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Abstract

Reciprocal matrices and, in particular, transitive matrices, appear in
several applied areas. Among other applications, they have an impor-
tant role in decision theory in the context of the Analytical Hierarchical
Process, introduced by Saaty. In this paper we study the possible ranks of
a reciprocal matrix and give a procedure to construct a reciprocal matrix
with the rank and the off-diagonal entries of an arbitrary row (column)
prescribed. We apply some techniques from graph theory to the study of
transitive matrices, namely to determine the maximum number of equal
entries, and distinct from ±1, in a transitive matrix. We then focus on the
n-by-n reciprocal matrix, denoted by C(n, x), with all entries above the
main diagonal equal to x > 0. We show that there is a Toeplitz transitive
matrix and a transitive matrix preserving the maximum possible number
of entries of C(n, x) whose distance to C(n, x), measured in the Frobenius
norm, is smaller than the one of the transitive matrix suggested by Saaty,
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constructed from the right Perron eigenvector of C(n, x). We illustrate
our results with some numerical examples.

Keywords: Analytical Hierarchical Process, Frobenius norm, Perron eigen-
value, rank, reciprocal matrix, Toeplitz matrix, transitive matrix
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1 Introduction

Pairwise comparisons are commonly used in science, as well as in current prac-
tice, when comparing entities. We may construct a pairwise comparison matrix
(PC matrix) to easily process our relative comparisons data (such as reliability)
and then conceive mathematical methods and techniques for decision making.
The method of pairwise comparisons, one of the earliest scientific methods in
social sciences, was already used by Condorcet [5] in its primitive form win/loss.
In [23, 24], Saaty proposed a multicriteria decision making method, called the
Analytical Hierarchical Process (AHP), which solves decision problems by pri-
oritizing alternatives. The idea is that a vector that gives the priorities for the
different alternatives is defined and from it a transitive pairwise comparison
matrix is constructed. Briefly, given n ≥ 3 alternate decisions Di, then the i, j
entry of the matrix indicates the strengh with which alternative i dominates
alternative j relatively to a certain criterion.
In practice, due to human feelings, preferences and other emotions, when

making decisions people may not be consistent. Therefore, pairwise compari-
son matrices arising in the real world are reciprocal matrices with all entries
positive which, in general, reflect inconsistencies. Saaty [26] proposed that the
vector of priorities of the alternatives is the Perron-Frobenius right eigenvector
of the PC matrix. With this vector, a pairwise comparison matrix reflecting no
inconsistencies can be constructed.
An n-by-n matrix A = [aij ] with real nonzero entries is said to be reciprocal

if aij = 1
aji

for all i, j = 1, . . . , n. In particular aii = 1 for all i = 1, . . . , n. The
matrix A is said to be transitive or consistent if aijajk = aik for all i, j, k =
1, . . . , n. A transitive matrix is reciprocal. The converse is not true in general,
though it holds for n = 2. When a reciprocal (resp. transitive) matrix A is
entrywise positive, we will say that A is positive reciprocal (resp. transitive).
Since Saaty’s first work, many researchers have studied reciprocal matrices

and have proposed alternative methods of estimating the vector of alternatives
priorities from a positive reciprocal matrix and discussed the implications of
the different methods (see, for instance, [1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 19, 20, 28, 32, 33] and the references therein). Besides decision theory,
reciprocal matrices appear in many other contexts as, for instance, in economics
and engineering [2, 29, 30, 31]. In many applications, reciprocal matrices have
additional structures as, for example, a Toeplitz structure, which may be im-
portant to preserve when approximating the matrix by a transitive matrix. Due
to their wide applications in practice, as for example in the study of differential
equations and time series analysis [27, 21, 22], Toeplitz matrices have been the
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subject of a very productive research area. Recall that a matrix A = [aij ] is
Toeplitz if ai1j1 = ai2j2 when i1 − j1 = i2 − j2.

In this paper we investigate some properties of reciprocal matrices and,
in particular, of transitive matrices, and study the approximation of a cer-
tain simple positive reciprocal Toeplitz matrix by a transitive matrix. We
measure the quality of our approximations in the least squares sense, that
is, the best transitive approximation B = [bij ] of an n-by-n positive recipro-
cal matrix A = [aij ] is the one that minimizes the Frobenius matrix norm

||A − B||F =
(∑n

j=1

∑n
i=1(aij − bij)2

) 1
2

. Though not free from criticism, this

approach was proposed by several authors (see, for example, [12, 25]).
The paper is organized as follows. In Section 2 we present some useful known

properties of reciprocal and, in particular, of transitive matrices. Due to the
importance of the rank of a matrix in several applications, namely in solving
linear systems, we start by studying in Section 3 the possible ranks of a reciprocal
matrix. It is shown that any rank between 1 and the size n of the matrix,
except 2, can be attained. Our proof is constructive in the sense that it gives
a procedure to solve the following inverse problem: obtain a reciprocal matrix
with the rank and the off-diagonal entries of a line of the matrix prescribed. An
example of this procedure is also provided. In Section 4 we apply techniques
from graph theory (see [7] for details) to the study of transitive matrices. We
show that there is a unique transitive matrix with certain sets of prescribed
entries, as long as the positions of these entries satisfy a condition stated in
terms of graphs. We also determine the maximum possible number of equal
entries, distinct from ±1, in a transitive matrix. In Section 5 we focus on the
n-by-n reciprocal Toeplitz matrix, denoted by C(n, x), with all entries above the
main diagonal equal to x ∈ R\{0}. We start by describing the eigenvalues and
eigenvectors of these matrices. We observe that in [19] an explicit expression for
the Perron eigenvalue and the corresponding eigenvector is given, when x > 0,
but no reference is made to the remaining eigenvalues. When x > 0, we then
construct the transitive matrices corresponding to the left and right eigenvectors
of C(n, x) associated with the Perron eigenvalue and note that they coincide and
have a Toeplitz structure. A transitive matrix (not Toeplitz) associated with
C(n, x) preserving the maximum number of entries of C(n, x) is constructed
and it is shown that its distance to C(n, x), measured in the Frobenius matrix
norm, is smaller than the one of the transitive matrix obtained from the Perron
eigenvectors. We also show that there is a transitive Toeplitz matrix closer to
C(n, x) than the transitive matrix constructed from the Perron eigenvector. In
Section 6 we present numerical examples that illustrate the results in Section 5.
Finally, we draw some concluding remarks in Section 7.

2 Preliminaries

In this section we introduce some notation and concepts concerning positive
reciprocal and transitive matrices that will be useful throughout the paper. For
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a summary of well-known properties of these matrices, see, for example, [11, 28].
Let w =

[
w1 · · · wn

]T ∈ Cn×1, with wi 6= 0 for i = 1, . . . , n.We denote
by w(−1) the row vector

[
1
w1

· · · 1
wn

]
.

It is well known that A = [aij ] is an n-by-n transitive matrix if and only
if there is an n-by-1 positive vector w such that A = ww(−1). It follows that
a positive reciprocal matrix A is transitive if and only if rank(A) = 1. The
eigenvalues of a transitive matrix are 0 with geometric multiplicity n − 1 and
n = tr(A) with algebraic (and geometric) multiplicity 1.

Given an n-by-n complex matrix A and an n-by-1 complex vector w, we say
that w is a (right) eigenvector (resp. left eigenvector) of A if w 6= 0 and there
is λ ∈ C such that Aw = λw (resp. wTA = λwT ). When A is positive the
Perron eigenvalue of A is its the largest eigenvalue of A which, according to the
Perron-Frobenius Theorem, is simple, positive and greater than the magnitude
of any other eigenvalue [17]. We call the eigenvectors associated with the Perron
eigenvalue the Perron eigenvectors. There is a positive Perron eigenvector and
all the others are proportional. The one whose first entry is 1 will be called the
principal eigenvector of A.
Given a positive reciprocal matrix A, Saaty proposed the transitive matrix

ww(−1), where w is a right eigenvector of A associated with its Perron eigen-
value, to approximate A by a transitive matrix. Note that w is also a right
eigenvector of ww(−1) associated with its Perron eigenvalue. In a similar way,
as suggested for example in [18], the transitive matrix

(
w′(−1)

)T
(w′)

T , where
w′ is a left eigenvector of A associated with the Perron eigenvalue, could be
considered. Here T denotes matrix transposition. Again, note that w′ is a
left eigenvector of

(
w′(−1)

)T
(w′)

T associated with its Perron eigenvalue. Since
the Perron eigenvalue is simple, these rank 1 matrices do not depend on the
particular choice of the Perron eigenvector.
In this paper we will call ww(−1) the (right) Perron transitive matrix asso-

ciated with A and
(
w′(−1)

)T
(w′)

T the left Perron transitive matrix associated
with A.

3 Rank of a reciprocal matrix

In this section we show that an n-by-n reciprocal matrix (not necessarily posi-
tive) can have any rank from 1 to n, except 2.We then give a constructive proof
of the existence of a reciprocal matrix with prescribed rank r, 1 ≤ r ≤ n, r 6= 2,
and off-diagonal entries of a certain row (column). By applying a permutation
similarity and/or a transposition, we may assume, without loss of generality,
that the prescribed entries are in the first row.
Let A = [aij ] be an n-by-n reciprocal matrix. For 1 < k < j ≤ n, let

skj = a1kakj − a1j .

Note that akj just occurs in skj and, if the first row of A and the skj’s, 1 < k <
j ≤ n, are given, then each akj is determined from skj .
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Denote row i of A by ri. Let A1 = [bij ] be obtained from A by replacing row
i with

(a1i · · · ai−1,i)ri − (a2i · · · ai−1,i)r1,

i = 2, . . . , n. Then, the entry i, j of A1, with i > 1, is given by

bij =

{
(a1i · · · ai−1,i)aij − (a2i · · · ai−1,i)a1j if j 6= 1 and j 6= i
0 if j = 1 or i = j.

that is,

bij =


(a2i · · · ai−1,i)sij if i < j
− 1
aji
(a2i · · · ai−1,i)sji if i > j > 1

0 if j = 1 or i = j.

Note that A and A1 have the same rank. Denote by T (A) the submatrix of
A1 obtained by deleting the first row and column.

Example 1 Consider the case n = 5. Then

A =


1 a12 a13 a14 a15
1
a12

1 a23 a24 a25
1
a13

1
a23

1 a34 a35
1
a14

1
a24

1
a34

1 a45
1
a15

1
a25

1
a35

1
a45

1



∼


1 a12 a13 a14 a15
1 a12 a12a23 a12a24 a12a25
a23 a13 a13a23 a13a23a34 a13a23a35

a24a34 a14a34 a14a24 a14a24a34 a14a24a34a45
a25a35a45 a15a35a45 a15a25a45 a15a25a35 a15a25a35a45



∼


1 a12 a13 a14 a15
0 0 s23 s24 s25
0 −s23 0 a23s34 a23s35
0 −a34s24 −a24s34 0 a24a34s45
0 −a35a45s25 −a25a45s35 −a25a35s45 0

 = A1.

Then

T (A) =


0 s23 s24 s25
−s23 0 a23s34 a23s35
−a34s24 −a24s34 0 a24a34s45
−a35a45s25 −a25a45s35 −a25a35s45 0

 . (1)

Remark 2 Clearly, rank(A) = 1+rank(T (A)). Moreover, if there are i, j with
2 ≤ i < j ≤ n such that sij 6= 0, then rank(T (A)) ≥ 2 implying rank(A) ≥ 3,
otherwise rank(T (A)) = 0 and rank(A) = 1.
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We next study the possible ranks of T (A). Given an n-by-n matrix C and
1 ≤ k ≤ n, denote by C[k] the principal submatrix of C indexed by rows and
columns 1, . . . , k. The following observation is obvious.

Remark 3 Given an n-by-n reciprocal matrix A, we have

T (A[n− 1]) = (T (A)) [n− 2].

Lemma 4 Let A = [aij ] be an n-by-n reciprocal matrix with n > 2. Then T (A)
(and, thus, A) is nonsingular if one of the following conditions holds:

• n is odd, and sij 6= 0 for all i, j with 2 ≤ i < j ≤ n and i+ j = n+2, and
either sij = 0 for all i, j with 2 ≤ i < j ≤ n and i+ j > n+ 2, or sij = 0
for all i, j with 2 ≤ i < j ≤ n and i+ j < n+ 2;

• n is even, s23s24s34 (a24 − a23a34) 6= 0, and s2i+1,2i+2 6= 0 and sli,2i+2 = 0
for all i, li with 2 ≤ i ≤ n

2 − 1 and 2 ≤ li ≤ 2i.

Moreover, if the first row of A is positive and sij ≥ 0 for 2 ≤ i < j ≤ n,
then A is positive.

Proof. If n is odd and the claimed conditions hold, then T (A) has nonzero
anti-diagonal entries and zeros above or below the anti-diagonal.
If n is even and the claimed conditions hold, then it can be easily seen that

det(T (A)) = k
∏n−2

2
i=2 s22i+1,2i+2 det

 0 s23 s24
−s23 0 a23s34
−a34s24 −a24s34 0

 6= 0,
where k is a product of aij’s.
The second claim follows easily from the definition of the sij’s.

Remark 5 From Lemma 4 and Remark 2, we conclude that for any n > 2 there
is a nonsingular positive n-by-n reciprocal matrix where the off-diagonal entries
of the first row are any positive real prescribed numbers.

Lemma 6 Let r ∈ {0, . . . , n− 1}\{1}, with n ≥ 2, and b1,2, . . . , b1,n be positive
real numbers. Then there exists an n-by-n positive reciprocal matrix A = [aij ]
such that rank(T (A)) = r and a1p = b1p for p = 2, . . . , n.

Proof. The proof is by induction on n. If n ≤ 3, the result follows easily. Now
suppose that n ≥ 4 and the result holds for n− 1.

If r = 0 let a1p = b1p for p = 2, . . . , n and akj =
a1j
a1k

for 1 < k < j ≤ n, so
that skj = 0 for 1 < k < j.
If r = n− 1 the result follows from Lemma 4 and Remark 5.
Suppose that 2 ≤ r < n − 1. By the induction hypothesis, there exists an

(n− 1)× (n− 1) positive reciprocal matrix C = [cij ] such that rank(T (C)) = r
and c1p = b1p for p = 2, . . . , n − 1. Now let a1n = b1n and akn =

a1n
c1k

for
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1 < k < n. Let A = [aij ], where A[n− 1] = C. Since skn = 0 for 1 < k < n, we
have

T (A) =
[
T (C) 0
0 0

]
,

implying that rank(T (A)) = r.

From Lemma 6 and Remark 2, we obtain the following description of the
possible ranks of a reciprocal matrix.

Theorem 7 Let n ≥ 2 and b1,2, . . . , b1,n be positive real numbers. If A is an
n-by-n reciprocal matrix, then rank(A) 6= 2. Conversely, if r ∈ {0, . . . , n}\{2},
there exists an n-by-n positive reciprocal matrix A = [aij ] such that rank(A) = r
and a1p = b1p for p = 2, . . . , n.

Lemma 6 gives us a procedure to construct an n-by-n reciprocal matrix A
of rank r, with 1 ≤ r ≤ n and r 6= 2, and prescribed off-diagonal entries of the
first row. In the next two examples we illustrate this procedure. In the first one
we start by constructing a nonsingular matrix of odd size and from it we obtain
a singular matrix. In the second one we construct a nonsingular matrix of even
size.

Example 8 We will give a positive 5-by-5 reciprocal matrix A = [aij ] with
first row

[
1 2 4 4 8

]
and such that rank(A) = 3. We first construct a

nonsingular positive 3-by-3 reciprocal matrix A1 = A[3], using Lemma 4. Let
a12 = 2, a13 = 4 and s23 = 2. Then

2 = s23 = a12a23 − a13 ⇔ a23 = 3.

Thus,

A1 =

 1 2 4
1
2 1 3
1
4

1
3 1

 .
Using the procedure described in Lemma 6, we now construct a positive 4-by-4
reciprocal matrix A2 such that A[4] = A2 and rank(A2) = 3. Let a14 = 4 and
s24 = s34 = 0. Then

0 = s24 = a12a24 − a14 ⇔ a24 = 2

0 = s34 = a13a34 − a14 ⇔ a34 = 1,

implying that

A2 =


1 2 4 4
1
2 1 3 2
1
4

1
3 1 1

1
4

1
2 1 1

 .
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Now we construct A by adding one row and one column to A2. Let a15 = 8 and
s25 = s35 = s45 = 0. Then,

0 = s25 = a12a25 − a15 ⇔ a25 = 4

0 = s35 = a13a35 − a15 ⇔ a35 = 2

0 = s45 = a14a45 − a15 ⇔ a45 = 2,

implying that

A =


1 2 4 4 8
1
2 1 3 2 4
1
4

1
3 1 1 2

1
4

1
2 1 1 2

1
8

1
4

1
2

1
2 1

 .
Example 9 Using Lemma 4, we give a nonsingular positive 6-by-6 reciprocal
matrix A = [aij ] with all entries in the first row equal to 1. Let a1i = 1, i =
1, . . . , 6. Now we choose the remaining entries so that s23s24s34s56 6= 0, a24 6=
a23a34 and s26 = s36 = s46 = 0. Letting s23 = s24 = s34 = s56 = 1, we obtain

A =


1 1 1 1 1 1
1 1 2 2 a25 1
1 1

2 1 2 a35 1
1 1

2
1
2 1 a45 1

1 1
a25

1
a35

1
a45

1 2

1 1 1 1 1
2 1

 ,

which is nonsingular for any a25, a35, a45.

We next identify explicitly a class of positive reciprocal matrices with given
rank r 6= 2. Denote by Jn the n-by-n matrix with all entries equal to 1 and by
em the m-by-1 column vector with all entries equal to 1.
The matrix A = Jn has rank 1. Suppose that n > 2 and let a > 0 be a real

number. Then the matrix

Wn,a = Jn +

[
0 aIn

2

− a
1+aIn2 0

]
,

if n is even, or

Wn,a = Jn +

 0 0 aIn−1
2

0 0 0
− a
1+aIn−12

0 0

 ,
if n is odd, is nonsingular. To see this, note that, if n is odd, subtracting row
n+1
2 from any other row of Wn,a, we obtain the matrix 0 0 aIn−1

2

eTn−1
2

1 eTn−1
2

− a
1+aIn−12

0 0

 ,
8



which can be easily seen to be nonsingular. If n is even, we have

Wn,a

[
In
2

0
−In

2
In
2

] [
In
2

1
a (Jn2 + aI

n
2
)

0 In
2

]
=

[
−aIn

2
0

− a
1+aI

a
1+a (Jn2 − In2 )

]
,

which is nonsingular since J − In
2
is nonsingular.

If 2 < r ≤ n− 1, the following reciprocal matrix has rank r:

A = Jn +

 Wr,a

(1 + a)eTn−r

Jr−1,n−r
1
1+aen−r Jn−r,r−1 Jn−r,n−r

 ,
as the last n − r columns of A coincide with the rth column and Wr,a is non-
singular.

We conclude this section with an easy consequence of Theorem 7 that was
already stated in [28] for positive reciprocal matrices.

Corollary 10 Let A be an n-by-n reciprocal matrix and P (λ) be the character-
istic polynomial of A. Then the coeffi cient of λn−2 is 0.

Proof. It is well-known [17] that the coeffi cient of λn−2 is the sum of the 2-by-2
principal minors of A. Since any 2-by-2 principal submatrix of A is a reciprocal
matrix, the claim follows from Theorem 7.

4 Transitive matrices and graphs

The next theorem shows that a unique transitive matrix can be constructed
from the knowledge of the entries (which can be any nonzero real numbers) in
certain n− 1 positions.

Theorem 11 Let S = {{i1, j1}, . . . , {in−1, jn−1}}, with is, js ∈ {1, . . . , n} for
s = 1, . . . , n − 1. Let G be the undirected graph with vertex set {1, . . . , n} and
such that there is an edge between vertices i and j if and only if {i, j} ∈ S. Let
bi1,j1 , . . . , bin−1,jn−1 be n− 1 nonzero real numbers.
If G is a tree, then there is a unique transitive matrix A = [aij ] with aisjs =

bisjs for s ∈ {1, . . . , n− 1}. Moreover, A is positive if bil,jl > 0, l = 1, . . . , n− 1.

Proof. Suppose that G is a tree. Let A = [aij ] with aisjs = bisjs and ajsis =
1

bisjs
for s ∈ {1, . . . , n− 1}. Let aii = 1, for i = 1, . . . , n.

Let x, y ∈ {1, . . . , n}, x 6= y. Since G is a tree, there is a unique path in G
between vertices x and y where all vertices are distinct, say x, p2, · · · , pl−1, y.
Because {pi, pi+1} is an edge in G, i = 1, . . . , l − 1, where p1 is vertex x and pl
is vertex y, we have that {pi, pi+1} ∈ S. So, we can define

axy = axp2ap2p3 · · · apl−1y.
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Now we show that the obtained matrix A is transitive. Let i, j, l ∈ {1, . . . , n}
be distinct. Let t1, t2, · · · tr−1, tr, where t1 is vertex i and tr is vertex l, be the
unique path inG, between i and l, with all vertices distinct. Let s1, s2, · · · sz−1, sz,
where s1 is vertex l and sz is vertex j, be the unique path in G, between l and j,
with all vertices distinct. So, t1, t2, · · · tr−1, tr, s2, · · · , sz is a path between i and
j. Since G is a tree, all vertices of this path are distinct or there is a first vertex,
say th, in the fixed ordered path t1, t2, · · · tr−1, tr, that appears in s2, · · · sz−1, sz,
say sv = th. In the second case, t1, t2, · · · th−1, th, sv+1, · · · , sz is the only path
between i and j with all vertices distinct. Moreover, tr, tr−1, · · · , th is the path
s1, · · · , sv, implying that

ath,th+1 · · · atr−1,tras1,s2 · · · asv−1,sv = 1.

Consequently,
aikakj = aij .

Moreover, aji = 1
aij
. Thus, the matrix A is unique.

Corollary 12 There is a unique transitive matrix with one of the following sets
of nonzero entries prescribed:

• the nondiagonal entries of an arbitrary row,

• the nondiagonal entries of an arbitrary column,

• the upper diagonal entries,

• the lower diagonal entries.

We next describe the maximum number of equal entries, and distinct from
±1, in a transitive matrix. We will use the following auxiliary results, the first
of which is a well known theorem in graph theory, obtained by König [7].

Theorem 13 A graph is bipartite if and only if it has no odd cycle.

Lemma 14 The maximum number of edges among all bipartite graphs with n
vertices is

n2

4
if n is even

and
n2 − 1
4

if n is odd.

Proof. Let G = (X1 ∪X2, U) be a bipartite graph with n vertices and classes
X1 and X2 of vertices, where |X1| = p. Then the maximum number of edges
of G is f(p) = (n − p)p (this number occurs when G is the complete bipartite
graph).
Since 0 = f ′(p) = n − 2p implies p = n

2 , then, if n is even, the maximum

number of edges among all bipartite graphs with n vertices is f(n2 ) =
n2

4 .
On the other hand, if n is odd, the maximum number of edges among all

bipartite graphs with n vertices is f(n+12 ) = f(n−12 ) = n2−1
4 .
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Theorem 15 Let A be an n-by-n transitive matrix and let x ∈ R\{−1, 0, 1}.
Then the number of entries of A equal to x is at most n

2

4 if n is even and n2−1
4

if n is odd.

Proof. Let G = (X,U) be a undirected graph where X = {1, . . . , n} and there
is an edge between vertices i and j if and only if aij = x.
Suppose that there is an odd cycle in G, i1, i2, . . . , ip, i1. Then p is odd.

Since A = [aij ] is transitive,

ai1,ip = ai1,i2ai2,i3 . . . aip−1ip ,

where ail,il+1 is x or
1
x . This product has p − 1 factors and p − 1 is even, so

the product is never equal to x or 1
x , a contradiction since there is an edge in

G between i1 and ip. Therefore, G has no odd cycle and, by Theorem 13, it is
a bipartite graph. By Lemma 14, G has at most n2

4 edges if n is even or n2−1
4

edges if n is odd.

Recall that em is the m-by-1 column vector with all entries equal to 1. Also,
for a positive real number a, we denote by bac (resp. dae) the largest integer
less than or equal to a (resp. the smallest integer greater than or equal to a).

Remark 16 The upper bound given in Theorem 15 for the number of entries
equal to a given x ∈ R\{−1, 0, 1} of a transitive matrix is attained for example
by the matrix ww(−1), where w(−1) =

[
eTbn+12 c

xeTdn−12 e
]
.

From Remark 16, we obtain the following result.

Corollary 17 Let 1 ≤ l ≤ n and x ∈ R\{−1, 0, 1}. Then there is an n-by-n
transitive matrix A with exactly kl entries equal to x, where

kl =


l2

4 if l is even

l2−1
4 if l is odd

.

Proof. Let, for example, w(−1) =
[
eTb l+12 c

xeTd l−12 e
x3eTn−l

]
. Then ww(−1)

is a transitive matrix with exactly kl entries equal to x.

Another interesting corollary of our results is the following.

Corollary 18 Let x1, . . . , xs be positive integers such that x1 + · · · + xs = n.
Then

s−1∑
i=1

xixi+1 ≤


n2

4 if n is even

n2−1
4 if n is odd

.

Proof. Let w(−1) =
[
eTx1 yeTx2 · · · yseTxs

]
with y > 0 and y 6= 1. Then

ww(−1) is a transitive matrix with exactly
∑s−1
i=1 xixi+1 entries equal to y. By

Theorem 15, the result follows.

11



5 The Toeplitz matrix C(n, x)

In this section we consider the n-by-n Toeplitz matrix

C(n, x) =


1 x · · · x x
1
x 1 · · · x x
...

...
. . .

...
...

1
x

1
x · · · 1 x

1
x

1
x · · · 1

x 1

 ,

where x > 0, and study some approximations of this matrix by a transitive
matrix. Note that C(n, x) is a positive reciprocal matrix. Since, for n = 2,
C(n, x) is transitive, from now on we assume n > 2. In this case C(n, x) is
transitive if and only if x = 1. The consistency index CI of C(n, x), defined as

CI =
λ0 − n
n− 1 ,

where λ0 is the Perron eigenvalue of C(n, x), was studied in [3, 19].

5.1 Spectral properties of C(n, x)

In this section we describe the eigenvalues of C(n, x) when x ∈ R (not necessarily
positive). In [19] the Perron eigenvalue of C(n, x), with x > 0, was deduced.

It can be easily verified that the eigenvalues of C(n, x) are 1, with multiplicity
n, if x = 0; n, with multiplicity 1, and 0, with multiplicity n− 1, if x = 1; 2−n,
with multiplicity 1, and 2, with multiplicity n− 1, if x = −1. Next, we assume
that x ∈ R\{0, 1,−1}.
Given a ∈ R\{0}, we denote by a

p
q , where p and q are integers and p is even,

the real positive qth root of ap.

Theorem 19 Let x ∈ R\{0, 1,−1}. Then, the matrix C(n, x) has n distinct
eigenvalues which are the n complex solutions of the equation(

x−1 − 1 + λ
x− 1 + λ

)n
=
1

x2
,

that is, if sk = x
2
n e

i2kπ
n , k = 1, . . . , n, where i =

√
−1, then

λk =
(x− 1)(x+ sk)
x(sk − 1)

.

The Perron eigenvalue of C(n, x) is λn. Moreover, the eigenvectors associated

with λk are proportional to w(k) =
[
w
(k)
1 · · · w

(k)
n

]T
, with

w
(k)
j =

(
x−1 − 1 + λk
x− 1 + λk

)j−1
=

(
1

sk

)j−1
= x

−2(j−1)
n e−

i2kπ(j−1)
n .

12



Proof. We will use arguments similar to those in [19]. Let λ be an eigenvalue of
C(n, x) and w =

[
w1 · · · wn

]T
be an associated eigenvector. The equation

C(n, x)w = λw is equivalent to

x−1(w1 + · · ·+ wk−1) + wk + x(wk+1 + · · ·+ wn) = λwk,

k = 1, . . . , n. Subtracting equation k − 1 from equation k, k = 2, . . . , n, we
obtain {

(1− λ)w1 + x(w2 + · · ·+ wn) = 0
(x−1 − 1 + λ)wk−1 + (1− x− λ)wk = 0, k = 2, . . . , n.

. (2)

Note that λ 6= 1−x. In fact, if λ = 1−x we would have x−1−1+λ 6= 0 implying
wk−1 = 0 for k = 2, . . . , n. Then, from the first equation, as w is nonzero, we
would have x = 0, a contradiction. Thus (2) is equivalent to{

(1− λ)w1 + x(w2 + · · ·+ wn) = 0
wk =

(
x−1−1+λ
x−1+λ

)k−1
w1

.

For w1 = 1 and noting that w2 6= 1, substituting the expressions for wk into the
first equation, we get

λ = 1 + x
wn2 − w2
w2 − 1

. (3)

We also have

w2 =
x−1 − 1 + λ
x− 1 + λ

⇔ λ =
xw2 − w2 + 1− x−1

1− w2
=
(x− 1)(xw2 + 1)

x(1− w2)
. (4)

From (3) and (4), we obtain

wn2 =
1

x2
.

Now the claim follows easily taking into account that wn2 =
1
snk
, k = 1, . . . , n.

From Theorem 19, we obtain the following result.

Corollary 20 Let x ∈ R\{0, 1,−1}. If n is even, C(n, x) has exactly two real
eigenvalues, while if n is odd it has one real eigenvalue. Moreover, rank(C(n, x)) =
n.

5.2 Perron transitive matrix associated with C(n, x)

In this section we show that the left and right Perron transitive matrices asso-
ciated with C(n, x), with x > 0 and x 6= 1, coincide and are Toeplitz matrices.
Let x > 0 and x 6= 1. From Theorem 19, the Perron eigenvalue of C(n, x) is

λ =
(x− 1)(x+ x 2

n )

x(x
2
n − 1)

13



and the principal eigenvector is w =
[
w1 · · · wn

]T
with

wj =

(
x−1 − 1 + λ
x− 1 + λ

)j−1
= x−

2(j−1)
n .

Since a left Perron eigenvector of C(n, x) is a right Perron eigenvector of CT (n, x),
the left principal eigenvector of C(n, x), say w′, is obtained from w by replacing
x with x−1, that is, w′ =

[
w′1 · · · w′n

]T
with

w′j = x
2(j−1)
n .

Note that the Hadamard product w ◦ w′ is a constant vector. Thus, using the
notation introduced in Section 2, we have ww(−1) = (w′(−1))Tw′T , that is, the
left and right Perron transitive matrices associated with C(n, x) coincide.
The transitive matrix ww(−1) = [sij ] is defined by

sij =

(
x−1−1+λ
x−1+λ

)i−1
(
x−1−1+λ
x−1+λ

)j−1 = x−
2(i−1)
n

x−
2(j−1)
n

= x
2(j−i)
n ,

and is a Toeplitz matrix. We will denote this matrix by P (n, x). We then have

||C(n, x)− P (n, x)||2F =
n−1∑
j=1

(n− j)((x− x
2j
n )2 + (x−1 − x−

2j
n )2). (5)

5.3 Transitive matrix associated with C(n, x) preserving
the maximum number of entries

In this section we give a positive transitive matrix that preserves the maximum
possible number of entries of C(n, x), according to Theorem 15, and that has
distance to C(n, x), measured in the Frobenius matrix norm, smaller than the
one of the Perron transitive matrix associated with C(n, x). Here and through-
out, we assume, without loss of generality, that x > 1, as the case 0 < x < 1
reduces to the previous one by considering the transpose matrix CT (n, x).
We will use the following technical auxiliary result.

Lemma 21 Let n > 2 be an integer and x ∈ R with x > 1. Then

(x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2 >
1

2

(
(x− 1)2 + (x−1 − 1)2

)
.

Proof. A calculation shows that

((x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2)− 1
2

(
(x− 1)2 + (x−1 − 1)2

)
=
(
x−

4
n + x−1 − 2x−1− 2

n

)
+
(
x4−

4
n − 2x3− 2

n

)
+ (x− 1) + x−2

2
+
1

2
x2.

14



We have
x4−

4
n − 2x3− 2

n > 0⇔ x1−
2
n > 2⇔ x > 2

n
n−2 .

Clearly,

x−
4
n + x−1 − 2x−1− 2

n =
(
x−

4
n − x−1− 2

n

)
+
(
x−1 − x−1− 2

n

)
> 0.

Thus, if x > 2
n
n−2 , the claim follows. Now suppose that x ≤ 2

n
n−2 . Since

n
n−2 ≤ 3, we have x ≤ 8 and

(x− x
2(n−1)
n )2 − 1

2
((x− 1)2 + (x−1 − 1)2)

> (x− 64)2 − 1
2
((x− 1)2 + (x−1 − 1)2)

=
1

2x2
(
x4 − 254x3 + 8190x2 + 2x− 1

)
>

1

2x2
(
x4 − 2032x2 + 8190x2 + 2x− 1

)
> 0.

Since (x−1 − x− 2
n )2 > 0, the claim follows.

Recall that em is the m× 1 vector with all entries equal to 1.
If n is even, let

Q(n, x) =

[
Q11 Q12
Q21 Q22

]
=


en
2
1
x
...
1
x

 [ en2 x · · · x
]
, (6)

where Q11 and Q22 have size n
2 and all entries equal to 1, Q12 has all entries

equal to x and Q21 has all entries equal to 1
x .

If n is odd, for b ∈ {n−12 , n+12 }, consider the n-by-n matrix

Qb(n, x) =


eb
1
x
...
1
x

 [ eTb x · · · x
]
.

According to Theorem 15, the positive transitive matrix Q(n, x), if n is even,
or Qb(n, x), if n is odd, preserves the maximum possible number of entries of
C(n, x). We next show that this matrix is closer to C(n, x) than the Perron
transitive matrix P (n, x) associated with C(n, x).

Theorem 22 Let x ∈ R with x > 1. Let P (n, x) be the Perron transitive matrix
associated with C(n, x). Let Q(n, x) be the matrix (6), if n is even, or Qb(n, x)
for some b ∈ {n−12 , n+12 }, if n is odd. Then

||C(n, x)−Q(n, x)||2F < ||C(n, x)− P (n, x)||2F .
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Proof. Using (5), we have

||C(n, x)− P (n, x)||2F =
n−1∑
j=1

(n− j)((x− x
2j
n )2 + (x−1 − x−

2j
n )2)

>

n−1∑
j=1

(n− j)((x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2)

=
n

2
(n− 1) ((x− x

2(n−1)
n )2 + (x−1 − x− 2

n )2).

Case 1: Suppose that n is even. We have

||C(n, x)−Q(n, x)||2F = 2
n/2∑
i=1

n/2∑
j=i+1

((x− 1)2 + (x−1 − 1)2)

=
n

2
(
n

2
− 1)((x− 1)2 + (x−1 − 1)2).

Taking into account Lemma 21, we have

(n− 1) ((x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2) > (n− 2) ((x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2)

>
n− 2
2

((x− 1)2 + (x−1 − 1)2),

implying the claim.
Case 2: Suppose that n is odd. We have

||C(n, x)−Q(n, x)||2F =
n− 1
2

((x− 1)2 + (x−1 − 1)2) + 2
(n−1)/2∑
i=1

(n−1)/2∑
j=i+1

((x− 1)2 + (x−1 − 1)2)

=
1

4
(n− 1)2 ((x− 1)2 + (x−1 − 1)2).

Taking into account Lemma 21, we have

n((x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2) > (n− 1)((x− x
2(n−1)
n )2 + (x−1 − x− 2

n )2)

>
n− 1
2

((x− 1)2 + (x−1 − 1)2),

implying the result.

5.4 Closest Toeplitz transitive matrix associated with C(n, x)

In many practical problems it is known a priory that the comparison matrix
is a Toeplitz matrix. Thus, when finding a transitive matrix close to a given
Toeplitz reciprocal matrix, it makes sense to find one that preserves the Toeplitz
structure.
In Section 5.3 we have shown that there are positive transitive matrices closer

to C(n, x) than the Perron transitive matrix P (n, x) associated with C(n, x)
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(which is a Toeplitz matrix). However, the exhibited matrices do not have a
Toeplitz structure. In this section, we show that there are positive transitive
Toeplitz matrices closer to C(n, x) than P (n, x).
The next characterization of positive transitive Toeplitz matrices can be

easily shown.

Lemma 23 Let A be an n-by-n positive transitive matrix. Then A is Toeplitz if
and only if, for some a > 0, we have A = ww(−1), with w =

[
1 a · · · an−1

]T
.

We denote the matrix ww(−1) in Lemma 23 by T (n, 1a ). Note that the entry
in position i, j of T (n, 1a ) is a

i−j . In particular, the entry in position 1, 2 is 1/a.

The following technical proposition will be used in the proofs of the next
results and can be easily shown.

Proposition 24 Let x ∈ R with x > 1. For y ∈ R with y > 0, let f(y) =
(x − y)2 + (x−1 − y−1)2. Then, the derivative of f is given by f ′(y) = 2

xy g(y),
where

g(y) =
(y − x)

(
xy3 + 1

)
y2

.

For b ∈ R positive, define h(b) = ||C(n, x)− T (n, b)||2F . We then have

h(b) =

n−1∑
j=1

(n− j)((x− bj)2 + (x−1 − b−j)2) =
n−1∑
j=1

(n− j)f(bj). (7)

The next lemma shows that any local minimum of h occurs in the open
interval ]x

1
n−1 , x[.

Lemma 25 Let x ∈ R with x > 1 and n > 2 be an integer. We have h′(b) > 0
if b ≥ x and h′(b) < 0 if 0 < b ≤ x 1

n−1 .

Proof. We next use the functions f and g defined in Proposition 24. From (7)
and taking into account Proposition 24, we have

h′(b) =

n−1∑
j=1

(n− j)jbj−1f ′(bj) = 2

xb

n−1∑
j=1

(n− j)jg(bj).

If b > x, then we have bj > x for j = 1, . . . , n− 1. Thus, h′(b) > 0. If bn−1 < x,
then bj < x for j = 1, . . . , n − 1 and h′(b) < 0. On the other hand, h′(x) > 0

and h′(x
1

n−1 ) < 0.

Observe that the Perron transitive matrix P (n, x) associated with C(n, x) is
T (n, x

2
n ). Next we show, in particular, that there is a positive transitive Toeplitz

matrix closer to C(n, x) than T (n, x
2
n ).

Lemma 26 Let x ∈ R with x > 1 and n > 2 be an integer. We have h′(x 2
n ) > 0.
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Proof. We next use the functions f and g defined in Proposition 24. We have

h′(b) =
2

xb

n−1∑
j=1

(n− j)jg(bj)

=


2
xb

n−1
2∑
j=1

(n− j)j
(
g(bj) + g(bn−j)

)
if n is odd

2
xb

n2

4 g(b
n
2 ) +

n
2−1∑
j=1

(n− j)j
(
g(bj) + g(bn−j)

) if n is even

.

For j = 1, . . . ,
⌊
n−1
2

⌋
, we have

g(x
2j
n ) + g(x

2(n−j)
n ) =

(
x
2j
n − x

)(
x1+

6j
n + 1

)
x
4j
n

+

(
x2−

2j
n − x

)(
x7−

6j
n + 1

)
x4−

4j
n

= x−
4j+3n
n

(
x4 − 1

) (
x− x

2j
n

)2 (
x1+

2j
n + x

4j
n + x2

)
> 0.

Also, if n is even,
g(x

2
n )

n
2 = g(x) = 0.

Thus, we conclude that h′(x
2
n ) > 0.

Observe that from Lemma 26 we conclude that h increases in a neighborhood
of x

2
n and therefore h does not attain a minimum at x

2
n . Moreover, for any

z < x
2
n suffi ciently close to x

2
n , we have h(z) < h(x

2
n ).

Theorem 27 Let x ∈ R with x > 1 and let n > 2 be an integer. Then there is
b ∈]x 1

n−1 , x
2
n [ such that

||C(n, x)−T (n, b)||F < min{||C(n, x)−T (n, x
2
n )||F , ||C(n, x)−T (n, x

1
n−1 )||F }.

Proof. By Lemma 26, h′(x
2
n ) > 0. On the other hand, by Lemma 25, we have

h′(x
1

n−1 ) < 0. Thus, we conclude, using the continuity of h′(y), that h′(y) has
a root in ]x

1
n−1 , x

2
n [ where h attains a minimum.

Note that the amplitude of the interval ]x
1

n−1 , x
2
n [ approaches 0 as n→∞.

6 Numerical experiments

In this section we give some numerical examples that illustrate the results in
Section 5.
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Consider the matrix C(3, 2). Its Perron eigenvalue is λ = 3.0536 and its
principal eigenvector is

w =

 1
0.63
0.632

 =
 1

0.63
0.3969

 .
Thus, the Perron transitive matrix associated with C(3, 2) is

P (3, 2) = ww(−1) =

 1 1. 5874 2. 5195
0.63 1 1. 5874
0.3969 0.63 1

 ,
also denoted by T (3, 1.5874), according to the notation introduced in Section
5.4. Note that 2

2
3 = 1. 5874. A calculation shows that ||C(3, 2) − P (3, 2)||2F =

0.6551.
For b > 0, define h(b) = ||C(3, 2)− T (3, b)||2F . Then,

h(b) = 2 (b− 2)2 +
(
b2 − 2

)2
+ 2

(
1

b
− 1
2

)2
+

(
1

b2
− 1
2

)2
.

The next table gives the values of h(b) for some b’s close to 1. 5874 :

b 1.4
√
2 1.48 1.5 1.52 1.54 1.56 1.57 1.58 1.59

√
3

h(b) 0.814 0.772 0.641 0.621 0.612 0.612 0.623 0.632 0.644 0.659 1.183

As follows from Lemma 26 and is confirmed by our numerical results, h is strictly
increasing in a neighborhood of b = 1. 5874. From Theorem 27, h(b) has a local
minimum attained in ]2

1
2 , 2

2
3 [=]1. 414 2, 1. 587 4[. From the table, we can guess

that this minimum occurs at b0 ∈ [1.5, 1.54]. In fact, a calculation shows that
b0 = 1.52902 and h(b0) = 0.6105.
In the next table we explicitly compare the distance, measured in the Frobe-

nius matrix norm, to C(3, 2) of the transitive matrices T (3, b) for b on the
boundary of the interval given in Theorem 27 and for two values of b in the
interior of this interval. For reference, the minimum distance attained in this
interval is also included.

b 22/3 21/2 2
2
3
+ 1
2

2
2
2
3+2

1
2

2 b0
h(b) 0.655 0.772 0.622 0.621 0.611

We can observe that when b ∈ {2
2
3
+ 1
2

2 , 2
2
3+2

1
2

2 }, T (3, b) is one of the closest
matrices to C(3, 2).

In [13], the authors propose the transitive matrix (w(−1)1 )TwT1 , where w1 is
an eigenvector of the positive definite matrix P defined below associated with
the smallest eigenvalue (or, equivalently, the principal eigenvector of P−1):
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P =

 9 + 3 0 0
0 21

4 + 3 0
0 0 3

2 + 3

−

 1 2 2

1
2 1 2
1
2

1
2 1

+
 1 2 2

1
2 1 2
1
2

1
2 1

T


=

 10 − 52 − 52
− 52

25
4 − 52

− 52 − 52
5
2

 .
We observe that, contrarily to what is claimed in Lemma 2 in [13], the matrix

P in this lemma is not always positive definite implying that the proposed
method to obtain a transitive matrix cannot always be applied.
A calculation shows that

w1 =

 0.3253
0.4662
0.8227


and the Perron eigenvalue of P−1 is 10.574. Thus,

(wT1 )
(−1)wT1 =

 (0.32531)
−1

(0.46625)
−1

(0.82267)
−1

 0.32531
0.46625
0.82267

T =
 1 1.4332 2.5289
0.6977 1 1.7644
0.3954 0.5668 1

 .
Moreover, ||C(3, 2) − (w(−1)1 )TwT1 ||2F = 0.7110. Thus, (w

(−1)
1 )TwT1 has a larger

distance to C(3, 2), when compared with most of the matrices T (3, b) considered
in the previous table.

In Figures 1-4, we compare the distance of T (n, b) to C(n, x) for n = 3 and
different values of x > 1 (Figures 1 and 2), and for x = 2 and different values
of n > 2 (Figure 3 and 4). Bearing in mind Theorem 27, we consider

b ∈ {x 1
n−1 , x

2
n , x

1
n−1+

2
n

2 ,
x

1
n−1 + x

2
n

2
}.

For completeness, we also include for comparison the distance of Q(n, x) to
C(n, x), where Q(n, x) is as in Theorem 22. The vertical axis in the figures
represents the value of h(n, x) = ||M −C(n, x)||2F , where M is either Q(n, x) or
one of the matrices T (n, b)mentioned above. The red, green, blue and black lines

correspond to T (n, b) with b = x
2
n , b = x

1
n−1 , b = x

1
n−1+

2
n

2 and b = x
1

n−1+x
2
n

2 ,
respectively. The magenta line corresponds to Q(n, x). Figure 2 (resp. Figure
4) is a zoom of the left part of Figure 1 (resp. Figure 3).
We observe that, for n = 3 and x large, the Perron transitive matrix T (3, x

2
n )

is the one with largest distance to C(3, x). On the other hand, T (x
1

n−1 ) is the
one with smallest distance to C(3, x). When x is close to 1, all matrices T (3, b)
have similar distance to C(3, x), as expected.
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For x = 2 fixed, we conclude that T (n, x
1

n−1 ) and Q(n, x) are the matrices
with largest distance to C(n, x), while all the remaining matrices have approx-
imately the same distance to C(n, x).
Note that in Figures 2-4 the blue and black lines almost coincide.

As a conclusion, it seems that the matrices T (n, x
1

n−1+
2
n

2 ) and T (n, x
1

n−1+x
2
n

2 )
have a good behavior in terms of distance to C(n, x) when compared with
T (n, x

1
n−1 ), T (n, x

2
n ) and Q(n, x).
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7 Conclusions

We have shown that an n-by-n reciprocal matrix can have any rank from 1 to
n, except 2, and have given a way of constructing a (positive) reciprocal matrix
with the rank and the off-diagonal entries of a row (column) prescribed. We
used techniques from graph theory to describe the maximum possible number of
equal entries, distinct from ±1, in a transitive matrix. We then have considered
the matrix C(n, x) and have given a transitive matrix Q(n, x) that preserves the
maximum possible number of entries of C(n, x).We have shown that this matrix
is closer, with the distance measured in the Frobenius matrix norm, to C(n, x)
than the Perron transitive matrix P (n, x) associated with C(n, x), proposed by
Saaty. Since C(n, x) is a Toeplitz matrix, we also focused on Toeplitz transitive
matrices close to C(n, x).We have shown that there are Toeplitz matrices closer
to C(n, x) than P (n, x). So, in terms of distance to C(n, x), we have shown that
there are matrices closer to C(n, x) than P (n, x) which in addition preserve
other properties of C(n, x). Of course, these matrices do not have the same
Perron eigenvector as C(n, x), contrarily to what happens with P (n, x). Finally,
we have given some numerical examples that show the behavior, in terms of
distance to C(n, x), of some transitive matrices suggested by our theoretical
results.
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