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1 Production of microalgal external organic matter in a Chlorella-dominated culture: 

2 influence of temperature and stress factors 

3

4 Abstract

5 Although microalgae are recognised to release external organic matter (EOM), little is known 

6 about this phenomenon in microalgae cultivation systems, especially at large scale.

7 A study was carried out on the effect of microalgae-stressing factors such as temperature, 

8 nutrient limitation and ammonium oxidising bacteria (AOB) competition in EOM production 

9 by microalgae. The results showed non-statistically significant differences in EOM 

10 production at constant temperatures of 25, 30 and 35ºC. However, when the temperature was 

11 raised from 25 to 35ºC for 4h a day polysaccharide production increased significantly, 

12 indicating microalgae stress. Nutrient limitation also seemed to increased EOM production. 

13 No significant differences were found in EOM production under lab conditions when the 

14 microalgae competed with AOB for ammonium uptake. However, when EOM concentration 

15 was monitored during continuous outdoor operation of a membrane photobioreactor (MPBR) 

16 plant, nitrifying bacteria activity was likely to be responsible for the increase in EOM 

17 concentration in the culture. Other factors such as high temperatures, ammonium-depletion 

18 and low light intensities could also have induced cell deterioration and thus have influenced 

19 EOM production in the outdoor MPBR plant. Membrane fouling seemed to depend on the 

20 biomass concentration of the culture. However, under the operating conditions tested, the 

21 behaviour of fouling rate with respect to EOM concentration was different depending on the 

22 initial membrane state.

23 Water impact

24 Microalgae bioremediation is attracting increased attention due to their ability of recovering 

25 nutrients from wastewater while producing valuable biomass. However, microalgae 

26 cultivation has to deal with the production of external organic matter (EOM), which is often 
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27 not considered. The aim of this study is to assess the conditions that increase the production 

28 of EOM by microalgae, which still remains unclear. 

29 1 Introduction

30 The recent interest in developing new sustainable technologies within the circular economy 

31 concept has boosted research on novel water resource recovery facilities (WRRF), where 

32 sewage is not considered as a waste that has to be treated but as a source of energy, nutrients 

33 and reclaimed water, resulting in environmental and economic benefits.1,2 One possible 

34 solution to make this transition to WRRFs is the combination between anaerobic membrane 

35 bioreactor (AnMBR) systems with microalgae cultivation technology.3 AnMBRs have been 

36 tested as a promising energy-effective technology to treat sewage since they can obtain biogas 

37 from the anaerobic digestion of the organic matter.4,2 However, AnMBR effluents usually 

38 present large nutrient contents5 that can lead to eutrophication.6 A post-treatment step is 

39 therefore needed when emitting to sensitive areas. In this respect, microalgae have appeared 

40 as a suitable option for wastewater remediation7-9 as they are able to reduce the nutrient 

41 content of these AnMBR effluents.10,11 In addition, microalgae biomass can serve as a 

42 renewable source of biofuels, biofertilisers and other valuable products.12-15 From all the 

43 microalgae reported in the literature, the green microalgae Chlorella is one of the genus that 

44 have shown higher adaptability to wastewater. 16,17,7

45 To cultivate microalgae under outdoor conditions, membrane photobioreactors (MPBRs), 

46 which consists of the combination of closed PBRs and membrane filtration,18 have appeared 

47 as promising technology.10 PBRs are designed to attain high photosynthetic efficiencies, 

48 biomass productivities and nutrient removal rates,19 while membrane filtration enables to 

49 operate the system at lower hydraulic retention time (HRT), hence reducing the surface area 

50 needed to cultivate microalgae.20,11 
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51 Filtration entails membrane fouling due to the accumulation of microalgae biomass on the 

52 membrane (cake-layer) and the partial block of the internal pores, 21-23 which reduces the 

53 filtration efficiency and increases the energy consumption of the process.24,25 It must be noted 

54 that membrane fouling can be more severe due to the release of microalgal external organic 

55 matter (EOM) into the medium since it can intensify the cake layer formation or the blockage 

56 to the membrane pores.21,26-28 To remove reversible fouling, back-flushing and air sparging 

57 are usually employed.29 However, the higher attachment of foulants caused by EOM 

58 decreases membrane filtration efficiency due to either too frequent back-flushing stages or 

59 unsustainable values of specific air demand (SAD) of the membrane.30 Moreover, irreversible 

60 fouling can only be removed by chemical cleaning,31 which is non-desirable since excessive 

61 use of reagents deteriorates the membrane. 

62 EOM production has been extensively assessed in traditional wastewater treatment 

63 techniques. However, EOM characterisation in microalgae cultivation technology has been far 

64 less investigated, especially in the case of continuous MPBR operation.23 EOM includes 

65 polysaccharides, proteins, nucleic acids, amino acids and peptides, among others32,33 and is 

66 usually excreted in the microalgae culture as a result of cell growth.23,13 However, the release 

67 of EOM has been reported to be boosted under stressing conditions such as unfavourable pH, 

68 temperatures, high or low light intensities, nutrient limitation,34,35 the presence of toxic 

69 substances36 or high biomass content.37 Biomass (BRT) and hydraulic retention time (HRT) 

70 have been also reported to affect EOM production,26,23 but to the best of our knowledge, stress 

71 factors that increase EOM production haves not been previously evaluated in mixed cultures 

72 used for wastewater treatment. From all possible factors, temperature variations can be of 

73 great interest in outdoor large-scale microalgae cultivation applications due to the variable 

74 conditions microalgae are exposed to.38,39 In addition, the activity of nitrifying bacteria in a 

75 microalgae culture has been reported to affect microalgae performance.16 Nevertheless, the 
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76 influence of microalgae stress due to nitrification on EOM production has not been evaluated 

77 previously.

78 Apart from affecting membrane filtration, EOM increases the organic matter concentration of 

79 wastewater,40 which can hinder microalgae activity by favouring the growth of microalgae-

80 competing organisms such as heterotrophic bacteria and grazers.41,23 Bacteria can also 

81 produce compounds harmful to microalgae such as toxins,32 while grazers devour the 

82 microalgae cells,42 meaning that EOM production can affect the robustness of the microalgae 

83 culture. EOM also increases the aggregation capacity of microalgae to the PBR surface, 

84 reducing the light available to the culture 26,12 and can complicate microalgae nutrient 

85 uptake.43 Since EOM can deteriorate both the microalgae culture and the filtration process, it 

86 is important to determine the specific conditions and factors which affect EOM production in 

87 order to improve outdoor membrane photobioreactor (MPBR) performance.

88 The aim of this study was adding some useful information related to the factors that influence 

89 the production (and release) of excessive amounts of EOM, as well as the possible effects of 

90 this EOM on microalgae cultivation and membrane filtration, which still remains unclear in 

91 the case of large-scale membrane-based microalgae cultivation systems for wastewater 

92 treatment. To achieve this goal, lab-scale experiments were first carried out to analyse the 

93 isolated effect of temperature, nutrient limitation and nitrification from other possible 

94 stressing factors that could also affect the Chlorella-dominated culture. Later, continuous 

95 operation of an outdoor flat-panel MPBR plant that treated effluent from an AnMBR was 

96 carried out in order to evaluate the behaviour of the microalgae culture, which was affected by 

97 several stressing factors simultaneously.
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98 2 Material and methods

99 2.1 Microalgae and substrate

100 The microalgae substrate, the characteristics of which are shown in Table A.1, was obtained 

101 from an AnMBR pilot plant in the Carraixet WWTP.3 The AnMBR effluent was aerated prior 

102 to being fed to the PBRs in order to oxidise the sulphide to sulphate, due to its toxic nature to 

103 microalgae.44 The organic matter loading was mainly inert (Table A.1), thus boosting 

104 photoautotrophic metabolism typical of microalgae.45 However, the presence of EOM in the 

105 microalgae culture made the soluble COD concentration to be 144 ± 69 mg COD·L-1.11 This 

106 organic matter favoured the activity of heterotrophic bacteria,46 which should have degraded 

107 some of the EOM produced by microalgae. 

108 Microalgae inoculum was obtained from the walls of the secondary clarifier of the Carraixet 

109 WWTP. It consisted of a complex ecosystem which contained green microalgae, 

110 cyanobacteria, heterotrophic and autotrophic bacteria amongst others. The inoculum was 

111 previously adapted to the substrate as described in González-Camejo et al.47 Later, microalgae 

112 were seeded in an outdoor membrane photobioreactor (MPBR) plant (described in section 

113 2.2.2) in which microalgae evolved to be dominated by green microalgae Chlorella, although 

114 heterotrophic and autotrophic bacteria were still present in low concentrations.11 

115 2.2 Experimental design

116 Two sets of experiments were conducted using a Chlorella-dominated culture obtained from 

117 the MPBR plant described in section 2.2.2: i) the first group of experiments was set under lab 

118 conditions to isolate the effect of temperature variations, nutrient limitation and nitrification 

119 from other possible stressing factors that could affect microalgae under more complex 

120 outdoor conditions; ii) the second experiment was up-scaled to a continuously operated 

121 outdoor flat-panel MPBR plant that treated effluent from an AnMBR (section 2.1). In this 
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122 case, the Chlorella-dominated culture was affected by several stressing factors 

123 simultaneously.

124 2.2.1 Lab experiments

125 The experimental lab-scale design was based on three stress factors: temperature, nutrient 

126 limitation and microalgae-bacteria competition. A total of 5 Experiments were carried out to 

127 evaluate the evolution of EOM production: Experiments 1, 2 and 3 focused on analysing the 

128 effect of different temperatures (25, 30 and 35ºC); Experiment 4 evaluated the effect of 

129 nutrient limitation at 25 and 30ºC; while Experiment 5 analysed the effect of microalgae-

130 nitrifying bacteria competition. 

131 Each experiment lasted 5 days and was conducted in two 2-L Pyrex flasks: R-A and R-B. In 

132 both flasks, the culture was mixed and aerated with 0.2 μm pre-filtered air using a membrane 

133 air-pump to assure homogenisation and prevent cell sedimentation and biofilm forming on the 

134 walls. The airstream was bubbled into the reactors at a flow rate of 0.5-0.6 vvm through fine 

135 bubble diffusers placed crosswise on the bottom. Pure CO2 (99.9%) was injected into the air 

136 flow from a cylinder pressurised at 1.5-2 bar to provide both inorganic carbon and maintain 

137 pH at 7.5 ± 0.1 in the cultures. Four white LED lamps (18 W, 6000-6500 K) were placed 

138 vertically 20 cm away from the flasks to supply a light intensity of 125 µmol·m-2·s-1 on the 

139 PBR surface in 12:12 light:dark cycles.

140 Both reactors were seeded by 1.5 L of microalgae substrate (section 2.1) and 0.5 L of 

141 microalgae culture from the outdoor MPBR plant described in section 2.2.2. As lab 

142 experiments were carried out in different time periods, each experiment started-up using 

143 microalgae cultures with different nutrient and biomass concentrations (Table A.2). However, 

144 R-A and R-B were identical in each experiment. For this reason, R-A was used as reactor 

145 control and maintained at 25ºC to compare it with R-B, which was operated at different 
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146 conditions than R-A (temperature or nitrifying bacteria competition) as explained in Table 

147 A.3. 

148 Experiment 4 was operated in batch conditions in order to reach nutrient-limited conditions 

149 during the experiment. On the other hand, the rest of experiments were fed in semi-continuous 

150 mode maintaining an HRT of 3 d. It should be specified that in Experiments 1 and 2, 

151 temperatures were maintained constant during all the experiment. On the other hand, in R-B 

152 of Experiment 3, temperature was set at 25ºC except for 4 hours a day in which it was risen to 

153 35ºC to simulate the behaviour of temperature under outdoor conditions.39 In these 

154 experiments, 5 mg·L-1 of allylthiourea (ATU) were added to the inoculum to inhibit 

155 nitrification,39,48 in both reactors in similar way. In Experiment 5, 10 mg·L-1 of ATU were 

156 added in R-A to assure complete nitrification inhibition, while R-B was kept without any 

157 ATU to allow nitrification to occur (Table A.3). The effect of temperatures lower than 25ºC 

158 on EOM evolution was not evaluated as previous study39 showed no significant differences in 

159 microalgae performance when the culture was under temperatures in the range 15-25 ºC. In 

160 addition, 35ºC was selected as a representative value of temperature stress according to 

161 previous results.39 Hence, it was not considered necessary to test higher temperatures to 

162 evaluate EOM production under microalgae stress. 

163 2.2.2 Pilot plant experiments

164 The MPBR plant was installed in the Carraixet WWTP and consisted of two flat-plate PBRs 

165 connected to a membrane tank (MT). Each PBR had a working volume of 230 L and was 

166 continuously stirred by CO2-enriched air to maintain pH values at 7.5 ± 0.3 and provide 

167 carbon-replete conditions. Aeration also prevented wall fouling and ensured culture 

168 homogenisation. The 14-L MT contained one hollow-fibre ultrafiltration membrane bundle 

169 extracted from an industrial-scale membrane unit (PURON® Koch Membrane Systems 
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170 (PUR-PSH31), 0.03 µm pores) with a filtration area of 3.4 m2. Further details of the MPBR 

171 plant can be found in González-Caamejo et al.11.

172 The operation was preceded by a start-up phase10 (data not shown) and lasted 16 days (Period 

173 A), after which culture deterioration occurred. Consequently, another start-up phase was 

174 carried out (data not shown) and the operation continued for another 18 days (Period B) to 

175 compare MPBR behaviour during both periods. This start-up phase also included a chemical 

176 cleaning of the PBRs and membranes following the steps described in González-Camejo et al. 

177 10. BRT and HRT were maintained at 2 and 1.25 d, respectively.

178 The membrane was operated continuously at gross 20ºC-standardised transmembrane flux 

179 (J20) of around 15-18 LMH and average specific air demand (SADP) of around 16-20 Nm3 ·m-

180 3
permeate (0.3-0.4 Nm3·m-2·h-1). Only the amount of permeate needed to maintain hydraulic 

181 retention time (HRT) of 1.25 days was taken out of the plant, while the rest was recirculated 

182 to the PBRs in order to analyse the filtration process. In addition, the corresponding amount 

183 of microalgae culture was purged every day to maintain a biomass retention time (BRT) of 2 

184 days. The membrane followed a sequence of filtration-relaxation (F-R) cycles (i.e. 250 s 

185 filtration and 50 s relaxation). Moreover, 40 s of back-flush every 10 F–R cycles, 60 s of 

186 ventilation every 20 F–R cycles and 60 s of degasification every 50 F–R cycles were carried 

187 out.10

188 In order to evaluate the daily evolution of EOM concentration during the continuous 

189 operation of the MPBR plant, grab samples were collected in duplicate at 09:00 (A), 13:00 

190 (B) and 17:00 h (C) on days 9, 10, 12, 16, 24, 25, 27, 31 and 32. 

191 2.3 Analytical methods

192 A total of 162 samples were analysed from both the lab scale and the outdoor MPBR plant. 

193 All the samples were first filtered through a 0.45 µm pore-size glass fibre filters (Millipore) to 

194 measure EOM content and nutrient concentrations (NH4-N, NO3-N, NO2-N and PO4-P). Total 
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195 suspended solids (TSS) were measured as a proxy of biomass.49 All the measurements were 

196 determined from duplicate samples. 

197 2.3.1 EOM polysaccharide (EOM-POL)

198 The polysaccharide content was measured by the phenol/sulfuric acid method50 with glucose 

199 (Panreac) as the standard for the calibration curves to determine polysaccharide concentration. 

200 Two mL of filtered sample were pipetted into a colorimetric tube, and 0.05 mL of 80% phenol 

201 added. Then, 5 mL of concentrated sulfuric acid was injected onto the sample surface. The 

202 tubes were allowed to stand 10 min before readings were taken. The absorbance of the 

203 characteristic yellow-orange sample (Fig. A.1c) was measured at 490 nm for hexoses in a 

204 Perkin Elmer Lambda 35 spectrophotometer by comparing to the standard to convert to 

205 polysaccharide concentration.

206 It was found that if nitrite concentration of the culture reached values over 2 mg N·L-1, the 

207 sample got dark (Fig. A.1b). The measurement of the absorbance was thus modified. For this 

208 reason, if samples had significant nitrite concentrations, they were diluted with distilled water 

209 prior to apply the phenol/sulphuric acid method. 

210 2.3.2 EOM protein (EOM-P)

211 The Lowry method as modified by Peterson51 was used to measure the protein content of 

212 EOM. This method consists of two chemical reactions. The first one is the biuret reaction, in 

213 which the alkaline cupric tartrate reagent complexes with the peptide bonds of the protein. 

214 And the second one is the reduction of the Folin & Ciocalteu's phenol reagent, which yields a 

215 purple color. 

216 1 mL of the filtered sample was placed in a tube with 1 mL of Lowry reagent. The tube was 

217 vortexed and 0.5 mL of Folin reagent was added after 20 min at room temperature. After 30 

218 min in darkness at room temperature (to prevent Folin reagent degradation), the absorbance of 

219 the sample was measured at a wavelength of 750 nm in a Perkin Elmer Lambda 35 
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220 spectrophotometer. Bovine serum albumin (BSA) was used as the protein standard for the 

221 spectrophotometry calibration curves. The absorbance value was converted to protein 

222 concentration using the calibration curve.52

223 In this case, if allylthiourea (C4H8N2S) is used to inhibit AOB growth in the microalgae 

224 culture48 in concentrations higher than 5 mg·L-1, the sample gets darker (Fig. A.2). Hence, 

225 when ATU was present in the microalgae culture in significant concentrations (Experiment 

226 5), the protein concentration of the culture was not measured.

227 2.3.3 Other measurements

228 Measurements of ammonium (NH4-N), nitrite (NO2-N), nitrate (NO3-N) and phosphate (PO4-

229 P) were determined according to Standard Methods53 4500-NH3-G, 4500-NO2-B, 4500-NO3-

230 H and 4500-P-F, respectively, in a Smartchem 200 automatic analyser (WestcoScientific 

231 Instruments, Westco). 

232 Chemical oxygen demand (COD) and TSS were determined from duplicate samples as 

233 described in Standard Methods.53 

234 2.4. Calculations

235 Biomass productivity (mg VSS·L-1·d-1), nitrogen recovery rate (NRR) (mg N·L-1·d-1), 

236 phosphorus recovery rate (PRR) (mg P·L-1·d-1) were calculated following the equations 

237 shown in González-Camejo et al.11. 

238 The daily average fouling rate (FR) (mbar·min-1) is defined in Eq. 1:

239              (Eq. 1)𝐹𝑅 = ∑𝑧
𝑗 = 1(∆𝑇𝑀𝑃𝑗

∆𝑡 ) 𝑧 = ∑𝑧
𝑗 = 1(𝑇𝑀𝑃𝑓

𝑗 ― 𝑇𝑀𝑃𝑖
𝑗

∆𝑡 ) 𝑧

240 Where TMPj
f
 is the transmembrane pressure at the end of the filtration period j (mbar), TMPj

i
 

241 is the transmembrane pressure at the beginning of the filtration period j (mbar),  is the time ∆𝑡

242 interval of each filtration stage (250s) and z is the number of filtration stages in one day. 

243
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244 2.5. Statistical analysis

245 The differences among the experiments were analysed by one-way ANOVA via SPSS 

246 software (version 14.0). p-value < 0.05 was considered for statistical significance.

247 3 Results 

248 It should be noted that the EOM concentration was measured considering only polysaccharide 

249 (EOM-POL) and protein (EOM-P) concentrations, since they are the major constituents of the 

250 algae EOM.26,54,13 It should be also considered that microalgae performance was not 

251 compared between different experiments since each experiment started with inoculums and 

252 substrate with different characteristics (Table A.2) and were thus expected to influence 

253 microalgae performance. In addition, it should be bear in mind that the EOM concentrations 

254 measured are actually the result of the EOM released by microalgae (EOM released by 

255 bacteria is negligible) minus the EOM degraded by heterotrophic bacteria. However, the 

256 effect of EOM degradation by heterotrophic bacteria was not considered to significantly alter 

257 the results as it should similarly affect all cases in a manner as all inoculums had negligible 

258 bacteria concentration. 

259 3.1 Effect of temperature on EOM content 

260 In Experiment 1, similar trend of normalised EOM (i.e. EOM concentration divided by 

261 microalgae biomass) was observed in both R-A (25ºC, Fig. 1a) and R-B (30ºC, Fig. 1b). In 

262 fact, there were no statistically significant differences between the two temperatures for both 

263 normalised EOM-POL and EOM-P (p-value > 0.05, n = 9). However, both reactors presented a 

264 decrease in the normalised EOM-P, which implied that the EOMPOL/EOM-P ratio increased 

265 through time from 0.8 to 2.2. 

266 When a higher temperature range between R-A and R-B was tested; i.e. 25 and 35ºC in 

267 Experiment 2, the behaviour was similar than Experiment 1; i.e. both normalised EOM-POL  

268 and EOM-P patterns were similar in both reactors (Fig. 1c, 1d), showing no statistically 
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269 significant differences (p-value > 0.05, n = 9). The normalised EOM slope values were 

270 positive for polysaccharides and negative for proteins, yielding an EOM-POL/EOM-P ratio that 

271 increased from 0.5 to 1.7 in both reactors.

272 Lastly, when temperature increments from 25 to 35ºC were applied to the culture only 4 h a 

273 day (Experiment 3), no statistical differences (p-value > 0.05, n = 9) were found between the 

274 two reactors for EOMPOL and EOM-P concentrations (data not shown). However, when 

275 normalised EOM-POL was analysed, the pattern was statistically significantly different (p-

276 value < 0.05, n = 9). At 25ºC (Control, Fig 1e), the normalised EOM-POL increase was less 

277 than 10%, while it rose significantly to 42% when temperature peak was applied (Fig. 1f). 

278 In the case of normalised EOM-P, no significant differences (p-value > 0.05, n = 9) between 

279 both reactors were found (Fig. 1e, 1f). Similarly, to previous experiments, the EOM-

280 POL/EOM-P ratio increased in Experiment 3 from 1.6 to 2.6 and 3.8 for R-A and R-B, 

281 respectively. 

282  3.2 Effect of nutrient limitation on EOM content

283 In Experiment 4, reactors were operated in batch conditions at 25 (Fig. 2a) and 30ºC (Fig. 2b) 

284 in order to reach nutrient-limited conditions; i.e. NH4-N concentration lower than 10 mg N·L-

285 1.55 As can be seen in Fig. 2, both EOM-POL and EOM-P concentrations increased over time in 

286 batch conditions. At 25ºC (Fig. 1a) the increase was 6.7-fold and 2.6-fold for EOM-POL and 

287 EOM-P, respectively, from the beginning to the end of the experiment. At 30 ºC (Fig. 1b), 

288 EOM-POL and EOM-P increased by 7.0-fold and 3.1-fold, respectively, presenting no 

289 significant differences in comparison to 25ºC (p-value > 0.05, n = 9). This made both reactors 

290 reach nutrient limitation on day 4 (Fig. 2). Both experiments revealed a similar gain pattern; 

291 i.e. a gradual increase of EOM production rate during the first 4 days of the experiment (0.5-

292 0.7 mg·L-1·d-1 for EOM-POL and 0.3-0.4 mg·L-1·d-1 for EOM-P) and sharp increases when 

293 cultures were nutrient-limited (2.4 mg·L-1·d-1 and 0.6 mg·L-1·d-1 for EOM-POL and EOM-P, 
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294 respectively, in R-A and 2.1 mg·L-1·d-1 and 0.5 mg·L-1·d-1 for EOM-POL and EOM-P, 

295 respectively, in R-B). Since the raise of EOM-POL production rate was significantly higher 

296 than that of EOM-P in both R-A and R-B, the EOM-POL/EOM-P ratio rose throughout 

297 Experiment 4 from 1.2 to 2.4.

298 3.3 Effect of microalgae-AOB competition on EOM content

299 The competition with AOB was tested at 25ºC in both reactors. As can be seen in Fig. 3, 

300 EOM-POL evolution throughout Experiment 5 was similar in both cultures with and without 

301 AOB competition (p-value > 0.05; n = 8) and finally increased in both reactors by around 

302 50%.

303 EOM-P content was not measured in Experiment 5 since the ATU (added to the culture to 

304 inhibit AOB activity) interfered in protein measurement (see Fig. A.2). 

305 3.4 Effect of outdoor conditions on the EOM content 

306 The daily samples taken from the MPBR plant; i.e. samples A, B and C for each day did not 

307 show any specific trend in either polysaccharides or proteins for none of the periods analysed 

308 (Fig 4). Similar behaviour was found in the normalised EOM concentrations (data not 

309 shown).

310 Regarding the evolution of normalised EOM concentration during the continuous operation of 

311 the MPBR plant in Period A, both normalised EOM-POL and EOM-P remained under similar 

312 values until day 12, but significantly increased on day 16 (p-value < 0.05; n = 12), as 

313 displayed in Fig. 5d. However, this EOM increase on day did not seem to be related to an 

314 increase in the transmembrane pressure, which evolution is shown in Figure 6a. It should be 

315 noted that the TMP displayed in the graph only corresponds to that measured during filtration 

316 stage. The TMP measured during other stages such as relaxation and back-flushing (see 

317 Section 2.2.2) is not displayed in Fig. 6a to ease data visualisation. As can be observed in Fig. 

318 6a, TMP started Period A with low values around 0.05 bar at the beginning of Period A and 
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319 increased to values in the range of 0.10-0.18 bar on day 9 on. In fact, from day 9 until the end 

320 of Period A, the TMP trend was similar, with the exception of day 11 in which maximum 

321 value of TMP got close to 0.25 bar (Fig. 6a). On the other hand, the EOM increase on day 16 

322 did coincide with a decrease in NRR and biomass productivity (Fig. 5b,5d). A start-up phase10 

323 was then carried out after day 16, which reduced the EOM concentration significantly on day 

324 24 (Fig. 5d). The transmembrane pressure of the membrane also decreased to values in the 

325 range of 0-0.04 bar (Fig. 6a) due to the membrane chemical cleaning done during this start-up 

326 phase (as explained in Section 2.2.2). Once again, the normalised EOM concentrations 

327 remained at similar values for around two weeks but rose by the end of Period B (Fig. 5d). 

328 However, at this time, only EOM-POL concentration increased significantly (p-value < 0.05; n 

329 = 15), while EOM-P concentration remained nearly stable. On the other hand, MPBR 

330 performance (in terms of nutrient recovery and biomass productivity) decreased with time in 

331 Period B, similarly to what occurred in Period A (Fig. 5b).

332 Solar light PAR and culture temperature were monitored during the continuous operation of 

333 the MPBR plant (Fig. 5a). In the first 10 days, the conditions were favourable for microalgae 

334 growth; i.e. solar light intensities of around 400 µmol·m-2·s-1 and mid-range temperatures of 

335 around 20ºC. However, after day 10, the ambient conditions changed (temperature increased 

336 around 5ºC and solar PAR suffered a significant reduction) and probably favoured nitrifying 

337 bacteria growth.16 In addition, the culture was expected to be under ammonium-limited 

338 conditions, since NH4-N concentration was under 10 mg N·L-1.55 This situation made the 

339 nitrification rate (NOxR) (which measures the nitrate and nitrite produced through 

340 nitrification and is used as an indicator of nitrifying bacteria activity16,56 increase during 

341 Period A to a maximum of 9.3 mg N·L-1·d-1 (Fig. 5a). In Period B, after the aforementioned 

342 start-up phase, the nitrification rate showed low values, but immediately increased again (Fig. 
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343 5a). A summary of the average results obtained during the continuous operation of the MPBR 

344 plant is displayed in Table A.4.

345 4 Discussion

346 It has to be considered that EOM products may be classified into different categories 

347 according to the phase in which they are released: compounds produced as a result of 

348 substrate metabolism are growth-synonymous and growth-associated, while those excreted 

349 due to environmental interaction and lysis are growth-independent.37 Increasing growth-

350 synonymous EOM would entail raised biomass concentrations. Hence, variations of 

351 normalised EOM will not consider the evolution of growth-synonymous EOM.11 On the other 

352 hand, growth-independent EOM will not be directly related to microalgae biomass but to 

353 microalgae stress. Normalised EOM can thus be used as an indicator of microalgae stress.11

354 4.1 Effect of temperature on the EOM content 

355 According to Experiments 1 and 2, the Chlorella-dominated culture did not significantly vary 

356 their normalised EOM-POL and EOM-P when the temperature was maintained constant at 25, 

357 30ºC or -35ºC. These results disagrees with those found by other authors who concluded that 

358 the EOM content is affected by temperature.37 It is possible that the microalgae had adapted to 

359 the temperatures evaluated in these experiments and were thus not significantly stressed at 

360 constant temperatures of 25, 30 and 35ºC. 

361 On the other hand, statistically significant differences (p-value < 0.05, n = 9) were found in 

362 the culture subjected to a sharp temperature increase from 25 to 35ºC for 4h a day (R-B in 

363 Experiment 3). This changes in temperature greatly boosted the release of normalised EOM-

364 POL over that of the reactor control (R-A), which suggested that the culture should have 

365 suffered stress due to those temperature variations. This stress factor must be thus considered 

366 when operating large-scale microalgae cultivation systems since temperature variations over 

367 10ºC are easily reached outdoors.39 
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368 4.2 Effect of nutrient concentrations on EOM content

369 Since nutrient levels have been reported to play a significant role on EOM production and 

370 composition.32,57 batch cultures (Experiment 4) made it possible to analyse the behaviour of 

371 EOM production under nutrient-replete and nutrient-deplete conditions. In nutrient-replete 

372 conditions (days 1-4), EOM increased as a consequence of the biomass accumulating in the 

373 system and hence must have been growth-synonymous.37,11 However, when the microalgae 

374 reached nutrient-deplete conditions at NH4-N < 10 mg N·L-1, 55 by the end of the experiments, 

375 there was a sudden increase in EOM-POL production in both reactors (Fig. 2), which suggests 

376 that under nutrient-deplete conditions EOM-POL production was not only due to microalgae 

377 growth (growth-synonymous), but also that nutrient depletion was likely to have stressed the 

378 culture. As some authors have pointed out, the lack of nutrients (especially nitrogen) may 

379 redirect the carbon metabolism towards incorporation into polymers, increasing the sugar 

380 accumulated in the cells32 and consequently, higher amounts of EOM-POL were likely to be 

381 released in the medium. This statement is also interesting regarding the up-scaling of 

382 microalgae cultivation. It suggests that if EOM concentration wants to be maintained low in 

383 order to avoid culture deterioration, nutrient-deplete conditions should be avoided.

384 Although some studies found EOM-P to be more important than EOM-POL in both wastewater 

385 aerobic or anaerobic sludge58,28 and microalgae cultivation experiments,13 in the present study 

386 with microalgae fed with AnMBR effluent, EOM-POL production was higher than that of 

387 EOM-P. In fact, the EOM-POL/EOM-P ratio increased in all the lab experiments by as much as 

388 3-fold. It therefore seems that products of a polysaccharide nature are preferentially released 

389 into the medium over proteins. Similar results were obtained by Felipe Novoa et al.26, who 

390 reported EOM-POL/EOM-P values in the range of 1.9-4.9.
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391 4.3 Effect of nitrifying bacteria-microalgae competition on EOM content

392 Bacteria have been suggested to have a significant effect on the EOM secretion process.35 The 

393 interspecies competition between microalgae and nitrifying bacteria for nutrients may thus 

394 affect both the uptake and the release of EOM. For this reason, the other stress factor tested 

395 under lab conditions was the microalgae-AOB competition at the optimal temperature in 

396 nutrient-replete conditions since this competition can play a significant role when treating 

397 effluents from anaerobic digestion.39,16,59

398 No significant differences were observed in EOM production in the lab-scale experiments. 

399 These results could be explained by two possible hypotheses: i) either the microalgae-AOB 

400 competition did not significantly stress the microalgae; or ii) the operating conditions of this 

401 lab-scale experiment (experimental time, HRT, etc.) did not produce significant changes in 

402 the culture with respect to microalgae-nitrifying bacteria competition. 

403 4.4 MPBR plant

404 4.4.1 Daily evolution of EOM concentration

405 Since EOM production has been reported as a light-dependent process.32 the daily trend of 

406 EOM concentration was expected to be similar to that of the solar PAR measurements; i.e. 

407 lower values in the morning (Sample A) and evening (Sample C) and the highest value at 

408 midday (Sample B). However, neither the EOM-POL nor EOM-P concentrations followed the 

409 same pattern as light intensity in the continuous operation. Moreover, EOM-POL concentration 

410 was variable (Fig. 4a), while EOM-P remained fairly constant (Fig. 4b). In this respect, Period 

411 A started with an EOM-POL/EOM-P ratio of 1.2 and finished it with 1.7, while Period B started 

412 presenting an EOM-POL/EOM-P ratio of 0.7 but it rose to 1.7 at the end. Hence, EOM-POL was 

413 likely to be more affected by stressing factors. Similar behaviour was observed in the lab 

414 experiments (Sections 3.1, 3.2). 
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415 These results suggest that EOM production in the outdoor MPBR plant is not directly 

416 proportional to microalgae activity (i.e. growth-synonymous and growth-associated EOM37) 

417 and that increasing EOM production could have been related to stress factors, such as higher 

418 temperature, light limitations, ammonium depletion or competition with nitrifying bacteria. 

419 4.4.2. Continuous operation of microalgae cultivation

420 EOM concentration raised for both polysaccharides and proteins during Period A (Fig. 5d), 

421 probably because several stress factors affected microalgae at the end of this Period (day 16): 

422 i) the average culture temperature increased by around 5ºC at the end of Period A (Fig. 5a), 

423 reaching maximum values over 30ºC. Previous study with similar substrate and culture 

424 showed microalgae performance to decrease at temperatures over 30ºC;39 ii) ammonium-

425 deplete conditions were reached, obtaining NH4-N values lower than 10 mg N·L-1 at the end 

426 of Period A (Fig. 5c); iii) solar PAR reduced significantly to values under 200 µmol·m-2·s-1 

427 on days 14-15 (Fig. 5a); iv) nitrifying bacteria activity (measured by NOxR) increased during 

428 Period A reaching a maximum value of 9.3 mg N·L-1·d-1 on day 16 (Fig. 5a). All these factors 

429 could have induced cell deterioration and so could have led to higher EOM release to the 

430 culture,33 obtaining significantly higher EOM-POL and EOM-P concentrations on day 16 than 

431 on days 9, 10 and 12 (Fig. 5d). 

432 The trend of Period B regarding EOM production was similar than Period A as it increased at 

433 the end of the period. However, this increase only affected EOM-POL, while EOM-P remained 

434 at similar values (Fig. 5d). Unlike Period A, the temperature in Period B only reached 17.2 ± 

435 1.3ºC, which was lower than Period A (Table A.4). Moreover, ammonium and phosphorus 

436 were in replete conditions from day 24 on (Fig. 5c). However, the nitrification rate increased 

437 with time (Fig. 5a). These results therefore suggest that EOM-POL production in Period B must 

438 have been highly influenced by the stress caused by the presence of nitrifying bacteria in the 

439 culture. This behaviour was the opposite of that observed in Experiment 5 under lab 
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440 conditions, in which no significant differences were found in EOM-POL concentrations 

441 between cultures with and without nitrification. There are several factors that could be 

442 responsible for this different behaviour: i) nitrifying bacteria activity highly depends on the 

443 nitrogen load,60 which was significantly higher in the MPBR plant (HRT = 1.25 d) than in the 

444 lab-scale Experiment (HRT = 3 d); ii) the MPBR plant achieved significantly higher biomass 

445 concentration than lab-scale reactors, therefore suffering more significant shadow effect.61,62 

446 Microalgae were thus likely to be more limited in the pilot plant than at lab-scale; iii) in the 

447 lab-scale experiment the culture only lasted 5 d while under outdoor conditions the operation 

448 was lengthened to 16-18 days. The age of the culture could have also affected the nitrifying 

449 bacteria proliferation as microalgae are usually better adapters to the microalgae substrate 

450 used in this study than nitrifying bacteria, according to previous results.39 

451 As aforementioned, EOM-P stayed at similar values during Period B unlike Period A (Fig. 

452 5d). It was hypothesised that EOM-P increased only at the end of Period A because there were 

453 several stress factors in this period that could have affected EOM production, while in Period 

454 B microalgae-nitrifying bacteria competition was the only noticeable stress factor (Fig. 5). 

455 This confirms that polysaccharides are used by microalgae to interact with the environment in 

456 preference to proteins, as observed in the lab-scale experiments (Sections 3.1, 3.2) and the 

457 outdoor MPBR plant (Section 4.4.1), where the EOM-POL/ EOM-P ratio of the culture always 

458 increased at the end of the Experiment/Period.

459 It should be noted that nutrient recovery rates and biomass productivity decreased at the end 

460 of both Periods A and B (Fig. 5b) when normalised EOM were the highest (Fig. 5d). Similar 

461 behaviour has been observed by other authors.43,33 However, in this study, the reduction in 

462 nutrient recovery and biomass productivity could also have been due to other factors such as 

463 lower solar radiation and a higher nitrification rate (Fig. 5). In fact, light and competition with 

464 nitrifying bacteria have been reported to be key factors in microalgae cultivation 
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465 systems.63,16,38,64 Hence, the higher normalised EOM in the culture might not have been the 

466 main factor in the lower microalgae cultivation performance observed by the end of both 

467 Periods A and B. It will thus be necessary to monitor the system for longer operating periods 

468 and to relate all the possible factors which influence nutrient recovery and biomass 

469 productivity to properly assess the weight of each individual factor on MPBR performance. 

470 4.4.3. Continuous membrane filtration

471 Fig. 6a shows the evolution of TMP along Period A and B. It should be remembered that 

472 TMP is the pressure that the system has to overcome due to the membrane resistance.65 On 

473 the other hand, FR measures the rate which this resistance increases during operation. The 

474 aim of membrane filtration operation will thus focus on decreasing the FR as it would 

475 increase operating costs.3 

476 At the beginning of Period A (days 1-5), TMP started at low values of around 0.05 bar (Fig 

477 6a). It must be noted that there were oscillations in these parameters (Fig 6a) due to relaxation 

478 and back-flushing stages which helped to reduce the cake layer in the membrane.21,22,29 This is 

479 a common behaviour that has been observed in previous operations of the MPBR plant.10,11 

480 As continuous membrane operation goes on, TMP continuously is expected to rise due to the 

481 accumulation of foulants on the membrane. However, from day 5 until the end of Period A, 

482 TMP remained quite stable with the exception of day 11 in which a significant TMP rise was 

483 observed (Fig. 5a). With respect to Period B, TMP was maintained under 0.05 bar during all 

484 Period (Fig. 5a) since it was preceded by a chemical cleaning of the membranes. Due to this 

485 cleaning, the behaviour of the membrane concerning to FR was different for both Periods, 

486 showing higher fouling rate in Period A (in the range of 6.5-7.5 mbar), where the membrane 

487 started at higher TMP than in Period B: 0.6-2.7 mbar-1. These FR values are considerably low, 

488 65 probably due to limited transmembrane flux that was operated: 15-18 LMH. 11

Page 21 of 40 Environmental Science: Water Research & Technology

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:W

at
er

R
es

ea
rc

h
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
3 

M
ay

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
itè

cn
ic

a 
de

 V
al

èn
ci

a 
on

 5
/1

3/
20

20
 5

:4
2:

56
 P

M
. 

View Article Online
DOI: 10.1039/D0EW00176G

https://doi.org/10.1039/D0EW00176G


21

489 It should be highlighted that for both Periods A and B, FR was significantly correlated to TSS 

490 concentration (Fig. 6b). In fact, coefficient of determination (R2) accounted for 0.482 and 

491 0.772 for Period A and B, respectively. This behaviour of membrane fouling has been widely 

492 reported in previous studies, not only for MPBR systems,26,10,57 but also in sludge-based 

493 systems.28 On the other hand, total EOM concentration (EOM-Total; i.e. the sum of EOM-POL 

494 and EOM-P) was only correlated to FR in Period B (R2 = 0.623) but it was not in Period A 

495 (Fig. 6c). These results seem contradictory, but literature with regards to this topic is also 

496 unclear. For instance, some authors have reported the correlation between EOM concentration 

497 and membrane fouling,27,25 but others23 did not observe a link between EOM and membrane.

498 The different relation between EOM and FR in Periods A and B was hypothesised to be 

499 related to the different fouling state of the membrane at the beginning of each Period. In 

500 Period A, where TMP was higher (Fig. 6a), FR was mainly dominated by the TSS 

501 concentration as there was no significant correlation between EOM-Total and FR (Fig. 6b, 6c). 

502 Maybe in this Period there was a thicker cake layer on the membrane so that the effect of 

503 EOM was negligible as much of EOM could deposit on the cake layer instead of the 

504 membrane surface itself, reducing its global impact on fouling rate. In fact, cake layer 

505 retention has been reports as the main removal mechanism of EOM in a microalgae 

506 culture.26,66 On the other hand, in Period B both TSS and EOM were correlated, which 

507 suggested that both microalgae biomass and EOM released by microalgae had significant 

508 influence on FR, probably because the membrane started perfectly clean, which implied that 

509 EOM was more likely to block not only the membrane surface but also membrane pores.26,67 

510 It should also be highlighted that the correlation of EOM-Total and FR found in Period B was 

511 mainly due to polysaccharides. Indeed, EOM-POL and FR showed good correlation, i.e. R2 of 

512 0.593; while EOM-P showed no significant changes with FR (R2 = 0.032). Similar behaviour 

513 was found by Felipe Novoa et al.26. However, as data obtained during the continuous 
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514 operation of the MPBR plant was scarce, longer operating periods should be tested to 

515 corroborate these statements.

516 5 Conclusions

517 The lab-scale experiments showed that sudden temperature rises from 25 to 35ºC and nutrient 

518 limitation are stress factors and increased polysaccharide release, although protein production 

519 remained stable. On the other hand, there were no significant differences with constant 

520 temperatures in the range of 25-35ºC and competition with nitrifying bacteria. In outdoor 

521 operation the sharp variations in the culture temperature should be thus reduced at minimum 

522 during continuous operation to avoid microalgae stress and EOM production. In addition, the 

523 competition with nitrifying bacteria seemed to produce a certain degree of stress in the 

524 microalgae culture, since nitrification rate increases were related to increasing EOM 

525 production. However, this rise was also affected by a combination of several stress factors, 

526 such as excessive temperature, reduced solar light and ammonium depletion. On the other 

527 hand, lower microalgae performance in terms of nutrient recovery and biomass productivity 

528 was observed in the MPBR plant at higher EOM concentrations, although this decay could 

529 also have been influenced by other factors. Membrane fouling was found to be related to the 

530 biomass concentration of the culture. However, fouling rate obtained under the operating 

531 conditions tested showed different behaviour concerning to EOM concentration depending on 

532 the initial transmembrane pressure (TMP).

533 E-supplementary data of this work can be found in online version of the paper.

534
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774 Figure captions

775 Figure 1: EOM-POL, EOM-P, NH4-N and PO4-P concentrations in lab-scale continuous mode. 

776 Experiment 1: a) 25ºC, b) 30ºC; Experiment 2: c) 25ºC, d) 35ºC; Experiment 3: e) 25ºC; f) 

777 intervals of 10ºC increment from 25 to 35ºC.

778 Figure 2: EOM-POL, EOM-P, NH4-N and PO4-P concentrations in lab-scale batch conditions 

779 (Experiment 4) at: a) 25ºC; and b) 30ºC. 

780 Figure 3: EOM-POL, NH4-N and PO4-P in lab-scale Experiment 5: a) nitrification inhibited; 

781 and b) nitrification non-inhibited.

782 Figure 4. EOM concentrations and solar photosynthetically active radiation (PAR) during the 

783 continuous operation of the MPBR plant: a) EOM-POL (red); and b) EOM-P (blue).

784 Figure 5. Continuous operation of the MPBR plant: a) Temperature (T), solar 

785 photosynthetically active radiation (PAR) and nitrification rate (NOxR); b) nitrogen recovery 

786 rate (NRR); phosphorus recovery rate (PRR) and biomass productivity (BP); c) ammonium 

787 (NH4-N) and phosphate (PO4-P) concentration ; d) normalised EOM-POL and EOM-P. 

788 Figure 6. Continuous operation of the MPBR plant: a) Time evolution of transmembrane 

789 pressure (TMP); b) Fouling rate (FR) vs total suspended solids (TSS) concentrations in 

790 Periods A (blue) and B (red); c) Fouling rate (FR) vs total EOM (EOM-Total) concentrations in 

791 Periods A (blue) and B (red).
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Figure 1: EOM-POL, EOM-P, NH4-N and PO4-P concentrations in lab-scale continuous mode. Experiment 1: 
a) 25ºC, b) 30ºC; Experiment 2: c) 25ºC, d) 35ºC; Experiment 3: e) 25ºC; f) intervals of 10ºC increment 

from 25 to 35ºC. 
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Figure 2: EOM-POL, EOM-P, NH4-N and PO4-P concentrations in lab-scale batch conditions (Experiment 4) 
at: a) 25ºC; and b) 30ºC. 
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Figure 3: EOM-POL, NH4-N and PO4-P in lab-scale Experiment 5: a) nitrification inhibited; and b) 
nitrification non-inhibited. 
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Figure 4. EOM concentrations and solar photosynthetically active radiation (PAR) during the continuous 
operation of the MPBR plant: a) EOM-POL (red); and b) EOM-P (blue). 

397x211mm (96 x 96 DPI) 

Page 38 of 40Environmental Science: Water Research & Technology

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:W

at
er

R
es

ea
rc

h
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
3 

M
ay

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
itè

cn
ic

a 
de

 V
al

èn
ci

a 
on

 5
/1

3/
20

20
 5

:4
2:

56
 P

M
. 

View Article Online
DOI: 10.1039/D0EW00176G

https://doi.org/10.1039/D0EW00176G


 

Figure 5. Continuous operation of the MPBR plant: a) Temperature (T), solar photosynthetically active 
radiation (PAR) and nitrification rate (NOxR); b) nitrogen recovery rate (NRR); phosphorus recovery rate 
(PRR) and biomass productivity (BP); c) ammonium (NH4-N) and phosphate (PO4-P) concentration ; d) 

normalised EOM-POL and EOM-P. 
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Figure 6. Continuous operation of the MPBR plant: a) Time evolution of transmembrane pressure (TMP); b) 
Fouling rate (FR) vs total suspended solids (TSS) concentrations in Periods A (blue) and B (red); c) Fouling 

rate (FR) vs total EOM (EOM-Total) concentrations in Periods A (blue) and B (red). 
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