XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Detecção Precoce das Doenças de Alzheimer e Parkinson através de Parâmetros Não-Lineares Multibanda de Sinais EEG

Gabriel A. R. Silva, Marco A. R. Alves, Bruno C. Bispo e Pedro M. Rodrigues

Resumo— Este trabalho tem como objetivo a detecção precoce das doenças de Alzheimer e Parkinson através de parâmetros não-lineares multibanda de sinais EEG. Para cada par de grupos de estudo, uma seleção dos parâmetros é realizada através de algoritmo genético. Os parâmetros selecionados são utilizados como entrada para classificadores com validação cruzada *leaveone-out*. Acurácias de classificação de 100% são obtidas, em pelo menos uma sub-banda, para 3 pares de grupos de estudo enquanto 90,60% é alcançado para o par Controle vs Alzheimer/Parkinson. A sub-banda delta foi a que, em geral, apresentou maiores diferenças significativas entre os grupos.

Palavras-Chave—Detecção precoce, Alzheimer, Parkinson, EEG, análise não-linear, wavelet.

Abstract— This work aims to detect Alzheimer's and Parkinson's diseases at early stage through non-linear multiband parameters of EEG signals. For each pair of study groups, parameters selection was performed through genetic algorithm. The selected parameters are used as input for classifiers with leave-one-out cross-validation. Classification accuracies of 100% are achieved, in at least one subband, for 3 pairs of study groups while 90.60% is achieved for the Control vs Alzheimer/Parkinson pair. The delta subband showed, in general, the greatest significant differences between the groups.

Keywords—Early detection, Alzheimer, Parkinson, EEG, non-linear analysis, wavelet.

I. INTRODUÇÃO

Entre as doenças neurodegenerativas, as doenças de Alzheimer (DA) e Parkinson (DP) destacam-se por vários fatores: apresentam as maiores incidências a nível mundial [1], [2]; possuem períodos assintomáticos, [3], [4]; as causas não são conhecidas com exatidão [5]; e, apesar de existirem soluções que permitem atrasar o seu avanço, não há cura [6], [7]. Portanto, a pesquisa por métodos para detectar precocemente essas doenças é de extrema importância para retardar a progressão e os sintomas das mesmas, contribuindo assim para uma melhor qualidade e maior expectativa de vida dos pacientes.

A evolução da DA e DP são divididas em estágios com diferentes escalas. No entanto, um estágio pré-doença, denominado défice cognitivo leve (MCI, do inglês *Mild Cognitive Impairment*), é normalmente considerado como o estágio inicial de todas as doenças neurodegenerativas, sendo a transição entre o envelhecimento normal e a patologia. Nesta fase, os sintomas são pouco evidentes, normalmente lapsos esporádicos de memória, e entendidos pelo paciente como uma consequência normal da idade ou atribuídos ao cansaço [8]. Essa fase pode ou não evoluir para a doença em si. Os ambientes clínicos costumam utilizar exames que medem a capacidade física e cognitiva dos pacientes para avaliar a evolução dessas doenças. O mais comum é o mini exame do estado mental (MMSE, do inglês *Mini Mental State Exam*), que consiste de perguntas para avaliar a capacidade de orientação, atenção, memória e linguagem do paciente [9].

Entre as diversas ferramentas médicas disponíveis para avaliar marcadores biológicos relacionados a essas doenças, como ressonância magnética, tomografia por emissão de pósitrons, tomografia computadorizada por emissão de fóton único, magnetoencefalografia, análise de sangue e do fluído cerebrospinal, a eletroencefalografia (EEG) destaca-se por ser amplamente utilizada em ambientes clínicos devido ao seu sistema de gravação ser barato, não-invasivo, móvel e rápido.

Alguns trabalhos sobre detecção de DA e DP em estágio inicial através de sinais EEG são encontrados na literatura. Em relação à discriminação entre indivíduos saudáveis e pacientes com MCI que evoluíram para DP, uma acurácia de 82% foi alcançada em [10] ao aplicar algumas métricas espectrais e sete fatores temporais extraídos por meio de análise de componentes principais a máquinas de vetores suporte (SVM, do inglês *Support Vector Machine*). Em [11], uma rede neural convolucional foi proposta para aprender características de alto nível dos sinais, obtendo uma acurácia de 88,25%.

Na discriminação entre indivíduos saudáveis e pacientes com MCI que evoluíram para DA, uma acurácia de 93% foi obtida em [12] ao aplicar parâmetros de um método de modelagem de colisão a uma rede neural artificial (RNA). Em [13], características temporais extraídas do espectro foram aplicadas a SVM, árvores de decisão e técnicas de mineração de dados, alcançando uma acurácia de 90%. Em [14], a combinação de características que representavam a desaceleração dos sinais e RNA resultou numa acurácia de 77%. Em [15], uma seleção de 25 características temporais e espectrais de sinais EEG, incluindo potenciais relacionados a eventos, foram aplicados a SVM, alcançando uma classificação de 88%.

Esse trabalho propõe detectar DA e DP em estágio inicial através de parâmetros não-lineares de sinais EEG. O interesse pela análise não-linear de sinais EEG advém da sua própria origem, uma vez que o cérebro é um sistema complexo dependente de inúmeros fenômenos biológicos e fisiológicos cujo comportamento é não-linear [16]. E com intuito de explorar uma possível maior capacidade discriminante de bandas frequenciais, os parâmetros serão obtidos a partir de uma análise multibanda através da transformada Wavelet. O artigo está organizado da seguinte maneira: a Seção II descreve a base de EEG utilizada; a Seção III explica a decomposição multibanda realizada; a Seção IV apresenta os parâmetros nãolineares utilizados; a Seção V apresenta e discute os resultados obtidos; e, por fim, a Seção VI conclui o trabalho.

Gabriel A. R. Silva, Marco A. R. Alves e Pedro M. Rodrigues, Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina -Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal, email: prodrigues@porto.ucp.pt; Bruno C. Bispo, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis-SC, Brasil, e-mail: bruno.bispo@ufsc.br.

TABELA I Informação da base de dados.

Grupo	No de indivíduos	Idade média	MMSE
Controle	16	74	28,68
DP (MCI)	8	70	28,64
DA (MCI)	8	80	26,29

II. BASE DE DADOS DE EEG

A base de dados consiste de 32 exames de EEG gravados no Hospital de São João, Porto, Portugal, projeto CES198-14, com a aprovação do comitê de ética local e do conselho de administração do hospital. Os sinais foram adquiridos a uma frequência de amostragem de 256 Hz através de 19 eletrodos colocados sobre o escalpe de acordo com o sistema 10-20, resultando em 19 sinais por exame (indivíduo). Os indivíduos encontravam-se num estado de relaxamento e com os olhos fechados. Entre eles, 16 são saudáveis (controle), 8 diagnosticados com MCI que evoluiu para DA e 8 diagnosticados com MCI que evoluiu para DP. O MMSE e a idade média dos grupos de estudo estão apresentados na Tabela I.

Todos os sinais foram filtrados usando um filtro passa-banda digital com frequências de corte de 1 e 40 Hz, faixa frequencial convencionais de EEG, a fim de remover artefatos e ruído elétrico. A amplitude de cada sinal foi normalizada segundo

$$x(n) = \frac{x(n)}{\sum_{n=0}^{N-1} x^2(n)},$$
(1)

onde N representa o tamanho dos sinais, e a componente contínua foi removida. E cada sinal foi segmentado em 20 trechos não-sobrepostos com duração de 5 s. Para cada indivíduo, criou-se um segmento médio ao realizar a média dos 20 segmentos dos seus 19 canais.

III. DECOMPOSIÇÃO MULTIBANDA

A transformada wavelet discreta (DWT, do inglês *Discrete Wavelet Transform*) de um sinal de tempo discreto e energia finita é a sua decomposição em um conjunto de funções base obtidas a partir de um número finito de sequências protótipas e suas versões deslocadas no tempo [17]. Essa expansão estruturada é implementada por meio de um banco de filtros em bandas de oitavas e criticamente decimado [17], [18].

A DWT utiliza uma função escala de análise $\phi_1(n)$ e uma função wavelet de análise $\psi_1(n)$ que são respostas ao impulso dos filtros de análise passa-baixa e passa-alta de meia banda, respectivamente. Definindo as seguintes fórmulas de recursão

$$\tilde{\phi}_{i+1}(n) = \tilde{\phi}_i(n/2) * \tilde{\phi}_1(n) \tag{2}$$

$$\tilde{\psi}_{i+1}(n) = \tilde{\phi}_i(n) * \tilde{\psi}_1(n/2^i), \tag{3}$$

o filtro de análise equivalente da *m*-ésima sub-banda é dado por

$$h_m(n) = \begin{cases} \bar{\phi}_S(n), & m = 0\\ \bar{\psi}_{S+1-m}(n), & m = 1, 2, \dots, S. \end{cases}$$
(4)

E o sinal da *m*-ésima sub-banda do sinal x(n) é dado por

$$x_m(n) = \begin{cases} \sum_{\substack{k=-\infty \\ m \leq m}}^{\infty} x(k)h_m(2^S n - k), & m = 0, \\ \sum_{\substack{k=-\infty \\ k = -\infty}}^{\infty} x(k)h_m(2^{S - m + 1} n - k), & m = 1, 2, \dots, S. \end{cases}$$
(5)

Neste trabalho, a DWT foi aplicada aos 20 segmentos médios de cada indivíduo com o intuito de decompô-los nas sub-bandas convencionais de EEG, nomeadamente, δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz) e γ (30-40 Hz). Neste caso, S = 5 e os sinas das sub-bandas se relacionam com as sub-bandas de EEG da seguinte forma: $x_{\delta}(n) = x_0(n)$, $x_{\theta}(n) = x_1(n)$, $x_{\alpha}(n) = x_2(n)$, $x_{\beta}(n) = x_3(n)$ e $x_{\gamma}(n) = x_4(n)$. O sinal $x_5(n)$ não é utilizado. Os sinais das sub-bandas foram reamostrados para a frequência de amostragem original através do método de interpolação wavelet [19].

IV. ANÁLISE NÃO-LINEAR

A natureza não-linear dos sinais EEG da base de dados foi verificada por meio da ferramenta disponibilizada em [20]. Doravante, o sinal x(n) possui tamanho N e média \overline{x} .

A. Medidas do Atrator Reconstruído

Em cada instante de tempo, o estado de um sistema dinâmico definido por *m* variáveis pode ser representado por um ponto no espaço *m*-dimensional. Nesse espaço, denominado espaço de estado ou de fase, a sequência de estados ao longo do tempo define curvas denominadas trajetórias. Estas trajetórias, quando observadas por longos períodos, podem convergir para uma estrutura geométrica específica e independente das condições inicias do sistema, denominada atrator [21].

Entre as técnicas para representar o espaço de estado de um sistema dinâmico a partir de uma única série temporal (sinal), processo denominado reconstrução, a técnica de incorporação de atraso é a mais utilizada para sinais EEG [21]. Nesse caso, uma reconstrução do espaço de estado é dada por [21]

$$\mathbf{x}_{i} = [x(i), x(i+\tau), \dots, x(i+(m-1)\tau)],$$
 (6)

onde τ é o atraso de incorporação. Os valores de τ e *m* foram obtidos de x(n) por meio dos métodos descritos em [21], [22].

A sequência de vetores $\mathbf{x}_i, i = 1, 2, \dots, M$ onde $M = N - (m-1)\tau$, formam o atrator reconstruído.

1) Dimensão da Correlação: Medida que caracteriza a distribuição dos pontos do atrator, refletindo a complexidade do sistema dinâmico, estimada como [21], [22]

$$D_2 = \lim_{r \to 0} \frac{\log(C(r, M))}{\log(r)},$$
(7)

onde

$$C(r, M) = \frac{2}{M(M-1)} \sum_{i=1}^{M} \sum_{\substack{j=1\\j\neq i}}^{M} \Theta(r - \|\mathbf{x}_i - \mathbf{x}_j\|)$$
(8)

é a probabilidade do par de pontos $\{\mathbf{x}_i, \mathbf{x}_j\}$ no atrator estar separado por uma distância menor ou igual a $r \in \Theta$ é a função Heaviside [21], [22].

2) Expoentes de Lyapunov: Medidas que fornecem informação sobre a evolução das trajetórias ao longo do tempo [22], refletindo a estabilidade do sistema dinâmico [21]. Coeficientes positivos e negativos indicam divergência e convergência exponencial de trajetórias próximas no atrator, respectivamente [23]. Um sistema caótico tem pelo menos um expoente positivo [22], [23]. O maior expoente de Lyapunov (LLE, do inglês Largest Lyapunov Exponent) pode ser estimado ao, para cada estado \mathbf{x}_i , encontrar o estado \mathbf{x}_j que satisfaça $\min_j ||\mathbf{x}_i - \mathbf{x}_j||$ tal que $|i - j| > T_m$, onde T_m é o período médio de x(n). As estimativas são dadas por [24]

$$\lambda(i) = \frac{1}{M+2} \sum_{k=1}^{M} \frac{1}{k * T_s} \ln \frac{\|\mathbf{x}_{i+k} - \mathbf{x}_{j+k}\|}{\|\mathbf{x}_i - \mathbf{x}_j\|}, \qquad (9)$$

onde T_s é o período de amostragem. E o LLE é definido pela inclinação da melhor aproximação linear de $\lambda(i)$ [24].

B. Medidas de Memória Longa

1) Expoente Hurst: Medida da dependência estatística de longo alcance de uma série temporal, utilizada para avaliar a sua suavidade, propriedades de correlação e grau de autosimilaridade [21], [22]. Pode ser definida como [22]

$$H = \frac{\log(R/S)}{\log(N)},\tag{10}$$

onde R/S é uma medida estatística denominada intervalo reescalonado. Na prática, H é estimado pela inclinação da melhor aproximação linear de $\log [R(n)/S(n)]$ em função de $\log(n)$, onde detalhes sobre o cálculo de R(n)/S(n) podem ser encontrados em [25]. Quanto mais irregular o sinal de EEG, mais próximo de 0 estará H [21].

2) Análise de Flutuação Destendenciada: Método de análise que fornece um parâmetro para quantificar as correlações de longo alcance (auto-similaridade) de séries temporais aparentemente não-estacionárias [26], [27]. A partir de x(n), calcula-se a série de desvio cumulativo $y(k) = \sum_{i=1}^{k} [x(i) - \overline{x}]$. Em seguida, para cada trecho de comprimento m de y(k), calcula-se uma aproximação linear denotada por $y_m(k)$. A flutuação média do sinal em função de m é definida como

$$F(m) = \sqrt{\frac{1}{N} \sum_{k=1}^{N} [y(k) - y_m(k)]^2}.$$
 (11)

A inclinação da melhor aproximação linear de $\log[F(m)]$ em função de log(m) é o expoente de escala α que representa as propriedades de correlação do sinal x(n) [27].

C. Dimensão Fractal

A dimensão fractal (FD, do inglês *Fractal Dimension*) de um objeto geométrico é uma medida de sua complexidade - extensão espacial, complicação ou propensão ao preenchimento do espaço - e está intimamente ligada à sua forma [28].

Numa forma de onda, a FD é uma ferramenta poderosa para a detecção de eventos transitórios [22]. Ela pode ser calculada diretamente a partir dos sinais, não havendo necessidade de reconstruir o atrator. Entre os algoritmos para determinar a FD de uma forma de onda, os brevemente descritos abaixo são conhecidos por serem adequados para análise de EEG [22].

1) Algoritmo de Higuchi: Para m = 1, ..., k e $k = 1, ..., k_{max}$, onde k_{max} é obtido experimentalmente apesar de $k_{max} = 8$ ter sido inicialmente proposto, calcula-se a seguinte medida de distância [21], [22]

$$L_m(k) = \frac{N-1}{\lfloor a \rfloor k} \sum_{i=1}^{\lfloor a \rfloor} |x(m+ik) - x(m+(i-1)k)|, \quad (12)$$

onde a = (N-m)/k e $\lfloor a \rfloor$ representa o maior número inteiro igual ou menor que *a*. A distância média é calculada como $L(k) = \sum_{m=1}^{k} L_m(k)/k$ para $k = 1, \ldots, k_{max}$. A estimativa da FD, denotada por FD_H , é então dada pela inclinação da melhor aproximação linear de $\ln[L(k)]$ em função de $\ln(1/k)$. 2) Algoritmo de Katz: Segundo [28], a FD de uma forma de onda x(n) pode ser definida como

$$FD_K = \frac{\log(L/a)}{\log(d/a)},\tag{13}$$

onde L é a soma das distâncias entre os pontos sucessivos de x(n), a é a distância média entre os pontos sucessivos e d é a maior distância entre x(1) e os restantes pontos de x(n).

D. Energia

A energia das sub-bandas está entre os parâmetros de EEG mais utilizados para detecção de DA e DP devido ao deslocamento energético das altas para as baixas frequências que ocorre nessas doenças. A energia de x(n) é definida como

$$EN = \sum_{n=1}^{N} |x(n)|^2.$$
 (14)

E. Entropia

A entropia é uma medida que descreve a quantidade de desordem, incerteza, em um sistema [22]. No caso de uma variável aleatória, a entropia quantifica a informação média associada às suas observações. As entropias de Shannon e Logarítimica podem ser estimadas como [29], [30]

$$ET_S = -\sum_{n=1}^{N} |x(n)|^2 \log[|x(n)|^2]$$
(15)

e

$$ET_L = \sum_{n=1}^{N} \log[|x(n)|^2],$$
(16)

respectivamente.

A entropia aproximada (ApET) é uma modificação na entropia de Kolmogorov-Sinai, a qual descreve a taxa na qual informações sobre o estado do sistema dinâmico são perdidas ao longo do tempo, para evitar divergências numéricas quando o sinal é contaminado por ruído, sendo definida como [22]

$$ApET(m, r, N) = \frac{1}{N - m + 1} \sum_{i=1}^{N - m + 1} \log [C_i^m(r)] - \frac{1}{N - m} \sum_{i=1}^{N - m} \log [C_i^{m+1}(r)], \quad (17)$$

onde

$$C_i^m(r) = \frac{1}{N-m+1} \sum_{j=1}^{N-m+1} \Theta(r - \|\mathbf{x}_i - \mathbf{x}_j\|)$$
(18)

é a probabilidade do ponto x_i no atrator estar separado dos outros pontos por uma distância menor ou igual a r,

V. METODOLOGIA E RESULTADOS

Para cada um dos 32 indivíduos, os 10 parâmetros nãolineares (D_2 , LLE, α , FD_H , FD_K , EN, ET_S , ET_L e ApET) foram calculados para as 5 sub-bandas (δ , θ , α , β e γ) do segmento médio e dos 20 segmentos de todos os 19 canais. E utilizados para discriminar, por sub-banda e canal, dentro dos seguintes pares de grupos de estudo: Controle vs DA, Controle vs DP, Controle vs DA/DP, DA vs DP. Ressaltase que os pacientes pertencentes aos grupos DA ou DP estão no estágio inicial MCI das doenças como descrito na Seção II.

A. Seleção da Wavelet

Como os valores de cada parâmetro dependem da wavelet $\tilde{\psi}_1(n)$ utilizada na decomposição, uma busca foi realizada para encontrar a wavelet que resulta em parâmetros com maior capacidade discriminante para cada par de grupos de estudo. As famílias de wavelets avaliadas foram Biortognais, Biortogonais Reversas, Daubechies, Coiflets, Symlets e Fejer-Korovkin. E utilizou-se o segmento médio de cada indivíduo.

Os valores de cada parâmetro calculados a partir dos segmentos médios foram separados por cada combinação de par de grupos, wavelet, parâmetro e sub-banda. Em cada combinação, isso resulta em somente 1 valor (1 parâmetro de 1 sub-banda do segmento médio) por indivíduo. Dentro de cada combinação, os valores foram normalizados utilizando (1). E então, para cada combinação, os valores normalizados foram aplicados ao classificador binário X-ROC [31]. Esse classificador utiliza a distância quadrática entre médias de distribuições para encontrar um bom limiar para discriminar duas classes e a ROC (do inglês *Receiver Operating Characteristic*) para analisar o resultado da classificação [31].

Para cada par de grupos, selecionou-se a wavelet que resultou na maior quantidade de acurácias de classificação superiores a 80%. As wavelets selecionadas foram Biortogonal Reversa 6.8, Biortogonal Reversa 3.5, Biortogonal Reversa 2.8 e Biortogonal 2.8 para os pares Controle vs DA, Controle vs DP, Controle vs DA/DP e DA vs DP, respectivamente. Ou seja, uma wavelet diferente foi utilizada em cada caso.

B. Seleção de Parâmetros

Como mencionado anteriormente, a discriminação dentro dos pares de grupos de estudo será realizada por sub-banda e canal. Assim, para cada combinação de sub-banda, canal e par de grupos, uma busca foi realizada para encontrar os parâmetros com maior capacidade discriminante. Para isso, utilizou-se os 20 segmentos de cada canal de cada indivíduo.

Os valores não-normalizados de cada parâmetro, calculados a partir de todos os segmentos de todos os canais, foram separados por cada combinação de par de grupos (e correspondente wavelet selecionada), sub-banda e canal. Em cada combinação, isso resulta em 200 valores de parâmetros (10 parâmetros obtidos de 1 sub-banda dos 20 segmentos de 1 canal) por indivíduo. Dentro de cada combinação, os valores foram normalizados utilizando (1). E então, para cada combinação, os valores normalizados foram aplicados a um algoritmo genético de forma a selecionar o melhor conjunto de 20 valores (10% do total) por indivíduo.

C. Classificação Utilizando Parâmetros Selecionados

Para cada combinação de par de grupos de estudo e subbanda, o melhor conjunto de parâmetros foi utilizado como entrada de vários classificadores binários. Em todos os casos, para verificar a capacidade de generalização dos classificadores, uma validação cruzada *leave-one-out* foi utilizada. Os resultados do melhor classificador para cada caso estão indicados nos mapas topográficos exibidos na Figura 1, onde a acurácia máxima e o correspondente eletrodo estão destacadas.

Na discriminação entre os grupos patológicos, par DP vs DA, uma acurácia de 100% foi alcançada em todas as subbandas com exceção da γ , indicando uma efetiva capacidade discriminante dos parâmetros em todas as sub-bandas. Observa-se que essa acurácia ideal foi obtida por um grande número de eletrodos nas sub-bandas $\alpha \in \theta$, indicando que, nessas sub-bandas, os parâmetros analisados captam diferenças significativas entre as duas doenças por toda a cabeça. De forma geral, os elétrodos que alcançaram as maiores acurácias, acima de 87,5%, estão localizados nas zonas parietal e central. E o classificador com melhor desempenho foi o SVM linear.

Em relação ao par DP vs Controle, uma acurácia de 100% foi alcançada nas sub-bandas $\gamma \in \delta$. Esses resultados foram obtidos através dos eletrodos localizados nas regiões frontal e parietal, as quais também foram apontadas como regiões de atividade da DP em [10]. Nas demais sub-bandas foram obtidas acurácias de classificação acima de 87,5%. O classificador com melhor desempenho foi o método da regressão linear. As acurácias de 100% alcançadas nesse trabalho superam os resultados obtidos em [10], [11], os quais são inferiores a 90%.

No estudo do par DA vs Controle, uma acurácia de 100% foi alcançada somente na sub-banda δ . Nas outras sub-bandas foram obtidas acurácias entre 75% e 93,8%. De forma geral, as regiões frontal e temporal mostraram ser o foco da atividade da DA como também indicado em [14]. O classificador com melhor desempenho foi a regressão logística. A acurácia de 100% alcançada nesse trabalho supera os resultados obtidos em [12], [13], [14], [15], os quais são inferiores a 94%.

Por fim, o caso DA/DP vs Controle foi o único para o qual não se obteve nenhuma acurácia de 100%. A maior acurácia de classificação foi 90,6% na sub-banda θ . Nas demais subbandas foram obtidos resultados entre 68,8% e 87,5%. As regiões de maior interesse são essencialmente a frontal e a temporal, onde são atingidos os valores máximos de acurácia. O classificador com melhor desempenho foi o SVM linear.

De forma geral, os resultados demonstraram que a combinação de parâmetros não-lineares multibanda de sinais EEG é promissora para detectar DA e DP em estágio inicial. No entanto, o número de exames EEG por grupo de estudo na base de dados utilizada é limitado e os resultados precisam ser atualizados com uma maior população para garantir a generalização. Além disso, o par DA/DP vs Controle é de particular interesse uma vez que permite detectar o aparecimento de ambas as doenças. O desempenho obtido indica que tal objetivo é um desafio e pesquisas adicionais são necessárias.

VI. CONCLUSÕES

Este trabalho investigou a deteção das doenças de Alzheimer e Parkinson em estágio inicial através de parâmetros nãolineares multibanda de sinais EEG. A detecção foi realizada entre pares de grupos de estudo e a análise multibanda foi efetuada usando a transformada Wavelet.

Para cada par de grupos de estudo, uma seleção dos parâmetros foi realizada por sub-banda. Os parâmetros selecionados foram utilizadas como entrada para classificadores com validação cruzada *leave-one-out*. Acurácias de classificação de 100% foram obtidas, em pelo menos uma sub-banda, para os pares Controle vs DA, Controle vs DP e DA vs DP, enquanto 90,60% foi alcançado para o par Controle vs DA/DP. A subbanda δ foi a que, em geral, apresentou maiores diferenças significativas entre os grupos.

AGRADECIMENTOS

Os autores gostariam de agradecer à Unidade Neurológica do Hospital de São João, Porto, Portugal, pelo fornecimento da base de dados. Esse trabalho foi apoiado pelos Fundos Nacionais da Fundação para a Ciência e a Tecnologia (FCT), Portugal, através do projeto UIDB/50016/2020. XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22-25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC

Fig. 1. Mapas topográficos das classificações obtidas entre pares de grupos de estudo ao nível dos eletrodos.

REFERÊNCIAS

- L. M. de Lau and M. M. Breteler, "Epidemiology of parkinson's disease," *The Lancet Neurology*, vol. 5, no. 6, pp. 525–535, June 2006.
- [2] R. Mayeux and Y. Stern, "Epidemiology of alzheimer's disease," Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 8, pp. 1–18, April 2012.
- [3] R. Cassani, M. Estarellas, R. San-Martin, F. J. Fraga, and T. H. Falk, "Systematic review on resting-state EEG for alzheimer's disease diagnosis and progression assessment," *Disease Markers*, vol. 2018, pp. 1–26, October 2018.
- [4] T. K. Khan, "An algorithm for preclinical diagnosis of alzheimer's disease," *Frontiers in Neuroscience*, vol. 12, April 2018.
 [5] A. E. Lang and A. M. Lozano, "Parkinson's disease," *New England*
- [5] A. E. Lang and A. M. Lozano, "Parkinson's disease," New England Journal of Medicine, vol. 339, no. 15, pp. 1044–1053, October 1998.
- [6] A. Valmarska, D. Miljkovic, M. Robnik-Sikonja, and N. Lavrac, "Visualization and analysis of parkinson's disease status and therapy patterns," in *Discovery Science*. Springer International Publishing, 2018, pp. 466– 479.
- [7] A. Association, "Alzheimer's disease facts and figures 2018," *Alzheimer's & Dementia*, vol. 14, no. 3, pp. 367–429, March 2018.
- [8] N. Houmani, F. Vialatte, E. Gallego-Jutglà, G. Dreyfus, V.-H. Nguyen-Michel, J. Mariani, and K. Kinugawa, "Diagnosis of alzheimer's disease with electroencephalography in a differential framework," *PLOS ONE*, vol. 13, no. 3, p. e0193607, March 2018.
- [9] M. Galea and M. Woodward, "Mini-mental state examination (MMSE)," Australian Journal of Physiotherapy, vol. 51, no. 3, p. 198, 2005.
- [10] J. F. Cavanagh, P. Kumar, A. A. Mueller, S. P. Richardson, and A. Mueen, "Diminished EEG habituation to novel events effectively classifies parkinson's patients," *Clinical Neurophysiology*, vol. 129, no. 2, pp. 409– 418, February 2018.
- 418, February 2018.
 [11] S. L. Oh, Y. Hagiwara, U. Raghavendra, R. Yuvaraj, N. Arunkumar, M. Murugappan, and U. R. Acharya, "A deep learning approach for parkinson's disease diagnosis from EEG signals," *Neural Computing and Applications*, August 2018.
- [12] F. Vialatte, A. Cichocki, G. Dreyfus, T. Musha, S. Shishkin, and R. Gervais, "Early detection of alzheimer's disease by blind source separation, time frequency representation, and bump modeling of EEG signals," *Lecture Notes in Computer Science*, vol. 3696, pp. 683–692, 2005.
- [13] G. Fiscon, E. Weitschek, G. Felici, P. Bertolazzi, S. D. Salvo, P. Bramanti, and M. C. D. Cola, "Alzheimer's disease patients classification through EEG signals processing," in 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, December 2014.
- [14] P. M. Rodrigues, D. R. Freitas, J. P. Teixeira, D. Alves, and C. Garrett, "Electroencephalogram signal analysis in alzheimer's disease early detection," *International Journal of Reliable and Quality E-Healthcare*, vol. 7, no. 1, pp. 40–59, January 2018.
- [15] S. Khatun, B. I. Morshed, and G. M. Bidelman, "A single-channel EEG-based approach to detect mild cognitive impairment via speech-

evoked brain responses," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 27, no. 5, pp. 1063–1070, May 2019.
[16] S. Sanei, *EEG Signal Processing*. Wiley-Blackwell, 2007.

- [16] S. Sanei, *EEG Signal Processing*. Wiley-Blackwell, 2007.
 [17] M. Vetterli and J. Kovačević, *Wavelets and Subband Coding*. En-
- glewood Cliffs, New Jersey: Prentice Hall, 1995. [18] H. S. Malvar, Signal Processing with Lapped Transforms. Norwood,
- Massachusetts: Artech House, 1992.
- [19] O. Rioul and M. Vetterli, "Wavelets and signal processing," *IEEE Signal Processing Magazine*, vol. 8, no. 4, pp. 14–38, October 1991.
- [20] A. BenSaïda, "A practical test for noisy chaotic dynamics," *SoftwareX*, vol. 3-4, pp. 1–5, December 2015.
- [21] G. R. Bermúdez and P. J. G. Laencina, "Analysis of EEG signals using nonlinear dynamics and chaos a review," *Applied Mathematics & Information Sciences*, vol. 9, pp. 1–13, 01 2015.
 [22] O. Faust and M. G. Bairy, "Nonlinear analysis of physiological signals: a
- [22] O. Faust and M. G. Bairy, "Nonlinear analysis of physiological signals: a review," *Journal of Mechanics in Medicine and Biology*, vol. 12, no. 04, p. 1240015, September 2012.
 [23] C. J. Stam, "Nonlinear dynamical analysis of EEG and MEG: review
- [23] C. J. Stam, "Nonlinear dynamical analysis of EEG and MEG: review of an emerging field," *Clinical Neurophysiology*, vol. 116, no. 10, pp. 1388–2457, October 2005.
- [24] M. T. Rosenstein, J. J. Collins, and C. J. D. Lucaa, "A practical method for calculating largest Lyapunov exponents from small data sets," *Physica D: Nonlinear Phenomena*, vol. 65, no. 1, pp. 117–134, May 1993.
- [25] B. Qian and K. Rasheed, "Hurst exponent and financial market predictability," in *Proceedings of IASTED International Conference on Financial Engineering and Applications*, Berkeley, USA, September 2007, pp. 203–209.
- [26] P. Gifani, H. R. Rabiee, M. Hashemi, P. Taslimi, and M. Ghanbari, "Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification," *Journal of the Franklin Institute*, vol. 344, no. 3-4, pp. 212–229, 2007.
- [27] J.-M. Lee, D.-J. Kim, I.-Y. Kim, K.-S. Park, and S. I. Kim, "Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data," *Computers in biology and medicine*, vol. 32, no. 1, pp. 37–47, 2002.
- [28] M. J. Katz, "Fractals and the analysis of waveforms," Computers in Biology and Medicine, vol. 18, no. 3, pp. 145–156, January 1988.
- [29] J. Rodríguez-Sotelo, A. Osorio-Forero, A. Jiménez-Rodríguez, D. Cuesta-Frau, E. Cirugeda-Roldán, and D. Peluffo, "Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques," *Entropy*, vol. 16, no. 12, pp. 6573–6589, December 2014.
- [30] A. B. Das and M. I. H. Bhuiyan, "Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain," *Biomedical Signal Processing and Control*, vol. 29, pp. 11–21, August 2016.
- vol. 29, pp. 11–21, August 2016.
 [31] C. T. Nakas and C. T. Yiannoutsos, "Ordered multiple-class ROC analysis with continuous measurements," *Statistics in Medicine*, vol. 23, no. 22, pp. 3437–3449, November 2004.