. 

 SENSING MEMBRANE COMPOSITION 

MEMBRANE FB 
(%) 

PDMS 
 (%) 

TEOS 
 (%) 

IL 
(%) 

C18 (%) Curing (%) 

     PDMS 0.35 90.59 - - - 9.06 

PDMS -TEOS 0.35 36.91 59.05 - - 3.69 
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PDMS - C18 
(5%) 

0.35 86.04 - - 5.00 8.60 

PDMS - C18 
(10%) 

0.35 81.50 - - 10.00 8.15 

PDMS - C18 
(20%) 

0.35 72.41 - - 20.00 7.24 

PDMS – IL(*) 0.35 90.05 - 0.59 - 9.01 

PDMS - TEOS – 
IL(*) 

0.35 36.91 58.46 0.59 - 3.69 

 

3.3.2. Nanoparticle-based sensors  

 Preparation of ZnNPs dispersion and Nylon –ZnNPs sensor 

Solutions of surfactants in water were prepared by weighing the appropriate 

amounts of CTAB and SDS to get final concentrations 15mM and 17.3mM, 

respectively. Mixtures of CTAB and SDS were prepared by mixing the proportions 

CTAB 70% -SDS 30% and CTAB 30% -SDS 70%. The solutions and mixtures of 

surfactants were added to 30 mg of ZnNPs. ZnNPs dispersion wre obtained by 

sinicating the mixture for 15 min. (Figure 3.7A). The suspensions were then aged 

overnight at room temperature. For the preparation of ZNPs - Nylon sensors, an 

appropriate amount of dispersed ZnNP solution was passed through a nylon filter 

(1 cm diameter) (Figure 3.7B). 

 

Figure 3.7 A) Zn NPs in different proportions of surfactants A – CTAB 30% - SDS 70%; 

B – SDS 100%; C- CTAB 70% - SDS 30%. B) ZnNPs sensor preparation scheme. 
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 AgNPs multisensor and single use sensor preparation  

For AgNPs sensor preparation 200 µL of AgNPs dispersion was passed through a 

nylon filter (1 cm in diameter) for AgNPs adsorption (Figure 3.8). 

 

Figure 3.8 Scheme of AgNPs sensor preparation 

 

The multisensory sheet consisted of 96 circles of silver nanoparticles retained in a 

rectangular nylon membrane plate of (11cm by 7,5cm). Each device in a circle 

form was 0.7 cm in diameter. Figure 3.9 A shows the steps of the plasmonic 

multisensory sheet preparation. In the first step, the nylon membrane was placed 

between the two plates with 96-hole surfaces, and by means of a micropipette 

the appropriate amount of AgNPs was added. The system was connected to the 

pump system, allowing the liquid part of the dispersion to pass through 

membrane and thus the retention of NPs on the nylon surface without surface 

functionalization, avoiding chemical reagents, solvents, or complex 

instrumentation. The multisensory laminate is coupled perfectly with 96-well 

microplates, which allows testing for 96 wells at a time. Nylon plates with 

different amounts and positions of silver sensors were prepared by filling the 

corresponding holes of the system (as needed) of AgNPs and the other holes were 

filled with nanopure water (Figure 3.9 B, C). 
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Figure 3.9 AgNPs multisensory sheet preparation scheme. A) corresponds to the 

multisensory sheet with 96 sensors, B) – 36 sensors, C) – 16 sensors. 

 

 

3.4. Preparation of air standard and humidity measurement 

The standard atmospheres (H2S and NH3) were prepared in plastic bags (0.25-2L). 

First, the plastic bag was cutted, then the sensor and a stir bar were introduced. 

Finally, the bag was sealed by heating the bag Figure 3.10A. NH3 and H2S 

atmospheres were generated in the plastic bags by introducing the standard 

solutions of 100µL NaOH (2M) + 100µL NH4Cl and 100ul Na2S + 100µL H3PO4 (95%) 

respectively by using syringe. The concentrations of NH4Cl and Na2S were varied 

according to the objective set. Finally, the mixtures were stirred for monitoring 

target analytes. Humidity measurements were carried out by introducing the 

thermo-hygrometer in the plastic bag Figure 3.10B. The humidity of several meat 

samples atmosphere was also measured with the probe of the Thermo-

Hygrometer when meat samples were preserved in a 100 mL plastic bag under 

refrigeration conditions at 4 °C Figure 3.10B. 
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Figure 3.10 A) NH3 and H2S standard atmospheres preparation steps B) Humidity 

measurement using termo-hygrometer device. 

 

 

3.5. Analysis of real samples  

In this Thesis, different types of matrices have been analyzed: biological, 

environmental, forensic and food samples. Table 3.3 summarizes the matrices 

studied in this Thesis and the analytes determined in each sample.  

 



 

 
 

Table 3.3 Types of matrices and the analytes determined.  

Sample Analyte Sampling Sample pre-treatment Techniques used Section 
EN

V
IR

O
N

M
EN

TA
L 

Port 
water 

Irgarol-1051 and 
diuron 

Direct sampling from 
ports of region of  
Valencia 

Filtered by nylon 
membrane, IT-SPME 

In tube-SPME -
Cap LC 

4.1.1 
 

Canal 
water 

Nitrite, nitrate Direct sampling from 
irrigation canal of 
region of  Valencia 

Filtered by nylon 
membrane 

 
 
PDMS /SA-NEDD-
OMIM-PF6 sensor 

 
 
 
 

4.1.2 
 

Wells 
water 

Nitrite, nitrate Direct sampling from 
well of region of  
Valencia 

Filtered by nylon 
membrane 

FO
R

EN
SI

C
 Shooter 

hands 
DPA Collecting with swab 

(21 hands) and with 
tape(6 hands) 

Vortex and IT-SPME In tube-SPME -
Cap LC  

4.4.1 

B
IO

LO
G

IC
A

L 

Breath Hydrogen 
sulfide 

Direct sampling of the 
exhaled buccal and 
alveolar air from 10 
volunteers 

 
Without pre-
treatment 

Nylon - AgNPs 
sensor 
 

4.2.1 

Cells Hydrogen 
sulfide 

Human ventricular  
cardiomyocytic cell 
line AC10 

 - Nylon - AgNPs 
multisensor 
 

4.2.2 

Urine AR Direct sampling SPE –Clean-up PDMS/TEOS-FB-
OMIMPF6 sensor 

4.2.3 

ETTs Meropenem Direct sampling from 5 
patients from  

Vortex, 
IT-SPME 

In tube-SPME -
Cap LC 

4.2.4 



 

 
 

intensive care 
FO

O
D

 
Chicken 

meat 
Ammonia Sampling of packing 

chicken meat buying 
from commercial local 

 
 

Without pre-
treatment 

 

PDMS/NQS- 
OMIMPF6 sensor 

4.3.1 

Spinach Nitrite, nitrate Sampling of 1 ml of 
liquid solition from 
boiled spinach canned 
and fresh  

Filtration (nylon) 
membrane, dilution 
1:10 

PDMS /SA-NEDD-
OMIM-PF6 

 
 
 
 
 

4.3.2 
 

Chard Nitrite, Nitrate Sampling of 1 ml of 
liquid solition from 
boiled chard canned 
and fresh  

Filtration (nylon) 
membrane, dilution 
1:10 
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3.5.1 Sampling  

Collection of forensic samples from the hands shot 

To collect GSR, two techniques were used: rubbing with a dry swab the palm and 

back two hands (right and left) of each policeman and with adhesive tape. 

Samples were collected immediately after unloading the firearm. The tape lift kit 

consisted of a metal stub equipped with a carbon adhesive tape inserted in a 

plastic vial with a tightly fitted cap. For the sampling, the metal stub was passed 

over the surface of the hand and then was returned to the vial. Finally, all the 

samples taken in their corresponding vials were transported to the laboratory and 

stored at room temperature until their analysis (See section 3.4.2 Figure 3.14). A 

total of 21 shooters were sampled by swab and 6 other shooters by adhesive 

tape. Police hands were also analyzed before firing the shot and without washing 

their hands. These swabs served as targets to get blank responses. 

Sampling of endotracheal tubs (ETTs)  

ETTs were obtained from five patients, three of them diagnosed with nosocomial 

pneumonia treated with meropenem treatment. Three ETTs from patients with 

antimicrobial treatment and two ETTs from patients without meropenem 

treatment were analysed. In addition, control ETTs (not used) were also analysed 

as blanks. In all cases, sections of 2-cm length of the tip region were cut (See 

section 3.5.2 Figure 3.13) and frozen at −18 °C until analysis. At this temperature, 

the growth of bacterial flora was suppressed in order to avoid health issues during 

the analysis. 

Cardiomyocyte cell samples preparation  

Human ventricular cardiomyocyte cells line AC-10 was cultured in Dulbecco’s 

Modified Eagle’s Medium-F-12 (DMEM-F12, Gibco-Invitrogen®) supplemented 

with 10% fetal bovine serum (FBS, Gibco-Invitrogen®) and 1% 

penicillin/streptomycin (P/S, Millipore). Cell culture medium used for ischemia-

reperfusion experiment was Dulbecco’s Modified Eagle’s Medium without D-

Glucose (Gibco-Invitrogen®) supplemented with 1% penicillin/streptomycin (P/S, 

Millipore). 
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Collecting breath samples 

Collection of breath samples were carried out by inserting the AgNPs membrane 

into the bag and closing it, incorporating the mouthpiece, and exhaling the 

mixture of mouth and alveolar air into the bags. After 10 min, the membrane was 

removed from the bag and analysed by digital image colour coordinates and 

diffuse reflectance. The breath samples were collected from 10 volunteers in 

0.25L - 2L plastic bags (Figure 3.11). 

 

Figure 3.11 Collecting human oral breath samples process in image. 

 

Chard and spinach sampling 

Canned chard and spinach were purchased from the local supermarket. 1 ml of 

liquid part was taken to dilute in 10 ml of nanopure water. Said dilution formed 

was used for future tests. 

To prepare samples from fresh chard and spinach, 280g and 140g were weighed 

respectively. 140g of fresh spinach was boiled in 350 ml of water for up to 20 

minutes and 280 g fresh chard was boiled in 350 ml of nanopure water, leaving 

the same time as the spinach. Then 1 ml of liquid part of each species was taken 

and diluted in 10 ml of nanopure water. These dilutions were used for future 

tests. 

Sampling of chicken meat 

Chicken meat samples preparation was carried out by inserting the purchased 

meat (from the local supermarket) and the PDMS /TEOS- SiO2NPs-NQS- OMIM-

PF6 membrane into the bag and sealing it by heat. The samples were stored in the 

refrigerator at 4-7 °C for up to 14 days as needed (Figure 3.12). 
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Figure 3.12 Chicken meat samples preparation in 2 different packaging A) plastic bag 

and B) tupper. 
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Urine samples 

Urine samples were collected during three different days where the gluten 

intaken was controlled. In the first two days, there was not gluten intake and in 

the third day, the volunteers consumed gluten. Once the samples were taken, 

they were stored at 4ºC. The samples were processed following the SPE-

procedure described in section 3.4.2. and the AR content was determined by the 

proposed method described in section 4.2.3. In addition, these samples were 

analysed by using the chromatographic method.  Three replicates of the samples 

were analysed in all cases.  

 

3.5.2 Sample pre-treatment 

On-line and off-line techniques have been used for the sample pre-treatment 

during the development of the Thesis.  

On –line extraction   

 In-tube SPME procedure 

In-tube SPME device consisted in a conventional six-port injection valve in which 

loop was replaced by a segment of a gas chromatographic capillary column TRB-

50, TRB-35, TRB-20 and TRB-5 (0.32mm i.d. 3µm thickness). Capillary connections 

to valve were facilitated by the use of 2.5 cm sleeves of 1/16 in. PEEK tubing; 

1/16-in. PEEK nuts and ferrules were used to complete the connections. With the 

valve in load position, aliquots of standards or samples were manually processed 

into the system employing a 0.1 - 1.0 mL precision syringe. After sample loading, 

the valve was rotated to the inject position, allowing the desorption of the 

compounds retained on the coating of the extractive capillary by the mobile-

phase and their subsequent transference to the analytical column for separation 

and detection [299] (Figure 3.13). The quantity of the standard or sample injected 

and the dimensions of the capillary column varied and according to the analyte. 
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Figure 3.13 Schematic representation of in valve IT-SPME coupled to a CapLC system. 

A) Load position B) Inject position. 

 

Off –line extraction 

 Vortex assisted extraction (VAE) 

Vortex assisted extraction was used for the extraction of meropenem from the 

endotracheal tubes, and for the detection of DPA in hands. 

 

MEROPENEM:  

To analyze the endotracheal tubs (ETTs) used in patients, a section of 2 cm was 

fragmented from the tip region and were placed into a storage vial containing 2 

mL of water nanopure as solvent. The extraction was carried out using VAE in 

each case. The next step was to centrifuge the sputum extracted from the ETTs at 

2500 rpm for 15 min, the supernatant was filtered through a 0.45 µm (e.d. 2.5 cm) 

nylon membrane syringe filter. In addition, direct extraction was studied as a 

comparative, which was obviously slower. In order to obtain the standard 

solutions, a volume of meropenem solution was deposited on a ETTs cut fragment 

(not used in patient), then the solvent was evaporated to dryness at room 

temperature and carry out the same extraction procedure indicated above. It was 
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also verified that the analyte is not lost when passing through the Nylon filter. 

Finally, 500μL of the final solution was loaded into the IT-SPME capillary. The 

procedure of meropenem extraction is shown in Figure 3.14. 

 

 
Figure 3.14 Steps for meropenem extraction and detection from ETTs.  

 

 

DIPHENYLAMINE (DPA): For the detection of DPA in the hands shot, using a 

cotton swab, the palm and back parts of the two hands (left and right) were 

rubbed (Figure 3.15). The standard DPA solutions were obtained by drying at 

room temperature a DPA solution and finally collecting with a swab. After sample 

collection, the tip was placed in a storage vial containing 2 ml of water, so that the 

cotton was totally wet. DPA was then extracted from the swab under in vortex 

conditions for 20 sec at room temperature. Finally, 1800 µl of the solution was 

loaded from the solution with extracted DPA into the IT-SPME capillary. Different 

solvents, samplers, and extraction techniques were tested to optimize the 

sampling procedure. 

 

 
Figure 3.15 Sampling, extraction and detection process for DPA from shooting hands. 
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 Solid phase extraction (SPE) 
 

First, C18 silica cartridges (200 mg) were conditioned with methanol (1 mL) 

and water (2 mL). Then, 2 mL of working standard solution or urine sample 

previously derivatized were passed through the cartridge. Then, a wash step 

was included by using 0,1 M HCl (1 mL). Finally, AR was eluted with methanol. 

Urine pretreatment was carried out using SPE. 

 

 

3.5.3 Analytical matrices  

Environmental samples 

 Port water: Sampling was carried out monthly during the period from 

March to June 2014 in the following ports of the Region of Valencia: Port 

of Valencia, marina Port Saplaya (Alboraya) and marina of Siles (Canet 

d'En Berenguer). Water samples were collected in brown glass flasks 

previously cleaned with ultrapure water at a depth of 1 m. After the 

arrival to the laboratory, samples were filtered through 0.45 mm nylon 

membranes and stored in the dark at 4 °C until analysis. Storage time was 

less than one week after the sampling.  

 West and canal water: The collection of the west and well water samples 

were carried out in the Valencian Community. Water samples were 

collected in brown glass flasks previously cleaned with ultrapure water. 

After the arrival to the laboratory, samples were stored in the dark at 4 °C 

until analysis. Storage time was less than one week after the sampling. 

Forensic samples 

 

 Shooter hands: Police officers fired test shots at a shooting range at the 

Valencian Community Police Headquarters (Valencia, Spain) under typical 

shooting practice conditions. The shots were fired with Heckler & Koch 9 

mm pistols, model USP Compact (Oberndorf / Neckar, Germany), which 

are the most widely used firearms among the police forces in Spain. Each 

volunteer fired a total of 25 shots (regulation number of shots) and with 

his own firearm and without touching other surfaces to avoid any 
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contamination. Only one of these policemen fired 12 shots due to a fault 

that emerged. A total of 27 shooters were sampled.  

Biological samples 

 

In this Thesis biological samples have been analyzed to determine VSCs in breath, 

cells, also analyzed meropenem in tubs endotracheal, and finally AR in urine. 

 Endotracheal tubes (ETT): Samples of ETT were provided by the research 

team of the Intensive Care Unit of the Hospital La Fe (Valencia, Spain).  

ETTs were obtained from patients diagnosed with nosocomial pneumonia 

treated with meropenem at dose of 1 g each 8 hours during at least 72 

hours.  

 Breath: Human oral breath samples of 10 volunteers were collected by 

exhaling air into plastic bags. Prior to collecting the sample, the 

membrane was put into the empty bag and the bag was closed by heat. 

For spiked breath samples, a suitable volume of Na2S solution and 

ortophosphoric acid (85%) were placed on the bottom of the bag before 

sampling. After 10 min of sampling, the sensor was removed from the bag 

and the response was registered by diffuse reflectance spectrometry, and 

digital images were taken using a smartphone. 

 

Food samples 

 

 Spinach: Canned and fresh spinach were used for sample analysis. Canned 

spinach was purchased from the local supermarket. 1 ml of liquid part 

was taken to dilute in 10 ml of nanopure water. Said dilution formed was 

used for future tests. For analysis of fresh spinach 140g was boiled in 350 

ml of water for up to 20 minutes. Then 1 ml of liquid part of each species 

was taken and diluted in 10 ml of nanopure water. These dilutions were 

used for future tests. 
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 Chard: As in the case of spinach, they also analyzed fresh and canned 

chard. Canned chard was purchased from the local supermarket. 1 ml of 

liquid part was taken to dilute in 10 ml of nanopure water. Said dilution 

formed was used for future tests. For analysis of fresh chard, 280 g was 

weighed and boiled in 350 ml of nanopure water, leaving the same time 

as the spinach. 

 Chicken meat: To control freshness, 0.5 kg of chicken breast was 

purchased from the local supermarket. The sliced breast was packed 

under refrigeration conditions for 10 days. The food packaging used is a 

rectangular shaped commercial Tupper with 100 mL of free space 

between the meat and the Tupperware lid. 

 

3.6 Procedures and experimental conditions 

In this Thesis CapLC-DAD and in-situ analytical devices were employed for 

determination of target analytes in biological, environmental, food, forensic, 

samples. 

3.6.1 Chromatographic conditions 

Table 3.4 includes the experimental conditions proposed in the different studies 

that use that use IT-SPME coupled to CapLC – DAD. In all cases, the mobile phase 

was filtered before use through nylon filters of 0.45 µm pore size. 

 



 

 
 

Table 3.4 Experimental conditions used in the analysis of different matrix by IT-SPME-Cap-DAD. 

IT
-S

P
M

E 
C

ap
LC

-D
A

D
 

Matrix Analyte Capillary 
column 

Analytical 
column 

Injection 
volume (µL) 

Mobil 
fase 

Elution 
ACN % 

Flow 
µL/min 

 nm Section 
En

vi
ro

n
m

e
n

ta
l Port 

water 
Irgarol – 

1051 
TRB-35 Zorbax SB C18 

(150mmx0.5mm
, i.d. 5µm) 

4000 CH3CN:H2O Isocratic 20 226 4.1.1 

Port 
water 

Diuron TRB-35 Zorbax SB C18 
(150mmx0.5mm

, i.d. 5µm) 

4000 CH3CN:H2O Isocratic 20 254 4.1.2 

B
io

lo
gi

ca
l 

ETTs Meropen
em 

TRB-35 Zorbax SB C18 
(150mmx0.5mm

, i.d. 5µm) 

500 CH3CN:H2O Gradient 
10%-10min 
15%-2min 
10%-1min 

8 300 4..2.4 

Urine AK TRB-35 Zorbax SB C18 
(50mmx0.5mm, 

i.d. 5µm) 

(+20µL ACN)  
15 
 (+15µL H2O) 

CH3CN:H2O Gradient 
30% up 
100%- 
10min 

100%- 6 
min 

 

10 520 4.2.3 

Fo
re

n
si

c Hands DPA TRB-5 
TRB-20 
TRB-35 
TRB-50 

PEG 

Zorbax SB C18 
(150mmx0.5mm

, i.d. 3.5 µm) 

1800 
(+20uL water) 

CH3CN:H2O Gradient 
70%- 12min 
100%- 4min 
70%- 4min 

10 280 4.4.1 
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3.6.2. Sensor response: In-situ analysis  

In-situ analysis for different matrices includes the use of PDMS sensors and 

sensors based on silver nanoparticles (AgNPs-Nylon). Table 3.5 Summarises 

experimental condition for each procedure developed in this Thesis.  

 

Table 3.5 Experimental conditions used in the in-situ analysis of compound by PDMS-

sensor and AgNPs-sensor. 

Matrix Sensor Analyte Reagent 
Sample 
volume 
or masa 

tR nm Section 

En
vi

ro
n

m
e

n
ta

l 

Cannal 
water 

PDMS -
SA-
NEDD-
OMIM-
PF6  

Nitrite anhydrous 
citric acid, 

ZnNPs 
dispersion 

1000µL 8 min 
520-
540 

4.1.1 

Nitrate 

West 
water 

PDMS -
SA-
NEDD-
OMIM-
PF6  

Nitrite, anhydrous 
citric acid, 

ZnNPs 
dispersion 

1000µL 8min 
520-
540 

4.1.1 

Nitrate 

B
io

lo
gi

ca
l 

Cells 
AgNPs-
Nylon 

Hydrogen 
sulfide 

  
≈200µL 

8 
hours 

500 
4.2.2 

- norm. 

Breath 
AgNPs-
Nylon 

Hydrogen 
sulfide 

 250-
1000ml 

10min 
500 

norm. 
4.2.1 

- 

Urine 

PDMS-
FB-

OMIM AR 
10µL 
K2CO3 

2000µL 10min 520 4.2.3 

PF6 

Fo
o

d
 

Chicken 
meat 

PDMS-
NQS-
OMIM-
PF6  

Ammonia 
 

0.5kg 
7 

days 
590 4.3.1 

- 

Fresh 
spinach 

PDMS -
SA-
NEDD-
OMIM-
PF6  

Nitrite anhydrous 
citric acid, 

ZnNPs 
dispersion 

1000µL 8min 
520-
540 

4.3.2 

Nitrate 

Fresh 
chard 

PDMS -
SA-
NEDD-
OMIM-
PF6  

Nitrite anhydrous 
citric acid, 

ZnNPs 
dispersion 

1000µL 8min 
520-
540 

4.3.2 

Nitrate 
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Canned 
spinach 

PDMS -
SA-
NEDD-
OMIM-
PF6  

Nitrite anhydrous 
citric acid, 

ZnNPs 
dispersion 

1000µL 8min. 
520-
540 

4.3.2 

Nitrate 

Canned 
chard 

PDMS -
SA-
NEDD-
OMIM-
PF6  

Nitrite anhydrous 
citric acid, 

ZnNPs 
dispersion 

1000µL 8min. 
520-
540 

4.3.2 

Nitrate 

*- 8 hours, is the time when the cell grows and emits H2S. 

 

PDMS - sensor response 

 PDMS /TEOS-SiO2NPs-SA-NEDD-OMIM-PF6 sensor response 

The measurement of nitrites by using the synthesized PDMS /TEOS-SiO2NPs-SA-

NEDD-OMIM-PF6 sensor was performed by introducing the PDMS-membranes in a 

vial containing 0.5 mL of citric acid (330 mM) and adding the 0.5 ml of standard 

solution of NO2
-. To determine nitrates, previously to the Griess reaction, the 

appropriate volume of dispersed ZnNPs or nylon membrane with ZnNPs as a 

reducing agent was added (Figure 3.16). The pink color formed was measured 

using a UV–vis spectrophotometer. Spectra were recorded from 200 to 1000 nm.  

 

Figure 3.16 Nitrite or Nitrate detection scheme using PDMS /TEOS-SiO2NPs-SA-NEDD-

OMIM-PF6 sensor, based on the Griess reaction. 
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 PDMS /TEOS-SiO2NPs-NQS-OMIM-PF6 membrane response 

Gaseous standards of ammonia were generated into 2 L static dilution glass flask 

(or en other container with different volumes). The PDMS /TEOS-SiO2NPs-NQS-

OMIM-PF6 sensor device was hanged up into the static dilution flask. Aliquots of 

amine standard solutions were injected on the bottom of the flask and 100 µL of 2 

M NaOH in order to facilitate volatilization. The presence of generated NH3 

produced a change in the colour of the membrane from yellow to brown (Figure 

3.17). The intensity of the colour is related to the concentration of NH3 in air and 

the quantitative analysis was carried out by measuring diffuse reflectance at 590 

nm. 

 

Figure 3.17 Gaseous ammonia standards generation scheme in the static dilution 

glass flask. 
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AgNPs- nylon sensors and multisensor response  

Hermetically sealed bags of different volumes (0.25-2L) and standard dilution 

flasks (2L) were used for the generation of H2S atmospheres. First, the AgNPs – 

nylon sensor was hung in the standard dilution flask (Figure 3.18 A) or sealed in 

the case of bags (Figure 3.18 B) then by using a syringe, 100µL phosphoric acid of 

85% and 100µL Na2S of the standard solution were added 10 minutes. The sensor 

was then removed and covered with glycerol. The analytical response was 

measured by diffuse reflectance. In addition, the interferences of ammonia, 

ethanol, acetone methanol, propanol, formaldehyde and toluene were tested. 

And finally, the amount of H2S generated in the container was studied through the 

formation of methylene blue, which has been chosen as a colorimetric reaction 

widely used for the determination of dissolved sulphur in water [300].  

 

 

Figure 3.18 Images of standard dilution flask (A) and plastic bag (B) with AgNPs 

sensors. 

For the estimation of H2S in the well plats using AgNPs-Nylon multisensor sheet, 

the standard solution of Na2S in nanopure water was prepared. The working 

solutions were prepared by diluting the stock solution in liquid culture medium 

with pH 7, which allowed the growth of cells under favourable conditions of pH 

and temperature. Well assays for standards and for cells are schematically 

described in 3 steps (Figure 3.19). Step 1: The plate wells were filled with 190 µL 

of standard cell culture (DMEM with 3 mg/ml glucose, 2.5 mM L-glutamine, and 
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10% fetal calf serum, pH 7) and appropriate amounts of solution Na2S (in the case 

of cell assays instead of the Na2S solution, cell cultures). Step 2: The wells were 

covered with the AgNPs multisensor plate. Step 3: Finally, the set was taken to the 

incubator during 8h in adequate conditions for cell growth. Figure 3.19 shows the 

AgNPs multisensor sheet before and after H2S exposure. The presence of 

generated H2S produced a change in the colour of the sensor from yellow to 

brown, as function as a concentrationconcentration.  

 

 

Figure 3.19 Cells or standard assays steps and multisensor sheet image before and 

after exposure to different H2S concentrations. 
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4.1 Environmental samples  

In this section, new sustainable strategies have been proposed for 

environmental samples, in particular water samples from different sources: 

coastal, irrigation canals and wells samples were analysed. The determination of 

organic compounds, such as pesticides (irgarol and diuron) and inorganic 

compounds (nitrate and nitrite) have been addressed. Two strategies were 

studied: evaluation of IT-SPME-CapLC-DAD to determine the pesticides and PDMS 

based sensors to estimate nitrite and/or nitrate concentration.  

 

4.1.1 A sustainable on-line CapLC method for quantifying antifouling 

agents like irgarol-1051 and diuron in water samples: estimation of the 

carbon footprint 

 

IT-SPME-CapLC-DAD was studied as the analytical strategy to determine 

biocides such as diuron and irgarol-1051 in water samples (included in Water 

Frame Directive 2013/39/UE (WFD)). This configuration allows us to process 

relatively large sample volumes (up to 4 mL). First, optimization of the extraction 

parameters was studied, and subsequently the analytical parameters were 

estimated. Finally, the proposed methodology was applied to water samples in 

order to evaluate the real performance of the proposed strategy [37].  

 

IT-SPME procedure optimization 

Nature of the sorbent phase, length of the capillary column and volume of the 

processed sample were optimized. First, PDMS-based GC capillary columns with 

different percentages of diphenyl groups (5%- TRB5, 20% -TRB20, 35% - TRB35, 

and 50%- TRB50) were investigated. Figure 4.1.1A shows the response as a 

function of the diphenyl group in the extractive phase. The results indicated that 

the analytical response (peak area) for irgarol-1051 (2.5 μg/L) and diuron (25 

μg/L) employing 1 mL as processed volume, increased with the increment of the 

diphenyl group percentage. However, the sorbent with 50% diphenyl groups 

provided a significant decrease in the peak area. Probably, due to the increase in 

the polarity of the absorbent phase, that resulted in a decrease of the affinity 

towards the target analytes. Therefore, the TRB-35 sorbent phase was selected 
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for further experiments. To optimize the length of the capillary column, 1 ml of a 

standard solution of irgarol- 1051(2.5 μg/L) and diuron (25 μg/L) was processed in 

capillary columns of 30, 60 and 100 cm in length. Compared with the 30 cm 

capillary, the analytical response for irgarol-1051 improved by 18% and 57% with 

the 60 and 100 cm capillary columns, respectively. In the case of diuron, that 

improvement was of 36% and 75% with capillary columns of 60 and 100 cm, 

respectively. As optimal capacity of the capillary column, 100 cm was chosen, as 

no improvement was detected for the higher lengths.  

 

 
Figure 4.1.1. Variation of the analytical response with A) The percentage of diphenyl 

groups in the PDMS based extractive phase; B) the processed sample volume (2.5 µgIL of 

Irgarol-1051 and 25 µg/L of diuron). 

 

 

The volume of the processed sample was then optimized. To this end, increasing 

volumes from 50 µL to 4 mL of standard solution of irgarol-1051 and diuron of the 

concentrations already indicated above were processed. As can be seen in Figure 

4.1.1B, a greater analytical response was obtained as the sample volume 

increased. However, in the case of the diuron, this increase was not very 

significant. This may be due to the autoelution of the analyte as the sample is 

loaded [301].  Finally, 4 mL was selected as the optimal sample volume. 

As In-tube SPME is a non-exhaustive and continuous flow technique, high 

extraction efficiencies are not expected. However, the analytical response 

obtained was greatly improved by being able to process large volumes of sample. 

The extraction efficiencies were estimated through values obtained from the total 

amount of analyte processed by the capillary column and the amount of analyte 

extracted. To calculate the amount of analyte extracted, 2 µL of standard 

solutions were injected and from the areas of the peaks in the resulting 
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chromatograms and the calibration equations constructed, the estimation of the 

amount of analyte extracted was performed. The extraction efficiencies obtained 

were 3 and 19% for diuron and irgarol-1051, respectively. These values are in 

accordance with the technique. Figure 4.1.2 shows the chromatogram obtained 

for a mixture of irgarol-1051 and diuron under the optimum conditions. Retention 

times and UV–vis spectra were used for the screening and the quantification of 

the target analytes in water samples. 

 

 

 
 

Figure 4.1.2 A) Chromatogram obtained for a mixture of target analytes under the 

optimum conditions B) UV–vis spectrum of diuron and C) UV-vis spectrum of irgarol- 1051.   

 

Analytical performance 

 

 Calibration equations, linear working range, LOD, LOQ and precision data are 

shown in Table 1 for irgarol-1051 and diuron at 226 and 254 nm, respectively. The 

results indicated satisfactory analytical performance in the lineal interval 0.05–15 

μg/L and 0.7–15 μg/L for irgarol-1051 and diuron, respectively. LOD and LOQ for 

irgarol-1051 were 0.015 and 0.05 μg/L, respectively. 
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Table 4.1.1 Analytical parameters obtained with the proposed method to determine diuron 

and irgarol-1051.  

 

 

According to the results obtained the sensitivity achieved with the proposed 

procedure is suitable for regulatory purposes because the LODs are below the 

maximum levels fixed by the European regulations for diuron and irgarol-1051 in 

water samples (Directive 2013/39/EU). The precision for retention times was 

estimated, and the RSD values for diuron and irgarol-1051 were 0.3 and 0.5%, 

respectively. The precision of the analytical response was also calculated. As can 

be seen in Table 4.1.1, the intraday RSDs were up to 4% (n= 3), which are 

acceptable values at the working concentration levels. 

 

Carbon footprint and environmental performance 

 

Thecarbon footprint is calculated by means of GHG emissions produced by an 

activity and is expressed in kg CO2 eq. From a qualitative point of view, the in-tube 

SPME-CapLC-DAD is respectful with the environment since it reduces the 

consumption of solvents and the use of toxic reagents[53] . However, the lack of a 

quantitative environmental indicator prevents real estimation of environmental 

impact and comparison with other methodologies. To calculate the carbon 

footprint, the equation kgCO2eq = Σ (amount of electricity consumed (kWh) x 

electricity emission factor (kg CO2/kWh) was used. To calculate the carbon 

footprint, the energy consumed for the analysis of 100 samples has been taken 

into account, also including the analysis times of each study described. The results 

indicated that the carbon footprint significantly varied as a function of the sample 

pretreatment and the separation/detection technique (Table 4.1.2). The lowest 

carbon footprint (1.10 KgCO2eq) was achieved with in-tube SPME-CapLC-DAD. The 

carbon footprints for SPE-HPLC-DAD were 2.20 and 1.8 KgCO2eq. These values are 

higher than the in-tube SPME-CapLC-DAD carbon footprint because SPE based 

procedures require an additional preconcentración step (evaporation) to reach 

 
Analytes 

Lineal  
range  
(µg/L) 

Calibration curve 
y=a+bx ( µg/L) 

R
2
 LOD 

(µg/L) 
LOQ 

(µg/L) 
RSD 
(%) 

a±sa b±sb 
 

Diuron 0.7-15 6±4 11±1 0.998 0.200 0.70 1.5 
Irgarol-
1051 

0.05-10 7±70 188±14 0.995 0.015 0.05 3.2 
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the LODs, and so the energy consumption increased. Moreover, analysis times, 

and especially solvents and wastes significantly increased with SPE based 

procedures, approximately 200-300 mL/100 samples in the sample pretreatment. 

Meanwhile, in-tube SPME completely eliminates the solvent consumption in this 

step.  GC-MS combined with SBSE and HS-SPME were the procedures which 

provided a high amount of emissions, especially HS-SPME-GC-MS due to the need 

of fiber conditioning, water bath and stirrers during the sample pretreatment. 

MF-SPME coupled to SPE also provided a high value of carbon footprint, and also 

due to long sample pretreatment time and lack of multi-sample pretreatment. 

From these results, it can be concluded that the more sustainable analytical 

procedure to determine the antifouling biocides is in-tube SPME CapLC-DAD not 

only because the analytical parameters adequate but also because the 

environmental performance is also improved. The success of in-tube SPME-CapLC-

DAD is maintaining the reliability of the performance parameters, such as 

sensitivity, precision and accuracy but reducing the environmental impact of the 

analytical methodology. 

 

 

 



 

 
 

Table 4.1.2 Estimation of carbon footprints Kg CO2/100 samples of different analytical procedures proposed for antifouling biocides in water 

samples.  

Analyte Sample 
pretreatment 

Sampl
e 

Volum
e 

(mL) 

Separation
/ 

Detection 

Analysis 
time 
(min) 

Carbon 
footprint 

KgCO2 

Analytical performance Ref 

LOD 
(µg/L) 

RSD 
(%) 

Recovery 
(%) 

Off-
line 

On-
line 

Irgarol-1051 
Diuron 
Chlorothalonil 
Dichlofluanid 
TCMTB 
Thiram 
 

SPE - 100 HPLC-DAD 17 1.80 0.007-
0.415 

<11 68-103 [153] 

Irgarol-1051 
Diuron 
Derivates 
 

SPE - 500 HPLC-DAD 60 2.30 0.005-
0.011 

<14 97-116 [302] 

Chlorothalonil 
Dichlofuamid 
Sea-Nine 211 
Irgarol-1051 
TCMTB 

SBSE - 10 TD-GC-MS 110 16.90 0.005-
0.900 

<30 82-118 [152] 

Chorotalonil 
Dichlofluanid 
Sea Nine 211 

SDE - 10 GC-ECD 55 26.30 0.0002
-0.003 

<8.5 78-104 [156] 

Irgarol-1051 HS- - 15 GC-MS 80 220.00 0.010- <9 82-118 [154] 



 

 
 

Sea Nine 211 
 

SPME 0.030 

Irgarol-1051 
Diuron 
 

MF-
SPME 

- 300 HPLC-DAD 100 23.80 0.0014
-

0.0048 

<12 - [157] 
 

Diuron 
TCMTB 
Irgarol-1051 
Chrothalonil 
 

 SPE 100 LC-APCI-MS 25 19.60 0.005-
0.01 

5-10 96-111 [303] 

Diuron 
Irgarol-1051 
Folpet 
Dichlofluanid 
 

 SPE 100 LC-APCI-MS 21 17.80 0.005-
0.2 

<8 88-92 [304] 

Multiresidue: 
Biocidal 
pesticides and 
Pharmaceuticals 
 

 SPE 20 LC-ESI-
MS/MS 

26 41.10 0.003-
0.1 

<32 62-104 [151] 

Irgarol-1051 
Diuron 

- IT- 
SPME 

4 CapLC-DAD 10 1.10 0.015 
0.200 

<4 92-113 Prop
osed 
proce
dure 
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Water samples analysis 

Water samples were collected in different ports of the Region of Valencia at 

different periods. Retention times, as well as UV–vis spectra, were used for the 

screening the samples. Finally, if necessary, quantification of the positive samples 

was also carried out. Table 4.1.3 shows the samples screened and the 

quantification results determined by in-tube SPME-CapLC-DAD procedure. As 

shown in Table 4.1.3, the concentration of diuron was below the LOD in all the 

ports at any sampling period. Therefore, these sampling points satisfied the 

European standards regarding with diuron. As can be seen in Table 4.1.3, irgarol-

1051 was below the LODs except in the case of samples 1 and 2 in Port of 

Valencia, where the concentrations were 0.02 mg/L, which was near to the value 

of the LODs for this compound (Figure 4.1.3 shows the chromatogram obtained 

for sample 1). However, in all cases, it can be considered that these waters met 

the European standards. The presence of irgarol-1051 in these water samples can 

be understood taking into account that the Port of Valencia is the main port of the 

Valencian Community and one of the main ports of Spain and that it handles a 

large maritime traffic. On the other hand, in the case of Port Saplaya, and Port of 

Siles, they are marinas and the presence of the analytes would be, more likely, 

due to a high number of boats and the low recirculation of water. 

 

Figure 4.1.3 Chromatogram obtained for sample 1. Inset: UV–vis spectra of peak tr = 

8.7 min corresponding to irgarol-1051. 

In order to validate the results obtained, a recovery study was carried out 

spiked samples. Table 4.1.3 summarizes the recovery values obtained. The values 

were between 92-105 % for all the samples. It should be remarked that these 

values were within the acceptable range for environmental analysis. These results 

indicated the absence of matrix effects and so the determination of irgarol-1051 
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and diuron can be carried out with in-tube SPME-CapLC-DAD procedure 

employing external standards. 

Table 4.1.3 Samples screened quantification results and recoveries from water samples 

determined by in-tube SPME-CapLC-DAD. 

   Concentration 
(µg/L) 

 Recovery 
(%) 

 

   Irgarol-1051 Diuron Irgarol-
1051 

Diuron 

 
Port of 
Valencia 

Sample 1 March 0.02 <LOD 102±9 96±4 

Sample 2 April 0.02 <LOD 110±5 100±5 

Sample3 June <LOD <LOD 104±6 105±6 

Sample 4 July <LOD <LOD 102±4 99±7 

 
Marina Port 
Saplaya 

Sample 5 March <LOD <LOD 92±5 99±4 

Sample 6 April <LOD <LOD 108±3 103±6 

Sample 7 June <LOD <LOD 113±3 96±5 

Sample 8 July <LOD <LOD 115±6 100±8 

 
 
Port of Siles 

Sample 9 March <LOD <LOD 93±5 92±7 

Sample 
10 

April <LOD <LOD 98±4 105±6 

Sample 
11 

June <LOD <LOD 91±8 94±8 

Sample 
12 

July <LOD <LOD 103±5 98±6 
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Conclusion  

 
 In this work, a new strategy based on IT-SPME - CapLC - DAD to determine 

diuron and irgarol-1051 in environmental water samples has been proposed. The 

LODs were 0.015 and 0.2 μg/L for irgarol-1051 and diuron, respectively and so, it 

can be used to achieve the quality standards established by the European 

regulations. In addition, precision was also satisfactory.  

This strategy not only was evaluated in terms os basic analytical parameters, but 

also in terms of environmental performance. For this aim, the carbon footprint of 

the proposed procedure has been calculated and compared with the carbon 

footprint of the previously proposed procedures. This parameter has been 

proposed as a quantitative indicator of the environmental friendliness of a 

methodology. For regulatory purposes, the results indicated that the most 

sustainable methodology to determine irgarol-1051 and diuron is in-tube SPME-

CapLC-DAD. Hence, in-tube SPME-CapLC-DAD can be an alternative methodology 

easily implementable and environmental friendly to estimate irgarol-1051 and 

diuron in environmental water samples. The new methodology has been applied 

to evaluate water samples from different ports or marinas in the Region of 

Valencia. The results showed that irgarol-1051 and diuron were below the LODs 

and so, water samples met the European quality standards. 

 
 

4.1.2 Improving sustainability of the Griess reaction by reagent 

stabilization on PDMS membranes and ZnNPs as reductor for nitrates: 

Application to environmental water matrices 

 

In this work, a IL modified-PDMS membrane doped with the Griess reagent 

(NEDD and SA) was proposed as a new strategy to determine nitrite or nitrate in 

water samples. The determination of nitrite and nitrate in water samples was 

carried out by in situ analysis. The solid sensor was based on the use of 

polydimethylsiloxane (PDMS) membranes doped with Griess reagent. The 

influence of some doping compounds, on the properties of the PDMS membranes, 

such as tetraethyl orthosilicate (TEOS), or/and ionic liquids has been studied. 

Griess reagents are entrapped in confined composites of PDMS and ionic liquids, 

in particular 1-Methyl-3-octylimidazolium hexafluorophosphate (OMIM-PF6).   
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In this membrane the reagents are stable on time and they can be delivered to 

a solution in order to carry out the derivatization reaction. Better reagent 

diffusion was obtained using doped PDMS membranes than undoped PDMS. In 

order to apply the procedure to nitrate, dispersed nanoparticles of Zn (ZnNPs) 

were employed. The addition of ZnNPs was studied and compared with the 

addition of powder of Zn. ZnNPs dispersed in surfactants were required in order 

to increase the control over the reduction reaction. The analytical responses were 

obtained by measuring the absorbance or by using the RGB components from 

digital images. The results indicated good precision (RSD <8%) and satisfactory 

stability of the sensing membrane. The detection limit achieved was 0.01 or 0.5 

mg/L for nitrite or nitrate, respectively. The practical application of the sensing 

devices was demonstrated by analysis of different environmental waters, and 

waters from canned vegetables and fresh vegetables (these will be studied latter 

in food section). The results obtained were statistically comparable with those 

provided by using nitrate ISE or UV-vis measurement. This study offers a new 

sustainable methodology for on-site determination of nitrite and nitrate in several 

matrices.  

 
Doping study of the composite PDMS/TEOS-SiO2NPs-SA-NEDD-OMIM-PF6 in 

function of the sensor response. 

 

In a first step of experiments, the response of composites of PDMS doped 

with Griess reagents to the NO2
- concentration was evaluated. It was observed 

that when a sensor was introduced into a solution, the reagents (NEDD and SA) 

atraped in the sensor were released from the solid to solution. In presence of NO2
-

, the resulting solution presented a maximum between 520 and 540 nm, which 

indicated that the azo compound derivative was formed.  In order to obtain 

similar sensitivity to that obtained by performing this reaction in solution, the 

composition of the membrane was assayed. One of the possible drawbacks of 

PDMS membranes can be the low reagent diffusion; therefore, with the purpose 

of increasing diffusion, the membranes were doped with TEOS and OMIM-PF6.  

The addition of TEOS to the membrane improved its hydrophilic character. The 

amount of OMIM-PF6 added to the PDMS was less than 7%, providing total 

gelation. In Figure 4.1.4 the SEM images corresponding to the PDMS-TEOS and 

PDMS-TEOS-OMIM-PF6 membranes are shown. In presence of OMIM-PF6 the SEM 

image shows sponge structures. These images are comparable with similar results 
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obtained by A. I. Horowitz and M. J. Panzer  [118] who obtained an asymmetric 

structure of PDMS polymer with high permeability caused by a decrease in the 

polymer rigidity backbone and an increasing in void volume available for the 

diffusion of the permeate molecules. 

 
Figure 4.1.4 SEM micrographs for (A) PDMS-TEOS and (B) PDMS-TEOS- OMIM-PF6 

solid sensors. 

 

The performance of the different synthesized membranes (PDMS /TEOS-SiO2NPs-

SA-NEDD and PDMS/TEOS-SiO2NPs-SA-NEDD-OMIM-PF6) in terms of reagent 

release was evaluated and compared. As can be seen in Figure 4.1.5 A, the release 

of the reagent (SA-NEDD) depended on the membrane composite and so the 

analytical signal. The results showed that the analyticals responses were 1.5 times 

higher with the OMIM-PF6 modified PDMS-TEOS membrane than PDMS-TEOS 

membrane more likely due to the higher reagent release. Therefore, based on 

these results, PDMS-TEOS-OMIM-PF6 doped with SA and NEDD was chosen for 

further experiments. 

 
 

Figure 4.1.5 A) Analytical signals obtained with PDMS-TEOS and PDMS-TEOS- 

OMIMPF6 membranes doped with SA and NEDD. B) Analytical response study for different 

sensor sizes.  
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In order to evaluate the diffusion of the reagent, the sensing membranes 

(diameter =1.5 cm) were cut in different sizes and added to the nitrite solution. 

The results indicated that the response did not depend on the size. Therefore, ¼ 

of a sensor, with 0.44 cm2 area, was used for each experiment. (Figure 4.1.5B). On 

the other hand, the nitrite analysis time was optimized by carrying out a kinetic 

study in order to determine the time necessary to reach a plateau. As we can see 

in Figure 4.1.6A at 5 min the analytical signal was maximum and this time was 

selected for further experiments. 

 

 

 
Figure 4.1.6 A) Griess reaction time optimization employed PDMS sensing devices for 

0.5mg/L nitrite concentration. B) Vis spectra of different NO2
-
 solutions employing Griess 

reagents entrapped in PDMS membranes.  

 

The use of OMIM-PF6 improved sensibility and response time owing to increase 

the accessibility and the porosity of the membrane. As illustrative example, in 

Figure 4.1.6B are shown the spectra obtained for different nitrite solutions, as 

well as a picture of the corresponding solutions in presence of the sensor. 

On the other hand, the PDMS/TEOS-SiO2NPs-SA-NEDD-OMIM-PF6 sensor stability 

in time and several environmental conditions were studied.  According to the 

results achieved, they were stable for 60 days in storage conditions at room 

temperature and protected from air exposition.  

Application to the determination of nitrate in water samples  

Several procedures have been described in the bibliography to reduce nitrate to 

nitrite using power Zn either in batch mode [178] or in FIA mode by using a Zn 
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column [171]. In order to perform batch procedures, the reduction reagents of 

nitrate have to be added to the solution. The insolubility of Zn powder in water 

solution affects the nitrate reduction reaction, and the precision of the results. 

Thus we have proposed the use of a dispersion of ZnNPs in order to provide a 

robust reduction. Assuming the possibility to transform nitrite in nitrate, in this 

section, the possibility to apply the proposed sensing devices to determine nitrate 

in water samples was evaluated. For this aim, the reduction step was studied. 

Nitrate reduction can be achieved by adding reduction agents such as Zn powder, 

however, one of the main drawbacks is the limited solubility in aqueous samples 

which results in a poor precision of the results. With this in mind, ZnNPs was 

proposed in this work. However, ZnNPs agglomeration due to Van der Waals 

forces must be taken into account. Based on previous studies, sonication was 

tested to prepare stable dipersions, however, results were not satisfactory, and 

therefore, we studied the addition of surfactants to obtain stable dispersions. 

Cationic surfactant (CTAB) and anionic surfactant (SDS) were selected. Mixtures at 

different proportions (0: 100, 30:70, 70:30, 100: 0) of SDS:CTAB were studied. The 

ZnNPs were dispersed in all these solutions except in a solution of CTAB (100:0). A 

solution with 30% SDS-70% CTAB  was chosen in order to obtain a ZnNPs 

dispersion with the highest stability (more than 1 month), see Figure 3.7A 

(section 3.3.2). Zn powder did not provide a dispersion mixture (see Figure 

4.1.7A).  

 

Hydrodynamic diameter of the proposed ZnNPs in 30% SDS-70% CTAB was 

stablished by Dynamic light scattering (DLS). As can be seen in Figure 4.1.7B the 

hydrodynamic size of ZnNPs was around 100 nm.  

The reduction potential of ZnNPs was studied by using two approaches: (i) in 

solution and (ii) ZnNPs immobilization on the surface of nylon membranes.   

In the first approach, the effect of the amount of ZnNPs in the reduction reaction 

and in the Griess reaction was evaluated. As can be seen in Figure 4.1.8A 0.12 

mg/per assay (or 200 µL solution of ZnNPs dispersion) were needed to reach a 

plateau. This amount of NPs was much lower to that required without dispersion 

(0.625 mg). Concerning to the time required for the reduction reaction, in Figure 

4.1.8B, the variation of the response with time is shown. The results indicated 

that the reaction was completed within 3 min and the absorbance was constant. 

ZnNPs dispersion did not interference in the subsequent Griess reaction. In this 
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approach 0.2 mL of ZnNPs dispersion were added to the standard NO3
- solutions 

or samples. After 3 min, the reagent membrane was added to the solution and the 

total time to carry out both reactions was 8 min. The reaction product (azo 

compound formation) was stable with time, since the response was constant with 

time.  

 

 
 

Figure 4.1.7. A) ZnNPs and Zn power in CTAB-SDS surfactant mixture. B) Intensity size 

distribution of the ZnNPs dispersed (in the 30%SDS - 70%CTAB). 

In the second approach, ZnNPs were deposited on a Nylon membrane (0.45 µm). 

For this aim, 200µl of ZnNPs(CTAB-SDS) dispersion was passed through the 

membrane (Figure 4.1.7B, section 3.3.2).  The resulting membrane was then 

added to the solution and the reduction took place by releasing ZnNPs in the 

nitrate solution. Similar results were obtained with both approaches, however, 

the second approach introduced some advantages, since no reagents are required 

(Figure 4.1.8C). It is important to remark that ZnNPs deposited on the nylon 

membrane were stable at least 1 month, and therefore, they can be directly used 

to the nitrate reduction.  
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Figure 4.1.8 A) ZnNPs amount optimization in the reduction reaction of nitrate 

(24mg/L) to nitrite B) Reduction reaction time optimization of nitrate (20mg/L) to nitrite C) 

Analytical responses comparison using ZnNPs-Nylon and ZnNPs-dispersion. 

 
 
Analytical performance 

 

The calibration equations for nitrate or nitrate determination were established 

under the different methodologies used. Linear range, sensitivity, precision LODs 

and LOQs are shown in Table 4.1.4. The obtained values indicate that this 

procedure provides adequate linearity in the working concentration interval 0.04-

2.5 mg/L and 1.61-30 mg/L for the nitrite and nitrate, respectively. The detection 

limit was calculated as 3·s/sensitivity, where s is the blank standard deviation 

[305], being 0.01 and 0.5 mg/L for nitrite and nitrate, respectively. The limit of 

quantification was calculated as 10 Sa/b and it is also listed in Table 4.1.4. 

Interday and intraday relative standard deviation (%RSD) were calculated using 

sensors synthesized in the same batch. Using the solution method, the intraday 
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%RSD were 0.12 and 0.2, for nitrite and nitrate, respectively, while they were 0.4 

and 0.7 using the sensor membrane. These results indicate satisfactory %RSD 

values. In addition, a batch-to-batch precision study was performed. For this aim, 

the responses of the three sensors prepared in three different batches under 

identical conditions were obtained. The batch-to-batch interday %RSD values 

were 1.6 and 6.2 for nitrite and nitrate, respectively. The low %RSD values 

obtained give evidence that the proposed composites are precise for their 

practical application.  

Additional, analysis of images was also performed by RGB coordinates. The 

proposed assay allows determining the concentration quantitatively by measuring 

the RGB components (Table 4.1.4) or semiquantitatively by visual observation and 

comparing the color solution with a color comparison chart. 

The responses of the method to mixtures of nitrite/nitrate were also evaluated. In 

order to determine both analytes, the response of the nitrite was evaluated first 

using one aliquot of the sample. A second sample aliquot was required to 

determine nitrate. When both analytes were determined in the same sample 

aliquot no interference of the ZnNPs was detected in the nitrite response, and the 

responses of nitrite and nitrate (as nitrite) were additives.



 

 
 

Table 4.1.4. Figures of merit obtained using the different methodologies proposed for detection of nitrites and nitrates. 
(a)

 Assay carried out 

by adding the conventional Griess method 
(b)

 Assay performed by using the synthesized PDMS sensor and ZnNPs – dispersion.
 (c)

 Assay carried 

out by using PDMS sensor and ZnNPs-Nylon for reduction reaction. 

                      Linearity (y=a+bx) (mg/L
)
 Precision RSD(%) LOD 

a±sa b±sb R
2
 Linear 

interval 

(mg/L) 

Intraday 

(n=3) 

Interday 

(n=3) 

   ( mg/L) 

NITRITE        

(a)
Conventional Gries 

method 
0.007±0.003 0.661±0.004 0.99 0.018-1.5 0.12 0.9 0.005 

(b)
Sensing 

membrane 
0.0035±0.00

9 
0.523±0.007 0.99 0.04-2.5 0.4 1.6 0.01 

NITRATE        

(a)
Conventional 

Griess method 
0.028±0.013 0.056±0.001 0.99 4.6-30 0.2 4.3 0.1 

(b)
 ZnNPs dispertion 

reduction. Sensing 
membrane 

0.034±0.007 0.0409±0.0005 0.99 1.6-30 0.7 5.8 0.5 

(c)
ZnNPs –Nylon 
reduction. 

Sensing 
membrane 

0.031±0.008 0.038±0.0004 0.99 1.6-30 0.2 6.2 0.5 

RGB (green)
 

0.114±0.013 0.052±0.004 0.99 2.8-25 1.1 7.2 0.8 
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Water sample analysis  

The potential utility of the proposed methodology for the determination of nitrate 

or nitrite in real environmental samples such as well water and irrigation water 

have been tested. Firstly, due to the samples contained particulate matter, the 

effect of filtering the samples on the nitrite or nitrate response was studied. For 

this purpose, aliquots of samples previous filtered or not were processed. The 

results obtained indicated that the sample filtration did not affect the results. 

According to these results, the samples that have particles in suspension were 

filtered. In Table 4.1.5 are shown the concentrations obtained for real water 

samples, as can be seen NO2
- concentration was very little, while higher 

concentrations were obtained for NO3
-. These results were in concordance with 

those obtained by using the reference nitrate ISE electrode method.  

 

Table 4.1.5 Detected concentrations of NO3
-
 and NO2

-
 in different water samples using 

PDMS sensor. 

 

 

 

Conclusions 

In this work a new approach was proposed for the determination of nitrite and/or 

nitrate in waters. The method was based on the use of PDMS-TEOS-OMIMPF6 

membrane doped with SA-NEDD, to derivatize nitrite in aqueous solution. If NO3- 

determination is required, we proposed a ZnNPs-(CTAB-SDS)-modified nylon 

membranes as reduction device. The reagent entrapment on PMDS membranes, 

characterization of ZnNPs dispersions and its reactivity for the reduction of NO3
- 

to NO2
- have been studied. ZnNPs dispersions were stable at room temperature 

for more than 1 moths, as well as Griess reagent in PDMS-TEOS-OMIM-PF6 

support. The analytical response was obtained by measuring the absorbance or 

 
 
 

Samples 

Found concentration (mg/L) 

NO3
-
 NO2

-
 

Method A Method A 

Irrigation canal 69.2±0.9 0.0564±0.0019 

Well water 1 21.42±0.05 0.0848±0.0013 

Well water 2 2.79±0.01 0.0524±0.0013 
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RGB coordinates of the digitalized image. The results were satisfactory reached at 

the detection limit of 0.01 and 0.5 mg/L for nitrite and nitrate, respectively, and 

with good precision (RSD <8%). Based on these results a quick assay for 

quantitative determination of nitrate or nitrite in real samples has been 

developed. Nitrite was directly determined by using the Griess reagent 

membranes while nitrate required the reduction step with ZnNPs. Environmental 

water samples were processed directly without requiring any sample treatment. 

The proposed method has advantages compared to other methods known in the 

literature where unstability of Griess reagent is remarked. This strategy was 

acceptable to stabilize Griess reagents by embedding them on polymeric solid 

support such as PDMS. On the other hand, this strategy improves the 

sustainability of the analytical method in terms of miniaturization, reagent, waste 

reduction and low cost. Furthermore, this approach does not require external 

forces and can be used for on-site analysis by untrained personnel. The successful 

results obtained indicated that the method would be very competitive in routine 

on-site analysis for water samples. For future trends several formats can be 

performed; these sensors can be used as a single assay or can be adapted to a 

microplate assay. In the last case, the amount of membrane used was reduced 

according to the volume used (20 µL). In this case, the absorbance could be 

measured by a microplate reader or by RGB coordinates obtained from the digital 

images captured by using a smartphone [128].   

 

4.2 Biological samples  

In this section we study the determination of volatile sulfide compounds 

(VSCs) in biological samples such as breath and human cardiovascular cells. A 

plasmonic solid sensor based on silver naoparticles retained on Nylon was 

proposed. The studies were performed as for the individual sensor as well as for 

the multisensor sheet that fits the 96-well plate. On the other hand, we 

determined meropenem in the endotracheal tubes and alkylresoncinol in the 

urine. 
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4.2.1. Nylon-supported plasmonic assay based on the aggregation of 

silver nanoparticles. In-situ determination of hydrogen sulfide like 

compounds in breat samples. 

The determination of volatile sulfide compounds (VSCs) in human breath was 

determined by using a solid-phase colorimetric plasmonic sensor based on the 

retention of AgNPs on a Nylon membrane support, patented by MINTOTA [306]. 

Depending on the VSCs concentration, the AgNPs – nylon sensor changes from 

yellow to brown color with different intensities. AgNPs behavior in the membrane 

has been studied by UV−vis diffuse reflectance spectrometry, Raman 

spectrometry, high-resolution transmission electron microscopy (HR-TEM), and 

scanning electron microscopy (SEM). The aggregation of AgNPs in solution was 

demonstrated by an increase in the hydrodynamic diameter, estimated by both, 

asymmetric flow field - flow fractionation (AF4) coupled on-line to DLS and batch 

DLS, and is achieved when sulfide is added to AgNPs covered with citrate. Diffuse 

reflectance spectrofotometry and processed digital images obtained with a 

smartphone have been used as measurements for quantitation; a linear 

concentration range of hydrogen sulfide from 150 to 1000 ppbv and a detection 

limit (LOD) of 45 ppbv were achieved, measuring after 10 min of the sensor 

exposition to the hydrogen sulfide atmosphere (2 L) for humidity percentages 

between 50 and 96% and room temperature. Satisfactory results in terms of 

precision (<10%) and selectivity were obtained. The new sensor reported was 

stable, sensitive, inexpensive, disposable, safe, and user-friendly. Furthermore, it 

has been successfully applied to determine VSCs expressed as hydrogen sulfide in 

breath samples (2 L and 250 mL) as proof of concept. The limit of detection can be 

improved by increasing the exposition time, if necessary.  

 
AgNPs-Nylon colorimetric solid sensor optimization 

 The strong interaction between sulfur group and noble metal NPs is well 

known [307], this interaction could result in changes on the plasmonic resonance 

band of NPs as thus solution colour. Firstly, the response variation of AgNPs and 

AuNPs as a function of S-2 addition was evaluated in solution. It must be taken into 

account that H2S is a weak acid with pKa for the first and second protonation of 

6.88 and 14.15 respectively. Then at pH 7 (corresponding to the pH of the silver 

and gold dispersions) the two forms H2S and SH- are present.  
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 As it was expected, changes in the plasmonic resonance band were observed. 

As sulphide concentrations increased, the AgNPs plasmon band shifted towards 

higher wavelengths and the solution changed from yellow to brown colour, 

indicating the AgNPs aggregation (Figure 4.2.1A). These results were in 

accordance with those provided by Baalousha et al [308]. In the case of AuNPs, no 

band shift is observed, probably due to their stability (Figure 4.2.1B). Therefore, 

this study continued with AgNPs. 

 

 

 
Figure 4.2.1 Response analysis of the spherical citrate-AgNPs of 20 nm in solution for 

Na2S and NaCH3S (registered after 20 seconds of each addition) at final concentration 

between 0-10000 ppb for (A) and citrated-AuNPs in solution for (B) at the same 

concentrations than those indicated in (A).  

 

To support the theory of aggregation of AgNPs in the presence of sulfides, 

fractograms by asymmetrical flow field-flow fractionation (AF4) coupled on line 

with dynamic light scattering (DLS) detector and the batch DLS data were 

obtained (Figure 4.2.2). An increase in the hydrodynamic diameter was achieved 

when the sulfide was added to citrate capped AgNPs. 
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Figure 4.2.2 Fractograms obtained with dynamic light scattering (DLS) detector and 

batch DLS measurements of dispersions of citrate-capped AgNPs in absence and presence 

of sulfide. 

 

The second step was the retention of AgNPs on a solid membrane in order to get 

an easy–handling device. For this purpose three types of different membrane 

materials were examined such as cellulose, fiberglass and nylon (Figure 4.2.3). A 

dispersion of AgNPs (200µL) was passed through the membrane. As can be seen, 

nylon showed the higher retention for the same amount than cellulose and glass 

fiber, measured through the absorbance of the plasmonic band of the resulting 

dispersion (see Figure 4.2.4). 
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Figure 4.2.3 Microscopy images of the membranes on nylon, glass fibber and 

cellulose membranes before (A) and after (B) retention of the AgNPs.  

 

Different retention processes were studied: depositing the membrane in the 

dispersion or passing the nanoparticles through the membrane. The successful 

retention was performed with the last process (see section 3.3.2.2). Hence, the 

commercial AgNPs were directly retained on the membrane, without complex 

instrumentation or surface functionalization, avoiding chemical reagents and 

solvents.  

 

 
Figure 4.2.4 AgNPs-coated membranes of A) Nylon, B) Glass fiber and C) Cellulose. 

The prepared membranes were exposed to different concentrations of H2S (0, 150, 500 

ppbv). 

 

Different pore size nylon membranes were studied. The membranes with and 

without AgNPs were also characterized by Raman spectroscopy. The spectra are 
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shown in Figure 4.2.5. In the case of glass filter a strong fluorescence was 

observed and for cellulose no characteristic Raman peaks were observed. 

 

 
 

Figure 4.2.5 Raman spectra of the nylon and AgNPs-nylon membranes after 

beingexposed for 10 min to different H2S concentrations (0, 150, 250, 500, 1500 ppbv). 

 
 

For nylon membrane the Raman characteristic band is at 1618 cm-1, which 

corresponded to amide band that increases after AgNPs retention (Figure 4.2.5). 

Changes on the amide band of nylon nanofibers after AgNPs retention were 

indicative of the AgNPs bonded to nylon [127]. It was deduced that the retention 

compared with the other materials was improved due to the electropositive and 

electronegative charges of nylon and citrate capped AgNPs, respectively. On the 

other hand, Morales-Luckie et al. [309] also demonstrated the certainty of this 

electrostatic interaction between AgNPs and nylon. Nevertheless, we observed 

that some silver nanoparticles were deposited also in cellulose and glass fiber 

membranes, indicating that there was also a physical adsorption of the 

nanoparticles on the different substrates tested (Figure 4.2.3). Probably both 

types of retentions (physical and chemisorption) are involved in this case. 

Membrane responses were studied with the presence of sulfide compounds. In 

Figures 4.2.3 and 4.2.4 the response can be assessed by visual inspection that the 

membranes change from yellow to orange/brown and the characteristic plasmon 

band at about 400-420 nm shifts to a higher wavelength (∼480 nm) in the 

presence of volatile hydrogen sulphide. These changes were distinguishable and 

more significant through the use of nylon membranes and were clearly observed 

by diffuse reflectance spectrometry at concentrations of 150 and 500 ppbv in 
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comparison to those obtained in cellulose and fiberglass. By Raman spectrometry 

it was observed that in presence of H2S the band of the C=O of the amide shift 

slightly to higher wavenumber from 1618 to 1622 cm−1 (Figure 4.2.5). Sulphide 

groups on the AgNPs surface could change its electronegativity and this should 

affect the electrostatic interaction between AgNPs and the amide groups of the 

nylon membrane. In the next step, the size of the AgNPs was optimized. The 

AgNPs sizes tested were: (A) 10 nm, (B) 20 nm, and (C) 40 nm, which have a 

maximum plasmon band between 380−405 nm, 390−410 nm, and 405−425 nm, 

respectively. Figure 4.2.6 shows the normalized spectra of the response of AgNPs 

in the presence of sulfides in solution and in the membrane. Using AgNPs of 20 

nm, a linear relationship was found between the normalized absorbance at fixed 

wavelength and amounts of sulfide as low as 650 μg (150 ppbv) in air (see Figure 

4.2.6). 

 
 

Figure 4.2.6 Study of the response of the different sizes of AgNPs 10, 20, and 40 nm 

to sulfide (A) in solution and (B) using the membranes in air. The signal for several 

dispersions of AgNPs was registered after 20 s of the addition of aliquots of Na2S to 

resulting amounts from 65 to 4925 μg of sulfide. The membrane analytical responses were 

registered by diffuse reflectance after being exposed to H2S for 10 min at amounts from 

650 to 5251 μg of sulfide. 

 

Whereas, the sensitivities for 10 and 40 nm AgNPs nylon membranes were not 

sufficient to discriminate between amounts lower than 2500 μg in air (500 ppbv). 
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Consequently, in subsequent experiments commercial citrate capped AgNPs of 20 

nm (core size) were used. 

Spectra without normalization for a dispersion of AgNPs of 20 nm is shown in 

Figure 4.2.7. The plasmon band broad at 550 nm, shift from 400 to 420 and 

decreased the maximum of absorbance from 0.9 to 0.3 as increased the amount 

of sulfide in both in solution and on the coated membrane.  

 
 

Figure 4.2.7 Spectra registered for AgNPs of 20 nm with different amounts of sulfide 

and the dependence between them for sulfide quantification (A) in solution after the 

addition of Na2S from 65 to 4925 μg of sulfide and (B) coated on the membrane after being 

exposed to H2S for 10 min at amounts from 650 to 5251 μg to sulfide. 

 

We also established a linear relationship by the quotient of absorbance at 550 nm 

and the maximum absorbance at 400 nm over the logarithm of the amount of 

sulfide. 

On the other hand, the results obtained by SEM have an important role in the 

characterization, as well as for the solution, also for the sensor. Figure 4.2.8A 

shows the SEM images of the AgNPs dispersion before and after addition of the 

sulfide. On the other hand, the plasmonic membranes were observed before and 

after being exposed to H2S by SEM (Figure 4.2.8B).  

Based on the SEM images we observed silver nanoparticles had the same 

behaviour in solution and in membrane when sulphide is added. As an 
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explanation, some studies reported that the formation of Ag2S 

nanostructures/bridges in presence of H2S could also produce the destabilization 

of the monodisperse AgNP dispersion and promote their aggregation, besides to 

the influence of the cations in the reaction media [310].  

 

 

 
Figure 4.2.8 Study of the behavior of AgNPs in presence of sulfide. (A) TEM images of 

a dispersion of AgNPs before and after addition of sulfide (250 ppb) in water, scale bar: 

400 nm. (B) SEM images of the AgNP nylon membranes before and after being exposed to 

sulfide (250 ppbv), scale bar: 50 nm. 

 

Quantification of generated H2S in atmospheres 

 

The formation of the methylene blue was chosen as colorimetric reaction because 

it is widely used for the determination of dissolved sulphide in water since its 

introduction by Fischer in 1883 [300]. This method involves the reaction of this 

compound with N,N-Dimethyl-p-phenylene-diamine in presence of Fe(III) ions, 

giving rise to a characteristic blue coloration with a maximum at 670 nm, 

corresponding to the production of the heterocyclic thiazine dye. The amount of 

the generated H2S from Na2S and phosphoric acid was confirmed measuring the 

content of sulfide in the remaining solution after the generation of H2S (for 10 

min) into 2 L static dilution flasks and compared with a blank and a sulphide 

standard of 0.2 ppm. The remained solution contained less than 1% of the 

standard content obtained by mixing of 100 µL of 2 0.5 ppm of standard 

(expressed as sulphide) and 100 µL of phosphoric acid into the dilution flask. An 

example of the registers obtained is given in Figure 4.2.9. 
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Figure 4.2.9 Quanfication of H2S volatilization in atmospheres by the methylene blue 

method. In green the signal corresponding to the aqueous mixture containing 0.2 ppm of 

sulphide, in blue its absorbance after its volatilization for 10 min in a static dilution flask of 

2 L and in black a mixture without sulphide as a blank. 

 

Humidity 

 

The influence of the humidity in AgNPs sensor response was also studied and 

percentages between 20 and 100% were tested. Figure 4.2.10 shows that similar 

response was obtained from 50% humidity at conditions of room temperature 

(between 20−25 °C). The sensitivity decreased for the lower humidity assayed 

(20%). This work established the figures of merit provided by the sensor for 

atmospheres between 50−96% of humidity, but the sensor can work in other 

conditions by providing other different figures of merit. 
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Figure 4.2.10 Percentage of the response of the sensor and colour of the sensors 

obtained at different humidity 96%, 50% and 20% compared with the blank. 

 

Glycerol effect in the sensor response 

 

The membran responses were enhanced by coating them with glycerol, after 

being exposed to volatile sulphide compounds. The response increases two times 

in absorbance (Figure 4.2.11) after being coated with glycerol; the colour change 

could be related with its dielectric constant (37.4 instead of 78.5 for water). 

Besides that, the glycerol protected the surface membrane making possible to 

carry out the measurements hours/days after having obtained the response (for 

more information about glycerol effect, see stability of the plasmonic 

membranes). 

 

 
Figure 4.2.11: Sensors measured by diffuse reflectance before (A) and after (B) being 

coated with glycerol. 
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Influence of the commercial AgNPs batches in sensitivity and selectivity 
 
To study the influence of different commercial batches on the main analytical 

properties of the sensor such as the sensitivity or the concentration linear range, 

three different batches of citrate capped AgNPs were used for the preparation of 

plasmonic membranes. The slopes obtained for batches 1, 2 and 3 at H2S 

concentrations of 250, 500, 1000 and 1500 ppbv (n=3) were: 0.298±0.009 ppmv, 

0.311±0.004 ppmv, 0.320 ± 0.003 ppmv, respectively. Therefore, we can conclude 

that non-significant differences were observed on the membrane responses 

prepared with different AgNPs batches. 

The selectivity of the membrane was tested against possible volatile organic 

compounds that can be presented in breath samples and can act as interferents 

for halitosis estimation such as ethanol, acetone and ammonia (see Figure 4.2.12). 

It has been reported that these compounds can be found at high concentrations 

in breath and are related to several diseases. Ethanol at higher concentration of 

20 ppbv is indicative of diabetes and hyperglycaemia, acetone between 300 - 500 

ppbv is associated to lung cancer and 1000 - 4000 ppbv of ammonia is related to 

renal failure.  Also, methanol, propanol, formaldehyde and toluene were 

associated to lung cancer at concentrations >100 ppbv and 10 ppbv for toluene 

[311]. The membranes were exposed to these compounds at 5000 ppbv and any 

change in color or shift of the plasmon band was observed. 
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Figure 4.2.12 Selectivity of the AgNPs plasmonic membrane against other VOCS in 

human breath of interest at concentration of 5000 ppbv. 

 

AgNPs sensor stability 

 

For the study of stability of the membranes they were stored in different 

conditions and for different times after which they were tested. Figure 4.2.13 

shows the results obtained under different temperature (4-25°C) and with 

different storage times. The membranes were stable for 30 days at 4 ºC (at 35 

days the sensor provided the color due to AgNP aggregation, and then it was 

damaged) while at room temperature the AgNPs aggregate in 1-2 week. In 

addition, coated membranes with glycerol were also tested in order to evaluate 

its effect on the plasmonic membrane stability. There are several works on the 

influence of glycerol on the stability of nanoparticles [312–314]. The sensors 

covered with glycerol before being used were washed with water, due to the 

stability that glycerol provides. Based on the results obtained we reported an 

evidence in which glycerol can be used to preserve AgNPs before being exposed 

to a sulfur atmosphere. They showed to be stable for at least 3 months in dark at 

4 ºC (Figure 4.2.13) and RSD % of the responses were in all cases ≤10%.  If glycerol 

was used as preservative, previous the use of the membrane, it should be cleaned 

with water. In summary, the glycerol acts as a protective layer to fix the AgNPs, it 

can stabilize the monodisperse AgNPs and the membrane prepared today could 
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be used for H2S determination after 90 days at 4ºC and also it can have stabilized 

the aggregated AgNPs obtained as a response and the membranes can be 

measured days/hours after their exposition to H2S.  

 

 
 

Figure 4.2.13 Stability of the AgNPs plasmonic sensors over time. Comparison of the 

responses obtained for H2S at concentration of 250 ppbv using three membranes prepared 

the same day and the response of three membranes after several days of storage in 

different conditions; at 20º C, 4 ºC and in absence/presence of glycerol. 

 
 

Analytical performance 

 

The calibration curve was obtained from the ratio A550 / A415 against logS (ppbv) 

or by the signals of the normalized spectra at 550nm over the concentration of 

sulfide (Figure 4.2.14). Calibration curve tests were carried out between 

concentrations 150-2500ppbv, with the following results 

Abs550/415=(0.313±0.008) logS-(0.60±0.02), R2=0.998, n=36 and Abs550norm= 

(0.40±0.05)10-3Sppbv–(0.01±0.03), R2=0.99, n=8. The reaction time was chosen 10 

minutes, but to achieve the necessary sensitivity according to the need for the 

type of test, more or less time can be left. The detection limit was measured by 

diffuse reflectance and calculated as 3 Sblank/b, where b is the slope of the 

calibration curve and Sblank was the standard derivation of the intercept, it was 45 

ppbv.  
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Figure 4.2.14 Quantification of H2S using the plasmonic membrane: (A)Ploting of the 

A550/A415 versus Log H2S concentration (ppbv) with image membrane after being 

exposed 10 min to different concentrations of H2S. (C) Representation of the normalized 

spectra at 550 nm versus H2S in ppmv. (D) Representation of the RGB components (Red 

intensity value) versus H2S ppbv concentration. 

 

The RSD %( intraday and interday) were 7% and 11%, respectively for n = 6. On 

the other hand, the calibration equation was obtained using the RGB colour 

model from the images obtained with a smartphone: Ired =(−0.067 ± 0.003) S 

ppbv + (241 ± 3), R2 = 0.990 and n =36. The spectra of the membranes can be 

measured in situ by using the GoSpectra dispositive coupled to a smartphone as it 

can be seen in Figure 4.2.15 too. 
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Figure 4.2.15 Absorbance spectra by the reflection mode of the membranes using the 

GoSpectra accessory coupled to a smartphone iPhone 5s before and after being exposed to 

H2S for 10 min. 

 

AgNPs plasmonic membranes application to volatile sulfide detection 
 
The plasmonic sensor was applied to determine volatile sulfides such as H2S and 
also CH3SH and (CH3)2S in atmospheres (Figure 4.2.16). The AgNPs plasmonic 
membrane for CH3SH and (CH3)2S showed lower sensitivity than that achieved for 
H2S. Consequently, at the levels present in breath samples, the membranes will be 
able to detect a halitosis problem by measuring the H2S mainly.  
 

 

Figure 4.2.16 Response of the plasmonic membranes to A) CH3SH at 1000 ppb and B) 

(CH3)2S at concentration from 150, 250, 500, 1000, 1500 ppbv. 
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Recoveries were calculated using spiked samples. For which the breath samples of 

2 healthy volunteers were enriched with H2S at different concentration levels 250, 

300 and 500 ppbv. The results obtained were useful for the evaluation of 

recoveries (see Table 4.2.1). 

In addition, the membrane was used to test the oral breath of 10 healthy 

volunteers (humidity percentages around 96 %). The concentrations of sulphur 

compounds found in the samples are shown in Figure 4.2.17A. The values 

obtained were below 250 ppbv, which is the lower level of sulphur levels that can 

be associated to periodontal and gingivitis diseases [315,316]. Finally, the 

concentration of sulphur compounds in breath samples of four volunteers who 

had intake allium vegetables (e.g. garlic) was determined. The data shown in 

Figure 4.2.17B indicated that there was an increase in sulphur concentration 

levels in the last case.  



  

 
 

 

Table 4.2.1 Determination of volatile sulphide in breath samples from two volunteers. 

 

 Volunter 1 Volunter 2 

 Diffuse reflectance Digital imges Diffuse reflectance Digital images 

Spiked 
samples 
ppbv 

Detect in 
breath 
ppbv 

Recovery 
% 

Detect in 
breath 
ppbv  

Recovery 
% 

Detect in 
breath 
ppbv 

Recovery 
% 

Detect in 
breath 
ppbv 

Recovery 
% 

0 145 - 151 - 116 - 115 - 

250 392 99 367 86 390 110 349 94 

300 506 120 475 108 464 116 421 102 

500 666 104 601 90 672 111 637 104 
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Figure 4.2.17 Determination of volatile sulphide for A) ten volunteers (n=3) and B) for 

four volunteers before and after food intake rich in allium vegetables (garlic). 

As a proof of concept, we tested the collection of samples in small plastic bags to 

prove applicability of the method for sulfide quantification under different 

conditions of sampling. For the quantification, the air standards were generated 

into the static dilution bottles and transferred with a syringe into the bags 

containing the sensor (Figure 4.2.18). Exhaled air was taken by volunteers into 

plastic bags (250 mL) with AgNPs sensor, and after 10 min the membrane was 

removed and analyzed by diffuse reflectance spectrometry. The normalized 

absorbances at 550 nm obtained were interpolated on the calibration curve; Abs 

norm. 550= (0.35 ± 0.03) [S, ppmv] + (0.111 ± 0.015), R2 = 0.99, (n =3) (Figure 

4.2.89B). The sulfide concentration found was 110 ppbv (Figure 4.2.18B in red), 

which is a value below of 250 ppbv associated to periodontal and gingivitis 

diseases. 
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Figure 4.2.18 Normalized absorbance spectra obtained for sulfide air standards 

generated into the static volumetric flask and transferred to the bags and normalized 

spectra of a breath sample (A). Normalized absorbance at 550 nm was over the 

concentration of sulfide for standards and a sample (B). 

 

Conclusions 

 In the present study we have proved that it is possible to obtain a solid-phase 

colorimetric sensor based on AgNPs retention on a nylon membrane. The 

mechanism of retention and aggregation of AgNPs has been confirmed by using 

UV− vis spectra, TEM, SEM, and Raman spectroscopy. The plasmonic membranes 

changed from yellow to orange/brown in the presence of hydrogen sulfide-like 

compounds at ppbv levels (LOD of 45 ppbv, 2L). It was observed that to improve 

sensitivity it can be achieved by leaving more sampling time. The particle size of 

the AgNPs affects the sensitivity and the concentration range of volatile sulfide 

compounds detection. The membranes were applied for the determination of 

volatile sulfide compounds in the exhaled breath of 10 healthy human volunteers. 

H2S levels detected in exhaled human breath could serve as breath markers for 

some diseases such as halitosis. Their values were in the range of 70−210 ppbv, 

below the limit of periodontitis or gingivitis diagnostic (250 ppbv). A proof of 

concept employing a 250 mL of sample for testing halitosis was also carried out. 

 Contrary to existing methods in literature the proposed plasmonic sensor is 

accessible to the general population as well in economic terms due to its easy use. 

It should be noted that the preparation and use of the plasmonic sensor is free of 

toxic reagents, and finally this sensor is non-invasive and does not destroy the 

samples. They are stable in normal atmosphere and can be used directly to 
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determine selectively volatile sulfur compounds in 10 min. Therefore, the 

reported plasmonic membrane has proven as a new sustainable strategy with 

multiple possible applications for different types of matrices. In this sense, the 

following studies intend to demonstrate its validity also for cellular clinical trials. 

Finally, compared to the others methods, this strategy proposited is simple, 

stable, easy to use, affordable and has a competitive economic cost, mostly 

complying with the principles of sustainable analytical chemistry. 

 

 

4.2.2 Determination H2S in live cardiac cells samples using AgNPs 

multisensor sheet    

In the present work, a solid plasmonic colorimetric multisensory sheet adapted to 

a 96-well microplate has been manufactured to detect in vitro hydrogen sulfide 

(H2S) generated by biological samples. Such an approach will allow for low-cost, 

multi-sample testing. In this context and due to the interest of hydrogen sulfide 

emission by cardiac cells, we have developed and optimized a multisensory plate 

for in situ multi - analysis to determine the H2S emitted by cardiac cells under 

different clinical conditions (normoxia, ischemia / reperfusion) carried out in 

collaboration with the research group RETRACAR of the Hospital La Fe (Valencia, 

Spain). 

 

Optimization of the solid- phase colorimetric plasmonic sensor 

According to previous section, the AgNPs retained in the nylon membrane are 

aggregated in the presence of sulfides [317]. These studies corresponded to the 

development of an individual sensor of dimensions (diameter = 0.5cm) with 200µl 

citrate capped commercial AgNPs 20 nm retained. In order to scale the sensor to a 

96-well multiwell system, individual sensors that individually matched to each of 

the wells can be used. However, in order to streamline and automate the 

procedure, the immobilization of the AgNPs on Nylon surfaces of size (7.5 x 10 

cm) has been optimized. These sheets significantly improved the adaptation to 

the surface of the 96-well plate (Figure 3.9 A in seccion 3.3.2). 



                                                                                      Chapter 4. Results and Discussion 

149 
 

 

Figure 4.2.19 A) Plasmonic bands of the blanks (dashed line), and displacement of the 

plasmonic band in the presence of H2S (2 mg/L) (continuous line) in both cases the test 

time was 2 hours. Figure 4.2.20 B) Analytical response of standard (gray color) and blank 

(black color) expressed with absorbance normalized at 500nm. 

 

The sensor sensitivity and stability were studied by testing different volumes of 

AgNPs retained on the nylon plate. AgNPs tested volumes ranged from 60µl to 

200µL. As we can see in Figure 4.2.19 A, the sensor with 60 µl of AgNPs lacked 

homogeneity, which led to lower precision (Figure 4.19 B), however, the analytical 

response was greater. A similar behaviour was observed in the case of 90 µL. The 

sensor with 200µl was also ruled out due to the instability observed during the 

test. As can be seen in Figure 4.2.19 B in the case of the blank, the plasmon band 

decreased due to possible agglomerations between them [318,319]. For future 

tests, the sensor with 110 µL ANPs was chosen, which gave a better response 

compared to sensors with 150 µL and 200 µL AgNPs and also good precision 

compared to 60 µL and 90 µL. Subsequently, the study of the influence of glycerol 

on the enhancement of the sensor response was performed (Figure 4.2.20 A and 

B). The precision study of the blank multisensory sheet with and without glycerol 

was carried out by measuring the diffuse reflectance of a plate with 14 and 24 
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sensors respectively. According to the results % RSD of the blank sensor was lower 

than 5%. 

 

Figure 4.2.20 Reproducibility of sensor along with the images of the distribution of 

the AgNPs sensors in the Nylon sheet plate A) Without glycerol. B) With glycerol.  

The precision of the multisensory sheet preparation was evaluated by measuring 

the normalized absorbance at 500 nm by the diffuse reflectance of 3 multisensory 

sheets (with 14 sensors each plate) in the same conditions and the value of RSD% 

was lower than 7%.  On the other hand, the results obtained showed 

improvement in the response of the membrane when coating it with glycerol after 

being exposed to the sulphur gases generated in the head spacing of the micro 

well cell, this agrees with the results obtained previously with the individual 

sensor (Figure 4.2.20). All tested sensors were prepared according to the Section 

3.3.2. 

Figure 4.2.21 shows the images of the plasmonic sensors along with normalized 

spectra after exposition to H2S from 0-25 µM. For quantitative analysis the sensors 

after being exposed to the H2S were measured by means of diffuse reflectance, 

however a semi-quantitative analysis can be performed with the naked eye.  
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Figure 4.2.21 Normalized Vis spectra of different H2S concentration detected by 

AgNPs multisensor sheet.  

The calibration equation, employing diffuse reflectance, was obtained by 

representing the normalized absorbance at 500nm vs. the concentration of 

hydrogen sulphide. Table 4.2.2 shows the analytical parameters like linear range, 

sensitivity, precision and the limit of detection (LOD). They were calculated for the 

H2S response by using diffuse reflectance under incubator conditions 

(temperature -37 ° C, humidity- 95%) for 8 hours. The LOD was calculated as 

3Sblank/b, were b is the slope of the calibration curve and Sblank is the standard 

derivation of the absorbance of 10 blanks and was 0.13µM. The precision of the 

analysis was also evaluated. The intraday precision RSD (%) was evaluated at a 

concentration of 8 µM. The interday precision was obtained comparing the 

response of the sensors prepared in three different days under identical 

condition, using the same analyte concentration as in the intraday test. The 

interday and intraday precision values were 4% and 8% respectively. RSD (%) 

values indicated that the proposed multisensory sheet is a precise device for 

practical applications. 
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Table 4.2.2 Figures of merit obtained using the AgNPs sensor for H2S detection under 

following condition: temperature at 37°C with 95% atmosphere humidity for 8 hours. 

 

Analyte 
Trial 
time 

(hours) 

Linearity (y=a+bx) 

Linear 
Interval 

RSD% 
LOD 
µM (µM) (n=3) 

   a±sa             b±sb                   R
2
   intraday interday 

H2S 8 
-0.0051± 0.0410± 

0.0004 
0.99 0.34 - 8 4 8 0.13 

0.0016 

 

Cellular sample analysis  

In summary, these solid-phase plasmonic colorimetric sensor sheets were 

prepared using citrate capped AgNPs of 20 nm immobilized on Nylon sheet of 

pore sizes 0.22µm and following the optimal conditions mentioned above they 

were applied to detect H2S in biological samples such as cells. Firstly, the 

selectivity study of the method was carried out, which indicated that the culture 

itself does not produce any type of interference in the sensor response, so its 

response is attributable to the emissions by the cells. The tests on real samples 

were used using human AC-10 cardiomyocytes at a temperature of 37°C and in an 

atmosphere of 95% humidity and 20% O2, so previously necessary tests have been 

carried out to ensure that the correct operation of the sensor is carried out. On 

the other hand, the AC-10 culture with a density of 100,000 cells per well was 

optimized as the appropriate condition for carrying out the rest of the 

experiments. The stability of the sensor to the standard cell culture (DMEM with 3 

mg/mL glucose, 2.5 mM L-glutamine and 10% fetal bovine serum) was also 

studied. Cell culture assays were performed in the 96-well plates (Figure 4.2.22).  
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Figure 4.2.22 Cells or standartd assays steps and multisensor sheet image before and 

after exposure to different H2S concentrations. 

 

Normoxia, Ischemia-Reperfusion (I/R) assays in human cardiomyocytes cultured in 

vitro was carried out by the Retracar group (ISLa Fe), in which the AgNPs device 

was used to measure the H2S levels produced after cell damage. Figure 4.2.23 A 

shows the Normoxia y I/R process where 100,000 AC-10s were seeded per well in 

a 96-well multiwell plate. Once the cells adhered to the surface of the well, the 

standard culture medium (DMEM with 3 mg / ml glucose, 2.5 mM L-glutamine 

and 10% fetal bovine serum) was replaced by means of ischemia (DMEM with 0 

mg / ml of glucose, 4 mM L-glutamine and 0% fetal bovine serum) and the plate 

was transferred to a low O2 atmosphere (1%) and the detection device was 

incorporated into the well. After 7 hours of ischemia, the culture medium was 

changed to a standard culture medium and the normoxia atmosphere was 

recovered (20% O2, 3 mg/ml glucose). Cells were cultured under these conditions 

(reperfusion) for 1 hour after which the device was removed for further reading. 

The results obtained indicate that cardiomyocytes subjected to ischemia-

reperfusion produce sulfide molecules, detectable by the multisensory. As seen in 

Figure 4.2.23 B, O2 deprivation causes increased levels of sulfide secreted by 

cardiomyocytes. The results demonstrated that the 96-well multiwell plate, I/R 

assay and the sensor were successfully optimized to achieve the target.  
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Figure 4.2.23 Ischemia-reperfusion model in AC10 analyzed using AgNps multisensors 

sheets. A) Experimental design used. B) Quantification of H2S values produced by AC10 

under different culture conditions. The bars represent the mean and standard deviation of 

3 independent experiments. C) Cell viability of AC10 under different culture conditions. The 

bars represent the mean and standard deviation of 3 independent experiments. * <p .05 t-

student paired test. 

 

Characterization of the multisensory sheet by the hexagon tool 

A quantitative evaluation of the multisensory performance has been carried out 

using the hexagon tool proposed by our group [32,33] in order to demonstrate its 

benefits in reference to sustainable analytical chemistry. By means of a 0-4 score 

scale summarized in a hexagon pictogram, the analytical performance, associated 

risks, sustainability, environmental impact and annual economic cost of the 

proposed multisensory sheet have been evaluated.  In this paper, the 

multisensory sheet was compared with recent analytical methods for detecting 

H2S in cell matrices found in the scientific literature. The results obtained are 

represented in Figure 4.2.24. Initially, a AgNPs based plasmonic sensor was 

proposed by our research group [317] for the in situ detection of H2S (see Figure 

4.2.24a). Taking into account the basis of this solid-phase colorimetric sensor, the 

present multisensory sheet has been suggested as an improved alternative of the 

analytical characteristics of the single Ag NPs sensor, as indicated in Figure 

4.2.24b. When comparing both hexagon pictograms, it can be observed that the 
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figures of merit FM-1 of the multisensory sheet show a lower penalization score 

due to the possibility to perform a quicker multianalysis (96 versus a single sensor) 

and the enhancement of the limit of detection (0.13 µM versus 5 µM for 

individual sensor). 

The characteristics of the proposed multisensory sheet were compared to the 

sensor devices proposed in the literature, that is, a nano metal-organic 

fluorescence probe [320], a Ag nanoplate-coated paper assay [321] and a 

fluorescent chemosensor [322]. The results of the comparative study within the 

hexagon tool are shown in Figure 4.2.24 c, d and e. Mainly, it was observed that 

the proposed multisensory sheet showed potential analytical advantages since it 

is quicker to prepare (3 min.) and offers 96 simultaneous analyses without sample 

treatment. It was also easily handled and portable. All these features were 

missing in the other sensor devices, leading to a higher penalization score. In 

addition to this, the associated risks considered when using reagents and solvents 

by the sensor devices in Figure 4.2.24 c, d and e were noticeably high, which 

makes the multisensory sheet an optimal choice. Regarding sustainability, the 

nano metal-organic probe [320] and the multisensory sheet were the better 

options when considering the environmental impact due to the low carbon 

footprint estimation and the reduced amount of generated wastes in comparison 

to the other sensor devices in Figure 4.2.24 d and e. Finally, the annual economic 

cost associated with the analytical procedures was calculated taking into account 

the criteria indicated in the previous paper [33]. The instrumentation cost for 

absorbance measurement of the plasmonic band and the lack of additional 

reagents needed within the multisensory sheet suggested this colorimetric sensor 

was a low cost option that could be a potential candidate for H2S in situ detection.  
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Figure 4.2.24 Hexagon pictograms of several H2S detection using different analytical 

sensors: A) nylon-supported AgNPs plasmonic assay, B) 96-well nylon-supported AgNPs 

multisensory sheet, C) nano metal-organic fluorescence probe, D) Ag nanoplate-coated 

paper assay and E) fluorescent chemosensor.  
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Conclusions  

In the present study we have developed a simple method to prepare a solid-phase 

colorimetric multisensor (up to 96 devices) for detection of H2S in biological 

samples by in-vitro analysis. This approach is based on the retention of AgNPs in a 

nylon plate, adaptable to 96 microwells, which allows the performance of multi-

analytes. Aside from simplicity in fabrication, it is also quick to prepare, and the 

manufacturing cost is very low. The sensor plate is prepared in 3 min, achieving in 

such a short time a plate of 96 silver nanoparticle sensors, for a multi-analysis or 

for several individual analytes. Additionally, an overall quantitative evaluation of 

the analytical performance of the AgNPs multisensory sheet by means of the 

hexagon tool shows that it offers advantages such as high sensibility, better 

sustainability and lower economic cost than other recent analytical methods 

found in the literature. According to the results obtained, it can be concluded that 

the developed approach is adequate for in-situ multi analysis monitoring of H2S in 

cardiomyocytes, is energy–efficient, it does not require sample pre-treatment, it is 

portable, rapid and easily handled by non-specialized personal and offers the 

advantage of simultaneous analysis with high sensibility for determination of 

hydrogen sulphide in biological samples such as cells, and also applicable for other 

types of matrices such as plasma or saliva. Those characteristics contributed to 

sustainable analytical chemistry. 

 

 

4.2.3 Fast Blue B functionalized silica-polymer composite to evaluate 3,5-

dihydroxyhydrocinnamic acid as biomarker of gluten intake 

 

Celiac disease is an immune-mediated systemic disorder elicited by gluten 

and related prolamines present in genetically susceptible individuals. The actual 

treatment is a strict and lifelong gluten-free diet. However, compliance with the 
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gluten-free diet is not always adequate and many food products contain low 

concentrations of gluten. As a consequence, the determination of dietary 

transgressions is a challenge for patients, physicians and dietitians. 

Alkylresorcinols (AR) have been proposed as sensitive and specific biomarkers of 

gluten consumption. Herein, the objective of this section was to evaluate silica –

polymer composites doped with fast blue B (FB) colorimetric reagent to estimate 

AR in biological samples. The proposed colorimetric device was synthesized by 

immobilizing FB into PDMS/TEOS composite. The assay was based on the 

spontaneous release of FB to the solution containing AR (3,5-

dihydroxyhydrocinnamic acid, DHCA, as target analytes) and the formation of the 

azo complex that can be measured at 520 nm. The response was evaluated with 

UV-vis spectroscopic measurements and a chromatographic technique (in-tube 

SPME-CapLC-DAD) to isolate the DHCA signal.   

 

FB-doped membrane composition 

FB-doped PDMS membranes were synthetized by embedding the 

colorimetric reagent inside the polymeric network (PDMS). The colorimetric 

reaction can occur in the membrane or in the solution depending on the 

colorimetric reagent, target analytes, sample matrix and the polymeric 

composition. Taking into account the nature of the colorimetric reagent and 

application to aqueous matrices, the premise was that FB would be released to 

the solution and forms the derivative compound with the AR, which can be 

measured by UV-vis. In addition, this release can be favoured by adding to the 

polymeric matrix modifiers to improve the diffusion towards the solution. Thus, 

the first step was the study of the polymeric composition. In this work, FB-doped 

PDMS-polymeric membranes were compared with FB-doped-TEOS- and C18-

PDMS membranes in order to evaluate the FB diffusion. Figure 4.2.25A shows the 

schematic representation of the procedure carried out to evaluate the 

membranes. 
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Figure 4.2.25 A) Schematic diagram of the proposed device and chemical reaction 

between AR and FB reagent B) Variation of the response as a function of the membrane 

composition C) SEM micrographs of the FB-doped sensing membranes. 

 

As it was expected, the polymeric membrane, in contact with the AR solution, 

gave rise to a coloured redish solution produced by the azocompound formed. 

Figure 4.2.25 B depicts the analytical response as a function of the composition 

(Table 3.3.1). It should be noted that the analysis time was 15 min.  FB-doped 

PDMS membranes, released the chromogenic reagent to form the derivative. In 

previous work, our group has demonstrated that the reagent released can be 

favoured by increasing the polarity of the membrane, and this aim, TEOS was 

studied as matrix modifiers. As can be seen in Figure 4.2.25 B, the presence of 

TEOS in the polymeric matrix resulted in an increase of the response, due to the 

increase on the diffusion velocity of FB from the membrane to the solution. To 

prove this, C18 was used as an apolar modifier. As can be seen, the response 

decreased with the presence of C18 and this decrease was a function of the 

percentage of C18. These results indicated that FB release depended on the 

polarity of the polymeric matrix. TEOS improved FB release since diffusion kinetic 



                                                                                      Chapter 4. Results and Discussion 

160 
 

was facilitated. Indeed, the response obtained with the FB-doped-PDMS-TEOS 

membrane was comparable with the response obtained in conventional solution 

derivatization reaction (see Figure 4.2.26).  

 

 

Figure 4.2.26 Variation of the response as a function of the concentration obtained 

with the conventional solution derivatization reaction. 

 

Analytical response of FB-doped membrane to AR 

Firstly, the analytical response was evaluated as a function of AR concentration in 

solution. For this aim, the sensing membranes were immersed in AR solutions at 

concentration levels up to 4.4 mg/L. As it was expected, the results indicated an 

increase on the absorbance when the AR concentration increased. The working 

concentration interval was from 1 to 5 mg/L with a LOD of 0.35 mg/L. However, 

for practical applications, and in particular for AR determination in biological 

samples concentration range can be variable and in some cases, such as patients 

with gluten free diets, very low concentration level can be found. Therefore, a 

previous SPE procedure was evaluated in an attempt to cover lower concentration 

ranges.   

Preconcentration and clean-up was accomplished with SPE using C18 cartridges. 

For this aim compounds, two AR were studied as a function of their polarity, PR 
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and DHCA taking into account the apolar hydrocarbon chain and the carboxylic 

acid functional group, respectively. The results indicated that the recovery was 

quantitative for PR (extraction efficiency =91%) when using methanol and water 

as conditioning solvents. However, in the case of DHCA, it was necessary to 

include a conditions step with 1 mL sodium acetate (NaCH3COO at pH 5,00) in 

order to extract the non-ionic form of DHCA and therefore to reach an adequate 

recovery. Alternatively, 0,1 M HCl showed quantitative extraction recoveries for 

DHCA, and the use of one of the other was determined by the urine matrix (see 

application to urine samples section) Taking into account, that the potential 

application of the proposed membranes is the detection of metabolites from 

gluten intake, DHCA was chosen for further experiments.  

Once the conditioned step was stablished, the volume of sample processed was 

studied. With this in mind, sample volume (2-10 mL) was studied. Figure 4.2.27 A 

shows the response variation as a function of sample volume processed 

(Velution=0,5 mL).  As can be seen, the analytical response increased as a function of 

the processed volume. These results indicated that the sensitivity can be 

modulated by processing different volumes. Detection limits for 2, 5 and 10 mL 

were 120, 60 and 10 µg/L, respectively, which is of special interest to apply the 

methodology given the variability of the AR contents in real samples. In this work 

and as a proof of concept, 5 mL were chosen for further experiments. Reaction 

time can be also related with the sensitivity, however, in this case, reaction times 

higher than 10 min provided a constant response (see Figure 4.2.27 B). 

 

Figure 4.2.27 A) Variation of the response as a function processed volume in SPE y B) 

Study of the reaction time.  
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Figure 4.2.28 A shows the variation of the membrane response as a function of 

the concentration when SPE was used previous to the spectroscopic response. As 

can be seen, the combination of SPE and the sensing membranes allowed the 

determination of the DHCA in the concentration range from 0.2 to 1 mg/L. In 

addition, a semiquantitative analysis can be also carried out by visual inspection 

since the FB delivery to the AR solution caused an intense colorimetric shift from 

pale yellow to orange-red (Figure 4.2.28 A inset). 

 

 

Figure 4.2.28 A) Spectra variation as a function of the concentration B) 

Chromatograms obtained for the derivative formed with the sensing membranes with and 

without SPE.  

The potential application of the proposed devices was demonstrated for biological 

samples, in particular, urine samples. Therefore, isolation of the FB-AR response 

was mandatory. For this aim, chromatographic analysis of the membrane 

response was monitored. Figure 4.2.28 B, depicts the chromatograms obtained 

after the exposure of the target analyte to the sensing membrane by processing 

the sample with SPE and without that step. As can be seen, the derivative 

provided a chromatographic response at a retention time of 11,5 min, which can 

be used to monitor the response obtained the sensing membranes, isolating the 

DHCA signal from other potential compounds in urine samples in order to 

correlate it with the gluten intake.  

Analytical parameters 

The use of DHCA as biomarker to evaluate the gluten intake is a tricky issue, since 

the content can vary as a function of the intake, patient and sampling conditions, 
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among others. Therefore, sensitivity is a key parameter in order to adapt the 

procedure to the needs of the analysis. The proposed sensing membranes 

combined with SPE allowed the detection of the target analyte at different 

concentration level taking into account the processed sample volume, and at the 

same time the clean-up step reduced the potential interfering species in the urine 

sample. The calibration curve established for the proposed procedure using 5 mL 

as sample volume is shown in Table 4.2.3.  

Under these conditions, the LOD was 60 µg/L (see Table 4.2.3). Sensitivity of the 

chromatographic signal obtained for the isolated derivate was also evaluated. In 

this case, the LOD was 50 µg/L when processing 5 mL of samples in the SPE 

cartridge and subsequent injection in the chromatographic system.  It should be 

noted that in this case, the calibration showed a good linearity in the working 

concentration interval between 0.2 and 1.0 mg/L (see Table 4.2.3). In addition, 

and as mentioned before LOD of 120 and 10 µg/L can be achieved if 2 or 10 mL of 

sample are processed, respectively. Therefore, the procedure could be adapted to 

the patient state in terms of gluten intake. 

Precision was evaluated for the spectroscopic and the chromatographic responses 

by using the RSD values. Table 4.2.3 summarizes these results. Interday precision 

was evaluated for six replicates. The RSD value for the spectroscopic responses 

was 7%, meanwhile for the chromatographic signals 6%. No significant differences 

were found between the spectroscopic and chromatographic measurements 

despite the differences in signal acquisition due to the retention time of the 

derivative specie in the chromatographic system. These results were in agreement 

with the kinetics of the derivatization reaction (Figure 4.2.27B), which showed a 

constant signal after 10 min. In order to guarantee the practical application of the 

proposed membranes, synthesis-to-synthesis precision was also evaluated. For 

this aim, FB-sensing membranes were synthesized in three different days, and the 

response was evaluated at a AR concentration level of 1 mg/L. The RSD calculated 

with the spectroscopic readout was 15%, which indicated an adequate 

performance of the sensing membranes in terms of precision.  
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Table 4.2.3 Analytical parameters obtained with sensor and chromatographic methods to 

determine AR in standard solution and extracted from real samples.   

Analytical 
methods 

Lineal 
range 
(mg/L) 

Calibration curve LOD 
(µg/L) 

RSD 
(%) y= a+bx (mg/L) 

a±Sa b±Sb R
2
 

Sensor 1-5 0.017±0.01 0.42±0.02 0.99 60 7 

Chrom. 
method 

0.2-1 6±18 260±8 0.999 50 6 

 

Application to estimate AR in urine samples 

The real performance of the proposed sensing devices was tested for urine 

samples. Preliminary studies were carried out with samples taken from volunteers 

controlling the gluten intake during different days. Figure 4.2.29A and Figure 

4.2.29B show a scheme of the SPE procedure and the response obtained to a 

urine samples and the same urine spiked with 0,8 mg/L of DHCA, respectively. The 

spectroscopic signals for urine and spiked urine samples are shown in Figure 

4.2.29C. For this sample, the sensing membrane did not provide response, 

showing the absence of the target analyte, meanwhile the addition of DHCA to 

the samples resulted in the expected spectroscopic signal. Thus, the negative 

response indicated that DHCA was not detected at concentrations lower than 60 

µg/L, therefore, it could be assumed the absence of gluten intake.  

 

Figure 4.2.29 A) Schematic diagram of the SPE procedure, B) Image of the derivatized 

urine samples 1: sample and 2: spiked sample with DHCA 0.8 mg/L. C) Comparison of 

spectra obtained for that sample and spiked sample. D) Chromatograms obtained for a 

derivatized sample with and without derivatization.  
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Taking into account the previous results, the next step was to evaluate if the 

response obtained with the sensing membrane (spectroscopic and 

chromatographic responses) were correlated with the gluten intake. In this case, 

the spectroscopic measurements will be correlated with the total content of FB-

derivatizable compounds meanwhile, the chromatographic response was 

correlated with the DHCA response. For these aim, three different samples taken 

in three different days were analysed. The first and third day there was gluten 

intake, meanwhile the second day, the gluten intake was suppressed. The three 

samples were analysed following the proposed procedure. After the SPE 

extraction and addition of the sensing membranes, the three samples provided a 

positive response, therefore a chromatographic analysis was performed. Figure 

4.2.30 compares the chromatograms obtained for the samples. As can be seen, in 

all cases, FB-derivatized compounds were eluted. However, DHCA was detected 

only when gluten intake took place, sample DAY1 and sample DAY3. In the case of 

sample DAY 2(no gluten intake), DHCA was not detected. These results indicated 

that DHCA could be an alternative biomarker to detect food transgressions in the 

context of gluten intake.  

 

Figure 4.2.30 A) Variation of the chromatographic profiles in the different sampling 

days (day 1: gluten intake, day 2: gluten-free diet and day 3: gluten intake), B) Images 

corresponding to the derivatized samples in the three sampling days, and C) Variation of 

the signal obtained with the spectroscopic measurements and the chromatographic 

measurements. 
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The comparison of the spectroscopic and chromatographic measurements 

revealed promising results for the use of the proposed sensing membranes. 

Figure 4.2.30C shows the variation of the total signal obtained with the 

spectroscopic measurements and it is compared with the variation of the 

chromatographic measurements as a function of the sampling days. As can be 

seen, the variation profile can be correlated with the gluten intake in both cases. 

The suppression of gluten intake in the diet, was translated into a decrease of the 

spectroscopic response, which was correlated with the decrease of the solution 

colour. The same way, the chromatographic peak at 11.5 min decreased with the 

suppression of gluten intake and increased again once a normal diet was 

established. It should be noted, that not only the chromatographic peak 

corresponding to DHCA decreased, but also, the complete chromatographic 

profile varied. Nevertheless, only DHCA peak was correlated with the gluten 

intake. With this in mind, and with the earlier discussed calibration equations, the 

corresponding concentrations to the responses were calculated. Table 4.2.4 

shows the results obtained for spectroscopic and chromatographic 

measurements.  

Table 4.2.4 Calculated concentrations for the spectroscopic and chromatographic 

responses 

Sample Gluten 
intake 

Total content 
mg/L 

DHCA 
mg/L 

Day1 Yes 1.33±0.09 0.24±0.03 
Day2 No 0.74±0.07 <LOD 
Day3 Yes 1.63±0.12 0.11(<LOQ) 

 

 

Conclusions 

In this present study work, a FB/doped PDMS/TEOS based membranes has been 

proposed as a sustainable tool to develop in-situ kits for detecting AR, taking into 

account the possibility to carry out a visual inspection analysis and the 

simplification of the derivatization procedure. The results indicated that 

spectroscopic analysis can be used as a screening tool to differentiate positive and 

negative samples. Meanwhile, the chromatographic assay was necessary to 

isolate the DHCA response in positive samples. Under the optimum experimental 

conditions, DHCA LOD was 60 ng/mL by adding a SPE step (C18 cartridges) prior to 
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the analysis. Precision was also tested, providing adequate results (RSD<7%).  

Preliminary studies in urine samples have shown successful results, showing that 

DHCA can be used as biomarker of gluten intake. The main advantages of the 

proposed methodology are the development of a pre-screening tool previous to 

the chromatographic analysis, and therefore the simplification of the dietary 

transgression evaluation which led to the improvement of the sustainability of the 

proposed method. 

 

 

4.2.4 Determination of antimicrobials in invasive medical devices by in-

tube solid phase microextraction as preconcentration tool: application to 

endotracheal tubes 

The use of invasive medical devices, such as endotracheal tubes (ETT), for patients 

in intensive care unit is often necessary. However, the biofilm formation can 

result in ventilator associated infections and, therefore in such cases the 

treatment with antimicrobial agents is required. Meropenem is a widely used 

antimicrobial for the treatment of these infections. These treatments are not 

always effective, in fact, in-vitro studies have demonstrated the difficulty of 

antimicrobials to penetrate into the biofilm, however in-vivo studies of the effect 

of these compounds is a trend, mostly because of the complexity of pulmonary 

samples extracted from ETTs. Therefore, the objective of this study was to 

evaluate IT-SPME-CapLC-DAD to determine meropenem in ETTs in order to 

estimate the penetration capability into the biofilm. Firstly, the analytical 

performance of in-tube SPME-CapLC-DAD showed satisfactory results for 

estimation of meropenem in terms of sensitivity (LOD= 1 µg/L) and precision 

(RSD<10%). The extraction of meropenem from the ETTs was also studied. Direct 

extraction, stir assisted extraction (SAE) ultrasound extraction (UAE) extraction 

were tested. The results indicated similar recovery results, and thus, direct 

extraction was chosen for simplicity. Finally, samples from ETTs used for critically 

ill patients with different antimicrobial treatments were analysed with successful 

results. The proposed methodology can be a potential alternative to determine 

meropenem in invasive medical devices, and in particular in ETTs, taking into 

account that the pulmonary antimicrobial concentrations for meropenem (2-30 

mg/L). 
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Study of the preconcentration step 

 

As mentioned in the introduction section, IT-SPME allows the preconcentration of 

the analytes into the internal surface of the capillary column though the 

interactions stablished between the coating and the compounds of the sample. 

Next, analytes retained during the load step can be desorbed by the mobile phase 

and transferred to the analytical column. The amount of analyte extracted 

depends on several parameters, such as the length of the extraction loop or the 

volume of sample processed. Therefore, firstly, these parameters were optimized. 

The study of the processed volume was carried out by processing different 

volumes of a meropenem solution (0.75 µg/mL). Figure 4.2.31A shows the 

variation of the analytical response as a function of the processed volume. As can 

be observed, an enhancement of the analytical signal was achieved by increasing 

the volume of processed sample. However, volumes higher than 500 µL did not 

improve the analytical response. These results were in accordance with the basis 

of the IT-SPME, since this technique is not an exhaustive extraction technique. 

Generally, when the volume of processed sample is increased, an enhancement of 

the analytical signal is observed due the amount of analyte retained in the coating 

is higher. Nevertheless, when the equilibrium is reached, higher volumes did not 

improve the analytical response. Thus, a volume of 500 µL was used for further 

experiments. 

The length of the capillary columns was also studied. As can be seen in Figure 

4.2.31B, the area of the chromatographic peak increased with the length of the 

capillary column, and this can be explained by the increment on the extractive 

phase in the system. An increase on the capillary length would lead to an 

enhancement on the analytical response; however, it would be also associated 

with an increase on the system pressure. Therefore, 60 cm was selected as the 

optimum capillary length. The flow rate and nature of the coating were also 

evaluated. Figures 4.2.31C and D show the results obtained with different flow 

rates and capillary coatings, respectively. As can be seen, there were not 

significative differences when using different flow, thus 9 µL/seg was chosen for 

further experiments. Contrary to this, the nature of the coating is a key parameter 

in the preconcentration process. As it was expected TRB-35 provided the higher 

analytical response (see Figure 4.2.31D). It should be noted, that the percentage 

of diphenyl groups endows high polarity to the inner surface of the capillary 

coating, hence the affinity of meropenem towards the coating can be also 
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improved. Therefore, the selected IT-SPME conditions were: TRB-35 capillary 

column (60 cm), processed volume 500 µL and flow rate 9 µL/seg. 

 

 
 

Figure 4.2.31 Analytical response (peak area) obtained as function of the A) 

processed volume, B) capillary columns length, C) Sample processed flow and D) capillary 

coating. [Meropenem] = 0.5µg/mL. Mobile phase ACN:water in gradient elution mode: t = 

0 min acetonitrile:10% during 10 min, increased to 15% from 11 min to 13 min, and then 

from 14 min to 15 min-10% acetonitrile. Mobile phase flow rate was 8 µL/min.  
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Study of meropenem extraction from the ETTs 

 

Following the procedures described in section 3.4.2, the ETTs controls spiked with 

meropenem were analysed by using direct DE, UAE and VAE. The percentages of 

recovery obtained using the proposed extraction methodologies were 92±5, 87±4 

and 95±7% for DI, UAE and VAE, respectively (0.5 µg/mL meropenem was 

processed using as extraction time 5 min). The results showed that the three 

procedures provided satisfactory recovery values, however, DE and VAE were the 

procedures that provided higher recoveries. Therefore, the extraction kinetics for 

DE and VAE were also studied. The results indicated that quantitative extraction, 

91±6%, can be achieved with SAE with an extraction time of 1 min. However, the 

percentage of recovery with DE at 1 min was 65±5 %. Therefore, stir assisted 

extraction (water as extracting solvent and 1 min as extraction time) was the 

procedure chosen to extract meropenem for ETTs, taking into account the 

recovery values, the simplicity of the procedure, the elimination of hazardous 

solvents consumption and the low energy required to carry out the extraction.  

 

Analytical performance 

 

Calibration equation, linear working range, LOD, LOQ and precision data are 

shown in Table 4.2.5. The results indicated satisfactory analytical performance in 

the lineal range 0.01-1 µg/mL. The LOD and LOQ were experimentally determined 

as the analyte concentration that provided a signal-to-noise ratio of 3 and 10, 

respectively. The LOD was 0.003 µg/mL and LOQ 0.01 was µg/mL. These results 

demonstrated the great potential of IT-SPME-CapLC-DAD for the determination of 

meropenem in ETTs, since it can be detected at ultra-trace level, and so remaining 

concentrations of the antimicrobial in the biofilm can be detected. It should be 

noted that these values were lower that the LODs provided by previously 

reported studies as can be seen in Table 1.7. Therefore, the proposed procedure 

can be used to determine residual concentrations of antimicrobials.   

 By another hand, precision of the proposed procedure was studied. This 

parameter was evaluated by RSD. Intra- and inter-day RSD were 1% and 4%, 

respectively (see Table 4.2.5). Thus, the precision was satisfactory for practical 

applications. Figure 4.2.32A shows the chromatograms obtained at different 

concentration levels. 
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Table 4.2.5 Figures of merit obtained for the determination of meropenem by in-tube 

SPME-CapLC-DAD. 

Analyte 
Linear 
range 

(µg/mL) 

Calibration 
curve 

R
2
 

LOD LOQ RSD% 

 y= a + bx (µg/mL) (µg/mL) Intraday Interday 

a 
b 

(µg/mL) 
  

(n=3) (n=6) 

Meropenem 0.01-1 23±6 1627±13 0.99 0.003 0.01 1 4 

 

 

Analysis of samples from ETTs 

 

Five ETTs tubes from patients with meropenem treatment were analysed 

following the optimized extraction procedure, VAE and subsequent analysis by IT- 

SPME-CapLC-DAD. The confirmation of the meropenem identification was carried 

out not only with the retention times, but also the by means of the UV–vis spectra 

of the chromatographic peaks in samples and the comparison with the spectra of 

meropenem standard solutions. By way of example, Figure 4.2.32 B shows the 

chromatogram obtained for a sample compared with a standard of meropenem 

(0.5µg/mL) and the UV–vis spectra of the peak at tR = 7.9 min, corroborating the 

identification of meropenem. Table 4.2.6 summarizes the results obtained for the 

analysis of the five ETTs tubes. As can be seen, meropenem was detected in three 

of the samples ETTs from patients treated with meropenem (ETT2, ETT3 and 

ETT5) at a concentration level 41, 33 and 80 ng/mL. This low amount of analyte in 

the ETT could be explained due the inability of the antibiotic to penetrate inside 

the mature biofilm. RSD values for samples were <12%. As it was expected, in 

samples ETT1 and ETT4, meropenem was not detected, as these patients were 

not treated with the antimicrobial. 
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Figure 4.2.32 A) Chromatograms obtained for increasing concentrations of 

meropenem: 0.1, 0.2, 0.5 and 1 µg/mL. B) Chromatograms obtained for a sample 

extracted from the ETTs and a standard solution (0.5 µg/mL). Inset. Spectrum of the 

meropenem found in the ETT sample VAE: 1 min using water as extraction solvent under 

stirring. In-tube SPME conditions: TRB-35 capillary column (60 cm) processed volume = 

500µL and flow 9µL/seg. Chromatographic conditions: mobile phase ACN:water in gradient 

elution mode: t=0 min acetonitrile:10% during 10 min, increased to 15% from 11 min to 13 

min, and then from 14 min to 15 min −10% acetonitrile. Mobile phase flow rate was 

8µL/min.  

 

Table 4.2.6 Found concentrations and recovery values calculated for meropenem in 

samples from ETTs from patient in ICU. 

Samples ETTs Found concentrations 
(µg/mL) 

Recovery % 

ETT 1 <LOD 96±3 
ETT 2 0.041± 0.005 103±5 
ETT 3 0.033±0.002  95±4 
ETT 4 <LOD 94±6 
ETT 5 0.08± 0.003 98±4 
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Conclusions 

Quantifying the concentration of antibiotic in invasive medical devices can give 

information about its capability to penetrate into the biofilm and, therefore, the 

efficacy offered in the treatment of the infection. In this work, a new 

methodology has been proposed in order to determine the concentration of 

meropenem in endotracheal tubes from patients in intensive care unit who were 

treated with this antibiotic. For this purpose, an IT-SPME coupled to CapLC-DAD 

has been evaluated as an innovative tool to determine antimicrobial in invasive 

medical devices. Previously, the extraction of meropenem from the medical 

devices has been optimized using stir assisted extraction. The application of the 

proposed procedure has given rise to very low detection limits (3 ng/mL) and 

satisfactory precision (RSD <12%). The performance of the proposed methodology 

has been demonstrated by the analysis of samples from ETTs tubes in patients 

with meropenem treatment. Meropenem was found at concentrations of ng/mL. 

Validation of the procedure was carried out by a recovery study. The recovery 

values showed satisfactory results (94-103%).  The new approach proposed in this 

work has proved to be an alternative not only because the sensitivity and 

precision, but also owing to the simplicity, cost efficiency, analysis time, and thus, 

its sustainability.  
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4.3 Food sample 

Taking into account the need to develop sustainable analytical tools for food 

analysis, in this section PDMS based sensing membranes were developed to 

determine NH3, NO-
2 and NO-

3
 in meat and vegetable samples.  

4.3.1 Ionic-liquid doped polymeric composite as passive colorimetric 

sensor for meat freshness as a use case 

A composite containing 1,2-naphthoquinone-4-sulfonic acid sodium salt 

(NQS) embedded in an ionic liquid (IL)-PDMS-TEOS-SiO2NPs polymeric matrix was 

proposed. The selected IL was 1-methyl-3-octylimidazolium hexafluorophosphate 

(OMIM-PF6). It was demonstrated that ILs chemical additives inside PDMS 

influenced the sol-gel porosity. The analytical response for ammonia atmospheres 

was studied based on the sampling time (between 0.5 and 312 h), temperature 

(25ºC and 4ºC) and sampling volume (between 0.022 and 2 L) by means of diffuse 

reflectance measurements and also by RGB. RGB measurements were made from 

sensor images taken with a smartphone. Flexible calibration was possible, 

adapting it to the sampling time, temperature and sampling volume needed for its 

application. Calibration linear slopes (mA vs ppmv) between 1.7 and 467 ppm/v 

were obtained for ammonia as a function of the several studied conditions. Those 

slopes were between 48 and 91 % higher than those achieved with sensors 

without ILs. The practical application of this sensing device was demonstrated for 

the analysis of meat packaging environments, being a potential cost-effective 

candidate for in situ meat freshness analysis. In addition, the selectivity of the 

sensor was verified in reference to other compounds of the family emitted by 

meat products, such as sulfides. Homogeneity of the ammonia atmosphere was 

tested by using two sensors placed in two different positions inside the packages. 
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Characterizing the response of the PDMS/TEOS-NQS/SiO2/IL sensing 

membranes 

The ILs doping effect into the polymeric matrix depended on the combination 

of the IL and the polymeric network. As the membrane properties for analyte 

detection can be tunned by cationic and anionic modifications, three different ILs 

were tested to assess the influence of the presence of cations and anions on the 

detection performance. The sol-gel matrix developed satisfactorily when OMIM-

PF6 and 4MBP PF6 were used in percentages up to 9%. Nevertheless, the PDMS 

membrane doping with BMIM OSU did not lead to adequate gelation. Hence, 

OMIM-PF6 and 4MBP PF6 were selected for further experiments. Different 

percentages of OMIMPF6 were studied. As can be observed, the analytical 

response of the membrane depended on the proportion of OMIMPF6 (Figure 

4.3.1). 

 

 

  Figure 4.3.1 Variation of the analytical response of NH3 (20 ppmv at 8 hours) in 

atmospheres as a function of OMIM-PF6 mass proportion in the polymeric matrix. 
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Optical microscopy and SEM images were performed to characterize the 

membranes (see Figure 4.3.2). Comparison of microscopy images and 

micrographs, without and with OMIM-PF6, we observed that the presence of IL in 

the sensing membrane increased the spongy structure, which led to an 

improvement in the analytical response. These results are in agreement with the 

results in Figure 4.3.1. The observed pore size was about 8-30 µm. 

 

Figure 4.3.2 Optical microscope images (magnification 10) of sensing membranes A) 

without OMIM-PF6 B) with 0.2 % OMIM-PF6 C) with 7.8 % OMIM-PF6 and D) scheme of the 

sensing membrane (7.8 % IL) before and after the exposure to NH3 with the optimum 

sensing membrane (magnification 50). E) SEM micrograph of the transversal cut of the 

polymeric membrane without IL F) SEM micrograph of the transversal cut of the polymeric 

membrane containing 7.8 % IL and porous measurements. 
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Figure 4.3.3 A, B and C show the sensing scheme of the membrane before 

and after ammonia exposition, the TEM micrographs of the inner membrane 

surface and their bright-field optical microscopy photographs, respectively. ILs as 

chemical additives influenced the sol-gel porosity basically because of the 

interactions between the components of the polymeric matrix. 

 

Figure 4.3.3 A) Schematic diagram of the sensing membrane composition and its 

response. B) SEM micrograph of the transversal cut of the polymeric membrane containing 

7.8 % IL. C) Bright-field microscopy photographs of 10x magnification obtained for sensing 

membrane before and after ammonia exposition.  
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Simultaneous H-bonds between PF6 and silica matrix together with 

imidazolium groups π-π stacking [295] when using OMIM-PF6 gave rise to a high 

porosity membrane, which can improve the efficiency of the material for sensing 

purposes (see Figure 4.3.2 and 4.3.3). As it can be seen (Figure 4.3.1), analytical 

response increased as a function of the IL load due to the increase on the 

permeability. In all cases the response was higher in the presence of ILs. It is 

worth mentioning that higher contents of ILs did not allow the proper gelation of 

the polymeric matrix. The influence of the cation in the sensing performance was 

also studied and the results with pyridinium and imidazolium based ILs were 

compared. There were not significant differences in the analytical response and 

precision, showing that the performance of the sensing membrane is mainly 

governed by the anion. Therefore, imidazolium based sensing membrane was 

selected for further experiments. 

The kinetics of the reaction between NH3 and the IL-NQS-PDMS device was 

investigated. The kinetic data were obtained by recording the absorbance of the 

device at different exposure times for several concentrations, at 25ºC and for a 

sampling volume of 2 L. The results obtained are shown in Figure 4.3.4. The effect 

of the ammonia concentration on the reaction rate corresponded to a pseudo-

first-order kinetics (tested up to 24 h). The slopes of the linear regressions Ln(mA) 

vs t(h) can be used as a measure of the initial reaction rate, being 0,024 ± 0.003 h-1 

(n=6). A linear relationship existed between the obtained slopes of the linear 

interval (mA vs t) for each assayed concentration and the sampling time (h) with a 

slope of 5.61 ppm/v (see Figure 4.3.4). 
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Figure 4.3.4 Variation of the sensing response of NH3 at several levels of 

concentration (ppmv) as a function of the exposure time with OMIM-PF6-NQS-PDMS/TEOS-

SiO2 NPs.  
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Figure 4.3.5 shows the results corresponding to 10 ppmv analyte 

concentration for several sampling times, which were compared with those 

obtained by using the firstly developed PDMS/TEOS-NQS-SiO2NPs sensor 

[112,113]. The absolute value of the analytical response increased, obtaining an 

evident improvement in the response of the sensor. As shown in Figure 4.3.5, the 

IL-NQS-PDMS sensor showed significant colour change in one hour due to the 

presence of ammonia whereas the reference sensor without IL gave response 

after 3 hours. Langmuir and Freundlich adsorption isotherms were examined to 

illustrate the nature of the interaction between the hybrid material and ammonia. 

The correlation coefficients (R2) indicated that the adsorption can be better 

demonstrated by the Langmuir isotherm (R2>0.95) compared to the Freundlich 

model (R2<0.85). 1/A (A is absorbance, which is related with the adsorbed 

ammonia in the sensor) vs 1/ammonia ppmv was plotted for 8 and 24h and the 

slopes were: 11.373 and 5.612 ppmv, respectively. These results can suggest that 

the analytes were adsorbed on homogeneous adsorption sites of the sensor, 

considering a chemisorption mechanism. 

 

 

Figure 4.3.5 Variation of the sensing response of NH3 (ppmv) as a function of the 

exposition time with PDMS/TEOS-NQS- SiO2 NPs (red columns) and PDMS/TEOS-NQS- SiO2 

NPs-OMIM-PF6 (blue columns). 
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Other studies related with the estimation of the loaded ammonia mass by the 

sensor were carried out. We worked with the hypothesis that if the absorbance is 

the same for given sensors at several tested conditions, the loaded ammonia mass 

will be the same. Low ammonia concentrations were tested after a high sampling 

time of 312 h (Volume 2L, 25ºC) for achieving a high load: 0.25, 0.5 and 1 ppmv, 

which presented mA values at 590 nm of 432, 397 and 497, respectively. Other 

studies related with the estimation of the loaded ammonia mass by the sensor 

were carried out.  

The high absorbance value obtained for 0.25 ppmv can be in accordance with 

a high ammonia load percentage in reference to the ammonia atmosphere. We 

stablished 100 % arbitrarily, corresponding to 0.35 µg in the ammonia 

atmosphere and from this value we stablished the approximate amounts 

(µgadsorbed) for all experiments carried out with standards (µgstandard).  

Straight lines were obtained for all experiments by plotting 1/µgadsorbed vs 

1/µgstandard considering Langmuir isotherm. It is important to note that several 

batches of sensors were employed and very different sampling times for a testing 

period of more than a year at 25ºC and 2L as a sampling volume and ammonia 

concentrations between 0.25 and 20 ppmv. Figure 4.3.6 shows the relationship 

between the obtained slopes of the abovementioned straight lines vs sampling 

times and an insert with their values for each time. These results indicated that 

the proposed sensor can be of utility for very different sampling times and several 

working ranges of concentrations. 
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Figure 4.3.6 Relationship between the obtained slopes of the straight lines 1/µgadsorbed 

vs 1/µgstandard considering Langmuir isotherm vs sensor sampling times for several 

concentrations and an insert with their values for each time.  

 

Stablishing analytical parameters from the response of the sensor 

In previous section, the influence of the sampling time on the ammonia 

sensor response has been demonstrated. In order to stablish the calibration data, 

the influence of the sampling volume was also tested. Table 4.3.1 gives the 

linearity achieved at several conditions, mA at 590 nm vs ammonia concentration 

(ppmv) was considered. The response of the sensor was dependent on sampling 

time as it can be seen in Table 4.3.1, showing that very different sampling times 

can be employed and it was also dependent on the sample volume, which 

indicated its mass nature. The achieved sensitivities were higher than those 

achieved by the composite without ILs, for example for 2L and 8h and 24h the 

slopes were 5.3 and 20.3 ppm/v, which only represented 11% and 21 %, 

respectively, of the values shown in Table 4.3.2 for the composite containing ILs. 
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Table 4.3.1 Parameters of linear regressions (mA vs ppmv) for gaseous standards of 

ammonia, methylamine and dimethylamine for several sampling volumes and sampling 

times, under 25 ° C. 

 

Analyte Time (h) 
Volume 

(L) 
Slope R2 

Working 
range 

(ppmv)/n=5 

Ammonia 

1.5 2 8.80 0.996 2-20 

8 2 47.33 0.990 2-10 

8 2 45.60 0.990 2-10 

16 2 92.24 0,990 2-10 

16 2 97.10 0.980 2-10 

24 2 91.90 0.990 2-10 

24 2 92.50 0.990 2-10 

120 2 161.43 0.980 0.5-5 

240 2 467 0.980 0.25-3 

1.5 0.36 1.70 0.990 2-20 

240 0.1 5.64 0.990 2-50 

Methylamine 

1 2 36.22 0.990 2-20 

1.5 2 45.42 0.990 2-20 

24 2 67,22 0.980 2-10 

24 2 66,50 0.990 2-10 

Dimethylamine 1.5 2 17.46 0.990 2-20 
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 Results were evaluated considering a non-exposed IL-NQS-PDMS sensor as a 

blank reference sensor. In addition to ammonia, various amines were tested. Each 

sensor was placed in several vials with a volume of 22 mL as shown in Figure 

4.3.7, and ammonia or amines were added (100 µL of concentrated solution) the 

responses were immediate (Figure 4.3.7A, B) and diffuse reflectance 

measurements were carried out  (Figure 4.3.7C, D). The sensing membrane was 

capable of discriminating between primary and secondary amines giving rise to 

different colours due to NQS reaction with amino groups. In addition, to the 

colour responses, the absorption spectra in the range between 500-900 nm 

evidenced a noticeably different profile for the analytes between them and in 

comparison with the absorption profile of the blank sensor. Methylamine and 

dimethylamine were also assayed at 2 L and several sampling times for linearity 

study obtaining adequate results, (see Table 4.3.1). 

  

 

Figure 4.3.7 A) NQS sensor exposed to several atmospheres of ammonia and primary 

and secondary amines in a 22 mL vial B) Selective colour response depending on the 

chemical nature of the amine C) Sensors absorbance spectra including a blank sensor D) 

Spectra difference between ammonia and each amine response in relation to the blank 

sensor. 
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Sensor precision was evaluated from twenty five batches of sensors (precision 

achieved 8 % expressed as % RSD) for a testing period of more than a year and 

obtained by ten operators. The precision for sensor were between 6 and 8 % for 

inter and intra-day measurements (n= 30 for each one), respectively. The slopes 

of two replicates of the calibration graphs shown in Table 4.3.2 were statistically 

compared by linear regression (n=8), due to very different values are achieved in 

function of sampling volume and sampling time. The equation was y = (-7±4) + 

(1.1±0.1)x  being R2 = 0.994 and then, the replicate slopes are statistically the 

same at 95 % confidence level. This value indicated that a good precision was 

achieved. Experimental work was also carried out on the study of PDMS/TEOS-

NQS-OMIM-PF6 sensing membrane selectivity. During putrefaction of the meat, in 

addition to ammonia and amines, other gaseous compounds such as hydrogen 

sulfide (H2S) will also be released. Volatile sulfide compounds are emitted 

significantly during meat spoilage [323]. Subsequently, the influence of H2S on the 

PDMS- based sensor response has been tested against sulfide standards (Figure 8 

A,C). Among the volatile compounds emitted during meat spoilage, H2S can be 

considered as an additional indicator of chicken decay [323]. To assess the 

influence of sulphide compound on the PDMS- TEOS- NQS- IL sensor response, 

sulphide standards of 1, 3 and 5 ppmv were prepared in a 100 mL plastic bag. The 

standards were kept under refrigeration conditions (4 °C) during 10 days. The 

evolution of the sensor colour was registered by taking a photo with a 

smartphone and quantified by the registration of diffuse reflectance.  
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Figure 4.3.8 A) NQS-based sensor exposed to sulphide standards prepared in a 100 

mL plastic bag B) Chicken sample atmosphere in a 100 mL plastic bag in which the NQS-

based and the AgNPs sensors were exposed C) NQS-based sensor absorption spectra 

stored for 10 days at 4 °C in the presence of H2S standards (1,3,5 ppmv) D) NQS-based 

sensor absorption spectra stored for 2 days at 20 ºC and 10 days at 4 °C in the presence of 

the chicken sample.  
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As shown in Figure 4.3.8A, the NQS-based sensor preserved its original orange 

colour despite the presence of H2S atmosphere. It was concluded that no 

remarkable difference between the blank and the sampling NQS-based sensors 

was obtained (Figure 4.3.8A). Other experiment was carried out regarding real 

meat sample. 0.5 kg of chicken slice was introduced in a 100 mL plastic bag 

(Figure 4.3.8B) in the presence of the IL-NQS-PDMS sensor in addition to a solid 

plasmonic sensor developed by the MINTOTA research group for the 

determination of volatile sulfide compounds [111] as previuoly described. Two 

experiments were conducted: on the one hand, chicken sample was preserved at 

room temperature (20 ºC) and refrigeration conditions (4 ºC) during 2 and 10 

days, respectively. Both sensors give signals as it is observed in Figure 4.3.8B, the 

responses for the PDMS-TEOS-NQS-IL sensors at the assayed conditions of 

conservation are given in Figure 4.3.8D. It was concluded that the proposed NQS-

TEOS-NQS-IL sensor selectively reacted with ammonia and shows no interference 

in the presence of sulfur compounds, which is in accordance with the selectivity of 

the NQS reagent for amino groups. 

Application of the sensor to packed meat samples 

For sensor application in packaged meat samples it was important to study 

the sensor coverage and package humidity influence in sensor response. Several 

covering configurations of the sensor were addressed. A full covering of the IL-

NQS-PDMS sensor with lab film dramatically reduced sensor response by up to 

93%, while a medium coverage setting offers a response of around 70%. An 

intermediate situation was found when a dotted film covered the sensor response 

(30% absorbance at 590 nm).  

Additionally, the influence of humidity on the sensor response was 

experimentally tested (see section 3.4). The several relative humidity values 

(%HR) found for prepared standards were 75% (nitrogen), 78% (indoor air) and 

88% (saturated water air). Finally, the sensor was taken and measured by diffuse 

reflectance spectroscopy. All experiments for humidity study were made at room 

temperature (20 ºC). Figure 4.3.9 shows the sensor response obtained at the 

humidity conditions indicated previously in comparison with the reference blank 

sensor.  
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The humidity of several meat samples atmosphere was also measured with 

the probe of the Thermo-Hygrometer when meat samples were preserved in a 

100 mL plastic bag under refrigeration conditions at 4 ºC (see Figure 3.10B). It was 

determined that meat under packaging conditions shows an average of 87 ± 3 % 

relative humidity when preserved in refrigeration conditions for several days. 

Similar humidity values were found when using ammonia standards.  

Relative humidity measurements at the indoor of the laboratory were carried 

out, giving values of 51 ± 6 % (n=3). Blank sensor presented the same response 

between 51 and 88 % humidity conditions (see Figure 4.3.9). Therefore, the 

results presented in this work are satisfactory guidelines for detecting meat 

freshness.   

 

 

Figure 4.3.9 Sensor responses when exposed to a 20 ppmv ammonia atmosphere at 

75 and 88 % humidity conditions compared to the reference blank sensor (left), which 

presented the same response between 51 and 88 % humidity conditions. 

 

 

 

As we can see in Table 4.3.2, the calibration curves also depended on the volume 

of the container. For ammonia at 240 hours in 2L of volume, the slope had a value 

almost 100 times higher than for 0.1L volume. Another factor that affected the 

sensor response was temperature. Decreasing percentages smaller than 45 % for 

slopes of the calibration straight lines were obtained at refrigerate conditions of 

4°C with respect to responses at 25ºC depending of sampling time and sampling 

volume. This finding stablished that the calibration must be carried out 

considering sampling volume, sampling time and temperature. Another factor 

that also influenced the sensitivity of the sensor was the different porosity of the 

two faces of the sensor. A different porosity of the sensor faces was found when 

measurements were made with light microscope, as can be seen in Figure 

4.3.10A. Two equivalent experiments were performed in which the sensor was 

adhered to the Tupper cover by the porous and non-porous side, respectively, and 

Blank

51% HR 75% HR

20 ppmv NH3

88% HR
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the porous side showed better sensitivity and then this side was exposed for 

future experiments (Figure 4.3.10B). It should be noted that no difference was 

observed between the spectra of the blank sensor faces. The IL-NQS-PDMS sensor 

was applied to monitor the freshness of 0.5 kg of chicken slices under refrigerated 

conditions for 10 days. The meat sample was packed in a commercial rectangular 

shaped Tupper with 100 mL of free space between the meat and the tupperware 

lid. The IL-NQS-PDMS sensor was divided into two equivalent semicircles and 

stickled by the non-porous side at the Tupperware cover thanks to the adhesive 

composition properties of PDMS (Figure 4.3.11A). 

 

 

Figure 4.3.10 Optical microscope images of the porous using (up) a x10 objective and 

non-porous face (down) using a x50 objective of the sensor (A). Sensor spectra for porous 

and non-porous face for chicken meat and blank samples under refrigerated conditions for 

10 days (B). 
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The evolution of the sensor colour during 10 days was analysed by taking 

photos of the sensor and registering the RGB coordinates. The % R coordinate was 

found to be the most sensitive and, thus, the one employed for the analysis. The 

percentage of the R coordinate for both halves of the sensor showed similar 

values as indicated in Figure 4.3.11B. Therefore, it can be concluded that a 

homogeneous atmosphere is generated inside the Tupper. 

 

 

Figure 4.3.11 Two half circles of the IL-NQS-PDMS sensor sticked at the tupperware 

lid and the reference sensors are placed at the lid on the outside part (A) Sensor evolution 

of the % R coordinate during 10 days when the meat sample is kept under refrigeration 

conditions (B). 
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For quantitation purposes, calibration curves of 100 mL ammonia gaseous 

standards (10, 20 and 50 ppmv) were obtained by means of the % R coordinate 

analysis of the sensors image inside a plastic bag (see inset in Figure 4.3.12A) 

during 10 days at 4ºC. The average of the % R coordinate for the reference blank 

standard (sensor outside the plastic bag) is 56% ± 4. This value remains constant 

for the rest of the standards employed, that is, 57% ± 4, 57% ± 5 and 59% ± 3 for 

10 ppmv, 20 ppmv and 50 ppmv, respectively.  The variation of the % R for 10 and 

50 ppmv with time was shown in Figure 4.3.12A, an increase in the sensor 

response was observed with time in accordance with the described behaviour of 

the sensor. After 10 days, the sensors were extracted from the plastic bag and the 

absorption spectrum was registered by diffuse reflectance measurements. The 

differences between the absorption profile of the 50 ppmv ammonia standard 

and meat atmosphere and sensor blank after 10 days of analysis were shown in 

Figure 4.3.12B, which indicated by the spectrum profile that the meat freshness is 

mainly related with ammonia in accordance with data given in the introduction 

section. Figure 4.3.12C shows the colour of the sensors with time for standards 

and meat sample. The footprint of the sample was not the same as those 

obtained for the standards, this can be in accordance with the progressive 

liberation of the ammonia from the meat. The quantification of the sensor 

response in the meat sample after 10 days at 4ºC was computed by processing 

diffuse reflectance signal and RGB analysis of the sensor image taken by a 

smartphone using the corresponding calibration equations. A linear relationship 

was found between the absorbance (mA) and the percentage of red coordinate 

(%R), being the linear regression given by the equation %R = (-0.0211±0.004) x + 

(53.5±0.7) with R2 = 0.96. The ammonia content was found to be 20 ± 4 µg/kg and 

18 ± 3 µg/kg per sample by using the calibration curves given in Table 4.3.2, 

respectively. According to human sensory evaluation based on colour and odor 

features [288] and after 10 days storage time, the meat freshness status was 

ascribed as putrid. 
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Figure 4.3.12 A) Ammonia gaseous standard calibration curves inside a 100 mL 

plastic bag for 10 ppmv (blue), and 50 ppmv (green); insert: sensors placed inside a 100 mL 

plastic bag of gaseous standards. The reference sensors (blank and concentrated) for 

obtaining the images are located outside the bag. B) Difference absorption profile between 

the 50 ppmv ammonia standard and the atmosphere meat (both half’s of the sensor) and 

blank reference sensor at the beginning (dotted line) and after 10 days (solid line) of 

analysis. C) Images of the evolution of the sensor colour obtained for standards and meat 

sample with time and meat freshness status divided into three groups: fresh, sub-fresh and 

putrid.  

 

Table 4.3.2 Calibration curves at 4ºC and 10 days obtained when plotting the 

concentration of the ammonia standards of 10, 20 and 50 ppmv in 100 mL as a function of 

diffuse reflectance measurements at 590 nm and percentage of the R coordinate, 

respectively. 

Calibration 
curve 

Slope 
Slope 

uncertainty 
Intercept 

Intercept 
uncertainty 

R2 

Diffuse 
reflectance  

vs ppmv 
2.9 0.3 -0.014 0.012 0.99 

%R 
coordinate 

vs ppmv 
-0.12 0.01 53.8 0.3 0.992 
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Conclusions   

The paper contributes to develop new sustainability strategies to sensor and 

material science fields, a new synthetic strategy for preparing colorimetric solid 

sensors that incorporates ILs is investigated, with the hypothesis that ILs can 

provide changes in the composite morphology, which permit achieve more 

sensitive sensors. The mass nature of the sensor was demonstrated and kinetic 

parameters were stablished. Its adsorption capacity was better described by the 

Langmuir isotherm and results suggested that the analytes were adsorbed on 

homogeneous adsorption sites of the sensor, considering a chemisorption 

mechanism.  Other contribution is in the subject of calibration of passive sensor. 

Flexible calibration was possible in function of the sampling time, temperature 

and sampling volume. It is shown that the IL-NQS-PDMS sensor is capable of 

discriminating between primary and secondary amino groups in atmospheres. 

PDMS is one of the most employed polymers since it shows low manufacturing 

cost, easy fabrication, optical transparency, low toxicity, non-flammability, 

flexible/stretchability and gas permeability. The fact that the NQS colorimetric 

derivatizing reagent is entrapped by using a sol-gel process can be considered as a 

smart strategy to develop responsive colorimetric sensing devices. This promising 

sensing platform has been successfully implemented for the determination of 

primary and secondary amines [111–113]. However, upon the exposure to 

ammonia or ammonium, these sensing platforms have shown low performance. 

In the present paper, the sensitivity of the sensing membrane has been increased 

by adding the IL. It can be considered as a green, rapid and inexpensive method 

for analytical purposes [120].   

Therefore, the employment of PDMS-NQS-IL sensor could be a new potential 

green and cost-effective alternative to in-situ analysis of meat freshness in 

reference to that published [285–288] and then this paper contributes to 

sustainable analytical chemistry. Reference [287] shows also a colorimetric 

sensor, its response is due to pH changes instead of a nucleophilic reaction 

between amine groups and NQS. Then, IL-NQS-PDMS sensor can improve the 

selectivity of the ammonia quantification liberated from the meat sample. It is 

only shown that the presence of sulfide does not interfere in the sensor ammonia 

response. 
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4.3.2 New approach for Griess reaction based on reagent stabilization on 

PDMS membranes and ZnNPs as reducing of nitrates. Application to 

waters from canned and fresh vegetable samples  

In the present work, a new approach was developed for the Griess reaction 

(previously studied in section 4.1.2 for environmental samples) based on the use 

of PDMS detection membranes doped with Griess reagents to determine nitrite 

and/or nitrate in water of fresh and canned vegetables. Griess reagents were 

entrapped in confined PDMS and IL compounds. The influence of some doping 

compounds on the properties of PDMS membranes, such as TEOS, and / or IL, was 

studied. The addition of TEOS to the membrane improved the hydrophilic 

character of the membrane [111]. OMIM-PF6, which is hydrophobic and insoluble 

in water, was used and confined in the organic polymeric matrix (PDMS-TEOS), 

giving the membrane a spongy structure, which led to increased sensitivity of the 

sensor. Firstly, optimization and response studies of PDMS/TEOS-SiO2NPs-SA-

NEDD-OMIMPF6 were performed; the results obtained are described in section 

4.1.2. In PDMS/TEOS-OMIM-PF6 membrane the SA/NEDD reagents are stable over 

time and could be released to a solution to carry out the derivatization reaction, 

giving satisfactory results in 5 min. To apply the procedure to nitrate, dispersed 

ZnNPs were used. ZnNPs dispersed in CTAB-SDS surfactant mixture was required 

to increase control over the nitrate reduction reaction to nitrite, which was with a 

satisfactory result within 3 minutes (Figure 4.1.8). Analytical responses were 

obtained by measuring absorbance or using RGB components of digital images. 

Results indicated good precision (RSD <8%) and good stability of the sensing 

membrane. The detection limit reached was 0.01 and 0.50 mg/L for nitrite and 

nitrate, respectively (Table 4.3.3). The practical application of the sensors was 

demonstrated through the analysis of different environmental waters (section 

4.1.2), and waters of canned vegetables and fresh vegetables, which will be 

studied in this section.  

Regarding to the liquid of the canned and the boiled water obtained from 

vegetables, two different samples of two different green leaves vegetables were 

analyzed. The samples were diluted in order to be analyzed. The concentrations of 
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nitrate found in the samples are shown in Table 4.3.3. The accuracy of the 

method was evaluated by spiking the samples with different nitrate 

concentrations. For all the concentrations studied the recoveries were about 100 

% with relative errors lower than 10%. Based on these results we can conclude 

that no matrix effect was observed in these samples and the concentration can be 

directly determined by using external calibration. Validation of this methodology 

was carried out by comparing the results with those obtained using an ISE 

electrode for nitrate and UV-vis spectrometry methods [180]. For a level of 

significance of 95%, there were no statistically differences between the results of 

both methods. The found concentrations in the liquids from canned vegetables 

and boiled fresh vegetables were lower than those stablished in the CE legislation 

[324] that stablish a maximum of 2000 mg of nitrate per Kg of vegetable. These 

results indicated the consumption of the liquid from canned vegetables or from 

the boiled water from fresh vegetables can result in a high source of nitrates in 

the diet. The results obtained between fresh and canned vegetables were similar.  

 

Table 4.3.3 Found concentrations in canned and fresh food green vegetables. Recoveries 

corresponding to samples fortified with standard nitrate solution (5 mg/L). 

Food Samples Found concentración 
NO3

- 
(mg/L) (n=3) 

Recovery (%) * 

 

Method A Method C 

Canned 
food  

Chard 1103 ±60 1210±90 103.9 ±0.4 
Spinach 810 ± 40 - 107.3±0.2 

    
Fresh 
food 

Chard 1600±100 1700±70 93.0±0.4 
Spinach 990±40 980±70 104.0±0.5 
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Method A - nitrate detection using the sensor * Recovery values for method A; Method C - 

nitrate detection using NO3
-
 ISE electrode. 

 

Conclusions 

The proposed method was based on the detection of nitrate and nitrite 

analytes in waters of canned and fresh vegetable samples by doping PDMS/TEOS-

IL sensing membrane with Griess reagents. As has been mentioned before the 

reagents of the Griess reaction were unstable outside the membrane, being stable 

for more than 3 months inside the synthetized composite. SA-NEED reagents 

doped on the sensor were diffused into the aqueous solution by performing 

nitrite derivatization. In the case of nitrate, the dispersion of ZnNPs was used as a 

reducing agent. ZnNPs dispersions were stable at room temperature for more 

than 3 moths, as well as Griess reagent in the PDMS-TEOS-OMIM-PF6 support. The 

analytical response was obtained by measuring the absorbance or RGB 

coordinates of the sensing membrane image. The results were satisfactory 

reached at the detection limit of 0.01 and 0.5 mg/L for nitrite and nitrate, 

respectively, and with good precision (RSD <8%). Based on these results a quick 

assay for quantitative determination of nitrate or nitrite in real samples has been 

developed. Nitrite was directly determined by using the Griess reagent 

membranes while nitrate required the reduction step with ZnNPs. Waters from 

canned and fresh vegetables were directly processed and any sample treatment 

was required. The advantages of the proposed method with respect other 

reported in the literature are related to the portability, low cost and short analysis 

time. The results indicated that the method would be very competitive in the 

routine in- situ analysis for food waters samples and it is a contribution to 

sustainable analytical chemistry. 
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4.4 Forensic sample  

In this section, organic gunshot residues (OGSR) were analysed in order to 

obtain complementary information about these samples, strengthening the 

probative value of the forensic sample. Diphenylamine was selected as the issues 

related to false positives and negatives can be resolved by combined inorganic 

gunshot residues (IGSR) and OGSR analysis. 

 

4.4.1 Estimating diphenylamine in gunshot residues from a new tool for 

identifying both Inorganic and organic residues in the same sample 

In this section a method involving the collection and determination of OGSR 

and IGSR on hands using on-line IT-SPME-CapLC-DAD and scanning electron 

microscopy coupled to energy dispersion X-ray (SEM-EDX), respectively, for 

quantifying both residues was developed. The main objective was the 

determination of DPA in the hands of shooting as organic residue for gunshot. 

Due to DPA remains at low amounts on hands after discharge a firearm, factors 

such as the nature and length of the extractive phase and volume of sample 

processed have been investigated and optimized to achieve high sensitivity. Prior 

to chromatographic analysis, the procedure of DPA extraction from hands was 

also optimized. For this purpose, several samplers, assisted-extractions and 

solvents have been tested. The best extraction efficiency was achieved by using 

dry cotton swab followed by vortex-assisted extraction with water in a few 

seconds. Under the optimum conditions, the analytical performance has been 

successfully achieved. Satisfactory LOD (0.3 ng) and precision (RSD intra-day 9%) 

were obtained. The utility of the described approach was tested by analyzing 

several samples of shooter hands. DPA was found in the 81% of the samples 

analyzed. A complementary analysis of inorganic gunshot residues by SEM-EDX 

and optical microscopy was carried out.  Both analyses provide a significant 

evidence of firearm discharge for forensic investigations. 
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Optimization of the IT-SPME and chromatographic conditions 

First of all, the DPA extraction by IT-SPME was optimized, as well as the 

subsequent chromatographic analysis. Initially, two mobile phase compositions 

were tested in isocratic mode, 60:40 and 70:30 ACN: H2O (v/v). According to the 

results obtained (Figure 4.4.1A), both mobile phases were suitable for desorbing 

the DPA from the extractive capillary. However, a decrease in retention time and 

narrower peaks were achieved with increasing ACN and flow. In the course of this 

study, we found DPA residues in blanks of nanopure water after analysis when 

using isocratic elution with 70% of ACN. Therefore, a gradient elution program 

with 100% ACN for 4 min as a cleaning solvent was used to elute the DPA retained 

in the extractive capillary. 

 

 

 
 

Figure 4.4.1 Effect of A) acetonitrile percentage and flow of mobile phase (800 µL at 

7 ng/mL, TRB-35, 30 cm) B) nature of the extractive phase (800 µL at 5 ng/mL, capillary 

length 30 cm, optimum mobile phase) C) capillary length (800 µL, 5 ng/mL, TRB-35, 

optimum mobile phase) and D) sample volume processed (5 ng/mL, TRB-35, capillary 

length 90 cm, optimum mobile phase) on the DPA retention in IT-SPME.  
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IT-SPME was performed using a capillary column as the loop of the injection 

valve. The analytes were extracted during sample loading and were transferred to 

the analytical column with the mobile phase by changing the valve position. This 

configuration is advantageous in order to achieve LODs required for detecting 

DPA deposited on shooter hands. Several trials were performed to achieve 

extraction optimization. The extraction of DPA was optimized by evaluating the 

extractive phase, the column capillary length and the injected sample volume. As 

an extractive phase, 5 types of columns capillary were studied: TRB 5, 20, 35, 50 

and PEG.  

According to the results obtained, the best analytical response (mean peak 

area) was obtained with TRB35 capillary (Figure 4.4.1B). This suggested that 

higher percentage of diphenyl groups in the extractive phase led to increase on 

the analytical response. It can be deduced that extraction involved π–π 

interactions with DPA, trought two aromatic rings. Nevertheless, TRB-50 resulted 

in a decrease on the analytical response, this effect was in accordence with the 

increment on the polarity of the extractive phase and so, the affinity towards the 

DPA decreased (log Kow =3.5). The same effect occured with the PEG capillary due 

to its high polarity. Hence, the TRB-35 capillary column was selected for further 

experiments.  The next step was the study the capillary length. Capillary column 

with lengths 30, 60, 90 cm were tested under the optimal conditions. Figure 

4.4.1C shows the increase in the analytical response as a function of the capillary 

length. Thus, the amount of analyte extracted also increased. The analytical 

response was improved 40% and 47% with 60 and 90 cm capillary columns, 

respectively, compared to the 30 cm. Capillaries experimented longer than 90 cm 

did not improve analytical response. Therefore, the 90cm TRB-35 capillary column 

was selected as the optimal length for future trials.  

Sample volumes up to 4 mL (5 ng/mL of DPA) were studied (Figure 4.4.1D). 

Based on the results obtained, a notable increase in the analytical response was 

observed as a formation of sample volume up to 2 mL. 
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The signal increased very slightly from 2 to 4 mL and 2 mL was chosen as the 

optimum sample volume for further experiments. However, it was found that the 

swabs used in the present study absorbed about 125 µL of contact solution. 

According to this observation, further experiments were carried out by processing 

1800µL remaining in vial. The extraction efficiencies of the proposed methodology 

were estimate by comparing the amount of analyte extracted, which is the 

amount of the analyte transferred to the analytical column, with the total amount 

of analyte passed through the optimum extraction capillary. The amount of 

analyte extracted was established from the peak areas in the resulting 

chromatograms and from the calibration equations constructed through the 

direct injection of 72 μL of standard solutions of the analyte. This volume was the 

inner volume of the TRB-35 capillary of 90 cm used for IT-SPME. The extraction 

efficiency obtained was 7%, which is in accordance with those reported for this 

technique [37,325]. In addition, the solution removed from the swab was filtered 

with a Nylon filter (0.45 µM), to confirm that no remaining fiber from the swab 

passed onto the column. However, the analyte was not observed because it was 

retained on the nylon filter. Therefore, the samples were not filtered prior to 

injection. Finally, a clean-up step was applied with 120 µL of nanopure.  

Study of DPA extraction optimization  

The procedure for the extraction of DPA from the collector was optimized by 

choosing the appropriate procedure. For this aim, non-assisted, ultrasound-

assisted and vortex-assisted extraction of the analyte from a cotton swab, which is 

commonly used as collector, was tested. To test this, 3 µl of 10 µg/mL DPA 

working solution (prepared in ACN to favor evaporation) was spread on a glass 

slide. After it was air evaporated to dryness, a dry cotton swab was used to 

extract DPA from the slide. A tip of the cotton swab was introduced into a vial 

containing 2 mL of water under the three abovementioned conditions for 5 min. 

As can be seen in the Figure 4.4.2A the vortex assisted extraction results were 

better compared to non-assisted extraction and ultrasound-assisted in terms of 

both analytical response (peak area) and RSD. So the vortex extraction was 

chosen for the next tests. 
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Figure 4.4.2 Comparison of peak areas obtained for standard solution (3µL of 10 

µg/mL in 2 mL of water, 15 ng/mL) with different A) extraction modalities B) sample 

collectors C) extraction time and D) effect of solvents to wet cotton swab (at 10 ng/mL) 

together with normalized spectra (inset) of DPA (blak dashed line) and unkown compound 

(blak solid line).  

 

On the other hand, several sampling tools were also tested and optimized for DPA 

collection from shooter hands. For which, 3 µL of a 10 µg/mL DPA standard 

solution was poured onto a glass slide, allowing it to evaporate in the air, then 

solid DPA was collected with various sampling tools and put in contact with 2 mL 

of water in vortex conditions. Figure 4.4.2B compares the mean peak areas of 

DPA extracted from slides and the RSDs to determine the suitability of the several 

sampling devices tested: adhesive tape lift, PDMS-based device of several 

PDMS:TEOS proportions (100:0, 50:50 and 70:30), dry cotton swab and wet cotton 

swab with non-skin-toxic solvents such as water, acetone and ethanol.  

According to the 24 European Chemicals Agency (ECHA) database [326] methanol 

and acetonitrile were not used due to their harmfulness and toxicity in contact 

with the skin, respectively.  
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The dry cotton swab provided the highest analytical response with satisfactory 

precision. The adhesive tape lift, showed an analytical response about 14 timers 

lower than the dry cotton swab. Similar peak area loss was observed with pure 

PDMS-based device. However, low analytical response was achieved when the 

TEOS proportion increased in the composition device. In the case of PDMS:TEOS 

(30:70) device, the analytical response was improved 4 times, compared with the 

response with pure PDMS device. This effect can be attributed to the increment of 

the device hydrophilicity as a function of the TEOS amount, suggesting the 

improvement of analyte extraction from device to the aqueous solution. The 

analytical response was decreased when using the moistened swab with water 

and ethanol, comparing with the dry swab, a decrease in the response was 

observed by 80% and 97% respectively, Probably the wet swab spread the analyte 

on the surface of the slide and the value RSD> 30% so high also showed it. When 

acetone was used as the extraction solvent, no DPA was detected, but a small 

peak was observed at a retention time slightly less than that of the analyte (Figure 

4.4.2C). As can be confirmed by the spectra depicted in the box in Figure 4.4.2C, 

this peak could be differentiated from the analyte peak by retention time and 

spectrum and could correspond to some compound from a cotton swab. Based on 

the results obtained, a dry cotton swab was chosen as the best collector for DPA 

samples from shooters hands for further work. 

Similar to the sampler optimization, peak areas of DPA were compared 

against different extraction times under selected conditions: 20 s, 1, 2 and 5 min, 

as shown in Figure 4.4.2D. Longer times were not tested due to the discomfort 

with the manual vortex.  

No significant differences on peak areas were observed at several extraction 

times. Additionally, long times for non-assisted and ultrasound-assisted extraction 

was also studied in order to investigate the improvement of analytical response 

but neither extraction was as satisfactory as vortex assisted. Therefore, 20 

seconds was selected as the assisted vortex extraction time to extract the DPA 

from the hands to the proper level and in a short time. 
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The capacity of three solvents to extract the DPA analyte from cotton swabs 

was investigated: acetonitrile, ethanol, and water. Mixtures of Water/ACN and 

Water/Ethanol (90:10) and 100 % water were tested. A 51% and 85% of decrease 

on peak area was observed when ethanol and ACN, respectively, was included in 

extraction solvent (Figure 4.4.3). Probably, the analyte was not retained on the IT-

SPME capillary column. Moreover, high peaks were observed at a retention time 

slightly lower than the analyte. In the analysis of the DPA standart solutioon these 

peaks were not detected, suggesting that they were due to compounds extracted 

from cotton. Note that ethanol was the solvent which extracted more amount of 

interfering compounds. However, water offered the best results in terms of 

extraction and reduced interferences, as well as green solvent. Therefore, water 

was chosen as optimum extraction solvent. 

 

Figure 4.4.3 Chromatograms of blanks (dashed lines) and standard solution of 5 

ng/mL DPA (solid lines) obtained with different extraction solvents: water (a), 90:10 

water: ethanol (b) and 90:10 water: acetonitrile (c).  
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Analytical performance 

Relevant analytical parameters such as calibration equations, linear working 

range, limit of detection (LOD), limit of quantification (LOQ) and precision are 

shown in Table 4.4.1, both standard solution and DPA extraction from hand 

samples. Satisfactory linearity within the tested concentrations was achieved. The 

LODs and LOQs were calculated experimentally from solutions containing 

concentrations providing signal/noise of 3 and 10, respectively. LODs and LOQs 

for DPA extracted from hand samples were 0.15 ng/mL and 0.5 ng/mL, 

respectively. 

 

Table 4.4.1 Analytical parameters obtained with the proposed method to determine DPA 

in standard solutions and extracted from real samples.  

Matrix 

 

Linear 

range  

(ng/mL) 

Calibration curve 

y = a + bx (ng/mL) 

Precision  

(n=4, 15 ng/mL) 

LOD 

(ng/

mL) 

LOQ 

(ng/

mL) a ± sa b ± sb R
2
 

 

RSDintra-

day (%) 

RSDinter-day 

(%) 

Standard 

solutions
 

0.15 - 50 -7 ± 57 144 ± 2 0.999 5 10 0.05 0.15 

Hand 

samples
 

0.5 - 25 -13 ± 24 49.2 ± 

1.7 

0.994 9 14 0.15 0.5 
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The results obtained regarding precision (%RSD) were satisfactory with values 

of 9% and 15% for intra- and inter-day respectively. The precision of the retention 

times was also estimated obtaining acceptable RSD values of 1.5% and 2.5% for 

intra and inter-day, respectively (n=3,15 ng/mL). Satisfactory results for the study 

in solution were obtained as depicted in Table 3. To test the efficiency of DPA 

extraction from the samples, the peaks obtained from the extraction of DPA from 

cotton swabs were compared with the peak from the standard solution injected 

directly, taking into account the same DPA concentrations (5 ng/mL) in two cases. 

The extraction efficiency estimated was 37 ± 5%. A recovery was valued using 

spiked samples, obtaining following value 108 ± 16%. 

 

Samples analysis 

Several samples collected from hands of police officers before and after 

shooting test were analyzed by the proposed and optimized procedure. Samples 

collected before shooting served as blanks. The samples were analyzed without 

identification of volunteers.  Figure 4.4.4 shows the chromatograms for shooter 

(sample 2A) and non-shooter hand samples and UV-Vis spectra of standard and 

sample.  Although unknown compounds were extracted from shooter hands, DPA 

was identified in samples by the concordance between retention time (9.4 min) 

and UV-Vis spectra of standard DPA and the suspect peak in the chromatogram of 

the sample. Taking into account the chromatography of a blank showed no peak 

interferences in the retention time of DPA (Figure 4.4.4).  



 

206 
 

 

Figure 4.4.4 (A) Chromatograms obtained for sample 2A (black solid line) and blank 

of non-shooter hand (black dashed line). (B) DPA spectra found (blue line) in reference to 

the library of the standard (red line). 

 

Table 4.4.2 shows the samples screened and the quantification results. With 

a total of twenty one swab samples and six tape kit samples, DPA was found and 

quantified in seventeen swab samples (81% of all swab samples analyzed) and, as 

can be expected due to tape lift was worth sampler, three tape samples produced 

a signal above LOQ but DPA was not detected in the other three. In the literature, 

few studies of DPA are focused in hands and LODs reported are higher to that 

provided by the proposed method (see Table 1.10). In this work, the amount of 

DPA found in hands exceeded LOQ, providing forensic evidence for the presence 

of DPA. The paired t test was used to evaluate statistically differences between 

both hands of a shooter, left and right. The α value obtained at 95% significant 

level was higher than 0.05 (α=0.232). From these results, we can conclude that 

the results from both hands were statistically equivalents.  
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Table 4.4.2 Samples screened, quantification results of DPA on hands determined by 

optimized extraction procedure followed by in-tube SPME-CapLC-DAD. *Tape lift kit 

samples quantified by regression equation 14 times lower than regression equation by 

cotton swab. ** On shooters hands.  

 

Police officer Sample Hand Number of shots Concentration (ng) 

A
 

1 A left 25 4.4 

2 A right 3.8 
B 3 B left 12 2.7 

4 B right 1.9 
C 5 C left 25 3.0 

6 C right 3.8 
D 7 D left 25 2.8 

8 D right ˂ LOD 
E 9 E left 25 2.5 

10 E right 3.2 
F 11 F left 25 16.5 

12 F right 13.4 
G 13 G left 25 ˂ LOD 

14 G right ˂ LOD 
H 15 H left 25 4.9 

16 H right ˂ LOD 
I 17 I left 25 8.4 

18 I right 9.5 
J 19 J left 25 8.0 

20 J right 4.3 
K* 21 K left 25 ˂ LOD 

22 K right ˂ LOD 
L 23 L left and right 25 1.4 

M* 24 M left and right  25 3.6 

N* 25 N left and right 25 6.6  

O* 26 O left and right 25 6.9  

P* 27 P left and right 25 ˂ LOD 
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IGSR particles identification 

As can be seen in Figure 3, the presence of GSR particles from cotton swabs 

can be confirmed by naked eye and microscopically before chromatographic 

analysis. Clean fibers of cotton swab can be seen after sampling a non-shooter 

hand (Figure 4.4.5A). Nevertheles, gunpowder particles with typical spherical 

shape and size up to 20 µm [327] were observed between cotton fibers (see red 

circles) after sampling a shooter hand (Figure 4.4.5B). It should be noted that this 

microscopic analysis was not destructive allowing subsequent DPA 

chromatographic analysis. 

 

Figure 4.4.5 Visual and microscopy (10x magnification) inspection of cotton swab 

after sampling a non-shooter hand (A) and after sampling a shooter hand (B). 
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Figure 4.4.6 shows the same cotton sample (sample 2A) shown in Figure 4.4.5 but 

characterized by SEM/EDX after DPA extraction. This was possible due to the 

presence of some gunpowder particles remaining on the cotton swabs after the 

DPA was extracted. Figure 4.4.6 shows a typical IGSR particle with a spherical 

shape and 38 µm size in accordance with References [260,328]. As can be 

observed in the elemental analysis, the predominant elements were Ba (46%) and 

Sb (44%), as reported in the literature for IGSRs [258]. Both inorganic and organic 

compounds were identified on shooters hands by SEM/EDX and chromatography, 

respectively. Hence, the presence of GSRs on the hands of shooters was 

confirmed. 

The other aim of this work was to examine the morphology and elemental 

composition and distribution of GSR particles collected with the lift tape kits, the 

typical police collector. Only particles which can be identified as GSR by their 

composition and morphology were selected for SEM/EDX analysis. Roughly 6–7 

particles per sample were studied as can be seen in Table 5. As reported by Bailey 

et al.[327], this number of particles is approximately equivalent to the particles 

that can be recovered on a shooter’s hand at a forensic scene. A portion between 

3–40% of the total surface of the sample was explored to find this number of 

particles, depending on the sample. Figures 4.4.7 and 4.4.8 show the morphology 

and elemental data of particles found on adhesive tapes collected after shooting. 

Most of the particles observed were spherical. Less than 20% of particles found 

had an irregular shape, probably due to being distorted after shooting.  

 

Figure 4.4.6 A) SEM image and B) Energy dispersion X-ray EDX spectra of inorganic 

gunshot residue found on a swab sample (sample 2A) after shooting. 
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Figure 4.4.7 SEM images (left) and EDX spectra (right) of non-spherical particles 

found on tapes used to collect GSRs after shooting a pistol: sample 22K.2 (A), sample 

25N.3(B), sample 21K.1 (C),  sample 25N.2 (D). 
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As shown, particles had different surfaces such as smooth, bumpy or covered with 

craters with or without a metallic shine. More than 60% of the particles found had 

a smooth surface. Their morphology was an effect of conditions taking place 

during the firing. Particles can be perforated, capped, broken or stemmed. Results 

of the SEM/EDX analysis of GRS particles found on the tapes from shooters’ hands 

are displayed in Table 4.4.3. 

 

Figure 4.4.8 (A) SEM image (B) overlay X-ray map of singles X-ray of Sb (C); Pb (D) 

and Ba (E) of particle found on a tape used to collect GSR on hands after shooting. 

 

As observed in Table 4.4.4, most of the particles had the characteristic elemental 

composition of GSRs, which was mainly based on Pb, Sb, and Ba; 35 particles 

contained on average 61% Ba, 30% of Sb, and 9% Pb, and other two particles 

contained 95% Pb and 97% Sb, probably from bullets, shells or cartridges. 

Moreover, some particles also contained other elements such as Al, Cu, and Fe at 

trace levels. About 66% of samples contained traces of Cu, 20% Al, and 3% Fe, 

while 12% of them contained both Al and Cu. However, these minority elements 

cannot be considered evidence of firing a gun. Even though these particles had 

similar elemental composition, their size varied over a range from 3 to 30 µm 

according to the bibliography [258,260]. 

 

10 µm

10 µm10 µm 10 µm

A B

EC D



 

212 
 

Table 4.4.3 Summary of shape, surface, and elemental composition of GRS particles found 

on tape lift kits from shooter hands. 

 

GSR 
particle 

Shape Surface Elemental composition (%) 

Major Minor/Trace 

Ba Sb Pb Cu Al Fe 
 
 
 
21K 

21K.1 Irregular Nonmetallic 
bumpy 

62.5 33.2 4.3 x   

21K.2 Spherical Nonmetallic 
smooth 

62.4 25.7 11.9 x   

21K.3 Spherical Nonmetallic 
bumpy 

65.9 18.8 15.3 x   

21K.4 Spherical Nonmetallic 
bumpy 

46.8 40.2 13.0 x   

21K.5 Spheroidal Nonmetallic 
smooth 

65.7 14.8 19.5 x   

21K.6 Spherical Nonmetallic 
smooth 

87.5 11.1 1.4 x   

21K.7 Spherical Nonmetallic 
bumpy 

58.4 28.8 12.8 x   

 
 
 
22K 

22K.1 Spherical Metallic smooth 61.5 33.5 5.0 x   
22K.2 Irregular Metallic bumpy 98.8 0.7 0.5    
22K.3 Spherical Nonmetallic 

smooth 
48.0 37.3 14.7    

22K.4 Spherical Metallic smooth 57.0 37.1 5.9 x   
22K.5 Spherical Metallic smooth 61.8 32.7 5.5 x   
22K.6 Spherical Metallic smooth 79.0 16.8 4.2 x   
22K.7 Spherical Nonmetallic with 

hollows 
50.6 33.4 16.0 x   

 
 
 
 
24M 

24M.1 Spherical Metallic smooth 63.0 34.8 2.1    

24M.2 Spherical Metallic smooth 63.2 30.6 6.3    

24M.3 Spherical Nonmetallic 
smooth  

0.0 96.7 3.3  x  

24M.4 Spherical Metallic smooth 60.4 37.2 2.3  x  

24M.5 Spherical Nonmetallic 
smooth  

51.1 34.5 14.3 x x  

24M.6 Spherical Metallic smooth 69.2 20.3 10.5 x x  

24M.7 Spherical Metallic smooth 54.8 37.3 7.9 x x  
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25N 

25N.1 Spherical Metallic smooth 68.
8 

24.
7 

6.4   x 

25N.2 Irregular Nonmetallic 
bumpy 

72.0 17.8 10.2 x   

25N.3 Spheroidal Metallic bumpy 63.3 30.0 6.7    

25N.4 Spherical Metallic smooth 53.0 39.7 7.4 x   

 
 
 
26O 

26O.1 Spherical Metallic smooth 63.6 34.2 2.2    
26O.2 Spherical Metallic smooth 61.7 35.2 3.0  x  
26O.3 Irregular Nonmetallic 

smooth 
40.0 33.8 26.2    

26O.4 Spherical Metallic smooth 0.3 4.9 94.9 x   
26O.5 Spherical Metallic smooth 62.7 31.2 6.3    
26O.6 Spherical Metallic smooth 50.6 35.8 13.6    

 
 
 
27P 

27P.1 Spherical Nonmetallic 
bumpy 

53.5 38.3 8.2 x x  

27P.2 Spherical Nonmetallic 
bumpy 

57.4 30.9 11.7 x   

27P.3 Spherical Nonmetallic 
smooth 

60.2 36.9 2.9 x   

27P.4 Spherical Nonmetallic 
smooth 

57.6 30.9 11.5 x   

27P.5 Spheroidal Nonmetallic 
bumpy 

48.9 30.7 20.5 x   

27P.6 Spherical Nonmetallic 
bumpy 

61.3 31.7 7.0 x   
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Spatial distribution of the Sb, Pb, and Ba of GSR particles shown in Table 5 was 

observed by X-ray mapping using colors to represent the elemental distribution. 

In this case, Sb appears red, Pb is green, and Ba is blue. Figure 4.4.8 shows the X-

ray mapping of sample 21K together with its corresponding SEM image. Figure 9B 

gives the merging of Figure 9C–E. As can be seen, the GSR particle presented the 

three elements Sb, Ba, and Pb together. Thus, these mapping results were in 

accordance with the previous elemental composition studied (Table 4.4.3). The 

results obtained by SEM/EDX can be considered as indicative of IGSR particles on 

shooters  hands.  

Conclusions 

This work proposed the sampling of gunshot residues on shooters’ hands using 

dry cotton swabs followed by vortex-assisted extraction with water over a short 

time (20s). Aqueous samples were directly processed in the miniaturized IT-SPME-

CapLC-DAD system for on-line clean-up and preconcentration of the sample and 

for quantization of the amount of diphenylamine as targeted organic residue. It is 

worth mentioning that non-toxic solvents and low-cost materials were employed. 

The efficiencies of the IT-SPME were tested for several compositions and lengths 

of the extractive phase, as well as sample volume processed in order to improve 

the sensitivity. 

The highest analytical responses were obtained for the longest TRB-35 capillaries 

(90 cm) were more likely due to π–π interactions and 1.8 mL of processed volume. 

The proposed approach is a rapid, green, and cost-effective option for detecting 

DPA on the hands of shooters contributing to sustainable analytical chemistry. 
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The sustainability of an analytical method is governed by minimization of toxic 

solvents, reduction of wastes, and employment of energy-efficient and cost-

effective methodologies, but also on maintaining the reliability of the 

performance parameters, such as sensitivity, precision, and accuracy [329,330]. In 

two previous papers [297] our group demonstrated that IT-SPME-CapLC-DAD 

achieves the minimization of the sample pre-treatment step, analysis time, and 

wastes, the reduction of the analysis costs, and thus, improvement of the 

analytical and environmental performance. Satisfactory LOD (0.3 ng) and precision 

(RSD intra-day = 9%, RSD inter-day = 14%) were achieved. In order to test the 

utility of the method for real cases, several shooters’ hands were sampled by dry 

cotton swabs and processed by IT-SPME-CapLC-DAD. The results showed that DPA 

was found and quantified in 81% of samples. Additionally, IGSRs inspection of 

swab samples was carried out by optical microscopy in order to confirm the 

presence of gunshot residues on shooters hands, which were analyzed by SEM-

EDS after DPA extraction. Furthermore, some shooters’ hands were sampled by a 

tape lift kit, which is the typical police sampler, but DPA extraction was fourteen 

times lesser than that achieved by the dry cotton swab sampler. Morphology, 

elemental composition, and distribution of the IGSRs particles were also studied. 

Then, improved results were obtained by the proposed sampling method as 

indicated above. If organic compounds are detected in combination with inorganic 

compounds, higher probative value can be achieved, and false positives/negatives 

can also be reduced for discriminating shooters hands. 

In this work, a sensitive chromatographic method to detect the organic 

compound DPA can be combined with IGSR analysis by SEM-EDS in order to 

obtain valuable evidence of GSRs deposited on hands of a suspected shooter. 

Therefore, the proposed method is helpful to determine whether a person has 

fired a gun in a forensic investigation. 

 

 

 

  



 

 
 

  



 

 
 

 

 

CHAPTER. 5 GENERAL CONCLUSIONS 
 



 

 
 

 

 



Chapter 5. General Conclusions 

219 
 

This Thesis focuses on the study of new analytical strategies to improve 

sustainability in the qualitative and/or quantitative analysis of different matrices 

such as environmental, biological, food and forensic. The matrices have an impact 

role in the designs of the analytical methods. For this purpose, sustainable 

analytical methodologies have been developed and improved contributing to 

Sustainable Analytical Chemistry. Thus, the analytical methodologies studied in 

this Thesis have been based on miniaturization, automatization and in situ 

analysis.  

In tube solide phase microextraction: (IT-SPME) technique can be implemented 

on line with the chromatographic system, reducing the analysis time, energy 

consumption, the amount of solvents and waste generated. On the other hand, 

the miniaturization of chromatographic technique entails a significant increase in 

sensitivity and a lower consumption of solvents, therefore being more 

environmentally sustainable. Consequently, the use of methodologies based on 

the coupling of IT-SPME to CapLC is an interesting option that, on the one hand, 

allowed pre-treatment and cleaning of samples online and in a single step, which 

means an automation of the analytical process, and on the other, achieved more 

selectivivity and sensitivity with less environmental impact.  

Using the IT-SPME-CapLC-DAD technique, different analytes of interest have been 

determined such as biocides, OGSR, antibiotics and AR in the following matrices 

environmental, forensic and biological respectively. 

Environmental matrix: Herbicides such as diuron and irgarol-1051 have been 

determined in environmental water samples. Satisfactory analytical parameters 

have been obtained with this technique. The LODs were 0.015 and 0.2 μg/L for 

irgarol-1051 and diuron, respectively, which allowed us to perform the analysis 

according to the quality standards established by European regulations. In 

addition, this technique was also evaluated in terms of environmental 

performance, by calculating the carbon footprint, being a quantitative indicator of 

the environmental compatibility of a methodology. By comparing the methods for 

the determination of irgarol-1051 and diuron in Table 4.1.2 shows that the carbon 

footprint varied significantly according to the pretreatment of the sample and the 

separation/detection technique. Therefore, IT- SPME as a sample pretreatment is 

a sustainable and environmentally friendly technique to estimate irgarol-1051 and 

diuron in environmental water samples. It has been applied to evaluate water 

samples from different ports of the Valencian Community, obtaining values below 
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the detection limit and stablishing that these water masses acomplished the 

European directive. 

 

Biological matrices: Quantifying the concentration of antibiotics in invasive 

medical devices can provide information about capability to penetrate biofilm. 

Meropenem has been determined in mucous membranes of the endotracheal 

tubes providing information on the efficacy offered in the treatment of infection. 

In the case of meropenem determination the application of the proposed 

technique has given rise to very low detection limits (3 ng/mL) and satisfactory 

precision (RSD <4%). The performance of the proposed methodology has been 

demonstrated by analyzing real samples using ETT tubes in patients previously 

treated with meropenem. Meropenem was found at concentrations of ng/mL. 

The recovery values showed satisfactory results (94-103%). The proposed method 

has proven to be a sustainable alternative not only due to its sensitivity and 

precision, but also due to its simplicity, cost-effectiveness, and analysis time. 

Forensic matrix: The IT-SPME-CapLC-DAD used to determine DPA in shooting 

hands has achieved the minimization of the pretreatment step of the sample, the 

analysis time and the waste, the reduction of the analysis costs and, therefore, 

the improvement of analytical and environmental performance. A satisfactory 

LOD (0.3 ng) and precision (intraday RSD = 9%, intraday RSD = 14%) have been 

obtained. The utility of the described approach was tested by analyzing several 

samples of shooters’ hands. Diphenylamine was found and quantificated in 81% 

of the samples analyzed together with inorganic residues. 

In all the cases mentioned using IT-SPME CapLC we have achieved 

satisfactory results not only in terms of detection limit and precision but also in 

terms of sustainability.  

Optical devices for in situ analysis have been also proposed in this Thesis. 

PDMS doped composites and nylon based supports have been developed. These 

devices have some interesting properties, such as low cost, portability, low power 

consumption, and ease of use. These properties make them especially attractive 

from the point of view of sustainable Analytical Chemistry.  

In this Thesis, the sensors developed have been based on two types of support: 

PDMS based supports doped following several strategies for controling 

parameters as permeability, hidrofobocity, sensitivity or selectivity and Nylon 
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support where the dispersion of AgNP or ZnNPs has been retained. Derivatization 

reagents have been incorporated thereby avoiding the need to prepare unstable 

solutions. 

Through in situ analysis, using optical sensors, different analytes of interest have 

been determined such as nitrite and nitrate in environmental and food matrices, 

H2S in biological matrices and NH3 in food matrix. 

Environmental matrix: PDMS-TEOS-OMIM-PF6 sensing device doped with Griess 

reagent (SA-NEDD) has been proposed to determine nitrites and nitrates 

(previously reduced to nitrites by means of ZnNPs-(CTAB-SDS) dispersion or ZnNPs 

supported-nylon) in environmental waters. The results obtained have been 

satisfactory with limits of detection of 0.01 and 0.5 mg/L for nitrite and nitrate, 

respectively, and with limits of detection good precision (RSD <8%). Based on 

these results, rapid tests have been carried out to quantitatively determine 

nitrates or nitrites in real samples such as water. ZnNP dispersions were used as 

reducing agent, since ZnNPs present non-toxicity compared to other reducing 

known in the literature. Environmental water samples were processed directrly 

without requiring any pretreatment, as it is established within the principles of 

sustainability in analytical chemistry. The advantages of the proposed method 

with respect to other reports in the literature are related to portability, low cost, 

and short analysis time. The satisfactory results indicated that the method can be 

very competitive in routine on-site analysis for different matrices of water 

samples. 

Biological matrices: AgNPs–nylon individual sensing device and AgNPs–nylon 

multisensor (up to 96 devices) have been proposed to determine H2S in breath 

and cardiomyocyte cells samples. The final results obtained have been satisfactory 

with limits of detection of 45 ppbv and 0.13 µM for, breath and cardiomyocyte 

cells respectively, and with values of RSD <10% in both cases. In addition, this 

technique using AgNPs multisensory sheet has been also evaluated in terms of 

sustainable analytical chemistry, by means of the hexagon tool that shows that it 

offers advantages such as high sensibility, better sustainability and lower 

economic cost than other recent analytical methods found in the literature.  

Alkylresorcinols as sensitive and specific biomarkers of gluten consumption can 

provide important information for the treatment of celiac disease. With this 

objective, PDMS-SiO2 composite doped with FB colorimetric reagent was 

evaluated to estimate alkylresorcinols in biological samples such as urine. The 
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response was evaluated with UV-vis spectroscopic measurements and a 

chromatographic technique (in-tube SPME coupled to Capillary LC-DAD detection) 

to isolate the DHCA signal. Satisfactory results in terms of LOD and precision have 

been achieved in both cases. Under the optimum experimental conditions, 

detection limit of DHCA has been 60 ng/mL and RSD <7%. Satisfactory results have 

been obtained in studies of urine samples showing that DHHC can be used as a 

biomarker of gluten intake. The main advantages of the proposed methodology 

are the development of a pre-selection tool previous to the chromatographic 

analysis, and therefore the simplification of the dietary transgression evaluation. 

Food matrices: A composite membrane containing 1,2-naphthoquinone-4-

sulfonic acid sodium salt (NQS) embedded in an ionic liquid (IL)- 

polydimethylsiloxane (PDMS)- tetraethyl orthosilicate (TEOS)- SiO2 nanoparticles 

(NPs) polymeric matrix is proposed. It is demonstrated that ILs chemical additives 

of PDMS influenced the sol-gel porosity. The sensor analytical performance for 

ammonia atmospheres has been tested as a function of sampling time (between 

0.5 and 312 h), temperature (25 ◦C and 4 ◦C) and sampling volume (between 2L 

and 22 mL) by means of diffuse reflectance measurements and RGB 

measurements too. Flexible calibration was possible, adapting it to the sampling 

time, temperature and sampling volume needed for its application. Calibration 

linear slopes (mA vs ppmv) between 1.7 and 467 ppmv were obtained for 

ammonia in function of the several studied conditions. Those slopes were 

between 48 and 91% higher than those achieved with sensors without ILs. The 

practical application of this sensing device was demonstrated for the analysis of 

meat packaging environments, being a potential cost-effective candidate for in 

situ meat freshness analysis. NQS provided selectivity in reference to other family 

compounds emitted from meat products, such as sulphides. After 10 days at 4 ◦C 

ammonia liberated by the assayed meat was 20 ± 4 μg/kg and 18 ± 3 μg/kg, 

quantified by using diffuse reflectance and %R measurements, respectively. 

Homogeneity of the ammonia atmosphere was tested by using two sensors 

placed in two different positions inside the packages. 

Furthermore, the PDMS/TEOS-NEDD-SA-OMIMPF6 sensor proposed for nitrate 

determination is also suitable for quantifying the waters of food samples such as 

spinach and chard food analysis. As it has been mentioned previously for 

environmnetal water samples, the LODs values and precision obtained have been 



Chapter 5. General Conclusions 

223 
 

satisfactory, being the proposed sensing device a potential candidate for 

detecting harming concentration for human health.   
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ACN                                Acetonitrile     
 AF4                                  Asymmetrical flow field-flow fractionation  

AgNPs                     Silver nanoparticles 
 AR                                Alkylresorcinol 
 au                       Absorbance units 
 AuNPs                       Gold nanoparticles 
 CFP                              Carbon footprint estimation 

CMYK                           Cyan, Magenta, Yellow and Key 

CTAB                             Cetyl Trimethyl Ammonium Bromide 

DCA                                 3,4 ‐ dichloroaniline 
 DCPMU                        1-(3, 4-Dichlorophenyl)-3-methylurea 

DCPU                              3, 4-Dichlorophenylurea 
 DESI-MS                         Desorption electrospray ionization-mass spectrometry 

DHCA                            3,5-dihydroxyhydrocinnamic acid  

DLLME                     Liquid-dispersive liquid microextraction 

DLL-ME                       Dispersive liquid-liquid microextraction  

DPA                               Diphenylamine  
 ECHA                          European Chemicals Agency 

EEA                            Environmental Protection Agency 

EHS                            Health and safety index  
 EQS                              Environmental quality standards  

ETTs                               Endotracheal tubes  
 FB                                 Fast blue B 

  GC                                 Gas chromatography 
 GHG                          Greenhouse gases  
 GIMP                         Image manipulation program  

GSR                                Gunshot residues 
 HFLPME                   Hollow fiber liquid phase microextraction  

HS-SPME                    Headspace solid phase microextraction  

HSV                               Hue, Saturation, Value 
 i.d.                             Internal diameter  
 ICLEI    International Council of Local Environmental Initiatives 

ILs Ionic liquids  
 IMS                                 Ion mobility spectrometry 

IT-SPME In-tube solid phase microextraction 

IUPAC                      International union of pure and applied chemistry 
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LC                                 Liquid chromatography  
 LOD                                Detection limit 
 LOQ                                Limit quantification 
 LPME                         Liquid phase microextraction  

MAC                            Maximum allowable concentrations  

MAE                            Microwave assisted extraction  

MF-LPME                    Microfunnel-supported liquid-phase microextraction  

MNPs                        Metallic nanoparticles 
 MS    Mass spectrometry  
 MS-MS                          Tandem mass spectrometry 

MWCNTs                  Multi-walled carbon nanotubes  

NanoLC                     Liquid nanochromatography 

NEDD                             Naphthyl ethylenediamine dihydrochloride 

nESI-MS                         Nanoelectrospray ionization mass spectrometry  

NPs            Nanoparticles      
 NQS                             1,2-naphthoquinone-4-sulfonate  

OGSR Organic gunshot residue 

OMIMPF6                          1-methyl-3-octylimidazolium hexafluorophosphate 

PDMS Polydimethylsiloxane 
 PEG Polyethylene glycol 
 PR                                 1.3 dihydroxy-5-pentylbenzene  

RGB                              Red, Green, Blue 
 SA                                  Sulphanilamide 

SBSE                             Stir bar sorptive extraction  

SDME                         Single drop microextraction  
 SDS                                 Sodium dodecyl sulfate 
 SEM                   Scanning electron microscopy   

SEM-EDX                     Scanning electron microscopy coupled to energy dispersion X-ray  

SiO2NPs                    Silicon dioxide nanoparticles 

TD-GC–MS                  Thermal desorption gas chromatography-mass spectrometry 

TEM                 Transmission electron microscopy 

TEOS                        Tetraethyl orthosilicate  
 TRB-20 20% diphenyl-95% polydimethylsiloxane  

TRB-35 35% diphenyl-95% polydimethylsiloxane 

TRB-5 5% diphenyl-95% polydimethylsiloxane  

TRB-50 50% diphenyl-95% polydimethylsiloxane  

TVBN                          Volatile basic nitrogen  
 UHPLC Ultra high pressure liquid chromatography 
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VAE                                Vortex assisted extraction  

VOCs                              Volatile organic compounds  

VSCs                             Volatile sulfure compounds  
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