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Abstract This work concerns the numerical solution of high-dimensional sys-7

tems of nonlinear equations, when derivatives are not available for use, but as-8

suming that all functions de�ning the problem are continuously di�erentiable.9

A hybrid approach is taken, based on a derivative-free iterative method, orga-10

nized in two phases.11

The �rst phase is de�ned by derivative-free versions of a �xed-point method12

that employs spectral parameters to de�ne the steplength along the residual13

direction. The second phase consists on a matrix-free inexact Newton method14

that employs the Generalized Minimal Residual algorithm to solve the linear15

system that computes the search direction. This second phase will only take16

place if the �rst one fails to �nd a better point after a prede�ned number of17

reductions in the step size. In all stages, the criterion to accept a new point18

considers a nonmonotone decrease condition upon a merit function.19

Convergence results are established and the numerical performance is as-20

sessed through experiments in a set of problems collected from the literature.21

Both the theoretical and the experimental analysis support the feasibility of22

the proposed hybrid strategy.23
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1 Introduction3

In this work, we propose a method for solving the system of nonlinear equations4

F (x) = 0,
F : Rn → Rn, (1)

where F is a continuously di�erentiable function, but derivatives are not avail-5

able for use, neither could be approximated by numerical techniques. An ana-6

lytical expression does not need to be available for F , which could be evaluated7

by numerical simulation. Thus, the algorithm proposed is derivative-free, only8

requiring zero-order information regarding function evaluation, although dif-9

ferentiability assumptions are considered when deriving theoretical results.10

To solve problem (1), we use an iterative method, where each iterate takes11

the form12

xk+1 = xk + λkdk, (2)

with dk a search direction and λk ∈ (0, 1] a step length.13

When derivatives are available for use, Newton method is a classical ap-14

proach for solving (1). In this case, the search direction dk is computed as the15

solution of the linear system:16

J(xk)d = −F (xk), (3)

where J(xk) denotes the Jacobian matrix of F at xk.17

Nevertheless, in the presence of a large number of variables, computing an18

exact solution of (3) could be unpractical, which motivates the use of inexact19

Newton methods [6]. In this case, the search direction should satisfy:20

‖J(xk)dk + F (xk)‖ ≤ ηk‖F (xk)‖, (4)

where ηk ∈ [0, 1) is called a forcing term. Krylov methods [13] are a classical21

approach to compute dk satisfying (4), allowing derivative-free versions [12,22

13].23

Fixed-point iterations have also been considered for solving (1) [5,4,11]. In24

this case, a multiple of the residual vector is used as search direction, dk =25

αkF (xk), αk ∈ R, avoiding derivative calculations and the use of matrices.26

Under suitable assumptions, theoretical results can be derived establish-27

ing local convergence of the previous methods [13]. For global convergence, a28

merit function needs to be considered, traducing the solution of the nonlinear29

system into a minimization problem, and a globalization procedure needs to30

be adopted.31

Merit functions are usually de�ned as f : Rn → R+
0 , with f(x) = ‖F (x)‖232

or f(x) = ‖F (x)‖22. Regarding the globalization procedure, typical approaches33

lie on a line search with an Armijo type condition [1] to accept new points.34
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However, in some cases, this requirement can lead to a large number of function1

evaluations. More �exible criteria can be adopted, overcoming this di�culty2

without jeopardizing the global convergence properties. Grippo, Lampariello3

and Lucidi [9] proved the convergence of inexact Newton methods under a4

nonmonotone acceptance criterion. In Li and Fukushima [14] and La Cruz,5

Martínez and Raydan [4], nonmonotone acceptance criteria which do not re-6

quire derivatives were proposed.7

We consider a hybrid two-step approach to solve high-dimensional systems8

of nonlinear equations:9

1. step 1: use of a �xed point method, where the computation of the step10

length for the residual direction is based on a spectral approach [2,5];11

2. step 2: use of an inexact Newton method, where a matrix-free version of12

GMRES [16] is used to solve the inner linear system.13

The two steps are applied sequentially. However, the second step is only14

applied in case of failure of the previous one. We will consider ‖ · ‖ ≡ ‖ · ‖215

in the de�nition of the merit function and use a nonmonotone globalization16

strategy based on La Cruz, Martínez and Raydan [4].17

The paper is organized as follows. In Section 2, we start by recalling the18

structure and the basic properties of a spectral residual method and a FDGM-19

RES iteration, motivating the hybrid two-phase algorithm. The algorithmic20

structure of the new method is formalized in Section 3 and the convergence21

is established in Section 4. Numerical experiments on some test problems are22

reported in Section 5, comparing the hybrid approach with pure methods.23

Finally, Section 6 is dedicated to some concluding remarks.24

2 Derivative-free methods and line search techniques25

The Spectral Residual Method (SANE), introduced by La Cruz and Ray-26

dan [5], uses as search directions27

dk = (1/αk)F (xk) and dk = −(1/αk)F (xk), (5)

with αk a spectral scaling parameter.28

This is a �xed point method where the parameter αk is computed by29

adjusting the Barzilai-Borwein [2] procedure for computing step sizes to the30

solution of systems of nonlinear equations. The vector dk = −(1/αk)F (xk) is31

not necessarily a descent direction for the merit function, what justi�es the32

systematic evaluation of both directions (5).33

Being a quasi-Newton method, the computation of the spectral parameter34

requires that a Jacobian approximation Bk = αkI satis�es the secant equation35

Bk(xk − xk−1) = F (xk)− F (xk−1). Thus:36

αk =
s>k yk
s>k sk

=
(xk − xk−1)>(F (xk)− F (xk−1))

(xk − xk−1)>(xk − xk−1)
. (6)
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In practical applications, scaling gradients or residual directions using spec-1

tral parameters conducted to good algorithmic performances, although the2

corresponding theoretical justi�cation is not completely understood. Thus,3

�exible globalization strategies are required, allowing the algorithms to accept4

the use of the spectral parameter as a step size, without any attempt of back-5

tracking. Rigid strategies to accept a new point, for instance by imposing an6

Armijo-type condition, can conduct to a performance similar to the one of the7

steepest descent method.8

In [5] a nonmonotone line search was considered to guarantee global con-9

vergence of the method. The following condition:10

f(xk + λkdk) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + γλk∇f(xk)
>
dk, (7)

where f is a merit function, γ ∈ (0, 1) and M ∈ N, proposed by Grippo,11

Lampariello and Lucidi [9], was used as acceptance criterion for a new point,12

generating a sequence {xk} such that {f(xk)} is not necessarily decreasing.13

La Cruz, Martínez and Raydan [4] proposed a derivative-free version of14

SANE. The new algorithm, named DFSANE, preserves the use of the residual15

direction and the spectral stepsize, but introduces a new acceptance criterion16

for new points, which does not use derivatives. This criteria blends (7) with17

the strategy proposed by Li and Fukushima [14].18

In [14], a new point is accepted if19 ∥∥F (xk + λkdk)
∥∥ ≤ (1 + ζk)

∥∥F (xk)
∥∥− γλ2

k

∥∥dk∥∥2
, (8)

with ζk > 0 for all k,
∑
k

ζk = ζ < ∞ and γ ∈ (0, 1). The approach followed20

by La Cruz, Martínez and Raydan [4] accepts new points that satisfy21

f(xk + λkdk) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + ζk − γλ2
kf(xk) (9)

where f : Rn → R+
0 is a merit function,M ∈ N, γ ∈ (0, 1), ζk > 0 for all k ∈ N22

and
∑
k

ζk = ζ <∞.23

Algorithm 1 details an iteration of DFSANE.24

Algorithm 1 DFSANE25

Input parameters: xk ∈ Rn; 0 < τmin < τmax < 1; NBLmax,M ∈ N;26

γ ∈ (0, 1), ζk > 0 and 0 < αmin < αmax.27

1. Choose αk such that αk ∈ [αmin, αmax]. Set d = −(1/αk)F (xk), λ+ = λ− =28

1 and NBL = 0.29

2. If NBL = NBLmax, set flag = 0 and terminate.30

3. If f(xk + λ+d) ≤ max0≤j≤min{k,M−1} f(xk−j) + ζk − γλ2
+f(xk), de�ne31

dk = d, λk = λ+, flag = 1 and terminate.32

4. if f(xk−λ−d) ≤ max0≤j≤min{k,M−1} f(xk−j)+ζk−γλ2
−f(xk), de�ne dk =33

−d, λk = λ−, flag = 1 and terminate.34
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5. Choose λ+ ∈ [τminλ+, τmaxλ+] and λ− ∈ [τminλ−, τmaxλ−], set NBL =1

NBL+ 1 and go to Step 2.2

Each iteration explores both directions (5), in a nonmonotone line search3

framework, using a backtracking strategy, until condition (9) is satis�ed by one4

of the directions. A maximum number (NBLmax) of backtracks is allowed.5

The logical variable flag does not play any active role in this algorithmic6

description. It is only de�ned to facilitate the presentation of the proposed7

hybrid approach, in Section 3. In fact, variable flag set equal to 1 means that8

the nonmonotone line search procedure was successful.9

Convergence results were established by assuming continuity of the partial10

derivatives of F : Rn → Rn and considering f : Rn → R+
0 with f(x) =

∥∥F (x)
∥∥

11

or f(x) =
∥∥F (x)

∥∥2
as merit function [4].12

Grippo and Sciandrone [12] proposed two di�erent approaches to address13

the solution of a system of nonlinear equations. The �rst is an inexact Newton14

method, combining a nonmonotone watchdog phase [3] with a nonmonotone15

line search.16

To compute dk satisfying (4), a matrix free version of the classical Newton-17

GMRES [13] method was employed. In the classical GMRES method, the18

Jacobian matrix is required to solve the linear system (3). However, this ma-19

trix is only used in matrix-vector products. In the derivative-free case, these20

products are approximated by:21

J(xk)w ≈ F (xk + σw)− F (xk)

σ
, σ ∈ R \ {0}, w ∈ Rn. (10)

The new matrix free method is named FDGMRES and the corresponding22

inexact Newton method is known as Newton-FDGMRES [13].23

In case of failure of the inexact Newton method, a second approach [12]24

adds a coordinate search phase to the �rst algorithm. This change allowed to25

weaken the assumptions required for establishing convergence and, in practical26

tests, improved the numerical robustness of the method. The coordinate search27

step consists in evaluating the objective function in the set {xk ± λkei : i =28

1, 2, . . . , n}, where ei denotes the i-th column of the identity matrix.29

As in [4], a nonmonotone line search is used as globalization strategy, but
with di�erent conditions associated to each type of steps. In the watchdog step
the acceptance condition is

f(xk+1) ≤ ρ max
0≤j≤min{k,M−1}

f(xk−j),

whereas in the line search step it is considered30

f(xk + λkdk) ≤ (1− γλk) max
0≤j≤min{k,M−1}

f(xk−j), (11)

with ρ, γ ∈ (0, 1). Finally, in the coordinate search step it is used the condition31

f(xk + λkdk) ≤ (1− γλ2
k) max

0≤j≤min{k,M−1}
f(xk−j).
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3 A two-phase hybrid algorithm for systems of nonlinear equations1

The practical numerical behavior of the spectral residual method indicates that
it rarely succeeds in �nding a better point when a high number of reductions
in the stepsize needs to be performed. Therefore, we propose to impose a
maximum limit to this number of reductions, replacing the spectral direction
with a new search direction when this limit is reached. In the case, as in [12], we
will use the inexact Newton direction. To accept new points, we consider the
nonmonotone condition proposed by La Cruz, Martínez and Raydan (9), since
it is more �exible than condition (11), proposed by Grippo and Sciandrone [12].
In fact,

(1− γλk) max
0≤j≤min{k,M−1}

f(xk−j) < max
0≤j≤min{k,M−1}

f(xk−j) + ζk − γλ2
kf(xk),

since λk ∈ (0, 1] and ζk > 0.2

Algorithm 2 describes the procedure adopted when using the inexact New-3

ton direction.4

Algorithm 2 Inexact Newton5

Input parameters: xk ∈ Rn; µ, γ, σ, θ1, θ2, θ3 ∈ (0, 1); a ∈ (0, 1]; ηk ∈6

(0, 1); ζk > 0 and 0 < ξmin < ξmax < 1.7

1. Set t = 0 and η = ηk.8

2. Compute dk satisfying (4), using σ in the matrix-vector products (10). Set9

λ = 1.10

3. If f(xk+λdk) ≤ max0≤j≤min{k,M−1} f(xk−j)+ζk−γλ2f(xk), go to Step 8.11

4. Set α = a, t = t+ 1 and i = 0.12

5. While f(xk + αdk) > max0≤j≤min{k,M−1} f(xk−j) + ζk − γα2f(xk), do:13

(a) If α < µa, then λ = 0 and go to Step 7.14

(b) Choose ξ ∈ [ξmin, ξmax] and set α = α ξ, i = i+ 1.15

6. Set λ = α and go to Step 8.16

7. Set σ = θ1σ, η = θ2η, ηk = η, µ = θ3µ and go to Step 2.17

8. Set σ̃k = σ, η̃k = η and λk = λ.18

As in [13], the FDGMRES method is used to de�ne dk in Step 2. The19

algorithm then tries to de�ne an adequate step that allows to satisfy the20

nonmonotone condition (9). For that, again a backtracking strategy is adopted,21

allowing a minimum value for the stepsize (namely µa). When this value is22

reached, the algorithm reduces σ and η, which will be used for recomputing a23

more precise inexact Newton direction.24

In a practical implementation of the algorithm, counters t and i, and se-25

quences {σ̃k}, {η̃k} are not required. They are only de�ned to facilitate the26

presentation of the convergence analysis.27

To establish that Algorithm 2 is well de�ned, �rst we need to show that28

a direction satisfying (4) can be computed at Step 2. Moreover, we need to29

ensure that the line search ends with a nonzero value for λ, meaning that30

Algorithm 2 does not cycle between Step 2 and Step 7. Both results depend31

on the following assumption:32
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Hypothesis 1 Function J is Lipschitz continuous on a convex set Ω ⊆ Rn,1

with Lipschitz constant LJ > 0. Function J is also nonsingular on Ω and2

satis�es
∥∥J−1(y)

∥∥ ≤ mJ for all y ∈ Ω, with mJ > 0.3

Proposition 1, stated in [12], follows from Proposition 6.2.1 in [13]. It en-4

sures that it is possible to compute a direction satisfying the inexact Newton5

condition (4) using the FDGMRES method proposed in [13], which is a GM-6

RES matrix free method.7

Proposition 1 Let xk ∈ Rn be a point such that F (xk) 6= 0. Assume that F8

satis�es Hypothesis 1 for a convex set Ωk, such that xk ∈ Ωk with LJ = Lk9

and mJ = ck. Let10

σ̂k =
1

2n1/2Lkck
(12)

and11

Ck = 4n1/2Lkck. (13)

Then, for each σ ∈ (0, σ̂k] and for each ηk ∈ (0, 1), procedure FDGMRES12

determines a direction dk satisfying13 ∥∥J(xk)dk + F (xk)
∥∥ ≤ (ηk + Ckσ)

∥∥F (xk)
∥∥. (14)

By adjusting Lema 8.2.1 in [13], Grippo and Sciandrone [12] established14

Proposition 2, which guarantees that Hypothesis 1 is su�cient to ensure that15

Algorithm 2 does not cycle between Step 2 and Step 7.16

Proposition 2 Let x ∈ Rn be a point such that F (x) 6= 0 and satis�es Hy-17

pothesis 1 for some set Ω = {y ∈ Rn | ‖x − y‖ ≤ r}, with r > 0. Let d ∈ Rn18

be a vector satisfying the Inexact Newton Condition:19 ∥∥J(x)d+ F (x)
∥∥ ≤ η∥∥F (x)

∥∥ (15)

with 0 ≤ η ≤ η̄ < (1− γ) and γ ∈ (0, 1). Then, we have20 ∥∥F (x+ λd)
∥∥ ≤ (1− γλ)

∥∥F (x)
∥∥ (16)

with λ ∈ [0, λ̄(x)], where21

λ̄(x) = min

(
r

mJ(1 + η̄)
∥∥F (x)

∥∥ , 2(1− γ − η̄)

(1 + η̄)2m2
JLJ

∥∥F (x)
∥∥
)
. (17)

Proposition 2 holds a result similar to condition (9), used for accepting22

new points. In fact, using condition (16), since we consider the merit function23

f(x) =
∥∥F (x)

∥∥2
, and since λ is in the interval [0, 1], we have:24 ∥∥F (xk + λd)
∥∥2 ≤ (1− λγ)2

∥∥F (xk)
∥∥2 ≤ (1− λγ)

∥∥F (xk)
∥∥2

≤
∥∥F (xk)

∥∥2 − λ2γ
∥∥F (xk)

∥∥2

< max
0≤j≤min{k,M−1}

‖F (xk−j)‖2 + ζk − γλ2
∥∥F (xk)

∥∥2
.

(18)

Proposition 3 adapts Proposition 3.1 in [12], allowing to ensure that the25

backtracking scheme, de�ned in Step 5 of Algorithm 2 is well de�ned.26
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Proposition 3 Let µ ∈ (0, 1) and a ∈ (0, 1] be �xed. Step 5 (Line Search) of1

Algorithm 2 determines, in a �nite number of iterations, a scalar λ ∈ [0, a]2

such that:3

f(xk + λdk) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + ζk − γλ2f(xk). (19)

Additionally, at least one of the following conditions holds:4

1. λ = 0 and5 ∥∥F (xk+δdk)
∥∥2
> max

0≤j≤min{k,M−1}
‖F (xk−j)‖2 +ζk−γδ2

∥∥F (xk)
∥∥2 ≥ (20)

≥ (1− γδ2)
∥∥F (xk)

∥∥2
+ ζk,with δ < µa;

or6

2. λ ≥ ξminµa.7

Proof Since λ is initially set equal to a and reduced, in each iteration of Step 5,8

by a factor ξ ≤ ξmax < 1, Step 5 of Algorithm 2 ends on Step 5a with λ = 09

(thus trivially satisfying condition (19)) or it �nds a nonzero value λ such that10

condition (lmr2) holds.11

If Step 5 of Algorithm 2 ends on Step 5a we have λ = 0 and condition (20)12

is satis�ed. Else, either the initial stepsize is accepted (in this case λ = a) or13

a new stepsize λ is computed such that λ/ξ ≥ µa. In both cases, λ ≥ ξminµa.14

Algorithm 3 H2P corresponds to the proposed two-phase hybrid proce-15

dure. Figure 1 presents a schematic description of it.16

Algorithm 3 H2P Input parameters: x0 ∈ Rn; NBLmax,M ∈ N;17

γ, µ, σ, θ1, θ2, θ3 ∈ (0, 1); 0 < τmin < τmax < 1; 0 < ξmin < ξmax < 1;18

0 < αmin < αmax; {ζk}; {ηk} and a ∈ (0, 1].19

1. Set k = 0.20

2. Compute dk, λk, f lag using Algorithm 1 (DFSANE).21

3. If flag = 0, compute dk, λk using Algorithm 2 (Inexact Newton).22

4. Set xk+1 = xk + λkdk and k = k + 1.23

5. If F (xk+1) = 0, terminate. Else go to Step 2.24

4 Convergence analysis of the hybrid two-phase method25

In this section, we analyze the convergence of Algorithm 3. Similarly to the26

approach of [12], we establish the convergence of a subsequence generated by27

the algorithm to a critical point of the merit function or the existence of a28

critical point of the merit function generated by the algorithm. For that, we29

de�ne Wk = max0≤j≤min{k,M−1} f(xk−j) and the sequence {ν(k)} such that30

f(xν(k)) = Wk.31
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Set x0, k = 0

��

STOP

PHASE I

DFSANE method
Compute dk

λ+ = 1, λ− = 1, NBL = 0

��

xk is such that F (xk) = 0?

yes

OO

no
oo

Reduce
λ+ and λ−.

NBL = NBL+ 1

//
x+ = xk + λ+dk or
x− = xk − λ−dk

satisfy the nonmonotone
acceptance condition

no

��

yes
//

Set xk+1 as the point

such that the nonmonotone
acceptance condition is
satis�ed and k = k + 1

OO

OO

Maximum NBL has been acheived?no

PHASE II

yes

��
yes //

Newton-GMRES
Compute dk.

λ = 1

��

Reduce λ. Minimum
λ has been acheived?

xk + λdk
satis�es the nonmonotone
acceptance condition?

no
oo

yes

OO

no

OO

Fig. 1 Flow diagram corresponding to Algorithm 3 (H2P).

Proposition 4 Let {xk} ⊂ Rn be a sequence such that1

f(xk+1) ≤Wk + ζk, (21)

with ζk > 0 for all k and
∑∞
i=0 ζi = ζ <∞.2

1. Then for all k, xk ∈ L̄0 = {x ∈ Rn | f(x) ≤ f(x0) + ζ} .3

2. Moreover, assuming the existence of k̄ ∈ N such that4

f(xk+1) ≤Wk for all k ≥ k̄, (22)

the sequence {Wk}k>k̄ is monotonically non increasing.5



10 Rodolfo G. Begiato et al.

Proof Since min{k+ 1,M − 1} ≤ min{k,M − 1}+ 1, by de�nition of ν(k), we1

have:2

Wk+1 = f(xν(k+1)) = max0≤j≤min{k+1,M−1} f(xk+1−j)
≤ max0≤j≤min{k,M−1}+1 f(xk+1−j)
= max{max1≤j≤min{k,M−1}+1 f(xk+1−j), f(xk+1)}
= max{f(xν(k)), f(xk+1)}.

(23)

By hypothesis, f(xk+1) ≤ Wk + ζk and f(xν(k)) = Wk ≤ Wk + ζk. So, we3

conclude that Wk+1 ≤ Wk + ζk for all k, and an inductive argument allow us4

to state:5

Wk+1 = f(xν(k+1)) ≤ f(xν(0)) +

k∑
i=0

ζi ≤ f(x0) + ζ. (24)

Since f(xk+1) ≤ Wk+1, we have xk ∈ L̄0 = {x ∈ Rn | f(x) ≤ f(x0) + ζ} for6

all k, and part 1. is established.7

Part 2. is a direct consequence of the assumption regarding the existence8

of k̄ su�ciently large such that f(xk+1) ≤ f(xν(k)) for all k ≥ k̄ and of9

inequality (23).10

Lemma 1 is an auxiliary result to prove Proposition 5 which, in turn, is11

necessary for the desired convergence result.12

Lemma 1 Consider f : Rn → R+
0 ,M ∈ N,Wk = max0≤j≤min{k,M−1} f(xk−j),13

% ∈ R with % > 0 and {ζk} a sequence in R+ such that
∑∞
i=0 ζi = ζ < ∞.14

Then15

lim
k→∞

[%f(xk)− ζk] = 0⇒ lim
k→∞

Wk = 0. (25)

Proof Since16

lim
k→∞

[%f(xk)− ζk] = 0, (26)

and by assumption limk→∞−ζk = 0, then limk→∞ %f(xk) = 0. Consequently,17

lim
k→∞

f(xk) = 0. (27)

This result allows us to state that lim
k→∞

Wk = 0.18

Indeed, by (27), for all ε > 0, there exists k̄ ∈ N such that, for all k > k̄,19

f(xk) < ε. Thus, for all k > k̄ + M we have Wk = f(xν(k)) with ν(k) > k̄.20

Therefore, Wk < ε, which conducts to the desired result.21

We are now in conditions of establishing Proposition 5.22

Proposition 5 Let f : Rn → R+
0 be a function and {xk} ⊂ Rn a sequence23

such that:24

f(xk+1) ≤Wk + ζk −$f(xk), (28)

where $ > 0, ζk > 0 for all k and
∑∞
i=0 ζi = ζ < ∞. Moreover, assume that25

for each % > 0 there exists k̄ ∈ N such that for all k > k̄ inequality26

ζk − %f(xk) < 0, holds. (29)
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Then xk ∈ L̄0 for all k and, furthermore,1

lim
k→∞

f(xk) = lim
k→∞

Wk = 0. (30)

Proof Condition (28) implies that inequality (21) is satis�ed for all k. Thus,2

Proposition 4 ensures that xk ∈ L̄0 for all k. Since condition (29) holds for3

k > k̄, again using Proposition 4 we have that the non negative sequence4

{Wk}k>k̄ is monotonically non increasing. Thus, there exists a limit W∗ ≥ 05

for this sequence, when k →∞.6

Reasoning by contradiction, we assume that W∗ 6= 0. Thus, there exists7

k1 ∈ N such that, for all k > k1, we have Wk > t1 > 0. By Lemma 1, there8

exists k2 ∈ N such that | − ζk +$f(xk)| > t2 > 0 for all k > k2.9

Without loss of generality, we can assume that k2 ≥ k̄. By hypothesis, we10

have that11

f(xk+1) ≤Wk − t2, k > k2 ≥ k̄. (31)

Taking k ≥ k2 + M + 1, we have ν(k) − 1 > k −M − 1 ≥ k2. Consequently,12

using de�nition of ν(k) and equation (31), it follows:13

f(xν(k)) ≤ f(xν(ν(k)−1))− t2. (32)

Taking limits in both sides and being that f(xν(k)) → W∗, we have t2 ≤ 0,14

which contradicts our assumption.15

The following theorem establishes that Algorithm 3 (H2P) is well de�ned16

and states the corresponding convergence.17

Theorem 1 Let {xk} be the sequence of iterates generated by Algorithm 318

(H2P). Consider the sequence {ζk}, required for accepting new points, de�ned19

as ζk > 0 for all k and

∞∑
k=0

ζk = ζ < ∞ and de�ne L̄0 = {x ∈ Rn | f(x) ≤20

f(x0) + ζ}. Suppose that there exists r > 0 such that, for all x ∈ L̄0, the21

closed ball B̄(x, r) is contained in an open convex set Ω where Hypothesis 122

is satis�ed. For each % > 0, assume that there exists k̄ ∈ N such that for all23

k > k̄24

ζk − %f(xk) < 0. (33)

Then, Algorithm 3 (H2P) ends at some point xk satisfying F (xk) = 0, or25

it is well de�ned and generates a sequence {xk} such that26

lim
k→∞

F (xk) = 0. (34)

Proof Consider F (xk) 6= 0,∀k. Let us start by showing that Algorithm 3 is well27

de�ned, meaning that Algorithm 3 will generate a stepsize parameter λk > 028

at each iteration.29

Reasoning by contradiction, suppose not. Algorithm 1 (Step 2 on H2P30

Algorithm) indicates that λk ≥ τNBLmax

min > 0 in every iteration. Therefore,31

if λk = 0 then it should occur at Step 3 which corresponds to the inexact32
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Newton algorithm. In Algorithm 2, the line search occurs between Step 2 and1

Step 7, where the values σ, η and µ are reduced. At iteration k, let {tl} be2

the sequence used to count at Step 4 the current number of calls of the line3

search. We have tl → ∞ and sequences {σl}, {ηl} and {µl} converge to zero.4

Otherwise, Algorithm 3 would have computed λk > 0.5

Proposition 4 guarantees that xk ∈ L̄0 for all k ∈ N. Consider LJ and6

mJ , the constants of Hypothesis 1 associated with the convex set Ω. De�ne7

σ̂ = 1
2n1/2LJmJ

and C = 4n1/2LJmJ . For l su�ciently large ηl ∈ (0, 1) and 0 <8

σl ≤ σ̂. Thus, Proposition 1 guarantees that procedure FDGMRES computes9

a direction dl such that10 ∥∥J(xk)dl+F (xk)
∥∥ ≤ (ηl+Cσl)

∥∥F (xk)
∥∥ ≤ η̄∥∥F (xk)

∥∥ < (1−γ)
∥∥F (xk)

∥∥, (35)
with ηl + Cσl ≤ η̄ < (1− γ).11

By applying Proposition 2 we can conclude that

‖F (xk + λdl)‖ ≤ (1− γλ)‖F (xk)‖,

for λ ∈ [0, λ̄(xk)] and λ̄(xk) de�ned as in (17) with F (x) = F (xk).12

We note that a ∈ (0, 1] and ξ ∈ [ξmin, ξmax], resulting ξimina ≤ αi ≤ ξimax.13

Therefore, it is possible choose i∗ that satis�es14

i∗ ≥ max

{
0,

log(λ̄(xk))

log(ξmax)

}
(36)

ensuring 0 < α(i∗) ≤ λ̄(xk). Since µl → 0, for l su�ciently large we have15

µla ≤ ξi∗mina ≤ α(i∗). Thus,16

‖F (xk + α(i∗)dl)‖ ≤ (1− γα(i∗))‖F (xk)‖

and, since α(i∗) ∈ (0, 1], the acceptance condition17

f(xk + α(i∗)dl) ≤Wk + ζk − γα(i∗)
2f(xk)

will be satis�ed. Iteration k of Algorithm 2 ends, with a positive value for λk,18

ensuring that Algorithm 3 is well de�ned.19

We will now prove that the sequence {λk} is lower bounded by a constant20

$ > 0. Once more, reasoning by contradiction, let us suppose that there is21

K ⊆ N such that22

lim
k∈K, k→∞

λk = 0. (37)

In Algorithm 1 DFSANE, for all k we have λk ≥ τNBLmax

min > 0. Thus, for23

k ∈ K su�ciently large, λk is generated by the inexact Newton algorithm.24

The line search procedure of Algorithm 2 (between Step 2 and Step 7) then25

implies that σ̃k → 0 and η̃k → 0, when k ∈ K, k →∞.26

Again, let LJ and mJ be the constants of Hypothesis 1 associated with27

the convex set Ω. De�ne σ̂ = 1
2n1/2LJmJ

and C = 4n1/2LJmJ . For k ∈ K28
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su�ciently large η̃k ∈ (0, 1) and 0 < σ̃k ≤ σ̂. Thus, Proposition 1 guarantees1

that procedure FDGMRES computes a direction dk such that2 ∥∥J(xk)dk+F (xk)
∥∥ ≤ (η̃k+Cσ̃k)

∥∥F (xk)
∥∥ ≤ η̄∥∥F (xk)

∥∥ < (1−γ)
∥∥F (xk)

∥∥ (38)

with η̃k + Cσ̃k ≤ η̄ < (1− γ).3

Proposition 2 then establishes that

‖F (xk + λdk)‖ ≤ (1− γλ)‖F (xk)‖,

for λ ∈ [0, λ̄(xk)] and λ̄(xk) de�ned as in (17), with F (x) = F (xk). For λ ∈
[0, 1], the previous condition implies

f(xk + λdk) ≤Wk + ζk − γλ2f(xk).

Since xk ∈ L̄0, we have f(xk) ≤ f(x0) + ζ and
∥∥F (xk)

∥∥2 ≤
∥∥F (x0)

∥∥2
+ ζ.4

By setting b =

√
2 max{

∥∥F (x0)
∥∥2
, ζ} we can conclude that

∥∥F (xk)
∥∥ ≤ b for5

all k ∈ K. It is now possible to de�ne a lower bound for λ̄(xk), considering6

0 < ω = min

(
r

mJ(1 + η̄)b
,

2(1− γ − η̄)

(1 + η̄)2m2
JLJb

)
≤ λ̄(xk), for all k ∈ K. (39)

Since λk → 0 for k ∈ K, for k ∈ K su�ciently large λk < a ≤ 1. In this7

case, λk was computed in the line search procedure of Step 5, and satis�es8

λk ≥ ξminλ̄(xk), since λk 6= 0.9

Thus, for all k ∈ K we have10

λk ≥ min{a, ξminλ̄(xk)} ≥ min{a, ξminω}, (40)

which contradicts limit (37). Thus, {λk} is lower bounded by some $ > 0.11

Consequently, for all k, we have12 ∥∥F (xk + λkdk)
∥∥2 ≤Wk + ζk − γ$2

∥∥F (xk)
∥∥2
. (41)

For k su�ciently large, condition (33) holds. Thus, the assumptions of Propo-13

sition 5 are satis�ed for f(xk) =
∥∥F (xk)

∥∥2
, resulting14

lim
k→∞

∥∥F (xk)
∥∥ = 0. (42)

Before ending this section, we would like to point out that condition (33)15

can be easily satis�ed, for example, by de�ning ζk = min{f(x0),f(xk)}
(k+1)1.1 . Note16

that, in this case, we also have ζk > 0 for all k and

∞∑
k=0

ζk = ζ <∞.17
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5 Numerical experiments1

This numerical section intends to evaluate the contribution of the hybrid ver-2

sion to improve the practical performance of algorithms. For achieving this3

goal, we compared implementations of the Hybrid Algorithm 3 (H2P), the orig-4

inal version of DFSANE [4] and a derivative-free version of an inexact Newton5

method, based on Algorithm NM1 proposed in [12] (without considering the6

watchdog procedure). All codes were implemented in Matlab 7.0 and tested7

on a Intel(R) Core I3-2100 personal computer, with 3.10 GHz and 4 Gb RAM.8

In the hybrid algorithm, whenever possible, we consider the original set-9

tings proposed in [4] and [12], for DFSANE and the inexact Newton method,10

respectively. Thus, the stepsize in DFSANE is reduced using a quadratic inter-11

polation procedure, considering the identity matrix as an approximation to the12

Jacobian. As example, for computing a new value λ+ on Step 5 of Algorithm 1,13

de�ne14

ϕ : [0, λ+]→ R
ϕ(λ) = f(xk − λ(1/αk)F (xk)).

(43)

The minimizer λnew of (43) is computed and used to de�ne the new stepsize15

λ+, considering the safeguards16

λ+ =

 τminλ+, if λnew < τminλ+

τmaxλ+, if λnew > τmaxλ+

λnew, otherwise.
(44)

The safeguards were set to τmin = 0.1 and τmax = 0.5.17

Furthermore, we considered α0 = 1, γ = 10−4, M = 7 and, to de�ne αk,18

we use equation (6), if αk ∈ [10−10, 1010]. Otherwise, a new αk is computed,19

depending on F (xk), as:20

αk =

1, if
∥∥F (xk)

∥∥ > 1,∥∥F (xk)
∥∥, if 10−5 ≤

∥∥F (xk)
∥∥ ≤ 1,

10−5, if
∥∥F (xk)

∥∥ < 10−5.
(45)

Regarding the settings of [4], the only modi�cation is the de�nition of21

ζk = min{f(x0),f(xk)}
(k+1)1.1 , to satisfy the Hypothesis of Theorem 1.22

In the inexact Newton method, following [13], we use the GMRES(m). This23

strategy restarts the GMRES method after one cycle of m iterations, where m24

is a prede�ned integer. At the end of each cycle, the last direction dm (if not25

satisfactory) is used as initialization for the new cycle of m iterations. This26

strategy intends to reduce the memory requirements and the computational27

cost associated with the increase in the number of iterations of GMRES, which28

is responsible for its ine�ciency when used for solving larger problems. By29

adopting GMRES(m), we do not guarantee the conditions required to estab-30

lish the theoretical properties of the method. Nevertheless, this is a common31

practice for other authors [12] due to the good practical performance.32
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We set the maximum number of GMRES iterations m = 30 and the1

maximum number of GMRES cycles ncmax = 30. Di�erently from Algo-2

rithm NM1 [12], where a sequence of constant forcing terms is used, we adopt3

the sequence proposed by Eisenstat and Walker [8] both in our Hybrid Al-4

gorithm and in the implementation of the inexact Newton method (based on5

NM1) :6

ηk = γ

( ∥∥F (xk)
∥∥∥∥F (xk−1)
∥∥
)α

, (46)

with γ = 1 and α = 0.5(1 +
√

5) (in this last case we use a safeguard7

[10−6, 10−2]).8

As in [4], we consider the stopping criterion:9 ∥∥F (xk)
∥∥

√
n

≤ εa +
εr
∥∥F (x0)

∥∥
√
n

, (47)

where εa = 10−5 and εr = 10−4.10

Moreover, all algorithms will end with a failure (flag = 0) in the following11

conditions:12

FII If the number of inner GMRES(m) iterations equals or exceeds ncmax = 3013

cycles of m = 30 iterations;14

FST If the stepsize is equal or lower than 10−12;15

FFE If the total number of function evaluations equals or exceeds 10000;16

FOU Over�ow or under�ow cases.17

If condition (47) is satis�ed, then the algorithms end with a success (de-18

noted by S, when reporting the numerical results).19

Two versions of the Hybrid Algorithm 3 (H2P) were implemented. In the20

�rst, named as H2P1, the line search procedure is not performed in the DF-21

SANE method (NBLmax = 0). In the second version, named as H2P6, the22

stepsize accepts a maximum of �ve reductions (NBLmax = 5). DFSANE im-23

plementation is named as DFSANE and the derivative-free implementation of24

the inexact Newton method is named as NI.25

All algorithms were tested in two sets of high-dimension problems, one26

collected from La Cruz and Raydan [5] (problems 1-20) and another collected27

from Section 4 of Luk²an and Vl£ek [15] (problems 1-21).28

Problems collected from [5] were solved for dimensions n = 100, 500, 1000,29

2000 and 5000, except problems 4, 7 and 18, for which we have considered30

n = 99, 498, 999, 1998 and 4998.31

For each problem, 10 initializations were uniformly randomly generated in
a neighborhood of the initial points proposed in [5]. Let x0 = (x1, x2, . . . , xn)>

be the proposed initial point for a given problem. The ith-component of the
new initialization is uniformly randomly generated in the interval

[xi + min{−5,−5|xi|}, xi + max{5, 5|xi|}].
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Additionally, 10 other initializations were randomly generated for each prob-1

lem, considering a normal distribution. The ith-component was generated using2

xi as mean and max{5, 5|xi|} as standard deviation.3

The numerical results in this �rst set of problems are reported in Table 14

and in the performance pro�les [7] of Figure 2. The two left plots are more5

adequate to analyze e�ciency, since τ ∈ [1, 2]. The right graphs are more6

suitable to evaluate robustness, since τ ∈ [1, 10].7

FII FST FFE FOU S

(λ < 10−12) (max.10000)
H2P1 54.5% 0% 0% 6.4% 39.1%

DFSANE � 1.5% 44.7% 3.1% 50.8%
H2P6 39.9% 0.4% 3.1% 3.4% 53.2%
NI 57.2% 0% 0% 3.6% 39.2%

Table 1 Performance on the �rst test set - Problems 1-20 in [5], considering random ini-
tializations.

Fig. 2 Performance pro�les - Problems 1-20 in [5], considering random initializations.

DFSANE method is characterized by carrying out many low cost iterations,8

when compared with inexact Newton methods. Additionally, in the class of9

problems suited for derivative-free optimization, function evaluation is mainly10
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xnew
0

x̄

x0

x0 + ωdt

dt

x0 + υdrand

Fig. 3 Computation of the new initialization for Problems 1-21 from [15].

responsible for the computational cost. So, we considered that the number1

of iterations is not an adequate indicator of e�ciency, using the number of2

function evaluations as the main performance measure. Computational time3

was used as a secondary criterion.4

Problems 1-21 from [15] were initially tested for the initialization suggested5

and a dimension n = 5000, except Problem 5 for which n = 4999. Since some of6

these initial points were close to the problem solution, we decided to generate7

a new set of initializations, increasing the distance from the problem solution.8

In this new test we have only included problems for which at least one of the9

solvers tested had succeeded with the initialization proposed in [15]. As result,10

problems 1, 2, 5 and 10 were excluded.11

Twelve new initializations were generated for each selected problem. With12

this purpose, we de�ned the vector dt = x0 − x̄, where x0 is the initial point13

reported in [15] and x̄ is an approximation to the problem solution computed14

with the initial numerical test procedure. Additionally, we generated a random15

direction drand such that the cosine of the angle between dt and drand is lower16

than 0.95. As we can see in Figure 3, the new initialization is de�ned as17

xnew0 = x0 + ωdt + υdrand, where the parameter ω takes the values 1, 20 and18

200 and υ is set equal to 0, 1, 20 and 200, in a total of 12 combinations.19

Table 2 and the performance pro�les of Figure 4 correspond to the results20

in this new set of problems.21

FII FST FFE FOU S

(λ < 10−12) (max.10000)
H2P1 35.01% 1.11% 2.22% 4.44% 57.22%

DFSANE 0.00% 1.67% 41.67% 3.33% 53.33%
H2P6 29.44% 1.11% 3.33% 4.44% 61.67%
NI 34.44% 1.11% 1.11% 3.33% 60.01%

Table 2 Performance on the second test set - Selected problems from [15], considering
random initializations.
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Fig. 4 Performance pro�les - Selected problems from [15], considering random initializa-
tions.

In the two test sets, the hybrid algorithm, particularly the version H2P6,1

presented a good performance both in terms of e�ciency and robustness. In2

the problems collected from [5], algorithm H2P6 was the most robust and the3

second more e�cient. For this test set, DFSANE presented the best performance4

in terms of e�ciency. In this test set, algorithms which tend to often use5

spectral directions presented a superior performance, which may indicate that6

some characteristics of the problems favor algorithms enhanced with this type7

of directions.8

In the second test set, where problems were selected from [15], algorithm H2P69

was the most robust and the most e�cient. Contrary to the previous results,10

DFSANE presented the worst performance. Although this fact indicates some11

unsuitability of spectral methods to solve this test set of problems, the good12

performance of H2P6 reinforces the advantage of hybrid algorithms.13

Due to the variability on the type of directions considered in each step, it14

was expected that the use of a hybrid strategy could bring advantages in what15

respects to robustness, when compared with pure methods. However, the ad-16

ditional good performance obtained in terms of e�ciency validates the bene�t17

of using hybrid algorithms for solving high-dimensional nonlinear systems of18

equations.19
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6 Final remarks1

In this work, we proposed a hybrid approach to address the resolution of high-2

dimensional systems of nonlinear equations, in the situation where derivatives3

are not available for use. A two-steps Algorithm 3 (H2P), combining the Spec-4

tral Residual Method ([5,4]) and the inexact Newton method was developed5

and analyzed.6

Theorem 1 is the main theoretical contribution of this work, ensuring that7

the sequence of iterates generated by Algorithm 3 (H2P) determines at least8

one accumulation point that is a solution of the nonlinear system.9

We highlight that, theoretical convergence only depends on the last step.10

In this sense, the initial step in H2P is designed only to facilitate the practical11

understanding of the algorithm. The theoretical results extend to methods in12

which the initial steps do not exist or di�er from those proposed in this work.13

For example, the results presented for algorithm H2P can be extended to pure14

inexact Newton methods, considering as acceptance criteria (9), which is more15

�exible than the one used in [9].16

From the numerical point of view, according to our test sets, Algorithm 3 is17

competitive when compared with a pure version of an inexact Newton method18

and DFSANE.19

20
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