
Test Mocks for Low-Code Applications built with OutSystems
Alexandre Jacinto

FCT, Universidade NOVA de Lisboa /
OutSystems

Lisbon, Portugal
agerardojacinto@gmail.com

Miguel Lourenço
OutSystems

Lisbon, Portugal
miguel.lourenco@outsystems.com

Carla Ferreira
NOVA LINCS, FCT, Universidade

NOVA de Lisboa
Lisbon, Portugal

carla.ferreira@fct.unl.pt

ABSTRACT
Unit testing is a core component of continuous integration and
delivery, which in turn is key to faster and more frequent delivery
of solutions to customers. Testing at the unit level allows program
components to be tested in complete isolation, therefore these tests
can be carried out quicker thus reducing troubleshoot time. But to
test at this level, dependencies between application components
(e.g. a web service connection) need to be removed. There have
been advances in mocking and stubbing techniques that remove
these dependencies. However, these advances have been made for
high-level programming languages, while low-code development
technology has yet to take full advantage of these techniques. This
paper presents a mocking solution prototype for the OutSystems
low-code development platform. The proposedmockingmechanism
removes dependencies to components that the developer wants to
abstract a test from, as for instance web services or other pieces of
logic of an application.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software development methods.
KEYWORDS
OutSystems platform, low-code, mocking, unit testing, software
testing
ACM Reference Format:
Alexandre Jacinto, Miguel Lourenço, and Carla Ferreira. 2020. Test Mocks
for Low-Code Applications built with OutSystems. In ACM/IEEE 23rd In-
ternational Conference on Model Driven Engineering Languages and Systems
(MODELS ’20 Companion), October 18–23, 2020, Virtual Event, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3417990.3420209

1 INTRODUCTION
Software used to be tested with manual testing and system-level
automated testing techniques. Development teams spent large
amounts of time on testing applications, which led to testing activ-
ities being the main bottlenecks of the development process [12].
Hence, software was produced less efficiently and at a lower rate,
preventing customers from receiving software updates sooner. As a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8135-2/20/10. . . $15.00
https://doi.org/10.1145/3417990.3420209

result, companies started investing in Continuous Integration and
Continuous Delivery practices (CI/CD).

Unit testing [5] is a key component of CI/CD and of software
testing, and when in place, changes to a program can be quickly
tested, and errors or failures will be easier to troubleshoot. Unit
testing also makes the execution of tests more predictable, as they
are not susceptible to the interference of external systems that may
be integrated into the application.

There have been advances in the industry to develop techniques
that can remove unwanted dependencies when performing tests
(e.g. connecting to a database) so that these can be made at the unit
level. These techniques are mainly based around test doubles, which
mocks are part of. A mock is a dynamic object that has the notion
of state. It is used to replace another object, providing answers to
calls based on that state. It should provide the same interface as the
object it replaces while having a simpler implementation. However,
the techniques available today apply to a more conventional line
of programming, namely using high-level programming languages
such as Java or C#. That being said, we are still missing this ability
in low-code development.

Applications built with low-code platforms also need to be unit
tested. Therefore, it is necessary to remove dependencies to applica-
tion components that do not need to be included in the tests. To this
end a similar approach to what is done in traditional programming
can be applied in a low-code context, using mocks.

This need was confirmed in interviews made to OutSystems
developers and testers, who stated that the main issue they face
when testing applications is the difficulty of abstracting tests from
including unwanted application components. More specifically, the
components that developers more frequently feel the necessity
to abstract from are web services, databases, and other pieces of
logic of the applications like server actions (which will be intro-
duced in the next section). This statement is supported by a survey
presented by Spadini et al. in [18], which does not differentiate
between traditional and low-code applications. Indeed, it identifies
the components within an application that are typically mocked for
testing purposes, which correspond to those components identified
in the interviews we made. Therefore we can conclude that low-
code platforms need the ability to mock application components,
in order to enhance testing activities.

We address this need by adapting standard mocking mechanisms
used in high-level programming languages to a low-code context.
Our solution, which is integrated into the OutSystems platform,
creates a new testing environment in which mocks can be used
instead of the real component they are replacing. In particular,
there are four main types of dependencies that our solution is able
to address, namely, web services, databases, service actions and server
actions (which will be introduced next).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/421863564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3417990.3420195
https://doi.org/10.1145/3417990.3420195

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada A. Jacinto, M. Lourenço, and C. Ferreira

Figure 1: OutSystems platform architecture [8]

The contributions of this paper include the design of a low-code
mocking mechanism for various types of dependencies. It also
contributes with the implementation and validation of the solution
within the OutSystems environment.

The paper is organized as follows. We start by introducing the
OutSystems platform. Then, the mocking solution developed is
explained. Next, we introduce a testing framework used to test Out-
Systems applications, that can be used together with our solution
to provide mocking abilities to the tests. We then present a prelimi-
nary evaluation of the proposed solution, followed by a comparison
with related work. Lastly, we briefly discuss perspectives on how
to enhance the proposed mocking technique.

2 OUTSYSTEMS OVERVIEW
Low-code platforms offer an innovative software development ap-
proach using a Rapid Application Development methodology. Ap-
plications are built with little to none traditional code. Usually,
these platforms offer a visual and drag-and-drop way of develop-
ment [11, 15]. The OutSystems platform [10] is an example of a
low-code development platform that also enables the continuous
management of built applications, employing a fully Agile method-
ology [17]. The platform can be used to build web and mobile
applications, allowing developers to stay away from the complexity
inherent to the languages that ultimately implement the solutions.

The OutSystems architecture [8] is divided into five components,
illustrated in Figure 1 (Platform Server, Service Studio, Service Center,
LifeTime and Integration Studio). The Platform Server [8] refers to
the set of components that implement, generate, manage, optimize,
and deploy applications. Web applications can be compiled to C#
or Java, while mobile applications can deployed to Android and
iOS. Service Studio is the visual low-code development environment
in which OutSystems applications are built in a drag-and-drop
fashion. Developers build applications in modules called eSpaces.
The development environment is divided into tabs. These are the
Interface tab, the Logic tab, the Data tab, and the Processes tab.

In the Logic tab, Actions [7] can be used to create the application
logic. Among all action types, there are two worth noting: server
actions and service actions. The former are directed graphs that
implement the core logic of the application. Inside a server action,
there can be calls to other server actions, decision nodes, loop nodes,
assignment nodes, among others, similar to methods/functions of
traditional languages. Figure 2a shows an example of a server action.
Also through this tab, developers can integrate their applications
with web services. Service actions are basically server actions used
as web services. These can be defined in a Service type application,
and then imported into applications that use them. This is a recent
component of the OutSystems language, and are normally used to
implement logic shared between several applications.

Screens, available in the Interface tab, can be used to create the
User Interface of the applications in a drag-and-drop way. In the
Data tab, developers can define their database model. Data can be
fetched using anAggregate, which is a visually defined query within
Service Studio. Standard SQL can also be used to define custom
queries and procedures [9]. There is also a tab for Processes, where
the developer can define the business processes of applications.

Currently, there is no native support for the definition and execu-
tion of unit tests in OutSystems applications. Therefore, end-to-end
integration testing is often the lowest level of testing possible. The
need to make unit tests in OutSystems applications led to the de-
velopment of the mocking mechanism, which is explained next.

3 SOLUTION
To help low-code developers in their testing activities, we propose a
mocking mechanism to eliminate dependencies to external entities
(to the scope of the test). Our mechanism was implemented in
the OutSystems platform, allowing developers to test components
of their applications in isolation, which consequently promotes
continuous integration and delivery in the development process.
Test execution can also be more predictable, because developers can
abstract their tests from external components, and can determine
what mock versions of those components will return.

Our solution introduces a new test environment, in which the
mocking ability is available. The developer can then choose this
environment when testing at a more unitary level, removing some
or all dependencies. Here, the components being removed from the
test are replaced by their mock version.When executing integration-
level tests, he or she can choose the real execution environment, and
dependencies to external entities will be kept. For instance, when
testing a component of the application that communicates with a
web service, the developer can choose to use the mock version of
that web service, and as a result, remove the dependency between
the application and the service. The mock will then simulate the
responses of the web service.

There are four types of dependencies that our solution can mock.
These are dependencies to server actions, service actions, web ser-
vices, and database queries (aggregates). The mocking of these
different parts of the applications is made possible through a call
replacement mechanism. For instance, the replacement of a call
made to a server action, with a call made to that action’s mock.
Mocks are implemented using server actions.

Test Mocks for Low-Code Applications built with OutSystems MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

(a) GetMovie action flow (b) GetMovieMock action flow (c) Test action implementation

Figure 2: Different steps of the methodology of testing with mocks

if(testMode && mocks.Contains("GetMovieREST_API")) {

mocks["GetMovieREST_API"]. Invoke ();

}

else {

GetMovieREST_API ();

}

Figure 3:GetMovieREST_API call compiled to C# (simplified)

Call replacement is done at runtime, on the fly. Supporting this
dynamic approach required significant changes to the compiler
logic that generates the code for applications built in OutSystems’
Service Studio.

We considered two other approaches. First, we tried a solution
that would replace calls before compile time. With this option, the
original application is cloned and then manipulated, replacing calls
to components with calls to their mocks, resulting in a second
application with the replacements done and ready to be tested. This
option had the advantage of avoiding changes the compiler logic.
However, it ended up being discarded because it did not offer a
good user experience. The cloning and replacing procedures would
have to be repeated for each test case, because different test cases
could define different mocks for the same component.

We also considered an approach based on dependency injec-
tion [13], followed by high-level programming languages, and object-
oriented programming languages in particular. We did not fol-
low this approach because the OutSystems language is not object-
oriented. Thus, in OutSystems, because dependencies are global to
the whole application, they cannot be injected as in object-oriented
languages (through the constructor of the class, for example). There-
fore, the option that replaces calls at runtime offers the best user
experience, while not imposing major changes to the OutSystems
platform, and consequently was the option we chose.

3.1 An Example of Testing with Mocks
Next we illustrate the testing methodology we propose. There is
normally an action to test, which in our example is the GetMovie
action (Figure 2a). Then, we abstract the external component, in

this case a webservice call (GetMovieREST_API), by defining amock
that will replace it (GetMovieMock in Figure 2b) which must have
the same signature. Lastly, there is the definition of the test depicted
in Figure 2c.

The developer will need to set up the test. For that, a special ac-
tion called TestEnvSetup, which is part of our solution, is used. This
action sets the environment to test mode. Figure 2c exemplifies how
to use this setup action, providing it with necessary information
like the name of the action to mock and the name of the mock.

When the test is executing, and there is a call to the GetMovieR-
EST_API action, a lookup will be made to find its mock version
(GetMovieMock), that will be called instead of GetMovieREST_API.
The flow of execution follows continuously through the mock.
Figure 3 contains a simplified version of the compiled code of Get-
MovieREST_API call.

4 BDDFRAMEWORKWITH MOCKING
ABILITY

The BDDFramework [14] is an open-source testing framework for
OutSystems applications. It provides a set of tools to create test sce-
narios, following the principles of Behavior Driven Development [6].
A test scenario includes a set of test steps, where each test step is
defined in an action that is associated with it. Test scenarios and
steps are added to the test in a drag and drop fashion. There is also a
SetupOrTeardownStep step that can be used to perform setup opera-
tions to provide the test with necessary data, or cleanup operations
that can be used, for instance, to delete data that is not necessary
outside the scope of the test.

The framework promotes Test Driven Development since test sce-
narios can be defined before the functionality is even implemented.
Test maintenance is also improved since the framework reports
test failures when they may occur. Figure 4 depicts an example of
a test scenario created using the BDDFramework, within Service
Studio, testing the functionality of getting the title of a movie from
a REST API. First, the test is set up in the SetupTest action. Then, the
Given step defines the pre-conditions that need to be met before
calling the logic to test and which action is bounded to each pre-
condition. In the example, the title of a movie can only be returned

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada A. Jacinto, M. Lourenço, and C. Ferreira

Figure 4: Test scenario created with the BDDFramework

if that movie exists in the API. Action MovieExists implements this
pre-condition. In theWhen step, the logic to test is called, that is,
the action that retrieves the movie’s title is called (GetMovieTitle).
Finally, in the Then step, the post-conditions are defined, i.e., the
verification logic to determine that the test had the intended out-
come. In the example, when the movie title is asked for, the correct
movie title should be returned. This post-condition is implemented
in action IsCorrectMovie.

Our solution can be used together with the BDDFramework. In
the test application where the BDDScenario is being defined, the
developer can define the mocks for that specific test (using server
actions). Then, the test can be set up using a SetupOrTeardownStep.
Inside that step, the TestEnvSetup action can be called to associate
the action to mock with the mock that will replace it. Figure 5a
shows the TestEnvSetup being called in the SetupOrTeardownStep,
inside the SetupTest action. After that, the developer can continue
implementing the test like it was explained in the previous para-
graph, calling the logic to test and defining the necessary logic
to verify the test results in theWhen and Then steps, respectively.
Figures 5b and 5c illustrate this.

5 PRELIMINARY RESULTS
After implementing the solution, we measured the performance of
running tests in real execution mode and test mode. We wanted
to see the overhead imposed by having the extra step of searching
for a mock when a component is called. For that, we built a simple
application where a Server action is called. The Server action has the
same complexity as the mock that replaces it. The relative overhead
imposed by the use of mocking was approximately 9%, with an
absolute value of 0,8 milliseconds, which is a negligible value in
more realistic scenarios.

In real scenarios, applications can access databases via aggregate
calls, and can also access web services. Sometimes these accesses
can take considerable amounts of time, reaching the minute mark,
depending on the specific database or web service being accessed.
The time a test takes to run is largely based on these types of
accesses. With the mocking mechanism available, which can help
abstract the tests from these types of components, test runtimes
can considerably decrease. Moreover, when testing applications
that are CPU intensive, our solution can be used to considerably

reduce runtime of the tests, since a mock with much simpler logic
can be used to replace a laborous action.

Thus, we can safely say that the savings in runtime are signifi-
cant and that the positive impact that a mocking solution like ours
can have in low-code development is clear. Still, a more thorough
validation will be conducted in the future, assessing the impact of
using our mocking mechanism in the runtime performance of test-
ing real-size applications. A validation concerning user experience
is also ongoing, in which OutSystems developers use and evalu-
ate the mocking mechanism while testing their applications. We
also expect their feedback regarding how easy it becomes to trou-
bleshoot their tests by abstracting external components, allowing
them to focus on debugging the logic of their applications.

6 RELATEDWORK
Guerra presented in [2] the ability to remove dependencies to ex-
ternal entities integrated in an OutSystems application. The testing
framework prototype enables the developer to use a stub version
of that web service, for instance, when testing an action that makes
a call to a web service. The removal of connections between the
application and external systems allows tests to be made at a level
closer to unitary. A Test Stub, a new type of action introduced in [2],
can be used to replace an action in a test. The definition of test stubs
is made at the module level, whereas with our solution mocks are
defined for each test case. This way, a developer using our solution
can easily specify different responses for different test cases. The
work shown in [2] only focus on removing dependencies to web
services and server actions. Moreover, the prototype implemented
in [2] was not incorporated in the OutSystems solution, because,
at the time, it was not a priority for customers. Also, the OutSys-
tems product has considerably evolved since then, and the solution
implemented by the author could not be used together with the
BDDFramework, since only actions like server actions can be used
with it, and not the new test stub action type introduced in [2].
Our solution, on the other hand, can not only be used with the
BDDFramework, but also with any other testing framework for the
OutSystems platform. Additionally, in [2] there is no separation
between the logic to test, the test, and the stubs, which does not
respect the separation of concerns principle [1], while our solution
allows developers to implement the mocks in different modules.

Test Mocks for Low-Code Applications built with OutSystems MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

(a) Test being set up (b) Logic to test being called (c) Logic to verify test results

Figure 5: Using the mocking capability together with the BDDFramework

Other low/no-code platforms likeMendix [4], Salesforce [16], and
Unity [19] offer mocking capabilities. However, they do it via third-
party tools, and mocking has to be implemented using traditional
programming. As far as adapting our solution to other platforms
goes, we believe the generic runtime mechanism that redirects
calls to mocks during the tests could be adapted to those platforms,
taking the different particularities of each platform into account.

7 CONCLUSION & NEXT STEPS
The mocking solution presented in this paper, when in place, will
enhance the testing ability of OutSystems applications. Developers
could then deliver updates to customers faster and with higher
quality. This is because the feedback loop, i.e., the time it takes
between introducing a new functionality and the results of testing
it, would be much shorter. Apart from this, it is significantly faster
to debug a unit test than an integration-level test that includes an
external component (e.g. a web service), since it can be hard to know
exactly what the response from that component was. Furthermore,
the time saved during the execution of unitary tests allows more
combinations of inputs to be tested, which increases the quality of
the product delivered to customers.

As future work, we will validate the solution with OutSystems
developers, which will fall into two developer profiles: experienced
and inexperienced. The feedback they will provide will help us in
identifying the key aspects to improve in our solution. We also want
to assess the improvements in performance of tests done in more
realistic and complete applications of large and medium size using
our mocking mechanism. We have also assessed the possibility of
providing the mocks with spying [3] abilities that would help in test
monitoring activities. For instance, a developer could benefit from
knowing how many times a mock was called during the execution
of a test, and with what parameters.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their comments that helped
improving the paper. This work was partially supported by FCT/M-
CTES grants UIDB/04516/2020 and PTDC/CCI-INF/32081/2017.

REFERENCES
[1] Mehmet Aksit, B. Tekinerdogan, and Lodewijk Bergmans. 2001. The Six concerns

for Separation of Concerns. In Proceedings of ECOOP 2001 Workshop on Advanced
Separation of Concerns, Budapest, Hungary, June 18-22, 2001.

[2] Gustavo Manuel Correia Guerra. 2010. Testing Support for the OutSystems Agile
Platform. Master’s thesis. Instituto Superior Técnico, Universidade Técnica de
Lisboa.

[3] Erik Krogen. 2016. Bond: A Spy-based Testing and Mocking Library. Technical
Report. Eletrical Engineering and Computer Sciences, University of California at
Berkeley, Berkeley, CA, USA.

[4] Mendix. 2020. Mendix. Retrieved August 27, 2020 from https://www.mendix.com/
[5] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software

Testing (3rd ed.). John Wiley & Sons, Inc., Hoboken, NJ, USA.
[6] Dan North. 2006. Introducing BDD. Retrieved July 16, 2020 from https://dannorth.

net/introducing-bdd/
[7] OutSystems. 2019. Actions in Web Applications. Retrieved July 12,

2020 from https://success.outsystems.com/Documentation/11/Developing_an_
Application/Implement_Application_Logic/Actions_in_Web_Applications

[8] OutSystems. 2020. OutSystems architecture. Retrieved July 10, 2020 from
https://www.outsystems.com/evaluation-guide/outsystems-architecture/

[9] OutSystems. 2020. OutSystems Evaluation guide. Retrieved July 12, 2020 from
https://www.outsystems.com/evaluation-guide

[10] OutSystems. 2020. Platform. Retrieved July 4, 2020 from https://www.outsystems.
com/platform/

[11] OutSystems. 2020. What is Low-Code? Retrieved July 4, 2020 from https://www.
outsystems.com/blog/what-is-low-code.html

[12] Wolfgang Platz. 2019. Why Software Testing Remains a Bottleneck. Re-
trieved July 12, 2020 from https://thenewstack.io/why-software-testing-remains-
a-bottleneck/

[13] Dhanji R Prasanna. 2009. Dependency Injection - Design Patterns Using Spring and
Guice. Vol. 1. Manning Publications, Shelter Island, NY, USA. https://research.
library.kutztown.edu/ebooks/2

[14] João Proença. 2019. How to Automate BDD Testing in OutSystems, Part 1: An
Introduction to the BDDFramework. Retrieved July 2, 2020 from https://www.
outsystems.com/blog/posts/intro-bddframework-testing/

[15] John R Rymer and Rob Koplowitz. 2019. The Forrester Wave™: Low-Code
Development Platforms For AD&D Professionals, Q1 2019. Technical Report.
Forrester. https://www.forrester.com/report/The+Forrester+Wave+LowCode+
Development+Platforms+For+ADD+Professionals+Q1+2019/-/E-RES144387

[16] Salesforce. 2020. Salesforce.org. Retrieved August 27, 2020 from https://www.
salesforce.org/

[17] Sheetal Sharma, Darothi Sarkar, and Divya Gupta. 2012. Agile processes and
methodologies: A conceptual study. International Journal on Computer Science
and Engineering 4, 5 (2012), 892.

[18] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.
To Mock or Not to Mock? An Empirical Study on Mocking Practices. In Proceed-
ings of the 14th International Conference on Mining Software Repositories (Buenos
Aires, Argentina) (MSR ’17). IEEE Press, 402–412. https://doi.org/10.1109/MSR.
2017.61

[19] Unity. 2020. Unity for all. Retrieved August 27, 2020 from https://unity.com/

https://www.mendix.com/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://www.outsystems.com/evaluation-guide/outsystems-architecture/
https://www.outsystems.com/evaluation-guide
https://www.outsystems.com/platform/
https://www.outsystems.com/platform/
https://www.outsystems.com/blog/what-is-low-code.html
https://www.outsystems.com/blog/what-is-low-code.html
https://thenewstack.io/why-software-testing-remains-a-bottleneck/
https://thenewstack.io/why-software-testing-remains-a-bottleneck/
https://research.library.kutztown.edu/ebooks/2
https://research.library.kutztown.edu/ebooks/2
https://www.outsystems.com/blog/posts/intro-bddframework-testing/
https://www.outsystems.com/blog/posts/intro-bddframework-testing/
https://www.forrester.com/report/The+Forrester+Wave+LowCode+Development+Platforms+For+ADD+Professionals+Q1+2019/-/E-RES144387
https://www.forrester.com/report/The+Forrester+Wave+LowCode+Development+Platforms+For+ADD+Professionals+Q1+2019/-/E-RES144387
https://www.salesforce.org/
https://www.salesforce.org/
https://doi.org/10.1109/MSR.2017.61
https://doi.org/10.1109/MSR.2017.61
https://unity.com/

	Abstract
	1 Introduction
	2 OutSystems Overview
	3 Solution
	3.1 An Example of Testing with Mocks

	4 BDDFramework with Mocking Ability
	5 Preliminary Results
	6 Related Work
	7 Conclusion & Next Steps
	References

